101
|
Yuan DJ, Shi L, Kam LC. Biphasic response of T cell activation to substrate stiffness. Biomaterials 2021; 273:120797. [PMID: 33878536 DOI: 10.1016/j.biomaterials.2021.120797] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
T cell activation is sensitive to the mechanical properties of an activating substrate. However, there are also contrasting results on how substrate stiffness affects T cell activation, including differences between T cells of mouse and human origin. Towards reconciling these differences, this report examines the response of primary human T cells to polyacrylamide gels with stiffness between 5 and 110 kPa presenting activating antibodies to CD3 and CD28. T cell proliferation and IL-2 secretion exhibited a biphasic functional response to substrate stiffness, which can be shifted by changing density of activating antibodies and abrogated by inhibition of cellular contractility. T cell morphology was modulated by stiffness at early time points. RNA-seq indicates that T cells show differing monotonic trends in upregulated genes and pathways towards both ends of the stiffness spectrum. These studies provide a framework of T cell mechanosensing and suggest an effect of ligand density that may reconcile different, contrasting patterns of stiffness sensing seen in previous studies.
Collapse
Affiliation(s)
- Dennis J Yuan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lingting Shi
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
102
|
Pfannenstill V, Barbotin A, Colin-York H, Fritzsche M. Quantitative Methodologies to Dissect Immune Cell Mechanobiology. Cells 2021; 10:851. [PMID: 33918573 PMCID: PMC8069647 DOI: 10.3390/cells10040851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mechanobiology seeks to understand how cells integrate their biomechanics into their function and behavior. Unravelling the mechanisms underlying these mechanobiological processes is particularly important for immune cells in the context of the dynamic and complex tissue microenvironment. However, it remains largely unknown how cellular mechanical force generation and mechanical properties are regulated and integrated by immune cells, primarily due to a profound lack of technologies with sufficient sensitivity to quantify immune cell mechanics. In this review, we discuss the biological significance of mechanics for immune cells across length and time scales, and highlight several experimental methodologies for quantifying the mechanics of immune cells. Finally, we discuss the importance of quantifying the appropriate mechanical readout to accelerate insights into the mechanobiology of the immune response.
Collapse
Affiliation(s)
- Veronika Pfannenstill
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
| | - Aurélien Barbotin
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
| | - Huw Colin-York
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| |
Collapse
|
103
|
Lee JH, Shao S, Kim M, Fernandes SM, Brown JR, Kam LC. Multi-Factor Clustering Incorporating Cell Motility Predicts T Cell Expansion Potential. Front Cell Dev Biol 2021; 9:648925. [PMID: 33898440 PMCID: PMC8063612 DOI: 10.3389/fcell.2021.648925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
Expansion of an initial population of T cells is essential for cellular immunotherapy. In Chronic Lymphocytic Leukemia (CLL), expansion is often complicated by lack of T cell proliferation, as these cells frequently show signs of exhaustion. This report seeks to identify specific biomarkers or measures of cell function that capture the proliferative potential of a starting population of cells. Mixed CD4+/CD8+ T cells from healthy donors and individuals previously treated for CLL were characterized on the basis of proliferative potential and in vitro cellular functions. Single-factor analysis found little correlation between the number of populations doublings reached during expansion and either Rai stage (a clinical measure of CLL spread) or PD-1 expression. However, inclusion of in vitro IL-2 secretion and the propensity of cells to align onto micropatterned features of activating proteins as factors identified three distinct groups of donors. Notably, these group assignments provided an elegant separation of donors with regards to proliferative potential. Furthermore, these groups exhibited different motility characteristics, suggesting a mechanism that underlies changes in proliferative potential. This study describes a new set of functional readouts that augment surface marker panels to better predict expansion outcomes and clinical prognosis.
Collapse
Affiliation(s)
- Joanne H. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Shuai Shao
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Michelle Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Stacey M. Fernandes
- Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jennifer R. Brown
- Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
104
|
Friedman D, Simmonds P, Hale A, Bere L, Hodson NW, White MRH, Davis DM. Natural killer cell immune synapse formation and cytotoxicity are controlled by tension of the target interface. J Cell Sci 2021; 134:jcs258570. [PMID: 33712452 PMCID: PMC8077183 DOI: 10.1242/jcs.258570] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells can kill infected or transformed cells via a lytic immune synapse. Diseased cells may exhibit altered mechanical properties but how this impacts NK cell responsiveness is unknown. We report that human NK cells were stimulated more effectively to secrete granzymes A and B, FasL (also known as FasLG), granulysin and IFNγ, by stiff (142 kPa) compared to soft (1 kPa) planar substrates. To create surrogate spherical targets of defined stiffness, sodium alginate was used to synthesise soft (9 kPa), medium (34 kPa) or stiff (254 kPa) cell-sized beads, coated with antibodies against activating receptor NKp30 (also known as NCR3) and the integrin LFA-1 (also known as ITGAL). Against stiff beads, NK cells showed increased degranulation. Polarisation of the microtubule-organising centre and lytic granules were impaired against soft targets, which instead resulted in the formation of unstable kinapses. Thus, by varying target stiffness to characterise the mechanosensitivity of immune synapses, we identify soft targets as a blind spot in NK cell recognition. This article has an associated First Person interview with the co-first authors of the paper.
Collapse
Affiliation(s)
- Daniel Friedman
- The Lydia Becker Institute, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility building, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Poppy Simmonds
- The Lydia Becker Institute, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility building, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Alexander Hale
- The Lydia Becker Institute, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility building, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Leoma Bere
- The Lydia Becker Institute, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility building, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Nigel W. Hodson
- BioAFM Facility, Faculty of Biology, Medicine and Health, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Michael R. H. White
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Daniel M. Davis
- The Lydia Becker Institute, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility building, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
105
|
Bhingardive V, Le Saux G, Edri A, Porgador A, Schvartzman M. Nanowire Based Guidance of the Morphology and Cytotoxic Activity of Natural Killer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007347. [PMID: 33719212 DOI: 10.1002/smll.202007347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The cytotoxic activity of natural killer (NK) cells is regulated by many chemical and physical cues, whose integration mechanism is still obscure. Here, a multifunctional platform is engineered for NK cell stimulation, to study the effect of the signal integration and spatial heterogeneity on NK cell function. The platform is based on nanowires, whose mechanical compliance and site-selective tip functionalization with antigens produce the physical and chemical stimuli, respectively. The nanowires are confined to micron-sized islands, which induce a splitting of the NK cells into two subpopulations with distinct morphologies and immune responses: NK cells atop the nanowire islands display symmetrical spreading and enhanced activation, whereas cells lying in the straits between the islands develop elongated profiles and show lower activation levels. The demonstrated tunability of NK cell cytotoxicity provides an important insight into the mechanism of their immune function and introduces a novel technological route for the ex vivo shaping of cytotoxic lymphocytes in immunotherapy.
Collapse
Affiliation(s)
- Viraj Bhingardive
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Avishay Edri
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Angel Porgador
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| |
Collapse
|
106
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
107
|
Rhodes KR, Isser A, Hickey JW, Ben-Akiva E, Meyer RA, Kosmides AK, Livingston NK, Tzeng SY, Schneck JP, Green JJ. Biodegradable Cationic Polymer Blends for Fabrication of Enhanced Artificial Antigen Presenting Cells to Treat Melanoma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7913-7923. [PMID: 33573372 PMCID: PMC8034558 DOI: 10.1021/acsami.0c19955] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biomimetic biomaterials are being actively explored in the context of cancer immunotherapy because of their ability to directly engage the immune system to generate antitumor responses. Unlike cellular therapies, biomaterial-based immunotherapies can be precisely engineered to exhibit defined characteristics including biodegradability, physical size, and tuned surface presentation of immunomodulatory signals. In particular, modulating the interface between the biomaterial surface and the target biological cell is key to enabling biological functions. Synthetic artificial antigen presenting cells (aAPCs) are promising as a cancer immunotherapy but are limited in clinical translation by the requirement of ex vivo cell manipulation and adoptive transfer of antigen-specific CD8+ T cells. To move toward acellular aAPC technology for in vivo use, we combine poly(lactic-co-glycolic acid) (PLGA) and cationic poly(beta-amino-ester) (PBAE) to form a biodegradable blend based on the hypothesis that therapeutic aAPCs fabricated from a cationic blend may have improved functions. PLGA/PBAE aAPCs demonstrate enhanced surface interactions with antigen-specific CD8+ T cells that increase T cell activation and expansion ex vivo, associated with significantly increased conjugation efficiency of T cell stimulatory signals to the aAPCs. Critically, these PLGA/PBAE aAPCs also expand antigen-specific cytotoxic CD8+ T cells in vivo without the need of adoptive transfer. Treatment with PLGA/PBAE aAPCs in combination with checkpoint therapy decreases tumor growth and extends survival in a B16-F10 melanoma mouse model. These results demonstrate the potential of PLGA/PBAE aAPCs as a biocompatible, directly injectable acellular therapy for cancer immunotherapy.
Collapse
Affiliation(s)
- Kelly R. Rhodes
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Ariel Isser
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - John W. Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Elana Ben-Akiva
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Randall A. Meyer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alyssa K. Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Natalie K. Livingston
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jonathan P. Schneck
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- To whom correspondence should be addressed: (J.P. Schneck) and (J.J. Green)
| | - Jordan J. Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- To whom correspondence should be addressed: (J.P. Schneck) and (J.J. Green)
| |
Collapse
|
108
|
Abaricia JO, Shah AH, Olivares-Navarrete R. Substrate stiffness induces neutrophil extracellular trap (NET) formation through focal adhesion kinase activation. Biomaterials 2021; 271:120715. [PMID: 33677375 DOI: 10.1016/j.biomaterials.2021.120715] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Neutrophils predominate the early inflammatory response to tissue injury and implantation of biomaterials. Recent studies have shown that neutrophil activation can be regulated by mechanical cues such as stiffness or surface wettability; however, it is not known how neutrophils sense and respond to physical cues, particularly how they form neutrophil extracellular traps (NET formation). To examine this, we used polydimethylsiloxane (PDMS) substrates of varying physiologically relevant stiffness (0.2-32 kPa) and examined the response of murine neutrophils to untreated surfaces or to surfaces coated with various extracellular matrix proteins recognized by integrin heterodimers (collagen, fibronectin, laminin, vitronectin, synthetic RGD). Neutrophils on higher stiffness PDMS substrates had increased NET formation and higher secretion of pro-inflammatory cytokines and chemokines. Extracellular matrix protein coatings showed that fibronectin induced the most NET formation and this effect was stiffness dependent. Synthetic RGD peptides induced similar levels of NET formation and pro-inflammatory cytokine release than the full-length fibronectin protein. To determine if the observed NET formation in response to substrate stiffness required focal adhesion kinase (FAK) activity, which is down stream of integrin activation, FAK inhibitor PF-573228 was used. Inhibition of FAK using PF-573228 ablated the stiffness-dependent increase in NET formation and pro-inflammatory molecule secretion. These findings demonstrate that neutrophils regulate NET formation in response to physical and mechanical biomaterial cues and this process is regulated through integrin/FAK signaling.
Collapse
Affiliation(s)
- Jefferson O Abaricia
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Arth H Shah
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
109
|
Lippert AH, Dimov IB, Winkel AK, Humphrey J, McColl J, Chen KY, Santos AM, Jenkins E, Franze K, Davis SJ, Klenerman D. Soft Polydimethylsiloxane-Supported Lipid Bilayers for Studying T Cell Interactions. Biophys J 2021; 120:35-45. [PMID: 33248128 PMCID: PMC7820804 DOI: 10.1016/j.bpj.2020.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/22/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Much of what we know about the early stages of T cell activation has been obtained from studies of T cells interacting with glass-supported lipid bilayers that favor imaging but are orders of magnitude stiffer than typical cells. We developed a method for attaching lipid bilayers to polydimethylsiloxane polymer supports, producing "soft bilayers" with physiological levels of mechanical resistance (Young's modulus of 4 kPa). Comparisons of T cell behavior on soft and glass-supported bilayers revealed that whereas late stages of T cell activation are thought to be substrate-stiffness dependent, early calcium signaling was unaffected by substrate rigidity, implying that early steps in T cell receptor triggering are not mechanosensitive. The exclusion of large receptor-type phosphatases was observed on the soft bilayers, however, even though it is yet to be demonstrated at authentic cell-cell contacts. This work sets the stage for an imaging-based exploration of receptor signaling under conditions closely mimicking physiological cell-cell contact.
Collapse
Affiliation(s)
- Anna H Lippert
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Ivan B Dimov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexander K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jane Humphrey
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kevin Y Chen
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana M Santos
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Edward Jenkins
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
110
|
Isser A, Livingston NK, Schneck JP. Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials 2021; 268:120584. [PMID: 33338931 PMCID: PMC7856270 DOI: 10.1016/j.biomaterials.2020.120584] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
T cells are often referred to as the 'guided missiles' of our immune system because of their capacity to traffic to and accumulate at sites of infection or disease, destroy infected or mutated cells with high specificity and sensitivity, initiate systemic immune responses, sterilize infections, and produce long-lasting memory. As a result, they are a common target for a range of cancer immunotherapies. However, the myriad of challenges of expanding large numbers of T cells specific to each patient's unique tumor antigens has led researchers to develop alternative, more scalable approaches. Biomaterial platforms for expansion of antigen-specific T cells offer a path forward towards broadscale translation of personalized immunotherapies by providing "off-the-shelf", yet modular approaches to customize the phenotype, function, and specificity of T cell responses. In this review, we discuss design considerations and progress made in the development of ex vivo and in vivo technologies for activating antigen-specific T cells, including artificial antigen presenting cells, T cell stimulating scaffolds, biomaterials-based vaccines, and artificial lymphoid organs. Ultimate translation of these platforms as a part of cancer immunotherapy regimens hinges on an in-depth understanding of T cell biology and cell-material interactions.
Collapse
Affiliation(s)
- Ariel Isser
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for Nanobiotechnology, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Institute for Nanobiotechnology, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
111
|
Shi Y, Cai Y, Cao Y, Hong Z, Chai Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
112
|
Zhang J, Zhao R, Li B, Farrukh A, Hoth M, Qu B, Del Campo A. Micropatterned soft hydrogels to study the interplay of receptors and forces in T cell activation. Acta Biomater 2021; 119:234-246. [PMID: 33099024 DOI: 10.1016/j.actbio.2020.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
The analysis of T cell responses to mechanical properties of antigen presenting cells (APC) is experimentally challenging at T cell-APC interfaces. Soft hydrogels with adjustable mechanical properties and biofunctionalization are useful reductionist models to address this problem. Here, we report a methodology to fabricate micropatterned soft hydrogels with defined stiffness to form spatially confined T cell/hydrogel contact interfaces at micrometer scale. Using automatized microcontact printing we prepared arrays of anti-CD3 microdots on poly(acrylamide) hydrogels with Young's Modulus in the range of 2 to 50 kPa. We optimized the printing process to obtain anti-CD3 microdots with constant area (50 µm2, corresponding to 8 µm diameter) and comparable anti-CD3 density on hydrogels of different stiffness. The anti-CD3 arrays were recognized by T cells and restricted cell attachment to the printed areas. To test functionality of the hydrogel-T cell contact, we analyzed several key events downstream of T cell receptor (TCR) activation. Anti-CD3 arrays on hydrogels activated calcium influx, induced rearrangement of the actin cytoskeleton, and led to Zeta-chain-associated protein kinase 70 (ZAP70) phosphorylation. Interestingly, upon increase in the stiffness, ZAP70 phosphorylation was enhanced, whereas the rearrangements of F-actin (F-actin clearance) and phosphorylated ZAP70 (ZAP70/pY centralization) were unaffected. Our results show that micropatterned hydrogels allow tuning of stiffness and receptor presentation to analyze TCR mediated T cell activation as function of mechanical, biochemical, and geometrical parameters.
Collapse
Affiliation(s)
- Jingnan Zhang
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421 Germany
| | - Bin Li
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Aleeza Farrukh
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421 Germany
| | - Bin Qu
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, 66421 Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
113
|
Chakraborty M, Chu K, Shrestha A, Revelo XS, Zhang X, Gold MJ, Khan S, Lee M, Huang C, Akbari M, Barrow F, Chan YT, Lei H, Kotoulas NK, Jovel J, Pastrello C, Kotlyar M, Goh C, Michelakis E, Clemente-Casares X, Ohashi PS, Engleman EG, Winer S, Jurisica I, Tsai S, Winer DA. Mechanical Stiffness Controls Dendritic Cell Metabolism and Function. Cell Rep 2021; 34:108609. [PMID: 33440149 DOI: 10.1016/j.celrep.2020.108609] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 11/04/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Stiffness in the tissue microenvironment changes in most diseases and immunological conditions, but its direct influence on the immune system is poorly understood. Here, we show that static tension impacts immune cell function, maturation, and metabolism. Bone-marrow-derived and/or splenic dendritic cells (DCs) grown in vitro at physiological resting stiffness have reduced proliferation, activation, and cytokine production compared with cells grown under higher stiffness, mimicking fibro-inflammatory disease. Consistently, DCs grown under higher stiffness show increased activation and flux of major glucose metabolic pathways. In DC models of autoimmune diabetes and tumor immunotherapy, tension primes DCs to elicit an adaptive immune response. Mechanistic workup identifies the Hippo-signaling molecule, TAZ, as well as Ca2+-related ion channels, including potentially PIEZO1, as important effectors impacting DC metabolism and function under tension. Tension also directs the phenotypes of monocyte-derived DCs in humans. Thus, mechanical stiffness is a critical environmental cue of DCs and innate immunity.
Collapse
Affiliation(s)
- Mainak Chakraborty
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kevin Chu
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xavier S Revelo
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiangyue Zhang
- School of Medicine, Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Matthew J Gold
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Saad Khan
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Megan Lee
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Camille Huang
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Masoud Akbari
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Fanta Barrow
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yi Tao Chan
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Helena Lei
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Juan Jovel
- The Applied Genomics Core, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Evangelos Michelakis
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xavier Clemente-Casares
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Edgar G Engleman
- School of Medicine, Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Daniel A Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
114
|
Lei K, Kurum A, Tang L. Mechanical Immunoengineering of T cells for Therapeutic Applications. Acc Chem Res 2020; 53:2777-2790. [PMID: 33258577 DOI: 10.1021/acs.accounts.0c00486] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cells, a key component in adaptive immunity, are central to many immunotherapeutic modalities aimed at treating various diseases including cancer, infectious diseases, and autoimmune disorders. The past decade has witnessed tremendous progress in immunotherapy, which aims at activation or suppression of the immune responses for disease treatments. Most strikingly, cancer immunotherapy has led to curative responses in a fraction of patients with relapsed or refractory cancers. However, extending those clinical benefits to a majority of cancer patients remains challenging. In order to improve both efficacy and safety of T cell-based immunotherapies, significant effort has been devoted to modulating biochemical signals to enhance T cell proliferation, effector functions, and longevity. Such strategies include discovery of new immune checkpoints, design of armored chimeric antigen receptor (CAR) T cells, and targeted delivery of stimulatory cytokines and so on.Despite the intense global research effort in developing novel cancer immunotherapies, a major dimension of the interactions between cancer and the immune system, its biomechanical aspect, has been largely underappreciated. Throughout their lifecycle, T cells constantly survey a multitude of organs and tissues and experience diverse biomechanical environments, such as shear force in the blood flow and a broad range of tissue stiffness. Furthermore, biomechanical properties of tissues or cells may be altered in disease and inflammation. Biomechanical cues, including both passive mechanical cues and active mechanical forces, have been shown to govern T cell development, activation, migration, differentiation, and effector functions. In other words, T cells can sense, respond to, and adapt to both passive mechanical cues and active mechanical forces.Biomechanical cues have been intensively studied at a fundamental level but are yet to be extensively incorporated in the design of immunotherapies. Nonetheless, the growing knowledge of T cell mechanobiology has formed the basis for the development of novel engineering strategies to mechanically modulate T cell immunity, a nascent field that we termed "mechanical immunoengineering". Mechanical immunoengineering exploits biomechanical cues (e.g., stiffness and external forces) to modulate T cell differentiation, proliferation, effector functions, etc., for diagnostic or therapeutic applications. It provides an additional dimension, complementary to traditional modulation of biochemical cues (e.g., antigen density and co-stimulatory signals), to tailor T cell immune responses and enhance therapeutic outcomes. For example, stiff antigen-presenting matrices have been shown to enhance T cell proliferation independently of the intensity of biochemical stimulatory signals. Current strategies of mechanical immunoengineering of T cells can be categorized into two major fields including passive mechanical cue-oriented and active force-oriented strategies. In this Account, we first present a brief overview of T cell mechanobiology. Next, we summarize recent advances in mechanical immunoengineering, discuss the roles of chemistry and material science in the development of these engineering strategies, and highlight potential therapeutic applications. Finally, we present our perspective on the future directions in mechanical immunoengineering and critical steps to translate mechanical immunoengineering strategies into therapeutic applications in the clinic.
Collapse
|
115
|
Mordechay L, Le Saux G, Edri A, Hadad U, Porgador A, Schvartzman M. Mechanical Regulation of the Cytotoxic Activity of Natural Killer Cells. ACS Biomater Sci Eng 2020; 7:122-132. [DOI: 10.1021/acsbiomaterials.0c01121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lital Mordechay
- Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| |
Collapse
|
116
|
Chen M, Zhang Y, Zhou P, Liu X, Zhao H, Zhou X, Gu Q, Li B, Zhu X, Shi Q. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway. Bioact Mater 2020; 5:880-890. [PMID: 32637751 PMCID: PMC7332470 DOI: 10.1016/j.bioactmat.2020.05.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
The stiffness of the extracellular matrix (ECM) plays an important role in regulating the cellular programming. However, the mechanical characteristics of ECM affecting cell differentiation are still under investigated. Herein, we aimed to study the effect of ECM substrate stiffness on macrophage polarization. We prepared polyacrylamide hydrogels with different substrate stiffness, respectively. After the hydrogels were confirmed to have a good biocompatibility, the bone marrow-derived macrophages (BMMs) from mice were incubated on the hydrogels. With simulated by the low substrate stiffness, BMMs displayed an enhanced expression of CD86 on the cell surface and production of reactive oxygen species (ROS) in cells, and secreted more IL-1β and TNF-α in the supernatant. On the contrary, stressed by the medium stiffness, BMMs expressed more CD206, produced less ROS, and secreted more IL-4 and TGF-β. In vivo study by delivered the hydrogels subcutaneously in mice, more CD68+CD86+ cells around the hydrogels with the low substrate stiffness were observed while more CD68+CD206+ cells near by the middle stiffness hydrogels. In addition, the expressions of NIK, phosphorylated p65 (pi-p65) and phosphorylated IκB (pi-IκB) were significantly increased after stimulation with low stiffness in BMMs. Taken together, these findings demonstrated that substrate stiffness could affect macrophages polarization. Low substrate stiffness promoted BMMs to shift to classically activated macrophages (M1) and the middle one to alternatively activated macrophages (M2), through modulating ROS-initiated NF-κB pathway. Therefore, we anticipated ECM-based substrate stiffness with immune modulation would be under consideration in the clinical applications if necessary.
Collapse
Affiliation(s)
- Mimi Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Yu Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Pinghui Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Xingzhi Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Huan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Xichao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Qiaoli Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Bin Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, 199 Renai Road, Suzhou, 215123, PR China
| |
Collapse
|
117
|
Veerasubramanian PK, Trinh A, Akhtar N, Liu WF, Downing TL. Biophysical and epigenetic regulation of cancer stemness, invasiveness and immune action. CURRENT TISSUE MICROENVIRONMENT REPORTS 2020; 1:277-300. [PMID: 33817661 PMCID: PMC8015331 DOI: 10.1007/s43152-020-00021-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The tumor microenvironment (TME) is an amalgam of multiple dysregulated biophysical cues that can alter cellular behavior through mechanotransductive signaling and epigenetic modifications. Through this review, we seek to characterize the extent of biophysical and epigenetic regulation of cancer stemness and tumor-associated immune cells in order to identify ideal targets for cancer therapy. RECENT FINDINGS Recent studies have identified cancer stemness and immune action as significant contributors to neoplastic disease, due to their susceptibility to microenvironmental influences. Matrix stiffening, altered vasculature, and resultant hypoxia within the TME can influence cancer stem cell (CSC) and immune cell behavior, as well as alter the epigenetic landscapes involved in cancer development. SUMMARY This review highlights the importance of aberrant biophysical cues in driving cancer progression through altered behavior of CSCs and immune cells, which in turn sustains further biophysical dysregulation. We examine current and potential therapeutic approaches that break this self-sustaining cycle of disease progression by targeting the presented biophysical and epigenetic signatures of cancer. We also summarize strategies including the normalization of the TME, targeted drug delivery, and inhibition of cancer-enabling epigenetic players.
Collapse
Affiliation(s)
- Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Annie Trinh
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
| | - Navied Akhtar
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA, USA
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
118
|
Matus EI, Sparkes A, Gariépy J. A soluble activator that favors the ex vivo expansion of CD8+CD27+ T cells. JCI Insight 2020; 5:141293. [PMID: 33208551 PMCID: PMC7710272 DOI: 10.1172/jci.insight.141293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 01/25/2023] Open
Abstract
Adoptive cell therapy involves the infusion of tumor-reactive T cells into patients with cancer to provide antitumor immunity. The ex vivo expansion and differentiation of such T cells are key parameters that affect their therapeutic potential. Human T cells are presently expanded in culture through the use of anti-CD3 and anti-CD28 mAbs immobilized on beads, expressed on cells, or assembled in the context of soluble antibody complexes. Here we report the design of a small, bispecific single-chain variable fragment construct agonizing both CD3 and CD28 pathways. This soluble T cell expansion protein, termed T-CEP, activates, expands, and differentiates human T cells ex vivo at concentrations in the femtomolar range. Importantly, T-CEP promotes the preferential growth of human CD8+ T cells over the course of 12 days in comparison with methods involving immobilized anti-CD3 mAb/soluble anti-CD28 mAb or soluble anti-CD3/CD28 mAb complexes. The differentiation profile of the resulting human T cell population is also singularly affected by T-CEP, favoring the expansion of a preferred CD8+CD27+ T cell phenotype. The activity profile of T-CEP on human T cells ex vivo suggests its use in generating human T cell populations that are more suited for adoptive cell therapy. A bispecific protein construct is described that rapidly expands primary human T cell populations ex vivo at femtomolar concentrations with desirable phenotypic properties for adoptive cell therapy.
Collapse
Affiliation(s)
- Esther I Matus
- Sunnybrook Research Institute.,Department of Medical Biophysics, and
| | | | - Jean Gariépy
- Sunnybrook Research Institute.,Department of Medical Biophysics, and.,Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada, USA
| |
Collapse
|
119
|
Chin MW, Norman MDA, Gentleman E, Coppens MO, Day RM. A Hydrogel-Integrated Culture Device to Interrogate T Cell Activation with Physicochemical Cues. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47355-47367. [PMID: 33027591 PMCID: PMC7586298 DOI: 10.1021/acsami.0c16478] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The recent rise of adoptive T cell therapy (ATCT) as a promising cancer immunotherapy has triggered increased interest in therapeutic T cell bioprocessing. T cell activation is a critical processing step and is known to be modulated by physical parameters, such as substrate stiffness. Nevertheless, relatively little is known about how biophysical factors regulate immune cells, such as T cells. Understanding how T cell activation is modulated by physical and biochemical cues may offer novel methods to control cell behavior for therapeutic cell processing. Inspired by T cell mechanosensitivity, we developed a multiwell, reusable, customizable, two-dimensional (2D) polyacrylamide (PA) hydrogel-integrated culture device to study the physicochemical stimulation of Jurkat T cells. Substrate stiffness and ligand density were tuned by concentrations of the hydrogel cross-linker and antibody in the coating solution, respectively. We cultured Jurkat T cells on 2D hydrogels of different stiffnesses that presented surface-immobilized stimulatory antibodies against CD3 and CD28 and demonstrated that Jurkat T cells stimulated by stiff hydrogels (50.6 ± 15.1 kPa) exhibited significantly higher interleukin-2 (IL-2) secretion, but lower proliferation, than those stimulated by softer hydrogels (7.1 ± 0.4 kPa). In addition, we found that increasing anti-CD3 concentration from 10 to 30 μg/mL led to a significant increase in IL-2 secretion from cells stimulated on 7.1 ± 0.4 and 9.3 ± 2.4 kPa gels. Simultaneous tuning of substrate stiffness and stimulatory ligand density showed that the two parameters synergize (two-way ANOVA interaction effect: p < 0.001) to enhance IL-2 secretion. Our results demonstrate the importance of physical parameters in immune cell stimulation and highlight the potential of designing future immunostimulatory biomaterials that are mechanically tailored to balance stimulatory strength and downstream proliferative capacity of therapeutic T cells.
Collapse
Affiliation(s)
- Matthew
H. W. Chin
- Centre
for Precision Healthcare, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
- Centre
for Nature Inspired Engineering, University
College London, London WC1E 6BT, United Kingdom
| | - Michael D. A. Norman
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Eileen Gentleman
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Marc-Olivier Coppens
- Centre
for Nature Inspired Engineering, University
College London, London WC1E 6BT, United Kingdom
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, United Kingdom
| | - Richard M. Day
- Centre
for Precision Healthcare, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
- Centre
for Nature Inspired Engineering, University
College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
120
|
Fu X, Zhang P, Song H, Wu C, Li S, Li S, Yan C. LTBP1 plays a potential bridge between depressive disorder and glioblastoma. J Transl Med 2020; 18:391. [PMID: 33059753 PMCID: PMC7566028 DOI: 10.1186/s12967-020-02509-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant tumor in human brain. Diagnosis and treatment of GBM may lead to psychological disorders such as depressive and anxiety disorders. There was no research focusing on the correlation between depressive/anxiety disorder and the outcome of GBM. Thus, the aim of this study was to investigate the possibility of depressive/anxiety disorder correlated with the outcome of GBM patients, as well as the overlapped mechanism bridge which could link depressive/anxiety disorders and GBM. Methods Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder (GAD-7) were used to investigate the psychological condition of GBM patients in our department. To further explore the potential mechanism, bioinformatic methods were used to screen out genes that could be indicators of outcome in GBM, followed by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein–protein interaction (PPI) analysis. Further, cellular experiments were conducted to evaluate the proliferation, migration capacity of primary GBM cells from the patients. Results It was revealed that patients with higher PHQ-9 and GAD-7 scores had significantly worse prognosis than their lower-scored counterparts. Bioinformatic mining revealed that LTBP1 could be a potential genetic mechanism in both depressive/anxiety disorder and GBM. Primary GBM cells with different expression level of LTBP1 should significantly different proliferation and migration capacity. GO, KEGG analysis confirmed that extracellular matrix (ECM) was the most enriched function of LTBP1. PPI network showed the interaction of proteins altered by LTBP1. Hub genes COL1A2, COL5A1 and COL10A1, as well as mesenchymal marker CD44 and Vimentin were statistically higher expressed in LTBP1 high group; while proneural marker E-cadherin was significantly higher expressed in low LTBP1 group. Conclusion There is closely correlation between depressive/anxiety disorders and GBM. LTBP1 could be a potential bridge linking the two diseases through the regulation of ECM.
Collapse
Affiliation(s)
- Xiaojun Fu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.,Capital Medical University, Beijing, People's Republic of China
| | - Pei Zhang
- Beijing Institute of Technology, Beijing, China
| | - Hongwang Song
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chenxing Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China
| | | | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| | - Changxiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| |
Collapse
|
121
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
122
|
Lustig A, Manor T, Shi G, Li J, Wang YT, An Y, Liu YT, Weng NP. Lipid Microbubble-Conjugated Anti-CD3 and Anti-CD28 Antibodies (Microbubble-Based Human T Cell Activator) Offer Superior Long-Term Expansion of Human Naive T Cells In Vitro. Immunohorizons 2020; 4:475-484. [PMID: 32769179 PMCID: PMC10433792 DOI: 10.4049/immunohorizons.2000056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
Stimulation of human primary T cells with immobilized anti-CD3 and anti-CD28 Abs in vitro provide a system to study T cell activation and proliferation and an avenue for expanding T cells for immunotherapy. Magnetic beads conjugated with anti-CD3 and anti-CD28 Abs (Dynabeads Human T-Activator [D-TCA]) have been a golden standard for stimulating human primary T cells in vitro. In this study, we report that an application using anti-CD3 and anti-CD28 Abs conjugated on lipid microbubbles (microbubble-based human T cell activator [MB-TCA]) to stimulate primary human naive T cells resulted in expansion superior to D-TCA. In 56-d cultures with three repeated stimulation cycles (14 d per stimulation), we found that 1) MB-TCA induced significantly better expansion (20- and 10-fold increase) of naive CD4+ and CD8+ T cells than did D-TCA; 2) MB-TCA- and D-TCA-stimulated T cells had a similar number of initial cell divisions, but MB-TCA had significantly lower activation-induced cell death than D-TCA; 3) MB-TCA-stimulated T cells produced less TNF-α than did D-TCA; and 4) blocking TNF-α action via adding an Ab against TNF-αR (TNFRSF1A) significantly improved expansion of T cells activated by D-TCA in vitro. Together, we demonstrated that the MB-TCA induces a better expansion of human naive T cells in vitro and offers advantages in both basic and clinical applications in which the outcome depends on the number of T cells.
Collapse
Affiliation(s)
- Ana Lustig
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Ty'Keemi Manor
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | | | - Jiangyuan Li
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | | | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Yu-Tsueng Liu
- University of California, San Diego, San Diego, CA 92093
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224;
| |
Collapse
|
123
|
Chaudhuri PK, Wang MS, Black CT, Huse M, Kam LC. Modulating T Cell Activation Using Depth Sensing Topographic Cues. ACTA ACUST UNITED AC 2020; 4:e2000143. [PMID: 32744809 DOI: 10.1002/adbi.202000143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Indexed: 12/11/2022]
Abstract
This report examines how sensing of substrate topography can be used to modulate T cell activation, a key coordinating step in the adaptive immune response. Inspired by the native T cell-antigen presenting cell interface, micrometer scale pits with varying depth are fabricated into planar substrates. Primary CD4+ T cells extend actin-rich protrusions into the micropits. T cell activation, reflected in secretion of cytokines interleukin-2 and interferon gamma, is sensitive to the micropit depth. Surprisingly, arrays of micropits with 4 μm depth enhance activation compared to flat substrates but deeper micropits are less effective at increasing cell response, revealing a biphasic dependence in activation as a function of feature dimensions. Inhibition of cell contractility abrogates the enhanced activation associated with the micropits. In conclusion, this report demonstrates that the 3D, microscale topography can be used to enhance T cell activation, an ability that most directly can be used to improve production of these cells for immunotherapy.
Collapse
Affiliation(s)
| | - Mitchell S Wang
- Pharmacology Graduate Program, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
124
|
Jürgensen HJ, van Putten S, Nørregaard KS, Bugge TH, Engelholm LH, Behrendt N, Madsen DH. Cellular uptake of collagens and implications for immune cell regulation in disease. Cell Mol Life Sci 2020; 77:3161-3176. [PMID: 32100084 PMCID: PMC11105017 DOI: 10.1007/s00018-020-03481-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.
Collapse
Affiliation(s)
- Henrik J Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark.
| | - Sander van Putten
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Kirstine S Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730, Herlev, Denmark.
| |
Collapse
|
125
|
Blumenthal D, Chandra V, Avery L, Burkhardt JK. Mouse T cell priming is enhanced by maturation-dependent stiffening of the dendritic cell cortex. eLife 2020; 9:e55995. [PMID: 32720892 PMCID: PMC7417170 DOI: 10.7554/elife.55995] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
T cell activation by dendritic cells (DCs) involves forces exerted by the T cell actin cytoskeleton, which are opposed by the cortical cytoskeleton of the interacting antigen-presenting cell. During an immune response, DCs undergo a maturation process that optimizes their ability to efficiently prime naïve T cells. Using atomic force microscopy, we find that during maturation, DC cortical stiffness increases via a process that involves actin polymerization. Using stimulatory hydrogels and DCs expressing mutant cytoskeletal proteins, we find that increasing stiffness lowers the agonist dose needed for T cell activation. CD4+ T cells exhibit much more profound stiffness dependency than CD8+ T cells. Finally, stiffness responses are most robust when T cells are stimulated with pMHC rather than anti-CD3ε, consistent with a mechanosensing mechanism involving receptor deformation. Taken together, our data reveal that maturation-associated cytoskeletal changes alter the biophysical properties of DCs, providing mechanical cues that costimulate T cell activation.
Collapse
Affiliation(s)
- Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Vidhi Chandra
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Lyndsay Avery
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
126
|
Ghassemi S, Martinez-Becerra FJ, Master AM, Richman SA, Heo D, Leferovich J, Tu Y, García-Cañaveras JC, Ayari A, Lu Y, Wang A, Rabinowitz JD, Milone MC, June CH, O'Connor RS. Enhancing Chimeric Antigen Receptor T Cell Anti-tumor Function through Advanced Media Design. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:595-606. [PMID: 32775494 PMCID: PMC7397397 DOI: 10.1016/j.omtm.2020.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Effective chimeric antigen receptor (CAR)-T cell therapy is dependent on optimal cell culture methods conducive to the activation and expansion of T cells ex vivo, as well as infection with CAR. Media formulations used in CAR-T cell manufacturing have not been optimized for gene delivery, cell expansion, and overall potency. Bioactive components and derivatives that support the generation of functionally-competent T cell progeny with long-lasting persistence are largely undefined. Current media formulations rely on fetal bovine serum (FBS) or human serum (HS), which suffer from a lack of consistency or supply issues. We recognize that components of blood cellular fractions that are absent in serum may have therapeutic value. Here we investigate whether a concentrated growth factor extract, purified from human transfusion grade whole blood fractions, and marketed as PhysiologixTM xeno-free (XF) hGFC (Phx), supports CAR-T cell expansion and function. We show that Phx supports T cell proliferation in clinical and research-grade media. We also show that Phx treatment enhances lentiviral-mediated gene expression across a wide range of multiplicity of infections (MOIs). We compared the ability of anti-GD-2 CAR-T cells expanded ex vivo in medium conditioned with either Phx or HS to clear tumor burden in a human xenograft model of neuroblastoma. We show that T cells expanded in Phx have superior engraftment and potency in vivo, as well as CAR-induced cytolytic activity in vitro. Metabolomic profiling revealed several factors unique to Phx that may have relevance for CAR-T cell preclinical discovery, process development, and manufacturing. In particular, we show that carnosine, a biogenic amine modestly enriched in Phx relative to HS, enhances lentiviral gene delivery in activated T cells. By limiting extracellular acidification, carnosine enhances the metabolic fitness of T cells, shifting their metabolic profile from an acidic, stressed state toward an oxidative, energetic state. These findings are very informative regarding potential derivatives to include in medium customized for gene delivery and overall potency for T cell adoptive immunotherapies.
Collapse
Affiliation(s)
- Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Sarah A Richman
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Heo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Leferovich
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yitao Tu
- Department of Biological Physics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Asma Ayari
- Nucleus Biologics, LLC, San Diego, CA, USA
| | - Yinan Lu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ai Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Singer Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael C Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
127
|
Integrating the Tumor Microenvironment into Cancer Therapy. Cancers (Basel) 2020; 12:cancers12061677. [PMID: 32599891 PMCID: PMC7352326 DOI: 10.3390/cancers12061677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor progression is mediated by reciprocal interaction between tumor cells and their surrounding tumor microenvironment (TME), which among other factors encompasses the extracellular milieu, immune cells, fibroblasts, and the vascular system. However, the complexity of cancer goes beyond the local interaction of tumor cells with their microenvironment. We are on the path to understanding cancer from a systemic viewpoint where the host macroenvironment also plays a crucial role in determining tumor progression. Indeed, growing evidence is emerging on the impact of the gut microbiota, metabolism, biomechanics, and the neuroimmunological axis on cancer. Thus, external factors capable of influencing the entire body system, such as emotional stress, surgery, or psychosocial factors, must be taken into consideration for enhanced management and treatment of cancer patients. In this article, we review prognostic and predictive biomarkers, as well as their potential evaluation and quantitative analysis. Our overarching aim is to open up new fields of study and intervention possibilities, within the framework of an integral vision of cancer as a functional tissue with the capacity to respond to different non-cytotoxic factors, hormonal, immunological, and mechanical forces, and others inducing stroma and tumor reprogramming.
Collapse
|
128
|
Alatoom A, Sapudom J, Soni P, Mohamed WKE, Garcia-Sabaté A, Teo J. Artificial Biosystem for Modulation of Interactions between Antigen-Presenting Cells and T Cells. ACTA ACUST UNITED AC 2020; 4:e2000039. [PMID: 32453495 DOI: 10.1002/adbi.202000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Indexed: 12/12/2022]
Abstract
T cell activation is triggered by signal molecules on the surface of antigen-presenting cells (APC) and subsequent exertion of cellular forces. Deciphering the biomechanical and biochemical signals in this complex process is of interest and will contribute to an improvement in immunotherapy strategies. To address underlying questions, coculture and biomimetic models are established. Mature dendritic cells (mDC) are first treated with cytochalasin B (CytoB), a cytoskeletal disruption agent known to lower apparent cellular stiffness and reduction in T cell proliferation is observed. It is attempted to mimic mDC and T cell interactions using polyacrylamide (PA) gels with defined stiffness corresponding to mDC (0.2-25 kPa). Different ratios of anti-CD3 (aCD3) and anti-CD28 (aCD28) antibodies are immobilized onto PA gels. The results show T cell proliferation is triggered by both aCD3 and aCD28 in a stiffness-dependent manner. Cells cultured on aCD3 immobilized on gels has significantly enhanced proliferation and IL-2 secretion, compared to aCD28. Furthermore, ZAP70 phosphorylation is enhanced in stiffer substrate a in a aCD3-dependent manner. The biosystem provides an approach to study the reduction of T cell proliferation observed on CytoB-treated mDC. Overall, the biosystem allows distinguishing the impact of biophysical and biochemical signals of APC and T cell interactions in vitro.
Collapse
Affiliation(s)
- Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Priya Soni
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Walaa Kamal E Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Department of Mechanical Engineering, Tandon School of Engineering New York University, USA.,Department of Biomedical Engineering, Tandon School of Engineering New York University, USA
| |
Collapse
|
129
|
Abdalla AME, Xiao L, Miao Y, Huang L, Fadlallah GM, Gauthier M, Ouyang C, Yang G. Nanotechnology Promotes Genetic and Functional Modifications of Therapeutic T Cells Against Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903164. [PMID: 32440473 PMCID: PMC7237845 DOI: 10.1002/advs.201903164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Indexed: 05/24/2023]
Abstract
Growing experience with engineered chimeric antigen receptor (CAR)-T cells has revealed some of the challenges associated with developing patient-specific therapy. The promising clinical results obtained with CAR-T therapy nevertheless demonstrate the urgency of advancements to promote and expand its uses. There is indeed a need to devise novel methods to generate potent CARs, and to confer them and track their anti-tumor efficacy in CAR-T therapy. A potentially effective approach to improve the efficacy of CAR-T cell therapy would be to exploit the benefits of nanotechnology. This report highlights the current limitations of CAR-T immunotherapy and pinpoints potential opportunities and tremendous advantages of using nanotechnology to 1) introduce CAR transgene cassettes into primary T cells, 2) stimulate T cell expansion and persistence, 3) improve T cell trafficking, 4) stimulate the intrinsic T cell activity, 5) reprogram the immunosuppressive cellular and vascular microenvironments, and 6) monitor the therapeutic efficacy of CAR-T cell therapy. Therefore, genetic and functional modifications promoted by nanotechnology enable the generation of robust CAR-T cell therapy and offer precision treatments against cancer.
Collapse
Affiliation(s)
- Ahmed M. E. Abdalla
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Department of BiochemistryCollege of Applied ScienceUniversity of BahriKhartoum1660/11111Sudan
| | - Lin Xiao
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yu Miao
- Department of Vascular SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Lixia Huang
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsSchool of Chemistry and Life SciencesHubei University of EducationWuhan430205China
| | - Gendeal M. Fadlallah
- Department of Chemistry and BiologyFaculty of EducationUniversity of GeziraWad‐Medani2667Sudan
| | - Mario Gauthier
- Department of ChemistryUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Chenxi Ouyang
- Department of Vascular SurgeryFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Guang Yang
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
130
|
Kristi N, Gafur A, Kong L, Ma X, Ye Z, Wang G. Atomic Force Microscopy in Mechanoimmunology Analysis: A New Perspective for Cancer Immunotherapy. Biotechnol J 2020; 15:e1900559. [PMID: 32240578 DOI: 10.1002/biot.201900559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/08/2020] [Indexed: 01/05/2023]
Abstract
Immunotherapy has remarkable success outcomes against hematological malignancies with high rates of complete remission. To date, many studies have been conducted to increase its effectiveness in other types of cancer. However, it still yields unsatisfying results in solid tumor therapy. This limitation is partly attributed to the lack of understanding of how immunotherapy works in cancer from other perspectives. The traditional studies focus on the biological and chemical perspectives to determine which molecular substrates are involved in the immune system that can eradicate cancer cells. In the last decades, accumulating evidence has shown that physical properties also play important roles in the immune system to combat cancer, which is studied in mechanoimmunology. Mechanoimmunology analysis requires special tools; and herein, atomic force microscopy (AFM) appears as a versatile tool to determine and quantify the mechanical properties of a sample in nanometer precisions. Owing to its multifunctional capabilities, AFM can be used to explore immune system function from the physical perspective. This review paper explains the mechanoimmunology of how immune systems work through AFM, which includes mechanosignaling, mechanosensing, and mechanotransduction, with the aim to deepen the understanding of the mechanistic role of immunotherapy for further development in cancer treatment.
Collapse
Affiliation(s)
- Natalia Kristi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| | - Alidha Gafur
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, 400014, P. R. China
| | - Xinshuang Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| |
Collapse
|
131
|
Majedi FS, Hasani-Sadrabadi MM, Thauland TJ, Li S, Bouchard LS, Butte MJ. T-cell activation is modulated by the 3D mechanical microenvironment. Biomaterials 2020; 252:120058. [PMID: 32413594 DOI: 10.1016/j.biomaterials.2020.120058] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
Abstract
T cells recognize mechanical forces through a variety of cellular pathways, including mechanical triggering of both the T-cell receptor (TCR) and integrin LFA-1. Here we show that T cells can recognize forces arising from the mechanical rigidity of the microenvironment. We fabricated 3D scaffold matrices with mechanical stiffness tuned to the range 4-40 kPa and engineered them to be microporous, independently of stiffness. We cultured T cells and antigen presenting cells within the matrices and studied T-cell activation by flow cytometry and live-cell imaging. We found that there was an augmentation of T-cell activation, proliferation, and migration speed in the context of mechanically stiffer 3D matrices as compared to softer materials. These results show that T cells can sense their 3D mechanical environment and alter both their potential for activation and their effector responses in different mechanical environments. A 3D scaffold of tunable stiffness and consistent microporosity offers a biomaterial advancement for both translational applications and reductionist studies on the impact of tissue microenvironmental factors on cellular behavior.
Collapse
Affiliation(s)
- Fatemeh S Majedi
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Timothy J Thauland
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Louis-S Bouchard
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
132
|
Schwartz D, Iyengar S. Recognition of Apoptotic Cells by Viruses and Cytolytic Lymphocytes: Target Selection in the Fog of War. Viral Immunol 2020; 33:188-196. [PMID: 32286181 PMCID: PMC7185367 DOI: 10.1089/vim.2019.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viruses and cytolytic lymphocytes operate in an environment filled with dying and dead cells, and cell fragments. For viruses, irreversible fusion with doomed cells is suicide. For cytotoxic T lymphocyte and natural killer cells, time and limited lytic resources spent on apoptotic targets is wasteful and may result in death of the host. We make the case that the target membrane cytoskeleton is the best source of information regarding the suitability of potential targets for engagement for both viruses and lytic effector cells, and we present experimental evidence for detection of apoptotic cells by HIV, without loss of infectivity.
Collapse
Affiliation(s)
- David Schwartz
- Jurist Research Department, Hackensack University Medical Center, Hackensack, New Jersey
| | - Sujatha Iyengar
- Jurist Research Department, Hackensack University Medical Center, Hackensack, New Jersey
| |
Collapse
|
133
|
Moreau HD, Lennon-Duménil AM, Pierobon P. “If you please… draw me a cell”. Insights from immune cells. J Cell Sci 2020; 133:133/5/jcs244806. [DOI: 10.1242/jcs.244806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Studies in recent years have shed light on the particular features of cytoskeleton dynamics in immune cells, challenging the classical picture drawn from typical adherent cell lines. New mechanisms linking the dynamics of the membrane–cytoskeleton interface to the mechanical properties of immune cells have been uncovered and shown to be essential for immune surveillance functions. In this Essay, we discuss these features, and propose immune cells as a new playground for cell biologists who try to understand how cells adapt to different microenvironments to fulfil their functions efficiently.
Collapse
Affiliation(s)
- Hélène D. Moreau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| | - Ana-Maria Lennon-Duménil
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| | - Paolo Pierobon
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| |
Collapse
|
134
|
Rushdi M, Li K, Yuan Z, Travaglino S, Grakoui A, Zhu C. Mechanotransduction in T Cell Development, Differentiation and Function. Cells 2020; 9:E364. [PMID: 32033255 PMCID: PMC7072571 DOI: 10.3390/cells9020364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Cells in the body are actively engaging with their environments that include both biochemical and biophysical aspects. The process by which cells convert mechanical stimuli from their environment to intracellular biochemical signals is known as mechanotransduction. Exemplifying the reliance on mechanotransduction for their development, differentiation and function are T cells, which are central to adaptive immune responses. T cell mechanoimmunology is an emerging field that studies how T cells sense, respond and adapt to the mechanical cues that they encounter throughout their life cycle. Here we review different stages of the T cell's life cycle where existing studies have shown important effects of mechanical force or matrix stiffness on a T cell as sensed through its surface molecules, including modulating receptor-ligand interactions, inducing protein conformational changes, triggering signal transduction, amplifying antigen discrimination and ensuring directed targeted cell killing. We suggest that including mechanical considerations in the immunological studies of T cells would inform a more holistic understanding of their development, differentiation and function.
Collapse
Affiliation(s)
- Muaz Rushdi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Kaitao Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Zhou Yuan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30313, USA
| | - Stefano Travaglino
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, GA 30329, USA;
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.R.); (K.L.); (S.T.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30313, USA
| |
Collapse
|
135
|
Blumenthal D, Burkhardt JK. Multiple actin networks coordinate mechanotransduction at the immunological synapse. J Cell Biol 2020; 219:e201911058. [PMID: 31977034 PMCID: PMC7041673 DOI: 10.1083/jcb.201911058] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Activation of naive T cells by antigen-presenting cells (APCs) is an essential step in mounting an adaptive immune response. It is known that antigen recognition and T cell receptor (TCR) signaling depend on forces applied by the T cell actin cytoskeleton, but until recently, the underlying mechanisms have been poorly defined. Here, we review recent advances in the field, which show that specific actin-dependent structures contribute to the process in distinct ways. In essence, T cell priming involves a tug-of-war between the cytoskeletons of the T cell and the APC, where the actin cytoskeleton serves as a mechanical intermediate that integrates force-dependent signals. We consider each of the relevant actin-rich T cell structures separately and address how they work together at the topologically and temporally complex cell-cell interface. In addition, we address how this mechanobiology can be incorporated into canonical immunological models to improve how these models explain T cell sensitivity and antigenic specificity.
Collapse
Affiliation(s)
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
136
|
Synthetic 3D scaffolds for cancer immunotherapy. Curr Opin Biotechnol 2019; 65:1-8. [PMID: 31838435 DOI: 10.1016/j.copbio.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Recent clinical success of systemic cancer immunotherapy has paved the way for the next-generation therapeutics. Nevertheless, cancer immunotherapies, in particular combination therapies, are associated in some cases with severe side effects and low response rates. Synthetic scaffolds have emerged as a promising platform to deliver immunotherapeutic agents locally. Placed at strategic locations of the body, scaffolds can reduce side effects while increasing the concentration of the agent at the site of interest. Moreover, scaffolds can mimic the context, in which biochemical cues are presented in vivo to enhance cell modulation. Recent research has focused on designing three-dimensional (3D) scaffolds with specific properties to modulate the antitumor response at various stages of the cancer immunity cycle. As the number of immunotherapies in clinical trials is soaring, it is essential to critically evaluate the role that scaffolds can play in improving the safety and efficacy of existing and future therapies.
Collapse
|
137
|
He J, Chen G, Liu M, Xu Z, Chen H, Yang L, Lv Y. Scaffold strategies for modulating immune microenvironment during bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110411. [PMID: 31923946 DOI: 10.1016/j.msec.2019.110411] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Implanted bone scaffolds often fail to successfully integrate with the host tissue because they do not elicit a favorable immune reaction. Properties of bone scaffold not only provide mechanical and chemical signals to support cell adhesion, migration, proliferation and differentiation, but also play a pivotal role in determining the extent of immune response during bone regeneration. Appropriate design parameters of bone scaffold are of great significance in the process of developing a new generation of bone implants. Herein, this article addresses the recent advances in the field of bone scaffolds for immune response, particularly focusing on the physical and chemical properties of bone scaffold in manipulating the host response. Furthermore, incorporation of bioactive molecules and cells with immunoregulatory function in bone scaffolds are also presented. Finally, continuing challenges and future directions of scaffold-based strategies for modulating immune microenvironment are discussed.
Collapse
Affiliation(s)
- Jianhua He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Guobao Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Mengying Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zhiling Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Hua Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
138
|
O'Melia MJ, Lund AW, Thomas SN. The Biophysics of Lymphatic Transport: Engineering Tools and Immunological Consequences. iScience 2019; 22:28-43. [PMID: 31739172 PMCID: PMC6864335 DOI: 10.1016/j.isci.2019.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/25/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Lymphatic vessels mediate fluid flows that affect antigen distribution and delivery, lymph node stromal remodeling, and cell-cell interactions, to thus regulate immune activation. Here we review the functional role of lymphatic transport and lymph node biomechanics in immunity. We present experimental tools that enable quantitative analysis of lymphatic transport and lymph node dynamics in vitro and in vivo. Finally, we discuss the current understanding for how changes in lymphatic transport and lymph node biomechanics contribute to pathogenesis of conditions including cancer, aging, neurodegeneration, and infection.
Collapse
Affiliation(s)
- Meghan J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Amanda W Lund
- Departments of Cell Developmental Cancer Biology, Molecular Microbiology & Immunology, and Dermatology, Knight Cancer Institute, Oregon Health & Science University, 2720 SW Moody Avenue, KR-CDCB, Portland, OR 97239, USA.
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, 315 Ferst Dr NW, Georgia Institute of Technology, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, 801 Ferst Dr NW, Georgia Institute of Technology, Atlanta, GA 30332, USA; Winship Cancer Institute, 1365 Clifton Rd, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
139
|
Brown Adipocyte and Splenocyte Co-Culture Maintains Regulatory T Cell Subset in Intermittent Hypobaric Conditions. Tissue Eng Regen Med 2019; 16:539-548. [PMID: 31624708 PMCID: PMC6778593 DOI: 10.1007/s13770-019-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/15/2019] [Accepted: 07/16/2019] [Indexed: 11/02/2022] Open
Abstract
Background Brown adipocytes have thermogenic characteristics in neonates and elicit anti-inflammatory responses. We postulated that thermogenic brown adipocytes produce distinctive intercellular effects in a hypobaric state. The purpose of this study is to analyze the correlation between brown adipocyte and regulatory T cell (Treg) expression under intermittent hypobaric conditions. Methods Brown and white adipocytes were harvested from the interscapular and flank areas of C57BL6 mice, respectively. Adipocytes were cultured with syngeneic splenocytes after isolation and differentiation. Intermittent hypobaric conditions were generated using cyclic negative pressure application for 48 h in both groups of adipocytes. Expression levels of Tregs (CD4 + CD25 + Foxp3 + T cells), cytokines [tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10), and the programmed death-ligand 1 (PD-L1)] co-inhibitory ligand were examined. Results Splenocytes, cultured with brown and white adipocytes, exhibited comparable Treg expression in a normobaric state. Under hypobaric conditions, brown adipocytes maintained a subset of Tregs. However, a decrease in Tregs was found in the white adipocyte group. TNF-α levels increased in both groups under hypobaric conditions. In the brown adipocyte group, anti-inflammatory IL-10 expression increased significantly; meanwhile, IL-10 expression decreased in the white adipocyte group. PD-L1 levels increased more significantly in brown adipocytes than in white adipocytes under hypobaric conditions. Conclusion Both brown and white adipocytes support Treg expression when they are cultured with splenocytes. Of note, brown adipocytes maintained Treg expression in intermittent hypobaric conditions. Anti-inflammatory cytokines and co-inhibitory ligands mediate the immunomodulatory effects of brown adipocytes under altered atmospheric conditions. Brown adipocytes showed the feasibility as a source of adjustment in physical stresses.
Collapse
|
140
|
Abstract
The immune response is orchestrated by a variety of immune cells. The function of each cell is determined by the collective signals from various immunoreceptors, whose expression and activity depend on the developmental stages of the cell and its environmental context. Recent studies have highlighted the presence of mechanical force on several immunoreceptor-ligand pairs and the important role of force in regulating their interaction and function. In this Perspective, we use the T cell antigen receptor as an example with which to review the current understanding of the mechanosensing properties of immunoreceptors. We discuss the types of forces that immunoreceptors may encounter and the effects of force on ligand bonding, conformational change and the triggering of immunoreceptors, as well as the effects of force on the downstream signal transduction, cell-fate decisions and effector function of immune cells.
Collapse
|
141
|
T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proc Natl Acad Sci U S A 2019; 116:19835-19840. [PMID: 31527238 DOI: 10.1073/pnas.1906986116] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells have the remarkable ability to sense the mechanical stiffness of their surroundings. This has been studied extensively in the context of cells interacting with planar surfaces, a conceptually elegant model that also has application in biomaterial design. However, physiological interfaces are spatially complex, exhibiting topographical features that are described over multiple scales. This report explores mechanosensing of microstructured elastomer surfaces by CD4+ T cells, key mediators of the adaptive immune response. We show that T cells form complex interactions with elastomer micropillar arrays, extending processes into spaces between structures and forming local areas of contraction and expansion dictated by the layout of microtubules within this interface. Conversely, cytoskeletal reorganization and intracellular signaling are sensitive to the pillar dimensions and flexibility. Unexpectedly, these measures show different responses to substrate rigidity, suggesting competing processes in overall T cell mechanosensing. The results of this study demonstrate that T cells sense the local rigidity of their environment, leading to strategies for biomaterial design.
Collapse
|
142
|
|
143
|
Yan XZ, van den Beucken JJJP, Yuan C, Jansen JA, Yang F. Evaluation of polydimethylsiloxane-based substrates for in vitro culture of human periodontal ligament cells. J Biomed Mater Res A 2019; 107:2796-2805. [PMID: 31408269 DOI: 10.1002/jbm.a.36782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
Periodontal ligament (PDL) cells are regarded as the cell type with the highest potential for periodontal regeneration. Biophysical cues of the culture substrate are increasingly identified as vital parameters to affect cell behavior. Compared to traditional tissue culture polystyrene (TCPS), polydimethylsiloxane (PDMS) substrates corroborate more closely the elastic modulus values of the physiological environment. Consequently, the aim of this study was to evaluate the effect of PDMS-based substrates with different stiffness on cellular responses of human PDL cells. PDMS substrates with different stiffness were fabricated by varying the ratio of base to curing component. The influence of PDMS substrates on PDL cell spreading and cytoskeletal morphologies, motility, proliferation, stemness gene expression, and osteogenic differentiation was evaluated and compared to that on conventional TCPS. PDL cells cultured on PDMS substrates exhibited a smaller cell size and more elongated morphology, with less spreading area, fewer focal adhesions, and faster migration than cells on TCPS. Compared to TCPS, PDMS substrates promoted the rapid in vitro expansion of PDL cells without interfering with their self-renewal ability. In contrast, the osteogenic differentiation ability of PDL cells cultured on PDMS was lower in comparison to cells on TCPS. PDL cells on PDMS exhibited similar cell morphology, motility, proliferation, and self-renewal gene expression. The stiffer PDMS substrate increased the osteogenic gene expression of PDL cells compared to the soft PDMS group in one donor. These data indicate that PDMS-based substrates have the potential for the efficient PDL cell expansion.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- Department of Periodontology, School and hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | | | - Chunxue Yuan
- College of Materials Science and Engineering, Tongji University, Shanghai, China
| | - John A Jansen
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fang Yang
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
144
|
Nallanthighal S, Heiserman JP, Cheon DJ. The Role of the Extracellular Matrix in Cancer Stemness. Front Cell Dev Biol 2019; 7:86. [PMID: 31334229 PMCID: PMC6624409 DOI: 10.3389/fcell.2019.00086] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
As our understanding of cancer cell biology progresses, it has become clear that tumors are a heterogenous mixture of different cell populations, some of which contain so called "cancer stem cells" (CSCs). Hallmarks of CSCs include self-renewing capability, tumor-initiating capacity and chemoresistance. The extracellular matrix (ECM), a major structural component of the tumor microenvironment, is a highly dynamic structure and increasing evidence suggests that ECM proteins establish a physical and biochemical niche for CSCs. In cancer, abnormal ECM dynamics occur due to disrupted balance between ECM synthesis and secretion and altered expression of matrix-remodeling enzymes. Tumor-derived ECM is biochemically distinct in its composition and is stiffer compared to normal ECM. In this review, we will provide a brief overview of how different components of the ECM modulate CSC properties then discuss how physical, mechanical, and biochemical cues from the ECM drive cancer stemness. Given the fact that current CSC targeting therapies face many challenges, a better understanding of CSC-ECM interactions will be crucial to identify more effective therapeutic strategies to eliminate CSCs.
Collapse
Affiliation(s)
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
145
|
Aramesh M, Stoycheva D, Raaz L, Klotzsch E. Engineering T-cell activation for immunotherapy by mechanical forces. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
146
|
Hickey JW, Dong Y, Chung JW, Salathe SF, Pruitt HC, Li X, Chang C, Fraser AK, Bessell CA, Ewald AJ, Gerecht S, Mao HQ, Schneck JP. Engineering an Artificial T-Cell Stimulating Matrix for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807359. [PMID: 30968468 PMCID: PMC8601018 DOI: 10.1002/adma.201807359] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/04/2019] [Indexed: 05/17/2023]
Abstract
T cell therapies require the removal and culture of T cells ex vivo to expand several thousand-fold. However, these cells often lose the phenotype and cytotoxic functionality for mediating effective therapeutic responses. The extracellular matrix (ECM) has been used to preserve and augment cell phenotype; however, it has not been applied to cellular immunotherapies. Here, a hyaluronic acid (HA)-based hydrogel is engineered to present the two stimulatory signals required for T-cell activation-termed an artificial T-cell stimulating matrix (aTM). It is found that biophysical properties of the aTM-stimulatory ligand density, stiffness, and ECM proteins-potentiate T cell signaling and skew phenotype of both murine and human T cells. Importantly, the combination of the ECM environment and mechanically sensitive TCR signaling from the aTM results in a rapid and robust expansion of rare, antigen-specific CD8+ T cells. Adoptive transfer of these tumor-specific cells significantly suppresses tumor growth and improves animal survival compared with T cells stimulated by traditional methods. Beyond immediate immunotherapeutic applications, demonstrating the environment influences the cellular therapeutic product delineates the importance of the ECM and provides a case study of how to engineer ECM-mimetic materials for therapeutic immune stimulation in the future.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Institute for Cell Engineering, School of Medicine, Baltimore, MD, 21205, USA
- Department of Pathology, School of Medicine, Baltimore, MD, 21287, USA
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
| | - Yi Dong
- Graduate Program in Immunology, School of Medicine, Baltimore, MD, 21205, USA
| | - Jae Wook Chung
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Sebastian F Salathe
- Department of Biology, Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Hawley C Pruitt
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Xiaowei Li
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Calvin Chang
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
| | - Andrew K Fraser
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Baltimore, MD, 21205, USA
| | - Catherine A Bessell
- Graduate Program in Immunology, School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew J Ewald
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Baltimore, MD, 21205, USA
- Department of Oncology, School of Medicine, Baltimore, MD, 21205, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
- Physical Sciences-Oncology Center, Baltimore, MD, 21218, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, Baltimore, MD, 21205, USA
- Department of Pathology, School of Medicine, Baltimore, MD, 21287, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
147
|
Wan Z, Shaheen S, Chau A, Zeng Y, Liu W. Imaging: Gear up for mechano-immunology. Cell Immunol 2019; 350:103926. [PMID: 31151736 DOI: 10.1016/j.cellimm.2019.103926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Immune cells including B and T lymphocytes have a remarkable ability to sense the physical perturbations through their surface expressed receptors. At the advent of modern imaging technologies paired with biophysical methods, we have gained the understanding of mechanical forces exerted by immune cells to perform their functions. This review will go over the imaging techniques already being used to study mechanical forces in immune cells. We will also discuss the dire need for new modern technologies for future work.
Collapse
Affiliation(s)
- Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Alicia Chau
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
148
|
Wurzer H, Hoffmann C, Al Absi A, Thomas C. Actin Cytoskeleton Straddling the Immunological Synapse between Cytotoxic Lymphocytes and Cancer Cells. Cells 2019; 8:cells8050463. [PMID: 31100864 PMCID: PMC6563383 DOI: 10.3390/cells8050463] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The immune system is a fundamental part of the tumor microenvironment. In particular, cytotoxic lymphocytes, such as cytolytic T cells and natural killer cells, control tumor growth and disease progression by interacting and eliminating tumor cells. The actin cytoskeleton of cytotoxic lymphocytes engaged in an immunological synapse has received considerable research attention. It has been recognized as a central mediator of the formation and maturation of the immunological synapse, and its signaling and cytolytic activities. In comparison, fewer studies have explored the organization and function of actin filaments on the target cancer cell side of the immunological synapse. However, there is growing evidence that the actin cytoskeleton of cancer cells also undergoes extensive remodeling upon cytotoxic lymphocyte attack, and that such remodeling can alter physical and functional interactions at the immunological synapse. In this article, we review the current knowledge of actin organization and functions at both sides of the immunological synapse between cytotoxic lymphocytes and cancer cells, with particular focus on synapse formation, signaling and cytolytic activity, and immune evasion.
Collapse
Affiliation(s)
- Hannah Wurzer
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
- University of Luxembourg, Faculty of Science, Technology and Communication, 2 Avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
| | - Antoun Al Absi
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
- University of Strasbourg, 67081 Strasbourg, France.
| | - Clément Thomas
- Cytoskeleton and Cancer Progression; Laboratory of Experimental Cancer Research, Department of Oncology 84 Val Fleuri, L-1526 Luxembourg City, Luxembourg.
| |
Collapse
|
149
|
Schluck M, Hammink R, Figdor CG, Verdoes M, Weiden J. Biomaterial-Based Activation and Expansion of Tumor-Specific T Cells. Front Immunol 2019; 10:931. [PMID: 31130945 PMCID: PMC6509561 DOI: 10.3389/fimmu.2019.00931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional tumor vaccination approaches mostly focus on activating dendritic cells (DCs) by providing them with a source of tumor antigens and/or adjuvants, which in turn activate tumor-reactive T cells. Novel biomaterial-based cancer immunotherapeutic strategies focus on directly activating and stimulating T cells through molecular cues presented on synthetic constructs with the aim of improving T cell survival, more precisely steer T cell activation and direct T cell differentiation. Synthetic artificial antigen presenting cells (aAPCs) decorated with T cell-activating ligands are being developed to induce robust tumor-specific T cell responses, essentially bypassing DCs. In this perspective, we approach these promising new technologies from an immunological angle, first by identifying the CD4+ and CD8+ T cell subtypes that are imperative for robust anti-cancer immunity and subsequently discussing the molecular cues needed to induce these cells types. We will elaborate on how biomaterials can be applied to stimulate T cells in vitro and in vivo to improve their survival, activation and function. Scaffold-based methods can also be used as delivery vehicles for adoptive transfer of T cells, including tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor expressing (CAR) T cells, while simultaneously stimulating these cells. Finally, we provide suggestions on how these insights could advance the field of biomaterial-based activation and expansion of tumor-specific T cells in the future.
Collapse
Affiliation(s)
- Marjolein Schluck
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roel Hammink
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, Netherlands.,Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, Netherlands.,Institute for Chemical Immunology, Nijmegen, Netherlands
| |
Collapse
|
150
|
Harrison DL, Fang Y, Huang J. T-Cell Mechanobiology: Force Sensation, Potentiation, and Translation. FRONTIERS IN PHYSICS 2019; 7:45. [PMID: 32601597 PMCID: PMC7323161 DOI: 10.3389/fphy.2019.00045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A T cell is a sensitive self-referential mechanical sensor. Mechanical forces influence the recognition, activation, differentiation, and function throughout the lifetime of a T cell. T cells constantly perceive and respond to physical stimuli through their surface receptors, cytoskeleton, and subcellular structures. Surface receptors receive physical cues in the form of forces generated through receptor-ligand binding events, which are dynamically regulated by contact tension, shear stress, and substrate rigidity. The resulting mechanotransduction not only influences T-cell recognition and signaling but also possibly modulates cell metabolism and gene expression. Moreover, forces also dynamically regulate the deformation, organization, and translocation of cytoskeleton and subcellular structures, leading to changes in T-cell mobility, migration, and infiltration. However, the roles and mechanisms of how mechanical forces modulate T-cell recognition, signaling, metabolism, and gene expression, are largely unknown and underappreciated. Here, we review recent technological and scientific advances in T-cell mechanobiology, discuss possible roles and mechanisms of T-cell mechanotransduction, and propose new research directions of this emerging field in health and disease.
Collapse
Affiliation(s)
- Devin L. Harrison
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Yun Fang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Jun Huang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL, United States
| |
Collapse
|