101
|
Brazdova A, Senechal H, Peltre G, Poncet P. Immune Aspects of Female Infertility. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2016; 10:1-10. [PMID: 27123194 PMCID: PMC4845518 DOI: 10.22074/ijfs.2016.4762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/31/2014] [Indexed: 12/24/2022]
Abstract
Immune infertility, in terms of reproductive failure, has become a serious health issue involving approximately 1 out of 5 couples at reproductive age. Semen that is defined as a complex fluid containing sperm, cellular vesicles and other cells and components, could sensitize the female genital tract. The immune rejection of male semen in the female reproductive tract is explained as the failure of natural tolerance leading to local and/or systemic immune response. Present active immune mechanism may induce high levels of anti-seminal/sperm antibodies. It has already been proven that iso-immunization is associated with infertility. Comprehensive studies with regards to the identification of antibody-targets and the determination of specific antibody class contribute to the development of effective immuno-therapy and, on the other hand, potential immuno-contraception, and then of course to complex patient diagnosis. This review summarizes the aspects of female immune infertility.
Collapse
Affiliation(s)
- Andrea Brazdova
- Department of Biochemistry, Allergy and Environment, Armand-Trousseau Hospital, Paris, France
| | - Helene Senechal
- Department of Biochemistry, Allergy and Environment, Armand-Trousseau Hospital, Paris, France
| | - Gabriel Peltre
- Department of Biochemistry, Allergy and Environment, Armand-Trousseau Hospital, Paris, France
| | - Pascal Poncet
- Department of Biochemistry, Allergy and Environment, Armand-Trousseau Hospital, Paris, France
- Department of Infection and Epidemiology, Pasteur Institute, Paris, France
| |
Collapse
|
102
|
Vasilev N, Smales CM, Schillberg S, Fischer R, Schiermeyer A. Developments in the production of mucosal antibodies in plants. Biotechnol Adv 2016; 34:77-87. [PMID: 26626615 DOI: 10.1016/j.biotechadv.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022]
Abstract
Recombinant mucosal antibodies represent attractive target molecules for the development of next generation biopharmaceuticals for passive immunization against various infectious diseases and treatment of patients suffering from mucosal antibody deficiencies. As these polymeric antibodies require complex post-translational modifications and correct subunit assembly, they are considered as difficult-to-produce recombinant proteins. Beside the traditional, mammalian-based production platforms, plants are emerging as alternative expression hosts for this type of complex macromolecule. Plant cells are able to produce high-quality mucosal antibodies as shown by the successful expression of the secretory immunoglobulins A (IgA) and M (IgM) in various antibody formats in different plant species including tobacco and its close relative Nicotiana benthamiana, maize, tomato and Arabidopsis thaliana. Importantly for biotherapeutic application, transgenic plants are capable of synthesizing functional IgA and IgM molecules with biological activity and safety profiles comparable with their native mammalian counterparts. This article reviews the structure and function of mucosal IgA and IgM antibodies and summarizes the current knowledge of their production and processing in plant host systems. Specific emphasis is given to consideration of intracellular transport processes as these affect assembly of the mature immunoglobulins, their secretion rates, proteolysis/degradation and glycosylation patterns. Furthermore, this review provides an outline of glycoengineering efforts that have been undertaken so far to produce antibodies with homogenous human-like glycan decoration. We believe that the continued development of our understanding of the plant cellular machinery related to the heterologous expression of immunoglobulins will further improve the production levels, quality and control of post-translational modifications that are 'human-like' from plant systems and enhance the prospects for the regulatory approval of such molecules leading to the commercial exploitation of plant-derived mucosal antibodies.
Collapse
Affiliation(s)
- Nikolay Vasilev
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - C Mark Smales
- School of Biosciences, University of Kent, CT2 7NJ Kent, UK
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, 52074 Aachen, Germany; RWTH Aachen University, Institute for Molecular Biotechnology, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, 52074 Aachen, Germany.
| |
Collapse
|
103
|
Ramanathan R, Woodrow K. Engineering immunity in the mucosal niche against sexually transmitted infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:107-22. [PMID: 26153141 PMCID: PMC6467227 DOI: 10.1002/wnan.1359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 05/04/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
The mucosal surfaces of the genital tract are the site of entry to over 30 different bacterial, parasitic, and viral pathogens that are the cause of sexually transmitted infections (STIs) including HIV. Women and adolescent girls are more severely impacted by STIs than men due in part to a greater biological susceptibility for acquiring infections and differences in disease sequelae. While it is widely accepted that preventative vaccines against the most commonly transmitted STIs would have a major impact on decreasing the global health burden of STIs for women worldwide, several challenges preclude their development. The female genital tract is a complex niche of microflora, hormonal influences, and immune tissues and cells that result in a mucosal immune system that is distinct from other mucosal sites and from our systemic immune system. An appreciation of these differences and their effect on shaping mucosal immunity to sexually transmitted pathogens is an important determinant for the design of effective STI vaccines. Here we describe the anatomy and mucosal immune system of the female reproductive tract, and discuss bioengineering strategies to design mucosal vaccines that overcome delivery challenges and coordinate the presentation kinetics and compartmentalization of antigens and adjuvants to relevant mucosal immune cell subsets. In particular, we describe recent progress in understanding the role of specific mucosal dendritic cell subsets in facilitating immune responses to pathogenic microbes in the genital mucosa. We also discuss the development of pathogen-mimicking materials that may be useful for engineering protective immunity in this mucosal niche.
Collapse
Affiliation(s)
- Renuka Ramanathan
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kim Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
104
|
Weeratunga P, Uddin MB, Kim MS, Lee BH, Kim TH, Yoon JE, Ma JY, Kim H, Lee JS. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components. J Microbiol 2016; 54:57-70. [PMID: 26727903 PMCID: PMC7091376 DOI: 10.1007/s12275-016-5555-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/07/2023]
Abstract
Angelica tenuissima Nakai is a widely used commodity in traditional medicine. Nevertheless, no study has been conducted on the antiviral and immune-modulatory properties of an aqueous extract of Angelica tenuissima Nakai. In the present study, we evaluated the antiviral activities and the mechanism of action of an aqueous extract of Angelica tenuissima Nakai both in vitro and in vivo. In vitro, an effective dose of Angelica tenuissima Nakai markedly inhibited the replication of Influenza A virus (PR8), Vesicular stomatitis virus (VSV), Herpes simplex virus (HSV), Coxsackie virus, and Enterovirus (EV-71) on epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. Such inhibition can be described by the induction of the antiviral state in cells by antiviral, IFNrelated gene induction and secretion of IFNs and pro-inflammatory cytokines. In vivo, Angelica tenuissima Nakai treated BALB/c mice displayed higher survivability and lower lung viral titers when challenged with lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3, and H9N2). We also found that Angelica tenuissima Nakai can induce the secretion of IL-6, IFN-λ, and local IgA in bronchoalveolar lavage fluid (BALF) of Angelica tenuissima Nakai treated mice, which correlating with the observed prophylactic effects. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we evaluated antiviral properties of ferulic acid. Therefore, an extract of Angelica tenuissima Nakai and its components, including ferulic acid, play roles as immunomodulators and may be potential candidates for novel anti-viral/anti-influenza agents.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, 305-764, Republic of Korea
- Faculty of Veterinary & Animal Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Myun Soo Kim
- Vitabio Corporation, Daejeon, 305-764, Republic of Korea
| | - Byeong-Hoon Lee
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Ji-Eun Yoon
- Foot and Mouth Disease Division, Animal Quarantine and Inspection Agency, Anyang, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, Daejeon, 305-764, Republic of Korea
| | - Hongik Kim
- Vitabio Corporation, Daejeon, 305-764, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
105
|
Lorenzen E, Follmann F, Bøje S, Erneholm K, Olsen AW, Agerholm JS, Jungersen G, Andersen P. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis. Front Immunol 2015; 6:628. [PMID: 26734002 PMCID: PMC4679855 DOI: 10.3389/fimmu.2015.00628] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general.
Collapse
Affiliation(s)
- Emma Lorenzen
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| | - Sarah Bøje
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Karin Erneholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Weinreich Olsen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| | - Jørgen Steen Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| |
Collapse
|
106
|
Sarkar A, Pitchumoni CS. The protean manifestations of IgG4-RD in gastrointestinal disorders. Dis Mon 2015; 61:493-515. [DOI: 10.1016/j.disamonth.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
107
|
Guardiola FA, de Haro JP, Díaz-Baños FG, Meseguer J, Cuesta A, Esteban MÁ. Terminal carbohydrate composition, IgM level and enzymatic and bacteriostatic activity of European sea bass (Dicentrarchus labrax) skin epidermis extracts. FISH & SHELLFISH IMMUNOLOGY 2015; 47:352-359. [PMID: 26384845 DOI: 10.1016/j.fsi.2015.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Although the skin is one of the main defense barriers of fish to date, very little is known about the immune implications and the properties of the numerous substances present in skin cells. In the present study, terminal carbohydrate composition and some components of the skin immunity (total IgM level, and several enzymatic and bacteriostatic activities) present on aqueous and organic epidermal extracts of European sea bass (Dicentrarchus labrax) were determined. Most of the parameters measured followed a protein concentration dose-response. Curiously, both skin extracts have similar levels of total IgM. However, aqueous extracts showed higher presence of some terminal carbohydrates, alkaline phosphatase and esterase activities and lower proteases and ceruloplasmin activities than epidermal organic extracts. Regarding the bacteriostatic activity, the growth of all the bacterial strains tested was reduced when cultivated in presence of organic extracts, being the observed reduction correlated to the protein concentration present in the extract sample. On the contrary, skin aqueous extracts have no significant effect on bacterial growth or even allow bacteria to overgrow, suggesting that the bacteria could use the extracts as a nutrient source. The results are discussed and compared with the same activities studied on fish skin mucus in order to understand their possible implications on mucosal immunity.
Collapse
Affiliation(s)
- Francisco A Guardiola
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Juan P de Haro
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco Guillermo Díaz-Baños
- Department of Physical Chemistry, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
108
|
Lorenzen E, Follmann F, Jungersen G, Agerholm JS. A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection. Vet Res 2015; 46:116. [PMID: 26411309 PMCID: PMC4586017 DOI: 10.1186/s13567-015-0241-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/11/2015] [Indexed: 03/16/2023] Open
Abstract
Sexually transmitted diseases constitute major health issues and their prevention and treatment continue to challenge the health care systems worldwide. Animal models are essential for a deeper understanding of the diseases and the development of safe and protective vaccines. Currently a good predictive non-rodent model is needed for the study of genital chlamydia in women. The pig has become an increasingly popular model for human diseases due to its close similarities to humans. The aim of this review is to compare the porcine and human female genital tract and associated immune system in the perspective of genital Chlamydia infection. The comparison of women and sows has shown that despite some gross anatomical differences, the structures and proportion of layers undergoing cyclic alterations are very similar. Reproductive hormonal cycles are closely related, only showing a slight difference in cycle length and source of luteolysing hormone. The epithelium and functional layers of the endometrium show similar cyclic changes. The immune system in pigs is very similar to that of humans, even though pigs have a higher percentage of CD4(+)/CD8(+) double positive T cells. The genital immune system is also very similar in terms of the cyclic fluctuations in the mucosal antibody levels, but differs slightly regarding immune cell infiltration in the genital mucosa - predominantly due to the influx of neutrophils in the porcine endometrium during estrus. The vaginal flora in Göttingen Minipigs is not dominated by lactobacilli as in humans. The vaginal pH is around 7 in Göttingen Minipigs, compared to the more acidic vaginal pH around 3.5-5 in women. This review reveals important similarities between the human and porcine female reproductive tracts and proposes the pig as an advantageous supplementary model of human genital Chlamydia infection.
Collapse
Affiliation(s)
- Emma Lorenzen
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Frank Follmann
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark.
| | - Jørgen S Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
109
|
The solution structures of native and patient monomeric human IgA1 reveal asymmetric extended structures: implications for function and IgAN disease. Biochem J 2015; 471:167-85. [PMID: 26268558 PMCID: PMC4692083 DOI: 10.1042/bj20150612] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/12/2015] [Indexed: 01/14/2023]
Abstract
Detailed analytical ultracentrifugation and X-ray/neutron scattering data and a new atomistic modelling approach revealed asymmetric extended solution structures for human IgA1 that account for its receptor-binding function. IgA1 with different hinge O-galactosylation patterns showed similar structures. Native IgA1, for which no crystal structure is known, contains an O-galactosylated 23-residue hinge region that joins its Fab and Fc regions. IgA nephropathy (IgAN) is a leading cause of chronic kidney disease in developed countries. Because IgA1 in IgAN often has a poorly O-galactosylated hinge region, the solution structures of monomeric IgA1 from a healthy subject and three IgAN patients with four different O-galactosylation levels were studied. Analytical ultracentrifugation showed that all four IgA1 samples were monomeric with similar sedimentation coefficients, s020,w. X-ray scattering showed that the radius of gyration (Rg) slightly increased with IgA1 concentration, indicating self-association, although their distance distribution curves, P(r), were unchanged with concentration. Neutron scattering indicated similar Rg values and P(r) curves, although IgA1 showed a propensity to aggregate in heavy water buffer. A new atomistic modelling procedure based on comparisons with 177000 conformationally-randomized IgA1 structures with the individual experimental scattering curves revealed similar extended Y-shaped solution structures for all four differentially-glycosylated IgA1 molecules. The final models indicated that the N-glycans at Asn263 were folded back against the Fc surface, the C-terminal tailpiece conformations were undefined and hinge O-galactosylation had little effect on the solution structure. The solution structures for full-length IgA1 showed extended hinges and the Fab and Fc regions were positioned asymmetrically to provide ample space for the functionally-important binding of two FcαR receptors to its Fc region. Whereas no link between O-galactosylation and the IgA1 solution structure was detected, an increase in IgA1 aggregation with reduced O-galactosylation may relate to IgAN.
Collapse
|
110
|
Simón-Soro Á, D'Auria G, Collado MC, Džunková M, Culshaw S, Mira A. Revealing microbial recognition by specific antibodies. BMC Microbiol 2015; 15:132. [PMID: 26134992 PMCID: PMC4489363 DOI: 10.1186/s12866-015-0456-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/29/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recognition of microorganisms by antibodies is a vital component of the human immune response. However, there is currently very limited understanding of immune recognition of 50 % of the human microbiome which is made up of as yet un-culturable bacteria. We have combined the use of flow cytometry and pyrosequencing to describe the microbial composition of human samples, and its interaction with the immune system. RESULTS We show the power of the technique in human faecal, saliva, oral biofilm and breast milk samples, labeled with fluorescent anti-IgG or anti-IgA antibodies. Using Fluorescence-Activated Cell Sorting (FACS), bacterial cells were separated depending on whether they are coated with IgA or IgG antibodies. Each bacterial population was PCR-amplified and pyrosequenced, characterizing the microorganisms which evade the immune system and those which were recognized by each immunoglobulin. CONCLUSIONS The application of the technique to healthy and diseased individuals may unravel the contribution of the immune response to microbial infections and polymicrobial diseases.
Collapse
Affiliation(s)
- Áurea Simón-Soro
- Department of Health and Genomics, FISABIO Foundation, Center for Advanced Research in Public Health, Avda. Cataluña 21, 46020, Valencia, Spain.
| | - Giuseppe D'Auria
- Department of Health and Genomics, FISABIO Foundation, Center for Advanced Research in Public Health, Avda. Cataluña 21, 46020, Valencia, Spain.
| | - M Carmen Collado
- The Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980, Valencia, Spain.
| | - Mária Džunková
- Department of Health and Genomics, FISABIO Foundation, Center for Advanced Research in Public Health, Avda. Cataluña 21, 46020, Valencia, Spain.
| | - Shauna Culshaw
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK.
| | - Alex Mira
- Department of Health and Genomics, FISABIO Foundation, Center for Advanced Research in Public Health, Avda. Cataluña 21, 46020, Valencia, Spain.
| |
Collapse
|
111
|
Oikawa J, Ukawa S, Ohira H, Kawamura T, Wakai K, Ando M, Hata A, Tamakoshi A. Diabetes Mellitus is Associated With Low Secretion Rates of Immunoglobulin A in Saliva. J Epidemiol 2015; 25:470-4. [PMID: 26094794 PMCID: PMC4483372 DOI: 10.2188/jea.je20140088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The association between diabetes mellitus (DM) and low secretory immunoglobulin A (s-IgA) secretion rates is one mechanism suspected of influencing susceptibility to infections among DM patients. However, several studies have shown contradictory results. We examined these two factors to seek evidence of an association among older people. METHODS We analyzed a prospective cohort of 2306 subjects (1209 men and 1097 women) around 64 years old from the New Integrated Suburban Seniority Investigation (NISSIN) Project in Nisshin, Japan. DM statuses were ascertained from levels of fasting plasma glucose and HbA1c, and s-IgA secretion rates were obtained from 5-min saliva samples. We used an analysis of covariance adjusted for possible confounders to compare s-IgA secretion rates according to DM status. RESULTS s-IgA secretion rates in DM participants were lower than in those classified as normal (18.6 µg/min vs 15.0 µg/min, P = 0.03), even after elimination of the effects of possible confounders. CONCLUSIONS DM was associated with lower s-IgA secretion rates. This suggests that lower s-IgA levels may be a mechanism of susceptibility to infection in individuals with DM.
Collapse
Affiliation(s)
- Junko Oikawa
- Department of Public Health, Hokkaido University Graduate School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus. Proc Natl Acad Sci U S A 2015; 112:7809-14. [PMID: 26056267 DOI: 10.1073/pnas.1503885112] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Secretory IgA (S-IgA) antibodies, the major contributors to humoral mucosal immunity to influenza virus infection, are polymeric Igs present in many external secretions. In the present study, the quaternary structures of human S-IgA induced in nasal mucosa after administration of intranasal inactivated influenza vaccines were characterized in relation to neutralization potency against influenza A viruses. Human nasal IgA antibodies have been shown to contain at least five quaternary structures. Direct and real-time visualization of S-IgA using high-speed atomic force microscopy (AFM) demonstrated that trimeric and tetrameric S-IgA had six and eight antigen-binding sites, respectively, and that these structures exhibited large-scale asynchronous conformational changes while capturing influenza HA antigens in solution. Furthermore, trimeric, tetrameric, and larger polymeric structures, which are minor fractions in human nasal IgA, displayed increased neutralizing potency against influenza A viruses compared with dimeric S-IgA, suggesting that the larger polymeric than dimeric forms of S-IgA play some important roles in protection against influenza A virus infection in the human upper respiratory tract.
Collapse
|
113
|
Moreno-Fierros L, Verdín-Terán SL, García-Hernández AL. Intraperitoneal Immunization with Cry1Ac Protoxin from Bacillus thuringiensis Provokes Upregulation of Fc-Gamma-II/and Fc-Gamma-III Receptors Associated with IgG in the Intestinal Epithelium of Mice. Scand J Immunol 2015; 82:35-47. [PMID: 25904149 DOI: 10.1111/sji.12305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/17/2015] [Indexed: 11/30/2022]
Abstract
In humans, intestinal epithelial FcRn is expressed throughout life and mediates the bidirectional transport of IgG, but in mice, it is markedly expressed in neonatal intestine. In adults, its expression is only faintly upregulated after intestinal IgG induction such as that elicited by i.p. immunization with Cry1Ac protoxin (pCry1Ac) Bacillus thuringiensis. This led us to suggest that additional Fcγ receptors (Fcγ-R) may be participating in epithelial IgG uptake. So, first we determined whether CD16/32 [an epitope shared by Fcγ-RII (CD32) and Fcγ-RIII (CD16)] was expressed in the intestinal epithelia of mice. Using confocal microscopy and flow cytometry, we detected co-localization of IgG and CD16/32 in epithelial cells, whose frequency was increased by immunization with pCry1Ac. Western blot and cross-immunoprecipitation results with anti-CD16/32 and IgG antibodies in epithelial cell extracts suggested that epithelial cells bear both Fcγ-RII and Fcγ-RIII and contained IgG associated with Fcγ-RII/RIII. Using anti-CD32 and anti-CD16 antibodies, we confirmed by Western blot, confocal microscopy and flow cytometry that both Fcγ-RII and Fcγ-RIII were expressed and suggested that upregulation occurred upon immunization in intestinal epithelia. Finally, we examined the in vitro effect of anti-CD16/32, anti-CD16 and anti-CD32 antibodies on IgG uptake and transport by intestinal epithelial cells and found that it was partially reduced. Although further studies are still required, our results suggest that Fcγ-RII and Fcγ-RIII might participate in the uptake and/or transport of IgG through the intestinal epithelia of adult mice.
Collapse
Affiliation(s)
- L Moreno-Fierros
- Inmunidad en Mucosas, Unidad de Biomedicina, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Edo. de México, México
| | - S L Verdín-Terán
- Inmunidad en Mucosas, Unidad de Biomedicina, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Edo. de México, México
| | - A L García-Hernández
- Inmunidad en Mucosas, Unidad de Biomedicina, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Edo. de México, México
| |
Collapse
|
114
|
Mikkola R, Andersson MA, Hautaniemi M, Salkinoja-Salonen MS. Toxic indole alkaloids avrainvillamide and stephacidin B produced by a biocide tolerant indoor mold Aspergillus westerdijkiae. Toxicon 2015; 99:58-67. [PMID: 25804991 DOI: 10.1016/j.toxicon.2015.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/15/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
Toxic Aspergillus westerdijkiae were present in house dust and indoor air fall-out from a residence and a kindergarten where the occupants suffered from building related ill health. The A. westerdijkiae isolates produced indole alkaloids avrainvillamide (445 Da) and its dimer stephacidin B (890 Da). It grew and sporulated in presence of high concentrations of boron or polyguanidine (PHMB, PHMG) based antimicrobial biocides used to remediate mold infested buildings. The boar sperm cells were used as sensor cells to purify toxins from HPLC fractions of the fungal biomass. Submicromolar concentrations (EC50 0.3-0.4 μM) blocked boar spermatozoan motility and killed porcine kidney tubular epithelial cells (PK-15). Plate grown hyphal mass of the A. westerdijkiae isolates contained 300-750 ng of avrainvillamide and 30-300 ng of stephacidin B per mg (wet weight). The toxins induced rapid (30 min) loss of boar sperm motility, followed (24 h) by loss of mitochondrial membrane potential (ΔΨm). Apoptotic cell death was observed in PK-15 cell monolayers, prior to cessation of glucose uptake or loss of ΔΨm. Avrainvillamide and stephacidin B were 100-fold more potent towards the porcine cells than the mycotoxins stephacidin A, ochratoxin A, sterigmatocystin and citrinin. The high toxicity of stephacidin B indicates a role of nitrone group in the mechanism of toxicity. Avrainvillamide and stephacidin B represent a new class of toxins with possible a threat to human health in buildings. Furthermore, the use of biocides highly enhanced the growth of toxigenic A. westerdijkiae.
Collapse
Affiliation(s)
- Raimo Mikkola
- Dept of Food and Environmental Science, POB56, University of Helsinki, FI-00014 Finland.
| | - Maria A Andersson
- Dept of Food and Environmental Science, POB56, University of Helsinki, FI-00014 Finland
| | - Maria Hautaniemi
- Finnish Food Safety Authority (EVIRA), Mustialankatu 3, FI000790 Helsinki, Finland
| | | |
Collapse
|
115
|
Sholukh AM, Watkins JD, Vyas HK, Gupta S, Lakhashe SK, Thorat S, Zhou M, Hemashettar G, Bachler BC, Forthal DN, Villinger F, Sattentau QJ, Weiss RA, Agatic G, Corti D, Lanzavecchia A, Heeney JL, Ruprecht RM. Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and systemic IgG1 mAbs: complete protection of rhesus monkeys from mucosal SHIV challenge. Vaccine 2015; 33:2086-95. [PMID: 25769884 DOI: 10.1016/j.vaccine.2015.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/19/2022]
Abstract
Although IgA is the most abundantly produced immunoglobulin in humans, its role in preventing HIV-1 acquisition, which occurs mostly via mucosal routes, remains unclear. In our passive mucosal immunizations of rhesus macaques (RMs), the anti-HIV-1 neutralizing monoclonal antibody (nmAb) HGN194, given either as dimeric IgA1 (dIgA1) or dIgA2 intrarectally (i.r.), protected 83% or 17% of the RMs against i.r. simian-human immunodeficiency virus (SHIV) challenge, respectively. Data from the RV144 trial implied that vaccine-induced plasma IgA counteracted the protective effector mechanisms of IgG1 with the same epitope specificity. We thus hypothesized that mucosal dIgA2 might diminish the protection provided by IgG1 mAbs targeting the same epitope. To test our hypothesis, we administered HGN194 IgG1 intravenously (i.v.) either alone or combined with i.r. HGN194 dIgA2. We enrolled SHIV-exposed, persistently aviremic RMs protected by previously administered nmAbs; RM anti-human IgG responses were undetectable. However, low-level SIV Gag-specific proliferative T-cell responses were found. These animals resemble HIV-exposed, uninfected humans, in which local and systemic cellular immune responses have been observed. HGN194 IgG1 and dIgA2 used alone and the combination of the two neutralized the challenge virus equally well in vitro. All RMs given only i.v. HGN194 IgG1 became infected. In contrast, all RMs given HGN194 IgG1+dIgA2 were completely protected against high-dose i.r. SHIV-1157ipEL-p challenge. These data imply that combining suboptimal defenses at the mucosal and systemic levels can completely prevent virus acquisition. Consequently, active vaccination should focus on defense-in-depth, a strategy that seeks to build up defensive fall-back positions well behind the fortified frontline.
Collapse
Affiliation(s)
- Anton M Sholukh
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jennifer D Watkins
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Hemant K Vyas
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sandeep Gupta
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Samir K Lakhashe
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Swati Thorat
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mingkui Zhou
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | | | - Davide Corti
- Humabs BioMed SA, Bellinzona 6500, Switzerland; Institute for Research in Biomedicine, Bellinzona 6500, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona 6500, Switzerland; Eidgenoessische Technische Hochschule, Zurich CH-8093, Switzerland
| | - Jonathan L Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Southwest National Primate Research Center, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
116
|
Zhou M, Ruprecht RM. Are anti-HIV IgAs good guys or bad guys? Retrovirology 2014; 11:109. [PMID: 25499540 PMCID: PMC4297362 DOI: 10.1186/s12977-014-0109-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022] Open
Abstract
An estimated 90% of all HIV transmissions occur mucosally. Immunoglobulin A (IgA) molecules are important components of mucosal fluids. In a vaccine efficacy study, in which virosomes displaying HIV gp41 antigens protected most rhesus monkeys (RMs) against simian-human immunodeficiency virus (SHIV), protection correlated with vaginal IgA capable of blocking HIV transcytosis in vitro. Furthermore, vaginal IgG exhibiting virus neutralization and/or antibody-dependent cellular cytotoxicity (ADCC) correlated with prevention of systemic infection. In contrast, plasma IgG had neither neutralizing nor ADCC activity. More recently, a passive mucosal immunization study provided the first direct proof that dimeric IgAs (dIgAs) can prevent SHIV acquisition in RMs challenged mucosally. This study compared dimeric IgA1 (dIgA1), dIgA2, or IgG1 versions of a human neutralizing monoclonal antibody (nmAb) targeting a conserved HIV Env epitope. While the nmAb neutralization profiles were identical in vitro, dIgA1 was significantly more protective in vivo than dIgA2. Protection was linked to a new mechanism: virion capture. Protection also correlated with inhibition of transcytosis of cell-free virus in vitro. While both of these primate model studies demonstrated protective effects of mucosal IgAs, the RV144 clinical trial identified plasma IgA responses to HIV Env as risk factors for increased HIV acquisition. In a secondary analysis of RV144, plasma IgA decreased the in vitro ADCC activity of vaccine-induced, Env-specific IgG with the same epitope specificity. Here we review the current literature regarding the potential of IgA – systemic as well as mucosal – in modulating virus acquisition and address the question whether anti-HIV IgA responses could help or harm the host.
Collapse
Affiliation(s)
- Mingkui Zhou
- Department of Virology & Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX, 78227, USA.
| | - Ruth M Ruprecht
- Department of Virology & Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX, 78227, USA. .,Southwest National Primate Research Center, 7620 NW Loop 410, San Antonio, TX, 78227, USA.
| |
Collapse
|
117
|
Gao S, Li D, Liu Y, Zha E, Zhou T, Yue X. Oral immunization with recombinant hepatitis E virus antigen displayed on the Lactococcus lactis surface enhances ORF2-specific mucosal and systemic immune responses in mice. Int Immunopharmacol 2014; 24:140-5. [PMID: 25445956 DOI: 10.1016/j.intimp.2014.10.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 11/20/2022]
Abstract
Hepatitis E virus (HEV) as a recognized zoonotic pathogen has posed global burden on public health, which is exacerbated by lack of efficient vaccine. In this study, we constructed a recombinant (inaQ-ORF2 gene fusion) Lactococcus lactis (L. lactis) strain NZ3900 that expresses and displays the hepatitis E virus antigen ORF2 utilizing an ice uncleation protein-based anchor system. After oral vaccination of BALB/c mice, significantly higher levels of ORF2-specific mucosal IgA and serum IgG were detected and cellular immunity was also induced. These findings further support that L. lactis-based HEV antigen vaccines could be used for human and animal protection against infection.
Collapse
Affiliation(s)
- Shenyang Gao
- Department of Animal Husbandry & Veterinary Medicine, Liaoning Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China; Department of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang 110161, China
| | - Dandan Li
- Animal Quarantine Lab, Inspection & Quarantine Technology Center of Hainan Entry-Exit Inspection & Quarantine Bureau, Haikou 570000, China
| | - Ying Liu
- Department of Animal Husbandry & Veterinary Medicine, Liaoning Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China
| | - Enhui Zha
- Department of Animal Husbandry & Veterinary Medicine, Liaoning Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China; Department of Food Science and Engineering, Liaoning Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China.
| | - Tiezhong Zhou
- Department of Animal Husbandry & Veterinary Medicine, Liaoning Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China
| | - Xiqing Yue
- Department of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang 110161, China; Department of Animal Husbandry & Veterinary Medicine, Liaoning Medical University, No. 5-48 Renmin Street, Jinzhou 121001, China
| |
Collapse
|
118
|
Abstract
The intestinal mucosa harbors the largest population of antibody (Ab)-secreting plasma cells (PC) in the human body, producing daily several grams of immunoglobulin A (IgA). IgA has many functions, serving as a first-line barrier that protects the mucosal epithelium from pathogens, toxins and food antigens (Ag), shaping the intestinal microbiota, and regulating host-commensal homeostasis. Signals induced by commensal colonization are central for regulating IgA induction, maintenance, positioning and function and the number of IgA(+) PC is dramatically reduced in neonates and germ-free (GF) animals. Recent evidence demonstrates that the innate immune effector molecules tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) are required for IgA(+) PC homeostasis during the steady state and infection. Moreover, new functions ascribed to PC independent of Ab secretion continue to emerge, suggesting that PC, including IgA(+) PC, should be re-examined in the context of inflammation and infection. Here, we outline mechanisms of IgA(+) PC generation and survival, reviewing their functions in health and disease.
Collapse
Key Words
- AID, activation-induced deaminase
- APC, antigen-presenting cell
- APRIL, a proliferation-inducing ligand
- Ab, antibody
- Ag, antigen
- Arg, arginase
- Atg, autophagy-related gene
- B cell
- BAFF, B-cell activating factor
- BCMA, B-cell maturation antigen
- BM, bone marrow
- Blimp, B-lymphocyte-induced maturation protein
- CCL, CC chemokine ligand
- CCR, CC chemokine receptor
- CD, cluster of differentiation
- CSR, class-switch recombination
- CXCL, CXC chemokine ligand
- DC, dendritic cell
- ER, endoplasmic reticulum
- FDC, follicular dendritic cells
- FcαR, Fc fragment of IgA receptor
- GALT, gut-associated lymphoid tissues
- GC, germinal center
- GF, germ-free
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- GRP, glucose-regulated proteins
- HIV, human immunodeficiency virus
- IEC, intestinal epithelial cells
- IFN, interferon
- IL, interleukin
- ILC, innate lymphoid cells
- ILF, isolated lymphoid follicles
- IRE, inositol-requiring enzyme
- IRF, interferon regulatory factor
- Id, inhibitor of DNA binding
- IgA, immunoglobulin A
- IgAD, selective IgA deficiency
- L-Arg, L-Arginine
- L-Cit, L-citrulline
- L-Glu, L-Glutamate
- L-Orn, L-Ornithine
- L-Pro, L-Proline
- LIGHT, homologous to lymphotoxin, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes
- LP, lamina propria
- LT, lymphotoxinLTβR, LTβ-receptor
- LTi, lymphoid tissue-inducer
- LTo, lymphoid tissue organizing
- Ly, lymphocyte antigen
- MHC, major histocompatibility complex
- MLN, mesenteric lymph nodes
- NO, nitric oxide
- PC, plasma cells
- PP, Peyer's patch
- Pax, paired box
- ROR, Retionic acid receptor (RAR)- or retinoid-related orphan receptor
- SC, stromal cells
- SHM, somatic hypermutation
- SIGNR, specific intercellular adhesion molecule-3-grabbing non-integrin-related
- SIgAsecretory IgA
- TACI, transmembrane activator and calcium-modulator and cyclophilin ligand interactor
- TD, T-dependent
- TFH, T-follicular helper cells
- TGFβR, transforming growth factor β receptor
- TI, T-independent
- TLR, Toll-like receptor
- TNFR, TNF receptor
- TNFα, tumor necrosis factor α
- Th, T helper cell
- Treg, T-regulatory cell
- UPR, unfolded protein response
- XBP, X-box binding protein
- bcl, B-cell lymphoma
- cGMP, cyclic guanosine monophosphate
- iNOS, inducible nitric oxide synthase
- immunoglobulin A (IgA)
- inducible nitric oxide synthase (iNOS)
- innate immune recognition
- intestinal microbiota
- mucosa
- pIgA, polymeric IgA
- pIgR, polymeric Ig receptor
- plasma cell
Collapse
Affiliation(s)
| | - Olga L Rojas
- Department of Immunology; University of Toronto; Toronto, ON Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology; Department of Physiology; Complex Traits Group; McGill University; Montreal, QC Canada,Correspondence to: Jörg H Fritz;
| |
Collapse
|
119
|
Simon K, de Vries Reilingh G, Kemp B, Lammers A. Development of ileal cytokine and immunoglobulin expression levels in response to early feeding in broilers and layers. Poult Sci 2014; 93:3017-27. [PMID: 25306458 DOI: 10.3382/ps.2014-04225] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Provision of feed in the immediate posthatch period may influence interaction between intestinal microbiota and immune system, and consequently immunological development of the chick. This study addressed ileal immune development in response to early feeding in 2 chicken breeds selected for different production traits: broilers and layers. Chicks of both breeds either received feed and water immediately posthatch or were subjected to a 72-h feed and water delay. Ileal cytokine and immunoglobulin mRNA expression levels were determined at different time points. Effects of early feeding were limited, but breeds differed strikingly regarding cytokine and immunoglobulin expression levels. Cytokine expression levels in broilers were low compared with layers and showed a transient drop in the second to third week of life. In contrast, broilers showed considerably higher expression levels of IgA, IgM, and IgY. These findings indicate that the 2 breeds use different immune strategies, at least on the ileal level.
Collapse
Affiliation(s)
- K Simon
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - G de Vries Reilingh
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - B Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - A Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
120
|
Gunawardana M, Baum MM, Smith TJ, Moss JA. An intravaginal ring for the sustained delivery of antibodies. J Pharm Sci 2014; 103:3611-3620. [PMID: 25231193 DOI: 10.1002/jps.24154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/23/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023]
Abstract
Human monoclonal antibodies (mAbs) based on IgG and IgA have shown promise as topical microbicide candidates to protect women from HIV infection. Application of mAbs has been limited, however, by the inability of vaginal gels and conventional intravaginal ring (IVR) designs, the predominant vaginal product formulations, to effectively deliver biomolecules in a coitally independent fashion with retention of bioactivity. We have developed a novel pod-IVR platform that delivers ovine IgG (ov-IgG) as a model for IgG and IgA human mAbs. In vitro release of ov-IgG from the pod-IVRs was sustained for 14 days. Facile control of release rate was achieved by changing the size of delivery channels in the ring structure, and the feasibility of ov-IgG delivery in the range 0.5-30 mg day(-1) from a 10-pod IVR was demonstrated. The activity of ov-IgG in pod-IVR formulations was maintained as confirmed by ELISA binding assay. Pod-IVRs delivering ov-IgG show promise for the effective sustained topical delivery of antibody-based microbicides. This significantly broadens the range of microbicides that can be delivered in a sustained fashion from IVRs and enables a new arsenal of topical biologic microbicide candidates beyond small molecule antiretrovirals.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California; Auritec Pharmaceuticals, Inc., Pasadena, California
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California
| | - Thomas J Smith
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California; Auritec Pharmaceuticals, Inc., Pasadena, California
| | - John A Moss
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California.
| |
Collapse
|
121
|
Mucosal immunity in the female genital tract, HIV/AIDS. BIOMED RESEARCH INTERNATIONAL 2014; 2014:350195. [PMID: 25313360 PMCID: PMC4181941 DOI: 10.1155/2014/350195] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 01/15/2023]
Abstract
Mucosal immunity consists of innate and adaptive immune responses which can be influenced by systemic immunity. Despite having been the subject of intensive studies, it is not fully elucidated what exactly occurs after HIV contact with the female genital tract mucosa. The sexual route is the main route of HIV transmission, with an increased risk of infection in women compared to men. Several characteristics of the female genital tract make it suitable for inoculation, establishment of infection, and systemic spread of the virus, which causes local changes that may favor the development of infections by other pathogens, often called sexually transmitted diseases (STDs). The relationship of these STDs with HIV infection has been widely studied. Here we review the characteristics of mucosal immunity of the female genital tract, its alterations due to HIV/AIDS, and the characteristics of coinfections between HIV/AIDS and the most prevalent STDs.
Collapse
|
122
|
Anti-CXCL13 antibody can inhibit the formation of gastric lymphoid follicles induced by Helicobacter infection. Mucosal Immunol 2014; 7:1244-54. [PMID: 24646940 DOI: 10.1038/mi.2014.14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 02/09/2014] [Indexed: 02/04/2023]
Abstract
Helicobacter suis infects the stomachs of both animals and humans, and can induce gastric mucosa-associated lymphoid tissue (MALT) lymphomas. It is known that CXC chemokine ligand 13 (CXCL13) is highly expressed in the Helicobacter-infected mice and gastric MALT lymphoma patients, but the pathway that links the activation of CXCL13 and the formation of gastric MALT lymphomas remains unclear. In this study, we examined whether CXCL13 neutralization would interfere with the formation of gastric lymphoid follicles including B cells, CD4+T cells, dendritic cells (DCs), and follicular DCs (FDCs) in germinal centers to determine the role of CXCL13 in the formation of B-cell aggregates after H. suis infection. Moreover, the expression of genes associated with the lymphoid follicle formation was also effectively suppressed by anti-CXCL13 antibody treatment. These results suggest that the upregulation of CXCL13 has an important role in the development of gastric MALT lymphomas and highlight the potential of anti-CXCL13 antibody for protection against Helicobacter-induced gastric diseases.
Collapse
|
123
|
Diogo GR, Reljic R. Development of a new tuberculosis vaccine: is there value in the mucosal approach? Immunotherapy 2014; 6:1001-13. [DOI: 10.2217/imt.14.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
TB is a global health problem, killing 1.5 million people every year. The only currently available vaccine, Mycobacterium bovis BCG, is effective against severe childhood forms, but it demonstrates a variable efficacy against the pulmonary form of TB in adults. Many of these adult TB cases result from the reactivation of an initially controlled, latent Mycobacterium tuberculosis infection. Effective prophylactic vaccination remains the key long-term strategy for combating TB. Continued belief in reaching this goal requires unrelenting innovation in the formulation and delivery of candidate vaccines. It is also based on the assumption, that the failure of recent human vaccine trials could have been due to a suboptimal vaccine design and delivery, and therefore should not erode the key principle that a TB vaccine is an attainable target. This report gives a brief overview of the mucosal immune system in the context of M. tuberculosis infection, and focuses on the most recent advances in the field of mucosal TB vaccine development, with a specific emphasis on subunit TB vaccines.
Collapse
Affiliation(s)
- Gil Reynolds Diogo
- St George's Hospital, Institute of Infection & Immunity, St George's University of London, London, SW17 0RE, UK
| | - Rajko Reljic
- St George's Hospital, Institute of Infection & Immunity, St George's University of London, London, SW17 0RE, UK
| |
Collapse
|
124
|
Abstract
Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by selective destruction of intrahepatic cholangiocytes. Mechanisms underlying the development and progression of the disease are still controversial and largely undefined. Evidence suggests that PBC results from an articulated immunologic response against an immunodominant mitochondrial autoantigen, the E2 component of the pyruvate dehydrogenase complex (PDC-E2); characteristics of the disease are also the presence of disease-specific antimitochondrial autoantibodies (AMAs) and autoreactive CD4 and CD8 T cells. Recent evidence suggests that cholangiocytes show specific immunobiological features that are responsible for the selective targeting of those cells by the immune system. The immune reaction in PBC selectively targets small sized, intrahepatic bile ducts; although a specific reason for that has not been defined yet, it has been established that the biliary epithelium displays a unique heterogeneity, for which the physiological and pathophysiological features of small and large cholangiocytes significantly differ. In this review article, the authors provide a critical overview of the current evidence on the role of cholangiocytes in the immune-mediated destruction of the biliary tree that characterizes PBC.
Collapse
Affiliation(s)
- Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Luca Maroni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
- Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
- Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
- Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
- Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
125
|
Mestecky J, Wei Q, Alexander R, Raska M, Novak J, Moldoveanu Z. Humoral immune responses to HIV in the mucosal secretions and sera of HIV-infected women. Am J Reprod Immunol 2014; 71:600-7. [PMID: 24494997 PMCID: PMC4024328 DOI: 10.1111/aji.12203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/17/2013] [Indexed: 12/16/2022] Open
Abstract
Although sera and all external secretions contain antibodies to human immunodeficiency virus (HIV), their levels, specificity, isotypes, and relevant effector functions display a great degree of variability. Antibodies that bind HIV antigens and neutralize the virus are predominantly associated with the IgG isotype in sera and in all external secretions, even where total levels of IgG are much lower than those of IgA. Rectal fluid that contains high IgA, but low IgG levels, displayed low neutralizing activity independent of antibodies. Therefore, external secretions should be evaluated before and after selective depletion of Ig. At the systemic level, HIV-specific IgA may interfere with the effector functions of IgG, as suggested by recent studies of individuals systemically immunized with an experimental HIV vaccine. Although HIV-specific IgG and IgA antibodies may exhibit their protective activities at mucosal surfaces through interference with viral entry and local neutralization at the systemic level, such antibodies may display discordant effector functions.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Institute of Immunology and Microbiology, Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rashada Alexander
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Office of the Director, National Institutes of Health, Bethesda, MD
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
126
|
Hillard CJ. Stress regulates endocannabinoid-CB1 receptor signaling. Semin Immunol 2014; 26:380-8. [PMID: 24882055 DOI: 10.1016/j.smim.2014.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 12/17/2022]
Abstract
The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center, Medical College of Wisconsin, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, United States.
| |
Collapse
|
127
|
Lombardi VC, Khaiboullina SF. Plasmacytoid dendritic cells of the gut: relevance to immunity and pathology. Clin Immunol 2014; 153:165-77. [PMID: 24769378 DOI: 10.1016/j.clim.2014.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are bone marrow-derived immune cells with the ability to express copious amounts of type I and III interferon (IFN) and can differentiate into antigen-presenting dendritic cells as a result of stimulation by pathogen-derived nucleic acid. These powerful combined functionalities allow pDCs to bridge the innate and adaptive immune systems resulting in a concerted pathogen response. The contribution of pDCs to gastrointestinal immunity is only now being elucidated and is proving to be a critical component in systemic immunity. This review will explore the immunology of pDCs and will discuss their involvement in human disease and tolerance with an emphasis on those in the gastrointestinal lymphoid tissue.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, WPI, University of Nevada, Reno, 1664 N Virginia St. MS 0552, Reno, NV 89557, USA.
| | - Svetlana F Khaiboullina
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, WPI, University of Nevada, Reno, 1664 N Virginia St. MS 0552, Reno, NV 89557, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
128
|
Intranasal vaccination with a replication-deficient influenza virus induces heterosubtypic neutralising mucosal IgA antibodies in humans. Vaccine 2014; 32:1897-900. [PMID: 24560674 DOI: 10.1016/j.vaccine.2014.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/12/2014] [Accepted: 02/07/2014] [Indexed: 11/24/2022]
Abstract
UNLABELLED We investigated the cross-neutralising potential of serum and nasal wash samples from volunteers who were intranasally immunised once with a monovalent replication-deficient delNS1-H1N1 influenza virus vaccine (7.7log10TCID50/volunteer). Eight out of twelve (8/12) vaccinees responded to vaccination with a significant increase of antibody levels in serum IgG ELISA, mucosal IgA ELISA, MNA or HAI. Four responders showed delNS1-specific ELISA IgA increases and revealed excellent homosubtypic neutralising activity in serum and mucosal washings (4/4). However, 0/4 of the sera but 3/4 of the nasal washings neutralised also heterosubtypic H3N2 and H5N1 influenza viruses. Depletion experiments proved that IgA but not IgG is responsible for the cross-neutralising activity of the nasal wash sample. Our findings indicate that the induction of virus-neutralising IgA may represent a valuable correlate of cross-protection of intranasal influenza vaccines and that the delNS1 concept constitutes a promising approach to protect humans from seasonal and pandemic influenza threats. CLINICAL TRIAL REGISTRATION NCT00724997.
Collapse
|
129
|
Guardiola FA, Cuesta A, Arizcun M, Meseguer J, Esteban MA. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2014; 36:545-551. [PMID: 24412437 DOI: 10.1016/j.fsi.2014.01.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/15/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
Mucosal surfaces of fish, including skin, gill and gut, contain numerous immune substances poorly studied that act as the first line of defence against a broad spectrum of pathogens. This study aimed to identify and characterize for the first time different constitutive humoral defence mechanisms of the skin mucus of gilthead seabream (Sparus aurata). To do this, the levels of total immunoglobulin M, several enzymes and proteins (peroxidase, lysozyme, alkaline phosphatase, esterases, proteases and antiproteases), as well as the bactericidal activity against opportunist fish pathogens (Vibrio harveyi, Vibrio angillarum, Photobacterium damselae) and non-pathogenic bacteria (Escherichia coli, Bacillus subtilis) were measured in the skin mucus and compared with those found in the serum. This study demonstrates that gilthead seabream skin mucus contains lower levels of IgM, similar levels of lysozyme, alkaline phosphatase and proteases, and higher esterase, peroxidase and antiprotease activities than serum. In addition, skin mucus revealed stronger bactericidal activity against tested fish pathogen bacteria compared to the serum activity, while human bacteria can even grow more in the presence of mucus. The results could be useful for better understanding the role of the skin mucus as a key component of the innate immune system with potential application for the aquaculture.
Collapse
Affiliation(s)
- Francisco A Guardiola
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - María A Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
130
|
Muramatsu M, Yoshida R, Yokoyama A, Miyamoto H, Kajihara M, Maruyama J, Nao N, Manzoor R, Takada A. Comparison of antiviral activity between IgA and IgG specific to influenza virus hemagglutinin: increased potential of IgA for heterosubtypic immunity. PLoS One 2014; 9:e85582. [PMID: 24465606 PMCID: PMC3895000 DOI: 10.1371/journal.pone.0085582] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022] Open
Abstract
Both IgA and IgG antibodies are known to play important roles in protection against influenza virus infection. While IgG is the major isotype induced systemically, IgA is predominant in mucosal tissues, including the upper respiratory tract. Although IgA antibodies are believed to have unique advantages in mucosal immunity, information on direct comparisons of the in vitro antiviral activities of IgA and IgG antibodies recognizing the same epitope is limited. In this study, we demonstrate differences in antiviral activities between these isotypes using monoclonal IgA and IgG antibodies obtained from hybridomas of the same origin. Polymeric IgA-producing hybridoma cells were successfully subcloned from those originally producing monoclonal antibody S139/1, a hemaggulutinin (HA)-specific IgG that was generated against an influenza A virus strain of the H3 subtype but had cross-neutralizing activities against the H1, H2, H13, and H16 subtypes. These monoclonal S139/1 IgA and IgG antibodies were assumed to recognize the same epitope and thus used to compare their antiviral activities. We found that both S139/1 IgA and IgG antibodies strongly bound to the homologous H3 virus in an enzyme-linked immunosorbent assay, and there were no significant differences in their hemagglutination-inhibiting and neutralizing activities against the H3 virus. In contrast, S139/1 IgA showed remarkably higher cross-binding to and antiviral activities against H1, H2, and H13 viruses than S139/1 IgG. It was also noted that S139/1 IgA, but not IgG, drastically suppressed the extracellular release of the viruses from infected cells. Electron microscopy revealed that S139/1 IgA deposited newly produced viral particles on the cell surface, most likely by tethering the particles. These results suggest that anti-HA IgA has greater potential to prevent influenza A virus infection than IgG antibodies, likely due to increased avidity conferred by its multivalency, and that this advantage may be particularly important for heterosubtypic immunity.
Collapse
Affiliation(s)
- Mieko Muramatsu
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ayaka Yokoyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junki Maruyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Rashid Manzoor
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- School of Veterinary Medicine, the University of Zambia, Lusaka, Zambia
- * E-mail:
| |
Collapse
|
131
|
Georgousakis MM, McMillan DJ, Batzloff MR, Sriprakash KS. Moving forward: a mucosal vaccine against group A streptococcus. Expert Rev Vaccines 2014; 8:747-60. [DOI: 10.1586/erv.09.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
132
|
Kratz EM, Ferens-Sieczkowska M. Association of IgA secretory component sialylation with leucocytospermia of infertile men - a pilot study. Andrologia 2014; 46:1200-2. [DOI: 10.1111/and.12213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- E. M. Kratz
- Department of Chemistry and Immunochemistry; Wrocław Medical University; Wrocław Poland
| | - M. Ferens-Sieczkowska
- Department of Chemistry and Immunochemistry; Wrocław Medical University; Wrocław Poland
| |
Collapse
|
133
|
FcRn: from molecular interactions to regulation of IgG pharmacokinetics and functions. Curr Top Microbiol Immunol 2014; 382:249-72. [PMID: 25116104 DOI: 10.1007/978-3-319-07911-0_12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neonatal Fc receptor, FcRn, is related to MHC class I with respect to its structure and association with β2microglobulin (β2m). However, by contrast with MHC class I molecules, FcRn does not bind to peptides, but interacts with the Fc portion of IgGs and belongs to the Fc receptor family. Unlike the 'classical' Fc receptors, however, the primary functions of FcRn include salvage of IgG (and albumin) from lysosomal degradation through the recycling and transcytosis of IgG within cells. The characteristic feature of FcRn is pH-dependent binding to IgG, with relatively strong binding at acidic pH (<6.5) and negligible binding at physiological pH (7.3-7.4). FcRn is expressed in many different cell types, and endothelial and hematopoietic cells are the dominant cell types involved in IgG homeostasis in vivo. FcRn also delivers IgG across cellular barriers to sites of pathogen encounter and consequently plays a role in protection against infections, in addition to regulating renal filtration and immune complex-mediated antigen presentation. Further, FcRn has been targeted to develop both IgGs with extended half-lives and FcRn inhibitors that can lower endogenous antibody levels. These approaches have implications for the development of longer lived therapeutics and the removal of pathogenic or deleterious antibodies.
Collapse
|
134
|
Mkaddem SB, Christou I, Rossato E, Berthelot L, Lehuen A, Monteiro RC. IgA, IgA receptors, and their anti-inflammatory properties. Curr Top Microbiol Immunol 2014; 382:221-35. [PMID: 25116102 DOI: 10.1007/978-3-319-07911-0_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunoglobulin A (IgA) is the most abundantly produced antibody isotype in mammals. The primary function of IgA is to maintain homeostasis at mucosal surfaces and play a role in immune protection. IgA functions mainly through interaction with multiple receptors including IgA Fc receptor I (FcαRI), transferrin receptor 1 (CD71), asialoglycoprotein receptor (ASGPR), Fcα/μR, FcRL4, and DC-SIGN/SIGNR1. In this review we discuss recent data demonstrating anti-inflammatory functions of IgA through two receptors, the FcαRI and DC-SIGN/SIGNR1 interactions in the regulation of immunity. Serum monomeric IgA is able to mediate an inhibitory signal following the interaction with FcαRI. It results in partial phosphorylation of its FcRγ-ITAM and the recruitment of the tyrosine phosphatase SHP-1, which induces cell inhibition following the formation of intracellular clusters named inhibisomes. In contrast, cross-linking of FcαRI by multimeric ligands induces a full phosphorylation of the FcRγ-ITAM leading to the recruitment of the tyrosine kinase Syk and cell activation. In addition, secretory IgA can mediate a potent anti-inflammatory function following the sugar-dependent interaction with SIGNR1 on dendritic cells which induces an immune tolerance via regulatory T cell expansion. Overall, the anti-inflammatory effect of serum and secretory IgA plays a crucial role in the physiology and in the prevention of tissue damage in multiple autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Sanae Ben Mkaddem
- Inserm, U1149, Centre de Recherche sur l'Inflammation, Paris, France
| | | | | | | | | | | |
Collapse
|
135
|
Buckner CM, Moir S, Kardava L, Ho J, Santich BH, Kim LJY, Funk EK, Nelson AK, Winckler B, Chairez CL, Theobald-Whiting NL, Anaya-O'Brien S, Alimchandani M, Quezado MM, Yao MD, Kovacs JA, Chun TW, Fauci AS, Malech HL, De Ravin SS. CXCR4/IgG-expressing plasma cells are associated with human gastrointestinal tissue inflammation. J Allergy Clin Immunol 2013; 133:1676-85.e5. [PMID: 24373354 DOI: 10.1016/j.jaci.2013.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 10/14/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND We previously reported abnormalities in circulating B cells in patients with chronic granulomatous disease (CGD) and those with HIV infection. Gastrointestinal complications are common to both diseases and likely involve perturbation of immune cells, including plasma cells (PCs). IgA is the most abundant immunoglobulin in the human body, with roles in protection and maintenance of intestinal homeostasis. IgA is produced primarily by PCs residing in mucosal tissues that are also thought to circulate in the blood. OBJECTIVE We sought to characterize and compare PCs in patients with infectious (HIV) and noninfectious (CGD and Crohn disease) diseases that have been associated with intestinal inflammation. METHODS Phenotypic and transcriptional analyses were performed on cells isolated from the blood and colon. RESULTS IgA-secreting CCR10-expressing PCs predominated in the guts of healthy subjects, whereas in patients with HIV, CGD, and Crohn disease, there was a significant increase in the proportion of IgG-secreting PCs. Where intestinal inflammation was present, IgG-secreting PCs expressed reduced levels of CCR10 and increased levels of CXCR4. The intensity of CXCR4 expression correlated with the frequency of IgG-expressing PCs and the frequency of CXCR4(+)/IgG(+) PCs was associated with the severity of intestinal inflammatory disease yet distinct from PCs and plasmablasts circulating in the blood. CONCLUSIONS These findings suggest that regardless of the underlying disease, the presence of CXCR4(+)/IgG(+) PCs in the gut is a strong yet localized indicator of intestinal inflammation. Furthermore, our findings suggest that CXCR4(+)/IgG(+) PCs might play a role in immune cell homeostasis during inflammatory processes of the gut.
Collapse
Affiliation(s)
- Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md.
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Jason Ho
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Brian H Santich
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Leo Jin Young Kim
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Emily K Funk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Amy K Nelson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Britanny Winckler
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Cheryl L Chairez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Narda L Theobald-Whiting
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Sandra Anaya-O'Brien
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, Bethesda, Md
| | - Michael D Yao
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Joseph A Kovacs
- Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Suk See De Ravin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Md.
| |
Collapse
|
136
|
Kratz EM, Ferens-Sieczkowska M, Faundez R, Kątnik-Prastowska I. Changes in fucosylation of human seminal IgG and secretory component of IgA in leukocytospermic patients. Glycoconj J 2013; 31:51-60. [PMID: 24057866 PMCID: PMC3892108 DOI: 10.1007/s10719-013-9501-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/21/2013] [Accepted: 09/02/2013] [Indexed: 01/01/2023]
Abstract
Our study compares the status of human seminal plasma immunoglobulin G (IgG) and IgA secretory component (SC) fucosylation between infertile leukocytospermic and normal, fertile normozoospermic patients. The seminal IgG and SC are decorated with AAL-reactive core fucose, and antennary UEA- and LTA-reactive fucose of Lewisy and Lewisx structures, respectively. However, a correlation between IgG core fucosylation and IgG concentration (r = −0.52; p < 0.0003) was observed. The IgG present in leukocytospermic samples is characterized by lower expression of core fucose than in the normal group (0.82 ± 0.3 AU and 1.2 ± 0.3 AU, respectively; p < 0.002). In seminal plasma the SC is present in two forms: 78-kDa and 63-kDa. The present study has also shown a higher AAL and LTA specific reactivity of glycans expressed in 63-kDa SC, in comparison to 78-kDa SC, in the normal group. In leukocytospermia, the values of specific lectin reactivity for core fucose, fucose α(1-2)- and α(1-3)- linked, were similar for both SC bands. Moreover, the present study has shown that in leukocytospermic samples the mean concentrations of IgG and S-IgA are twice as high (131.68 ± 102.6 mg/l and 36 ± 27 mg/l, respectively) as in the normal group (67.68 ± 29.2 mg/l; p < 0.02, and 19 ± 18 mg/l, p < 0.019, respectively). The analysis of IgG and SC fucosylation status and the determination of IgG and S-IgA concentrations in seminal plasma might constitute a valuable diagnosis tools for the evaluation of male infertility associated with leukocytospermia with accompanying inflammation.
Collapse
Affiliation(s)
- Ewa M Kratz
- Department of Chemistry and Immunochemistry, Wrocław Medical University, Bujwida 44a, 50-345, Wrocław, Poland,
| | | | | | | |
Collapse
|
137
|
Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc Natl Acad Sci U S A 2013; 110:9019-24. [PMID: 23661056 DOI: 10.1073/pnas.1301456110] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of correlates of risk of infection in the RV144 HIV-1 vaccine efficacy trial demonstrated that plasma IgG against the HIV-1 envelope (Env) variable region 1 and 2 inversely correlated with risk, whereas HIV-1 Env-specific plasma IgA responses directly correlated with risk. In the secondary analysis, antibody-dependent cellular cytotoxicity (ADCC) was another inverse correlate of risk, but only in the presence of low plasma IgA Env-specific antibodies. Thus, we investigated the hypothesis that IgA could attenuate the protective effect of IgG responses through competition for the same Env binding sites. We report that Env-specific plasma IgA/IgG ratios are higher in infected than in uninfected vaccine recipients in RV144. Moreover, Env-specific IgA antibodies from RV144 vaccinees blocked the binding of ADCC-mediating mAb to HIV-1 Env glycoprotein 120 (gp120). An Env-specific monomeric IgA mAb isolated from an RV144 vaccinee also inhibited the ability of natural killer cells to kill HIV-1-infected CD4(+) T cells coated with RV144-induced IgG antibodies. We show that monomeric Env-specific IgA, as part of postvaccination polyclonal antibody response, may modulate vaccine-induced immunity by diminishing ADCC effector function.
Collapse
|
138
|
Lorenz T, van Anders S. Interactions of sexual activity, gender, and depression with immunity. J Sex Med 2013; 11:966-979. [PMID: 23448297 DOI: 10.1111/jsm.12111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Depression can suppress immune function, leading to lower resistance against infection and longer healing times in depressed individuals. Sexuality may also influence immune function, with evidence that sexual activity is associated with lowered immune function in women and mixed results in men. Immune mediators like immunoglobulin A (IgA) are immediately relevant to sexual health, since they are the first line of defense against pathogens at mucous membranes like the vagina. AIM This study aims to determine if and how depression, sexual activity, and their interaction impact salivary IgA (SIgA) in men and women. METHODS In Study 1, a community-based sample of 84 women and 88 men provided saliva samples and completed questionnaires on their demographic background, level of depression, and frequency of partnered and solitary sexual activity. Study 2, conducted separately in an undergraduate student sample of 54 women and 52 men, had similar methods. MAIN OUTCOME MEASURES The main outcome measures were scores on the General Well-Being Schedule depression subscale, reported frequency of sexual activity, and SIgA levels as measured by enzyme immunoassay. RESULTS Across studies, higher levels of partnered sexual activity were associated with lower SIgA for women with high depression scores, but not for women with low depression scores. In contrast, higher levels of partnered sexual activity were associated with higher SIgA for men with high depression scores, but not for men with low depression scores. CONCLUSION Our results show that partnered sexual activity is a risk factor for lowered immunity in women with depressive symptoms but a possible resilience factor for men with depressive symptoms. This suggests a role for sexual activity in determining the impact of depression on physical health parameters.
Collapse
Affiliation(s)
- Tierney Lorenz
- Department of PsychologyUniversity of Texas at AustinAustinTXUSA; Department of Psychiatry and Behavioral SciencesUniversity of Washington School of MedicineSeattleWAUSA.
| | - Sari van Anders
- Departments of Psychology and Women's Studies, and Programs in Neuroscience, Reproductive Sciences, and Science, Technology, and SocietyUniversity of Michigan at Ann ArborAnn Arbor MI USA
| |
Collapse
|
139
|
|
140
|
Longet S, Miled S, Lötscher M, Miescher SM, Zuercher AW, Corthésy B. Human plasma-derived polymeric IgA and IgM antibodies associate with secretory component to yield biologically active secretory-like antibodies. J Biol Chem 2012; 288:4085-94. [PMID: 23250751 DOI: 10.1074/jbc.m112.410811] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.
Collapse
Affiliation(s)
- Stéphanie Longet
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon, 1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
141
|
Abstract
Cholangiocytes, or bile duct epithelia, were once thought to be the simple lining of the conduit system comprising the intra- and extrahepatic bile ducts. Growing experimental evidence demonstrated that cholangiocytes are in fact the first line of defense of the biliary system against foreign substances. Experimental advances in recent years have unveiled previously unknown roles of cholangiocytes in both innate and adaptive immune responses. Cholangiocytes can release inflammatory modulators in a regulated fashion. Moreover, they express specialized pattern-recognizing molecules that identify microbial components and activate intracellular signaling cascades leading to a variety of downstream responses. The cytokines secreted by cholangiocytes, in conjunction with the adhesion molecules expressed on their surface, play a role in recruitment, localization, and modulation of immune responses in the liver and biliary tract. Cholangiocyte survival and function is further modulated by cytokines and inflammatory mediators secreted by immune cells and cholangiocytes themselves. Because cholangiocytes act as professional APCs via expression of major histocompatibility complex antigens and secrete antimicrobial peptides in bile, their role in response to biliary infection is critical. Finally, because cholangiocytes release mediators critical to myofibroblastic differentiation of portal fibroblasts and hepatic stellate cells, cholangiocytes may be essential in the pathogenesis of biliary cirrhosis.
Collapse
Affiliation(s)
- Gaurav Syal
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Michel Fausther
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jonathan A. Dranoff
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
142
|
Kverka M, Tlaskalova-Hogenova H. Two faces of microbiota in inflammatory and autoimmune diseases: triggers and drugs. APMIS 2012; 121:403-21. [DOI: 10.1111/apm.12007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/13/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Miloslav Kverka
- Department of Immunology and Gnotobiology, Institute of Microbiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| | - Helena Tlaskalova-Hogenova
- Department of Immunology and Gnotobiology, Institute of Microbiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| |
Collapse
|
143
|
Mestecky J, Raska M, Julian BA, Gharavi AG, Renfrow MB, Moldoveanu Z, Novak L, Matousovic K, Novak J. IgA nephropathy: molecular mechanisms of the disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:217-40. [PMID: 23092188 DOI: 10.1146/annurev-pathol-011110-130216] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of molecular and cellular interactions involved in the pathogenesis of IgA nephropathy have revealed the autoimmune nature of this most common primary glomerulonephritis. In patients with this disease, altered glycan structures in the unique hinge region of the heavy chains of IgA1 molecules lead to the exposure of antigenic determinants, which are recognized by naturally occurring antiglycan antibodies of the IgG and/or IgA1 isotype. As a result, nephritogenic immune complexes form in the circulation and deposit in the glomerular mesangium. Deposited immune complexes induce proliferation of resident mesangial cells, increased production of extracellular matrix proteins and cytokines, and ultimately loss of glomerular function. Structural elucidation of the nature of these immune complexes and their biological activity should provide a rational basis for an effective, immunologically mediated inhibition of the formation of nephritogenic immune complexes that could be used as a disease-specific therapeutic approach.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
The vertebrate immune system is comprised of numerous distinct and interdependent components. Every component has its own inherent protective value, and the final combination of them is likely to be related to an animal’s immunological history and evolutionary development. Vertebrate immune system consists of both systemic and mucosal immune compartments, but it is the mucosal immune system which protects the body from the first encounter of pathogens. According to anatomical location, the mucosa-associated lymphoid tissue, in teleost fish is subdivided into gut-, skin-, and gill-associated lymphoid tissue and most available studies focus on gut. The purpose of this paper is to summarise the current knowledge of the immunological defences present in skin mucosa as a very important part of the fish immune system, serving as an anatomical and physiological barrier against external hazards. Interest in defence mechanism of fish arises from a need to develop health management tools to support a growing finfish aquaculture industry, while at the same time addressing questions concerning origins and evolution of immunity in vertebrates. Increased knowledge of fish mucosal immune system will facilitate the development of novel vaccination strategies in fish.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, 30100 Murcia, Spain
| |
Collapse
|
145
|
Huy NX, Kim SH, Yang MS, Kim TG. Immunogenicity of a neutralizing epitope from porcine epidemic diarrhea virus: M cell targeting ligand fusion protein expressed in transgenic rice calli. PLANT CELL REPORTS 2012; 31:1933-42. [PMID: 22736145 PMCID: PMC7080027 DOI: 10.1007/s00299-012-1306-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 05/11/2023]
Abstract
To increase immune responses of plant-based vaccines in intestine mucosal immune systems, a synthetic neutralizing epitope (sCOE) gene of porcine epidemic diarrhea virus (PEDV) was fused with M cell-targeting ligand (Co1) and introduced into a plant expression vector under the control of rice amylase 3D promoter. The sCOE-Co1 fusion gene was introduced into rice calli via the particle bombardment-mediated transformation method. The stable integration and transcriptional expression of the sCOE-Co1 fusion gene was confirmed by genomic DNA PCR amplification and Northern blot analysis, respectively. The expression of the COE-Co1 fusion protein was confirmed by immunoblot analysis. The highest expression level of the COE-Co1 fusion protein reached 0.083 % of the total soluble protein according to quantitative densitometry of Western blot analysis. Mice immunized with transgenic rice calli protein extracts induced significant serum IgG and fecal IgA antibody levels against purified bacterial COE. The systemic and mucosal immune responses were confirmed by measuring COE-specific IgG and IgA antibody-secreting cells in the lymphocytes extracted from the spleen and COE-specific IgA antibody-secreting cells in the Peyer's patches from immunized mice. These results indicated that oral immunization of plant-produced COE-Co1 fusion protein could elicit efficient systemic and mucosal immune responses against the COE antigen. Key message Neutralizing epitope from porcine epidemic diarrhea virus-M cell targeting ligand fusion protein was produced in transgenic rice calli and elicited systemic and mucosal immune responses by oral administration in mice.
Collapse
MESH Headings
- Administration, Oral
- Amylases/genetics
- Amylases/metabolism
- Animals
- Antibody-Producing Cells/immunology
- Enzyme-Linked Immunospot Assay
- Epitopes/immunology
- Female
- Genes, Synthetic
- Genetic Vectors
- Immunity, Mucosal
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Ligands
- Mast Cells/immunology
- Mice
- Mice, Inbred BALB C
- Oryza/enzymology
- Oryza/genetics
- Oryza/immunology
- Peyer's Patches/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Porcine epidemic diarrhea virus/immunology
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/immunology
- Transcription, Genetic
- Transformation, Genetic
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
Collapse
Affiliation(s)
- Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
- Department of Techno-pedagogy, Hue University’s College of Education, 34 Le Loi St, Hue, Vietnam
| | - Sae-Hae Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
- Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Tae-Geum Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
- Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| |
Collapse
|
146
|
Jung TS, Del Castillo CS, Javaregowda PK, Dalvi RS, Nho SW, Park SB, Jang HB, Cha IS, Sung HW, Hikima JI, Aoki T. Seasonal variation and comparative analysis of non-specific humoral immune substances in the skin mucus of olive flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:295-301. [PMID: 22750133 DOI: 10.1016/j.dci.2012.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/01/2012] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
The epidermal secretion of fish contains various non-specific immune substances that act as the first line of defense against invading pathogens. The present study investigated the level of mucosal antibodies, the activities of hemagglutinin and protease, and other enzymes in the skin mucus of farm reared olive flounder (Paralichthys olivaceus) for 1 year, in order to gain an insight into the relationship between these mucosal immune substances and their seasonal variation. These levels varied significantly during different months of sample collection. The present study showed a positive correlation between water temperature and the level of mucosal antibodies, and an inverse relationship between the level of mucosal antibodies and the activity of mucosal hemagglutinin and protease, but no relationship between lysozyme activity and other innate immune substances. This relationship is thought to be a compensatory response in olive flounder to protect itself against pathogenic microorganisms which are inherently present in the aquatic environment.
Collapse
Affiliation(s)
- Tae Sung Jung
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, South Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Immunoprotective effects of oral intake of heat-killed Lactobacillus pentosus strain b240 in elderly adults: a randomised, double-blind, placebo-controlled trial. Br J Nutr 2012; 109:1856-65. [PMID: 22947249 DOI: 10.1017/s0007114512003753] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oral intake of Lactobacillus pentosus strain b240 (b240) has been shown to enhance the secretion of salivary secretory IgA in elderly adults. However, its clinical benefits remain to be determined. We tested the hypothesis that b240 exerts a protective effect against the common cold in elderly adults. The design of the present study was a randomised, double-blind, placebo-controlled trial (RCT) with parallel three-group comparison. For this purpose, 300 eligible elderly adults were randomly allocated to one of three groups, namely a placebo, low-dose or high-dose b240 group. Participants in the low-dose and high-dose b240 groups were given tablets containing 2 × 10(9) or 2 × 10(10) cells, respectively, of heat-killed b240, while those in the placebo group were given tablets without b240. Each group consumed their respective tablets once daily for 20 weeks. The common cold was assessed on the basis of a diary. Change in quality of life was evaluated using the SF-36. Of the total participants, 280 completed the 20-week RCT. The accumulated incidence rate of the common cold was 47·3, 34·8 and 29·0 % for the placebo, low-dose b240 and high-dose b240 groups, respectively (P for trend = 0·012). Lower incidence rates were consistently observed throughout the experimental period in the b240 groups (log-rank test, P= 0·034). General health perception, as determined by the SF-36®, dose-dependently increased in the b240 groups ( P <0·025). In conclusion, oral intake of b240 significantly reduced the incidence rate of the common cold in elderly adults, indicating that b240 might be useful in improving resistance against infection through mucosal immunity.
Collapse
|
148
|
Jeong SC, Koyyalamudi SR, Pang G. Dietary intake of Agaricus bisporus white button mushroom accelerates salivary immunoglobulin A secretion in healthy volunteers. Nutrition 2012; 28:527-31. [DOI: 10.1016/j.nut.2011.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 08/01/2011] [Accepted: 08/09/2011] [Indexed: 11/29/2022]
|
149
|
Palkola NV, Pakkanen SH, Kantele JM, Rossi N, Puohiniemi R, Kantele A. Pathogen-specific circulating plasmablasts in patients with pneumonia. PLoS One 2012; 7:e34334. [PMID: 22479603 PMCID: PMC3314017 DOI: 10.1371/journal.pone.0034334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/26/2012] [Indexed: 11/19/2022] Open
Abstract
Lower respiratory tract infections (LRTI) are the leading cause of death world-wide, with Streptococcus pneumoniae (Pnc) as the most prevalent pathogen. Local immune mechanisms appear central to protection against the disease, yet they are poorly characterized. Infections at other, non-respiratory mucosal sites are associated with a transient circulation of mucosa-originating lymphocytes from the mucosal site to blood and back to the mucosa. The present study explored whether pathogen-specific plasmablasts appear in the circulation also in patients with infection of the lower respiratory tract. 16 patients with bacteremic Pnc pneumonia and 14 healthy volunteers were explored for circulating plasmablasts secreting antibodies against their own pathogenic Pnc strain isolated in blood cultures (patients) or against several pathogenic strains from pneumonia patients (14 controls) or a mixture of nine different purified pneumococcal polysaccharides (8 controls). Both patients and volunteers were studied for all plasmablasts. The cells were identified with ELISPOT as Pnc-specific antibody-secreting cells (ASC) and as all immunoglobulin-secreting cells (ISC). High numbers of circulating Pnc-specific ASC were found in the acute phase of the disease in all patients with pneumonia (median 97 ASC/10(6) PBMC), but in none of the controls. IgG isotype predominated in 9/16 patients. The numbers of ISC were significantly higher in the patients than in the healthy controls, yet Pnc-specific ASC only accounted for 0.7% of all the patients' ISC.The present study is the first to show that antigen-specific plasmablasts appear in the circulation in pneumonia, suggesting that pulmonary lypmhocytes recirculate in humans. Assessing these cells provides a novel tool for studying immune response to antigens encountered at the LRT.
Collapse
Affiliation(s)
- Nina V. Palkola
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Medicine, Division of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Sari H. Pakkanen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Medicine, Division of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Jussi M. Kantele
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Niina Rossi
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Medicine, Division of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Ritvaleena Puohiniemi
- Department of Bacteriology, Helsinki University Hospital Laboratory (HUSLAB), Helsinki, Finland
| | - Anu Kantele
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Medicine, Division of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland
- Department of Medicine, Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
150
|
Zoppi S, Madrigal JLM, Pérez-Nievas BG, Marín-Jiménez I, Caso JR, Alou L, García-Bueno B, Colón A, Manzanares J, Gómez-Lus ML, Menchén L, Leza JC. Endogenous cannabinoid system regulates intestinal barrier function in vivo through cannabinoid type 1 receptor activation. Am J Physiol Gastrointest Liver Physiol 2012; 302:G565-71. [PMID: 22135307 DOI: 10.1152/ajpgi.00158.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The deleterious effects of stress on the gastrointestinal tract seem to be mainly mediated by the induction of intestinal barrier dysfunction and subsequent subtle mucosal inflammation. Cannabinoid 1 receptor (CB1R) is expressed in the mammalian gut under physiological circumstances. The aim of this investigation is to study the possible role of CB1R in the maintenance of mucosal homeostasis after stress exposure. CB1R knockout mice (CB1R(-/-)) and their wild-type (WT) counterparts were exposed to immobilization and acoustic (IA) stress for 2 h per day during 4 consecutive days. Colonic protein expression of the inducible forms of the nitric oxide synthase and cyclooxygenase (NOS2 and COX2), IgA production, permeability to (51)Cr-EDTA, and bacterial translocation to mesenteric lymph nodes were evaluated. Stress exposure induced greater expression of proinflammatory enzymes NOS2 and COX2 in colonic mucosa of CB1R(-/-) mice when compared with WT animals. These changes were related with a greater degree of colonic barrier dysfunction in CB1R(-/-) animals determined by 1) a significantly lower IgA secretion, 2) higher paracellular permeability to (51)Cr-EDTA, and 3) higher bacterial translocation, both under basal conditions and after IA stress exposure. Pharmacological antagonism with rimonabant reproduced stress-induced increase of proinflammatory enzymes in the colon described in CB1R(-/-) mice. In conclusion, CB1R exerts a protective role in the colon in vivo through the regulation of intestinal secretion of IgA and paracellular permeability. Pharmacological modulation of cannabinoid system within the gastrointestinal tract might be therapeutically useful in conditions on which intestinal inflammation and barrier dysfunction takes place after exposure to stress.
Collapse
Affiliation(s)
- Silvia Zoppi
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|