101
|
Svicher V, Balestra E, Cento V, Sarmati L, Dori L, Vandenbroucke I, D'Arrigo R, Buonomini AR, Van Marck H, Surdo M, Saccomandi P, Mostmans W, Aerssens J, Aquaro S, Stuyver LJ, Andreoni M, Ceccherini-Silberstein F, Perno CF. HIV-1 dual/mixed tropic isolates show different genetic and phenotypic characteristics and response to maraviroc in vitro. Antiviral Res 2011; 90:42-53. [PMID: 21349294 DOI: 10.1016/j.antiviral.2011.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Dual/mixed-tropic HIV-1 strains are predominant in a significative proportion of patients, though few information is available regarding the genetic characteristics, quasispecies composition, and susceptibility against CCR5-antagonists of the primary-isolates. For this reason, we investigated in deep details, both phenotypically and genotypically, the characteristics of 54 HIV-1 primary-isolates obtained from HIV-infected patients. Tropism was assessed by multiple-cycles phenotypic-assay on U87MG-CD4(+)-CCR5(+)-/CXCR4(+)-expressing cells. In vitro selection in PBMCs of X4-tropic viral strains following maraviroc-treatment was also performed. Phenotypic-assay reported pure R5-tropic viruses in 31 (57.4%) isolates, dual/mixed-tropic viruses in 22 (40.7%), and pure X4-tropic virus in only 1 (1.8%). Among dual/mixed-tropic isolates, 12 showed a remarkably higher replication-efficacy in CCR5-expressing cells (R5(+)/X4), and 2 in CXCR4-expressing cells (R5/X4(+)). Genotypic-tropism testing showed a correlation between PSSM-scores, geno2pheno false-positive-rate, and V3-net-charge with both CCR5-usage and syncytium-inducing ability. Moreover, specific gp120- and gp41-mutations were significantly associated with tropism and/or syncytium-inducing ability. Ultra-deep V3-pyrosequencing showed the presence of a swarm of genetically distinct species with a preference for CCR5-coreceptor not only in all pure R5-isolates, but also in 6/7 R5(+)/X4-tropic isolates. In both pure-X4 and R5/X4(+)-isolates, we observed extensive prevalence of X4-using species. In vitro selection-experiments with CCR5-inhibitor maraviroc (up to 2 months) showed no-emergence of X4-tropic variants for all R5- and R5(+)/X4-isolates tested (while X4-virus remained fully-resistant). In conclusion, our study shows that dual/mixed-tropic viruses are constituted by different species, whereby those with characteristics R5(+)/X4 are genotypically and phenotypically similar to the pure-R5 isolates; thus the use of CCR5-antagonists in patients with R5(+)/X4-tropic viruses may be a therapeutic-option that deserves further investigations.
Collapse
Affiliation(s)
- Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Gharu L, Ringe R, Satyakumar A, Patil A, Bhattacharya J. Short communication: evidence of HIV type 1 clade C env clones containing low V3 loop charge obtained from an AIDS patient in India that uses CXCR6 and CCR8 for entry in addition to CCR5. AIDS Res Hum Retroviruses 2011; 27:211-9. [PMID: 20854195 DOI: 10.1089/aid.2009.0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract HIV-1 clade C is the major subtype circulating in India and preferentially uses CCR5 during the entire disease course. We have recently shown that env clones from an Indian patient; NARI-VB105 uses multiple coreceptors for entry and was presented with an unusual V3 loop sequence giving rise to high net V3 loop positive charges. Here we show that env clones belonging to subtype C obtained from an AIDS patient, NARI-VB52, use CXCR6 and CCR8 in addition to CCR5 for entry. However, unlike the NARI-105 patient, the env clones contained a low V3 loop net charge of +3 with a conserved GPGQ motif typical of CCR5 using subtype C strains, indicating that residues outside the V3 loop contributed to extended coreceptor use in this particular patient.
Collapse
Affiliation(s)
- Lavina Gharu
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Rajesh Ringe
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Anupindi Satyakumar
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Ajit Patil
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| | - Jayanta Bhattacharya
- Department of Molecular Virology, National AIDS Research Institute, G-73 MIDC, Bhosari, Pune, India
| |
Collapse
|
103
|
Abstract
SIV or SHIV infection of nonhuman primates (NHP) has been used to investigate the impact of coreceptor usage on the composition and dynamics of the CD4+ T cell compartment, mechanisms of disease induction and development of clinical syndrome. As the entire course of infection can be followed, with frequent access to tissue compartments, infection of rhesus macaques with CCR5-tropic SHIVs further allows for study of HIV-1 coreceptor switch after intravenous and mucosal inoculation, with longitudinal and systemic analysis to determine the timing, anatomical sites and cause for the change in envelope glycoprotein and coreceptor preference. Here, we review our current understanding of coreceptor use in NHPs and their impact on the pathobiological characteristics of the infection, and discuss recent advances in NHP studies to uncover the underlying selective pressures for the change in coreceptor preference in vivo.
Collapse
Affiliation(s)
- Silvana Tasca Sina
- Aaron Diamond AIDS Research Center, 455 First Ave, 7th Floor, New York, New York, USA
| | | | | |
Collapse
|
104
|
Effect of B-cell depletion on coreceptor switching in R5 simian-human immunodeficiency virus infection of rhesus macaques. J Virol 2011; 85:3086-94. [PMID: 21248033 DOI: 10.1128/jvi.02150-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently described a coreceptor switch in rapid progressor (RP) R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N))-infected rhesus macaques that had high virus replication and undetectable or weak and transient antiviral antibody response (S. H. Ho et al., J. Virol. 81:8621-8633, 2007; S. H. Ho, N. Trunova, A. Gettie, J. Blanchard, and C. Cheng-Mayer, J. Virol. 82:5653-5656, 2008; and W. Ren et al., J. Virol. 84:340-351, 2010). The lack of antibody selective pressure, together with the observation that the emerging X4 variants were neutralization sensitive, suggested that the absence or weakening of the virus-specific humoral immune response could be an environmental factor fostering coreceptor switching in vivo. To test this possibility, we treated four macaques with 50 mg/kg of body weight of the anti-CD20 antibody rituximab every 2 to 3 weeks starting from the week prior to intravenous infection with SHIV(SF162P3N) for a total of six infusions. Rituximab treatment successfully depleted peripheral and lymphoid CD20(+) cells for up to 25 weeks according to flow cytometry and immunohistochemical staining, with partial to full recovery in two of the four treated monkeys thereafter. Three of the four treated macaques failed to mount a detectable anti-SHIV antibody response, while the response was delayed in the remaining animal. The three seronegative macaques progressed to disease, but in none of them could the presence of X4 variants be demonstrated by V3 sequence and tropism analyses. Furthermore, viruses did not evolve early in these diseased macaques to be more soluble CD4 sensitive. These results demonstrate that the absence or diminution of humoral immune responses by itself is insufficient to drive the R5-to-X4 switch and the neutralization susceptibility of the evolving viruses.
Collapse
|
105
|
High CD4+ T-Cell Surface CXCR4 Density as a Risk Factor for R5 to X4 Switch in the Course of HIV-1 Infection. J Acquir Immune Defic Syndr 2010; 55:529-35. [DOI: 10.1097/qai.0b013e3181f25bab] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Garcia-Perez J, Rueda P, Staropoli I, Kellenberger E, Alcami J, Arenzana-Seisdedos F, Lagane B. New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection. J Biol Chem 2010; 286:4978-90. [PMID: 21118814 DOI: 10.1074/jbc.m110.168955] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CC chemokine receptor 5 (CCR5) is a G-protein-coupled receptor for the chemokines CCL3, -4, and -5 and a coreceptor for entry of R5-tropic strains of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T-cells. We investigated the mechanisms whereby nonpeptidic, low molecular weight CCR5 ligands block HIV-1 entry and infection. Displacement binding assays and dissociation kinetics demonstrated that two of these molecules, i.e. TAK779 and maraviroc (MVC), inhibit CCL3 and the HIV-1 envelope glycoprotein gp120 binding to CCR5 by a noncompetitive and allosteric mechanism, supporting the view that they bind to regions of CCR5 distinct from the gp120- and CCL3-binding sites. We observed that TAK779 and MVC are full and weak inverse agonists for CCR5, respectively, indicating that they stabilize distinct CCR5 conformations with impaired abilities to activate G-proteins. Dissociation of [(125)I]CCL3 from CCR5 was accelerated by TAK779, to a lesser extent by MVC, and by GTP analogs, suggesting that inverse agonism contributes to allosteric inhibition of the chemokine binding to CCR5. TAK779 and MVC also promote dissociation of [(35)S]gp120 from CCR5 with an efficiency that correlates with their ability to act as inverse agonists. Displacement experiments revealed that affinities of MVC and TAK779 for the [(35)S]gp120-binding receptors are in the same range (IC(50) ∼6.4 versus 22 nm), although we found that MVC is 100-fold more potent than TAK779 for inhibiting HIV infection. This suggests that allosteric CCR5 inhibitors not only act by blocking gp120 binding but also alter distinct steps of CCR5 usage in the course of HIV infection.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- INSERM U819/Unité de Pathogénie Virale, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
107
|
Alizon S, Luciani F, Regoes RR. Epidemiological and clinical consequences of within-host evolution. Trends Microbiol 2010; 19:24-32. [PMID: 21055948 DOI: 10.1016/j.tim.2010.09.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 11/18/2022]
Abstract
Many viruses and bacteria are known to evolve rapidly over the course of an infection. However, epidemiological studies generally assume that within-host evolution is an instantaneous process. We argue that the dynamics of within-host evolution has implications at the within-host and at the between-host levels. We first show that epidemiologists should consider within-host evolution, notably because it affects the genotype of the pathogen that is transmitted. We then present studies that investigate evolution at the within-host level and examine the extent to which these studies can help to understand infection traits involved in the epidemiology (e.g. transmission rate, virulence, recovery rate). Finally, we discuss how new techniques for data acquisition can open new perspectives for empirical and theoretical research.
Collapse
Affiliation(s)
- Samuel Alizon
- Laboratoire Génétique et Évolution des Maladies Infectieuses, Unité Mixte de Recherche du Centre national de la Recherche Scientifique et de l'Institut de Recherche pour le Développement 2724, 911 avenue Agropolis, BP 64501, 34394 Montpellier CEDEX 5, France.
| | | | | |
Collapse
|
108
|
ALIZON S, BOLDIN B. Within-host viral evolution in a heterogeneous environment: insights into the HIV co-receptor switch. J Evol Biol 2010; 23:2625-35. [DOI: 10.1111/j.1420-9101.2010.02139.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
109
|
Zhang C, Ding N, Chen K, Yang R. Complex positive selection pressures drive the evolution of HIV-1 with different co-receptor tropisms. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1204-14. [PMID: 20953943 PMCID: PMC7089306 DOI: 10.1007/s11427-010-4066-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 08/01/2010] [Indexed: 11/26/2022]
Abstract
HIV-1 co-receptor tropism is central for understanding the transmission and pathogenesis of HIV-1 infection. We performed a genome-wide comparison between the adaptive evolution of R5 and X4 variants from HIV-1 subtypes B and C. The results showed that R5 and X4 variants experienced differential evolutionary patterns and different HIV-1 genes encountered various positive selection pressures, suggesting that complex selection pressures are driving HIV-1 evolution. Compared with other hypervariable regions of Gp120, significantly more positively selected sites were detected in the V3 region of subtype B X4 variants, V2 region of subtype B R5 variants, and V1 and V4 regions of subtype C X4 variants, indicating an association of positive selection with co-receptor recognition/binding. Intriguingly, a significantly higher proportion (33.3% and 55.6%, P<0.05) of positively selected sites were identified in the C3 region than other conserved regions of Gp120 in all the analyzed HIV-1 variants, indicating that the C3 region might be more important to HIV-1 adaptation than previously thought. Approximately half of the positively selected sites identified in the env gene were identical between R5 and X4 variants. There were three common positively selected sites (96, 113 and 281) identified in Gp41 of all X4 and R5 variants from subtypes B and C. These sites might not only suggest a functional importance in viral survival and adaptation, but also imply a potential cross-immunogenicity between HIV-1 R5 and X4 variants, which has important implications for AIDS vaccine development.
Collapse
Affiliation(s)
- ChiYu Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 China
| | - Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 China
| | - KePing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013 China
| | - RongGe Yang
- HIV Molecular Epidemiology and Virology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 China
| |
Collapse
|
110
|
Neogi U, Prarthana SB, D'Souza G, DeCosta A, Kuttiatt VS, Ranga U, Shet A. Co-receptor tropism prediction among 1045 Indian HIV-1 subtype C sequences: Therapeutic implications for India. AIDS Res Ther 2010; 7:24. [PMID: 20646329 PMCID: PMC2918521 DOI: 10.1186/1742-6405-7-24] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/21/2010] [Indexed: 05/26/2023] Open
Abstract
Background Understanding co-receptor tropism of HIV-1 strains circulating in India will provide key analytical leverage for assessing the potential usefulness of newer antiretroviral drugs such as chemokine co-receptor antagonists among Indian HIV-infected populations. The objective of this study was to determine using in silico methods, HIV-1 tropism among a large number of Indian isolates both from primary clinical isolates as well as from database-derived sequences. Results R5-tropism was seen in 96.8% of a total of 1045 HIV-1 subtype C Indian sequences. Co-receptor prediction of 15 primary clinical isolates detected two X4-tropic strains using the C-PSSM matrix. R5-tropic HIV-1 subtype C V3 sequences were conserved to a greater extent than X4-tropic strains. X4-tropic strains were obtained from subjects who had a significantly longer time since HIV diagnosis (96.5 months) compared to R5-tropic strains (20.5 months). Conclusions High prevalence of R5 tropism and greater homogeneity of the V3 sequence among HIV-1 subtype C strains in India suggests the potential benefit of CCR5 antagonists as a therapeutic option in India.
Collapse
|
111
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Schwartzkopff F, Grimm TA, Lankford CSR, Fields K, Wang J, Brandt E, Clouse KA. Platelet factor 4 (CXCL4) facilitates human macrophage infection with HIV-1 and potentiates virus replication. Innate Immun 2010; 15:368-79. [PMID: 19773294 DOI: 10.1177/1753425909106171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Platelet factor 4 (CXCL4), a member of the CXC chemokine subfamily released in high amounts by activated platelets, has been identified as a monocyte survival factor that induces monocyte differentiation into macrophages. Although CXCL4 has been shown to have biological effects unique to chemokines, nothing is known about the role of CXCL4-derived human macrophages or CXCL4 in human immunodeficiency virus (HIV) disease. In this study, CXCL4-derived macrophages are compared with macrophage-colony stimulating factor (M-CSF)-derived macrophages for their ability to support HIV-1 replication. We show that CXCL4-derived macrophages can be infected with macrophage-tropic HIV-1 that uses either CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4) as a co-receptor for viral entry. We also find that M-CSF and the chemokines, monocyte chemoattractant protein 1 (MCP-1; CCL2) and macrophage-inflammatory-protein-1-alpha (MIP-1alpha; CCL3) are produced upon R5- and X4-tropic HIV-1 replication in both M-CSF- and CXCL4-derived human macrophages. In addition, CXCL4 added to M-CSF-derived macrophages after virus adsorption and maintained throughout the infection enhances HIV-1 replication. We thus propose a novel role for CXCL4 in HIV disease.
Collapse
|
113
|
Liang M, Kamata M, Chen KN, Pariente N, An DS, Chen ISY. Inhibition of HIV-1 infection by a unique short hairpin RNA to chemokine receptor 5 delivered into macrophages through hematopoietic progenitor cell transduction. J Gene Med 2010; 12:255-65. [PMID: 20186995 DOI: 10.1002/jgm.1440] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND We recently expressed a potent and noncytotoxic short hairpin (sh)RNA directed against chemokine (c-c motif) receptor 5 (CCR5) using lentiviral mediated transduction of CD34+ hematopoietic progenitor cells (HPCs) and demonstrated the stable reduction of CCR5 expression in T-lymphocytes. METHODS In the present study, we further assessed the activity of the shRNA through HPC transduction and differentiation into macrophages derived from fetal liver CD34+ (FL-CD34+) HPCs. Transduced lentiviral vector encoding the human CCR5 shRNA was stably maintained in FL-CD34+ cells and in the terminally differentiated macrophages using macrophage colony-stimulating factor, granulocyte macrophage colony-stimulating factor, interleukin-3 and stem cell factor. RESULTS Quantitative real-time polymerase chain reaction for CCR5 mRNA indicated over 90% reduction of CCR5 mRNA levels in CCR5 shRNA-transduced population. The cells with knockdown of CCR5 expression acquired resistance to R5 tropic HIV-1 NFN-SX strain. We also developed a novel approach utilizing a mCherry-CCR5 chimeric reporter to assess the effectiveness of CCR5 target down-regulation in macrophages directly. Both the shRNA and the reporter were maintained throughout HPC differentiation to macrophages without apparent cytotoxicity. CONCLUSIONS The present study demonstrates a novel method to simply and directly assess the function of small interfering RNA and the effective inhibition of HIV-1 infection by a potential potent shRNA to CCR5 delivered into macrophages derived from HPCs.
Collapse
Affiliation(s)
- Min Liang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
114
|
Kamp C, Wolf T, Bravo IG, Kraus B, Krause B, Neumann B, Winskowsky G, Thielen A, Werner A, Schnierle BS. Decreased HIV diversity after allogeneic stem cell transplantation of an HIV-1 infected patient: a case report. Virol J 2010; 7:55. [PMID: 20210988 PMCID: PMC2845567 DOI: 10.1186/1743-422x-7-55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) coreceptor use and viral evolution were analyzed in blood samples from an HIV-1 infected patient undergoing allogeneic stem cell transplantation (SCT). Coreceptor use was predicted in silico from sequence data obtained from the third variable loop region of the viral envelope gene with two software tools. Viral diversity and evolution was evaluated on the same samples by Bayesian inference and maximum likelihood methods. In addition, phenotypic analysis was done by comparison of viral growth in peripheral blood mononuclear cells and in a CCR5 (R5)-deficient T-cell line which was controlled by a reporter assay confirming viral tropism. In silico coreceptor predictions did not match experimental determinations that showed a consistent R5 tropism. Anti-HIV directed antibodies could be detected before and after the SCT. These preexisting antibodies did not prevent viral rebound after the interruption of antiretroviral therapy during the SCT. Eventually, transplantation and readministration of anti-retroviral drugs lead to sustained increase in CD4 counts and decreased viral load to undetectable levels. Unexpectedly, viral diversity decreased after successful SCT. Our data evidence that only R5-tropic virus was found in the patient before and after transplantation. Therefore, blocking CCR5 receptor during stem cell transplantation might have had beneficial effects and this might apply to more patients undergoing allogeneic stem cell transplantation. Furthermore, we revealed a scenario of HIV-1 dynamic different from the commonly described ones. Analysis of viral evolution shows the decrease of viral diversity even during episodes with bursts in viral load.
Collapse
Affiliation(s)
- Christel Kamp
- Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Different tempo and anatomic location of dual-tropic and X4 virus emergence in a model of R5 simian-human immunodeficiency virus infection. J Virol 2010; 84:340-51. [PMID: 19846515 DOI: 10.1128/jvi.01865-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N)). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIV(SF162P3N). The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4(+) T-cell count but followed rather than preceded the onset of CD4(+) T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIV(SF162P3N) infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.
Collapse
|
116
|
Lihana RW, Khamadi SA, Lwembe RM, Kinyua JG, Muriuki JK, Lagat NJ, Okoth FA, Makokha EP, Songok EM. HIV-1 subtype and viral tropism determination for evaluating antiretroviral therapy options: an analysis of archived Kenyan blood samples. BMC Infect Dis 2009; 9:215. [PMID: 20040114 PMCID: PMC2804586 DOI: 10.1186/1471-2334-9-215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 12/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infection with HIV-1 is characterized by genetic diversity such that specific viral subtypes are predominant in specific geographical areas. The genetic variation in HIV-1 pol and env genes is responsible for rapid development of resistance to current drugs. This variation has influenced disease progression among the infected and necessitated the search for alternative drugs with novel targets. Though successfully used in developed countries, these novel drugs are still limited in resource-poor countries. The aim of this study was to determine HIV-1 subtypes, recombination, dual infections and viral tropism of HIV-1 among Kenyan patients prior to widespread use of antiretroviral drugs. METHODS Remnant blood samples from consenting sexually transmitted infection (STI) patients in Nairobi were collected between February and May 2001 and stored. Polymerase chain reaction and cloning of portions of HIV-1 gag, pol and env genes was carried out followed by automated DNA sequencing. RESULTS Twenty HIV-1 positive samples (from 11 females and 9 males) were analyzed. The average age of males (32.5 years) and females (26.5 years) was significantly different (p value < 0.0001). Phylogenetic analysis revealed that 90% (18/20) were concordant HIV-1 subtypes: 12 were subtype A1; 2, A2; 3, D and 1, C. Two samples (10%) were discordant showing different subtypes in the three regions. Of 19 samples checked for co-receptor usage, 14 (73.7%) were chemokine co-receptor 5 (CCR5) variants while three (15.8%) were CXCR4 variants. Two had dual/mixed co-receptor use with X4 variants being minor population. CONCLUSION HIV-1 subtype A accounted for majority of the infections. Though perceived to be a high risk population, the prevalence of recombination in this sample was low with no dual infections detected. Genotypic co-receptor analysis showed that most patients harbored viruses that are predicted to use CCR5.
Collapse
Affiliation(s)
- Raphael W Lihana
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Samoel A Khamadi
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Raphael M Lwembe
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Joyceline G Kinyua
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Joseph K Muriuki
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Nancy J Lagat
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Fredrick A Okoth
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Ernest P Makokha
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Elijah M Songok
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
117
|
Kamp C. Understanding the HIV coreceptor switch from a dynamical perspective. BMC Evol Biol 2009; 9:274. [PMID: 19948048 PMCID: PMC2797020 DOI: 10.1186/1471-2148-9-274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 11/30/2009] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The entry of HIV into its target cells is facilitated by the prior binding to the cell surface molecule CD4 and a secondary coreceptor, mostly the chemokine receptors CCR5 or CXCR4. In early infection CCR5-using viruses (R5 viruses) are mostly dominant while a receptor switch towards CXCR4 occurs in about 50% of the infected individuals (X4 viruses) which is associated with a progression of the disease. There are many hypotheses regarding the underlying dynamics without yet a conclusive understanding. RESULTS While it is difficult to isolate key factors in vivo we have developed a minimal in silico model based on the approaches of Nowak and May to investigate the conditions under which the receptor switch occurs. The model allows to investigate the evolution of viral strains within a probabilistic framework along the three stages of disease from primary and latent infection to the onset of AIDS with a a sudden increase in viral load which goes along with the impairment of the immune response. The model is specifically applied to investigate the evolution of the viral quasispecies in terms of R5 and X4 viruses which directly translates into the composition of viral load and consequently the question of the coreceptor switch. CONCLUSION The model can explain the coreceptor switch as a result of a dynamical change in the underlying environmental conditions in the host. The emergence of X4 strains does not necessarily result in the dominance of X4 viruses in viral load which is more likely to occur in the model after some time of chronic infection. A better understanding of the conditions leading to the coreceptor switch is especially of interest as CCR5 blockers have recently been licensed as drugs which suppress R5 viruses but do not seem to necessarily induce a coreceptor switch.
Collapse
Affiliation(s)
- Christel Kamp
- Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany.
| |
Collapse
|
118
|
Santos-Costa Q, Parreira R, Moniz-Pereira J, Azevedo-Pereira JM. Molecular characterization of the env gene of two CCR5/CXCR4-independent human immunodeficiency 2 primary isolates. J Med Virol 2009; 81:1869-81. [PMID: 19774680 DOI: 10.1002/jmv.21619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human immunodeficiency virus 2 (HIV-2) infection is characterized by a slower disease progression and lower transmission rates. The molecular features that could be assigned as directly involved in this in vivo phenotype remain essentially unknown, and the importance of HIV-2 as a model to understand pathogenicity of HIV infection has been frequently underestimated. The early events of the HIV replication cycle involve the interaction between viral envelope glycoproteins and cellular receptors: the CD4 molecule and a chemokine receptor, usually CCR5 or CXCR4. Despite the importance of these two chemokine receptors in human immunodeficiency virus 1 (HIV-1) entry into cells, we have previously shown that in some HIV-2 asymptomatic individuals, a viral population exists that is unable to use both CCR5 and CXCR4. The goal of the present study was to investigate whether possible regions in the env gene of these viruses might account for this phenotype. From the molecular characterization of these env genes we could not detect any correlation between V3 loop sequence and viral phenotype. In contrast, it reveals the existence of remarkable differences in the V1/V2 and C5 regions of the surface glycoprotein, including the loss of a putative glycosilation site. Moreover, in the transmembrane glycoprotein some unique sequence signatures could be detected in the central ectodomain and second heptad repeat (HR2). Some of the mutations affect well-conserved residues, and may affect the conformation and/or the dynamics of envelope glycoproteins complex, including the SU-TM association and the modulation of viral entry function.
Collapse
Affiliation(s)
- Quirina Santos-Costa
- Centro de Patogénese Molecular - Unidade dos Retrovirus e Infecções Associadas, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | | | | | | |
Collapse
|
119
|
Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin M, Kashanchi F. The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 2009; 6:76. [PMID: 19674458 PMCID: PMC2743631 DOI: 10.1186/1742-4690-6-76] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/12/2009] [Indexed: 01/10/2023] Open
Abstract
The development of novel techniques and systems to study human infectious diseases in both an in vitro and in vivo settings is always in high demand. Ideally, small animal models are the most efficient method of studying human afflictions. This is especially evident in the study of the human retroviruses, HIV-1 and HTLV-1, in that current simian animal models, though robust, are often expensive and difficult to maintain. Over the past two decades, the construction of humanized animal models through the transplantation and engraftment of human tissues or progenitor cells into immunocompromised mouse strains has allowed for the development of a reconstituted human tissue scaffold in a small animal system. The utilization of small animal models for retroviral studies required expansion of the early CB-17 scid/scid mouse resulting in animals demonstrating improved engraftment efficiency and infectivity. The implantation of uneducated human immune cells and associated tissue provided the basis for the SCID-hu Thy/Liv and hu-PBL-SCID models. Engraftment efficiency of these tissues was further improved through the integration of the non-obese diabetic (NOD) mutation leading to the creation of NODSCID, NOD/Shi-scid IL2rγ-/-, and NOD/SCID β2-microglobulinnull animals. Further efforts at minimizing the response of the innate murine immune system produced the Rag2-/-γc-/- model which marked an important advancement in the use of human CD34+ hematopoietic stem cells. Together, these animal models have revolutionized the investigation of retroviral infections in vivo.
Collapse
Affiliation(s)
- Rachel Van Duyne
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC 20037, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Sundstrom JB, Hair GA, Ansari AA, Secor WE, Gilfillan AM, Metcalfe DD, Kirshenbaum AS. IgE-FcepsilonRI interactions determine HIV coreceptor usage and susceptibility to infection during ontogeny of mast cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:6401-9. [PMID: 19414793 DOI: 10.4049/jimmunol.0801481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progenitor mast cells (prMCs), derived from CD34(+) precursors are CD4(+)/CCR5(+)/CXCR4(+) and susceptible to CCR5(R5)-tropic virus but only marginally susceptible to CXCR4(X4)-tropic HIV. As infected prMCs mature within extravascular compartments, they become both latently infected and HIV-infection resistant, and thus capable of establishing an inducible reservoir of CCR5-tropic infectious clones. In this report we provide the first evidence that IgE-FcepsilonRI interactions, occurring during a unique period of mast cell (MC) ontogeny, enhance prMC susceptibility to X4 and R5X4 virus. IgE-FcepsilonRI interactions significantly increased expression of CXCR4 mRNA ( approximately 400- to 1800-fold), enhanced prMC susceptibility to X4 and R5X4 virus ( approximately 3000- to 16,000-fold), but had no significant effect on CD4, CCR3, or CCR5 expression, susceptibility to R5 virus, or degranulation. Enhanced susceptibility to infection with X4 virus occurred during the first 3-5 wk of MC ontogeny and was completely inhibited by CXCR4-specific peptide antagonists and omalizumab, a drug that inhibits IgE-FcepsilonRI interactions. IgE-FcepsilonRI coaggregation mediated by HIVgp120 or Schistosoma mansoni soluble egg Ag accelerated maximal CXCR4 expression and susceptibility to X4 virus by prMCs. Our findings suggest that for HIV-positive individuals with atopic or helminthic diseases, elevated IgE levels could potentially influence the composition of CXCR4-tropic and R5X4-tropic variants archived within the long-lived tissue MC reservoir created during infection.
Collapse
Affiliation(s)
- J Bruce Sundstrom
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
121
|
Mild M, Kvist A, Esbjörnsson J, Karlsson I, Fenyö EM, Medstrand P. Differences in molecular evolution between switch (R5 to R5X4/X4-tropic) and non-switch (R5-tropic only) HIV-1 populations during infection. INFECTION GENETICS AND EVOLUTION 2009; 10:356-64. [PMID: 19446658 DOI: 10.1016/j.meegid.2009.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 05/01/2009] [Accepted: 05/07/2009] [Indexed: 01/02/2023]
Abstract
The recent introduction of entry inhibitors in the clinic as components of antiretroviral treatment has heightened the interest in coreceptor use of human immunodeficiency virus type 1 (HIV-1). Viruses using CCR5 as coreceptor (R5 viruses) are generally present over the entire course of infection whereas viruses using the CXCR4 coreceptor (R5X4/X4 viruses) emerge in about 50% of infected individuals during later stages of infection. The CCR5-to-CXCR4 switch represents a concern because CCR5 inhibitors, while suppressing R5 viruses, may allow the emergence of CXCR4-tropic viruses. In this study, HIV-1 populations that maintained CCR5 usage during infection were compared with populations that switched coreceptor usage to include CXCR4 later during infection, with the aim to find molecular properties of the virus populations associated with the CCR5-to-CXCR4 switch. We amplified and molecularly cloned the V1-V3 region of the HIV-1 envelope from 51 sequential HIV-1 isolates derived from 4 to 10 serial samples for each of the patients. Four of the patients had virus populations that switched coreceptor usage to include CXCR4 (switch populations: SP) during infection and four patients had viral populations that maintained exclusive CCR5 usage (non-switch populations: nSP). Coreceptor usage was determined experimentally on individual clones from dualtropic R5X4 isolates. In nSP we found that the number of potential N-linked glycosylation sites (PNGS) increased over time, whereas no pattern of change was observed in SP. We also found differences in V2 length and V3 charge between R5 viruses of nSP and R5 viruses of SP before the switch. The V2 region was significantly longer in R5 viruses of SP compared to viruses of nSP throughout the course of infection, and the V3 charge increased with time in R5 populations from SP, while it remained unchanged or decreased in nSP. These molecular properties could prove important for understanding the evolution of coreceptor usage in HIV-1 populations, and maybe even for predicting an upcoming coreceptor switch at early stages after primary infection.
Collapse
Affiliation(s)
- Mattias Mild
- Department of Experimental Medical Science, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
122
|
Abstract
PURPOSE OF REVIEW To present recent information on the evolution of coreceptor use from CCR5 alone to CCR5 and CXCR4, the impact CCR5 inhibitors have on this process, and new insights into HIV-1 binding to CD4 and CCR5. RECENT FINDINGS The findings that are summarized include resistance to CCR5 inhibitors, genotypic predictors of coreceptor use, the link between coreceptor use and cell tropism, and new data on CCR5 structure and function. SUMMARY Resistance to CCR5 inhibitors is uncommon, and frequently involves selection of minor populations of R5X4 virus. Genotypic predictors of coreceptor use need to take into account the entire envelope sequence, not just V3. Genetic polymorphisms in humans that affect CCR5 or chemokines that bind CCR5 affect not only virus entry but also immune reconstitution.
Collapse
|
123
|
HIV-1 clade C env clones obtained from an Indian patient exhibiting expanded coreceptor tropism are presented with naturally occurring unusual amino acid substitutions in V3 loop. Virus Res 2009; 144:306-14. [PMID: 19409946 DOI: 10.1016/j.virusres.2009.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
HIV-1 subtype C is predominantly circulating in India and has been reported to be strictly CCR5 tropic irrespective of disease stages. In the present study, we examined env clones obtained from a late stage Indian patient with a history of multiple sexual partners and opportunistic infections for coreceptor usage and V3 loop sequence. The env clones were found to exploit several coreceptors in addition to CCR5 in a cell-associated and cell-free manner. Analysis of V3 loop sequence revealed that the NARI-VB105 env clones were presented with unique amino acid substitutions with GPGR motif, atypical of clade C envelope. Further genetic analysis showed the V3 sequences albeit belonging to subtype C; however clustered distinctly to that of other clade C envelopes originated in different geographical regions. Modelling data revealed that NARI-VB105 V3 loop contained several basic residues giving rise a high net positive charge of +8 to these envelopes.
Collapse
|
124
|
Iwami S, Nakaoka S, Takeuchi Y, Miura Y, Miura T. Immune impairment thresholds in HIV infection. Immunol Lett 2009; 123:149-54. [PMID: 19428563 DOI: 10.1016/j.imlet.2009.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 01/10/2023]
Abstract
Longitudinal studies of patients infected with HIV-1 reveal a long and variable length of asymptomatic phase between infection and development of AIDS. Some HIV infected patients are still asymptomatic after 15 or more years of infection but some patients develop AIDS within 2 years. The mechanistic basis of the disease progression has remained obscure but many researchers have been trying to explain it. For example, the possible importance of viral diversity for the disease progression and the development of AIDS has been very well worked out in the early-1990s, especially by some important works of Martin A. Nowak. These studies can give an elegant explanation for a variability of asymptomatic phase. Here, a simple mathematical model was used to propose a new explanation for a variable length of asymptomatic phase. The main idea is that the immune impairment rate increases over the HIV infection. Our model suggested the existence of so-called "Risky threshold" and "Immunodeficiency threshold" on the impairment rate. The former implies that immune system may collapse when the impairment rate of HIV exceeds the threshold value. The latter implies that immune system always collapses when the impairment rate exceeds the value. We found that the length of asymptomatic phase is determined stochastically between these threshold values depending on the virological and immunological states. Furthermore, we investigated a distribution of the length of asymptomatic phase and a survival rate of the immune responses in one HIV patient.
Collapse
Affiliation(s)
- Shingo Iwami
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561, Japan
| | | | | | | | | |
Collapse
|
125
|
Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, Calisher CH, Laughlin CA, Saif LJ, Daszak P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev 2008; 72:457-70. [PMID: 18772285 PMCID: PMC2546865 DOI: 10.1128/mmbr.00004-08] [Citation(s) in RCA: 539] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Host range is a viral property reflecting natural hosts that are infected either as part of a principal transmission cycle or, less commonly, as "spillover" infections into alternative hosts. Rarely, viruses gain the ability to spread efficiently within a new host that was not previously exposed or susceptible. These transfers involve either increased exposure or the acquisition of variations that allow them to overcome barriers to infection of the new hosts. In these cases, devastating outbreaks can result. Steps involved in transfers of viruses to new hosts include contact between the virus and the host, infection of an initial individual leading to amplification and an outbreak, and the generation within the original or new host of viral variants that have the ability to spread efficiently between individuals in populations of the new host. Here we review what is known about host switching leading to viral emergence from known examples, considering the evolutionary mechanisms, virus-host interactions, host range barriers to infection, and processes that allow efficient host-to-host transmission in the new host population.
Collapse
Affiliation(s)
- Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Dendritic cells preferentially transfer CXCR4-using human immunodeficiency virus type 1 variants to CD4+ T lymphocytes in trans. J Virol 2008; 82:7886-96. [PMID: 18524826 DOI: 10.1128/jvi.00245-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4(+) T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.
Collapse
|
127
|
R5X4 viruses are evolutionary, functional, and antigenic intermediates in the pathway of a simian-human immunodeficiency virus coreceptor switch. J Virol 2008; 82:7089-99. [PMID: 18480460 DOI: 10.1128/jvi.00570-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the pathway of the coreceptor switching of CCR5-using (R5) virus to CXCR4-using (X4) virus in simian-human immunodeficiency virus SHIV(SF162P3N)-infected rhesus macaque BR24, analysis was performed on variants present at 20 weeks postinfection, the time when the signature gp120 V3 loop sequence of the X4 switch variant was first detected by PCR. Unexpectedly, circulating and tissue variants with His/Ile instead of the signature X4 V3 His/Arg insertions predominated at this time point. Phylogenetic analysis of the sequences of the C2 conserved region to the V5 variable loop of the envelope (Env) protein showed that viruses bearing HI insertions represented evolutionary intermediates between the parental SHIV(SF162P3N) and the final X4 HR switch variant. Functional analyses demonstrated that the HI variants were phenotypic intermediates as well, capable of using both CCR5 and CXCR4 for entry. However, the R5X4 intermediate virus entered CCR5-expressing target cells less efficiently than the parental R5 strain and was more sensitive to both CCR5 and CXCR4 inhibitors than either the parental R5 or the final X4 virus. It was also more sensitive than the parental R5 virus to antibody neutralization, especially to agents directed against the CD4 binding site, but not as sensitive as the late X4 virus. Significantly, the V3 loop sequence that determined CXCR4 use also conferred soluble CD4 neutralization sensitivity. Collectively, the data illustrate that, similar to human immunodeficiency virus type 1 (HIV-1) infection in individuals, the evolution from CCR5 to CXCR4 usage in BR24 transitions through an intermediate phase with reduced virus entry and coreceptor usage efficiencies. The data further support a model linking an open envelope gp120 conformation, better CD4 binding, and expansion to CXCR4 usage.
Collapse
|
128
|
Dubey S, Khalid M, Wesley C, Khan SA, Wanchu A, Jameel S. Downregulation of CCR5 on activated CD4 T cells in HIV-infected Indians. J Clin Virol 2008; 43:25-31. [PMID: 18462992 DOI: 10.1016/j.jcv.2008.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/15/2008] [Accepted: 03/27/2008] [Indexed: 01/23/2023]
Abstract
BACKGROUND HIV infection in India is unique as it occurs predominantly by CCR5-utilizing isolates that exhibit no co-receptor switch. OBJECTIVES To study HIV-1 co-receptor dynamics on T cells and monocytes following viral infection. STUDY DESIGN HIV co-receptor expression was evaluated by flow cytometry on various cell subsets in HIV-infected Indians and in vitro in human peripheral blood mononuclear cells infected with CCR5- or CXCR4-utilizing HIV-1. Transfection of the T cell line CEM-CCR5 (which expresses CD4, CCR5 and CXCR4) with HIV-1 Nef or Vpu expression vectors, or treatment with recombinant soluble gp120 from CCR5- and CXCR4-tropic HIV-1, was carried out to determine their effects on co-receptor expression. RESULTS Indian HIV patients had fewer CD4+CCR5+ T cells and CCR5-expressing activated CD4+ T cells, but higher CXCR4-expressing activated CD4+ T cells compared with controls. Expression of CCR5 was not different on monocytes in HIV patients as compared to controls. The CCR5 downregulation on T cells was HIV infection specific and was governed by the co-receptor-utilization phenotype of the virus. The Nef and soluble gp120 proteins induced CCR5 downregulation, the latter in a co-receptor-utilization phenotype specific manner. CONCLUSIONS The HIV-1 co-receptor dynamics in Indian patients is distinct from western patients and depends upon the virus surface protein. We propose this to be a viral survival strategy.
Collapse
Affiliation(s)
- Shweta Dubey
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
129
|
Adamson CS, Freed EO. Recent progress in antiretrovirals--lessons from resistance. Drug Discov Today 2008; 13:424-32. [PMID: 18468560 DOI: 10.1016/j.drudis.2008.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 12/17/2022]
Abstract
Recent failures in efforts to develop an effective vaccine against HIV-1 infection have emphasized the importance of antiretroviral therapy in treating HIV-1-infected patients. Thus far, inhibitors of two viral enzymes, reverse transcriptase and protease, have had a profoundly positive impact on the survival of HIV-1-infected patients. However, new inhibitors that act at diverse steps in the viral replication cycle are urgently needed because of the development of resistance to currently available antiretrovirals. This review summarizes recent progress in antiretroviral drug discovery and development by specifically focusing on novel inhibitors of three phases of replication: viral entry, integration of the viral DNA into the host cell genome and virus particle maturation.
Collapse
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
130
|
Different mutational pathways to CXCR4 coreceptor switch of CCR5-using simian-human immunodeficiency virus. J Virol 2008; 82:5653-6. [PMID: 18385246 DOI: 10.1128/jvi.00145-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here a second case of coreceptor switch in R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N))-infected macaque CA28, supporting the use of this experimental system to examine factors that drive the change in coreceptor preference in vivo. Virus recovered from CA28 plasma (SHIV(CA28NP)) used both CCR5 and CXCR4 for entry, but the virus recovered from lymph node (SHIV(CA28NL)) used CXCR4 almost exclusively. Sequence and functional analyses showed that mutations in the V3 loop that conferred CXCR4 usage in macaque CA28 differed from those described in the previously reported case, demonstrating divergent mutational pathways for change in the coreceptor preference of the R5 SHIV(SF162P3N) isolate in vivo.
Collapse
|
131
|
|
132
|
Coombs D, Gilchrist MA, Ball CL. Evaluating the importance of within- and between-host selection pressures on the evolution of chronic pathogens. Theor Popul Biol 2007; 72:576-91. [PMID: 17900643 DOI: 10.1016/j.tpb.2007.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/16/2022]
Abstract
Infectious pathogens compete and are subject to natural selection at multiple levels. For example, viral strains compete for access to host resources within an infected host and, at the same time, compete for access to susceptible hosts within the host population. Here we propose a novel approach to study the interplay between within- and between-host competition. This approach allows for a single host to be infected by and transmit two strains of the same pathogen. We do this by nesting a model for the host-pathogen dynamics within each infected host into an epidemiological model. The nesting of models allows the between-host infectivity and mortality rates suffered by infected hosts to be functions of the disease progression at the within-host level. We present a general method for computing the basic reproduction ratio of a pathogen in such a model. We then illustrate our method using a basic model for the within-host dynamics of viral infections, embedded within the simplest susceptible-infected (SI) epidemiological model. Within this nested framework, we show that the virion production rate at the level of the cell-virus interaction leads, via within-host competition, to the presence or absence of between-host level competitive exclusion. In particular, we find that in the absence of mutation the strain that maximizes between-host fitness can outcompete all other strains. In the presence of mutation we observe a complex invasion landscape showing the possibility of coexistence. Although we emphasize the application to human viral diseases, we expect this methodology to be applicable to be many host-parasite systems.
Collapse
Affiliation(s)
- Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2.
| | | | | |
Collapse
|
133
|
Jlizi A, Edouard J, Fadhlaoui-Zid K, Frigi S, Debré P, Slim A, Theodorou I, El Gaaied ABA, Carpentier W. Identification of the CCR5-Δ32 HIV resistance allele and new mutations of the CCR5 gene in different Tunisian populations. Hum Immunol 2007; 68:993-1000. [PMID: 18191728 DOI: 10.1016/j.humimm.2007.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 11/19/2022]
Affiliation(s)
- Asma Jlizi
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Sing T, Low AJ, Beerenwinkel N, Sander O, Cheung PK, Domingues FS, Büch J, Däumer M, Kaiser R, Lengauer T, Harrigan PR. Predicting HIV Coreceptor Usage on the Basis of Genetic and Clinical Covariates. Antivir Ther 2007. [DOI: 10.1177/135965350701200709] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background We compared several statistical learning methods for the prediction of HIV coreceptor use from clonal HIV third hypervariable (V3) loop sequences, and evaluated and improved their effectiveness on clinical samples. Methods Support vector machines (SVM), artificial neural networks, position-specific scoring matrices (PSSM) and mixtures of localized rules were estimated and tested using 10x ten-fold cross-validation on a clonal dataset consisting of 1,100 matched clonal genotype-phenotype pairs from 332 patients. Different SVMs were also trained and tested on a clinically derived dataset, representing 920 patient samples from British Columbia, Canada. Methods were evaluated using receiver operating characteristic (ROC) curves. Results In the clonal analysis, the sensitivity of the 11/25 rule at 92.5% specificity was 59.5%. PSSMs and SVMs increased sensitivity to 71.9% and 76.4%, respectively, at the same specificity ( P<<0.05). In clinical samples, the sensitivity of the 11/25 rule and SVM decreased to 25.9% (specificity 93.9%) and 39.8% (specificity 93.5%), respectively. However, the integration of clinical data resulted in a further 2.4-fold increase in sensitivity over the 11/25 rule (63%). Univariate analyses identified 41 V3 mutations significantly associated with coreceptor usage. Conclusion For all methods tested, a substantial sensitivity decrease is observed on clinical data, probably owing to the heterogeneity of the viral population in vivo. In response to these complications, we present an SVM-based approach that integrates sequence information with clinical and host data, resulting in improved performance and sensitivity compared with purely sequence-based approaches.
Collapse
Affiliation(s)
- Tobias Sing
- Max Planck Institute for Informatics, Saarbrücken, Germany
- Department for Modeling and Simulation, Novartis Pharmaceuticals, Basel, Switzerland
| | - Andrew J Low
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Oliver Sander
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Peter K Cheung
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | | | - Joachim Büch
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | | | | | | | - P Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
135
|
Salemi M, Burkhardt BR, Gray RR, Ghaffari G, Sleasman JW, Goodenow MM. Phylodynamics of HIV-1 in lymphoid and non-lymphoid tissues reveals a central role for the thymus in emergence of CXCR4-using quasispecies. PLoS One 2007; 2:e950. [PMID: 17895991 PMCID: PMC1978532 DOI: 10.1371/journal.pone.0000950] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 09/06/2007] [Indexed: 01/04/2023] Open
Abstract
Background During HIV-1 infection coreceptor switch from CCR5- (R5)- to CXCR4 (X4)-using viruses is associated with disease progression. X4 strains of HIV-1 are highly cytopathic to immature thymocytes. Virtually no studies have evaluated the HIV-1 quasispecies present in vivo within thymic and lymphoid tissues or the evolutionary relationship between R5 and X4 viruses in tissues and peripheral blood. Methodology/Principal Findings High-resolution phylodynamic analysis was applied to virus envelope quasispecies in longitudinal peripheral blood mononuclear cells (PBMCs) and lymphoid and non-lymphoid tissues collected post mortem from therapy naïve children with AIDS. There were three major findings. First, continued evolution of R5 viruses in PBMCs, spleen and lymph nodes involved multiple bottlenecks, independent of coreceptor switch, resulting in fitter quasispecies driven by positive selection. Second, evolution of X4 strains appeared to be a sequential process requiring the initial fixation of positively selected mutations in V1-V2 and C2 domains of R5 variants before the emergence of high charge V3 X4 variants. Third, R5 viruses persisted after the emergence of CXCR4-using strains, which were found predominantly but not exclusively in the thymus. Conclusions/Significance Our data indicate that the evolution of X4 strains is a multi-step, temporally structured process and that the thymus may play an important role in the evolution/amplification of coreceptor variants. Development of new therapeutic protocols targeting virus in the thymus could be important to control HIV-1 infection prior to advanced disease.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- * To whom correspondence should be addressed. E-mail: (MS); (MG)
| | - Brant R. Burkhardt
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Rebecca R. Gray
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Anthropology, University of Florida, Gainesville, Florida, United States of America
| | - Guity Ghaffari
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Pediatrics, Division of Immunology, Rheumatology, and Infectious Diseases, University of Florida, Gainesville, Florida, United States of America
| | - John W. Sleasman
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of South Florida and All Children's Hospital, St. Petersburg, Florida, United States of America
| | - Maureen M. Goodenow
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Pediatrics, Division of Immunology, Rheumatology, and Infectious Diseases, University of Florida, Gainesville, Florida, United States of America
- * To whom correspondence should be addressed. E-mail: (MS); (MG)
| |
Collapse
|
136
|
Ball CL, Gilchrist MA, Coombs D. Modeling Within-Host Evolution of HIV: Mutation, Competition and Strain Replacement. Bull Math Biol 2007; 69:2361-85. [PMID: 17554585 DOI: 10.1007/s11538-007-9223-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
Virus evolution during infection of a single individual is a well-known feature of disease progression in chronic viral diseases. However, the simplest models of virus competition for host resources show the existence of a single dominant strain that grows most rapidly during the initial period of infection and competitively excludes all other virus strains. Here, we examine the dynamics of strain replacement in a simple model that includes a convex trade-off between rapid virus reproduction and long-term host cell survival. Strains are structured according to their within-cell replication rate. Over the course of infection, we find a progression in the dominant strain from fast- to moderately-replicating virus strains featuring distinct jumps in the replication rate of the dominant strain over time. We completely analyze the model and provide estimates for the replication rate of the initial dominant strain and its successors. Our model lays the groundwork for more detailed models of HIV selection and mutation. We outline future directions and application of related models to other biological situations.
Collapse
Affiliation(s)
- Colleen L Ball
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2, Canada
| | | | | |
Collapse
|
137
|
Ho SH, Tasca S, Shek L, Li A, Gettie A, Blanchard J, Boden D, Cheng-Mayer C. Coreceptor switch in R5-tropic simian/human immunodeficiency virus-infected macaques. J Virol 2007; 81:8621-33. [PMID: 17537860 PMCID: PMC1951359 DOI: 10.1128/jvi.00759-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basis for the switch from CCR5 to CXCR4 coreceptor usage seen in approximately 50% of human immunodeficiency virus type 1 (HIV-1) subtype B-infected individuals as disease advances is not well understood. Among the reasons proposed are target cell limitation and better immune recognition of the CXCR4 (X4)-tropic compared to the CCR5 (R5)-tropic virus. We document here X4 virus emergence in a rhesus macaque (RM) infected with R5-tropic simian/human immunodeficiency virus, demonstrating that coreceptor switch can happen in a nonhuman primate model of HIV/AIDS. The switch to CXCR4 usage in RM requires envelope sequence changes in the V3 loop that are similar to those found in humans, suggesting that the R5-to-X4 evolution pathways in the two hosts overlap. Interestingly, compared to the inoculating R5 virus, the emerging CXCR4-using virus is highly neutralization sensitive. This finding, coupled with the observation of X4 evolution and appearance in an animal with undetectable circulating virus-specific antibody and low cellular immune responses, lends further support to an inhibitory role of antiviral immunity in HIV-1 coreceptor switch.
Collapse
Affiliation(s)
- Siu-hong Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Biswas P, Tambussi G, Lazzarin A. Access denied? The status of co-receptor inhibition to counter HIV entry. Expert Opin Pharmacother 2007; 8:923-33. [PMID: 17472538 DOI: 10.1517/14656566.8.7.923] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As resistance and long-term metabolic abnormalities hamper the efficacy of previous drugs against HIV-1, targeting of HIV co-receptors represents an exciting new frontier for antiretroviral therapeutics. CCR5 inhibitors are most likely to be the new available drugs within the class of entry inhibitors. This paper reviews the most recent clinical data available on the small-molecule compounds vicriviroc and maraviroc and on the antibodies PRO 140 and CCR5mAb004, as well as some novel genetic approaches. A thorough overview of the many challenges, past, present and future, that CCR5 inhibitors encounter during their development pathway is then presented. Possible immunologic consequences are also discussed. It could be foreseen that the benefit for HIV-infected individuals derived by the use of these potential novel drugs will outweigh the costs/risks intrinsically present in every new therapeutic approach.
Collapse
Affiliation(s)
- Priscilla Biswas
- San Raffaele Scientific Institute, Lab. of Clinical Immunology, Via Stamira d'Ancona n. 20, Milan, Italy.
| | | | | |
Collapse
|
139
|
Yates A, Stark J, Klein N, Antia R, Callard R. Understanding the slow depletion of memory CD4+ T cells in HIV infection. PLoS Med 2007; 4:e177. [PMID: 17518516 PMCID: PMC1872038 DOI: 10.1371/journal.pmed.0040177] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 03/26/2007] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The asymptomatic phase of HIV infection is characterised by a slow decline of peripheral blood CD4(+) T cells. Why this decline is slow is not understood. One potential explanation is that the low average rate of homeostatic proliferation or immune activation dictates the pace of a "runaway" decline of memory CD4(+) T cells, in which activation drives infection, higher viral loads, more recruitment of cells into an activated state, and further infection events. We explore this hypothesis using mathematical models. METHODS AND FINDINGS Using simple mathematical models of the dynamics of T cell homeostasis and proliferation, we find that this mechanism fails to explain the time scale of CD4(+) memory T cell loss. Instead it predicts the rapid attainment of a stable set point, so other mechanisms must be invoked to explain the slow decline in CD4(+) cells. CONCLUSIONS A runaway cycle in which elevated CD4(+) T cell activation and proliferation drive HIV production and vice versa cannot explain the pace of depletion during chronic HIV infection. We summarize some alternative mechanisms by which the CD4(+) memory T cell homeostatic set point might slowly diminish. While none are mutually exclusive, the phenomenon of viral rebound, in which interruption of antiretroviral therapy causes a rapid return to pretreatment viral load and T cell counts, supports the model of virus adaptation as a major force driving depletion.
Collapse
Affiliation(s)
- Andrew Yates
- Department of Biology, Emory University, Atlanta, Georgia, United States of America.
| | | | | | | | | |
Collapse
|
140
|
Sander O, Sing T, Sommer I, Low AJ, Cheung PK, Harrigan PR, Lengauer T, Domingues FS. Structural descriptors of gp120 V3 loop for the prediction of HIV-1 coreceptor usage. PLoS Comput Biol 2007; 3:e58. [PMID: 17397254 PMCID: PMC1848001 DOI: 10.1371/journal.pcbi.0030058] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 02/08/2007] [Indexed: 12/12/2022] Open
Abstract
HIV-1 cell entry commonly uses, in addition to CD4, one of the chemokine receptors CCR5 or CXCR4 as coreceptor. Knowledge of coreceptor usage is critical for monitoring disease progression as well as for supporting therapy with the novel drug class of coreceptor antagonists. Predictive methods for inferring coreceptor usage based on the third hypervariable (V3) loop region of the viral gene coding for the envelope protein gp120 can provide us with these monitoring facilities while avoiding expensive phenotypic tests. All simple heuristics (such as the 11/25 rule) as well as statistical learning methods proposed to date predict coreceptor usage based on sequence features of the V3 loop exclusively. Here, we show, based on a recently resolved structure of gp120 with an untruncated V3 loop, that using structural information on the V3 loop in combination with sequence features of V3 variants improves prediction of coreceptor usage. In particular, we propose a distance-based descriptor of the spatial arrangement of physicochemical properties that increases discriminative performance. For a fixed specificity of 0.95, a sensitivity of 0.77 was achieved, improving further to 0.80 when combined with a sequence-based representation using amino acid indicators. This compares favorably with the sensitivities of 0.62 for the traditional 11/25 rule and 0.73 for a prediction based on sequence information as input to a support vector machine and constitutes a statistically significant improvement. A detailed analysis and interpretation of structural features important for classification shows the relevance of several specific hydrogen-bond donor sites and aliphatic side chains to coreceptor specificity towards CCR5 or CXCR4. Furthermore, an analysis of side chain orientation of the specificity-determining residues suggests a major role of one side of the V3 loop in the selection of the coreceptor. The proposed method constitutes the first approach to an improved prediction of coreceptor usage based on an original integration of structural bioinformatics methods with statistical learning.
Collapse
Affiliation(s)
- Oliver Sander
- Max-Planck-Institute for Informatics, Saarbrücken, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Mild M, Esbjörnsson J, Fenyö EM, Medstrand P. Frequent intrapatient recombination between human immunodeficiency virus type 1 R5 and X4 envelopes: implications for coreceptor switch. J Virol 2007; 81:3369-76. [PMID: 17251288 PMCID: PMC1866041 DOI: 10.1128/jvi.01295-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emergence of human immunodeficiency virus type 1 (HIV-1) populations that switch or broaden coreceptor usage from CCR5 to CXCR4 is intimately coupled to CD4+ cell depletion and disease progression toward AIDS. To better understand the molecular mechanisms involved in the coreceptor switch, we determined the nucleotide sequences of 253 V1 to V3 env clones from 27 sequential HIV-1 subtype B isolates from four patients with virus populations that switch coreceptor usage. Coreceptor usage of clones from dualtropic R5X4 isolates was characterized experimentally. Sequence analysis revealed that 9% of the clones from CXCR4-using isolates had originated by recombination events between R5 and X4 viruses. The majority (73%) of the recombinants used CXCR4. Furthermore, coreceptor usage of the recombinants was determined by a small region of the envelope, including V3. This is the first report demonstrating that intrapatient recombination between viruses with distinct coreceptor usage occurs frequently. It has been proposed that X4 viruses are more easily suppressed by the immune system than R5 viruses. We hypothesize that recombination between circulating R5 viruses and X4 viruses can result in chimeric viruses with the potential to both evade the immune system and infect CXCR4-expressing cells. The broadening in cell tropism of the viral population to include CXCR4-expressing cells would gradually impair the immune system and eventually allow the X4 population to expand. In conclusion, intrapatient recombination between viruses with distinct coreceptor usage may contribute to the emergence of X4 viruses in later stages of infection.
Collapse
Affiliation(s)
- Mattias Mild
- Department of Experimental Medical Science, Lund University, BMC B13, 221 84 Lund, Sweden
| | | | | | | |
Collapse
|
142
|
Baba M, Miyake H, Wang X, Okamoto M, Takashima K. Isolation and characterization of human immunodeficiency virus type 1 resistant to the small-molecule CCR5 antagonist TAK-652. Antimicrob Agents Chemother 2006; 51:707-15. [PMID: 17116673 PMCID: PMC1797735 DOI: 10.1128/aac.01079-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TAK-652, a novel small-molecule chemokine receptor antagonist, is a highly potent and selective inhibitor of CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) replication in vitro. Since TAK-652 is orally bioavailable and has favorable pharmacokinetic profiles in humans, it is considered a promising candidate for an entry inhibitor of HIV-1. To investigate the resistance to TAK-652, peripheral blood mononuclear cells were infected with the R5 HIV-1 primary isolate KK and passaged in the presence of escalating concentrations of the compound for more than 1 year. After 67 weeks of cultivation, the escape virus emerged even in the presence of a high concentration of TAK-652. This virus displayed more than 200,000-fold resistance to TAK-652 compared with the wild type. The escape virus appeared to have cross-resistance to the structurally related compound TAK-779 but retained full susceptibility to TAK-220, which is from a different class of CCR5 antagonists. Furthermore, the escape virus was unable to use CXCR4 as a coreceptor. Analysis for Env amino acid sequences of escape viruses at certain points of passage revealed that amino acid changes accumulated with an increasing number of passages. Several amino acid changes not only in the V3 region but also in other Env regions seemed to be required for R5 HIV-1 to acquire complete resistance to TAK-652.
Collapse
Affiliation(s)
- Masanori Baba
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan.
| | | | | | | | | |
Collapse
|
143
|
Gaibelet G, Planchenault T, Mazères S, Dumas F, Arenzana-Seisdedos F, Lopez A, Lagane B, Bachelerie F. CD4 and CCR5 constitutively interact at the plasma membrane of living cells: a confocal fluorescence resonance energy transfer-based approach. J Biol Chem 2006; 281:37921-9. [PMID: 17035237 DOI: 10.1074/jbc.m607103200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus entry into target cells requires sequential interactions of the viral glycoprotein envelope gp120 with CD4 and chemokine receptors CCR5 or CXCR4. CD4 interaction with the chemokine receptor is suggested to play a critical role in this process but to what extent such a mechanism takes place at the surface of target cells remains elusive. To address this issue, we used a confocal microspectrofluorimetric approach to monitor fluorescence resonance energy transfer at the cell plasma membrane between enhanced blue and green fluorescent proteins fused to CD4 and CCR5 receptors. We developed an efficient fluorescence resonance energy transfer analysis from experiments carried out on individual cells, revealing that receptors constitutively interact at the plasma membrane. Binding of R5-tropic HIV gp120 stabilizes these associations thus highlighting that ternary complexes between CD4, gp120, and CCR5 occur before the fusion process starts. Furthermore, the ability of CD4 truncated mutants and CCR5 ligands to prevent association of CD4 with CCR5 reveals that this interaction notably engages extracellular parts of receptors. Finally, we provide evidence that this interaction takes place outside raft domains of the plasma membrane.
Collapse
Affiliation(s)
- Gérald Gaibelet
- IPBS/CNRS, 205 Route de Narbonne, 31062 Toulouse cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Hel Z, McGhee JR, Mestecky J. HIV infection: first battle decides the war. Trends Immunol 2006; 27:274-81. [PMID: 16679064 DOI: 10.1016/j.it.2006.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 03/28/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
The traditional view of HIV-1 infection characterized by the slow decline of CD4+ T cells has radically changed in light of recent observations in rhesus macaques and humans of rapid and extensive infection and removal of memory CD4+ T cells in mucosal tissues within the first three weeks of infection. This initial strike to the immune system seems to be the distinguishing feature of HIV-1 pathogenesis and its extent sets the overall course of the ensuing infection. Qualitatively different mechanisms of CD4+ T-cell depletion prevail during the acute, chronic and advanced phases of infection depending on the availability of the target-cell population and competence of the immune system. The elimination of CD4+ T cells in mucosal lymphoid tissues results in the absence of important regulatory and effector functions that these cells normally perform in controlling immune responses to environmental antigens and pathogens. Ablation of acute HIV-1 viremia limits the initial damage to the CD4+ T-cell compartment and helps to establish a state of equilibrium between the replicating virus, the availability of the target-cell population and the immune control characteristic of long-term non-progression.
Collapse
Affiliation(s)
- Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, 619 19th Street South, Room SW-W286, Birmingham, AL 35249-7331, USA.
| | | | | |
Collapse
|
145
|
Abstract
Experimental immunology has given rise to detailed insights into how immune cells react to infectious agents and fight pathogens. At the same time, however, the interplay between infectious agents and immune responses can be viewed as an ecological system in vivo. This is characterized by complex interactions between species of immune cells and populations of pathogens. This review discusses how an understanding of the immune system can be aided by the application of ecological and evolutionary principles: competition, predation, and the evolution of viruses in vivo. These concepts can shed light onto important immunological concepts such as the correlates of efficient virus control, immunodominance, the relationship between viral evolution and the development of pathology, as well as the ability of the immune system to control immunosuppressive infections.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
146
|
Biswas P, Nozza S, Scarlatti G, Lazzarin A, Tambussi G. Oral CCR5 inhibitors: will they make it through? Expert Opin Investig Drugs 2006; 15:451-64. [PMID: 16634684 DOI: 10.1517/13543784.15.5.451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The therapeutic armamentarium against HIV has recently gained a drug belonging to a novel class of antiretrovirals, the entry inhibitors. The last decade has driven an in-depth knowledge of the HIV entry process, unravelling the multiple engagements of the HIV envelope proteins with the cellular receptorial complex that is composed of a primary receptor (CD4) and a co-receptor (CCR5 or CXCR4). The vast majority of HIV-infected subjects exhibit biological viral variants that use CCR5 as a co-receptor. Individuals with a mutated CCR5 gene, both homo- and heterozygotes, appear to be healthy. For these and other reasons, CCR5 represents an appealing target for treatment intervention, although certain challenges can not be ignored. Promising small-molecule, orally bioavailable CCR5 antagonists are under development for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Priscilla Biswas
- San Raffaele Scientific Institute, Laboratory of Clinical Immunology, Clinic of Infectious Diseases, Via Stamira d'Ancona 20, 20127 Milan, Italy.
| | | | | | | | | |
Collapse
|
147
|
Ribeiro RM, Hazenberg MD, Perelson AS, Davenport MP. Naïve and memory cell turnover as drivers of CCR5-to-CXCR4 tropism switch in human immunodeficiency virus type 1: implications for therapy. J Virol 2006; 80:802-9. [PMID: 16378982 PMCID: PMC1346847 DOI: 10.1128/jvi.80.2.802-809.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early human immunodeficiency virus infection is characterized by the predominance of CCR5-tropic (R5) virus. However, in many individuals CXCR4-tropic (X4) virus appears in late infection. The reasons for this phenotypic switch are unclear. The patterns of chemokine receptor expression suggest that X4 and R5 viruses have a preferential tropism for naïve and memory T cells, respectively. Since memory cells divide approximately 10 times as often as naïve cells in uninfected individuals, a tropism for memory cells in early infection may provide an advantage. However, with disease progression both naïve and memory cell division frequencies increase, and at low CD4 counts, the naïve cell division frequency approaches that of memory cells. This may provide a basis for the phenotypic switch from R5 to X4 virus observed in late infection. We show that a model of infection using observed values for cell turnover supports this mechanism. The phenotypic switch from R5 to X4 virus occurs at low CD4 counts and is accompanied by a rapid rise in viral load and drop in CD4 count. Thus, low CD4 counts are both a cause and an effect of X4 virus dominance. We also investigate the effects of different antiviral strategies. Surprisingly, these results suggest that both conventional antiretroviral regimens and CCR5 receptor-blocking drugs will promote R5 virus over X4 virus.
Collapse
Affiliation(s)
- Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
148
|
Moll M, Snyder-Cappione J, Spotts G, Hecht FM, Sandberg JK, Nixon DF. Expansion of CD1d-restricted NKT cells in patients with primary HIV-1 infection treated with interleukin-2. Blood 2005; 107:3081-3. [PMID: 16368878 PMCID: PMC1895745 DOI: 10.1182/blood-2005-09-3636] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Innate CD1d-restricted natural killer T (NKT) cells are infected and lost in HIV-1-infected patients, and this could contribute to HIV-1 pathogenesis because NKT cells play an important role in directing both adaptive and innate immunity. Administration of interleukin-2 (IL-2) to HIV-1-infected patients leads to substantial and sustained CD4+ T-cell expansion, involving both naive and memory cells. We investigated whether IL-2 treatment could restore the NKT cell compartment in patients with primary HIV-1 infection. We show that IL-2 combined with effective antiretroviral therapy (ART) resulted in significant expansion of CD1d-restricted NKT cells. Expansion occurred in both the CD4- and CD4+ subsets of NKT cells, and expanded cells expressed the CD161 maturation marker while expression of the HIV coreceptor CCR5 was reduced. These data indicate that IL-2 treatment in combination with effective ART is beneficial for the restoration of innate NKT cell immunity in patients with primary HIV-1 infection.
Collapse
MESH Headings
- Adult
- Anti-HIV Agents/administration & dosage
- Anti-HIV Agents/immunology
- Antigens, CD1/immunology
- Antigens, CD1d
- Antigens, Surface/immunology
- Antineoplastic Agents/administration & dosage
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Drug Therapy, Combination
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- HIV Infections/drug therapy
- HIV Infections/immunology
- HIV-1/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Immunologic Memory/drug effects
- Immunologic Memory/immunology
- Interleukin-2/administration & dosage
- Interleukin-2/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Lectins, C-Type/immunology
- Male
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily B
- Receptors, CCR5/immunology
- Recovery of Function/drug effects
- Recovery of Function/immunology
Collapse
Affiliation(s)
- Markus Moll
- CIM, Department of Medicine, F59, Karolinska Institute, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
149
|
Watabe T, Kishino H, Okuhara Y, Kitazoe Y. Fold recognition of the human immunodeficiency virus type 1 V3 loop and flexibility of its crown structure during the course of adaptation to a host. Genetics 2005; 172:1385-96. [PMID: 16361230 PMCID: PMC1456290 DOI: 10.1534/genetics.105.051508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The third hypervariable (V3) region of the HIV-1 gp120 protein is responsible for many aspects of viral infectivity. The tertiary structure of the V3 loop seems to influence the coreceptor usage of the virus, which is an important determinant of HIV pathogenesis. Hence, the information about preferred conformations of the V3-loop region and its flexibility could be a crucial tool for understanding the mechanisms of progression from an initial infection to AIDS. Taking into account the uncertainty of the loop structure, we predicted the structural flexibility, diversity, and sequence fitness to the V3-loop structure for each of the sequences serially sampled during an asymptomatic period. Structural diversity correlated with sequence diversity. The predicted crown structure usage implied that structural flexibility depended on the patient and that the antigenic character of the virus might be almost uniform in a patient whose immune system is strong. Furthermore, the predicted structural ensemble suggested that toward the end of the asymptomatic period there was a change in the V3-loop structure or in the environment surrounding the V3 loop, possibly because of its proximity to the gp120 core.
Collapse
Affiliation(s)
- Teruaki Watabe
- Center of Medical Information Science, Kochi University, Japan.
| | | | | | | |
Collapse
|