1901
|
Affiliation(s)
- R N Van Gelder
- Washington University Medical School, Campus Box 8096, 660 S Euclid Avenue, St Louis, MO 63110, USA;
| |
Collapse
|
1902
|
Lévi F. PACAP enlightenment of mouse circadian clock. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1033-4. [PMID: 15475501 DOI: 10.1152/ajpregu.00557.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
1903
|
Abizaid A, Horvath B, Keefe DL, Leranth C, Horvath TL. Direct visual and circadian pathways target neuroendocrine cells in primates. Eur J Neurosci 2004; 20:2767-76. [PMID: 15548220 DOI: 10.1111/j.1460-9568.2004.03737.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of light on neuroendocrine functions is thought to be mediated through retinal inputs to the circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). The present studies were conducted to provide experimental evidence for this signaling modality in non-human primates. In the St. Kitts vervet monkey, anterograde tracing of SCN efferents revealed a monosynaptic pathway between the circadian clock and hypothalamic neurons producing luteinizing hormone-releasing hormone (LHRH). Using a variety of tracing techniques, direct retinal input was found to be abundant in the SCN and in other hypothalamic sites. Strikingly, in hypothalamic areas other than the SCN, primary visual afferents established direct contacts with neuroendocrine cells including those producing LHRH and dopamine, neurons that are the hypothalamic regulators of pituitary gonadotrops and prolactin. Thus, our data reveal for the first time in primates that light stimuli can reach the hypothalamo-pituitary-gonadal axis, directly providing a pathway independent of but parallel to that of the circadian clock for the photic modulation of hormone release.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
1904
|
Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelièvre V, Hu Z, Waschek JA. Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1194-201. [PMID: 15217792 DOI: 10.1152/ajpregu.00268.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies indicate that light information reaches the suprachiasmatic nucleus through a subpopulation of retinal ganglion cells that contain both glutamate and pituitary adenylyl cyclase-activating peptide (PACAP). Although the role of glutamate in this pathway has been well studied, the involvement of PACAP and its receptors is only beginning to be understood. To investigate the functions of PACAP in vivo, we developed a mouse model in which the gene coding for PACAP was disrupted by targeted homologous recombination. RIA was used to confirm a lack of detectable PACAP protein in these mice. PACAP-deficient mice exhibited significant impairment in the magnitude of the response to brief light exposures with both light-induced phase delays and advances of the circadian system impacted. This mutation equally impacted phase shifts induced by bright and dim light exposure. Despite these effects on phase shifting, the loss of PACAP had only limited effects on the generation of circadian oscillations, as measured by rhythms in wheel-running activity. Unlike melanopsin-deficient mice, the mice lacking PACAP exhibited no loss of function in the direct light-induced inhibition of locomotor activity, i.e., masking. Finally, the PACAP-deficient mice exhibited normal phase shifts in response to exposure to discrete dark treatments. The results reported here show that the loss of PACAP produced selective deficits in the light response of the circadian system.
Collapse
Affiliation(s)
- C S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024-1759, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1905
|
Abstract
The eye is an organ of such remarkable complexity and apparently flawless design that it presents a challenge to both evolutionary biologists trying to explain its phylogenetic origins, and developmental biologists hoping to understand its formation during ontogeny. Since the discovery that the transcription factor Pax6 plays a crucial role in specifying the eye throughout the animal kingdom, both groups of biologists have been converging on the conserved mechanisms behind eye formation. Their latest meeting was at the Instituto Juan March in Madrid, at a workshop organized by Walter Gehring (Biozentrum, Basel, Switzerland) and Emili Saló (Universitat de Barcelona, Spain), entitled 'The genetic control of eye development and its evolutionary implications'. The exchange of ideas provided some new insights into the construction and history of the eye.
Collapse
Affiliation(s)
- Jessica E Treisman
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
1906
|
Robinson GA, Madison RD. Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vision Res 2004; 44:2667-74. [PMID: 15358062 DOI: 10.1016/j.visres.2004.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 04/27/2004] [Indexed: 11/30/2022]
Abstract
Melanopsin is found in only approximately 2% of mouse retinal ganglion cells (RGCs), making these RGCs uniquely and directly photosensitive. Given that the majority of RGCs die after axotomy and that grafting of a peripheral nerve to the eye provides a permissive environment for axon regrowth, the present study examined the survival and axonal regrowth of melanopsin-containing RGCs in mice. One month after optic nerve transection and grafting, RGCs with regrown axons were labeled from the grafts and retinae were processed to visualize melanopsin and TUJ1. Melanopsin-positive and negative RGCs were counted and compared to axotomized RGCs from ungrafted eyes and uninjured RGCs. Melanopsin-positive RGCs showed a 3-fold increase in survival rate compared to non-melanopsin RGCs. Despite this enhanced survival, melanopsin-containing RGCs did not show increased axon regrowth into nerve grafts.
Collapse
Affiliation(s)
- G A Robinson
- Experimental Neurosurgery, VA Medical Center, Duke University, 508 Fulton Street, Durham, NC 27710, USA.
| | | |
Collapse
|
1907
|
Abstract
Photoentrainment of the biological clock located in the suprachiasmatic nucleus (SCN) begins shortly after birth. Here we show using c-FOS immunoreactivity as a marker for neuronal activity that the melanopsin/PACAP containing retinal ganglion cells (RGCs) which project to the SCN as the retinohypothalamic tract (RHT) are responsive to light from birth. After postnatal day 12 where the classical photoreceptors become functional other RGCs and cells of the inner nuclear cell layer also respond to light. Light also induces c-FOS immunoreactivity in the retinorecipient SCN from the first postnatal day and accordingly PACAP immunoreactive fibres are visible in the SCN. The results indicate that the retina is light responsive before functional rods and cones and that the RHT is functional from birth supporting that photoentrainment of the biological clock begins shortly after birth.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark.
| | | |
Collapse
|
1908
|
Abstract
The embryonic chicken iris constricts to light ex vivo, but with characteristics atypical of visual phototransduction. The chick iris was most sensitive to short-wavelength light, demonstrating an action spectrum consistent with cryptochrome rather than with opsin pigments. Pupillary responses did not attenuate after saturating light exposure, but showed paradoxical potentiation. Iris photosensitivity was not affected by retinoid depletion or inhibitors of visual phototransduction. Knockdown of cryptochrome expression, but not of melanopsin expression, decreased iris photosensitivity. These data characterize a non-opsin photoreception mechanism in a vertebrate eye and suggest a conserved photoreceptive role for cryptochromes in vertebrates.
Collapse
Affiliation(s)
- Daniel C Tu
- Department of Ophthalmology and Visual Sciences, Washington University Medical School, St. Louis, MO 63110 USA
| | | | | | | |
Collapse
|
1909
|
Abstract
Circadian photoentrainment is the process by which the brain's internal clock becomes synchronized with the daily external cycle of light and dark. In mammals, this process is mediated exclusively by a novel class of retinal ganglion cells that send axonal projections to the suprachiasmatic nuclei (SCN), the region of the brain that houses the circadian pacemaker. In contrast to their counterparts that mediate image-forming vision, SCN-projecting RGCs are intrinsically sensitive to light, independent of synaptic input from rod and cone photoreceptors. The recent discovery of these photosensitive RGCs has challenged the long-standing dogma of retinal physiology that rod and cone photoreceptors are the only retinal cells that respond directly to light and has explained the perplexing finding that mice lacking rod and cone photoreceptors can still reliably entrain their circadian rhythms to light. These SCN-projecting RGCs selectively express melanopsin, a novel opsin-like protein that has been proposed as a likely candidate for the photopigment in these cells. Research in the past three years has revealed that disruption of the melanopsin gene impairs circadian photo- entrainment, as well as other nonvisual responses to light such as the pupillary light reflex. Until recently, however, there was no direct demonstration that melanopsin formed a functional photopigment capable of catalyzing G-protein activation in a light-dependent manner. Our laboratory has recently succeeded in expressing melanopsin in a heterologous tissue culture system and reconstituting a pigment with the 11-cis-retinal chromophore. In a reconstituted biochemical system, the reconstituted melanopsin was capable of activating transducin, the G-protein of rod photoreceptors, in a light-dependent manner. The absorbance spectrum of this heterologously expressed melanopsin, however, does not match that predicted by previous behavioral and electophysiological studies. Although melanopsin is clearly the leading candidate for the elusive photopigment of the circadian system, further research is needed to resolve the mystery posed by its absorbance spectrum and to fully elucidate its role in circadian photoentrainment.
Collapse
Affiliation(s)
- R. Lane Brown
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland, Baltimore Country, Baltimore, Maryland, USA
- *Correspondence: Phyllis R. Robinson, Ph.D., Department of Biological Sciences, University of Maryland Baltimore, 1000 Hilltop Circle County, Baltimore, MD 21250, USA; Fax: 410-455-3875; E-mail:
| |
Collapse
|
1910
|
Li X, Gilbert J, Davis FC. Disruption of masking by hypothalamic lesions in Syrian hamsters. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 191:23-30. [PMID: 15449094 DOI: 10.1007/s00359-004-0569-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2004] [Revised: 07/28/2004] [Accepted: 08/12/2004] [Indexed: 10/26/2022]
Abstract
Negative masking of locomotor activity by light in nocturnal rodents is mediated by a non-image-forming irradiance-detection system in the retina. Structures receiving input from this system potentially contribute to the masking response. The suprachiasmatic nucleus (SCN) regulates locomotor activity and receives dense innervation from the irradiance-detection system via the retinohypothalamic tract, but its role in masking is unclear. We studied masking in adult Syrian hamsters (Mesocricetus auratus) with electrolytic lesions directed at the SCN. Hamsters were exposed to a 3.5:3.5 ultradian light/dark cycle and their wheel-running activity was monitored. Intact hamsters showed robust masking, expressing less than 20% of their activity in the light even though light and dark occurred equally during their active times. In contrast, hamsters with lesions showed, on average, as much activity in the light as in the dark. Tracing of retinal projections using cholera toxin beta subunit showed that the lesions damaged retinal projections to the SCN and to the adjacent subparaventricular zone. Retinal innervation outside the hypothalamus was not obviously affected by the lesions. Our results indicate that retinohypothalamic projections, and the targets of these projections, to the SCN and/or adjacent hypothalamic areas play an important role in masking.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
1911
|
Garbarino-Pico E, Carpentieri AR, Contin MA, Sarmiento MIK, Brocco MA, Panzetta P, Rosenstein RE, Caputto BL, Guido ME. Retinal ganglion cells are autonomous circadian oscillators synthesizing N-acetylserotonin during the day. J Biol Chem 2004; 279:51172-81. [PMID: 15448149 DOI: 10.1074/jbc.m309248200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinal ganglion cells send visual and circadian information to the brain regarding the environmental light-dark cycles. We investigated the capability of retinal ganglion cells of synthesizing melatonin, a highly reliable circadian marker that regulates retinal physiology, as well as the capacity of these cells to function as autonomous circadian oscillators. Chick retinal ganglion cells presented higher levels of melatonin assessed by radioimmunoassay during both the subjective day in constant darkness and the light phase of a light-dark cycle. Similar changes were observed in mRNA levels and activity of arylalkylamine N-acetyltransferase, a key enzyme in melatonin biosynthesis, with the highest levels of both parameters during the subjective day. These daily variations were preceded by the elevation of cyclic-AMP content, the second messenger involved in the regulation of melatonin biosynthesis. Moreover, cultures of immunopurified retinal ganglion cells at embryonic day 8 synchronized by medium exchange synthesized a [3H]melatonin-like indole from [3H]tryptophan. This [3H]indole was rapidly released to the culture medium and exhibited a daily variation, with levels peaking 8 h after synchronization, which declined a few hours later. Cultures of embryonic retinal ganglion cells also showed self-sustained daily rhythms in arylalkylamine N-acetyltransferase mRNA expression during at least three cycles with a period near 24 h. These rhythms were also observed after the application of glutamate. The results demonstrate that chick retinal ganglion cells may function as autonomous circadian oscillators synthesizing a melatonin-like indole during the day.
Collapse
Affiliation(s)
- Eduardo Garbarino-Pico
- CIQUIBIC (CONICET)-Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
1912
|
|
1913
|
Barnard AR, Appleford JM, Sekaran S, Chinthapalli K, Jenkins A, Seeliger M, Biel M, Humphries P, Douglas RH, Wenzel A, Foster RG, Hankins MW, Lucas RJ. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 α subunit. Vis Neurosci 2004; 21:675-83. [PMID: 15683556 DOI: 10.1017/s0952523804215024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Indexed: 11/06/2022]
Abstract
The mammalian retina contains three classes of photoreceptor. In addition to the rods and cones, a subset of retinal ganglion cells that express the putative sensory photopigment melanopsin are intrinsically photosensitive. Functional and anatomical studies suggest that these inner retinal photoreceptors provide light information for a number of non-image-forming light responses including photoentrainment of the circadian clock and the pupil light reflex. Here, we employ a newly developed mouse model bearing lesions of both rod and cone phototransduction cascades (Rho−/−Cnga3−/−) to further examine the function of these non-rod non-cone photoreceptors. Calcium imaging confirms the presence of inner retinal photoreceptors inRho−/−Cnga3−/−mice. Moreover, these animals retain a pupil light reflex, photoentrainment, and light induction of the immediate early genec-fosin the suprachiasmatic nuclei, consistent with previous findings that pupillary and circadian responses can employ inner retinal photoreceptors.Rho−/−Cnga3−/−mice also show a light-dependent increase in the number of FOS-positive cells in both the ganglion cell and (particularly) inner nuclear layers of the retina. The average number of cells affected is several times greater than the number of melanopsin-positive cells in the mouse retina, suggesting functional intercellular connections from these inner retinal photoreceptors within the retina. Finally, however, while we show that wild types exhibit an increase in heart rate upon light exposure, this response is absent inRho−/−Cnga3−/−mice. Thus, it seems that non-rod non-cone photoreceptors can drive many, but not all, non-image-forming light responses.
Collapse
Affiliation(s)
- Alun R Barnard
- Department of Integrative and Molecular Neuroscience, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1914
|
Abstract
Sunlight is a primary source of energy for life. However, its UV component causes DNA damage. We suggest that the strong UV component of sunlight contributed to the selective pressure for the evolution of the specialized photoreceptor cryptochrome from photolyases involved in DNA repair and propose that early metazoans avoided irradiation by descending in the oceans during the daytime. We suggest further that it is not coincidental that blue-light photoreception evolved in an aquatic environment, since only blue light can penetrate to substantial depths in water. These photoreceptors were then also critical for sensing the decreased luminescence that signals the coming of night and the time to return to the surface. The oceans and the 24-h light-dark cycle therefore provided an optimal setting for an early evolutionary relationship between blue-light photoreception and circadian rhythmicity.
Collapse
Affiliation(s)
- Walter Gehring
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | | |
Collapse
|
1915
|
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
1916
|
Savaskan E, Müller-Spahn F, Meier F, Wirz-Justice A, Meyer P. Orexins and Their Receptors in the Human Retina. Pathobiology 2004; 71:211-6. [PMID: 15263810 DOI: 10.1159/000078675] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Accepted: 12/12/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Orexins A and B are neuropeptides involved in the regulation of feeding behavior, energy homeostasis and arousal. In the human retina, however, immunohistochemical localization of orexins and their receptors, OX-R1 and OX-R2, has not been ascertained. METHODS We localized orexins A and B, OX-R1 and OX-R2 in the human retina using immunohistochemistry. Retinae from 2 Alzheimer's disease (AD) patients provided preliminary evidence for possible orexin alterations. RESULTS Orexin A, orexin B and OX-R1 were localized in ganglion and amacrine cells, cellular processes in the inner and outer plexiform layer and in the inner segments of photoreceptor cells. There was no OX-R2 immunoreactivity in the retina. The staining intensity for both orexins was decreased in the AD patients. CONCLUSION This immunohistochemical study provides the first evidence for the distribution of orexin A, orexin B and OX-R1 in the human retina. The localization pattern suggests a modulatory role for orexins in the interactions of those retinal cells which transmit light information to the suprachiasmatic nuclei, and thus may be involved in circadian rhythm entrainment.
Collapse
|
1917
|
Gronfier C, Wright KP, Kronauer RE, Jewett ME, Czeisler CA. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Am J Physiol Endocrinol Metab 2004; 287:E174-81. [PMID: 15039146 PMCID: PMC2761596 DOI: 10.1152/ajpendo.00385.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown in animal studies that exposure to brief pulses of bright light can phase shift the circadian pacemaker and that the resetting action of light is most efficient during the first minutes of light exposure. In humans, multiple consecutive days of exposure to brief bright light pulses have been shown to phase shift the circadian pacemaker. The aim of the present study was to determine whether a single sequence of brief bright light pulses administered during the early biological night would phase delay the human circadian pacemaker. Twenty-one healthy young subjects underwent a 6.5-h light exposure session in one of three randomly assigned conditions: 1) continuous bright light of approximately 9,500 lux, 2) intermittent bright light (six 15-min bright light pulses of approximately 9,500 lux separated by 60 min of very dim light of <1 lux), and 3) continuous very dim light of <1 lux. Twenty subjects were included in the analysis. Core body temperature (CBT) and melatonin were used as phase markers of the circadian pacemaker. Phase delays of CBT and melatonin rhythms in response to intermittent bright light pulses were comparable to those measured after continuous bright light exposure, even though the total exposure to the intermittent bright light represented only 23% of the 6.5-h continuous exposure. These results demonstrate that a single sequence of intermittent bright light pulses can phase delay the human circadian pacemaker and show that intermittent pulses have a greater resetting efficacy on a per minute basis than does continuous exposure.
Collapse
Affiliation(s)
- Claude Gronfier
- INSERM-U371, 18 Avenue du Doyen Lepine, 69675 Bron Cedex, France.
| | | | | | | | | |
Collapse
|
1918
|
Abstract
The retina consists of many parallel circuits designed to maximize the gathering of important information from the environment. Each of these circuits is comprised of a number of different cell types combined in modules that tile the retina. To a subterranean animal, vision is of relatively less importance. Knowledge of how circuits and their elements are altered in response to the subterranean environment is useful both in understanding processes of regressive evolution and in retinal processing itself. We examined common cell types in the retina of the naked mole-rat,Heterocephalus glaberwith immunocytochemical markers and retrograde staining of ganglion cells from optic nerve injections. The stains used show that the naked mole-rat eye has retained multiple ganglion cell types, 1–2 types of horizontal cell, rod bipolar and multiple types of cone bipolar cells, and several types of common amacrine cells. However, no labeling was found with antibodies to the dopamine-synthesizing enzyme, tyrosine hydroxylase. Although most of the well-characterized mammalian cell types are present in the regressive mole-rat eye, their structural organization is considerably less regular than in more sighted mammals. We found less precision of depth of stratification in the inner plexiform layer and also less precision in their lateral coverage of the retina. The results suggest that image formation is not very important in these animals, but that circuits beyond those required for circadian entrainment remain in place.
Collapse
|
1919
|
Rüger M, Gordijn MCM, Beersma DGM, de Vries B, Daan S. Acute and phase-shifting effects of ocular and extraocular light in human circadian physiology. J Biol Rhythms 2004; 18:409-19. [PMID: 14582857 DOI: 10.1177/0748730403256650] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light can influence physiology and performance of humans in two distinct ways. It can acutely change the level of physiological and behavioral parameters, and it can induce a phase shift in the circadian oscillators underlying variations in these levels. Until recently, both effects were thought to require retinal light perception. This view was challenged by Campbell and Murphy, who showed significant phase shifts in core body temperature and melatonin using an extraocular stimulus. Their study employed popliteal skin illumination and exclusively considered phase-shifting effects. In this paper, the authors explore both acute effects and phase-shifting effects of ocular as well as extraocular light. Twelve healthy males participated in a within-subject design and received all of three light conditions--(1) dim ocular light/no light to the knee, (2) dim ocular light/bright extraocular light to the knee, and (3) bright ocular light/no light to the knee--on separate nights in random order. The protocol consisted of an adaptation night followed by a 26-h period of sustained wakefulness, during which a 4-h light pulse was presented at a time when maximal phase delays were expected. The authors found neither immediate nor phase-shifting effects of extraocular light exposure on melatonin, core body temperature (CBT), or sleepiness. Ocular bright-light exposure reduced the nocturnal circadian drop in CBT, suppressed melatonin, and reduced sleepiness significantly. In addition, the 4-h ocular light pulse delayed the CBT rhythm by -55 min compared to the drift of the CBT rhythm in dim light. The melatonin rhythm shifted by -113 min, which differed significantly from the drift in the melatonin rhythm in the dim-light condition (-26 min). The failure to find immediate or phase-shifting effects in response to extraocular light in a within-subjects design in which effects of ocular bright light are confirmed strengthens the doubts raised by other labs of the impact of extraocular light on the human circadian system.
Collapse
Affiliation(s)
- Melanie Rüger
- Department of Animal Behavior, University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
1920
|
Figueiro MG, Bullough JD, Parsons RH, Rea MS. Preliminary evidence for spectral opponency in the suppression of melatonin by light in humans. Neuroreport 2004; 15:313-6. [PMID: 15076759 DOI: 10.1097/00001756-200402090-00020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human adult males were exposed to light from blue light emitting diodes (18 lux; 29 microW/cm) and from clear mercury vapor lamps (450 lux; 170 microW/cm) during night-time experimental sessions. Both conditions suppressed nocturnal melatonin concentrations in blood plasma with the blue light more effective than mercury at melatonin suppression. No additive model incorporating opsin photopigments either alone or in combination could explain the results, but a model incorporating an opponent mechanism was consistent with the present data as well as data from previously published studies.
Collapse
Affiliation(s)
- Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
1921
|
Tousson E, Meissl H. Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci 2004; 24:2983-8. [PMID: 15044537 PMCID: PMC6729855 DOI: 10.1523/jneurosci.5044-03.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mammalian suprachiasmatic nucleus (SCN) controls the circadian rhythm of many physiological and behavioral events by an orchestrated output of the electrical activity of SCN neurons. We examined the propagation of output signals from the SCN into the hypothalamus, especially into the region of the paraventricular nucleus, through multimicroelectrode recordings using acute and organotypic brain slices. Circadian rhythms in spontaneous firing rate with a period close to 24 hr were demonstrated in the SCN, in directly adjacent hypothalamic regions, and in the region of the paraventricular nucleus of the hypothalamus, an important center for the integration of neuroendocrine, homeostatic, and autonomic functions. The activity rhythms recorded from structures outside of the SCN were in phase with the rhythms in the SCN. Cyclic information in the hypothalamus was lost after ablation of the SCN but could be restored by SCN grafts, indicating that a humoral factor is responsible for the restoration of circadian rhythmicity in the absence of neural connections. Periodic application of arginine-vasopressin (AVP) provided evidence that AVP can induce rhythmicity in the hypothalamus. These data indicate that the SCN uses a dual (neuronal and humoral) mechanism for communication with its targets in the brain.
Collapse
Affiliation(s)
- Ehab Tousson
- Max Planck Institute for Brain Research, 60528 Frankfurt am Main, Germany
| | | |
Collapse
|
1922
|
Martras S, Alvarez R, Martínez SE, Torres D, Gallego O, Duester G, Farrés J, de Lera AR, Parés X. The specificity of alcohol dehydrogenase with cis-retinoids. Activity with 11-cis-retinol and localization in retina. ACTA ACUST UNITED AC 2004; 271:1660-70. [PMID: 15096205 DOI: 10.1111/j.1432-1033.2004.04058.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies in knockout mice support the involvement of alcohol dehydrogenases ADH1 and ADH4 in retinoid metabolism, although kinetics with retinoids are not known for the mouse enzymes. Moreover, a role of alcohol dehydrogenase (ADH) in the eye retinoid interconversions cannot be ascertained due to the lack of information on the kinetics with 11-cis-retinoids. We report here the kinetics of human ADH1B1, ADH1B2, ADH4, and mouse ADH1 and ADH4 with all-trans-, 7-cis-, 9-cis-, 11-cis- and 13-cis-isomers of retinol and retinal. These retinoids are substrates for all enzymes tested, except the 13-cis isomers which are not used by ADH1. In general, human and mouse ADH4 exhibit similar activity, higher than that of ADH1, while mouse ADH1 is more efficient than the homologous human enzymes. All tested ADHs use 11-cis-retinoids efficiently. ADH4 shows much higher k(cat)/K(m) values for 11-cis-retinol oxidation than for 11-cis-retinal reduction, a unique property among mammalian ADHs for any alcohol/aldehyde substrate pair. Docking simulations and the kinetic properties of the human ADH4 M141L mutant demonstrated that residue 141, in the middle region of the active site, is essential for such ADH4 specificity. The distinct kinetics of ADH4 with 11-cis-retinol, its wide specificity with retinol isomers and its immunolocalization in several retinal cell layers, including pigment epithelium, support a role of this enzyme in the various retinol oxidations that occur in the retina. Cytosolic ADH4 activity may complement the isomer-specific microsomal enzymes involved in photopigment regeneration and retinoic acid synthesis.
Collapse
Affiliation(s)
- Sílvia Martras
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
1923
|
Garbarino-Pico E, Carpentieri AR, Castagnet PI, Pasquaré SJ, Giusto NM, Caputto BL, Guido ME. Synthesis of retinal ganglion cell phospholipids is under control of an endogenous circadian clock: Daily variations in phospholipid-synthesizing enzyme activities. J Neurosci Res 2004; 76:642-52. [PMID: 15139023 DOI: 10.1002/jnr.20126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal ganglion cells (RGCs) are major components of the vertebrate circadian system. They send information to the brain, synchronizing the entire organism to the light-dark cycles. We recently reported that chicken RGCs display daily variations in the biosynthesis of glycerophospholipids in constant darkness (DD). It was unclear whether this rhythmicity was driven by this population itself or by other retinal cells. Here we show that RGCs present circadian oscillations in the labeling of [32P]phospholipids both in vivo in constant light (LL) and in cultures of immunopurified embryonic cells. In vivo, there was greater [32P]orthophosphate incorporation into total phospholipids during the subjective day. Phosphatidylinositol (PI) was the most 32P-labeled lipid at all times examined, displaying maximal levels during the subjective day and dusk. In addition, a significant daily variation was found in the activity of distinct enzymes of the pathway of phospholipid biosynthesis and degradation, such as lysophospholipid acyltransferases (AT II), phosphatidate phosphohydrolase (PAP), and diacylglycerol lipase (DGL) in cell preparations obtained in DD, exhibiting differential but coordinated temporal profiles. Furthermore, cultures of immunopurified RGCs synchronized by medium exchange displayed a circadian fluctuation in the phospholipid labeling. The results demonstrate that chicken RGCs contain circadian oscillators capable of generating metabolic oscillations in the biosynthesis of phospholipids autonomously.
Collapse
Affiliation(s)
- E Garbarino-Pico
- CIQUIBIC (CONICET)-Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
1924
|
Brandstaetter R. Circadian lessons from peripheral clocks: is the time of the mammalian pacemaker up? Proc Natl Acad Sci U S A 2004; 101:5699-700. [PMID: 15079063 PMCID: PMC395855 DOI: 10.1073/pnas.0401378101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Roland Brandstaetter
- Biological Rhythms Research Group, School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom.
| |
Collapse
|
1925
|
Abstract
There is accumulating evidence that the new opsin-like protein, melanopsin, in adult rodents functions as non-visual photoreceptor. Here we report using immunohistochemistry and in situ hybridisation that melanopsin during rat retinal development is expressed already at prenatal day 18 in cells of the inner neuroblast layer. Perinatally the melanopsin positive cells increase in number and migrate towards the ganglion cell layer. During early postnatal development a melanopsin immunoreactive dendritic network is formed in the inner plexiform layer. Melanopsin is exclusively expressed in PACAP-containing cells which in adults become the retinal ganglion cells constituting the retinohypothalamic tract. The early expression of melanopsin argues for a photoreceptor role in the developing retinohypothalamic tract which is functional as early as the first day after birth.
Collapse
Affiliation(s)
- Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark.
| | | | | |
Collapse
|
1926
|
Peirson SN, Bovee-Geurts PHM, Lupi D, Jeffery G, DeGrip WJ, Foster RG. Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium. ACTA ACUST UNITED AC 2004; 123:132-5. [PMID: 15046875 DOI: 10.1016/j.molbrainres.2004.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2004] [Indexed: 11/25/2022]
Abstract
A number of responses to light, including circadian entrainment and pupillary constriction, are preserved in mammals that lack rod and cone photoreceptors. Recent studies have demonstrated that a subset of retinal ganglion cells (RGCs) are intrinsically photosensitive, and that these RGCs project to regions of the brain associated with the regulation of the circadian clock and pupil constriction. The photopigment gene(s) that mediate these effects of irradiance remain unidentified, although melanopsin (Opn4) has emerged as a strong candidate. For example, Opn4 is expressed within intrinsically photosensitive RGCs, and Opn4 knock-out mice show attenuated circadian and pupillary responses to light. In this study we provide the first clear evidence that Opn4 expression is not confined to these photosensitive RGCs, but is also expressed in the retinal pigment epithelium (RPE), a tissue with no known photosensensory role. We can preclude retinal contamination of RPE extracts as levels of Opn4 expression were higher in the RPE than in the retina, and the expression of rod opsin and Thy1 (a marker of the RGC layer) were barely detectable in RPE extracts. Our results raise questions about the presumed function of melanopsin, and highlight the need for biochemical studies on this protein.
Collapse
Affiliation(s)
- Stuart N Peirson
- Department of Visual Neuroscience, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK.
| | | | | | | | | | | |
Collapse
|
1927
|
Hirota T, Fukada Y. Resetting Mechanism of Central and Peripheral Circadian Clocks in Mammals. Zoolog Sci 2004; 21:359-68. [PMID: 15118222 DOI: 10.2108/zsj.21.359] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Almost all organisms on earth exhibit diurnal rhythms in physiology and behavior under the control of autonomous time-measuring system called circadian clock. The circadian clock is generally reset by environmental time cues, such as light, in order to synchronize with the external 24-h cycles. In mammals, the core oscillator of the circadian clock is composed of transcription/translation-based negative feedback loops regulating the cyclic expression of a limited number of clock genes (such as Per, Cry, Bmal1, etc.) and hundreds of output genes in a well-concerted manner. The central clock controlling the behavioral rhythm is localized in the hypothalamic suprachiasmatic nucleus (SCN), and peripheral clocks are present in other various tissues. The phase of the central clock is amenable to ambient light signal captured by the visual rod-cone photoreceptors and non-visual melanopsin in the retina. These light signals are transmitted to the SCN through the retinohypothalamic tract, and transduced therein by mitogen-activated protein kinase and other signaling molecules to induce Per gene expression, which eventually elicits phase-dependent phase shifts of the clock. The central clock controls peripheral clocks directly and indirectly by virtue of neural, humoral, and other signals in a coordinated manner. The change in feeding time resets the peripheral clocks in a SCN-independent manner, possibly by food metabolites and body temperature rhythms. In this article, we will provide an overview of recent molecular and genetic studies on the resetting mechanism of the central and peripheral circadian clocks in mammals.
Collapse
Affiliation(s)
- Tsuyoshi Hirota
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
1928
|
Zaghloul KA, Boahen K. Optic Nerve Signals in a Neuromorphic Chip I: Outer and Inner Retina Models. IEEE Trans Biomed Eng 2004; 51:657-66. [PMID: 15072220 DOI: 10.1109/tbme.2003.821039] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present a novel model for the mammalian retina and analyze its behavior. Our outer retina model performs bandpass spatiotemporal filtering. It is comprised of two reciprocally connected resistive grids that model the cone and horizontal cell syncytia. We show analytically that its sensitivity is proportional to the space-constant-ratio of the two grids while its half-max response is set by the local average intensity. Thus, this outer retina model realizes luminance adaptation. Our inner retina model performs high-pass temporal filtering. It features slow negative feedback whose strength is modulated by a locally computed measure of temporal contrast, modeling two kinds of amacrine cells, one narrow-field, the other wide-field. We show analytically that, when the input is spectrally pure, the corner-frequency tracks the input frequency. But when the input is broadband, the corner frequency is proportional to contrast. Thus, this inner retina model realizes temporal frequency adaptation as well as contrast gain control. We present CMOS circuit designs for our retina model in this paper as well. Experimental measurements from the fabricated chip, and validation of our analytical results, are presented in the companion paper [Zaghloul and Boahen (2004)].
Collapse
Affiliation(s)
- Kareem A Zaghloul
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
1929
|
Sollars PJ, Smeraski CA, Kaufman JD, Ogilvie MD, Provencio I, Pickard GE. Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis Neurosci 2004; 20:601-10. [PMID: 15088713 DOI: 10.1017/s0952523803206027] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinal input to the hypothalamic suprachiasmatic nucleus (SCN) synchronizes the SCN circadian oscillator to the external day/night cycle. Retinal ganglion cells that innervate the SCNviathe retinohypothalamic tract are intrinsically light sensitive and express melanopsin. In this study, we provide data indicating that not all SCN-projecting retinal ganglion cells express melanopsin. To determine the proportion of ganglion cells afferent to the SCN that express melanopsin, ganglion cells were labeled following transsynaptic retrograde transport of a recombinant of the Bartha strain of pseudorabies virus (PRV152) constructed to express the enhanced green fluorescent protein (EGFP). PRV152 injected into the anterior chamber of the eye retrogradely infects four retinorecipient nuclei in the brainviaautonomic circuits to the eye, resulting in transneuronally labeled ganglion cells in the contralateral retina 96 h after intraocular infection. In animals with large bilateral lesions of the lateral geniculate body/optic tract, ganglion cells labeled with PRV152 are retrogradely infected from only the SCN. In these animals, most PRV152-infected ganglion cells were immunoreactive for melanopsin. However, a significant percentage (10–20%) of EGFP-labeled ganglion cells did not express melanopsin. These data suggest that in addition to the intrinsically light-sensitive melanopsin-expressing ganglion cells, conventional ganglion cells also innervate the SCN. Thus, it appears that the rod/cone system of photoreceptors may provide signals to the SCN circadian system independent of intrinsically light-sensitive melanopsin ganglion cells.
Collapse
Affiliation(s)
- Patricia J Sollars
- Department of Biomedical Sciences, Colorado State University, Fort Collins 80523-1670, USA
| | | | | | | | | | | |
Collapse
|
1930
|
Sauvé Y, Lu B, Lund RD. The relationship between full field electroretinogram and perimetry-like visual thresholds in RCS rats during photoreceptor degeneration and rescue by cell transplants. Vision Res 2004; 44:9-18. [PMID: 14599567 DOI: 10.1016/j.visres.2003.08.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dark-adapted full field electroretinogram (ERG) and visual receptive field thresholds (recorded from the superior colliculus) were correlated in a model of retinal degeneration, the Royal College of Surgeons rat. In both untreated and retinal pigment epithelium cell transplanted rats, optimal correlation was between b-wave amplitude and preserved visual field area with thresholds under a defined level. The work shows that the magnitude of the b-wave can be used to predict the computed area and degree of visual field preservation recorded in the central nervous system. These observations validate using ERG to assess residual visual function and the effect of transplantation.
Collapse
Affiliation(s)
- Y Sauvé
- Moran Eye Center, Ophthalmology and Visual Sciences, University of Utah, Health Sciences Center, 50 North Medical Drive, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
1931
|
Wee R, Van Gelder RN. Sleep disturbances in young subjects with visual dysfunction. Ophthalmology 2004; 111:297-302; discussion 302-3. [PMID: 15019378 DOI: 10.1016/j.ophtha.2003.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2002] [Accepted: 05/13/2003] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To determine whether the type of ophthalmic disease is predictive of sleep and wakefulness disturbances in young subjects with visual dysfunction. DESIGN Prospective cohort study. PARTICIPANTS AND CONTROLS Twenty-five subjects (ages 12-20) were recruited from the Missouri School for the Blind. Twelve controls with normal sight were recruited from a residential school. METHODS Daily activity was monitored for 14 days using wrist actigraphy. Sleep and wakefulness measures were derived from actigraphy records by automated analysis. Visually impaired subjects were prospectively stratified by presence or absence of optic nerve disease. MAIN OUTCOME MEASURES Daytime napping and regularity of awakening time (wake-up time instability). RESULTS Subjects with optic nerve disease napped in the daytime significantly more than other visually impaired children or normal sighted controls: 28.1+/-4.0 minutes per day (mean +/- standard error) versus 11.9+/-2.4 minutes per day in equally visually impaired subjects with intact optic nerve function versus 6.2+/-2.2 minutes per day in subjects with normal sight (P<0.0001). These subjects also showed significantly more variable awakening times than the other groups. Logistic regression revealed that subjects with optic nerve disease are 9.1 times more likely to demonstrate daily napping of more than 20 minutes per day than equally blind subjects without optic nerve disease (95% confidence interval [CI] = 1.4-58.7, P = 0.02). Blind subjects with optic nerve disease are 21.3 times more likely than children with normal sight to nap more than 20 minutes on average per day (95% CI = 1.2-378, P = 0.04). CONCLUSIONS Optic nerve disease is predictive of increased daytime napping in young visually impaired subjects, suggesting that the nature and presence of ophthalmic disease affect the probability of concomitant sleep timing disorders.
Collapse
Affiliation(s)
- Raymond Wee
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
1932
|
Bendová Z, Sumová A, Illnerová H. Development of circadian rhythmicity and photoperiodic response in subdivisions of the rat suprachiasmatic nucleus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:105-12. [PMID: 14757524 DOI: 10.1016/j.devbrainres.2003.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To ascertain whether the circadian rhythmicity of the ventrolateral (vl) suprachiasmatic nucleus (SCN) develops concurrently with that of the dorsomedial (dm) SCN and when the rhythmicity starts to respond to day length, i.e., to the photoperiod, rats with their offspring were maintained under either a long photoperiod with 16 h of light and 8 h of darkness per day (LD 16:8) or under a short, LD 8:16 photoperiod. The rhythms of spontaneous c-Fos immunoreactivity in the dm-SCN and of the light-induced c-Fos immunoreactivity in the vl-SCN were studied in the pups. In 3- and 10-day-old rats, the dm-SCN rhythm in spontaneous c-Fos immunoreactivty was already well expressed but a response to a photoperiod similar to that in adult rats has not yet been developed. The vl-SCN gate for insensitivity of c-Fos production to light at certain times was detected in 10-day but not yet in 3-day-old rats: in the latter, light exposure at any daytime induced high c-Fos immunoreactivity. In the 10-day-old pups, similarly as with adult rats, the gate was shorter under LD 8:16 than under LD 16:8, but the difference in the gate duration between the short and the long photoperiod did not yet attain that of adult animals. The data indicate that the circadian rhythmicity may develop sooner in the dm-SCN, than in the vl-SCN, whereas the photoperiodic response may develop sooner in the vl-SCN.
Collapse
Affiliation(s)
- Zdenka Bendová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1084, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
1933
|
Semo M, Lupi D, Peirson SN, Butler JN, Foster RG. Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 2004; 18:3007-17. [PMID: 14656296 DOI: 10.1111/j.1460-9568.2003.03061.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-rod, non-cone ocular photoreceptors have been shown to mediate a range of irradiance detection tasks. The strongest candidates for these receptors are melanopsin-positive retinal ganglion cells (RGCs). To provide a more complete understanding of these receptors in vivo, we have utilized a mouse that lacks rod and cone photoreceptors (rd/rd cl) and compared these animals to congenic wild-types. Using real-time polymerase chain reaction and immunohistochemistry, we address the following. (1) Is Fos expression within these RGCs driven by an input from the rods/cones or is it the product of the intrinsic photosensitivity of these neurons? We demonstrate that most Fos expression across the entire retina is due to the rods/cones, but in the absence of these photoreceptors, light will induce Fos within melanopsin RGCs. (2) Could the reported age-related decline in circadian photosensitivity of rodents be linked to changes in the population of melanopsin RGCs? We show that old mice experience an approximately 40% reduction in melanopsin RGCs. (3) Does the loss of inner retinal neurons affect the responses of melanopsin RGCs? Aged (approximately 700 days) rd/rd cl mice lose most of their inner retina but retain the retinal ganglion cell layer. In these mice, the proportion of melanopsin RGCs that express Fos in response to light is significantly reduced. Collectively, our data suggest that melanopsin RGCs form a heterogeneous population of neurons, and that most of the light-induced c-fos expression within these cells is associated with the endogenous photosensitivity of these neurons.
Collapse
Affiliation(s)
- Ma'ayan Semo
- Department of Integrative and Molecular Neuroscience, Imperial College London, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | | | | | | | | |
Collapse
|
1934
|
KRIEGSFELD LANCEJ, LEAK REHANAK, YACKULIC CHARLESB, LeSAUTER JOSEPH, SILVER RAE. Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis. J Comp Neurol 2004; 468:361-79. [PMID: 14681931 PMCID: PMC3275427 DOI: 10.1002/cne.10995] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circadian rhythms in physiology and behavior are controlled by pacemaker cells located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The mammalian SCN can be classified into two subdivisions (core and shell) based on the organization of neuroactive substances, inputs, and outputs. Recent studies in our laboratory indicate that these subdivisions are associated with functional specialization in Syrian hamsters. The core region, marked by calbindin-D(28K) (CalB)-containing cells, expresses light-induced, but not rhythmic, clock genes. In the shell compartment, marked by vasopressinergic cells and fibers, clock gene expression is rhythmic. Given these findings, an important question is how photic and rhythmic information are integrated and communicated from each of these regions to effector areas. The present study used localized, intra-SCN iontophoretic injections of the anterograde tracer biotinylated dextran amine (BDA) to investigate intra-SCN connectivity and the neural pathways by which information is communicated from SCN subregions to targets. Intra-SCN connections project from the core to the shell compartment of the SCN, but not from the shell to the CalB region of the SCN. Retrograde tracing experiments were performed using cholera toxin-beta (CTB) to determine more specifically whether SCN efferents originated in the core or shell using neurochemical markers for the rhythmic (vasopressin) and light-induced (CalB) SCN subregions. The combined results from anterograde and retrograde experiments suggest that all SCN targets receive information from both the light-induced and rhythmic regions of the SCN (albeit to varying degrees) and indicate that light and rhythmic information may be integrated both within the SCN and at target effector areas.
Collapse
Affiliation(s)
| | - REHANA K. LEAK
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | | - JOSEPH LeSAUTER
- Department of Psychology, Barnard College, New York, New York 10027
| | - RAE SILVER
- Department of Psychology, Columbia University, New York, New York 10027
- Department of Psychology, Barnard College, New York, New York 10027
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
1935
|
Ekström P, Meissl H. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond B Biol Sci 2004; 358:1679-700. [PMID: 14561326 PMCID: PMC1693265 DOI: 10.1098/rstb.2003.1303] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pineal evolution is envisaged as a gradual transformation of pinealocytes (a gradual regression of pinealocyte sensory capacity within a particular cell line), the so-called sensory cell line of the pineal organ. In most non-mammals the pineal organ is a directly photosensory organ, while the pineal organ of mammals (epiphysis cerebri) is a non-sensory neuroendocrine organ under photoperiod control. The phylogenetic transformation of the pineal organ is reflected in the morphology and physiology of the main parenchymal cell type, the pinealocyte. In anamniotes, pinealocytes with retinal cone photoreceptor-like characteristics predominate, whereas in sauropsids so-called rudimentary photoreceptors predominate. These have well-developed secretory characteristics, and have been interpreted as intermediaries between the anamniote pineal photoreceptors and the mammalian non-sensory pinealocytes. We have re-examined the original studies on which the gradual transformation hypothesis of pineal evolution is based, and found that the evidence for this model of pineal evolution is ambiguous. In the light of recent advances in the understanding of neural development mechanisms, we propose a new hypothesis of pineal evolution, in which the old notion 'gradual regression within the sensory cell line' should be replaced with 'changes in fate restriction within the neural lineage of the pineal field'.
Collapse
Affiliation(s)
- Peter Ekström
- Institute of Cell and Organism Biology, Zoology Building, Lund University, Helgonavägen 3, S-223 62 Lund, Sweden.
| | | |
Collapse
|
1936
|
Erren TC, Reiter RJ, Pinger A, Piekarski C, Erren M. The chronosense – what light tells man about biological time. Med Hypotheses 2004; 63:1074-80. [PMID: 15504578 DOI: 10.1016/j.mehy.2004.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 04/06/2004] [Indexed: 11/19/2022]
Abstract
In the past 10 years, experimental studies have provided further evidence for the suggestion that the eye serves man as a dual sense organ, viz as a sense organ for sight but also for time and the regulation of biological rhythms. A small group of scientists interested in the adjustment of biological rhythms to the key Zeitgeber light wanted to answer the question whether rods and/or cones and/or other uncharacterized retinal photoreceptors contribute to this function in mammals. Intriguingly, in the course of elegant research, a number of laboratories around the world have been zeroing in on a novel non-rod, non-cone ocular photopigment which serves a number of responses to non-image-forming (NIF) photoreception in mammals. This paper intends to draw attention to possible implications of photoreception and phototransduction research for other scientific disciplines which study health and diesase effects in man. We therefore review the pivotal role of the photoreceptors -- old and new -- for the light-related timing and coordination of the interplay of otherwise less efficient biological rhythms. To distinguish our focus on time- and timing-related effects from classic image-forming (IF) and other NIF responses to ambient light, we refer informatively to chronoreceptors which mediate the sense of time, or chronosense. We conclude that syndisciplinary research into the physiology and pathophysiological implications of the chronosense is warranted and summarize a series of research questions.
Collapse
Affiliation(s)
- Thomas C Erren
- Institute and Polyclinic for Occupational and Social Medicine, School of Medicine and Dentistry, University of Cologne, Joseph-Stelzmann-Str. 9, 50924 Köln, Lindenthal, Germany.
| | | | | | | | | |
Collapse
|
1937
|
Nakamura H, Itoh K. Cytoarchitectonic and connectional organization of the ventral lateral geniculate nucleus in the cat. J Comp Neurol 2004; 473:439-62. [PMID: 15116383 DOI: 10.1002/cne.20074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ventral lateral geniculate nucleus is a small extrageniculate visual structure that has a complex cytoarchitecture and diverse connections. In addition to small-celled medial and lateral divisions, we cytoarchitectonically defined a small-celled dorsal division. A large-celled intermediate division intercalated between the three small-celled divisions, which we divided into medial and lateral intermediate subdivisions. In WGA-HRP injection experiments, the different cytoarchitectonic divisions were shown to have connections with different nuclei. The medial division was reciprocally connected to the pretectum and projected to the superficial layers of the superior colliculus and the intralaminar nuclei. The medial intermediate division received projections from the intermediate layer of the superior colliculus and the lateral and interpositus posterior cerebellar nuclei, and projected to the intermediate layer of the superior colliculus, the periaqueductal gray of midbrain, and the intralaminar nuclei. The lateral intermediate divisions received projections from the pretectum, the intermediate layer of the superior colliculus, and the lateral and interpositus posterior cerebellar nuclei, and projected to the pretectum, superficial layers of the superior colliculus, and the pulvinar. The lateral division received projections from superficial layers of the superior colliculus and had reciprocal connections with the pretectum. The dorsal division received projections from the pretectum and had reciprocal connections with the periaqueductal gray of midbrain. The different cytoarchitectonic divisions of the ventral lateral geniculate nucleus are thus suggested to play different functional roles related to vision, eye and head movements, attention, and defensive reactions.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Morphological Neuroscience, Gifu University School of Medicine, Gifu 501-1194, Japan.
| | | |
Collapse
|
1938
|
Diao L, Sun W, Deng Q, He S. Development of the mouse retina: Emerging morphological diversity of the ganglion cells. ACTA ACUST UNITED AC 2004; 61:236-49. [PMID: 15389605 DOI: 10.1002/neu.20041] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The time course and regulatory mechanisms of dendritic development are subjects of intense interest. We approached these problems by investigating dendritic morphology of retinal ganglion cells (RGCs) at four early postnatal stages. The RGCs develop from a diffusely stratified and poorly differentiated group at birth (P0), to 16 distinct, morphologically well-defined subtypes before eye opening (P13). Even before bipolar cells make synaptic contacts with the RGCs (P8), most adultlike RGC subtypes are already present. Similar to previous studies in other mammalian species, our results indicate that the initiation of the RGC morphological maturation is independent of light stimulation and of formation of glutamatergic synapses. This study narrowed down the window of RGCs morphological maturation and highlighted a few early postnatal events as potential factors controlling the developmental process. Because mouse is the most popular mammalian model for genetic manipulation, this study provided a foundation for further exploring regulatory mechanisms of RGC dendritic development.
Collapse
Affiliation(s)
- Ling Diao
- Institute of Neuroscience and Shanghai Research Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, PR China
| | | | | | | |
Collapse
|
1939
|
Lu B, Coffey P, Wang S, Ferrari R, Lund R. Abnormal c-fos-like immunoreactivity in the superior colliculus and other subcortical visual centers of pigmented royal college of surgeons rats. J Comp Neurol 2004; 472:100-12. [PMID: 15024755 DOI: 10.1002/cne.20069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurons in the central nervous system often show a transient up-regulation of expression of the immediate early gene c-fos when presented with precise novel stimuli. In normal rats, neurons in most subcortical visual centers show low levels of fos-like immunoreactivity (FLI) expression, but there is a substantial and transient increase in FLI expression if the animal is exposed to a flashing light. This is especially evident in the superior colliculus (SC). We have examined here FLI expression in the subcortical visual centers of the Royal College of Surgeons rat, focusing specifically on the SC. In this animal, as a result of a genetic defect, there is early loss of rod photoreceptors over the first few months of life, along with slower disappearance of cones. Although light stimulation showed that FLI expression was very similar to that seen in normal rats, the basal levels of FLI expression under dark-maintained conditions were much higher than normal, even exceeding the levels seen after visual stimulation. In the SC, the elevation of FLI expression was already evident by 6 weeks of age and reached a plateau by 17 weeks. Other subcortical visual centers also showed elevated basal levels of FLI expression, although in general the increases were less dramatic than the increase in the SC. The elevated FLI expression in dark-maintained condition seen in the SC was abolished by contralateral optic nerve section. It was also severely diminished by subretinal cell transplantation at 3 weeks of age with the objective of limiting photoreceptor loss over part of the retina. These results suggest that the elevated basal FLI expression is a retina-driven event. Although it correlates with the loss of rod photoreceptors, it is unlikely to reflect reduced photoreceptor drive but rather some form of bursting activity generated in the inner retina, as a result of circuit reorganization or receptor up-regulation.
Collapse
Affiliation(s)
- Bin Lu
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
1940
|
Tarttelin EE, Bellingham J, Hankins MW, Foster RG, Lucas RJ. Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett 2003; 554:410-6. [PMID: 14623103 DOI: 10.1016/s0014-5793(03)01212-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have cloned and characterised the expression of a new opsin gene, neuropsin (Opn5), in mice and humans. Neuropsin comprises seven exons on mouse chromosome 17. Its deduced protein sequence suggests a polypeptide of 377 amino acids in mice (354 in humans), with many structural features common to all opsins, including a lysine in the seventh transmembrane domain required to form a Schiff base link with retinaldehyde. Neuropsin shares 25-30% amino acid identity with all known opsins, making it the founding member of a new opsin family. It is expressed in the eye, brain, testis and spinal cord.
Collapse
Affiliation(s)
- Emma E Tarttelin
- Department of Integrative and Molecular Neuroscience, Imperial College London, Charing Cross Hospital, St. Dunstan's Road, London W6 8RP, UK.
| | | | | | | | | |
Collapse
|
1941
|
Muscat L, Huberman AD, Jordan CL, Morin LP. Crossed and uncrossed retinal projections to the hamster circadian system. J Comp Neurol 2003; 466:513-24. [PMID: 14566946 DOI: 10.1002/cne.10894] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hamster suprachiasmatic nucleus (SCN), site of the circadian clock, has been thought to be equally and completely innervated by each retina. This issue was studied in animals that had received an injection of the tracer cholera toxin subunit B (CTb) conjugated to Alexa 488 into the vitreous of one eye, with CTb-Alexa 594 injected into the other. Retinal projections to the SCN and other nuclei of the circadian system were simultaneously evaluated by using confocal laser microscopy. Each retina provides completely overlapping terminal fields throughout each SCN. Although SCN innervation by the contralateral retina is slightly denser than that from the ipsilateral retina, there are distinct SCN regions where input from one side is predominant, but not exclusive. A dense terminal field from the contralateral retina encompasses, and extends dorsally beyond, the central SCN subnucleus identified by calbindin-immunoreactive neurons. Surrounding the dense terminal field, innervation is largely derived from the ipsilateral retina. The densest terminal field in the intergeniculate leaflet is from the contralateral retina, which completely overlaps the ipsilateral projection. Most nuclei of the pretectum receive innervation largely, but not solely, from the contralateral retina, although the olivary pretectal nucleus has very dense patches of innervation derived exclusively from one retina or the other. Retina-dependent variation in terminal field density within the three closely examined nuclei may indicate areas of specialized function not previously appreciated. This issue is discussed in the context of the melanopsin-containing retinal ganglion cell projections to several nuclei in the circadian visual system.
Collapse
Affiliation(s)
- Louise Muscat
- Graduate Program in Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
1942
|
|
1943
|
Abstract
Circadian rhythms in blood pressure, heart rate, and cardiac output have been intensely studied, largely due to the well-documented phenomenon of increased cardiovascular death in the early hours of the morning. Circadian rhythmicity in both cardiovascular physiology and pathophysiology has been attributed primarily to diurnal variations in neurohumoral factors, such as sympathetic activity. It has become increasingly apparent that the intrinsic properties of the heart (seen at the level of gene and protein expression, energy metabolism, and contractile function) show significant fluctuations during the course of the day. These changes might be due to extracardiac (eg, neurohumoral factors) and/or intracardiac (eg, circadian clocks) influences. Circadian clocks are transcriptionally based, molecular mechanisms that enable the cell to anticipate diurnal variations in environmental stimuli. The cardiac circadian clock synchronizes responsiveness of the heart to diurnal variations in its environment, and impairment of this mechanism might contribute to the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Martin E Young
- Institute of Molecular Medicine, Research Center for Cell Signaling, University of Texas Health Science Center at Houston, TX 77030, USA.
| |
Collapse
|
1944
|
Butcher GQ, Lee B, Obrietan K. Temporal regulation of light-induced extracellular signal-regulated kinase activation in the suprachiasmatic nucleus. J Neurophysiol 2003; 90:3854-63. [PMID: 12930817 DOI: 10.1152/jn.00524.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Signaling via the p42/p44 mitogen activated protein kinase (MAPK) pathway has been implicated as an intermediate event coupling light to entrainment of the mammalian circadian clock located in the suprachiasmatic nucleus (SCN). To examine how photic input dynamically regulates the activation state of the MAPK pathway, we monitored extracellular signal-regulated kinase (ERK) activation using different light stimulus paradigms. Compared with control animals not exposed to light, a 15 min light exposure during the early night triggered a marked increase in ERK activation and the translocation of ERK from the cytosol to the nucleus. ERK activation peaked 15 min after light onset, then returned to near basal levels within approximately 45 min. The MAPK pathway could be reactivated multiple times by light pulses spaced 45 min apart, indicating that the MAPK cascade rapidly resets and resolves individual light pulses into discrete signaling events. Under conditions of constant light (120 min), the time course for ERK activation, nuclear translocation, and inactivation was similar to the time course observed after a 15-min light treatment. The parallels between the ERK inactivation profiles elicited by a 15 and a 120 min light exposure suggest that SCN cells contain a MAPK pathway signal-termination mechanism that limits the duration of pathway activation. This concept was supported by the observation that the small G protein Ras, a regulator of the MAPK pathway, remained in the active, GTP-bound, state under conditions of constant light (120-min duration), indicating that photic information was relayed to the SCN and that SCN cells maintained their responsiveness for the duration of the light treatment. The SCN expressed both nuclear MAPK phosphatases (MKP-1 and MKP-2) and the cytosolic MAPK phosphatase Mkp-3, thus providing mechanisms by which light-induced ERK activation is terminated. Collectively, these observations provide important new information regarding the regulation of the MAPK cascade, a signaling intermediate that couples light to resetting of the SCN clock.
Collapse
Affiliation(s)
- Greg Q Butcher
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
1945
|
Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, Hu Z, Liu X, Waschek JA. Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 2003; 285:R939-49. [PMID: 12855416 DOI: 10.1152/ajpregu.00200.2003] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN), but their function in the regulation of circadian rhythms is unknown. To study the role of these peptides on the circadian system in vivo, a new mouse model was developed in which both VIP and PHI genes were disrupted by homologous recombination. In a light-dark cycle, these mice exhibited diurnal rhythms in activity which were largely indistinguishable from wild-type controls. In constant darkness, the VIP/PHI-deficient mice exhibited pronounced abnormalities in their circadian system. The activity patterns started approximately 8 h earlier than predicted by the previous light cycle. In addition, lack of VIP/PHI led to a shortened free-running period and a loss of the coherence and precision of the circadian locomotor activity rhythm. In about one-quarter of VIP/PHI mice examined, the wheel-running rhythm became arrhythmic after several weeks in constant darkness. Another striking example of these deficits is seen in the split-activity patterns expressed by the mutant mice when they were exposed to a skeleton photoperiod. In addition, the VIP/PHI-deficient mice exhibited deficits in the response of their circadian system to light. Electrophysiological analysis indicates that VIP enhances inhibitory synaptic transmission within the SCN of wild-type and VIP/PHI-deficient mice. Together, the observations suggest that VIP/PHI peptides are critically involved in both the generation of circadian oscillations as well as the normal synchronization of these rhythms to light.
Collapse
Affiliation(s)
- Christopher S Colwell
- Mental Retardation Res. Ctr., Univ. of California - Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1946
|
Bergström AL, Hannibal J, Hindersson P, Fahrenkrug J. Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur J Neurosci 2003; 18:2552-62. [PMID: 14622156 DOI: 10.1046/j.1460-9568.2003.03000.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are daily adjusted (entrained) by light via the retinohypothalamic tract (RHT). The RHT contains two neurotransmitters, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), which are believed to mediate the phase-shifting effects of light on the clock. In the present study we have elucidated the role of PACAP in light-induced phase shifting at early night in hamsters and shown that (i) light-induced phase delay of running-wheel activity was significantly attenuated by a specific PAC1 receptor antagonist (PACAP6-38) or by immunoblockade with a specific anti-PACAP antibody injected intracerebroventricularly before light stimulation; (ii) PACAP administered close to the SCN was able to phase-delay the circadian rhythm of running-wheel activity in a similar way to light; (iii) PACAP was present in the hamster RHT, colocalized with melanopsin, a recently identified opsin which has been suggested to be a circadian photopigment. The findings indicate that PACAP is a neurotransmitter of the RHT mediating photic information to the clock, possibly via melanopsin located exclusively on the PACAP-expressing cells of the RHT.
Collapse
Affiliation(s)
- A L Bergström
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark
| | | | | | | |
Collapse
|
1947
|
Morin LP, Blanchard JH, Provencio I. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 2003; 465:401-16. [PMID: 12966564 DOI: 10.1002/cne.10881] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Health Science Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | |
Collapse
|
1948
|
He S, Dong W, Deng Q, Weng S, Sun W. Seeing More Clearly: Recent Advances in Understanding Retinal Circuitry. Science 2003; 302:408-11. [PMID: 14563998 DOI: 10.1126/science.1085457] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Among 10 breakthroughs that Science announced at the end of 2002 was the discovery of a photosensing (melanopsin-containing) retinal ganglion cell (RGC) and its role in entraining the circadian clock. This breakthrough exemplifies the ultimate goal of neuroscience: to understand the nervous system from molecules to behavior. Light-sensing RGCs constitute one of a dozen discrete RGC populations coding various aspects of visual scenes by virtue of their unique morphology, physiology, and coverage of the retina. Interestingly, the function of the melanopsin-containing RGCs in entraining the circadian clock need not involve much retinal processing, making it the simplest form of processing in the retina. This review focuses on recent advances in our understanding of retinal circuitry, visual processing, and retinal development demonstrated by innovative experimental techniques. It also discusses the advantages of using the retina as a model system to address some of the key questions in neuroscience.
Collapse
Affiliation(s)
- Shigang He
- Institute of Neuroscience, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, People's Republic of China.
| | | | | | | | | |
Collapse
|
1949
|
Erren TC, Reiter RJ, Piekarski C. Light, timing of biological rhythms, and chronodisruption in man. Naturwissenschaften 2003; 90:485-94. [PMID: 14610644 DOI: 10.1007/s00114-003-0468-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper reviews abundant evidence suggesting that causes and course of aging and cancers can be considered as being both light- and rhythm-related. We define chronodisruption as a relevant disturbance of orderly biological rhythms over days and seasons and years in man. Light is the primary external mediator and melatonin a primary internal intermediary of such disturbances, which can result in earlier deaths via premature aging and cancers. We conclude that experimental and epidemiological research can provide further insights into common denominators of these chronic processes and may offer novel and uniform targets for prevention.
Collapse
Affiliation(s)
- Thomas C Erren
- Institute and Polyclinic for Occupational and Social Medicine, School of Medicine and Dentistry, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924, Cologne, Germany.
| | | | | |
Collapse
|
1950
|
Abstract
The emergence of sleep states is one of the most significant aspects of development. Descriptions of both neonatal and late fetal behavior and studies on the organization of sleep have shown that fetus and newborns exhibit spontaneously discrete and cyclic patterns of active sleep (AS) and quiet sleep (QS). Human fetuses and neonates sleep most of their life, and AS is the prevailing state even during the first postnatal months. Several hypotheses to explain central nervous system development consider that AS is the expression of a basic activation program for the central nervous system that increases the functional competence of neurons, circuits, and complex patterns before the organism is called on to use them. Current results indicate the maturation of QS not only coincides with the formation of thalamocortical and intracortical patterns of innervation and periods of heightened synaptogenesis, since this sleep state is also associated with important processes in synaptic remodeling. In fact, several studies suggest that the information acquired during wakefulness is further processed during AS and QS. This article reviews the processes involved in the timing of both AS/QS and sleep/wake alternating patterns throughout early human development. A growing body of evidence indicates that the duration of unmodulated parental care and noncircadian environmental conditions may be detrimental for the establishment of these basic rhythmicities. As a consequence, alterations in parental/environmental entraining factors may well contribute to disturb sleep and feeding commonly experienced by preterm infants. Further knowledge on the early establishment of sleep-wake states regulatory mechanisms is needed to improve modalities for appropriate stimulation in the developing human being.
Collapse
Affiliation(s)
- Patricio Peirano
- Human and Basic Nutrition Division, INTA, University of Chile, Santiago, Chile
| | | | | |
Collapse
|