101
|
Pinto MA, da Silva ADS, Rodrigues DDRF, Müller R, de Vasconcelos GALBM, Neves PCDC, de Oliveira JM, Marchevsky RS. Animal models and SARS-CoV-2-induced pulmonary and neurological injuries. Mem Inst Oswaldo Cruz 2023; 117:e220239. [PMID: 36700583 PMCID: PMC9870265 DOI: 10.1590/0074-02760220239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Laboratory animals are essential mainly for experiments aiming to study pathogenesis and evaluate antivirals and vaccines against emerging human infectious diseases. Preclinical studies of coronavirus disease 19 (COVID-19) pathogenesis have used several animal species as models: transgenic human ACE2 mice (K18 mice), inbred BALB/c or C57BL/6N mice, ferrets, minks, domestic cats and dogs, hamsters, and macaques. However, the choice of an animal model relies on several limitations. Besides the host susceptibility, the researcher's experience with animal model management and the correct interpretation of clinical and laboratory records are crucial to succeed in preclinical translational research. Here, we summarise pathological and clinical findings correlated with virological data and immunological changes observed from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) experimental infections using different well-established SARS-CoV-2 animal model species. This essay aims to critically evaluate the current state of animal model translation to clinical data, as described in the human SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marcelo Alves Pinto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Desenvolvimento Tecnológico em Virologia, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| | - Alexandre dos Santos da Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Desenvolvimento Tecnológico em Virologia, Rio de Janeiro, RJ, Brasil
| | | | - Rodrigo Müller
- Fundação Oswaldo Cruz-Fiocruz, Instituto de Tecnologia em Imunobiológicos, Laboratório de Experimentação Animal, Rio de Janeiro, RJ, Brasil
| | | | - Patrícia Cristina da Costa Neves
- Fundação Oswaldo Cruz-Fiocruz, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Laboratório de Tecnologia Imunológica, Rio de Janeiro, RJ, Brasil
| | - Jaqueline Mendes de Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Desenvolvimento Tecnológico em Virologia, Rio de Janeiro, RJ, Brasil
| | - Renato Sergio Marchevsky
- Fundação Oswaldo Cruz-Fiocruz, Instituto de Tecnologia em Imunobiológicos, Laboratório de Neurovirulência, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
102
|
Agüero M, Monne I, Sánchez A, Zecchin B, Fusaro A, Ruano MJ, del Valle Arrojo M, Fernández-Antonio R, Souto AM, Tordable P, Cañás J, Bonfante F, Giussani E, Terregino C, Orejas JJ. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Euro Surveill 2023; 28:2300001. [PMID: 36695488 PMCID: PMC9853945 DOI: 10.2807/1560-7917.es.2023.28.3.2300001] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In October 2022, an outbreak in Europe of highly pathogenic avian influenza (HPAI) A(H5N1) in intensively farmed minks occurred in northwest Spain. A single mink farm hosting more than 50,000 minks was involved. The identified viruses belong to clade 2.3.4.4b, which is responsible of the ongoing epizootic in Europe. An uncommon mutation (T271A) in the PB2 gene with potential public health implications was found. Our investigations indicate onward mink transmission of the virus may have occurred in the affected farm.
Collapse
Affiliation(s)
- Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Algete, Madrid, Spain
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Azucena Sánchez
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Algete, Madrid, Spain
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - María José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Algete, Madrid, Spain
| | | | | | - Antonio Manuel Souto
- Livestock Service, Counselling of Rural Affairs, Xunta de Galicia, A Coruña, Spain
| | - Pedro Tordable
- Livestock Service, Counselling of Rural Affairs, Xunta de Galicia, A Coruña, Spain
| | - Julio Cañás
- Livestock Service, Counselling of Rural Affairs, Xunta de Galicia, A Coruña, Spain
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Edoardo Giussani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Jesús Javier Orejas
- Animal Health Service, Counselling of Rural Affairs, Xunta de Galicia, A Coruña, Spain
| |
Collapse
|
103
|
Tyrkalska SD, Candel S, Pedoto A, García-Moreno D, Alcaraz-Pérez F, Sánchez-Ferrer Á, Cayuela ML, Mulero V. Zebrafish models of COVID-19. FEMS Microbiol Rev 2023; 47:fuac042. [PMID: 36323404 PMCID: PMC9841970 DOI: 10.1093/femsre/fuac042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Although COVID-19 has only recently appeared, research studies have already developed and implemented many animal models for deciphering the secrets of the disease and provided insights into the biology of SARS-CoV-2. However, there are several major factors that complicate the study of this virus in model organisms, such as the poor infectivity of clinical isolates of SARS-CoV-2 in some model species, and the absence of persistent infection, immunopathology, severe acute respiratory distress syndrome, and, in general, all the systemic complications which characterize COVID-19 clinically. Another important limitation is that SARS-CoV-2 mainly causes severe COVID-19 in older people with comorbidities, which represents a serious problem when attempting to use young and immunologically naïve laboratory animals in COVID-19 testing. We review here the main animal models developed so far to study COVID-19 and the unique advantages of the zebrafish model that may help to contribute to understand this disease, in particular to the identification and repurposing of drugs to treat COVID-19, to reveal the mechanism of action and side-effects of Spike-based vaccines, and to decipher the high susceptibility of aged people to COVID-19.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Annamaria Pedoto
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Departmento de Bioloquímica y Biología Molecular A, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
104
|
Panzera Y, Mirazo S, Baz M, Techera C, Grecco S, Cancela F, Fuques E, Condon E, Calleros L, Camilo N, Fregossi A, Vaz I, Pessina P, Deshpande N, Pérez R, Benech A. Detection and genome characterisation of SARS-CoV-2 P.6 lineage in dogs and cats living with Uruguayan COVID-19 patients. Mem Inst Oswaldo Cruz 2023; 117:e220177. [PMID: 36651456 PMCID: PMC9870267 DOI: 10.1590/0074-02760220177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in domestic animals have occurred from the beginning of the pandemic to the present time. Therefore, from the perspective of One Health, investigating this topic is of global scientific and public interest. OBJECTIVES The present study aimed to determine the presence of SARS-CoV-2 in domestic animals whose owners had coronavirus disease 2019 (COVID-19). METHODS Nasopharyngeal and faecal samples were collected in Uruguay. Using quantitative polymerase chain reaction (qPCR), we analysed the presence of the SARS-CoV-2 genome. Complete genomes were obtained using ARTIC enrichment and Illumina sequencing. Sera samples were used for virus neutralisation assays. FINDINGS SARS-CoV-2 was detected in an asymptomatic dog and a cat. Viral genomes were identical and belonged to the P.6 Uruguayan SARS-CoV-2 lineage. Only antiserum from the infected cat contained neutralising antibodies against the ancestral SARS-CoV-2 strain and showed cross-reactivity against the Delta but not against the B.A.1 Omicron variant. MAIN CONCLUSIONS Domestic animals and the human SARS-CoV-2 P.6 variant comparison evidence a close relationship and gene flow between them. Different SARS-CoV-2 lineages infect dogs and cats, and no specific variants are adapted to domestic animals. This first record of SARS-CoV-2 in domestic animals from Uruguay supports regular surveillance of animals close to human hosts.
Collapse
Affiliation(s)
- Yanina Panzera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay,+ Corresponding author:
| | - Santiago Mirazo
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay,Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Claudia Techera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Sofía Grecco
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Florencia Cancela
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Eddie Fuques
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Emma Condon
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Lucía Calleros
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Natalia Camilo
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Andrea Fregossi
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Inés Vaz
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Paula Pessina
- Universidad de la República, Facultad de Veterinaria, Laboratorio Clínico del Hospital Veterinario, Montevideo, Uruguay
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Ruben Pérez
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Alejandro Benech
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| |
Collapse
|
105
|
SARS-CoV-2 Infection in Captive Hippos ( Hippopotamus amphibius), Belgium. Animals (Basel) 2023; 13:ani13020316. [PMID: 36670856 PMCID: PMC9855072 DOI: 10.3390/ani13020316] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Two adult female hippos in Zoo Antwerp who were naturally infected with SARS-CoV-2 showed nasal discharge for a few days. Virus was detected by immunocytochemistry and PCR in nasal swab samples and by PCR in faeces and pool water. Serology was also positive. No treatment was necessary.
Collapse
|
106
|
Porter AF, Purcell DFJ, Howden BP, Duchene S. Evolutionary rate of SARS-CoV-2 increases during zoonotic infection of farmed mink. Virus Evol 2023; 9:vead002. [PMID: 36751428 PMCID: PMC9896948 DOI: 10.1093/ve/vead002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/11/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 × 10-3 and 1.05 × 10-2 (95 per cent HPD, with a mean rate of 6.59 × 10-3) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.
Collapse
Affiliation(s)
- Ashleigh F Porter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
107
|
Sing A, Berger A. Cats – Revered and Reviled – and Associated Zoonoses. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:837-914. [DOI: 10.1007/978-3-031-27164-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
108
|
Hoppe JM, Füeßl LU, Hartmann K, Hofmann-Lehmann R, Graf A, Krebs S, Blum H, Badell I, Keppler OT, Muenchhoff M. Secondary zoonotic dog-to-human transmission of SARS-CoV-2 suggested by timeline but refuted by viral genome sequencing. Infection 2023; 51:253-259. [PMID: 35986880 PMCID: PMC9392066 DOI: 10.1007/s15010-022-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/28/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE The risk of secondary zoonotic transmission of SARS-CoV-2 from pet animals remains unclear. Here, we report on a 44 year old Caucasian male presenting to our clinic with COVID-19 pneumonia, who reported that his dog displayed respiratory signs shortly prior to his infection. The dog tested real-time-PCR (RT-PCR) positive for SARS-CoV-2 RNA and the timeline of events suggested a transmission from the dog to the patient. METHODS RT-PCR and serological assays were used to confirm SARS-CoV-2 infection in the nasopharyngeal tract in the dog and the patient. We performed SARS-CoV-2-targeted amplicon-based next generation sequencing of respiratory samples from the dog and patient for sequence comparisons. RESULTS SARS-CoV-2 infection of the dog was confirmed by three independent PCR-positive pharyngeal swabs and subsequent seroconversion. Sequence analysis identified two separate SARS-CoV-2 lineages in the canine and the patient's respiratory samples. The timeline strongly suggested dog-to-human transmission, yet due to the genetic distance of the canine and the patient's samples paired-transmission was highly unlikely. CONCLUSION The results of this case support current knowledge about the low risk of secondary zoonotic dog-to-human transmissions of SARS-CoV-2 and emphasizes the strength of genomic sequencing in deciphering viral transmission chains.
Collapse
Affiliation(s)
- John M. Hoppe
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Division of Nephrology, LMU Klinikum, Munich, Germany
| | - Louise U. Füeßl
- grid.411095.80000 0004 0477 2585Medizinische Klinik und Poliklinik IV, Division of Nephrology, LMU Klinikum, Munich, Germany
| | - Katrin Hartmann
- grid.5252.00000 0004 1936 973XMedizinische Kleintierklinik, Zentrum für Klinische Tiermedizin, LMU München, Munich, Germany
| | - Regina Hofmann-Lehmann
- grid.7400.30000 0004 1937 0650Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alexander Graf
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Helmut Blum
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Irina Badell
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Oliver T. Keppler
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany ,grid.452463.2German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Maximilian Muenchhoff
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany ,grid.452463.2German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| |
Collapse
|
109
|
Anderson BD, Barnes AN, Umar S, Guo X, Thongthum T, Gray GC. Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:25-87. [DOI: 10.1007/978-3-031-27164-9_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
110
|
Brady C, Tipton T, Longet S, Carroll MW. Pre-clinical models to define correlates of protection for SARS-CoV-2. Front Immunol 2023; 14:1166664. [PMID: 37063834 PMCID: PMC10097995 DOI: 10.3389/fimmu.2023.1166664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
A defined immune profile that predicts protection against a pathogen-of-interest, is referred to as a correlate of protection (CoP). A validated SARS-CoV-2 CoP has yet to be defined, however considerable insights have been provided by pre-clinical vaccine and animal rechallenge studies which have fewer associated limitations than equivalent studies in human vaccinees or convalescents, respectively. This literature review focuses on the advantages of the use of animal models for the definition of CoPs, with particular attention on their application in the search for SARS-CoV-2 CoPs. We address the conditions and interventions required for the identification and validation of a CoP, which are often only made possible with the use of appropriate in vivo models.
Collapse
Affiliation(s)
- Caolann Brady
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Caolann Brady, ; Miles W. Carroll,
| | - Tom Tipton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- International Center for Infectiology Research (CIRI), Team GIMAP, Claude Bernard Lyon 1 University, Inserm, U1111, CNRS, UMR530, Saint-Etienne, France
| | - Miles W. Carroll
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Caolann Brady, ; Miles W. Carroll,
| |
Collapse
|
111
|
Rao SS, Parthasarathy K, Sounderrajan V, Neelagandan K, Anbazhagan P, Chandramouli V. Susceptibility of SARS Coronavirus-2 infection in domestic and wild animals: a systematic review. 3 Biotech 2023; 13:5. [PMID: 36514483 PMCID: PMC9741861 DOI: 10.1007/s13205-022-03416-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Animals and viruses have constantly been co-evolving under natural circumstances and pandemic like situations. They harbour harmful viruses which can spread easily. In the recent times we have seen pandemic like situations being created as a result of the spread of deadly and fatal viruses. Coronaviruses (CoVs) are one of the wellrecognized groups of viruses. There are four known genera of Coronavirus family namely, alpha (α), beta (β), gamma (γ), and delta (δ). Animals have been infected with CoVs belonging to all four genera. In the last few decades the world has witnessed an emergence of severe acute respiratory syndromes which had created a pandemic like situation such as SARS CoV, MERS-CoV. We are currently in another pandemic like situation created due to the uncontrolled spread of a similar coronavirus namely SARSCoV-2. These findings are based on a small number of animals and do not indicate whether animals can transmit disease to humans. Several mammals, including cats, dogs, bank voles, ferrets, fruit bats, hamsters, mink, pigs, rabbits, racoon dogs, and white-tailed deer, have been found to be infected naturally by the virus. Certain laboratory discoveries revealed that animals such as cats, ferrets, fruit bats, hamsters, racoon dogs, and white-tailed deer can spread the illness to other animals of the same species. This review article gives insights on the current knowledge about SARS-CoV-2 infection and development in animals on the farm and in domestic community and their impact on society.
Collapse
Affiliation(s)
- Sudhanarayani S. Rao
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Vignesh Sounderrajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - K. Neelagandan
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| | | | | |
Collapse
|
112
|
Pourbagher-Shahri AM, Mohammadi G, Ghazavi H, Forouzanfar F. Susceptibility of domestic and companion animals to SARS-CoV-2: a comprehensive review. Trop Anim Health Prod 2023; 55:60. [PMID: 36725815 PMCID: PMC9891761 DOI: 10.1007/s11250-023-03470-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a large global outbreak. The reports of domestic animals' infection with SARS-CoV-2 raise concerns about the virus's longer-lasting spread, the establishment of a new host reservoir, or even the evolution of a new virus, as seen with COVID-19. In this review, we focus on the susceptibility of domestic animals, especially companion animals, towards SARS-CoV-2 in light of existing studies of natural infection, experimental infection, and serological surveys. Susceptibility of domestic and companion animals to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Mohammadi
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
113
|
Qiu X, Liu Y, Sha A. SARS-CoV-2 and natural infection in animals. J Med Virol 2023; 95:e28147. [PMID: 36121159 PMCID: PMC9538246 DOI: 10.1002/jmv.28147] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the novel coronavirus disease (COVID-19) pandemic, which has caused serious challenges for public health systems worldwide. Due to the close relationship between animals and humans, confirmed transmission from humans to numerous animal species has been reported. Understanding the cross-species transmission of SARS-CoV-2 and the infection and transmission dynamics of SARS-CoV-2 in different animals is crucial to control COVID-19 and protect animal health. In this review, the possible animal origins of SARS-CoV-2 and animal species naturally susceptible to SARS-CoV-2 infection are discussed. Furthermore, this review categorizes the SARS-CoV-2 susceptible animals by families, so as to better understand the relationship between SARS-CoV-2 and animals.
Collapse
Affiliation(s)
- Xinyu Qiu
- School of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Yi Liu
- School of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Ailong Sha
- School of Teacher EducationChongqing Three Gorges UniversityChongqingChina
| |
Collapse
|
114
|
Bellinati L, Campalto M, Mazzotta E, Ceglie L, Cavicchio L, Mion M, Lucchese L, Salomoni A, Bortolami A, Quaranta E, Magarotto J, Favarato M, Squarzon L, Natale A. One-Year Surveillance of SARS-CoV-2 Exposure in Stray Cats and Kennel Dogs from Northeastern Italy. Microorganisms 2022; 11:microorganisms11010110. [PMID: 36677401 PMCID: PMC9866628 DOI: 10.3390/microorganisms11010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dogs and cats are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). During the pandemic, several studies have been performed on owned cats and dogs, whereas limited data are available on the exposure to stray animals. The objective of this study was to investigate the exposure to SARS-CoV-2 of feral cats and kennel dogs in northeastern Italy, through serological and molecular methods. From May 2021 to September 2022, public health veterinary services collected serum, oropharyngeal, and rectal swab samples from 257 free-roaming dogs newly introduced to shelters, and from 389 feral cats examined during the routinely trap-neutered-return programs. The swabs were analyzed for viral RNA through a real-time reverse transcriptase PCR (rRT-PCR), and sera were tested for the presence of the specific antibody against SARS-CoV-2 (enzyme-linked immunosorbent assay). Serology was positive in nine dogs (9/257) and three cats (3/389), while two asymptomatic cats tested positive to rRT-PCR. One cat turned out to be positive both for serology and molecular analysis. In addition, this study described the case of a possible human-to-animal SARS-CoV-2 transmission in a cat that travelled in close contact to a COVID-19-positive refugee from Ukraine. This study shows that SARS-CoV-2 can infect, in natural conditions, stray cats and kennel dogs in northeastern Italy, although with a low prevalence.
Collapse
Affiliation(s)
- Laura Bellinati
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Mery Campalto
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
- Correspondence:
| | - Elisa Mazzotta
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Letizia Ceglie
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Lara Cavicchio
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Monica Mion
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Laura Lucchese
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Angela Salomoni
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Erika Quaranta
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | | | - Mosè Favarato
- UOSD Genetica e Citogenetica e Diagnostica Molecolare-Azienda ULSS 3 Serenissima, 30174 Venice, Italy
| | - Laura Squarzon
- UOSD Genetica e Citogenetica e Diagnostica Molecolare-Azienda ULSS 3 Serenissima, 30174 Venice, Italy
| | - Alda Natale
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| |
Collapse
|
115
|
Imanishi I, Asahina R, Hayashi S, Uchiyama J, Hisasue M, Yamasaki M, Murata Y, Morikawa S, Mizutani T, Sakaguchi M. Guest edited collection serological study of SARS-CoV-2 antibodies in japanese cats using protein-A/G-based ELISA. BMC Vet Res 2022; 18:443. [PMID: 36539820 PMCID: PMC9767852 DOI: 10.1186/s12917-022-03527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Little is known about the epidemic status of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cats in Japan due to insufficiently reliable seroepidemiological analysis methods that are easy to use in cats. RESULTS We developed a protein-A/G-based enzyme-linked immunosorbent assay (ELISA) to detect antibodies against SARS-CoV-2 in cats. The assay was standardized using positive rabbit antibodies against SARS-CoV-2. The ELISA results were consistent with those of a conventional anti-feline-immunoglobulin-G (IgG)-based ELISA. To test the protein-A/G-based ELISA, we collected blood samples from 1,969 cats that had been taken to veterinary clinics in Japan from June to July 2020 and determined the presence of anti-SARS-CoV-2 antibodies. Nine cats were found to have SARS-CoV-2 S1-specific IgG, of which 4 had recombinant receptor-binding domain-specific IgG. Of those 9 samples, one showed neutralizing activity. Based on these findings, we estimated that the prevalence of SARS-CoV-2 neutralizing antibodies in cats in Japan was 0.05% (1/1,969 samples). This prevalence was consistent with the prevalence of neutralizing antibodies against SARS-CoV-2 in humans in Japan according to research conducted at that time. CONCLUSIONS Protein-A/G-based ELISA has the potential to be a standardized method for measuring anti-SARS-CoV-2 antibodies in cats. The infection status of SARS-CoV-2 in cats in Japan might be linked to that in humans.
Collapse
Affiliation(s)
- Ichiro Imanishi
- grid.410786.c0000 0000 9206 2938Department of Microbiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku Sagamihara-shi, Kanagawa, Kanagawa Japan
| | - Ryota Asahina
- grid.258799.80000 0004 0372 2033Faculty of Medicine, Department of Dermatology, Kyoto University, Kyoto, Japan
| | - Shunji Hayashi
- grid.410786.c0000 0000 9206 2938Department of Microbiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku Sagamihara-shi, Kanagawa, Kanagawa Japan
| | - Jumpei Uchiyama
- grid.261356.50000 0001 1302 4472Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaharu Hisasue
- grid.252643.40000 0001 0029 6233Center for Human and Animal Symbiosis Science, Azabu University, Kanagawa, Japan
| | - Masahiro Yamasaki
- grid.411792.80000 0001 0018 0409Department of Veterinary Internal Medicine, Iwate University, Iwate, Japan
| | - Yoshiteru Murata
- grid.136594.c0000 0001 0689 5974Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan ,Murata Animal Hospital, Chiba, Japan
| | - Shigeru Morikawa
- grid.444568.f0000 0001 0672 2184Faculty of Veterinary Medicine, Department of Microbiology, Okayama University of Science, Ehime, Japan
| | - Tetsuya Mizutani
- grid.136594.c0000 0001 0689 5974Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | |
Collapse
|
116
|
Vandegrift KJ, Yon M, Surendran Nair M, Gontu A, Ramasamy S, Amirthalingam S, Neerukonda S, Nissly RH, Chothe SK, Jakka P, LaBella L, Levine N, Rodriguez S, Chen C, Sheersh Boorla V, Stuber T, Boulanger JR, Kotschwar N, Aucoin SG, Simon R, Toal KL, Olsen RJ, Davis JJ, Bold D, Gaudreault NN, Dinali Perera K, Kim Y, Chang KO, Maranas CD, Richt JA, Musser JM, Hudson PJ, Kapur V, Kuchipudi SV. SARS-CoV-2 Omicron (B.1.1.529) Infection of Wild White-Tailed Deer in New York City. Viruses 2022; 14:2770. [PMID: 36560774 PMCID: PMC9785669 DOI: 10.3390/v14122770] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
There is mounting evidence of SARS-CoV-2 spillover from humans into many domestic, companion, and wild animal species. Research indicates that humans have infected white-tailed deer, and that deer-to-deer transmission has occurred, indicating that deer could be a wildlife reservoir and a source of novel SARS-CoV-2 variants. We examined the hypothesis that the Omicron variant is actively and asymptomatically infecting the free-ranging deer of New York City. Between December 2021 and February 2022, 155 deer on Staten Island, New York, were anesthetized and examined for gross abnormalities and illnesses. Paired nasopharyngeal swabs and blood samples were collected and analyzed for the presence of SARS-CoV-2 RNA and antibodies. Of 135 serum samples, 19 (14.1%) indicated SARS-CoV-2 exposure, and 11 reacted most strongly to the wild-type B.1 lineage. Of the 71 swabs, 8 were positive for SARS-CoV-2 RNA (4 Omicron and 4 Delta). Two of the animals had active infections and robust neutralizing antibodies, revealing evidence of reinfection or early seroconversion in deer. Variants of concern continue to circulate among and may reinfect US deer populations, and establish enzootic transmission cycles in the wild: this warrants a coordinated One Health response, to proactively surveil, identify, and curtail variants of concern before they can spill back into humans.
Collapse
Affiliation(s)
- Kurt J. Vandegrift
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michele Yon
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abhinay Gontu
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Santhamani Ramasamy
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Saranya Amirthalingam
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shubhada K. Chothe
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Padmaja Jakka
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey LaBella
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nicole Levine
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sophie Rodriguez
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chen Chen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tod Stuber
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, IA 50010, USA
| | | | | | | | - Richard Simon
- City of New York Parks & Recreation, New York, NY 10029, USA
| | - Katrina L. Toal
- City of New York Parks & Recreation, New York, NY 10029, USA
| | - Randall J. Olsen
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX 77030, USA
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - James J. Davis
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Krishani Dinali Perera
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - James M. Musser
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX 77030, USA
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Peter J. Hudson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vivek Kapur
- The Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Suresh V. Kuchipudi
- The Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
117
|
Boon ACM, Darling TL, Halfmann PJ, Franks J, Webby RJ, Barouch DH, Port JR, Munster VJ, Diamond MS, Kawaoka Y. Reduced airborne transmission of SARS-CoV-2 BA.1 Omicron virus in Syrian hamsters. PLoS Pathog 2022; 18:e1010970. [PMID: 36459536 PMCID: PMC9718401 DOI: 10.1371/journal.ppat.1010970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine in St. Louis, Missouri, United States of America
- Department of Pathology and Immunology Washington University School of Medicine in St. Louis, Missouri, United States of America
- Department of Microbiology, Washington University School of Medicine in St. Louis, Missouri, United States of America
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine in St. Louis, Missouri, United States of America
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - John Franks
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine in St. Louis, Missouri, United States of America
- Department of Pathology and Immunology Washington University School of Medicine in St. Louis, Missouri, United States of America
- Department of Microbiology, Washington University School of Medicine in St. Louis, Missouri, United States of America
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine. St. Louis, Missouri, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
118
|
Panei CJ, Bravi ME, Moré G, De Felice L, Unzaga JM, Salina M, Rivero FD, Di Lullo D, Pecoraro M, Alvarez D, Castro E, Fuentealba NA. Serological evidence of SARS-CoV-2 infection in pets naturally exposed during the COVID-19 outbreak in Argentina. Vet Immunol Immunopathol 2022; 254:110519. [PMID: 36434944 PMCID: PMC9664835 DOI: 10.1016/j.vetimm.2022.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has rapidly spread worldwide. The monitoring of animals has shown that certain species may be susceptible to be infected with the virus. The present study aimed to evaluate the presence of SARS-CoV-2 antibodies by ELISA and virus neutralization (VN) in pets from owners previously confirmed as COVID-19-positive in Argentina. Serum samples of 38 pets (seven cats and 31 dogs) were obtained for SARS-CoV-2 antibody detection. Three out of the seven cats and 14 out of the 31 dogs were positive for SARS-CoV-2 by ELISA, and one cat and six dogs showed the presence of neutralizing antibodies in which the cat and two of the six dogs showed high titers. Another dog from which three serum samples had been obtained within eight months from the diagnosis of its owner showed the presence of antibodies at different times by both ELISA and VN. However, the results showed that the antibodies decreased slightly from the first to the third sample. Our results provide evidence that SARS-CoV-2 infection in pets living with COVID-19-positive humans from Argentina during the outbreak of SARS-CoV-2 can be detected by serology assay.
Collapse
Affiliation(s)
- Carlos Javier Panei
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - María Emilia Bravi
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Gastón Moré
- Laboratorio de Inmunoparasitología, FCV-UNLP, 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Lorena De Felice
- Laboratorio de Inmunoparasitología, FCV-UNLP, 60 & 118, La Plata, Buenos Aires, Argentina
| | - Juan Manuel Unzaga
- Laboratorio de Inmunoparasitología, FCV-UNLP, 60 & 118, La Plata, Buenos Aires, Argentina
| | - Marcos Salina
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina
| | - Fernando David Rivero
- Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Villa El Zanjón, Ruta Nacional Nº 9, Km 1125, 4206, Santiago del Estero, Argentina
| | - David Di Lullo
- Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Villa El Zanjón, Ruta Nacional Nº 9, Km 1125, 4206, Santiago del Estero, Argentina
| | - Marcelo Pecoraro
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina
| | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia (B1650HMR), Buenos Aires, Argentina,Escuela de Bio y Nanotecnologías (EByN), UNSAM, Av. 25 de Mayo y Francia (B1650HMR), Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia (B1650HMR), Buenos Aires, Argentina,Instituto de Virología e Innovaciones Tecnológicas (IVIT), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA) - CONICET, Argentina
| | - Nadia Analía Fuentealba
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina,Corresponding author at: Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina
| |
Collapse
|
119
|
Domańska-Blicharz K, Orłowska A, Smreczak M, Munnink BO, Trębas P, Socha W, Niemczuk K, Kawiak-Sadurska M, Opolska J, Lisowska A, Giza A, Bomba A, Iwan E, Koopmans M, Rola J. SARS-CoV-2 Monitoring on Mink Farms in Poland. J Vet Res 2022; 66:449-458. [PMID: 36846035 PMCID: PMC9944996 DOI: 10.2478/jvetres-2022-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Many countries have reported severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infections in mink, and transmission back to humans has raised the concern of novel variants emerging in these animals. The monitoring system on Polish mink farms detected SARS-CoV-2 infection first in January 2021 and has been kept in place since then. Material and Methods Oral swab samples collected between February 2021 and March 2022 from 11,853 mink from 594 farms in different regions of Poland were screened molecularly for SARS-CoV-2. Isolates from those with the highest loads of viral genetic material from positive farms were sequenced and phylogenetically analysed. Serological studies were also carried out for one positive farm in order to follow the antibody response after infection. Results SARS-CoV-2 RNA was detected in mink on 11 farms in 8 out of 16 Polish administrative regions. Whole genome sequences were obtained for 19 SARS-CoV-2 strains from 10 out of 11 positive farms. These genomes belonged to four different variants of concern (VOC) - VOC-Gamma (20B), VOC-Delta (21J), VOC-Alpha (20I) and VOC-Omicron (21L) - and seven different Pango lineages - B.1.1.464, B.1.1.7, AY.43, AY.122, AY.126, B.1.617.2 and BA.2. One of the nucleotide and amino acid mutations specific for persistent strains found in the analysed samples was the Y453F host adaptation mutation. Serological testing of blood samples revealed a high rate of seroprevalence on the single mink farm studied. Conclusion Farmed mink are highly susceptible to infection with SARS-CoV-2 of different lineages, including Omicron BA.2 VOC. As these infections were asymptomatic, mink may become an unnoticeable virus reservoir generating new variants potentially threatening human health. Therefore, real-time monitoring of mink is extremely important in the context of the One Health approach.
Collapse
Affiliation(s)
| | | | | | - Bas Oude Munnink
- Department of Viroscience, Erasmus University Medical Centre, 3000 CARotterdam,the Netherlands
| | | | | | | | | | | | - Anna Lisowska
- Department of Poultry Diseases, 24-100Puławy, Poland
| | - Aleksandra Giza
- Department of Omics Analyses, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Marion Koopmans
- Department of Viroscience, Erasmus University Medical Centre, 3000 CARotterdam,the Netherlands
| | - Jerzy Rola
- Department of Virology, 24-100Puławy, Poland
| |
Collapse
|
120
|
Gass JD, Waite KB, Hill NJ, Dalton KR, Sawatzki K, Runstadler JA, Davis MF. A standardized instrument quantifying risk factors associated with bi-directional transmission of SARS-CoV-2 and other zoonotic pathogens: The COVID-19 human-animal interactions survey (CHAIS). One Health 2022; 15:100422. [PMID: 35910303 PMCID: PMC9327186 DOI: 10.1016/j.onehlt.2022.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022] Open
Abstract
Similar to many zoonotic pathogens which transmit from animals to humans, SARS-CoV-2 (CoV-2), the virus responsible for the COVID-19 pandemic, most likely originated in Rhinolophus bats before spreading among humans globally. Early into the pandemic, reports of CoV-2 diagnoses in animals from various countries emerged. While most CoV-2 positive animals were confirmed to have been in close contact with CoV-2 positive humans, there has been a paucity of published evidence to-date describing risk factors associated with CoV-2 transmission among humans and animals. The COVID-19 Human-Animal Interactions Survey (CHAIS) was developed to provide a standardized instrument describing human-animal interactions during the pandemic and to evaluate behavioral, spatiotemporal, and biological risk factors associated with bi-directional zoonotic transmission of CoV-2 within shared environments, predominantly households with limited information about human-wildlife or human-livestock interactions. CHAIS measures four broad domains of transmission risk: 1) risk and intensity of infection in human hosts, 2) spatial characteristics of shared environments, 3) behaviors and human-animal interactions, and 4) susceptible animal subpopulations. Following the development of CHAIS, with a One Health approach, a multidisciplinary group of experts (n = 20) was invited to review and provide feedback on the survey for content validity. Expert feedback was incorporated into two final survey formats—an extended version and an abridged version for which specific core questions addressing zoonotic and reverse zoonotic transmission were identified. Both versions are modularized, with each section having the capacity to serve as independent instruments, allowing researchers to customize the survey based on context and research-specific needs. Further adaptations for studies seeking to investigate other zoonotic pathogens with similar routes of transmission (i.e. respiratory, direct contact) are also possible. The CHAIS instrument is a standardized human-animal interaction survey developed to provide important data on risk factors that guide transmission of CoV-2, and other similar pathogens, among humans and animals. The CHAIS instrument is a standardized instrument evaluating risk factors for bi-directional CoV-2 zoonotic transmission It evaluates settings where humans and animals share close contact, mainly households It is highly adaptable for investigating other zoonotic pathogens such as influenza viruses It will enable pooling of data across studies for meta-analyses to improve predictive models It can help inform public health prevention and mitigation measures
Collapse
Affiliation(s)
- Jonathon D Gass
- Dept. of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, United States
| | - Kaitlin B Waite
- Dept. of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, United States
| | - Nichola J Hill
- Department of Biology, University of Massachusetts Boston, United States
| | - Kathryn R Dalton
- Dept. of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, United States
| | - Kaitlin Sawatzki
- Dept. of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, United States
| | - Jonathan A Runstadler
- Dept. of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, United States
| | - Meghan F Davis
- Dept. of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, United States.,Dept. of Molecular and Comparative Pathobiology; Division of Infectious Diseases, Johns Hopkins School of Medicine, United States
| | | |
Collapse
|
121
|
Frutos R, Yahi N, Gavotte L, Fantini J, Devaux CA. Role of spike compensatory mutations in the interspecies transmission of SARS-CoV-2. One Health 2022; 15:100429. [PMID: 36060458 PMCID: PMC9420691 DOI: 10.1016/j.onehlt.2022.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, the virus responsible for COVID-19 in humans, can efficiently infect a large number of animal species. Like any virus, and particularly RNA viruses, SARS-CoV-2 undergoes mutations during its life cycle some of which bring a selective advantage, leading to the selection of a given lineage. Minks are very susceptible to SARS-CoV-2 and owing to their presence in mass rearing, they make a good model for studying the relative importance of mutations in viral adaptation to host species. Variants, such as the mink-selected SARS-CoV-2 Y453F and D614G or H69del/V70del, Y453F, I692V and M1229I were identified in humans after spreading through densely caged minks. However, not all mink-specific mutations are conserved when the virus infects human populations back. Many questions remain regarding the interspecies evolution of SARS-CoV-2 and the dynamics of transmission leading to the emergence of new variant strains. We compared the human and mink ACE2 receptor structures and their interactions with SARS-CVoV-2 variants. In minks, ACE2 presents a Y34 amino acid instead of the H34 amino acid found in the human ACE2. H34 is essential for the interaction with the Y453 residue of the SARS-CoV-2 Spike protein. The Y453F mink mutation abolishes this conflict. A series of 18 mutations not involved in the direct ACE2 interaction was observed in addition to the Y453F and D614G in 16 different SARS-CoV-2 strains following bidirectional infections between humans and minks. These mutations were not random and were distributed into five different functional groups having an effect on the kinetics of ACE2-RD interaction. The interspecies transmission of SARS-CoV-2 from humans to minks and back to humans, generated specific mutations in each species which improved the affinity for the ACE2 receptor either by direct mutation of the core 453 residue or by associated compensatory mutations.
Collapse
|
122
|
Mollentze N, Keen D, Munkhbayar U, Biek R, Streicker DG. Variation in the ACE2 receptor has limited utility for SARS-CoV-2 host prediction. eLife 2022; 11:e80329. [PMID: 36416537 PMCID: PMC9683784 DOI: 10.7554/elife.80329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022] Open
Abstract
Transmission of SARS-CoV-2 from humans to other species threatens wildlife conservation and may create novel sources of viral diversity for future zoonotic transmission. A variety of computational heuristics have been developed to pre-emptively identify susceptible host species based on variation in the angiotensin-converting enzyme 2 (ACE2) receptor used for viral entry. However, the predictive performance of these heuristics remains unknown. Using a newly compiled database of 96 species, we show that, while variation in ACE2 can be used by machine learning models to accurately predict animal susceptibility to sarbecoviruses (accuracy = 80.2%, binomial confidence interval [CI]: 70.8-87.6%), the sites informing predictions have no known involvement in virus binding and instead recapitulate host phylogeny. Models trained on host phylogeny alone performed equally well (accuracy = 84.4%, CI: 75.5-91.0%) and at a level equivalent to retrospective assessments of accuracy for previously published models. These results suggest that the predictive power of ACE2-based models derives from strong correlations with host phylogeny rather than processes which can be mechanistically linked to infection biology. Further, biased availability of ACE2 sequences misleads projections of the number and geographic distribution of at-risk species. Models based on host phylogeny reduce this bias, but identify a very large number of susceptible species, implying that model predictions must be combined with local knowledge of exposure risk to practically guide surveillance. Identifying barriers to viral infection or onward transmission beyond receptor binding and incorporating data which are independent of host phylogeny will be necessary to manage the ongoing risk of establishment of novel animal reservoirs of SARS-CoV-2.
Collapse
Affiliation(s)
- Nardus Mollentze
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Deborah Keen
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Uuriintuya Munkhbayar
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Roman Biek
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Daniel G Streicker
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| |
Collapse
|
123
|
Adney DR, Lovaglio J, Schulz JE, Yinda CK, Avanzato VA, Haddock E, Port JR, Holbrook MG, Hanley PW, Saturday G, Scott D, Shaia C, Nelson AM, Spengler JR, Tansey C, Cossaboom CM, Wendling NM, Martens C, Easley J, Yap SW, Seifert SN, Munster VJ. Severe acute respiratory disease in American mink experimentally infected with SARS-CoV-2. JCI Insight 2022; 7:e159573. [PMID: 36509288 PMCID: PMC9746805 DOI: 10.1172/jci.insight.159573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
An animal model that fully recapitulates severe COVID-19 presentation in humans has been a top priority since the discovery of SARS-CoV-2 in 2019. Although multiple animal models are available for mild to moderate clinical disease, models that develop severe disease are still needed. Mink experimentally infected with SARS-CoV-2 developed severe acute respiratory disease, as evident by clinical respiratory disease, radiological, and histological changes. Virus was detected in nasal, oral, rectal, and fur swabs. Deep sequencing of SARS-CoV-2 from oral swabs and lung tissue samples showed repeated enrichment for a mutation in the gene encoding nonstructural protein 6 in open reading frame 1ab. Together, these data indicate that American mink develop clinical features characteristic of severe COVID-19 and, as such, are uniquely suited to test viral countermeasures.
Collapse
Affiliation(s)
- Danielle R. Adney
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Lovelace Biomedical Research Institute, Department of Comparative Medicine, Albuquerque, New Mexico, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patrick W. Hanley
- Lovelace Biomedical Research Institute, Department of Comparative Medicine, Albuquerque, New Mexico, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Andrew M. Nelson
- Lovelace Biomedical Research Institute, Department of Comparative Medicine, Albuquerque, New Mexico, USA
| | | | - Cassandra Tansey
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Craig Martens
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John Easley
- Mink Veterinary Consulting and Research Service, Glenbeulah, Wisconsin, USA
| | - Seng Wai Yap
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
124
|
Piewbang C, Poonsin P, Lohavicharn P, Wardhani SW, Dankaona W, Puenpa J, Poovorawan Y, Techangamsuwan S. SARS-CoV-2 Transmission from Human to Pet and Suspected Transmission from Pet to Human, Thailand. J Clin Microbiol 2022; 60:e0105822. [PMID: 36314788 PMCID: PMC9667761 DOI: 10.1128/jcm.01058-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been the cause of human pandemic infection since late 2019. SARS-CoV-2 infection in animals has also been reported both naturally and experimentally, rendering awareness about a potential source of infection for one health concern. Here, we describe an epidemiological investigation of SARS-CoV-2 infection in 639 cats and 224 dogs throughout multiple waves of COVID-19 outbreaks in Thailand. To indicate the potential source of infection, we performed SARS-CoV-2 genomic sequencing of samples obtained from pets and contacted humans, combined with in-depth interviews to support the epidemiological investigation. In the tested animals, SARS-CoV-2 RNA was present in 23 cases (19 cats and 4 dogs). Whole-genome sequencing of selected samples showed various SARS-CoV-2 variants of concern, which included the original European lineage (B.1), Alpha (B.1.1.7), Delta (B.1.617), and Omicron (BA.2). Among SARS-CoV-2-positive pets, 34.78% had evidence of contact with infected humans. Together with genomic analysis and an overlapping timeline, we revealed evidence of viral transmission from infected humans as the primary source, which spread to household cats via an undefined mode of transmission and most likely circulated between cohoused cats and caretakers within the weeks before the investigation. The SARS-CoV-2 surface glycoprotein (spike gene) obtained from caretakers of individual cats contained sequence signatures found in the sequences of infected cats, indicating possible exposure to the virus excreted by cats. Although pet-to-human transmission of SARS-CoV-2 is considered relatively rare, our study provides suspected episodes of human infection from animals that were initially infected through contact with infected humans.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Panida Poonsin
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pattiya Lohavicharn
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sabrina Wahyu Wardhani
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Wichan Dankaona
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Puenpa
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
125
|
Agusi ER, Allendorf V, Eze EA, Asala O, Shittu I, Dietze K, Busch F, Globig A, Meseko CA. SARS-CoV-2 at the Human-Animal Interface: Implication for Global Public Health from an African Perspective. Viruses 2022; 14:2473. [PMID: 36366571 PMCID: PMC9696393 DOI: 10.3390/v14112473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most far-reaching public health crisis of modern times. Several efforts are underway to unravel its root cause as well as to proffer adequate preventive or inhibitive measures. Zoonotic spillover of the causative virus from an animal reservoir to the human population is being studied as the most likely event leading to the pandemic. Consequently, it is important to consider viral evolution and the process of spread within zoonotic anthropogenic transmission cycles as a global public health impact. The diverse routes of interspecies transmission of SARS-CoV-2 offer great potential for a future reservoir of pandemic viruses evolving from the current SARS-CoV-2 pandemic circulation. To mitigate possible future infectious disease outbreaks in Africa and elsewhere, there is an urgent need for adequate global surveillance, prevention, and control measures that must include a focus on known and novel emerging zoonotic pathogens through a one health approach. Human immunization efforts should be approached equally through the transfer of cutting-edge technology for vaccine manufacturing throughout the world to ensure global public health and one health.
Collapse
Affiliation(s)
- Ebere Roseann Agusi
- National Veterinary Research Institute, Vom 930001, Nigeria
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Department of Microbiology, University of Nigeria Nsukka, Enugu 410001, Nigeria
| | - Valerie Allendorf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | - Olayinka Asala
- National Veterinary Research Institute, Vom 930001, Nigeria
| | - Ismaila Shittu
- National Veterinary Research Institute, Vom 930001, Nigeria
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Clement Adebajo Meseko
- National Veterinary Research Institute, Vom 930001, Nigeria
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
126
|
Stanojevic S, Radojicic S, Misic D, Srejić D, Vasiljevic DV, Prokic K, Ilić N. Frequency of SARS-CoV-2 infection in dogs and cats: Results of a retrospective serological survey in Šumadija District, Serbia. Prev Vet Med 2022; 208:105755. [PMID: 36126551 PMCID: PMC9467926 DOI: 10.1016/j.prevetmed.2022.105755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
It has long been known that coronaviruses cause various infectious diseases in animals. Although SARS-CoV-2 is genetically related to viruses isolated from Rhinolophus bats, the exact origin, mode of transmission, and how the human species has become the epidemiological reservoir of the virus have not yet been established with certainty. Although the main route of transmission is human-to-human, there are considerable numbers of reported cases of infection in animal species, predominantly among pet animals. The aim of this retrospective study was to assess SARS-CoV-2 seropositivity in dogs and cats during the COVID-19 pandemic in Šumadija District, Serbia. We used serology to identify household contacts of pet animals with infected pet owners and the degree of association. The study presented in this paper is also the first study of this type in Serbia. The results of a retrospective serosurvey, which was conducted in dogs and cats with different exposure risk factors, were analyzed to find the possible modes of transmission between humans and animals. The relative frequency of SARS-CoV-2 infection in dogs was 1.45% bounded with a 95% confidence interval (CI) of 0.0007-7.73%, while in cats, it was 5.56% (95% CI: 0.77-4.13%). The relative frequency of SARS-CoV-2 infection in pet owners was 11% (95% CI: 6.25-18.63%). In pets that were in close contact with COVID-19 positive owners, the seropositivity was found to be 9%. Out of a total of five stray dogs and cats tested, seropositivity was observed in two animals. Detected SARS-CoV-2 infection in pets shows that these animals are susceptible to infection and that the most common means of virus transmission to pets is through contact with diseased owners. However, the presence of infection in stray dogs and cats is not clear and needs further research.
Collapse
Affiliation(s)
- Slavoljub Stanojevic
- Directorate of National Reference Laboratories, Batajnicki Drum 10, 11080 Zemun, Serbia,Corresponding author
| | - Sonja Radojicic
- University of Belgrade, Faculty of Veterinary Medicine, Department of Infectious Animal Diseases and Diseases of Bees, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Dusan Misic
- Wroclaw University of Environmental and Life Sciences, Department of Functional Foods Development, Chelmonskiego Street, 37,51-630 Wroclaw, Poland
| | - Damjan Srejić
- KragujVet Veterinary Clinic, Luja Pastera 2, 34000 Kragujevac, Serbia
| | - Dragan V. Vasiljevic
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, Kragujevac, Serbia,Public Health Institute Kragujevac, Center for Hygiene and Human Ecology, Nikole Pasica 1, 34000 Kragujevac, Serbia
| | - Kristina Prokic
- Public Health Institute Kragujevac, Center for Hygiene and Human Ecology, Nikole Pasica 1, 34000 Kragujevac, Serbia
| | - Nevenka Ilić
- Public Health Institute Kragujevac, Center for Hygiene and Human Ecology, Nikole Pasica 1, 34000 Kragujevac, Serbia
| |
Collapse
|
127
|
James J, Byrne AMP, Goharriz H, Golding M, Cuesta JMA, Mollett BC, Shipley R, M McElhinney L, Fooks AR, Brookes SM. Infectious droplet exposure is an inefficient route for SARS-CoV-2 infection in the ferret model. J Gen Virol 2022; 103. [PMID: 36748502 DOI: 10.1099/jgv.0.001799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a wide host range, naturally infecting felids, canids, cervids, rodents and mustelids. Transmission of SARS-CoV-2 is universally accepted to occur via contact with contaminated secretions from the respiratory epithelium, either directly or indirectly. Transmission via droplet nuclei, generated from a cough or sneeze, has also been reported in several human and experimental animal scenarios. However, the role of droplet transmission at the human-animal interface remains to be fully elucidated. Here, the ferret infection model was used to investigate the routes of infection for the SARS-CoV-2 beta variant (B.1.351). Ferrets were exposed to droplets containing infectious SARS-CoV-2, ranging between 4 and 106 µm in diameter, simulating larger droplets produced by a cough from an infected person. Following exposure, viral RNA was detected on the fur of ferrets, and was deposited onto environmental surfaces, as well as the fur of ferrets placed in direct contact; SARS-CoV-2 remained infectious on the fur for at least 48 h. Low levels of viral RNA were detected in the nasal washes early post-exposure, yet none of the directly exposed, or direct-contact ferrets, became robustly infected or seroconverted to SARS-CoV-2. In comparison, ferrets intranasally inoculated with the SARS-CoV-2 beta variant became robustly infected, shedding viral RNA and infectious virus from the nasal cavity, with transmission to 75 % of naive ferrets placed in direct contact. These data suggest that larger infectious droplet nuclei and contaminated fur play minor roles in SARS-CoV-2 transmission among mustelids and potentially other companion animals.
Collapse
Affiliation(s)
- Joe James
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| | - Alexander M P Byrne
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| | - Hooman Goharriz
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| | - Megan Golding
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| | - Joan M A Cuesta
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| | - Benjamin C Mollett
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| | - Rebecca Shipley
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| | - Lorraine M McElhinney
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| | - Anthony R Fooks
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| | - Sharon M Brookes
- Department of Virology, Animal and Plant Health Agency (APHA), Weybridge, Surrey, KT15 3NB, UK
| |
Collapse
|
128
|
Kleinerman G, Gross S, Topol S, Ariel E, Volokh G, Melloul S, Mergy SE, Malamud Y, Gilboa S, Gal Y, Weiss L, Richt JA, Decaro N, Eskandar S, Arieli Y, Gingis E, Sachter Y, Chaim L. Low serological rate of SARS-CoV-2 in cats from military bases in Israel. Comp Immunol Microbiol Infect Dis 2022; 90-91:101905. [PMID: 36356507 PMCID: PMC9632235 DOI: 10.1016/j.cimid.2022.101905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
Abstract
Domestic cats are susceptible to SARS-CoV-2 infection and can transmit the virus to other felines. A high number of COVID-19 human cases within the military personnel and a high density of stray cats living close to soldiers raised the need to perform active animal surveillance. We validated a novel quantitative serological microarray for use in cats, that enables simultaneous detection of IgG and IgM responses; in addition, molecular genetic SARS-CoV-2 detection was performed. Three out of 131 cats analyzed, showed IgG antibodies against SARS-CoV-2 RBD and S2P (2.3 %). None of cats were positive for SARS-CoV-2 RNA by RT-PCR. SARS-CoV-2 infection rate in soldiers ranged from 4.7 % to 16 % (average rate=8.9 %). Further investigations on a larger cohort are necessary, in the light of the emerging new viral variants in other animal species and in humans.
Collapse
Affiliation(s)
- Gabriela Kleinerman
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel.
| | - Saar Gross
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Shira Topol
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Ella Ariel
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Gerry Volokh
- Emek HaMaayanot Regional Veterinary Service, Emek Beit She'an 11710, Israel
| | - Sivan Melloul
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Shani Etty Mergy
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yaakov Malamud
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Sagi Gilboa
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yoav Gal
- Chemical, Biological, Radiological and Nucleal Defense Diviosion, Israeli Ministry of Defense, HaKiria, Tel Aviv 61909, Israel
| | - Libby Weiss
- Chemical, Biological, Radiological and Nucleal Defense Diviosion, Israeli Ministry of Defense, HaKiria, Tel Aviv 61909, Israel
| | - Juergen A Richt
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicola Decaro
- Department of VeterinaryMedicine, University of Bari, 70010 Valenzano, Bari, Italy
| | - Shadi Eskandar
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yarden Arieli
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Efrat Gingis
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yacov Sachter
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Lavie Chaim
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| |
Collapse
|
129
|
Rajendran M, Babbitt GA. Persistent cross-species SARS-CoV-2 variant infectivity predicted via comparative molecular dynamics simulation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220600. [PMID: 36340517 PMCID: PMC9626255 DOI: 10.1098/rsos.220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Widespread human transmission of SARS-CoV-2 highlights the substantial public health, economic and societal consequences of virus spillover from wildlife and also presents a repeated risk of reverse spillovers back to naive wildlife populations. We employ comparative statistical analyses of a large set of short-term molecular dynamic (MD) simulations to investigate the potential human-to-bat (genus Rhinolophus) cross-species infectivity allowed by the binding of SARS-CoV-2 receptor-binding domain (RBD) to angiotensin-converting enzyme 2 (ACE2) across the bat progenitor strain and emerging human strain variants of concern (VOC). We statistically compare the dampening of atom motion across protein sites upon the formation of the RBD/ACE2 binding interface using various bat versus human target receptors (i.e. bACE2 and hACE2). We report that while the bat progenitor viral strain RaTG13 shows some pre-adaption binding to hACE2, it also exhibits stronger affinity to bACE2. While early emergent human strains and later VOCs exhibit robust binding to both hACE2 and bACE2, the delta and omicron variants exhibit evolutionary adaption of binding to hACE2. However, we conclude there is a still significant risk of mammalian cross-species infectivity of human VOCs during upcoming waves of infection as COVID-19 transitions from a pandemic to endemic status.
Collapse
Affiliation(s)
- Madhusudan Rajendran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Gregory A. Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
130
|
Marques AD, Sherrill-Mix S, Everett JK, Adhikari H, Reddy S, Ellis JC, Zeliff H, Greening SS, Cannuscio CC, Strelau KM, Collman RG, Kelly BJ, Rodino KG, Bushman FD, Gagne RB, Anis E. Multiple Introductions of SARS-CoV-2 Alpha and Delta Variants into White-Tailed Deer in Pennsylvania. mBio 2022; 13:e0210122. [PMID: 36000731 PMCID: PMC9600874 DOI: 10.1128/mbio.02101-22] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 pandemic began by viral spillover from animals to humans; today multiple animal species are known to be susceptible to infection. White-tailed deer, Odocoileus virginianus, are infected in North America at substantial levels, and genomic data suggests that a variant in deer may have spilled back to humans. Here, we characterize SARS-CoV-2 in deer from Pennsylvania (PA) sampled during fall and winter 2021. Of 123 nasal swab samples analyzed by RT-qPCR, 20 (16.3%) were positive for SARS-CoV-2. Seven whole genome sequences were obtained, together with six more partial spike gene sequences. These annotated as alpha and delta variants, the first reported observations of these lineages in deer, documenting multiple new jumps from humans to deer. The alpha lineage persisted in deer after its displacement by delta in humans, and deer-derived alpha variants diverged significantly from those in humans, consistent with a distinctive evolutionary trajectory in deer. IMPORTANCE Coronaviruses have been documented to replicate in numerous species of vertebrates, and multiple spillovers of coronaviruses from animals into humans have founded human epidemics. The COVID-19 epidemic likely derived from a spillover of SARS-CoV-2 from bats into humans, possibly via an intermediate host. There are now several examples of SARS-CoV-2 jumping from humans into other mammals, including mink and deer, creating the potential for new animal reservoirs from which spillback into humans could occur. For this reason, data on formation of new animal reservoirs is of great importance for understanding possible sources of future infection. Here, we identify extensive infection in white-tailed deer in Pennsylvania, including what appear to be multiple independent transmissions. Data further suggests possible transmission among deer. These data thus help identify a potential new animal reservoir and provide background information relevant to its management.
Collapse
Affiliation(s)
- Andrew D. Marques
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hriju Adhikari
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie C. Ellis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Haley Zeliff
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Sabrina S. Greening
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Carolyn C. Cannuscio
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Family Medicine and Community Health, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine M. Strelau
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Family Medicine and Community Health, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Pulmonary, Allergy and Critical Care Division; Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania, USA
| | - Brendan J. Kelly
- Division of Infectious Diseases; Department of Medicine & Department of Biostatistics, Epidemiology, and Informatics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle G. Rodino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roderick B. Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Eman Anis
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| |
Collapse
|
131
|
Pinheiro JR, dos Reis EC, Farias JP, Fogaça MMC, da Silva PDS, Santana IVR, Rocha ALS, Vidal PO, Simões RDC, Luiz WB, Birbrair A, de Aguiar RS, de Souza RP, Azevedo VADC, Chaves G, Belmok A, Durães-Carvalho R, Melo FL, Ribeiro BM, Amorim JH. Impact of Early Pandemic SARS-CoV-2 Lineages Replacement with the Variant of Concern P.1 (Gamma) in Western Bahia, Brazil. Viruses 2022; 14:v14102314. [PMID: 36298869 PMCID: PMC9611628 DOI: 10.3390/v14102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The correct understanding of the epidemiological dynamics of COVID-19, caused by the SARS-CoV-2, is essential for formulating public policies of disease containment. METHODS In this study, we constructed a picture of the epidemiological dynamics of COVID-19 in a Brazilian population of almost 17000 patients in 15 months. We specifically studied the fluctuations of COVID-19 cases and deaths due to COVID-19 over time according to host gender, age, viral load, and genetic variants. RESULTS As the main results, we observed that the numbers of COVID-19 cases and deaths due to COVID-19 fluctuated over time and that men were the most affected by deaths, as well as those of 60 or more years old. We also observed that individuals between 30- and 44-years old were the most affected by COVID-19 cases. In addition, the viral loads in the patients' nasopharynx were higher in the early symptomatic period. We found that early pandemic SARS-CoV-2 lineages were replaced by the variant of concern (VOC) P.1 (Gamma) in the second half of the study period, which led to a significant increase in the number of deaths. CONCLUSIONS The results presented in this study are helpful for future formulations of efficient public policies of COVID-19 containment.
Collapse
Affiliation(s)
- Josilene R. Pinheiro
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662, BA, Brazil
| | - Esther C. dos Reis
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
| | - Jéssica P. Farias
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
| | - Mayanna M. C. Fogaça
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
| | - Patrícia de S. da Silva
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662, BA, Brazil
| | - Itana Vivian R. Santana
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
| | - Ana Luiza S. Rocha
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
| | - Paloma O. Vidal
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
| | - Rafael da C. Simões
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
| | - Wilson B. Luiz
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662, BA, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte 31270, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Renato S. de Aguiar
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270, MG, Brazil
- D’Or Institute of Research, Rio de Janeiro 22281, RJ, Brazil
| | - Renan P. de Souza
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270, MG, Brazil
| | - Vasco A. de C. Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270, MG, Brazil
| | - Gepoliano Chaves
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Aline Belmok
- Laboratory of Baculoviruses, University of Brasilia, Brasilia 70910, DF, Brazil
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04023, SP, Brazil
- Post-Graduate Program in Structural and Functional Biology, UNIFESP, São Paulo 04023, SP, Brazil
| | - Fernando L. Melo
- Laboratory of Baculoviruses, University of Brasilia, Brasilia 70910, DF, Brazil
| | - Bergmann M. Ribeiro
- Laboratory of Baculoviruses, University of Brasilia, Brasilia 70910, DF, Brazil
| | - Jaime Henrique Amorim
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras 47805, BA, Brazil
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662, BA, Brazil
- Correspondence: ; Tel.: +5577-3614-3218
| |
Collapse
|
132
|
Krupińska M, Borkowski J, Goll A, Nowicka J, Baranowicz K, Bourret V, Strandin T, Mäki S, Kant R, Sironen T, Grzybek M. Wild Red Deer ( Cervus elaphus) Do Not Play a Role as Vectors or Reservoirs of SARS-CoV-2 in North-Eastern Poland. Viruses 2022; 14:2290. [PMID: 36298844 PMCID: PMC9610727 DOI: 10.3390/v14102290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 07/24/2023] Open
Abstract
Several studies reported a high prevalence of SARS-CoV-2 among white-tailed deer in North America. Monitoring cervids in all regions to better understand SARS-CoV-2 infection and circulation in other deer populations has been urged. To evaluate deer exposure and/or infection to/by SARS-CoV-2 in Poland, we sampled 90 red deer shot by hunters in five hunting districts in north-eastern Poland. Serum and nasopharyngeal swabs were collected, and then an immunofluorescent assay (IFA) to detect anti-SARS-CoV-2 antibodies was performed as well as real-time PCR with reverse transcription for direct virus detection. No positive samples were detected. There is no evidence of spillover of SARS-CoV-2 from the human to deer population in Poland.
Collapse
Affiliation(s)
- Martyna Krupińska
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| | - Jakub Borkowski
- Department of Forestry and Forest Ecology, University of Warmia and Mazury, 10-727 Olsztyn, Poland
| | - Aleksander Goll
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| | - Joanna Nowicka
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| | - Karolina Baranowicz
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| | - Vincent Bourret
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
- INRAE-Université de Toulouse UR 0035 CEFS, 31326 Castanet Tolosan, France
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Sanna Mäki
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| |
Collapse
|
133
|
Radulovic A, Miocinovic J, Radulovic Z, Rajkovic MB. Relevance of corona virus in food industry: A literature review on risks, challenges, and potential preventive measures. J Food Saf 2022. [DOI: 10.1111/jfs.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Radulovic
- Department of Animal Source Food Technology Faculty of Agriculture University of Belgrade Beograd Serbia
| | - Jelena Miocinovic
- Department of Animal Source Food Technology Faculty of Agriculture University of Belgrade Beograd Serbia
| | - Zorica Radulovic
- Department of Тechnological Мicrobiology Faculty of Agriculture University of Belgrade Beograd Serbia
| | - Milos B. Rajkovic
- Department of Chemistry and Biochemistry Faculty of Agriculture University of Belgrade Beograd Serbia
| |
Collapse
|
134
|
Le Bideau M, Pires de Souza GA, Boschi C, Baudoin JP, Penant G, Jardot P, Fenollar F, Colson P, Lenk M, La Scola B. Limited permissibility of ENL-R and Mv-1-Lu mink cell lines to SARS-CoV-2. Front Microbiol 2022; 13:1003824. [PMID: 36312916 PMCID: PMC9597503 DOI: 10.3389/fmicb.2022.1003824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The SARS-CoV-2 pandemic started in the end of 2019 in Wuhan, China, which highlighted the scenario of frequent cross-species transmission events. From the outbreak possibly initiated by viral spill-over into humans from an animal reservoir, now we face the human host moving globally while interacting with domesticated and peridomestic animals. The emergence of a new virus into the ecosystem leads to selecting forces and species-specific adaptations. The adaptation of SARS-CoV-2 to other animals represents a risk to controlling the dissemination of this coronavirus and the emergence of new variants. Since 2020, several mink farms in Europe and the United States have had SARS-CoV-2 outbreaks with human-mink and mink-human transmission, where the mink-selected variants possibly hold evolutionary concerning advantages. Here we investigated the permissibility of mink lung-derived cells using two cell lines, Mv-1-Lu and ENL-R, against several lineages of SARS-CoV-2, including some classified as variants of concern. The viral release rate and the infectious titers indicate that these cells support infections by different SARS-CoV-2 lineages. The viral production occurs in the first few days after infection with the low viral release by these mink cells, which is often absent for the omicron variant for lung cells. The electron microscopy reveals that during the viral replication cycle, the endomembrane system of the mink-host cell undergoes typical changes while the viral particles are produced, especially in the first days of infection. Therefore, even if limited, mink lung cells may represent a selecting source for SARS-CoV-2 variants, impacting their transmissibility and pathogenicity and making it difficult to control this new coronavirus.
Collapse
Affiliation(s)
- Marion Le Bideau
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Gabriel Augusto Pires de Souza
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Celine Boschi
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Jean-Pierre Baudoin
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Gwilherm Penant
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Priscilla Jardot
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Florence Fenollar
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
- Vecteurs – Infections Tropicales et Méditerranéennes (VITROME), Aix Marseille Univ, Institut Hospitalo-Universitaire (IHU), AP-HM, Marseille, France
| | - Philippe Colson
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Matthias Lenk
- Collection of Cell Lines in Veterinary Medicine (CCLV), Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bernard La Scola
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| |
Collapse
|
135
|
Kannekens‐Jager MM, de Rooij MMT, de Groot Y, Biesbroeck E, de Jong MK, Pijnacker T, Smit LAM, Schuurman N, Broekhuizen‐Stins MJ, Zhao S, Duim B, Langelaar MFM, Stegeman A, Kooistra HS, Radstake C, Egberink HF, Wagenaar JA, Broens EM. SARS-CoV-2 infection in dogs and cats is associated with contact to COVID-19-positive household members. Transbound Emerg Dis 2022; 69:4034-4040. [PMID: 36163676 PMCID: PMC9538208 DOI: 10.1111/tbed.14713] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 02/07/2023]
Abstract
Several domestic and wild animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Reported (sero)prevalence in dogs and cats vary largely depending on the target population, test characteristics, geographical location and time period. This research assessed the prevalence of SARS-CoV-2-positive cats and dogs (PCR- and/or antibody positive) in two different populations. Dogs and cats living in a household with at least one confirmed COVID-19-positive person (household (HH) study; 156 dogs and 152 cats) and dogs and cats visiting a veterinary clinic (VC) (VC study; 183 dogs and 140 cats) were sampled and tested for presence of virus (PCR) and antibodies. Potential risk factors were evaluated and follow-up of PCR-positive animals was performed to determine the duration of virus shedding and to detect potential transmission between pets in the same HH. In the HH study, 18.8% (27 dogs, 31 cats) tested SARS-CoV-2 positive (PCR- and/or antibody positive), whereas in the VC study, SARS-CoV-2 prevalence was much lower (4.6%; six dogs, nine cats). SARS-CoV-2 prevalence amongst dogs and cats was significantly higher in the multi-person HHs with two or more COVID-19-positive persons compared with multi-person HHs with only one COVID-19-positive person. In both study populations, no associations could be identified between SARS-CoV-2 status of the animal and health status, age or sex. During follow-up of PCR-positive animals, no transmission to other pets in the HH was observed despite long-lasting virus shedding in cats (up to 35 days). SARS-CoV-2 infection in dogs and cats appeared to be clearly associated with reported COVID-19-positive status of the HH. Our study supports previous findings and suggests a very low risk of pet-to-human transmission within HHs, no severe clinical signs in pets and a negligible pet-to-pet transmission between HHs.
Collapse
Affiliation(s)
- Marleen M. Kannekens‐Jager
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Myrna M. T. de Rooij
- Department of Population Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Yasmina de Groot
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Elena Biesbroeck
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marja K. de Jong
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Tera Pijnacker
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lidwien A. M. Smit
- Department of Population Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Nancy Schuurman
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marian J. Broekhuizen‐Stins
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Birgitta Duim
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Merel F. M. Langelaar
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Arjan Stegeman
- Department of Population Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Hans S. Kooistra
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Carien Radstake
- Stray Cat Foundation NetherlandsNieuw BeijerlandThe Netherlands
| | - Herman F. Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Jaap A. Wagenaar
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Els M. Broens
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
136
|
Leon AE, Garelle D, Hartwig A, Falendysz EA, Ip HS, Lankton JS, Tretten TN, Spraker TR, Bowen R, Rocke TE. Immunogenicity, Safety, and Anti-Viral Efficacy of a Subunit SARS-CoV-2 Vaccine Candidate in Captive Black-Footed Ferrets ( Mustela nigripes) and Their Susceptibility to Viral Challenge. Viruses 2022; 14:v14102188. [PMID: 36298743 PMCID: PMC9612080 DOI: 10.3390/v14102188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
A preliminary vaccination trial against the emergent pathogen, SARS-CoV-2, was completed in captive black-footed ferrets (Mustela nigripes; BFF) to assess safety, immunogenicity, and anti-viral efficacy. Vaccination and boosting of 15 BFF with purified SARS-CoV-2 S1 subunit protein produced a nearly 150-fold increase in mean antibody titers compared to pre-vaccination titers. Serum antibody responses were highest in young animals, but in all vaccinees, antibody response declined rapidly. Anti-viral activity from vaccinated and unvaccinated BFF was determined in vitro, as well as in vivo with a passive serum transfer study in mice. Transgenic mice that received BFF serum transfers and were subsequently challenged with SARS-CoV-2 had lung viral loads that negatively correlated (p < 0.05) with the BFF serum titer received. Lastly, an experimental challenge study in a small group of BFF was completed to test susceptibility to SARS-CoV-2. Despite viral replication and shedding in the upper respiratory tract for up to 7 days post-challenge, no clinical disease was observed in either vaccinated or naive animals. The lack of morbidity or mortality observed indicates SARS-CoV-2 is unlikely to affect wild BFF populations, but infected captive animals pose a potential risk, albeit low, for humans and other animals.
Collapse
Affiliation(s)
- Ariel E. Leon
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI 53711, USA
| | - Della Garelle
- U.S. Fish and Wildlife Service, National Black-Footed Ferret Conservation Center, 19180 North East Frontage Road, Carr, CO 80612, USA
| | - Airn Hartwig
- Department of Biomedical Sciences, Colorado State University, 3107 Rampart Road, Fort Collins, CO 80523, USA
| | - Elizabeth A. Falendysz
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI 53711, USA
| | - Hon S. Ip
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI 53711, USA
| | - Julia S. Lankton
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI 53711, USA
| | - Tyler N. Tretten
- U.S. Fish and Wildlife Service, National Black-Footed Ferret Conservation Center, 19180 North East Frontage Road, Carr, CO 80612, USA
| | - Terry R. Spraker
- Department of Microbiology, Immunology and Pathology, Colorado State University, 2450 Gillette Dr, Fort Collins, CO 80526, USA
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University, 3107 Rampart Road, Fort Collins, CO 80523, USA
| | - Tonie E. Rocke
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI 53711, USA
- Correspondence:
| |
Collapse
|
137
|
Solomon M, Liang C. Human coronaviruses: The emergence of SARS-CoV-2 and management of COVID-19. Virus Res 2022; 319:198882. [PMID: 35934258 PMCID: PMC9351210 DOI: 10.1016/j.virusres.2022.198882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022]
Abstract
To date, a total of seven human coronaviruses (HCoVs) have been identified, all of which are important respiratory pathogens. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has led to a global pandemic causing millions of infections and deaths. Here, we summarize the discovery and fundamental virology of HCoVs, discuss their zoonotic transmission and highlight the weak species barrier of SARS-CoV-2. We also discuss the possible origins of SARS-CoV-2 variants of concern identified to date and discuss the experimental challenges in characterizing mutations of interest and propose methods to circumvent them. As the COVID-19 treatment and prevention landscape rapidly evolves, we summarize current therapeutics and vaccines, and their implications on SARS-CoV-2 variants. Finally, we explore how interspecies transmission of SARS-CoV-2 may drive the emergence of novel strains, how disease severity may evolve and how COVID-19 will likely continue to burden healthcare systems globally.
Collapse
Affiliation(s)
- Magan Solomon
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
138
|
Ramanujam H, Palaniyandi K. COVID-19 in animals: A need for One Health approach. Indian J Med Microbiol 2022; 40:485-491. [PMID: 35927142 PMCID: PMC9340561 DOI: 10.1016/j.ijmmb.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND SARS-CoV-2 has been identified as the cause of the COVID-19, which caused a global pandemic. It is a pathogen that causes respiratory disease and can easily navigate the interspecies barrier. A significant number of COVID-19 cases in animals have been reported worldwide, including but not limited to animals in farms, captivity, and household pets. Thus, assessing the affected population and anticipating 'at risk' population becomes essential. OBJECTIVES This article aims to emphasize the zoonotic potential of SARS- CoV-2 and discuss the One Health aspects of the disease. CONTENT This is a narrative review of recently published studies on animals infected with SARS-CoV-2, both experimental and natural. The elucidation of the mechanism of infection by binding SARS-CoV-2 spike protein to the ACE-2 receptor cells in humans has led to bioinformatic analysis that has identified a few other susceptible species in silico. While infections in animals have been extensively reported, no intermediary host has yet been identified for this disease. The articles collected in this review have been grouped into four categories; experimental inoculations, infection in wild animals, infection in farm animals and infection in pet animals, along with a review of literature in each category. The risk of infection transmission between humans and animals and vice versa and the importance of the One Health approach has been discussed at length in this article.
Collapse
Affiliation(s)
- Harini Ramanujam
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India.
| |
Collapse
|
139
|
Amman BR, Cossaboom CM, Wendling NM, Harvey RR, Rettler H, Taylor D, Kainulainen MH, Ahmad A, Bunkley P, Godino C, Tong S, Li Y, Uehara A, Kelleher A, Zhang J, Lynch B, Behravesh CB, Towner JS. GPS Tracking of Free-Roaming Cats ( Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah. Viruses 2022; 14:2131. [PMID: 36298686 PMCID: PMC9611678 DOI: 10.3390/v14102131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
Zoonotic transmission of SARS-CoV-2 from infected humans to other animals has been documented around the world, most notably in mink farming operations in Europe and the United States. Outbreaks of SARS-CoV-2 on Utah mink farms began in late July 2020 and resulted in high mink mortality. An investigation of these outbreaks revealed active and past SARS-CoV-2 infections in free-roaming and in feral cats living on or near several mink farms. Cats were captured using live traps, were sampled, fitted with GPS collars, and released on the farms. GPS tracking of these cats show they made frequent visits to mink sheds, moved freely around the affected farms, and visited surrounding residential properties and neighborhoods on multiple occasions, making them potential low risk vectors of additional SARS-CoV-2 spread in local communities.
Collapse
Affiliation(s)
- Brian R. Amman
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Caitlin M. Cossaboom
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Natalie M. Wendling
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - R. Reid Harvey
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Hannah Rettler
- Utah Department of Health, 288 North 1460 West, Salt Lake City, UT 84114, USA
| | - Dean Taylor
- Utah Department of Agriculture and Food, 4315 South 2700 West #4, Taylorsville, UT 84129, USA
| | - Markus H. Kainulainen
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Ausaf Ahmad
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Paige Bunkley
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Claire Godino
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Suxiang Tong
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Yan Li
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Anna Uehara
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Anna Kelleher
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Jing Zhang
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Brian Lynch
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Casey Barton Behravesh
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Jonathan S. Towner
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| |
Collapse
|
140
|
Potential SARS-CoV-2 Susceptibility of Cetaceans Stranded along the Italian Coastline. Pathogens 2022; 11:pathogens11101096. [PMID: 36297153 PMCID: PMC9607105 DOI: 10.3390/pathogens11101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Due to marine mammals' demonstrated susceptibility to SARS-CoV-2, based upon the homology level of their angiotensin-converting enzyme 2 (ACE2) viral receptor with the human one, alongside the global SARS-CoV-2 occurrence and fecal contamination of the river and marine ecosystems, SARS-CoV-2 infection may be plausibly expected to occur also in cetaceans, with special emphasis on inshore species like bottlenose dolphins (Tursiops truncatus). Moreover, based on immune and inflammatory responses to SARS-CoV-2 infection in humans, macrophages could also play an important role in antiviral defense mechanisms. In order to provide a more in-depth insight into SARS-CoV-2 susceptibility in marine mammals, we evaluated the presence of SARS-CoV-2 and the expression of ACE2 and the pan-macrophage marker CD68. Aliquots of tissue samples, belonging to cetaceans stranded along the Italian coastline during 2020-2021, were collected for SARS-CoV-2 analysis by real-time PCR (RT-PCRT) (N = 43) and Immunohistochemistry (IHC) (N = 59); thirty-two aliquots of pulmonary tissue sample (N = 17 Tursiops truncatus, N = 15 Stenella coeruleoalba) available at the Mediterranean Marine Mammal Tissue Bank (MMMTB) of the University of Padua (Legnaro, Padua, Italy) were analyzed to investigate ACE2 expression by IHC. In addition, ACE2 and CD68 were also investigated by Double-Labeling Immunofluorescence (IF) Confocal Laser Microscopy. No SARS-CoV-2 positivity was found in samples analyzed for the survey while ACE2 protein was detected in the lower respiratory tract albeit heterogeneously for age, gender/sex, and species, suggesting that ACE2 expression can vary between different lung regions and among individuals. Finally, double IF analysis showed elevated colocalization of ACE2 and CD68 in macrophages only when an evident inflammatory reaction was present, such as in human SARS-CoV-2 infection.
Collapse
|
141
|
Kolluru SSR, Nagendra SMS, Patra AK, Gautam S, Alshetty VD, Kumar P. Did unprecedented air pollution levels cause spike in Delhi's COVID cases during second wave? STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2022; 37:795-810. [PMID: 36164666 PMCID: PMC9493175 DOI: 10.1007/s00477-022-02308-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 05/05/2023]
Abstract
The onset of the second wave of COVID-19 devastated many countries worldwide. Compared with the first wave, the second wave was more aggressive regarding infections and deaths. Numerous studies were conducted on the association of air pollutants and meteorological parameters during the first wave of COVID-19. However, little is known about their associations during the severe second wave of COVID-19. The present study is based on the air quality in Delhi during the second wave. Pollutant concentrations decreased during the lockdown period compared to pre-lockdown period (PM2.5: 67 µg m-3 (lockdown) versus 81 µg m-3 (pre-lockdown); PM10: 171 µg m-3 versus 235 µg m-3; CO: 0.9 mg m-3 versus 1.1 mg m-3) except ozone which increased during the lockdown period (57 µg m-3 versus 39 µg m-3). The variation in pollutant concentrations revealed that PM2.5, PM10 and CO were higher during the pre-COVID-19 period, followed by the second wave lockdown and the lowest in the first wave lockdown. These variations are corroborated by the spatiotemporal variability of the pollutants mapped using ArcGIS. During the lockdown period, the pollutants and meteorological variables explained 85% and 52% variability in COVID-19 confirmed cases and deaths (determined by General Linear Model). The results suggests that air pollution combined with meteorology acted as a driving force for the phenomenal growth of COVID-19 during the second wave. In addition to developing new drugs and vaccines, governments should focus on prediction models to better understand the effect of air pollution levels on COVID-19 cases. Policy and decision-makers can use the results from this study to implement the necessary guidelines for reducing air pollution. Also, the information presented here can help the public make informed decisions to improve the environment and human health significantly.
Collapse
Affiliation(s)
| | - S. M. Shiva Nagendra
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Aditya Kumar Patra
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sneha Gautam
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu India
| | - V. Dheeraj Alshetty
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH Surrey UK
- Department of Civil, Structural & Environmental Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- School of Architecture, Southeast University, 2 Sipailou, Nanjing, 210096 China
| |
Collapse
|
142
|
Neerukonda SN, Wang R, Vassell R, Baha H, Lusvarghi S, Liu S, Wang T, Weiss CD, Wang W. Characterization of Entry Pathways, Species-Specific Angiotensin-Converting Enzyme 2 Residues Determining Entry, and Antibody Neutralization Evasion of Omicron BA.1, BA.1.1, BA.2, and BA.3 Variants. J Virol 2022; 96:e0114022. [PMID: 36000843 PMCID: PMC9472608 DOI: 10.1128/jvi.01140-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
The SARS-CoV-2 Omicron variants were first detected in November 2021, and several Omicron lineages (BA.1, BA.2, BA.3, BA.4, and BA.5) have since rapidly emerged. Studies characterizing the mechanisms of Omicron variant infection and sensitivity to neutralizing antibodies induced upon vaccination are ongoing by several groups. In the present study, we used pseudoviruses to show that the transmembrane serine protease 2 (TMPRSS2) enhances infection of BA.1, BA.1.1, BA.2, and BA.3 Omicron variants to a lesser extent than ancestral D614G. We further show that Omicron variants have higher sensitivity to inhibition by soluble angiotensin-converting enzyme 2 (ACE2) and the endosomal inhibitor chloroquine compared to D614G. The Omicron variants also more efficiently used ACE2 receptors from 9 out of 10 animal species tested, and unlike the D614G variant, used mouse ACE2 due to the Q493R and Q498R spike substitutions. Finally, neutralization of the Omicron variants by antibodies induced by three doses of Pfizer/BNT162b2 mRNA vaccine was 7- to 8-fold less potent than the D614G. These results provide insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread. IMPORTANCE The ongoing emergence of SARS-CoV-2 Omicron variants with an extensive number of spike mutations poses a significant public health and zoonotic concern due to enhanced transmission fitness and escape from neutralizing antibodies. We studied three Omicron lineage variants (BA.1, BA.2, and BA.3) and found that transmembrane serine protease 2 has less influence on Omicron entry into cells than on D614G, and Omicron exhibits greater sensitivity to endosomal entry inhibition compared to D614G. In addition, Omicron displays more efficient usage of diverse animal species ACE2 receptors than D614G. Furthermore, due to Q493R/Q498R substitutions in spike, Omicron, but not D614G, can use the mouse ACE2 receptor. Finally, three doses of Pfizer/BNT162b2 mRNA vaccination elicit high neutralization titers against Omicron variants, although the neutralization titers are still 7- to 8-fold lower those that against D614G. These results may give insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread.
Collapse
Affiliation(s)
- Sabari Nath Neerukonda
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Richard Wang
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Russell Vassell
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Haseebullah Baha
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Shufeng Liu
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Tony Wang
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Carol D. Weiss
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| | - Wei Wang
- US Food and Drug Administration, Office of Vaccine Research and Review, Center for Biologics Evaluation, Research and Review, Silver Spring, Maryland, USA
| |
Collapse
|
143
|
Kazemi S, López-Muñoz AD, Hollý J, Jin L, Yewdell JW, Dolan BP. Variations in Cell Surface ACE2 Levels Alter Direct Binding of SARS-CoV-2 Spike Protein and Viral Infectivity: Implications for Measuring Spike Protein Interactions with Animal ACE2 Orthologs. J Virol 2022; 96:e0025622. [PMID: 36000847 PMCID: PMC9472623 DOI: 10.1128/jvi.00256-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/04/2022] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), the most severe pandemic in a century. The virus gains access to host cells when the viral spike protein (S-protein) binds to the host cell surface receptor angiotensin-converting enzyme 2 (ACE2). Studies have attempted to understand SARS-CoV-2 S-protein interactions with vertebrate orthologs of ACE2 by expressing ACE2 orthologs in mammalian cells and measuring viral infection or S-protein binding. Often, these cells only transiently express ACE2 proteins, and the levels of ACE2 at the cell surface are not quantified. Here, we describe a cell-based assay that uses stably transfected cells expressing ACE2 proteins in a bicistronic vector with an easy-to-quantify reporter protein, Thy1.1. We found that both the binding of the S-protein receptor-binding domain (RBD) and infection with a SARS-CoV-2 pseudovirus are proportional to the amount of human ACE2 expressed at the cell surface, which can be inferred by quantifying the level of Thy1.1. We also compared different ACE2 orthologs, which were expressed in stably transfected cells expressing equivalent levels of Thy1.1. When ranked for either viral infectivity or RBD binding, mouse ACE2 had a weak to undetectable affinity for S-protein, while human ACE2 had the highest level detected, and feline ACE2 had an intermediate phenotype. The generation of stably transfected cells whose ACE2 level can be normalized for cross-ortholog comparisons allows us to create a reusable cellular library useful for measuring emerging SARS-CoV-2 variants' abilities to potentially infect different animals. IMPORTANCE SARS-CoV-2 is a zoonotic virus responsible for the worst global pandemic in a century. An understanding of how the virus can infect other vertebrate species is important for controlling viral spread and understanding the natural history of the virus. Here, we describe a method to generate cells stably expressing different orthologs of ACE2, the receptor for SARS-CoV-2, on the surface of a human cell line. We find that both the binding of the viral spike protein receptor-binding domain (RBD) and infection of cells with a SARS-CoV-2 pseudovirus are proportional to the ACE2 levels at the cell surface. This method will allow the creation of a library of stably transfected cells expressing similar levels of different vertebrate ACE2 orthologs, which can be used repeatedly for identifying vertebrate species that may be susceptible to infection with SARS-CoV-2 and its many variants.
Collapse
Affiliation(s)
- Soheila Kazemi
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Alberto Domingo López-Muñoz
- Laboratory of Viral Diseases, Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaroslav Hollý
- Laboratory of Viral Diseases, Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
144
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted between humans and minks, and some mutations in the spike (S) protein, especially in the receptor-binding domain (RBD), have been identified in mink-derived viruses. Here, we examined binding of the mink angiotensin-converting enzyme 2 (ACE2) receptor to mink-derived and important human-originating variants, and we demonstrated that most of the RBD variants increased the binding affinities to mink ACE2 (mkACE2). Cryo-electron microscopy structures of the mkACE2-RBD Y453F (with a Y-to-F change at position 453) and mkACE2-RBD F486L complexes helped identify the key residues that facilitate changes in mkACE2 binding affinity. Additionally, the data indicated that the Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and human vaccinated sera efficiently prevented infection of human cells by pseudoviruses expressing Y453F, F486L, or N501T RBD. Our findings provide an important molecular mechanism for the rapid adaptation of SARS-CoV-2 in minks and highlight the potential influence of the main mink-originating variants for humans. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a broad range of hosts. Mink-derived SARS-CoV-2 can transmit back to humans. There is an urgent need to understand the binding mechanism of mink-derived SARS-CoV-2 variants to mink receptor. In this study, we identified all mutations in the receptor-binding domain (RBD) of spike (S) protein from mink-derived SARS-CoV-2, and we demonstrated the enhanced binding affinity of mink angiotensin-converting enzyme 2 (ACE2) to most of the mink-derived RBD variants as well as important human-originating RBD variants. Cryo-electron microscopy structures revealed that the Y453F and F486L mutations enhanced the binding forces in the interaction interface. In addition, Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and the SARS-CoV-2 pseudoviruses with Y453F, F486L, or N501T mutations were neutralized by human vaccinated sera. Therefore, our results provide valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.
Collapse
|
145
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
146
|
Gulati I, Khan S, Gulati G, Verma SR, Khan M, Ahmad S, Bantun F, Mathkor DM, Haque S. SARS-CoV-2 origins: zoonotic Rhinolophus vs contemporary models. Biotechnol Genet Eng Rev 2022:1-34. [PMID: 36036250 DOI: 10.1080/02648725.2022.2115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
The question of the origin of coronavirus spread like wildfire ever since it wreaked havoc among humankind, and ever since the scientific community has worked tirelessly to trace the history of the virus. In this review, we have tried to compile relevant literature pertaining to the different theories of origin of SARS-CoV-2, hopefully without any bias, and we strongly support the zoonotic origin of the infamous SARS-CoV-2 in bats and its transfer to human beings through the most probable evolutionary hosts, pangolins and minks. We also support the contemporary 'Circulation Model' that simply mirrors the concept of evolution to explain the origin of the virus which, the authors believe, is the most rational school of thought. The most recent variant of SARS-CoV-2, Omicron, has been taken as an example to clarify the concept. We recommend the community to refer to this model for further understanding and delving deep into this mystery of the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Ishika Gulati
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Garima Gulati
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Prayagraj, Allahabad, India
| | | | - Mahvish Khan
- Department of Biology, College of science, University of Ha'il, Ha'il, Saudi Arabia
| | - Saheem Ahmad
- Department of clinical laboratory science, College of Applied Medical Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
147
|
Worobey M, Levy JI, Serrano LM, Crits-Christoph A, Pekar JE, Goldstein SA, Rasmussen AL, Kraemer MUG, Newman C, Koopmans MPG, Suchard MA, Wertheim JO, Lemey P, Robertson DL, Garry RF, Holmes EC, Rambaut A, Andersen KG. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 2022; 377:951-959. [PMID: 35881010 PMCID: PMC9348750 DOI: 10.1126/science.abp8715] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022]
Abstract
Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 is critical to preventing future zoonotic outbreaks before they become the next pandemic. The Huanan Seafood Wholesale Market in Wuhan, China, was identified as a likely source of cases in early reports, but later this conclusion became controversial. We show here that the earliest known COVID-19 cases from December 2019, including those without reported direct links, were geographically centered on this market. We report that live SARS-CoV-2-susceptible mammals were sold at the market in late 2019 and that within the market, SARS-CoV-2-positive environmental samples were spatially associated with vendors selling live mammals. Although there is insufficient evidence to define upstream events, and exact circumstances remain obscure, our analyses indicate that the emergence of SARS-CoV-2 occurred through the live wildlife trade in China and show that the Huanan market was the epicenter of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Joshua I. Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lorena Malpica Serrano
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Alexander Crits-Christoph
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jonathan E. Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen A. Goldstein
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Angela L. Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon SK S7N 5E3, Canada
- Center for Global Health Science and Security, Georgetown University, Washington, DC 20057, USA
| | | | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Oxford OX13 5QL, UK
| | - Marion P. G. Koopmans
- Pandemic and Disaster Preparedness Centre, Erasmus University Medical Center, 3015 CE Rotterdam, Netherlands
- Department of Viroscience, Erasmus University Medical Center, 3015 CE Rotterdam, Netherlands
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - David L. Robertson
- MRC-University of Glasgow Center for Virus Research, Glasgow G61 1QH, UK
| | - Robert F. Garry
- Global Virus Network (GVN), Baltimore, MD 21201, USA
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA 70112, USA
- Zalgen Labs, Frederick, MD 21703, USA
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| |
Collapse
|
148
|
Hill V, Du Plessis L, Peacock TP, Aggarwal D, Colquhoun R, Carabelli AM, Ellaby N, Gallagher E, Groves N, Jackson B, McCrone JT, O’Toole Á, Price A, Sanderson T, Scher E, Southgate J, Volz E, Barclay WS, Barrett JC, Chand M, Connor T, Goodfellow I, Gupta RK, Harrison EM, Loman N, Myers R, Robertson DL, Pybus OG, Rambaut A. The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evol 2022; 8:veac080. [PMID: 36533153 PMCID: PMC9752794 DOI: 10.1093/ve/veac080] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/28/2022] [Accepted: 08/25/2022] [Indexed: 01/06/2023] Open
Abstract
The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK and the imposition of new restrictions, in particular, the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically infected individual. We conclude that the latter provides the best explanation of the observed behaviour and dynamics of the variant, although the individual need not be immunocompromised, as persistently infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs and find that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations and a lack of the rapid evolutionary rate on its ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms), it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.
Collapse
Affiliation(s)
- Verity Hill
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Louis Du Plessis
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK
- Department of Biosystems Science and Engineering, ETH Zürich, Zürich, Switzerland
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Dinesh Aggarwal
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
- UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Rachel Colquhoun
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Nicholas Ellaby
- UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Eileen Gallagher
- UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Natalie Groves
- UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Ben Jackson
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - J T McCrone
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Áine O’Toole
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Anna Price
- School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff CF10 AX, UK
| | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Emily Scher
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Joel Southgate
- School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff CF10 AX, UK
| | - Erik Volz
- MRC Unit for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Jeffrey C Barrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
| | - Meera Chand
- UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
- Guy’s and St Thomas’ Hospital NHS Trust, St Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
| | - Thomas Connor
- School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff CF10 AX, UK
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff CF14 4XW, UK
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK
- Africa Health Research Institute, Durban, South Africa
| | - Ewan M Harrison
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nicholas Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard Myers
- UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
| | - Oliver G Pybus
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK
- Department of Pathobiology and Population Science, The Royal Veterinary College, London, UK
| | - Andrew Rambaut
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
149
|
Genome Similarities between Human-Derived and Mink-Derived SARS-CoV-2 Make Mink a Potential Reservoir of the Virus. Vaccines (Basel) 2022; 10:vaccines10081352. [PMID: 36016239 PMCID: PMC9415835 DOI: 10.3390/vaccines10081352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 01/14/2023] Open
Abstract
SARS-CoV-2 has RNA as the genome, which makes the virus more prone to mutations. Occasionally, mutations help a virus to cross the species barrier. SARS-CoV-2 infections in humans and minks (Neovison vison) are examples of zoonotic spillover. Many studies on the mutational analysis of human-derived SARS-CoV-2 have been published, but insight into the mink-derived SARS-CoV-2 genome of mutations is still required. Here, we performed a mutation analysis of the mink-derived SARS-CoV-2 genome sequences. We analyzed all available full-length mink-derived SARS-CoV-2 genome sequences on GISAID (214 genome sequences from the Netherlands and 133 genome sequences from Denmark). We found a striking resemblance between human-derived and mink-derived SARS-CoV-2. Our study showed that mutation patterns in the SARS-CoV-2 genome samples from the Netherlands and Denmark were different. Out of the 201 mutations we found, only 13 mutations were shared by the Netherlands' and Denmark's mink-derived samples. We found that six mutations were prevalent in the mink-derived SARS-CoV-2 genomes, and these six mutations are also known to be prevalent in human-derived SARS-CoV-2 variants. Our study reveals that the G27948T mutation in SARS-CoV-2 leads to truncation of ORF8, which was also reported in human-derived SARS-CoV-2, thus indicating that the virus can replicate without the full-length ORF8. These resemblances between mink-derived and human-derived SARS-CoV-2 enable the virus to cross the species barrier and suggest mink a potential reservoir for the virus.
Collapse
|
150
|
Bosco-Lauth AM, Porter SM, Fox KA, Wood ME, Neubaum D, Quilici M. Experimental Infection of Brazilian Free-Tailed Bats (Tadarida brasiliensis) with Two Strains of SARS-CoV-2. Viruses 2022; 14:v14081809. [PMID: 36016431 PMCID: PMC9412320 DOI: 10.3390/v14081809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presumed to have originated from wildlife and shares homology with other bat coronaviruses. Determining the susceptibility of North American bat species to SARS-CoV-2 is of utmost importance for making decisions regarding wildlife management, public health, and conservation. In this study, Brazilian free-tailed bats (Tadarida brasiliensis) were experimentally infected with two strains of SARS-CoV-2 (parental WA01 and Delta variant), evaluated for clinical disease, sampled for viral shedding and antibody production, and analyzed for pathology. None of the bats (n = 18) developed clinical disease associated with infection, shed infectious virus, or developed histopathological lesions associated with SARS-CoV-2 infection. All bats had low levels of viral RNA in oral swabs, six bats had low levels of viral RNA present in the lungs during acute infection, and one of the four bats that were maintained until 28 days post-infection developed a neutralizing antibody response. These findings suggest that Brazilian free-tailed bats are permissive to infection by SARS-CoV-2, but they are unlikely to contribute to environmental maintenance or transmission.
Collapse
Affiliation(s)
- Angela M. Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence:
| | - Stephanie M. Porter
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO 80523, USA
| | - Karen A. Fox
- Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - Mary E. Wood
- Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - Daniel Neubaum
- Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - Marissa Quilici
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|