101
|
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27:1. [PMID: 31894001 PMCID: PMC6939334 DOI: 10.1186/s12929-019-0592-z] [Citation(s) in RCA: 1260] [Impact Index Per Article: 252.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Zen Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan. .,, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
102
|
Kreer C, Gruell H, Mora T, Walczak AM, Klein F. Exploiting B Cell Receptor Analyses to Inform on HIV-1 Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010013. [PMID: 31906351 PMCID: PMC7157687 DOI: 10.3390/vaccines8010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
The human antibody repertoire is generated by the recombination of different gene segments as well as by processes of somatic mutation. Together these mechanisms result in a tremendous diversity of antibodies that are able to combat various pathogens including viruses and bacteria, or malignant cells. In this review, we summarize the opportunities and challenges that are associated with the analyses of the B cell receptor repertoire and the antigen-specific B cell response. We will discuss how recent advances have increased our understanding of the antibody response and how repertoire analyses can be exploited to inform on vaccine strategies, particularly against HIV-1.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
103
|
Murin CD, Bruhn JF, Bornholdt ZA, Copps J, Stanfield R, Ward AB. Structural Basis of Pan-Ebolavirus Neutralization by an Antibody Targeting the Glycoprotein Fusion Loop. Cell Rep 2019; 24:2723-2732.e4. [PMID: 30184505 DOI: 10.1016/j.celrep.2018.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies (mAbs) with pan-ebolavirus cross-reactivity are highly desirable, but development of such mAbs is limited by a lack of a molecular understanding of cross-reactive epitopes. The antibody ADI-15878 was previously identified from a human survivor of Ebola virus Makona variant (EBOV/Mak) infection. This mAb demonstrated potent neutralizing activity against all known ebolaviruses and provided protection in rodent and ferret models against three ebolavirus species. Here, we describe the unliganded crystal structure of ADI-15878 as well as the cryo-EM structures of ADI-15878 in complex with the EBOV/Mak and Bundibugyo virus (BDBV) glycoproteins (GPs). ADI-15878 binds through an induced-fit mechanism by targeting highly conserved residues in the internal fusion loop (IFL), bridging across GP protomers via the heptad repeat 1 (HR1) region. Our structures provide a more complete description of the ebolavirus immunogenic landscape, as well as a molecular basis for how rare but potent antibodies target conserved filoviral fusion machinery.
Collapse
Affiliation(s)
- Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica F Bruhn
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
| | | | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
104
|
Luczkowiak J, Lasala F, Mora-Rillo M, Arribas JR, Delgado R. Broad Neutralizing Activity Against Ebolaviruses Lacking the Mucin-Like Domain in Convalescent Plasma Specimens From Patients With Ebola Virus Disease. J Infect Dis 2019; 218:S574-S581. [PMID: 29939289 PMCID: PMC6249609 DOI: 10.1093/infdis/jiy302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background In Ebola virus (EBOV) infection, the specific neutralizing activity of convalescent plasma against other members of the Ebolavirus genus has not been extensively analyzed. Methods We measured the neutralizing activity in plasma from 3 survivors of the recent outbreak due to the Makona variant of EBOV and tested its neutralizing potency against other variants of EBOV (ie, Mayinga and Kikwit) and against Sudan virus (SUDV), Bundibugyo virus (BDBV), and Reston virus (RESTV), using a glycoprotein (GP)-pseudotyped lentiviral system both with full-length GP and in vitro-cleaved GP (GPCL). Results Convalescent plasma specimens from survivors of EBOV infection showed low neutralizing activity against full-length GPs of SUDV, BDBV, RESTV, and EBOV variants Mayinga and Kikwit. However, broad and potent neutralizing activity was observed against the GPCL forms of SUDV, BDBV, and RESTV. Discussion Removal of the mucin-like domain and glycan cap from the GP of members of the Ebolavirus genus presumably exposes conserved epitopes in or in the vicinity of the receptor binding site and internal fusion loop that are readily amenable to neutralization. These types of broad neutralizing antibodies could be induced by using immunogens mimicking GPCL.
Collapse
Affiliation(s)
- Joanna Luczkowiak
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fatima Lasala
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Mora-Rillo
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz, Madrid, Spain
| | - Jose R Arribas
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz, Madrid, Spain
| | - Rafael Delgado
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
- Correspondence: R. Delgado, Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Avenida de Córdoba sn, Madrid 28041, Spain ()
| |
Collapse
|
105
|
Gilchuk P, Mire CE, Geisbert JB, Agans KN, Deer DJ, Cross RW, Slaughter JC, Flyak AI, Mani J, Pauly MH, Velasco J, Whaley KJ, Zeitlin L, Geisbert TW, Crowe JE. Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. J Infect Dis 2019; 218:S565-S573. [PMID: 29982718 DOI: 10.1093/infdis/jiy295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background The 2013-2016 Ebola virus disease (EVD) epidemics in West Africa highlighted a need for effective therapeutics for treatment of the disease caused by filoviruses. Monoclonal antibodies (mAbs) are promising therapeutic candidates for prophylaxis or treatment of virus infections. Data about efficacy of human mAb monotherapy against filovirus infections in preclinical nonhuman primate models are limited. Methods Previously, we described a large panel of human mAbs derived from the circulating memory B cells from Bundibugyo virus (BDBV) infection survivors that bind to the surface glycoprotein (GP) of the virus. We tested one of these neutralizing mAbs that recognized the glycan cap of the GP, designated mAb BDBV289, as monotherapy in rhesus macaques. Results We found that recombinant mAb BDBV289-N could confer up to 100% protection to BDBV-infected rhesus macaques when treatment was initiated as late as 8 days after virus challenge. Protection was associated with survival and decreased viremia levels in the blood of treated animals. Conclusions These findings define the efficacy of monotherapy of lethal BDBV infection with a glycan cap-specific mAb and identify a candidate mAb therapeutic molecule that could be included in antibody cocktails for prevention or treatment of ebolavirus infections.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy Mani
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
106
|
Suschak JJ, Schmaljohn CS. Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Hum Vaccin Immunother 2019; 15:2359-2377. [PMID: 31589088 DOI: 10.1080/21645515.2019.1651140] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The filoviruses Ebola virus and Marburg virus are among the most dangerous pathogens in the world. Both viruses cause viral hemorrhagic fever, with case fatality rates of up to 90%. Historically, filovirus outbreaks had been relatively small, with only a few hundred cases reported. However, the recent West African Ebola virus outbreak underscored the threat that filoviruses pose. The three year-long outbreak resulted in 28,646 Ebola virus infections and 11,323 deaths. The lack of Food and Drug Administration (FDA) licensed vaccines and antiviral drugs hindered early efforts to contain the outbreak. In response, the global scientific community has spurred the advanced development of many filovirus vaccine candidates. Novel vaccine platforms, such as viral vectors and DNA vaccines, have emerged, leading to the investigation of candidate vaccines that have demonstrated protective efficacy in small animal and nonhuman primate studies. Here, we will discuss several of these vaccine platforms with a particular focus on approaches that have advanced into clinical development.
Collapse
Affiliation(s)
- John J Suschak
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Connie S Schmaljohn
- Headquarters Division, U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
107
|
Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat Med 2019; 25:1589-1600. [PMID: 31591605 DOI: 10.1038/s41591-019-0602-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022]
Abstract
Recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) is the most advanced Ebola virus vaccine candidate and is currently being used to combat the outbreak of Ebola virus disease (EVD) in the Democratic Republic of the Congo (DRC). Here we examine the humoral immune response in a subset of human volunteers enrolled in a phase 1 rVSV-ZEBOV vaccination trial by performing comprehensive single B cell and electron microscopy structure analyses. Four studied vaccinees show polyclonal, yet reproducible and convergent B cell responses with shared sequence characteristics. EBOV-targeting antibodies cross-react with other Ebolavirus species, and detailed epitope mapping revealed overlapping target epitopes with antibodies isolated from EVD survivors. Moreover, in all vaccinees, we detected highly potent EBOV-neutralizing antibodies with activities comparable or superior to the monoclonal antibodies currently used in clinical trials. These include antibodies combining the IGHV3-15/IGLV1-40 immunoglobulin gene segments that were identified in all investigated individuals. Our findings will help to evaluate and direct current and future vaccination strategies and offer opportunities for novel EVD therapies.
Collapse
|
108
|
Pascal KE, Dudgeon D, Trefry JC, Anantpadma M, Sakurai Y, Murin CD, Turner HL, Fairhurst J, Torres M, Rafique A, Yan Y, Badithe A, Yu K, Potocky T, Bixler SL, Chance TB, Pratt WD, Rossi FD, Shamblin JD, Wollen SE, Zelko JM, Carrion R, Worwa G, Staples HM, Burakov D, Babb R, Chen G, Martin J, Huang TT, Erlandson K, Willis MS, Armstrong K, Dreier TM, Ward AB, Davey RA, Pitt MLM, Lipsich L, Mason P, Olson W, Stahl N, Kyratsous CA. Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. J Infect Dis 2019; 218:S612-S626. [PMID: 29860496 PMCID: PMC6249601 DOI: 10.1093/infdis/jiy285] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background For most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases. Methods In this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses. Results Of the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent. Conclusions This antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.
Collapse
Affiliation(s)
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - John C Trefry
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Yasuteru Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | | - Ying Yan
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ashok Badithe
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Kevin Yu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Terra Potocky
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Sandra L Bixler
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Taylor B Chance
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - William D Pratt
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Franco D Rossi
- Center for Aerobiological Sciences, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Joshua D Shamblin
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Suzanne E Wollen
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Justine M Zelko
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Gabriella Worwa
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Hilary M Staples
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Darya Burakov
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Robert Babb
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Gang Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Joel Martin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Tammy T Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Karl Erlandson
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Melissa S Willis
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Kimberly Armstrong
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Thomas M Dreier
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Margaret L M Pitt
- Office of the Commander, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Leah Lipsich
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Peter Mason
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - William Olson
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Neil Stahl
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | |
Collapse
|
109
|
Shehata L, Maurer DP, Wec AZ, Lilov A, Champney E, Sun T, Archambault K, Burnina I, Lynaugh H, Zhi X, Xu Y, Walker LM. Affinity Maturation Enhances Antibody Specificity but Compromises Conformational Stability. Cell Rep 2019; 28:3300-3308.e4. [PMID: 31553901 DOI: 10.1016/j.celrep.2019.08.056] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) have recently emerged as one of the most promising classes of biotherapeutics. A potential advantage of B cell-derived mAbs as therapeutic agents is that they have been subjected to natural filtering mechanisms, which may enrich for B cell receptors (BCRs) with favorable biophysical properties. Here, we evaluated 400 human mAbs for polyreactivity, hydrophobicity, and thermal stability using high-throughput screening assays. Overall, mAbs derived from memory B cells and long-lived plasma cells (LLPCs) display reduced levels of polyreactivity, hydrophobicity, and thermal stability compared with naive B cell-derived mAbs. Somatic hypermutation (SHM) is inversely associated with all three biophysical properties, as well as BCR expression levels. Finally, the developability profiles of the human B cell-derived mAbs are comparable with those observed for clinical mAbs, suggesting their high therapeutic potential. The results provide insight into the biophysical consequences of affinity maturation and have implications for therapeutic antibody engineering and development.
Collapse
|
110
|
Differential requirements for FcγR engagement by protective antibodies against Ebola virus. Proc Natl Acad Sci U S A 2019; 116:20054-20062. [PMID: 31484758 DOI: 10.1073/pnas.1911842116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ebola virus (EBOV) continues to pose significant threats to global public health, requiring ongoing development of multiple strategies for disease control. To date, numerous monoclonal antibodies (mAbs) that target the EBOV glycoprotein (GP) have demonstrated potent protective activity in animal disease models and are thus promising candidates for the control of EBOV. However, recent work in a variety of virus diseases has highlighted the importance of coupling Fab neutralization with Fc effector activity for effective antibody-mediated protection. To determine the contribution of Fc effector activity to the protective function of mAbs to EBOV GP, we selected anti-GP mAbs targeting representative, protective epitopes and characterized their Fc receptor (FcγR) dependence in vivo in FcγR humanized mouse challenge models of EBOV disease. In contrast to previous studies, we find that anti-GP mAbs exhibited differential requirements for FcγR engagement in mediating their protective activity independent of their distance from the viral membrane. Anti-GP mAbs targeting membrane proximal epitopes or the GP mucin domain do not rely on Fc-FcγR interactions to confer activity, whereas antibodies against the GP chalice bowl and the fusion loop require FcγR engagement for optimal in vivo antiviral activity. This complexity of antibody-mediated protection from EBOV disease highlights the structural constraints of FcγR binding for specific viral epitopes and has important implications for the development of mAb-based immunotherapeutics with optimal potency and efficacy.
Collapse
|
111
|
Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo. Antiviral Res 2019; 171:104592. [PMID: 31473342 DOI: 10.1016/j.antiviral.2019.104592] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023]
Abstract
Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.
Collapse
|
112
|
Muñoz-Fontela C, McElroy AK. Ebola Virus Disease in Humans: Pathophysiology and Immunity. Curr Top Microbiol Immunol 2019; 411:141-169. [PMID: 28653186 PMCID: PMC7122202 DOI: 10.1007/82_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viruses of the Ebolavirus genus cause sporadic epidemics of severe and systemic febrile disease that are fueled by human-to-human transmission. Despite the notoriety of ebolaviruses, particularly Ebola virus (EBOV), as prominent viral hemorrhagic fever agents, and the international concern regarding Ebola virus disease (EVD) outbreaks, very little is known about the pathophysiology of EVD in humans and, in particular, about the human immune correlates of survival and immune memory. This lack of basic knowledge about physiological characteristics of EVD is probably attributable to the dearth of clinical and laboratory data gathered from past outbreaks. The unprecedented magnitude of the EVD epidemic that occurred in West Africa from 2013 to 2016 has allowed, for the first time, evaluation of clinical, epidemiological, and immunological parameters in a significant number of patients using state-of-the-art laboratory equipment. This review will summarize the data from the literature regarding human pathophysiologic and immunologic responses to filoviral infection.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Laboratory of Emerging Viruses, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251, Hamburg, Germany.
| | - Anita K McElroy
- Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
113
|
Dong H, Su A, Lv D, Ma L, Dong J, Guo N, Ren L, Jiao H, Pang D, Ouyan H. Development of Whole-Porcine Monoclonal Antibodies with Potent Neutralization Activity against Classical Swine Fever Virus from Single B Cells. ACS Synth Biol 2019; 8:989-1000. [PMID: 30935202 DOI: 10.1021/acssynbio.8b00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Classical swine fever (CSF) is a highly contagious swine disease that causes devastating economic losses. However, there are few efficacious therapeutic antibodies against the CSF virus (CSFV). Accordingly, we isolated two whole-porcine anti-CSFV neutralizing antibodies (NAbs) directly from single B cells sorted using the conserved linear epitope of the CSFV E2 protein and goat anti-pig IgG. These mAbs, termed HK24 and HK44, can bind to the E2 protein by recognizing sites within the conserved linear epitope of E2. In addition, these two mAbs can detect virus infection with high specificity and possess potent neutralizing activity. HK24 and HK44 protect PK-15 cells from CSFV infections in vitro with potent IC50 values of 9.3 and 0.62 μg/mL, respectively. We anticipate that these antibodies can be used as diagnostic and antiviral agents for CSFV and that the method we describe here will accelerate the production of therapeutic antibodies for other viruses.
Collapse
Affiliation(s)
- Haisi Dong
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, Jilin Province, People’s Republic of China
| | - Ang Su
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, Jilin Province, People’s Republic of China
| | - Dongmei Lv
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, Jilin Province, People’s Republic of China
| | - Lerong Ma
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, Jilin Province, People’s Republic of China
| | - Jianwei Dong
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, Jilin Province, People’s Republic of China
| | - Nannan Guo
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center (LUMC), 2311 EZ Leiden, The Netherlands
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, Jilin Province, People’s Republic of China
| | - Huping Jiao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, Jilin Province, People’s Republic of China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, Jilin Province, People’s Republic of China
| | - Hongsheng Ouyan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, Jilin Province, People’s Republic of China
| |
Collapse
|
114
|
Davis CW, Jackson KJL, McElroy AK, Halfmann P, Huang J, Chennareddy C, Piper AE, Leung Y, Albariño CG, Crozier I, Ellebedy AH, Sidney J, Sette A, Yu T, Nielsen SCA, Goff AJ, Spiropoulou CF, Saphire EO, Cavet G, Kawaoka Y, Mehta AK, Glass PJ, Boyd SD, Ahmed R. Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection. Cell 2019; 177:1566-1582.e17. [PMID: 31104840 PMCID: PMC6908968 DOI: 10.1016/j.cell.2019.04.036] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023]
Abstract
Ebola virus (EBOV) remains a public health threat. We performed a longitudinal study of B cell responses to EBOV in four survivors of the 2014 West African outbreak. Infection induced lasting EBOV-specific immunoglobulin G (IgG) antibodies, but their subclass composition changed over time, with IgG1 persisting, IgG3 rapidly declining, and IgG4 appearing late. Striking changes occurred in the immunoglobulin repertoire, with massive recruitment of naive B cells that subsequently underwent hypermutation. We characterized a large panel of EBOV glycoprotein-specific monoclonal antibodies (mAbs). Only a small subset of mAbs that bound glycoprotein by ELISA recognized cell-surface glycoprotein. However, this subset contained all neutralizing mAbs. Several mAbs protected against EBOV disease in animals, including one mAb that targeted an epitope under evolutionary selection during the 2014 outbreak. Convergent antibody evolution was seen across multiple donors, particularly among VH3-13 neutralizing antibodies specific for the GP1 core. Our study provides a benchmark for assessing EBOV vaccine-induced immunity. Ebola virus infection causes massive recruitment of naive B cells Virus-specific antibodies continue to class-switch and mutate for months after acute infection Protective antibodies can be neutralizing or non-neutralizing and can appear early Convergent, protective antibody rearrangements are seen in multiple donors
Collapse
Affiliation(s)
- Carl W Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katherine J L Jackson
- Department of Pathology, Stanford University, Stanford, CA, USA; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Anita K McElroy
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Division of Pediatric Infectious Disease, Emory University, Atlanta, GA, USA; Division of Pediatric Infectious Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Jessica Huang
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Chakravarthy Chennareddy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | | | - César G Albariño
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian Crozier
- Integrated Research Facility at Fort Detrick, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institutes, Frederick, MD, USA
| | - Ali H Ellebedy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Division of Immunobiology, Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Arthur J Goff
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Erica Ollman Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA; La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA; Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Aneesh K Mehta
- Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
115
|
Early Human B Cell Response to Ebola Virus in Four U.S. Survivors of Infection. J Virol 2019; 93:JVI.01439-18. [PMID: 30728263 DOI: 10.1128/jvi.01439-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
The human B cell response to natural filovirus infections early after recovery is poorly understood. Previous serologic studies suggest that some Ebola virus survivors exhibit delayed antibody responses with low magnitude and quality. Here, we sought to study the population of individual memory B cells induced early in convalescence. We isolated monoclonal antibodies (MAbs) from memory B cells from four survivors treated for Ebola virus disease (EVD) 1 or 3 months after discharge from the hospital. At the early time points postrecovery, the frequency of Ebola-specific B cells was low and dominated by clones that were cross-reactive with both Ebola glycoprotein (GP) and with the secreted GP (sGP) form. Of 25 MAbs isolated from four donors, only one exhibited neutralization activity. This neutralizing MAb, designated MAb EBOV237, recognizes an epitope in the glycan cap of the surface glycoprotein. In vivo murine lethal challenge studies showed that EBOV237 conferred protection when given prophylactically at a level similar to that of the ZMapp component MAb 13C6. The results suggest that the human B cell response to EVD 1 to 3 months postdischarge is characterized by a paucity of broad or potent neutralizing clones. However, the neutralizing epitope in the glycan cap recognized by EBOV237 may play a role in the early human antibody response to EVD and should be considered in rational design strategies for new Ebola virus vaccine candidates.IMPORTANCE The pathogenesis of Ebola virus disease (EVD) in humans is complex, and the mechanisms contributing to immunity are poorly understood. In particular, it appears that the quality and magnitude of the human B cell response early after recovery from EVD may be reduced compared to most viral infections. Here, we isolated human monoclonal antibodies from B cells of four survivors of EVD at 1 or 3 months after hospital discharge. Ebola-specific memory B cells early in convalescence were low in frequency, and the antibodies they encoded demonstrated poor neutralizing potencies. One neutralizing antibody that protected mice from lethal infection, EBOV237, was identified in the panel of 25 human antibodies isolated. Recognition of the glycan cap epitope recognized by EBOV237 suggests that this antigenic site should be considered in vaccine design and treatment strategies for EVD.
Collapse
|
116
|
Antibody responses to viral infections: a structural perspective across three different enveloped viruses. Nat Microbiol 2019; 4:734-747. [PMID: 30886356 PMCID: PMC6818971 DOI: 10.1038/s41564-019-0392-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Antibodies serve as critical barriers to viral infection. Humoral immunity to a virus is achieved through the dual role of antibodies in communicating the presence of invading pathogens in infected cells to effector cells and interfering with processes essential to the viral lifecycle, chiefly entry into the host cell. For individuals that successfully control infection, virus-elicited antibodies can provide lifelong surveillance and protection from future insults. One approach to understand the nature of a successful immune response has been to utilize structural biology to uncover the molecular details of the antibodies derived from vaccines or natural infection and how they interact with their cognate microbial antigens. The ability to isolate antigen specific B-cells and rapidly solve structures of functional, monoclonal antibodies in complex with viral glycoprotein surface antigens has greatly expanded our knowledge of the sites of vulnerability on viruses. In this review, we compare the adaptive humoral immune responses to HIV, influenza, and filoviruses, with a particular focus on neutralizing antibodies. The pathogenesis of each of these viruses is quite different, providing an opportunity for comparison of immune responses: HIV causes a persistent, chronic infection; influenza an acute infection with multiple exposures during a lifetime and annual vaccination; and filoviruses, a virulent, acute infection. Neutralizing antibodies that develop under these different constraints are therefore sentinels that can provide insight into the underlying humoral immune responses and important lessons to guide future development of vaccines and immunotherapeutics.
Collapse
|
117
|
King LB, Milligan JC, West BR, Schendel SL, Ollmann Saphire E. Achieving cross-reactivity with pan-ebolavirus antibodies. Curr Opin Virol 2019; 34:140-148. [PMID: 30884329 DOI: 10.1016/j.coviro.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/24/2019] [Indexed: 11/25/2022]
Abstract
Filoviruses are the causative agents of highly lethal outbreaks in sub-Saharan Africa. Although an experimental vaccine and several therapeutics are being deployed in the Democratic Republic of Congo to combat the ongoing Ebola virus outbreak, these therapies are specific for only one filovirus species. There is currently significant interest in developing broadly reactive monoclonal antibodies (mAbs) with utility against the variety of ebolaviruses that may emerge. Thus far, the primary target of these mAbs has been the viral spike glycoprotein (GP). Here we present an overview of GP-targeted antibodies that exhibit broad reactivity and the structural characteristics that could confer this cross-reactivity. We also discuss how these structural features could be leveraged to design vaccine antigens that elicit cross-reactive antibodies.
Collapse
Affiliation(s)
- Liam B King
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacob C Milligan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brandyn R West
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
118
|
A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host Microbe 2019; 25:49-58.e5. [PMID: 30629918 DOI: 10.1016/j.chom.2018.12.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
Recent and ongoing outbreaks of Ebola virus disease (EVD) underscore the unpredictable nature of ebolavirus reemergence and the urgent need for antiviral treatments. Unfortunately, available experimental vaccines and immunotherapeutics are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against other ebolaviruses associated with EVD, including Sudan virus (SUDV) and Bundibugyo virus (BDBV). Here we show that MBP134AF, a pan-ebolavirus therapeutic comprising two broadly neutralizing human antibodies (bNAbs), affords unprecedented effectiveness and potency as a therapeutic countermeasure to antigenically diverse ebolaviruses. MBP134AF could fully protect ferrets against lethal EBOV, SUDV, and BDBV infection, and a single 25-mg/kg dose was sufficient to protect NHPs against all three viruses. The development of MBP134AF provides a successful model for the rapid discovery and translational advancement of immunotherapeutics targeting emerging infectious diseases.
Collapse
|
119
|
Systematic comparison of respiratory syncytial virus-induced memory B cell responses in two anatomical compartments. Nat Commun 2019; 10:1126. [PMID: 30850611 PMCID: PMC6408481 DOI: 10.1038/s41467-019-09085-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of hospitalization in infants and young children. Although it is widely agreed that an RSV vaccine should induce both mucosal and systemic antibody responses, little is known about the B cell response to RSV in mucosa-associated lymphoid tissues. Here, we analyze this response by isolating 806 RSV F-specific antibodies from paired adenoid and peripheral blood samples from 4 young children. Overall, the adenoid-derived antibodies show higher binding affinities and neutralization potencies compared to antibodies isolated from peripheral blood. Approximately 25% of the neutralizing antibodies isolated from adenoids originate from a unique population of IgM+ and/or IgD+ memory B cells that contain a high load of somatic mutations but lack expression of classical memory B cell markers. Altogether, the results provide insight into the local B cell response to RSV and have implications for the development of vaccines that stimulate potent mucosal responses.
Collapse
|
120
|
Structural basis of broad ebolavirus neutralization by a human survivor antibody. Nat Struct Mol Biol 2019; 26:204-212. [PMID: 30833785 PMCID: PMC6402988 DOI: 10.1038/s41594-019-0191-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/23/2019] [Indexed: 11/08/2022]
Abstract
The structural features that govern broad-spectrum activity of broadly neutralizing, anti-ebolavirus antibodies (Abs) outside of the internal fusion loop epitope are currently unknown. Here we describe the structure of a broadly neutralizing human monoclonal Ab (mAb), ADI-15946, which was identified in a human survivor of the 2013–2016 outbreak. The crystal structure of ADI-15946 in complex with cleaved Ebola virus glycoprotein (EBOV GPCL) reveals that binding of the mAb structurally mimics the conserved interaction between the EBOV GP core and its glycan cap β17-β18 loop to inhibit infection. Both endosomal proteolysis of EBOV GP and binding of mAb FVM09 displace this loop, thereby increasing exposure of ADI-15946’s conserved epitope and enhancing neutralization. Our work also mapped the paratope of ADI-15946 thereby explaining reduced activity against Sudan virus (SUDV), which enabled rational, structure-guided engineering to enhance binding and neutralization against SUDV while retaining the parental activity against EBOV and Bundibugyo virus (BDBV).
Collapse
|
121
|
Banadyga L, Schiffman Z, He S, Qiu X. Virus inoculation and treatment regimens for evaluating anti-filovirus monoclonal antibody efficacy in vivo. BIOSAFETY AND HEALTH 2019; 1:6-13. [PMID: 32835206 PMCID: PMC7347303 DOI: 10.1016/j.bsheal.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
The development of monoclonal antibodies to treat disease caused by filoviruses, particularly Ebola virus, has risen steeply in recent years thanks to several key studies demonstrating their remarkable therapeutic potential. The increased drive to develop new and better monoclonal antibodies has necessarily seen an increase in animal model efficacy testing, which is critical to the pre-clinical development of any novel countermeasure. Primary and secondary efficacy testing against filoviruses typically makes use of one or more rodent models (mice, guinea pigs, and occasionally hamsters) or the more recently described ferret model, although the exact choice of model depends on the specific filovirus being evaluated. Indeed, no single small animal model exists for all filoviruses, and the use of any given model must consider the nature of that model as well as the nature of the therapeutic and the experimental objectives. Confirmatory evaluation, on the other hand, is performed in nonhuman primates (rhesus or cynomolgus macaques) regardless of the filovirus. In light of the number of different animal models that are currently used in monoclonal antibody efficacy testing, we sought to better understand how these efficacy tests are being performed by numerous different laboratories around the world. To this end, we review the animal models that are being used for antibody efficacy testing against filoviruses, and we highlight the challenge doses and routes of infection that are used. We also describe the various antibody treatment regimens, including antibody dose, route, and schedule of administration, that are used in these model systems. We do not identify any single best model or treatment regimen, and we do not advocate for field-wide protocol standardization. Instead, we hope to provide a comprehensive resource that will facilitate and enhance the continued pre-clinical development of novel monoclonal antibody therapeutics.
Collapse
Affiliation(s)
- Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
122
|
Sesterhenn F, Galloux M, Vollers SS, Csepregi L, Yang C, Descamps D, Bonet J, Friedensohn S, Gainza P, Corthésy P, Chen M, Rosset S, Rameix-Welti MA, Éléouët JF, Reddy ST, Graham BS, Riffault S, Correia BE. Boosting subdominant neutralizing antibody responses with a computationally designed epitope-focused immunogen. PLoS Biol 2019; 17:e3000164. [PMID: 30789898 PMCID: PMC6400402 DOI: 10.1371/journal.pbio.3000164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/05/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Throughout the last several decades, vaccination has been key to prevent and eradicate infectious diseases. However, many pathogens (e.g., respiratory syncytial virus [RSV], influenza, dengue, and others) have resisted vaccine development efforts, largely because of the failure to induce potent antibody responses targeting conserved epitopes. Deep profiling of human B cells often reveals potent neutralizing antibodies that emerge from natural infection, but these specificities are generally subdominant (i.e., are present in low titers). A major challenge for next-generation vaccines is to overcome established immunodominance hierarchies and focus antibody responses on crucial neutralization epitopes. Here, we show that a computationally designed epitope-focused immunogen presenting a single RSV neutralization epitope elicits superior epitope-specific responses compared to the viral fusion protein. In addition, the epitope-focused immunogen efficiently boosts antibodies targeting the palivizumab epitope, resulting in enhanced neutralization. Overall, we show that epitope-focused immunogens can boost subdominant neutralizing antibody responses in vivo and reshape established antibody hierarchies. A computationally designed epitope-focused immunogen presenting a single neutralization epitope from Respiratory Syncytial Virus elicits superior epitope-specific responses compared to the viral fusion protein. Furthermore, epitope-focused immunogens can reshape established antibody hierarchies. Vaccines are one of the most valuable instruments to prevent and control infectious diseases. Their primary correlate of protection is the level of induction of neutralizing antibodies that target critical antigenic sites and thereby block infection. Natural infections with pathogens such as the respiratory syncytial virus (RSV) or influenza induce a broad repertoire of antibodies that target multiple epitopes. Among those, functional antibodies with key specificities are often subdominant (present in low titers). Thus, a central goal for vaccine development is to focus antibody responses on such neutralization epitopes. Here, we show that a computationally designed, epitope-focused immunogen mimicking an important RSV neutralization epitope (site II) can focus antibodies onto this well-defined epitope. In a scenario of preexisting immunity, in which site II–specific antibodies were subdominant, the epitope-focused immunogen selectively boosted site II–specific antibodies, resulting in an increased viral neutralization through this epitope. We propose that rationally designed immunogens spotlighting defined epitopes have a unique potential to focus antibody responses on functionally conserved sites in cases of preexisting immunity. Our results have broad implications for vaccine design as a strategy to steer preexisting antibody responses away from immunodominant, variable epitopes and toward subdominant epitopes that confer broad and potent neutralization.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/genetics
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/genetics
- Cloning, Molecular
- Computer-Aided Design
- Epitopes/chemistry
- Epitopes/immunology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Female
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Immunization/methods
- Immunogenicity, Vaccine
- Mice
- Mice, Inbred BALB C
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Palivizumab/chemistry
- Palivizumab/immunology
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/biosynthesis
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Viruses/immunology
- Structural Homology, Protein
- Viral Fusion Proteins/administration & dosage
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
Collapse
Affiliation(s)
- Fabian Sesterhenn
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sabrina S. Vollers
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Che Yang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Delphyne Descamps
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Pablo Gainza
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Patricia Corthésy
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Man Chen
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marie-Anne Rameix-Welti
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, France
- AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Jean-François Éléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sabine Riffault
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
123
|
Gunn BM, Yu WH, Karim MM, Brannan JM, Herbert AS, Wec AZ, Halfmann PJ, Fusco ML, Schendel SL, Gangavarapu K, Krause T, Qiu X, He S, Das J, Suscovich TJ, Lai J, Chandran K, Zeitlin L, Crowe JE, Lauffenburger D, Kawaoka Y, Kobinger GP, Andersen KG, Dye JM, Saphire EO, Alter G. A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host Microbe 2019; 24:221-233.e5. [PMID: 30092199 DOI: 10.1016/j.chom.2018.07.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
Abstract
The recent Ebola virus (EBOV) epidemic highlighted the need for effective vaccines and therapeutics to limit and prevent outbreaks. Host antibodies against EBOV are critical for controlling disease, and recombinant monoclonal antibodies (mAbs) can protect from infection. However, antibodies mediate an array of antiviral functions including neutralization as well as engagement of Fc-domain receptors on immune cells, resulting in phagocytosis or NK cell-mediated killing of infected cells. Thus, to understand the antibody features mediating EBOV protection, we examined specific Fc features associated with protection using a library of EBOV-specific mAbs. Neutralization was strongly associated with therapeutic protection against EBOV. However, several neutralizing mAbs failed to protect, while several non-neutralizing or weakly neutralizing mAbs could protect. Antibody-mediated effector functions, including phagocytosis and NK cell activation, were associated with protection, particularly for antibodies with moderate neutralizing activity. This framework identifies functional correlates that can inform therapeutic and vaccine design strategies against EBOV and other pathogens.
Collapse
Affiliation(s)
- Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Wen-Han Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcus M Karim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jennifer M Brannan
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Andrew S Herbert
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | - Marnie L Fusco
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | - Tyler Krause
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Shinhua He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Jishnu Das
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jonathan Lai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | - Gary P Kobinger
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Université Laval Quebec, Québec, QC G1V 0A6, Canada
| | - Kristian G Andersen
- Department of Immunology and Microbial Science, Scripps Translational Science Institute, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John M Dye
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
124
|
Wec AZ, Bornholdt ZA, He S, Herbert AS, Goodwin E, Wirchnianski AS, Gunn BM, Zhang Z, Zhu W, Liu G, Abelson DM, Moyer CL, Jangra RK, James RM, Bakken RR, Bohorova N, Bohorov O, Kim DH, Pauly MH, Velasco J, Bortz RH, Whaley KJ, Goldstein T, Anthony SJ, Alter G, Walker LM, Dye JM, Zeitlin L, Qiu X, Chandran K. Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-Ebolavirus Protection. Cell Host Microbe 2019; 25:39-48.e5. [PMID: 30629917 PMCID: PMC6396299 DOI: 10.1016/j.chom.2018.12.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
Passive administration of monoclonal antibodies (mAbs) is a promising therapeutic approach for Ebola virus disease (EVD). However, all mAbs and mAb cocktails that have entered clinical development are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against outbreak-causing Bundibugyo virus (BDBV) and Sudan virus (SUDV). Here, we advance MBP134, a cocktail of two broadly neutralizing human mAbs, ADI-15878 from an EVD survivor and ADI-23774 from the same survivor but specificity-matured for SUDV GP binding affinity, as a candidate pan-ebolavirus therapeutic. MBP134 potently neutralized all ebolaviruses and demonstrated greater protective efficacy than ADI-15878 alone in EBOV-challenged guinea pigs. A second-generation cocktail, MBP134AF, engineered to effectively harness natural killer (NK) cells afforded additional improvement relative to its precursor in protective efficacy against EBOV and SUDV in guinea pigs. MBP134AF is an optimized mAb cocktail suitable for evaluation as a pan-ebolavirus therapeutic in nonhuman primates.
Collapse
MESH Headings
- Animal Welfare
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Antiviral Agents
- Disease Models, Animal
- Ebolavirus/immunology
- Ebolavirus/pathogenicity
- Epitopes/immunology
- Female
- Filoviridae/immunology
- Guinea Pigs
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Humans
- Immunotherapy
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Recombinant Proteins/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Ariel S Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Zirui Zhang
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Guodong Liu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rebekah M James
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Russell R Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | | | - Do H Kim
- Mapp Biopharmaceutical, San Diego, CA 92121, USA
| | | | | | - Robert H Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tracey Goldstein
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
125
|
Tenacious Researchers Identify a Weakness in All Ebolaviruses. mBio 2018; 9:mBio.02249-18. [PMID: 30459187 PMCID: PMC6247086 DOI: 10.1128/mbio.02249-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The
Ebolavirus
genus has at least five members, four of which are known to cause deadly disease in humans. An ideal therapy or a vaccine would protect against all ebolaviruses, but identifying a common weakness in all of them has remained elusive.
Collapse
|
126
|
Cagigi A, Ploquin A, Niezold T, Zhou Y, Tsybovsky Y, Misasi J, Sullivan NJ. Vaccine-Mediated Induction of an Ebolavirus Cross-Species Antibody Binding to Conserved Epitopes on the Glycoprotein Heptad Repeat 2/Membrane-Proximal External Junction. J Infect Dis 2018; 218:S537-S544. [PMID: 30137549 PMCID: PMC6249595 DOI: 10.1093/infdis/jiy450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The membrane-proximal external regions (MPER) of the human immunodeficiency virus envelope glycoprotein (GP) generate broadly reactive antibody responses and are the focus of vaccine development efforts. The conservation of amino acids within filovirus GP heptad repeat region (HR)2/MPER suggests that it may also represent a target for a pan-filovirus vaccine. We immunized a cynomolgus macaque against Ebola virus (EBOV) using a deoxyribonucleic acid/adenovirus 5 prime/boost strategy, sequenced memory B-cell receptors, and tested the antibodies for functional activity against EBOV GP. Antibody ma-C10 bound to GP with an affinity of 48 nM and was capable of inducing antibody-dependent cellular cytotoxicity. Three-dimensional reconstruction of single-particle, negative-stained, electron microscopy showed that ma-C10 bound to the HR2/MPER, and enzyme-linked immunosorbent assay reveals it binds to residues 621-631. More importantly, ma-C10 was found to bind to the GP of the 3 most clinically relevant Ebolavirus species, suggesting that a cross-species immunogen strategy targeting the residues in this region may be a feasible approach for producing a pan-filovirus vaccine.
Collapse
Affiliation(s)
- Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Thomas Niezold
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yan Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Maryland
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Division of Infectious Diseases, Boston Children’s HospitalMassachusetts
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
127
|
Chen C, Liu Z, Liu L, Xiao Y, Wang J, Jin Q. Broad neutralizing activity of a human monoclonal antibody against H7N9 strains from 2013 to 2017. Emerg Microbes Infect 2018; 7:179. [PMID: 30425238 PMCID: PMC6234208 DOI: 10.1038/s41426-018-0182-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023]
Abstract
H7N9 influenza virus has been circulating among humans for five epidemic waves since it was first isolated in 2013 in China. The recent increase in H7N9 infections during the fifth outbreak in China has caused concerns of a possible pandemic. In this study, we describe a previously characterized human monoclonal antibody, HNIgGA6, obtained by isolating rearranged heavy-chain and light-chain genes from patients who had recovered from H7N9 infections. HNIgGA6 recognized multiple HAs and neutralized the infectivity of 11 out of the 12 H7N9 strains tested, as well as three emerging HPAI H7N9 isolates. The only resistant strain was A/Shanghai/1/2013 (H7N9-SH1), which carries the avian receptor alleles 186V and 226Q in the sialic acid-binding pocket. The mAb broadly neutralized divergent H7N9 strains from 2013 to 2017 and represents a potential alternative treatment for H7N9 interventions.
Collapse
Affiliation(s)
- Cong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zuliang Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liguo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
128
|
Patel A, Park DH, Davis CW, Smith TRF, Leung A, Tierney K, Bryan A, Davidson E, Yu X, Racine T, Reed C, Gorman ME, Wise MC, Elliott STC, Esquivel R, Yan J, Chen J, Muthumani K, Doranz BJ, Saphire EO, Crowe JE, Broderick KE, Kobinger GP, He S, Qiu X, Kobasa D, Humeau L, Sardesai NY, Ahmed R, Weiner DB. In Vivo Delivery of Synthetic Human DNA-Encoded Monoclonal Antibodies Protect against Ebolavirus Infection in a Mouse Model. Cell Rep 2018; 25:1982-1993.e4. [PMID: 30428362 PMCID: PMC6319964 DOI: 10.1016/j.celrep.2018.10.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/27/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Synthetically engineered DNA-encoded monoclonal antibodies (DMAbs) are an in vivo platform for evaluation and delivery of human mAb to control against infectious disease. Here, we engineer DMAbs encoding potent anti-Zaire ebolavirus (EBOV) glycoprotein (GP) mAbs isolated from Ebola virus disease survivors. We demonstrate the development of a human IgG1 DMAb platform for in vivo EBOV-GP mAb delivery and evaluation in a mouse model. Using this approach, we show that DMAb-11 and DMAb-34 exhibit functional and molecular profiles comparable to recombinant mAb, have a wide window of expression, and provide rapid protection against lethal mouse-adapted EBOV challenge. The DMAb platform represents a simple, rapid, and reproducible approach for evaluating the activity of mAb during clinical development. DMAbs have the potential to be a mAb delivery system, which may be advantageous for protection against highly pathogenic infectious diseases, like EBOV, in resource-limited and other challenging settings.
Collapse
Affiliation(s)
- Ami Patel
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | - Daniel H Park
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | - Carl W Davis
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | | | - Anders Leung
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Kevin Tierney
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | | | | | - Xiaoying Yu
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trina Racine
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Charles Reed
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Marguerite E Gorman
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA; Boston College, Newton, MA 02467, USA
| | - Megan C Wise
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Sarah T C Elliott
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | - Rianne Esquivel
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | - Jian Yan
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Jing Chen
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Kar Muthumani
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA
| | | | | | | | | | | | - Shihua He
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Xiangguo Qiu
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Darwyn Kobasa
- Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - David B Weiner
- The Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104, USA.
| |
Collapse
|
129
|
Bramble MS, Hoff N, Gilchuk P, Mukadi P, Lu K, Doshi RH, Steffen I, Nicholson BP, Lipson A, Vashist N, Sinai C, Spencer D, Olinger G, Wemakoy EO, Illunga BK, Pettitt J, Logue J, Marchand J, Varughese J, Bennett RS, Jahrling P, Cavet G, Serafini T, Ollmann Saphire E, Vilain E, Muyembe-Tamfum JJ, Hensely LE, Simmons G, Crowe JE, Rimoin AW. Pan-Filovirus Serum Neutralizing Antibodies in a Subset of Congolese Ebolavirus Infection Survivors. J Infect Dis 2018; 218:1929-1936. [PMID: 30107445 PMCID: PMC6217721 DOI: 10.1093/infdis/jiy453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022] Open
Abstract
One year after a Zaire ebolavirus (EBOV) outbreak occurred in the Boende Health Zone of the Democratic Republic of the Congo during 2014, we sought to determine the breadth of immune response against diverse filoviruses including EBOV, Bundibugyo (BDBV), Sudan (SUDV), and Marburg (MARV) viruses. After assessing the 15 survivors, 5 individuals demonstrated some degree of reactivity to multiple ebolavirus species and, in some instances, Marburg virus. All 5 of these survivors had immunoreactivity to EBOV glycoprotein (GP) and EBOV VP40, and 4 had reactivity to EBOV nucleoprotein (NP). Three of these survivors showed serologic responses to the 3 species of ebolavirus GPs tested (EBOV, BDBV, SUDV). All 5 samples also exhibited ability to neutralize EBOV using live virus, in a plaque reduction neutralization test. Remarkably, 3 of these EBOV survivors had plasma antibody responses to MARV GP. In pseudovirus neutralization assays, serum antibodies from a subset of these survivors also neutralized EBOV, BDBV, SUDV, and Taï Forest virus as well as MARV. Collectively, these findings suggest that some survivors of naturally acquired ebolavirus infection mount not only a pan-ebolavirus response, but also in less frequent cases, a pan-filovirus neutralizing response.
Collapse
Affiliation(s)
- Matthew S Bramble
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
- Department of Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, District of Columbia
| | - Nicole Hoff
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patrick Mukadi
- Institut National de Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo
| | - Kai Lu
- Blood Systems Research Institute, and Department of Laboratory Medicine, University of California, San Francisco
| | - Reena H Doshi
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - Imke Steffen
- Blood Systems Research Institute, and Department of Laboratory Medicine, University of California, San Francisco
| | - Bradly P Nicholson
- Institute for Medical Research, Durham Veterans Affairs Medical Center, North Carolina
| | - Allen Lipson
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - Neerja Vashist
- Department of Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, District of Columbia
| | - Cyrus Sinai
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - D’andre Spencer
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| | - Garrard Olinger
- Boston University, School of Medicine, Department of Medicine, Massachusetts
| | | | - Benoit Kebela Illunga
- Direction de la Lutte Contre les Maladies, Ministère de la Sante, Kinshasa, Democratic Republic of the Congo
| | - James Pettitt
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - James Logue
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - Jonathan Marchand
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - Justin Varughese
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - Richard S Bennett
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | - Peter Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
| | | | | | - Erica Ollmann Saphire
- Skaggs Institute for Chemical Biology, La Jolla, California
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, California
| | - Eric Vilain
- Department of Genetic Medicine Research, Children’s Research Institute, Children’s National Medical Center, Washington, District of Columbia
| | | | - Lisa E Hensely
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Frederick, Maryland
- Emerging Viral Pathogens Section, NIAID, NIH, Frederick, Maryland
| | - Graham Simmons
- Blood Systems Research Institute, and Department of Laboratory Medicine, University of California, San Francisco
| | - James E Crowe
- Vanderbilt Vaccine Center, and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Departments of Pediatrics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anne W Rimoin
- Department of Epidemiology, School of Public Health, University of California, Los Angeles
| |
Collapse
|
130
|
West BR, Moyer CL, King LB, Fusco ML, Milligan JC, Hui S, Saphire EO. Structural Basis of Pan-Ebolavirus Neutralization by a Human Antibody against a Conserved, yet Cryptic Epitope. mBio 2018; 9:e01674-18. [PMID: 30206174 PMCID: PMC6134094 DOI: 10.1128/mbio.01674-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/02/2023] Open
Abstract
Only one naturally occurring human antibody has been described thus far that is capable of potently neutralizing all five ebolaviruses. Here we present two crystal structures of this rare, pan-ebolavirus neutralizing human antibody in complex with Ebola virus and Bundibugyo virus glycoproteins (GPs), respectively. The structures delineate the key protein and glycan contacts for binding that are conserved across the ebolaviruses, explain the antibody's unique broad specificity and neutralization activity, and reveal the likely mechanism behind a known escape mutation in the fusion loop region of GP2. We found that the epitope of this antibody, ADI-15878, extends along the hydrophobic paddle of the fusion loop and then dips down into a highly conserved pocket beneath the N-terminal tail of GP2, a mode of recognition unlike any other antibody elicited against Ebola virus, and likely critical for its broad activity. The fold of Bundibugyo virus glycoprotein, not previously visualized, is similar to the fold of Ebola virus GP, and ADI-15878 binds to each virus's GP with a similar strategy and angle of attack. These findings will be useful in deployment of this antibody as a broad-spectrum therapeutic and in the design of immunogens that elicit the desired broadly neutralizing immune response against all members of the ebolavirus genus and filovirus family.IMPORTANCE There are five different members of the Ebolavirus genus. Provision of vaccines and treatments able to protect against any of the five ebolaviruses is an important goal of public health. Antibodies are a desired result of vaccines and can be delivered directly as therapeutics. Most antibodies, however, are effective against only one or two, not all, of these pathogens. Only one human antibody has been thus far described to neutralize all five ebolaviruses, antibody ADI-15878. Here we describe the molecular structure of ADI-15878 bound to the relevant target proteins of Ebola virus and Bundibugyo virus. We explain how it achieves its rare breadth of activity and propose strategies to design improved vaccines capable of eliciting more antibodies like ADI-15878.
Collapse
Affiliation(s)
- Brandyn R West
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Crystal L Moyer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Liam B King
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Marnie L Fusco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Jacob C Milligan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Sean Hui
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California, USA
| |
Collapse
|
131
|
Chery J, Petri A, Wagschal A, Lim SY, Cunningham J, Vasudevan S, Kauppinen S, Näär AM. Development of Locked Nucleic Acid Antisense Oligonucleotides Targeting Ebola Viral Proteins and Host Factor Niemann-Pick C1. Nucleic Acid Ther 2018; 28:273-284. [PMID: 30133337 DOI: 10.1089/nat.2018.0722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Ebola virus is a zoonotic pathogen that can cause severe hemorrhagic fever in humans, with up to 90% lethality. The deadly 2014 Ebola outbreak quickly made an unprecedented impact on human lives. While several vaccines and therapeutics are under development, current approaches contain several limitations, such as virus mutational escape, need for formulation or refrigeration, poor scalability, long lead-time, and high cost. To address these challenges, we developed locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) to target critical Ebola viral proteins and the human intracellular host protein Niemann-Pick C1 (NPC1), required for viral entry into infected cells. We generated noninfectious viral luciferase reporter assays to identify LNA ASOs that inhibit translation of Ebola viral proteins in vitro and in human cells. We demonstrated specific inhibition of key Ebola genes VP24 and nucleoprotein, which inhibit a proper immune response and promote Ebola virus replication, respectively. We also identified LNA ASOs targeting human host factor NPC1 and demonstrated reduced infection by chimeric vesicular stomatitis virus harboring the Ebola glycoprotein, which directly binds to NPC1 for viral infection. These results support further in vivo testing of LNA ASOs in infectious Ebola virus disease animal models as potential therapeutic modalities for treatment of Ebola.
Collapse
Affiliation(s)
- Jessica Chery
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,2 Department of Cell Biology, Harvard Medical School , Boston, Massachusetts
| | - Andreas Petri
- 3 Department of Clinical Medicine, Center for RNA Medicine, Aalborg University , Aalborg, Denmark
| | - Alexandre Wagschal
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,2 Department of Cell Biology, Harvard Medical School , Boston, Massachusetts
| | - Sun-Young Lim
- 4 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,5 Department of Microbiology and Immunobiology and Harvard Medical School , Boston, Massachusetts
| | - James Cunningham
- 4 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,5 Department of Microbiology and Immunobiology and Harvard Medical School , Boston, Massachusetts
| | - Shobha Vasudevan
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,6 Department of Medicine, Harvard Medical School , Boston, Massachusetts
| | - Sakari Kauppinen
- 3 Department of Clinical Medicine, Center for RNA Medicine, Aalborg University , Aalborg, Denmark
| | - Anders M Näär
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,2 Department of Cell Biology, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
132
|
Gilchuk P, Kuzmina N, Ilinykh PA, Huang K, Gunn BM, Bryan A, Davidson E, Doranz BJ, Turner HL, Fusco ML, Bramble MS, Hoff NA, Binshtein E, Kose N, Flyak AI, Flinko R, Orlandi C, Carnahan R, Parrish EH, Sevy AM, Bombardi RG, Singh PK, Mukadi P, Muyembe-Tamfum JJ, Ohi MD, Saphire EO, Lewis GK, Alter G, Ward AB, Rimoin AW, Bukreyev A, Crowe JE. Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity 2018; 49:363-374.e10. [PMID: 30029854 PMCID: PMC6104738 DOI: 10.1016/j.immuni.2018.06.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/19/2018] [Accepted: 06/28/2018] [Indexed: 01/14/2023]
Abstract
Ebolaviruses cause severe disease in humans, and identification of monoclonal antibodies (mAbs) that are effective against multiple ebolaviruses are important for therapeutics development. Here we describe a distinct class of broadly neutralizing human mAbs with protective capacity against three ebolaviruses infectious for humans: Ebola (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) viruses. We isolated mAbs from human survivors of ebolavirus disease and identified a potent mAb, EBOV-520, which bound to an epitope in the glycoprotein (GP) base region. EBOV-520 efficiently neutralized EBOV, BDBV, and SUDV and also showed protective capacity in relevant animal models of these infections. EBOV-520 mediated protection principally by direct virus neutralization and exhibited multifunctional properties. This study identified a potent naturally occurring mAb and defined key features of the human antibody response that may contribute to broad protection. This multifunctional mAb and related clones are promising candidates for development as broadly protective pan-ebolavirus therapeutic molecules.
Collapse
MESH Headings
- 3T3 Cells
- Adult
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- CHO Cells
- Cell Line
- Chlorocebus aethiops
- Cricetulus
- Disease Models, Animal
- Drosophila
- Ebolavirus/immunology
- Female
- Ferrets
- Glycoproteins/immunology
- Guinea Pigs
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Humans
- Immunoglobulin G/immunology
- Jurkat Cells
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- THP-1 Cells
- Vero Cells
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aubrey Bryan
- Integral Molecular, Inc., Philadelphia, PA 19104, USA
| | | | | | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marnie L Fusco
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew S Bramble
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Genetic Medicine Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Nicole A Hoff
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elad Binshtein
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Flinko
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chiara Orlandi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Robert Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erica H Parrish
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexander M Sevy
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prashant K Singh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick Mukadi
- Institut Nationale de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | | | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Erica Ollmann Saphire
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anne W Rimoin
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
133
|
Kuzmina NA, Younan P, Gilchuk P, Santos RI, Flyak AI, Ilinykh PA, Huang K, Lubaki NM, Ramanathan P, Crowe JE, Bukreyev A. Antibody-Dependent Enhancement of Ebola Virus Infection by Human Antibodies Isolated from Survivors. Cell Rep 2018; 24:1802-1815.e5. [PMID: 30110637 PMCID: PMC6697154 DOI: 10.1016/j.celrep.2018.07.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Some monoclonal antibodies (mAbs) recovered from survivors of filovirus infections can protect against infection. It is currently unknown whether natural infection also induces some antibodies with the capacity for antibody-dependent enhancement (ADE). A panel of mAbs obtained from human survivors of filovirus infection caused by Ebola, Bundibugyo, or Marburg viruses was evaluated for their ability to facilitate ADE. ADE was observed readily with all mAbs examined at sub-neutralizing concentrations, and this effect was not restricted to mAbs with a particular epitope specificity, neutralizing capacity, or subclass. Blocking of specific Fcγ receptors reduced but did not abolish ADE that was associated with high-affinity binding antibodies, suggesting that lower-affinity interactions still cause ADE. Mutations of Fc fragments of an mAb that altered its interaction with Fc receptors rendered the antibody partially protective in vivo at a low dose, suggesting that ADE counteracts antibody-mediated protection and facilitates dissemination of filovirus infections.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/isolation & purification
- Antibodies, Viral/pharmacology
- Antibody-Dependent Enhancement
- Ebolavirus/drug effects
- Ebolavirus/genetics
- Ebolavirus/immunology
- Ebolavirus/pathogenicity
- Epitopes/genetics
- Epitopes/immunology
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/mortality
- Hemorrhagic Fever, Ebola/therapy
- Hemorrhagic Fever, Ebola/virology
- Humans
- Immune Sera/chemistry
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin Fc Fragments/genetics
- Marburg Virus Disease/immunology
- Marburg Virus Disease/mortality
- Marburg Virus Disease/therapy
- Marburg Virus Disease/virology
- Marburgvirus/drug effects
- Marburgvirus/genetics
- Marburgvirus/pathogenicity
- Mice
- Mice, Inbred BALB C
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/virology
- Primary Cell Culture
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Survival Analysis
- Survivors
- THP-1 Cells
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Patrick Younan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Ndongala M Lubaki
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
134
|
Dhama K, Karthik K, Khandia R, Chakraborty S, Munjal A, Latheef SK, Kumar D, Ramakrishnan MA, Malik YS, Singh R, Malik SVS, Singh RK, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs, and Therapies to Counter Ebola Virus. Front Immunol 2018; 9:1803. [PMID: 30147687 PMCID: PMC6095993 DOI: 10.3389/fimmu.2018.01803] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Ebola virus (EBOV), a member of the family Filoviridae, is responsible for causing Ebola virus disease (EVD) (formerly named Ebola hemorrhagic fever). This is a severe, often fatal illness with mortality rates varying from 50 to 90% in humans. Although the virus and associated disease has been recognized since 1976, it was only when the recent outbreak of EBOV in 2014-2016 highlighted the danger and global impact of this virus, necessitating the need for coming up with the effective vaccines and drugs to counter its pandemic threat. Albeit no commercial vaccine is available so far against EBOV, a few vaccine candidates are under evaluation and clinical trials to assess their prophylactic efficacy. These include recombinant viral vector (recombinant vesicular stomatitis virus vector, chimpanzee adenovirus type 3-vector, and modified vaccinia Ankara virus), Ebola virus-like particles, virus-like replicon particles, DNA, and plant-based vaccines. Due to improvement in the field of genomics and proteomics, epitope-targeted vaccines have gained top priority. Correspondingly, several therapies have also been developed, including immunoglobulins against specific viral structures small cell-penetrating antibody fragments that target intracellular EBOV proteins. Small interfering RNAs and oligomer-mediated inhibition have also been verified for EVD treatment. Other treatment options include viral entry inhibitors, transfusion of convalescent blood/serum, neutralizing antibodies, and gene expression inhibitors. Repurposed drugs, which have proven safety profiles, can be adapted after high-throughput screening for efficacy and potency for EVD treatment. Herbal and other natural products are also being explored for EVD treatment. Further studies to better understand the pathogenesis and antigenic structures of the virus can help in developing an effective vaccine and identifying appropriate antiviral targets. This review presents the recent advances in designing and developing vaccines, drugs, and therapies to counter the EBOV threat.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Shyma K. Latheef
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
135
|
Saphire EO, Schendel SL, Fusco ML, Gangavarapu K, Gunn BM, Wec AZ, Halfmann PJ, Brannan JM, Herbert AS, Qiu X, Wagh K, He S, Giorgi EE, Theiler J, Pommert KBJ, Krause TB, Turner HL, Murin CD, Pallesen J, Davidson E, Ahmed R, Aman MJ, Bukreyev A, Burton DR, Crowe JE, Davis CW, Georgiou G, Krammer F, Kyratsous CA, Lai JR, Nykiforuk C, Pauly MH, Rijal P, Takada A, Townsend AR, Volchkov V, Walker LM, Wang CI, Zeitlin L, Doranz BJ, Ward AB, Korber B, Kobinger GP, Andersen KG, Kawaoka Y, Alter G, Chandran K, Dye JM. Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell 2018; 174:938-952.e13. [PMID: 30096313 PMCID: PMC6102396 DOI: 10.1016/j.cell.2018.07.033] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marnie L Fusco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter J Halfmann
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer M Brannan
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA
| | - Andrew S Herbert
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Canada
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Shihua He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Canada
| | - Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - James Theiler
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kathleen B J Pommert
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tyler B Krause
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannah L Turner
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D Murin
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD 20850, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carl W Davis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jonathan R Lai
- Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cory Nykiforuk
- Emergent BioSolutions, Winnipeg, Manitoba, R3T 5Y3, Canada
| | | | - Pramila Rijal
- Human Immunology Unit, University of Oxford, Oxford OX3 9DS, UK
| | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | | | | | | | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Biopolis 138648, Singapore
| | | | | | - Andrew B Ward
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Médecine, Université Laval Quebec, G1V 046 Canada.
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Yoshihiro Kawaoka
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - John M Dye
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA.
| |
Collapse
|
136
|
Ilinykh PA, Santos RI, Gunn BM, Kuzmina NA, Shen X, Huang K, Gilchuk P, Flyak AI, Younan P, Alter G, Crowe JE, Bukreyev A. Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathog 2018; 14:e1007204. [PMID: 30138408 PMCID: PMC6107261 DOI: 10.1371/journal.ppat.1007204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/08/2018] [Indexed: 01/24/2023] Open
Abstract
Recent studies suggest that some monoclonal antibodies (mAbs) specific for ebolavirus glycoprotein (GP) can protect experimental animals against infections. Most mAbs isolated from ebolavirus survivors appeared to target the glycan cap or the stalk region of the viral GP, which is the envelope protein and the only antigen inducing virus-neutralizing antibody response. Some of the mAbs were demonstrated to be protective in vivo. Here, a panel of mAbs from four individual survivors of ebolavirus infection that target the glycan cap or stem region were selected for investigation of the mechanisms of their antiviral effect. Comparative characterization of the inhibiting effects on multiple steps of viral replication was performed, including attachment, post-attachment, entry, binding at low pH, post-cleavage neutralization of virions, viral trafficking to endosomes, cell-to-cell transmission, viral egress, and inhibition when added early at various time points post-infection. In addition, Fc-domain related properties were characterized, including activation and degranulation of NK cells, antibody-dependent cellular phagocytosis and glycan content. The two groups of mAbs (glycan cap versus stem) demonstrated very different profiles of activities suggesting usage of mAbs with different epitope specificity could coordinate inhibition of multiple steps of filovirus infection through Fab- and Fc-mediated mechanisms, and provide a reliable therapeutic approach.
Collapse
Affiliation(s)
- Philipp A. Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Bronwyn M. Gunn
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Xiaoli Shen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Andrew I. Flyak
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Patrick Younan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| |
Collapse
|
137
|
Alt M, Falk J, Eis-Hübinger AM, Kropff B, Sinzger C, Krawczyk A. Detection of antibody-secreting cells specific for the cytomegalovirus and herpes simplex virus surface antigens. J Immunol Methods 2018; 462:13-22. [PMID: 30056033 PMCID: PMC7094464 DOI: 10.1016/j.jim.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/29/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
Abstract
Infections with the herpes simplex virus (HSV) and the human cytomegalovirus (HCMV) can lead to life-threatening diseases, particularly in immunosuppressed patients. Furthermore, HSV infections at birth (herpes neonatorum) can result in a disseminated disease associated with a fatal multiorgan failure. Congenital HCMV infections can result in miscarriage, serious birth defects or developmental disabilities. Antibody-based interventions with hyperimmunoglobulins showed encouraging results in clinical studies, but clearly need to be improved. The isolation of highly neutralizing monoclonal antibodies is a promising strategy to establish potent therapy options against HSV and HCMV infections. Monoclonal antibodies are commonly isolated from hybridomas or EBV-immortalized B-cell clones. The screening procedure to identify virus-specific cells from a cell mixture is a challenging step, since most of the highly neutralizing antibodies target complex conformational epitopes on the virus surface. Conventional assays such as ELISA are based on purified viral proteins and inappropriate to display complex epitopes. To overcome this obstacle, we have established two full-virus based methods that allow screening for cells and antibodies targeting complex conformational epitopes on viral surface antigens. The methods are suitable to detect surface antigen-specific cells from a cell mixture and may facilitate the isolation of highly neutralizing antibodies against HSV and HCMV.
Collapse
Affiliation(s)
- Mira Alt
- Institute for Virology, University Hospital of Essen, 45147 Essen, Germany
| | - Jessica Falk
- Institute for Virology, University Hospital of Ulm, 89081 Ulm, Germany
| | | | - Barbara Kropff
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Christian Sinzger
- Institute for Virology, University Hospital of Ulm, 89081 Ulm, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital of Essen, 45147 Essen, Germany.
| |
Collapse
|
138
|
The structural basis for filovirus neutralization by monoclonal antibodies. Curr Opin Immunol 2018; 53:196-202. [PMID: 29940415 DOI: 10.1016/j.coi.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Filoviruses, including ebolaviruses and marburgviruses, are the causative agents of highly lethal disease outbreaks. The 2013-2016 Ebola virus outbreak was responsible for >28000 infections and >11000 deaths. Although there are currently no licensed vaccines or therapeutics for any filovirus-induced disease, monoclonal antibodies (mAbs) are among the most promising options for therapeutic development. Hundreds of mAbs have been isolated from human survivors of filovirus infections that target the viral spike glycoprotein (GP). The binding, neutralization, and cross-reactivity of many of these mAbs has been determined. Several mAbs have been characterized structurally, and this information has been crucial for strategizing therapeutic and vaccine design. Here we present an overview of the structural features of the neutralizing/protective epitopes on filovirus glycoproteins.
Collapse
|
139
|
Flyak AI, Kuzmina N, Murin CD, Bryan C, Davidson E, Gilchuk P, Gulka CP, Ilinykh PA, Shen X, Huang K, Ramanathan P, Turner H, Fusco ML, Lampley R, Kose N, King H, Sapparapu G, Doranz BJ, Ksiazek TG, Wright DW, Saphire EO, Ward AB, Bukreyev A, Crowe JE. Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region. Nat Microbiol 2018; 3:670-677. [PMID: 29736037 PMCID: PMC6030461 DOI: 10.1038/s41564-018-0157-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Abstract
Ebola virus (EBOV) in humans causes a severe illness with high mortality rates. Several strategies have been developed in the past to treat EBOV infection, including the antibody cocktail ZMapp, which has been shown to be effective in nonhuman primate models of infection 1 and has been used under compassionate-treatment protocols in humans 2 . ZMapp is a mixture of three chimerized murine monoclonal antibodies (mAbs)3-6 that target EBOV-specific epitopes on the surface glycoprotein7,8. However, ZMapp mAbs do not neutralize other species from the genus Ebolavirus, such as Bundibugyo virus (BDBV), Reston virus (RESTV) or Sudan virus (SUDV). Here, we describe three naturally occurring human cross-neutralizing mAbs, from BDBV survivors, that target an antigenic site in the canonical heptad repeat 2 (HR2) region near the membrane-proximal external region (MPER) of the glycoprotein. The identification of a conserved neutralizing antigenic site in the glycoprotein suggests that these mAbs could be used to design universal antibody therapeutics against diverse ebolavirus species. Furthermore, we found that immunization with a peptide comprising the HR2-MPER antigenic site elicits neutralizing antibodies in rabbits. Structural features determined by conserved residues in the antigenic site described here could inform an epitope-based vaccine design against infection caused by diverse ebolavirus species.
Collapse
Affiliation(s)
- Andrew I Flyak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher P Gulka
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Xiaoli Shen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Hannah Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marnie L Fusco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebecca Lampley
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hannah King
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gopal Sapparapu
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Galveston National Laboratory, Galveston, TX, USA.
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
140
|
Rabinowitz JA, Lainson JC, Johnston SA, Diehnelt CW. Non-natural amino acid peptide microarrays to discover Ebola virus glycoprotein ligands. Chem Commun (Camb) 2018; 54:1417-1420. [PMID: 29297911 DOI: 10.1039/c7cc08242h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate a platform to screen a virus pseudotyped with Ebola virus glycoprotein (GP) against a library of peptides that contain non-natural amino acids to develop GP affinity ligands. This system could be used for rapid development of peptide-based antivirals for other emerging or neglected tropical infectious diseases.
Collapse
Affiliation(s)
- Joshua A Rabinowitz
- Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, Arizona 85281, USA.
| | | | | | | |
Collapse
|
141
|
Bornholdt ZA, Bradfute SB. Ebola virus vaccination and the longevity of total versus neutralising antibody response-is it enough? THE LANCET. INFECTIOUS DISEASES 2018; 18:699-700. [PMID: 29627146 DOI: 10.1016/s1473-3099(18)30175-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
Affiliation(s)
| | - Steven B Bradfute
- Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
142
|
Crowe JE. Principles of Broad and Potent Antiviral Human Antibodies: Insights for Vaccine Design. Cell Host Microbe 2018; 22:193-206. [PMID: 28799905 DOI: 10.1016/j.chom.2017.07.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Antibodies are the principal immune effectors that mediate protection against reinfection following viral infection or vaccination. Robust techniques for human mAb isolation have been developed in the last decade. The study of human mAbs isolated from subjects with prior immunity has become a mainstay for rational structure-based, next-generation vaccine development. The plethora of detailed molecular and genetic studies coupling the structure of antigen-antibody complexes with their antiviral function has begun to reveal common principles of critical interactions on which we can build better vaccines and therapeutic antibodies. This review outlines the approaches to isolating and studying human antiviral mAbs and discusses the common principles underlying the basis for their activity. This review also examines progress toward the goal of achieving a comprehensive understanding of the chemical and physical basis for molecular recognition of viral surface proteins in order to build predictive molecular models that can be used for vaccine design.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
143
|
Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage. Eur J Med Chem 2018; 149:45-55. [DOI: 10.1016/j.ejmech.2018.02.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 11/19/2022]
|
144
|
Cheng HD, Grimm SK, Gilman MS, Gwom LC, Sok D, Sundling C, Donofrio G, Karlsson Hedestam GB, Bonsignori M, Haynes BF, Lahey TP, Maro I, von Reyn CF, Gorny MK, Zolla-Pazner S, Walker BD, Alter G, Burton DR, Robb ML, Krebs SJ, Seaman MS, Bailey-Kellogg C, Ackerman ME. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight 2018. [PMID: 29515029 PMCID: PMC5922287 DOI: 10.1172/jci.insight.97018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.
Collapse
Affiliation(s)
- Hao D Cheng
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Morgan Sa Gilman
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Luc Christian Gwom
- Thayer School of Engineering and.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Christopher Sundling
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Gina Donofrio
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | - Timothy P Lahey
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isaac Maro
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,DarDar Health Programs, Dar es salaam, Tanzania.,Tokyo Medical and Dental University, Tokyo, Japan
| | - C Fordham von Reyn
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Susan Zolla-Pazner
- Departments of Medicine and Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.,Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Shelly J Krebs
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
145
|
Abstract
Antibodies have been used for over a century prophylactically and, less often, therapeutically against viruses. 'Super-antibodies' — a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies — offer new opportunities for prophylaxis and therapy of viral infections. Super-antibodies are typically generated infrequently and/or in a limited number of individuals during natural infections. Isolation of these antibodies has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Super-antibodies may offer the possibility of treating multiple viruses of a given family with a single reagent. They are also valuable templates for rational vaccine design. The great potency of super-antibodies has many advantages for practical development as therapeutic reagents. These advantages can be enhanced by a variety of antibody engineering technologies.
So-called super-antibodies are highly potent, broadly reactive antiviral antibodies that offer promise for the treatment of various chronic and emerging viruses. This Review describes how recent technological advances led to their isolation from rare, infected individuals and their development for the prevention and treatment of various viral infections. Antibodies have been used for more than 100 years in the therapy of infectious diseases, but a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies (sometimes referred to as 'super-antibodies') offers new opportunities for intervention. The isolation of these antibodies, most of which are rarely induced in human infections, has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Engineering the antibodies to improve half-life and effector functions has further augmented their in vivo activity in some cases. Super-antibodies offer promise for the prophylaxis and therapy of infections with a range of viruses, including those that are highly antigenically variable and those that are newly emerging or that have pandemic potential. The next few years will be decisive in the realization of the promise of super-antibodies.
Collapse
|
146
|
Purcell O, Opdensteinen P, Chen W, Lowenhaupt K, Brown A, Hermann M, Cao J, Tenhaef N, Kallweit E, Kastilan R, Sinskey AJ, Perez-Pinera P, Buyel JF, Lu TK. Production of Functional Anti-Ebola Antibodies in Pichia pastoris. ACS Synth Biol 2017; 6:2183-2190. [PMID: 28786662 DOI: 10.1021/acssynbio.7b00234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 2013-2016 Ebola outbreak highlighted the limited treatment options and lack of rapid response strategies for emerging pathogen outbreaks. Here, we propose an efficient development cycle using glycoengineered Pichia pastoris to produce monoclonal antibody cocktails against pathogens. To enable rapid genetic engineering of P. pastoris, we introduced a genomic landing pad for reliable recombinase-mediated DNA integration. We then created strains expressing each of the three monoclonal antibodies that comprise the ZMapp cocktail, and demonstrated that the secreted antibodies bind to the Ebola virus glycoprotein by immunofluorescence assay. We anticipate that this approach could accelerate the production of therapeutics against future pathogen outbreaks.
Collapse
Affiliation(s)
- Oliver Purcell
- Synthetic
Biology Center, Department of Electrical Engineering and Computer
Science, Department of Biological Engineering, 500 Technology Square, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick Opdensteinen
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraβe 6, 52074 Aachen, Germany
| | - William Chen
- Synthetic
Biology Center, Department of Electrical Engineering and Computer
Science, Department of Biological Engineering, 500 Technology Square, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ky Lowenhaupt
- Synthetic
Biology Center, Department of Electrical Engineering and Computer
Science, Department of Biological Engineering, 500 Technology Square, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander Brown
- Department
of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Mario Hermann
- Synthetic
Biology Center, Department of Electrical Engineering and Computer
Science, Department of Biological Engineering, 500 Technology Square, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jicong Cao
- Synthetic
Biology Center, Department of Electrical Engineering and Computer
Science, Department of Biological Engineering, 500 Technology Square, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Niklas Tenhaef
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric Kallweit
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robin Kastilan
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraβe 6, 52074 Aachen, Germany
| | - Anthony J. Sinskey
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Pablo Perez-Pinera
- Department
of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraβe 6, 52074 Aachen, Germany
- Institute
for Molecular Biotechnology, RWTH Aachen University, Worringerweg
1, 52074 Aachen, Germany
| | - Timothy K. Lu
- Synthetic
Biology Center, Department of Electrical Engineering and Computer
Science, Department of Biological Engineering, 500 Technology Square, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
147
|
Petersen RL. Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development. BIOSENSORS-BASEL 2017; 7:bios7040049. [PMID: 29088096 PMCID: PMC5746772 DOI: 10.3390/bios7040049] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022]
Abstract
Bio-layer interferometry (BLI) real-time, label-free technology has greatly contributed to advances in vaccine research and development. BLI Octet platforms offer high-throughput, ease of use, reliability, and high precision analysis when compared with common labeling techniques. Many different strategies have been used to immobilize the pathogen or host molecules on BLI biosensors for real-time kinetics and affinity analysis, quantification, or high-throughput titer. These strategies can be used in multiple applications and shed light onto the structural and functional aspects molecules play during pathogen-host interactions. They also provide crucial information on how to achieve protection. This review summarizes some key BLI strategies used in human vaccine research and development.
Collapse
|
148
|
Andrews CD, Luo Y, Sun M, Yu J, Goff AJ, Glass PJ, Padte NN, Huang Y, Ho DD. In Vivo Production of Monoclonal Antibodies by Gene Transfer via Electroporation Protects against Lethal Influenza and Ebola Infections. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:74-82. [PMID: 29034261 PMCID: PMC5633264 DOI: 10.1016/j.omtm.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022]
Abstract
Monoclonal antibodies (mAbs) have wide clinical utility, but global access is limited by high costs and impracticalities associated with repeated passive administration. Here, we describe an optimized electroporation-based DNA gene transfer platform technology that can be utilized for production of functional mAbs in vivo, with the potential to reduce costs and administration burdens. We demonstrate that multiple mAbs can be simultaneously expressed at protective concentrations for a protracted period of time using DNA doses and electroporation conditions that are feasible clinically. The expressed mAbs could also protect mice against lethal influenza or Ebola virus challenges. Our findings suggest that this DNA gene transfer platform technology could be a game-changing advance that expands access to effective mAb therapeutics globally.
Collapse
Affiliation(s)
- Chasity D. Andrews
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Yang Luo
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Ming Sun
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Arthur J. Goff
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Pamela J. Glass
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Neal N. Padte
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
- Corresponding author: David D. Ho, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
149
|
Ripoll DR, Mitchell DAJ, Dupuy LC, Wallqvist A, Schmaljohn C, Chaudhury S. Combinatorial peptide-based epitope mapping from Ebola virus DNA vaccines and infections reveals residue-level determinants of antibody binding. Hum Vaccin Immunother 2017; 13:2953-2966. [PMID: 28922082 PMCID: PMC5718834 DOI: 10.1080/21645515.2017.1360454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ebola virus (EBOV) infection is highly lethal and results in severe febrile bleeding disorders that affect humans and non-human primates. One of the therapeutic approaches for treating EBOV infection focus largely on cocktails of monoclonal antibodies (mAbs) that bind to specific regions of the EBOV glycoprotein (GP) and neutralize the virus. Recent structural studies using cryo-electron microscopy have identified key epitopes for several EBOV mAbs. While such information has yielded deep insights into antibody binding, limitations on resolution of these structures often preclude a residue-level analysis of EBOV epitopes. In this study, we performed combinatorial peptide-based epitope mapping of EBOV GP against a broad panel of mAbs and polyclonal sera derived from several animal species vaccinated with EBOV DNA and replicon vaccines and/or exposed to EBOV infection to identify residue-level determinants of antibody binding. The peptide-based epitope mapping obtained from a wide range of serum and mAb samples, combined with available cryo-EM structure reconstructions revealed fine details of antibody-virus interactions, allowing for a more precise and comprehensive mapping of antibody epitopes on EBOV GP. We show how these residue-level epitope definitions can be used to characterize antigenic variation across different filoviruses, and provide a theoretical basis for predicting immunity and cross-neutralization in potential future outbreaks.
Collapse
Affiliation(s)
- Daniel R Ripoll
- a Biotechnology HPC Software Applications Institute , Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick , MD , USA
| | - Daniel A J Mitchell
- b US Army Medical Research Institute of Infectious Diseases, Fort Detrick , MD , USA
| | - Lesley C Dupuy
- b US Army Medical Research Institute of Infectious Diseases, Fort Detrick , MD , USA
| | - Anders Wallqvist
- a Biotechnology HPC Software Applications Institute , Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick , MD , USA
| | - Connie Schmaljohn
- b US Army Medical Research Institute of Infectious Diseases, Fort Detrick , MD , USA
| | - Sidhartha Chaudhury
- a Biotechnology HPC Software Applications Institute , Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick , MD , USA
| |
Collapse
|
150
|
Hofmann D, Zak SE, Nyakatura EK, Mittler E, Bakken RR, Chandran K, Dye JM, Lai JR. Mechanistic and Fc requirements for inhibition of Sudan virus entry and in vivo protection by a synthetic antibody. Immunol Lett 2017; 190:289-295. [PMID: 28890093 DOI: 10.1016/j.imlet.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022]
Abstract
The Sudan virus (SUDV), an ebolavirus, causes severe hemorrhagic fever with human case fatality rates of ∼50%. Previous work from our lab demonstrated the synthetic antibody F4 potently inhibits viral entry and protects against lethal virus challenge in mice [Chen et al., ACS Chem. Biol., 2014, 9, 2263-2273]. Here, we explore mechanistic requirements as well as contribution of the Fc region and function on neutralization and in vivo protection. Live cell imaging demonstrates that the antibody colocalizes with vesicular stomatitis virus particles containing the Sudan virus glycoprotein (VSV-GPSUDV) and that the antibody is rapidly degraded within cellular endosomes. A viral escape mutant contained substitutions on the N-heptad repeat (NHR) segment of GP2, the fusion subunit. Truncation studies indicated that the size of the Fc impacts virus neutralization potential. Finally, we examined the protective efficacy of Fc-null mutants in mice, and found that Fc function was not required for high levels of protection. Altogether, these results indicate that neutralization of SUDV GP-mediated cell entry likely involves blockade of viral membrane fusion within endosomes, and that inhibition of viral entry is the likely mechanism of in vivo protection.
Collapse
Affiliation(s)
- Daniel Hofmann
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Samantha E Zak
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Russell R Bakken
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - John M Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| |
Collapse
|