151
|
Hoyt KR, Horning P, Georgette Ang P, Karelina K, Obrietan K. Ribosomal S6 kinase signaling regulates neuronal viability during development and confers resistance to excitotoxic cell death in mature neurons. Neuroscience 2024; 558:1-10. [PMID: 39137868 DOI: 10.1016/j.neuroscience.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The Ribosomal S6 Kinase (RSK) family of serine/threonine kinases function as key downstream effectors of the MAPK signaling cascade. In the nervous system, RSK signaling plays crucial roles in neuronal development and contributes to activity-dependent neuronal plasticity. This study examined the role of RSK signaling in cell viability during neuronal development and in neuroprotection in the mature nervous system. Using neuronal cell-culture-based profiling, we found that suppressing RSK signaling led to significant cell death in developing primary neuronal cultures. To this end, treatment with the RSK inhibitors BiD1870 or SL0101 on the first day of culturing resulted in over 80% cell death. In contrast, more mature cultures showed attenuated cell death upon RSK inhibition. Inhibition of RSK signaling during early neuronal development also disrupted neurite outgrowth and cell growth. In maturing hippocampal explant cultures, treatment with BiD1870 had minimal effects on cell viability, but led to a striking augmentation of NMDA-induced cell death. Finally, we used the endothelin 1 (ET-1) model of ischemia to examine the neuroprotective effects of RSK signaling in the mature hippocampus in vivo. Notably, in the absence of RSK inhibition, the granule cell layer (GCL) was resistant to the effects of ET-1; However, disruption of RSK signaling (via the microinjection of BiD1870) prior to ET-1 injection triggered cell death within the GCL, thus indicating a neuroprotective role for RSK signaling in the mature nervous system. Together these data reveal distinct, developmentally-defined, roles for RSK signaling in the nervous system.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Paul Horning
- Department of Neuroscience, Ohio State University, Columbus, OH, USA; Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Pia Georgette Ang
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Kate Karelina
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
152
|
Vandermeulen MD, Khaiwal S, Rubio G, Liti G, Cullen PJ. Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals. iScience 2024; 27:110860. [PMID: 39381740 PMCID: PMC11460476 DOI: 10.1016/j.isci.2024.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Understanding how phenotypic diversity is generated is an important question in biology. We explored phenotypic diversity among wild yeast isolates (Saccharomyces cerevisiae) and found variation in the activity of MAPK signaling pathways as a contributing mechanism. To uncover the genetic basis of this mechanism, we identified 1957 SNPs in 62 candidate genes encoding signaling proteins from a MAPK signaling module within a large collection of yeast (>1500 individuals). Follow-up testing identified functionally relevant variants in key signaling proteins. Loss-of-function (LOF) alleles in a PAK kinase impacted protein stability and pathway specificity decreasing filamentous growth and mating phenotypes. In contrast, gain-of-function (GOF) alleles in G-proteins that were hyperactivating induced filamentous growth. Similar amino acid substitutions in G-proteins were identified in metazoans that in some cases were fixed in multicellular lineages including humans, suggesting hyperactivating GOF alleles may play roles in generating phenotypic diversity across eukaryotes. A mucin signaler that regulates MAPK activity was also found to contain a prevalance of presumed GOF alleles amoung individuals based on changes in mucin repeat numbers. Thus, genetic variation in signaling pathways may act as a reservoir for generating phenotypic diversity across eukaryotes.
Collapse
Affiliation(s)
| | - Sakshi Khaiwal
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Gabriel Rubio
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
153
|
Quach HQ, Haralambieva IH, Goergen KM, Grill DE, Chen J, Ovsyannikova IG, Poland GA, Kennedy RB. Similar humoral responses but distinct CD4 + T cell transcriptomic profiles in older adults elicited by MF59 adjuvanted and high dose influenza vaccines. Sci Rep 2024; 14:24420. [PMID: 39424894 PMCID: PMC11489691 DOI: 10.1038/s41598-024-75250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Older age (≥ 65 years) is associated with impaired responses to influenza vaccination, leading to the preferential recommendation of MF59-adjuvanted (MF59Flu) or high-dose (HDFlu) influenza vaccines for this age group in the United States. Herein, we characterized transcriptomic profiles of CD4+ T cells isolated from 234 recipients (≥ 65 years) of either MF59Flu or HDFlu vaccine, prior to vaccination and 28 days thereafter. We identified 412 and 645 differentially expressed genes (DEGs) in CD4+ T cells of older adults after receiving MF59Flu and HDFlu, respectively. DEGs in CD4+ T cells of MF59Flu recipients were enriched in 14 KEGG pathways, all of which were downregulated. DEGs in CD4+ T cells of HDFlu recipients were enriched in 11 upregulated pathways and 20 downregulated pathways. CD4+ T cells in both vaccine groups shared 50 upregulated genes and 75 downregulated genes, all of which were enriched in 7 KEGG pathways. The remaining 287 and 520 DEGs were specifically associated with MF59Flu and HDFlu, respectively. Unexpectedly, none of these DEGs was significantly correlated with influenza A/H3N2-specific HAI titers, suggesting these DEGs at the individual level may have a limited role in protection against influenza. Our findings emphasize the need for further investigation into other factors influencing immunity against influenza in older adults.
Collapse
Affiliation(s)
- Huy Quang Quach
- Department of Internal Medicine, Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Iana H Haralambieva
- Department of Internal Medicine, Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krista M Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Diane E Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Inna G Ovsyannikova
- Department of Internal Medicine, Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gregory A Poland
- Department of Internal Medicine, Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard B Kennedy
- Department of Internal Medicine, Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
154
|
Silwal P, Nguyen-Thai AM, Alexander PG, Sowa GA, Vo NV, Lee JY. Cellular and Molecular Mechanisms of Hypertrophy of Ligamentum Flavum. Biomolecules 2024; 14:1277. [PMID: 39456209 PMCID: PMC11506588 DOI: 10.3390/biom14101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Hypertrophy of the ligamentum flavum (HLF) is a common contributor to lumbar spinal stenosis (LSS). Fibrosis is a core pathological factor of HLF resulting in degenerative LSS and associated low back pain. Although progress has been made in HLF research, the specific molecular mechanisms that promote HLF remain to be defined. The molecular factors involved in the onset of HLF include increases in inflammatory cytokines such as transforming growth factor (TGF)-β, matrix metalloproteinases, and pro-fibrotic growth factors. In this review, we discuss the current understanding of the mechanisms involved in HLF with a particular emphasis on aging and mechanical stress. We also discuss in detail how several pathomechanisms such as fibrosis, proliferation and apoptosis, macrophage infiltration, and autophagy, in addition to several molecular pathways involving TGF-β1, mitogen-activated protein kinase (MAPKs), and nuclear factor-κB (NF-κB) signaling, PI3K/AKT signaling, Wnt signaling, micro-RNAs, extracellular matrix proteins, reactive oxygen species (ROS), etc. are involved in fibrosis leading to HLF. We also present a summary of the current advancements in preclinical animal models for HLF research. In addition, we update the current and potential therapeutic targets/agents against HLF. An improved understanding of the molecular processes behind HLF and a novel animal model are key to developing effective LSS prevention and treatment strategies.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Peter G. Alexander
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gwendolyn A. Sowa
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Cancer, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
155
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
156
|
Ryu Y, Wague A, Liu X, Feeley BT, Ferguson AR, Morioka K. Cellular signaling pathways in the nervous system activated by various mechanical and electromagnetic stimuli. Front Mol Neurosci 2024; 17:1427070. [PMID: 39430293 PMCID: PMC11486767 DOI: 10.3389/fnmol.2024.1427070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Mechanical stimuli, such as stretch, shear stress, or compression, activate a range of biomolecular responses through cellular mechanotransduction. In the nervous system, studies on mechanical stress have highlighted key pathophysiological mechanisms underlying traumatic injury and neurodegenerative diseases. However, the biomolecular pathways triggered by mechanical stimuli in the nervous system has not been fully explored, especially compared to other body systems. This gap in knowledge may be due to the wide variety of methods and definitions used in research. Additionally, as mechanical stimulation techniques such as ultrasound and electromagnetic stimulation are increasingly utilized in psychological and neurorehabilitation treatments, it is vital to understand the underlying biological mechanisms in order to develop accurate pathophysiological models and enhance therapeutic interventions. This review aims to summarize the cellular signaling pathways activated by various mechanical and electromagnetic stimuli with a particular focus on the mammalian nervous system. Furthermore, we briefly discuss potential cellular mechanosensors involved in these processes.
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aboubacar Wague
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Adam R. Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Zuckerberg San Francisco General Hospital and Trauma CenterOrthopaedic Trauma Institute, , San Francisco, CA, United States
| |
Collapse
|
157
|
Lee SH, Kim KH, Lee SM, Park SJ, Lee S, Cha RH, Lee JW, Kim DK, Kim YS, Ye SK, Yang SH. STAT3 blockade ameliorates LPS-induced kidney injury through macrophage-driven inflammation. Cell Commun Signal 2024; 22:476. [PMID: 39367511 PMCID: PMC11453053 DOI: 10.1186/s12964-024-01841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3), a multifaceted transcription factor, modulates host immune responses by activating cellular response to signaling ligands. STAT3 has a pivotal role in the pathophysiology of kidney injury by counterbalancing resident macrophage phenotypes under inflammation conditions. However, STAT3's role in acute kidney injury (AKI), particularly in macrophage migration, and in chronic kidney disease (CKD) through fibrosis development, remains unclear. METHODS Stattic (a JAK2/STAT3 inhibitor, 5 mg/kg or 10 mg/kg) was administered to evaluate the therapeutic effect on LPS-induced AKI (L-AKI) and LPS-induced CKD (L-CKD), with animals sacrificed 6-24 h and 14 days post-LPS induction, respectively. The immune mechanisms of STAT3 blockade were determined by comparing the macrophage phenotypes and correlated with renal function parameters. Also, the transcriptomic analysis was used to confirm the anti-inflammatory effect of L-AKI, and the anti-fibrotic role was further evaluated in the L-CKD model. RESULTS In the L-AKI model, sequential increases in BUN and blood creatinine levels were time-dependent, with a marked elevation of 0-6 h after LPS injection. Notably, two newly identified macrophage subpopulations (CD11bhighF4/80low and CD11blowF4/80high), exhibited population changes, with an increase in the CD11bhighF4/80low population and a decrease in the CD11blowF4/80high macrophages. Corresponding to the FACS results, the tubular injury score, NGAL, F4/80, and p-STAT3 expression in the tubular regions were elevated. STAT3 inhibitor injection in L-AKI and L-CKD mice reduced renal injury and fibrosis. M2-type subpopulation with CD206 in CD11blowF4/80high population increased in the Stattic-treated group compared with that in the LPS-alone group in the L-AKI model. Additionally, STAT3 inhibitor reduced inflammation driven by LPS-stimulated macrophages and epithelial cells injury in the co-culture system. Transcriptomic profiling identified 3 common genes in the JAK-STAT, TLR, and TNF signaling pathways and 11 common genes in the LPS with macrophage response. The PI3K-AKT (IL-6, Akt3, and Pik3r1) and JAK-STAT pathways were determined as potential Stattic targets. Further confirmation through mRNA and protein expressions analyses showed that Stattic treatment reduced inflammation in the L-AKI and fibrosis in the L-CKD mice. CONCLUSIONS STAT3 blockade effectively mitigated inflammation by retrieving the CD11blowF4/80high population, further emphasizing the role of STAT3-associated macrophage-driven inflammation in kidney injury.
Collapse
Affiliation(s)
- Song-Hee Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Kyu Hong Kim
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seong Min Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seong Joon Park
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sunhwa Lee
- Department of Internal Medicine, Division of Nephrology, Kangwon National University Hospital, Chuncheon, Gangwon-Do, Republic of Korea
| | - Ran-Hui Cha
- Biomedical Research Institute, Seoul National University Hospital, Hospital, Seoul, Republic of Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center of Korea, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sang-Kyu Ye
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea.
- Department of Pharmacology, Seoul National University, Seoul, Republic of Korea.
| | - Seung Hee Yang
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Hospital, Seoul, Republic of Korea.
| |
Collapse
|
158
|
Zhou J, Fu C, Shen M, Tao J, Liu H. Sulforaphane Promotes Proliferation of Porcine Granulosa Cells via the H3K27ac-Mediated GDF8-ALK5-ERK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21635-21649. [PMID: 39294897 DOI: 10.1021/acs.jafc.4c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Follicle development, a crucial process in reproductive biology, hinges upon the dynamic proliferation of granulosa cells (GCs). Growth differentiation factor-8 (GDF8) is well-known as myostatin for inhibiting skeletal muscle growth, and it also exists in ovarian GCs and follicle fluid. However, the relationship between GCs proliferation and GDF8 remains elusive. Sulforaphane (SFN) is a potent bioactive compound, which in our study has been demonstrated to induce the expression of GDF8 in GCs. Meanwhile, we discover a novel role of SFN in promoting the proliferation of porcine GCs. Specifically, SFN enhances GCs proliferation by accelerating the progression of the cell cycle through the G1 phase to the S phase. By performing gene expression profiling, we showed that the promoting proliferative effects of SFN are highly correlated with the TGF-β signaling pathways and cell cycle. Among the ligand factors of TGF-β signaling, we identify GDF8 as a critical downstream effector of SFN, which acts through ALK5 to mediate SFN-induced proliferation and G1/S transition. In addition, we identify a noncanonical downstream pathway by which GDF8 induces the activation of MAPK/ERK to facilitate the cell cycle progression in GCs. Moreover, we reveal that the expression of GDF8 is regulated by SFN through epigenetic modifications of H3K27 acetylation. These findings not only provide mechanistic insights into the regulation of GCs proliferation but also establish a previously unrecognized role of GDF8 in follicle development, which have significant implications for developing strategies to improve female fertility.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
159
|
Singh KP, Singh A, Wolkenhauer O, Gupta SK. Regulatory Role of IL6 in Immune-Related Adverse Events during Checkpoint Inhibitor Treatment in Melanoma. Int J Mol Sci 2024; 25:10600. [PMID: 39408929 PMCID: PMC11476582 DOI: 10.3390/ijms251910600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The landscape of clinical management for metastatic melanoma (MM) and other solid tumors has been modernized by the advent of immune checkpoint inhibitors (ICI), including programmed cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors. While these agents demonstrate efficacy in suppressing tumor growth, they also lead to immune-related adverse events (irAEs), resulting in the exacerbation of autoimmune diseases such as rheumatoid arthritis (RA), ulcerative colitis (UC), and Crohn's disease (CD). The immune checkpoint inhibitors offer promising advancements in the treatment of melanoma and other cancers, but they also present significant challenges related to irAEs and autoimmune diseases. Ongoing research is crucial to better understand these challenges and develop strategies for mitigating adverse effects while maximizing therapeutic benefits. In this manuscript, we addressed this challenge using network-based approaches by constructing and analyzing the molecular and signaling networks associated with tumor-immune crosstalk. Our analysis revealed that IL6 is the key regulator responsible for irAEs during ICI therapies. Furthermore, we conducted an integrative network and molecular-level analysis, including virtual screening, of drug libraries, such as the Collection of Open Natural Products (COCONUT) and the Zinc15 FDA-approved library, to identify potential IL6 inhibitors. Subsequently, the compound amprenavir was identified as the best molecule that may disrupt essential interactions between IL6 and IL6R, which are responsible for initiating the signaling cascades underlying irAEs in ICI therapies.
Collapse
Affiliation(s)
- Krishna P. Singh
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany; (K.P.S.); (O.W.)
| | - Anuj Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India;
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany; (K.P.S.); (O.W.)
- Department of Biomedical Engineering & Bioinformatics, Chhattisgarh Swami Vivekananda Technical University, Bhilai 491107, India
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Shailendra Kumar Gupta
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany; (K.P.S.); (O.W.)
- Department of Biomedical Engineering & Bioinformatics, Chhattisgarh Swami Vivekananda Technical University, Bhilai 491107, India
| |
Collapse
|
160
|
Lu L, Zhang J, Zheng X, Xia N, Diao Z, Wang X, Chen Z, Tang D, Li S. OsMPK12 positively regulates rice blast resistance via OsEDC4-mediated transcriptional regulation of immune-related genes. PLANT, CELL & ENVIRONMENT 2024; 47:3712-3731. [PMID: 38770581 DOI: 10.1111/pce.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Mitogen-activated protein kinase (MAPK) signalling cascades are functionally important signalling modules in eukaryotes. Transcriptome reprogramming of immune-related genes is a key process in plant immunity. Emerging evidence shows that plant MAPK cascade is associated with processing (P)-body components and contributes to transcriptome reprogramming of immune-related genes. However, it remains largely unknown how this process is regulated. Here, we show that OsMPK12, which is induced by Magnaporthe oryzae infection, positively regulates rice blast resistance. Further analysis revealed that OsMPK12 directly interacts with enhancer of mRNA decapping protein 4 (OsEDC4), a P-body-located protein, and recruits OsEDC4 to where OsMPK12 is enriched. Importantly, OsEDC4 directly interacts with two decapping complex members OsDCP1 and OsDCP2, indicating that OsEDC4 is a subunit of the mRNA decapping complex. Additionally, we found that OsEDC4 positively regulates rice blast resistance by regulating expression of immune-related genes and maintaining proper mRNA levels of some negatively-regulated genes. And OsMPK12 and OsEDC4 are also involved in rice growth and development regulation. Taken together, our data demonstrate that OsMPK12 positively regulates rice blast resistance via OsEDC4-mediated mRNA decay of immune-related genes, providing new insight into not only the new role of the MAPK signalling cascade, but also posttranscriptional regulation of immune-related genes.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingxing Zheng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Xia
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Chen
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
161
|
Zhang Y, Zhang X, Kai T, Zhang L, Li A. Lycium ruthenicum Murray derived exosome-like nanovesicles inhibit Aβ-induced apoptosis in PC12 cells via MAPK and PI3K/AKT signaling pathways. Int J Biol Macromol 2024; 277:134309. [PMID: 39089544 DOI: 10.1016/j.ijbiomac.2024.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Plant-derived exosome-like nanovesicles (ELNs) are nano-sized vesicles extracted from edible plants. Lycium ruthenicum Murray (LRM) has been gaining increasing attention due to its nutritional and medicinal value, but the ELNs in LRM has not been reported. In this study, LRM-ELNs were obtained, and the proteins, lipids, microRNAs (miRNAs) and active components in LRM tissues and LRM-ELNs was analyzed by LC-MS/MS, LC-MS, high-throughput sequencing techniques, and physical and chemical analysis. LRM-ELNs can be uptaken by PC12 cells through macropinocytosis and caveolin-mediated endocytosis primarily. Transcriptomic and western blot experiments indicate that LRM-ELNs can inhibit Aβ-induced apoptosis in PC12 cells through the MAPK and PI3K/AKT signaling pathways, with miRNAs playing a crucial role. These results indicate that LRM-ELNs have the protection effect on PC12 cells and can be considered as dietary supplements for alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yadan Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoyu Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| | - Lin Zhang
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Anping Li
- College of Food Science and Engineering, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
162
|
Salimi K, Alvandi M, Saberi Pirouz M, Rakhshan K, Howatson G. Regulating eEF2 and eEF2K in skeletal muscle by exercise. Arch Physiol Biochem 2024; 130:503-514. [PMID: 36633938 DOI: 10.1080/13813455.2023.2164898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
Skeletal muscle is a flexible and adaptable tissue that strongly responds to exercise training. The skeletal muscle responds to exercise by increasing muscle protein synthesis (MPS) when energy is available. One of protein synthesis's major rate-limiting and critical regulatory steps is the translation elongation pathway. The process of translation elongation in skeletal muscle is highly regulated. It requires elongation factors that are intensely affected by various physiological stimuli such as exercise and the total available energy of cells. Studies have shown that exercise involves the elongation pathway by numerous signalling pathways. Since the elongation pathway, has been far less studied than the other translation steps, its comprehensive prospect and quantitative understanding remain in the dark. This study highlights the current understanding of the effect of exercise training on the translation elongation pathway focussing on the molecular factors affecting the pathway, including Ca2+, AMPK, PKA, mTORC1/P70S6K, MAPKs, and myostatin. We further discussed the mode and volume of exercise training intervention on the translation elongation pathway.What is the topic of this review? This review summarises the impacts of exercise training on the translation elongation pathway in skeletal muscle focussing on eEF2 and eEF2K.What advances does it highlight? This review highlights mechanisms and factors that profoundly influence the translation elongation pathway and argues that exercise might modulate the response. This review also combines the experimental observations focussing on the regulation of translation elongation during and after exercise. The findings widen our horizon to the notion of mechanisms involved in muscle protein synthesis (MPS) through translation elongation response to exercise training.
Collapse
Affiliation(s)
- Kia Salimi
- Department of Exercise Physiology, Faculty of Sport and Exercise Sciences, University of Tehran, Tehran, Iran
| | - Masoomeh Alvandi
- Department of Biological Science in Sport and Health, University of Shahid Beheshti, Tehran, Iran
| | - Mahdi Saberi Pirouz
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Rakhshan
- Department of Medical Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
163
|
Li D, Onodera S, Yu Q, Zhou J. The impact of alternate-day fasting on the salivary gland stem cell compartments in non-obese diabetic mice with newly established Sjögren's syndrome. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119817. [PMID: 39159683 PMCID: PMC11368138 DOI: 10.1016/j.bbamcr.2024.119817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Intermittent fasting exerts a profound beneficial influence on a spectrum of diseases through various mechanisms including regulation of immune responses, elimination of senescent- and pathogenic cells and improvement of stem cell-based tissue regeneration in a disease- and tissue-dependent manner. Our previous study demonstrated that alternate-day fasting (ADF) led to alleviation of xerostomia and sialadenitis in non-obese diabetic (NOD) mice, a well-defined model of Sjögren's syndrome (SS). This present study delved into the previously unexplored impacts of ADF in this disease setting and revealed that ADF increases the proportion of salivary gland stem cells (SGSCs), defined as the EpCAMhi cell population among the lineage marker negative submandibular gland (SMG) cells. Furthermore, ADF downregulated the expression of p16INK4a, a cellular senescence marker, which was concomitant with increased apoptosis and decreased expression and activity of NLRP3 inflammasomes in the SMGs, particularly in the SGSC-residing ductal compartments. RNA-sequencing analysis of purified SGSCs from NOD mice revealed that the significantly downregulated genes by ADF were mainly associated with sugar metabolism, amino acid biosynthetic process and MAPK signaling pathway, whereas the significantly upregulated genes related to fatty acid metabolic processes, among others. Collectively, these findings indicate that ADF increases the SGSC proportion, accompanied by a modulation of the SGSC property and a switch from sugar- to fatty acid-based metabolism. These findings lay the foundation for further investigation into the functionality of SGSCs influenced by ADF and shed light on the cellular and molecular mechanisms by which ADF exerts beneficial actions on salivary gland restoration in SS.
Collapse
Affiliation(s)
- Dongfang Li
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Shoko Onodera
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Qing Yu
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Jing Zhou
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| |
Collapse
|
164
|
Zhu Y, Yao L, Gallo-Ferraz AL, Bombassaro B, Simões MR, Abe I, Chen J, Sarker G, Ciccarelli A, Zhou L, Lee C, Sidarta-Oliveira D, Martínez-Sánchez N, Dustin ML, Zhan C, Horvath TL, Velloso LA, Kajimura S, Domingos AI. Sympathetic neuropeptide Y protects from obesity by sustaining thermogenic fat. Nature 2024; 634:243-250. [PMID: 39198648 PMCID: PMC11446830 DOI: 10.1038/s41586-024-07863-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Human mutations in neuropeptide Y (NPY) have been linked to high body mass index but not altered dietary patterns1. Here we uncover the mechanism by which NPY in sympathetic neurons2,3 protects from obesity. Imaging of cleared mouse brown and white adipose tissue (BAT and WAT, respectively) established that NPY+ sympathetic axons are a smaller subset that mostly maps to the perivasculature; analysis of single-cell RNA sequencing datasets identified mural cells as the main NPY-responsive cells in adipose tissues. We show that NPY sustains the proliferation of mural cells, which are a source of thermogenic adipocytes in both BAT and WAT4-6. We found that diet-induced obesity leads to neuropathy of NPY+ axons and concomitant depletion of mural cells. This defect was replicated in mice with NPY abrogated from sympathetic neurons. The loss of NPY in sympathetic neurons whitened interscapular BAT, reducing its thermogenic ability and decreasing energy expenditure before the onset of obesity. It also caused adult-onset obesity of mice fed on a regular chow diet and rendered them more susceptible to diet-induced obesity without increasing food consumption. Our results indicate that, relative to central NPY, peripheral NPY produced by sympathetic nerves has the opposite effect on body weight by sustaining energy expenditure independently of food intake.
Collapse
Affiliation(s)
- Yitao Zhu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lu Yao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ana L Gallo-Ferraz
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marcela R Simões
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Ichitaro Abe
- Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes & Metabolism, Harvard Medical School, Boston, MA, USA
- Department of Cardiology and Clinical Examination, Oita University, Faculty of Medicine, Oita, Japan
| | - Jing Chen
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Gitalee Sarker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Linna Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Carl Lee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Noelia Martínez-Sánchez
- Oxford Centre for Diabetes, Endocrinology and Metabolism Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Cheng Zhan
- Department of Haematology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tamas L Horvath
- Department of Obstetrics/Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Shingo Kajimura
- Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes & Metabolism, Harvard Medical School, Boston, MA, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
165
|
Tao W, Xu W, Li X, Zhang X, Li C, Guo M. Characterization of c-Jun N-terminal kinase (JNK) gene reveals involvement of immune defense against Vibrio splendidus infection in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109804. [PMID: 39102970 DOI: 10.1016/j.fsi.2024.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The c-Jun N-terminal kinase (JNK) constitutes an evolutionarily conserved family of serine/threonine protein kinases, pivotal in regulating various physiological processes in vertebrates, encompassing apoptosis and antibacterial immunity. Nevertheless, the involvement of JNK in the innate immune response remains largely unexplored in pathogen-induced echinoderms. We isolated and characterized the JNK gene from Apostichopus japonicus (AjJNK) in our investigation. The full-length cDNA sequences of AjJNK spanned 1806 bp, comprising a 1299 bp open reading frame (ORF) encoding 432 amino acids, a 274 bp 5'-untranslated region (UTR), and a 233 bp 3'-UTR. Structural analysis revealed the presence of a classical S_TKc domain (37-335 amino acids) within AjJNK and contains several putative immune-related transcription factor-binding sites, including Elk-1, NF-κB, AP-1, and STAT5. Spatial expression analysis indicated ubiquitous expression of AjJNK across all examined tissues, with the highest expression noted in coelomocytes. The mRNA, protein, and phosphorylation levels of AjJNK were obviously induced in coelomocytes upon V. splendidus challenge and lipopolysaccharide stimulation. Immunofluorescence analysis demonstrated predominant cytoplasmic localization of AjJNK in coelomocytes with subsequent nuclear translocation following the V. splendidus challenge in vivo. Moreover, siRNA-mediated knockdown of AjJNK led to a significant increase in intracellular bacterial load, as well as elevated levels of Ajcaspase 3 and coelomocyte apoptosis post V. splendidus infection. Furthermore, the phosphorylation levels of AjJNK inhibited by its specific inhibitor SP600125 and also significantly suppressed the expression of Ajcaspase 3 and coelomocyte apoptosis during pathogen infection. Collectively, these data underscored the pivotal role of AjJNK in immune defense, specifically in the regulation of coelomocyte apoptosis in V. splendidus-challenged A. japonicus.
Collapse
Affiliation(s)
- Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weijia Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xiumei Zhang
- Yantai Marine Economic Research Institute, Yantai, 265503, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
166
|
Liu F, Wu W, Cao W, Feng L, Yuan J, Ren Z, Dai N, Wang X, Li X, Yue S. EREG silencing inhibits tumorigenesis via inactivating ERK/p38 MAPK pathway in pancreatic ductal adenocarcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167336. [PMID: 38972433 DOI: 10.1016/j.bbadis.2024.167336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
Epiregulin (EREG) is a member of the epidermal growth factor (EGF) family. An increasing body of evidence has demonstrated the pivotal role of EREG in the pathogenesis and progression of various malignancies. However, the clinical significance and biological role of EREG in pancreatic ductal adenocarcinoma (PDAC) have yet to be fully elucidated. We found that EREG is highly expressed in PDAC tissues compared with paracancerous tissues through public databases and clinical samples. High EREG expression predicted worse overall survival (OS) and recurrence-free survival (RFS) in patients with PDAC. Multivariate analysis revealed that EREG can serve as an independent prognostic indicator. In addition, EREG silencing inhibited PDAC cell proliferation, migration, progression, altered cell cycle, facilitated apoptosis in vitro and suppressed tumor growth in vivo. Conversely, EREG overexpression facilitated the proliferation, migration, and invasion in PaTu-8988 t cell. Through transcriptome sequencing and experimental verification, we found EREG mediates PDAC tumorigenesis through ERK/p38 MAPK signaling pathway. Moreover, we found EREG expression is closely related to PD-L1 expression in PDAC tissues and cells. Therefore, EREG is expected to be a prospective prognostic and therapeutic marker for PDAC.
Collapse
Affiliation(s)
- Fuyuan Liu
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weikang Wu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weiwei Cao
- Department of clinical laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liangyong Feng
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Juzheng Yuan
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhuohui Ren
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Niu Dai
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xudan Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Xiao Li
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Shuqiang Yue
- Department of General Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
167
|
Shin YC, Cho M, Hwang JM, Myung K, Kweon HS, Lee ZW, Seong HA, Lee KB. Imaging the Raf-MEK-ERK Signaling Cascade in Living Cells. Int J Mol Sci 2024; 25:10587. [PMID: 39408915 PMCID: PMC11477372 DOI: 10.3390/ijms251910587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional biochemical methods for studying cellular signaling cascades have relied on destructive cell disruption. In contrast, the live cell imaging of fluorescent-tagged transfected proteins offers a non-invasive approach to understanding signal transduction events. One strategy involves monitoring the phosphorylation-dependent shuttling of a fluorescent-labeled kinase between the nucleus and cytoplasm using nuclear localization, export signals, or both. In this paper, we introduce a simple method to visualize intracellular signal transduction in live cells by exploring the translocation properties of PKC from the cytoplasm to the membrane. We fused bait protein to PKC, allowing the bait (RFP-labeled) and target (GFP-labeled) proteins to co-translocate from the cytoplasm to the membrane. However, in non-interacting protein pairs, only the bait protein was translocated to the plasma membrane. To verify our approach, we examined the Raf-MEK-ERK signaling cascade (ERK pathway). We successfully visualized direct Raf1/MEK2 interaction and the KSR1-containing ternary complex (Raf1/MEK2/KSR1). However, the interaction between MEK and ERK was dependent on the presence of the KSR1 scaffold protein under our experimental conditions.
Collapse
Affiliation(s)
- Young-Chul Shin
- Department of Biochemistry, School of Life Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (Y.-C.S.); (M.C.)
- bHLBIO, Cheongju 28119, Republic of Korea;
| | - Minkyung Cho
- Department of Biochemistry, School of Life Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (Y.-C.S.); (M.C.)
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; (J.M.H.); (K.M.)
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; (J.M.H.); (K.M.)
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hee-Seok Kweon
- Center for Bio-Imaging & Translational Research and Bioimaging Data Curation Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea;
| | | | - Hyun-A. Seong
- Department of Biochemistry, School of Life Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (Y.-C.S.); (M.C.)
| | - Kyung-Bok Lee
- Center for Bio-Imaging & Translational Research and Bioimaging Data Curation Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea;
| |
Collapse
|
168
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
169
|
Mariano N, Wolf H, Vivekanand P. Isoginkgetin exerts apoptotic effects on A375 melanoma cells. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001324. [PMID: 39381637 PMCID: PMC11461025 DOI: 10.17912/micropub.biology.001324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Many plants produce secondary metabolites, known as flavonoids, which are thought to exhibit anti-cancer properties. Ginkgo biloba , a plant traditionally used in Chinese herbal medicine, is known to produce over 40 different secondary metabolites. Isoginkgetin, a biflavanoid from this species, has been demonstrated to be cytotoxic to different cancer cell lines. In this study, the anti-cancer effects of isoginkgetin were tested on A375 melanoma cells. XTT cell viability analysis revealed that isoginkgetin treatment resulted in a concentration dependent decrease in cell viability. To investigate whether apoptosis was induced in A375 cell treated with isoginkgetin, a western blot analysis was performed to detect PARP cleavage which is indicative of apoptosis. PARP cleavage was detected at all concentrations tested, with more pronounced cleavage observed with increasing isoginkgetin concentrations. To obtain insight into the potential mechanism of isoginkgetin induced apoptosis, we examined the involvement of the MAPK signaling pathway. We detected phosphorylated ERK in A375 cells treated with isoginkgetin which suggests that isoginkgetin might induce apoptosis of A375 cells through activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Nina Mariano
- Biology Department, Susquehanna University, Selinsgrove, Pennsylvania, United States
| | - Hunter Wolf
- Biology Department, Susquehanna University, Selinsgrove, Pennsylvania, United States
| | - Pavithra Vivekanand
- Biology Department, Susquehanna University, Selinsgrove, Pennsylvania, United States
| |
Collapse
|
170
|
Azmal M, Paul JK, Prima FS, Talukder OF, Ghosh A. An in silico molecular docking and simulation study to identify potential anticancer phytochemicals targeting the RAS signaling pathway. PLoS One 2024; 19:e0310637. [PMID: 39298437 PMCID: PMC11412525 DOI: 10.1371/journal.pone.0310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
The dysregulation of the rat sarcoma (RAS) signaling pathway, particularly the MAPK/ERK cascade, is a hallmark of many cancers, leading to uncontrolled cellular proliferation and resistance to apoptosis-inducing treatments. Dysregulation of the MAPK/ERK pathway is common in various cancers including pancreatic, lung, and colon cancers, making it a critical target for therapeutic intervention. Natural compounds, especially phytochemicals, offer a promising avenue for developing new anticancer therapies due to their potential to interfere with these signaling pathways. This study investigates the potential of anticancer phytochemicals to inhibit the MAPK/ERK pathway through molecular docking and simulation techniques. A total of 26 phytochemicals were screened from an initial set of 340 phytochemicals which were retrieved from Dr. Duke's database using in silico methods for their binding affinity and stability. Molecular docking was performed to identify key interactions with ERK2, followed by molecular dynamics (MD) simulations to evaluate the stability of these interactions. The study identified several phytochemicals, including luteolin, hispidulin, and isorhamnetin with a binding score of -10.1±0 Kcal/mol, -9.86±0.15 Kcal/mol, -9.76±0.025 Kcal/mol, respectively as promising inhibitors of the ERK2 protein. These compounds demonstrated significant binding affinities and stable interactions with ERK2 in MD simulation studies up to 200ns, particularly at the active site. The radius of gyration analysis confirmed the stability of these phytochemical-protein complexes' compactness, indicating their potential to inhibit ERK activity. The stability and binding affinity of these compounds suggest that they can effectively inhibit ERK2 activity, potentially leading to more effective and less toxic cancer treatments. The findings underscore the therapeutic promise of these phytochemicals, which could serve as a basis for developing new cancer therapies.
Collapse
Affiliation(s)
- Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jibon Kumar Paul
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fatema Sultana Prima
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Omar Faruk Talukder
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
171
|
Xiao S, Wang J, Digiacomo L, Amici A, De Lorenzi V, Pugliese LA, Cardarelli F, Cerrato A, Laganà A, Cui L, Papi M, Caracciolo G, Marchini C, Pozzi D. Protein corona alleviates adverse biological effects of nanoplastics in breast cancer cells. NANOSCALE 2024; 16:16671-16683. [PMID: 39171675 DOI: 10.1039/d4nr01850h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Pollution from micro- and nanoplastics (MNPs) has long been a topic of concern due to its potential impact on human health. MNPs can circulate through human blood and, thus far, have been found in the lungs, spleen, stomach, liver, kidneys and even in the brain, placenta, and breast milk. While data are already available on the adverse biological effects of pristine MNPs (e.g. oxidative stress, inflammation, cytotoxicity, and even cancer induction), no report thus far clarified whether the same effects are modulated by the formation of a protein corona around MNPs. To this end, here we use pristine and human-plasma pre-coated polystyrene (PS) nanoparticles (NPs) and investigate them in cultured breast cancer cells both in terms of internalization and cell biochemical response to the exposure. It is found that pristine NPs tend to stick to the cell membrane and inhibit HER-2-driven signaling pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways, which are associated with cancer cell survival and growth. By contrast, the formation of a protein corona around the same NPs can promote their uptake by endocytic vesicles and final sequestration within lysosomes. Of note is that such intracellular fate of PS-NPs is associated with mitigation of the biochemical alterations of the phosphorylated AKT (pAKT)/AKT and phosphorylated ERK (pERK)/ERK levels. These findings provide the distribution of NPs in human breast cancer cells, may broaden our understanding of the interactions between NPs and breast cancer cells and underscore the crucial role of the protein corona in modulating the impact of MNPs on human health.
Collapse
Affiliation(s)
- Siyao Xiao
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Valentina De Lorenzi
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Licia Anna Pugliese
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Francesco Cardarelli
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Lishan Cui
- Department of Neuroscience, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy
| | - Massimiliano Papi
- Department of Neuroscience, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
172
|
Zhang Y, Naguro I, Ryuno H, Herr AE. ContactBlot: Microfluidic Control and Measurement of the Cell-Cell Contact State to Assess Contact-Inhibited ERK Signaling. Anal Chem 2024. [PMID: 39254112 PMCID: PMC11447967 DOI: 10.1021/acs.analchem.4c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Extracellular signal-regulated kinase (ERK) signaling is essential to regulated cell behaviors, including cell proliferation, differentiation, and apoptosis. The influence of cell-cell contacts on ERK signaling is central to epithelial cells, yet few studies have sought to understand the same in cancer cells, particularly with single-cell resolution. To acquire same-cell measurements of both phenotypic (cell-contact state) and targeted-protein (ERK phosphorylation) profiles, we prepend high-content, whole-cell imaging prior to end-point cellular-resolution Western blot analyses for each of hundreds of individual HeLa cancer cells cultured on that same chip, which we call contactBlot. By indexing the phosphorylation level of ERK in each cell or cell cluster to the imaged cell-contact state, we compare the ERK signaling between isolated and in-contact cells. We observe attenuated (∼2×) ERK signaling in HeLa cells that are in-contact versus isolated. Attenuation is sustained when the HeLa cells are challenged with hyperosmotic stress. Our findings show the impact of cell-cell contacts on ERK activation with isolated and in-contact cells while introducing a multi-omics tool for control and scrutiny of cell-cell interactions.
Collapse
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering, University of California-Berkeley, Berkeley, California 94720, United States
| | - Isao Naguro
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Faculty of Pharmacy Juntendo University, Urayasu, Chiba 279-0013, Japan
| | - Hiroki Ryuno
- Graduate School of Pharmaceutical Sciences The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Amy E Herr
- Department of Bioengineering, University of California-Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
173
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
174
|
Lentz RW, Friedrich TJ, Blatchford PJ, Jordan KR, Pitts TM, Robinson HR, Davis SL, Kim SS, Leal AD, Lee MR, Waring MR, Martin AC, Dominguez AT, Bagby SM, Hartman SJ, Eckhardt SG, Messersmith WA, Lieu CH. A Phase II Study of Potentiation of Pembrolizumab with Binimetinib and Bevacizumab in Refractory Microsatellite-Stable Colorectal Cancer. Clin Cancer Res 2024; 30:3768-3778. [PMID: 38869830 PMCID: PMC11369619 DOI: 10.1158/1078-0432.ccr-24-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE In this single-institution phase II investigator-initiated study, we assessed the ability of MAPK and VEGF pathway blockade to overcome resistance to immunotherapy in microsatellite-stable metastatic colorectal cancer (MSS mCRC). PATIENTS AND METHODS Patients with MSS, BRAF wild-type mCRC who progressed on ≥2 prior lines of therapy received pembrolizumab, binimetinib, and bevacizumab until disease progression or unacceptable toxicity. After a safety run-in, patients were randomized to a 7-day run-in of binimetinib or simultaneous initiation of all study drugs, to explore whether MEK inhibition may increase tumor immunogenicity. The primary endpoint was objective response rate (ORR) in all patients combined (by Response Evaluation Criteria in Solid Tumors v1.1). RESULTS Fifty patients received study drug treatment; 54% were male with a median age of 55 years (range, 31-79). The primary endpoint, ORR, was 12.0% [95% confidence interval (CI) 4.5%-24.3%], which was not statistically different than the historical control data of 5% (P = 0.038, exceeding prespecified threshold of 0.025). The disease control rate was 70.0% (95% CI, 55.4%-82.1%), the median progression-free survival 5.9 months (95% CI, 4.2-8.7 months), and the median overall survival 9.3 months (95% CI, 6.7-12.2 months). No difference in efficacy was observed between the randomized cohorts. Grade 3 and 4 adverse events were observed in 56% and 8% of patients, respectively; the most common were rash (12%) and increased aspartate aminotransferase (12%). CONCLUSIONS Pembrolizumab, binimetinib, and bevacizumab failed to meet its primary endpoint of higher ORR compared with historical control data, demonstrated a high disease control rate, and demonstrated acceptable tolerability in refractory MSS mCRC.
Collapse
Affiliation(s)
- Robert W. Lentz
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Tyler J. Friedrich
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Patrick J. Blatchford
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Hannah R. Robinson
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - S. Lindsey Davis
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Sunnie S. Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Alexis D. Leal
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Mathew R. Lee
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Meredith R.N. Waring
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Anne C. Martin
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Adrian T.A. Dominguez
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Sarah J. Hartman
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - S. Gail Eckhardt
- Department of Oncology, The University of Texas at Austin Dell Medical School, Austin, Texas.
| | - Wells A. Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Christopher H. Lieu
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
175
|
Hu A, Li K. Erianin Impedes the Proliferation and Metastatic Migration Through Suppression of STAT-3 Phosphorylation in Human Esophageal Cancer Cells. Appl Biochem Biotechnol 2024; 196:5859-5874. [PMID: 38165593 DOI: 10.1007/s12010-023-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
In this study, we have investigated erianin, a natural phenolic drug that impedes proliferation and metastatic migration through suppression of STAT-3 phosphorylation in human esophageal cancer cells. Eca-109 cells were treated with different concentrations of erianin (4, 8, 12 µM) for 24 h, and then cell proliferation, apoptosis, and metastatic markers were evaluated. Erianin-induced cytotoxicity and cell proliferation were examined using MTT and crystal violet staining techniques. The measurement of reactive oxygen species (ROS) and the study of apoptotic changes were conducted through flow cytometry. Furthermore, protein expression analyses via western blotting included an evaluation of JAK-STAT3, cell survival, cell cycle, proliferation, and apoptosis-related proteins. Moreover, erianin treatment-associated MMP expressions were studied by RT-PCR. In this study, erianin treatment induces substantial cytotoxicity and ROS production based on the concentrations in Eca-109 cells. Moreover, erianin inhibits the MAPK phosphorylation, proliferation, and metastatic protein in Eca-109 cells. STAT-3 is a crucial transcriptional factor that regulates numerous downstream proteins, such as proliferation, anti-apoptosis, and metastatic proteins. In this study, erianin treatment inhibited the protein expression of IL-6, IL-10, JAK-1, and p-STAT-3 expressions leading to induce apoptosis in Eca-109 cells. Moreover, erianin inhibited the expression of proliferation, metastatic, and anti-apoptotic markers in Eca-109 cells. Hence, erianin suppressed the JAK/STAT-3 signaling pathway and demonstrates potential as a chemotherapeutic agent for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Anxi Hu
- Department of Thoracic Surgery, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
| | - Kunkun Li
- Department of Gastroenterology, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou City, 450001, Henan Province, China.
| |
Collapse
|
176
|
Elahimanesh M, Shokri N, Mohammadi P, Parvaz N, Najafi M. Step by step analysis on gene datasets of growth phases in hematopoietic stem cells. Biochem Biophys Rep 2024; 39:101737. [PMID: 38881758 PMCID: PMC11176649 DOI: 10.1016/j.bbrep.2024.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Background Umbilical cord blood hematopoietic stem cells (UCB-HSCs) have important roles in the treatment of illnesses based on their self-renewal and potency characteristics. Knowing the gene profiles and signaling pathways involved in each step of the cell cycle could improve the therapeutic approaches of HSCs. The aim of this study was to predict the gene profiles and signaling pathways involved in the G0, G1, and differentiation stages of HSCs. Methods Interventional (n = 8) and non-interventional (n = 3) datasets were obtained from the Gene Expression Omnibus (GEO) database, and were crossed and analyzed to determine the high- and low-express genes related to each of the G0, G1, and differentiation stages of HSCs. Then, the scores of STRING were annotated to the gene data. The gene networks were constructed using Cytoscape software, and enriched with the KEGG and GO databases. Results The high- and low-express genes were determined due to inter and intra intersections of the interventional and non-interventional data. The non-interventional data were applied to construct the gene networks (n = 6) with the nodes improved using the interventional data. Several important signaling pathways were suggested in each of the G0, G1, and differentiation stages. Conclusion The data revealed that the different signaling pathways are activated in each of the G0, G1, and differentiation stages so that their genes may be targeted to improve the HSC therapy.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parvaz
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
177
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 PMCID: PMC11771367 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
178
|
Cui L, Li X, Liu Z, Liu X, Zhu Y, Zhang Y, Han Z, Zhang Y, Liu S, Li H. MAPK pathway orchestrates gallid alphaherpesvirus 1 infection through the biphasic activation of MEK/ERK and p38 MAPK signaling. Virology 2024; 597:110159. [PMID: 38943781 DOI: 10.1016/j.virol.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Therapies targeting virus-host interactions are seen as promising strategies for treating gallid alphaherpesvirus 1 (ILTV) infection. Our study revealed a biphasic activation of two MAPK cascade pathways, MEK/ERK and p38 MAPK, as a notably activated host molecular event in response to ILTV infection. It exhibits antiviral functions at different stages of infection. Initially, the MEK/ERK pathway is activated upon viral invasion, leading to a broad suppression of metabolic pathways crucial for ILTV replication, thereby inhibiting viral replication from the early stage of ILTV infection. As the viral replication progresses, the p38 MAPK pathway activates its downstream transcription factor, STAT1, further hindering viral replication. Interestingly, ILTV overcomes this biphasic antiviral barrier by hijacking host p38-AKT axis, which protects infected cells from the apoptosis induced by infection and establishes an intracellular equilibrium conducive to extensive ILTV replication. These insights could provide potential therapeutic targets for ILTV infection.
Collapse
Affiliation(s)
- Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xuefeng Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China; School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaoxiao Liu
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yongxin Zhu
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yilei Zhang
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China; School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
179
|
Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother 2024; 178:117277. [PMID: 39126772 DOI: 10.1016/j.biopha.2024.117277] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative neurological condition characterized by cognitive decline, primarily affecting memory and logical thinking, attributed to amyloid-β plaques and tau protein tangles in the brain, leading to neuronal loss and brain atrophy. Neuroinflammation, a hallmark of AD, involves the activation of microglia and astrocytes in response to pathological changes, potentially exacerbating neuronal damage. The gut-brain axis is a bidirectional communication pathway between the gastrointestinal and central nervous systems, crucial for maintaining brain health. Phytochemicals, natural compounds found in plants with antioxidant and anti-inflammatory properties, such as flavonoids, curcumin, resveratrol, and quercetin, have emerged as potential modulators of this axis, suggesting implications for AD prevention. Intake of phytochemicals influences the gut microbial composition and its metabolites, thereby impacting neuroinflammation and oxidative stress in the brain. Consumption of phytochemical-rich foods may promote a healthy gut microbiota, fostering the production of anti-inflammatory and neuroprotective substances. Early dietary incorporation of phytochemicals offers a non-invasive strategy for modulating the gut-brain axis and potentially reducing AD risk or delaying its onset. The exploration of interventions targeting the gut-brain axis through phytochemical intake represents a promising avenue for the development of preventive or therapeutic strategies against AD initiation and progression.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| |
Collapse
|
180
|
Li H, Fan S, Gong Z, Chan JYK, Tong MCF, Chen GG. Role of hematological and neurological expressed 1 (HN1) in human cancers. Crit Rev Oncol Hematol 2024; 201:104446. [PMID: 38992849 DOI: 10.1016/j.critrevonc.2024.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Hematological and neurological expressed 1 (HN1), also known as Jupiter microtubule associated homolog 1 (JPT1), is a highly conserved protein with widespread expression in various tissues. Ectopic elevation of HN1 has been observed in multiple cancers, highlighting its role in tumorigenesis and progression. Both proteomics and transcriptomics reveal that HN1 is closely associated with severe disease progression, poor prognostic and shorter overall survival. HN1's involvement in cancer cell proliferation and metastasis has been extensively investigated. Overexpression of HN1 is associated with increased tumor growth and disease progression, while its depletion leads to cell cycle arrest and apoptosis. The pivotal role of HN1 in cancer progression, particularly in proliferation, migration, and invasion, underscores its significance in cancer metastasis. Validation of the efficacy and safety of HN1 inhibition, along with the development of diagnostic methods to determine HN1 expression levels in patients, is essential for the translation of HN1-targeted therapies into clinical practice. Overall, HN1 emerges as a valuable prognostic marker and therapeutic target in cancer, and further investigations hold the potential to improve patient outcomes by impeding metastasis and enhancing treatment strategies.
Collapse
Affiliation(s)
- Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Jason Ying Kuen Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
181
|
Lee CY, Chen PN, Kao SH, Wu HH, Hsiao YH, Huang TY, Wang PH, Yang SF. Deoxyshikonin triggers apoptosis in cervical cancer cells through p38 MAPK-mediated caspase activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:4308-4317. [PMID: 38717057 DOI: 10.1002/tox.24323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 08/09/2024]
Abstract
Deoxyshikonin (DSK) is a biological component derived from Lithospermum erythrorhizon. Although DSK possesses potential anticancer activities, whether DSK exerts anticancer effects on cervical cancer cells is incompletely explored. This study was aimed to investigate the anticancer activity of DSK against cervical cancer cells and its molecular mechanisms. Cell viability was evaluated by MTT assay. Level of phosphorylation and protein was determined using Western blot. Involvement of signaling kinases was assessed by specific inhibitors. Our results revealed that DSK reduced viability of human cervical cell in a dose-dependent fashion. Meanwhile, DSK significantly elicited apoptosis of HeLa and SiHa cells. Apoptosis microarray was used to elucidate the involved pathways, and the results showed that DSK dose-dependently diminished cellular inhibitor of apoptosis protein 1 (cIAP1), cIAP2, and XIAP, and induced cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-8/9/3. Furthermore, we observed that DSK significantly triggered activation of ERK, JNK, and p38 MAPK (p38), and only inhibition of p38 diminished the DSK-mediated pro-caspases cleavage. Taken together, our results demonstrate that DSK has anti-cervical cancer effects via the apoptotic cascade elicited by downregulation of IAPs and p38-mediated caspase activation. This suggests that DSK could act as an adjuvant to facilitate cervical cancer management.
Collapse
Affiliation(s)
- Chung-Yuan Lee
- Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Heng-Hsiung Wu
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
- Women's Health Research Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Tzu-Yu Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
182
|
Jing JQ, Jia SJ, Yang CJ. Physical activity promotes brain development through serotonin during early childhood. Neuroscience 2024; 554:34-42. [PMID: 39004411 DOI: 10.1016/j.neuroscience.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Early childhood serves as a critical period for neural development and skill acquisition when children are extremely susceptible to the external environment and experience. As a crucial experiential stimulus, physical activity is believed to produce a series of positive effects on brain development, such as cognitive function, social-emotional abilities, and psychological well-being. The World Health Organization recommends that children engage in sufficient daily physical activity, which has already been strongly advocated in the practice of preschool education. However, the mechanisms by which physical activity promotes brain development are still unclear. The role of neurotransmitters, especially serotonin, in promoting brain development through physical activity has received increasing attention. Physical activity has been shown to stimulate the secretion of serotonin by increasing the bioavailability of free tryptophan and enriching the diversity of gut microbiota. Due to its important role in modulating neuronal proliferation, differentiation, synaptic morphogenesis, and synaptic transmission, serotonin can regulate children's explicit cognitive and social interaction behavior in the early stages of life. Therefore, we hypothesized that serotonin emerges as a pivotal transmitter that mediates the relationship between physical activity and brain development during early childhood. Further systematic reviews and meta-analyses are needed to specifically explore whether the type, intensity, dosage, duration, and degree of voluntariness of PA may affect the role of serotonin in the relationship between physical activity and brain function. This review not only helps us understand the impact of exercise on development but also provides a solid theoretical basis for increasing physical activity during early childhood.
Collapse
Affiliation(s)
- Jia-Qi Jing
- Faculty of Education, East China Normal University, Shanghai, China
| | - Si-Jia Jia
- Faculty of Education, East China Normal University, Shanghai, China
| | - Chang-Jiang Yang
- Faculty of Education, East China Normal University, Shanghai, China.
| |
Collapse
|
183
|
Yin Z, Li H, Zhao H, Bentum-Ennin L, Xia Y, Wang Z, Hu W, Gu H, Zhang S, Li G. CircRAPGEF5 acts as a modulator of RAS/RAF/MEK/ERK signaling during colorectal carcinogenesis. Heliyon 2024; 10:e36133. [PMID: 39229520 PMCID: PMC11369509 DOI: 10.1016/j.heliyon.2024.e36133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Mutations in oncogenes such as KRAS, NRAS and BRAF promote the growth and survival of tumors, while excessive RAS/RAF/MEK/ERK activation inhibits tumor growth. In this study we examined the precise regulatory machinery that maintains a moderate RAS/RAF/MEK/ERK pathway activation during CRC. Here, using bioinformatic analysis, transcriptomic profiling, gene silencing and cellular assays we discovered that a circular RNA, circRAPGEF5, is significantly upregulated in KRAS mutant colorectal cancer (CRC) cells. CircRAPGEF5 suppressed mutant and constitutively activated KRAS and the expression of the death receptor TNFRSF10A. Silencing of circRAPGEF5-induced RAS/RAF/MEK/ERK signaling hyperactivation and apoptosis in CRC cells suggesting that an upregulation of circRAPEF5 may suppress the expression of TNFRSF10A and aid CRC progression by preventing apoptosis, while the direct interactions between circRAPGEF5 and elements of the RAS/RAF/MEK/ERK pathway was not identified, which nevertheless can be the basis for future research. Moreover, EIF4A3, was observed to share a similar expression pattern with circRAPEF5 and demonstrated to be a major controller of circRAPGEF5 via the promotion of circRAPGEF5 circularization and its silencing reduced circRAPGEF5 levels. Taken together, our findings reveal a mechanism of accurate RAS/RAF/MEK/ERK signaling regulation during CRC progression maintained by upregulation of circRAPGEF5 which may be a plausible target for future clinical applications that seek to induce CRC cell apoptosis via the RAS/RAF/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Zhipeng Yin
- Department of Gastrointestinal Surgery, The People's Hospital of Bozhou, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Hao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Heng Zhao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lutterodt Bentum-Ennin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yang Xia
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Genome Center, KingMed Center for Clinical Laboratory Co., Ltd., Hefei, China
| | - Zaibiao Wang
- Department of Gastrointestinal Surgery, The People's Hospital of Bozhou, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Wanglai Hu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shangxin Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guangyun Li
- Department of Gastrointestinal Surgery, The People's Hospital of Bozhou, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| |
Collapse
|
184
|
Han Q, Fernandez J, Rajczewski AT, Kono TJY, Weirath NA, Rahim A, Lee AS, Seabloom D, Tretyakova NY. A Multi-Omics Study of Epigenetic Changes in Type II Alveolar Cells of A/J Mice Exposed to Environmental Tobacco Smoke. Int J Mol Sci 2024; 25:9365. [PMID: 39273313 PMCID: PMC11394788 DOI: 10.3390/ijms25179365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Lung cancer remains a major contributor to cancer fatalities, with cigarette smoking known to be responsible for up to 80% of cases. Based on the ability of cigarette smoke to induce inflammation in the lungs and increased lung cancer incidence in smokers with inflammatory conditions such as COPD, we hypothesized that inflammation plays an important role in the carcinogenicity of cigarette smoke. To test this hypothesis, we performed multi-omic analyses of Type II pneumocytes of A/J mice exposed to cigarette smoke for various time periods. We found that cigarette smoke exposure resulted in significant changes in DNA methylation and hydroxymethylation, gene expression patterns, and protein abundance that were partially reversible and contributed to an inflammatory and potentially oncogenic phenotype.
Collapse
Affiliation(s)
- Qiyuan Han
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (Q.H.); (A.T.R.)
| | - Jenna Fernandez
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| | - Andrew T. Rajczewski
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (Q.H.); (A.T.R.)
| | - Thomas J. Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Nicholas A. Weirath
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| | - Abdur Rahim
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| | - Alexander S. Lee
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA;
| | - Donna Seabloom
- AeroCore Testing Services, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; (J.F.); (N.A.W.); (A.R.)
| |
Collapse
|
185
|
Mutsuddy A, Huggins JR, Amrit A, Erdem C, Calhoun JC, Birtwistle MR. Mechanistic modeling of cell viability assays with in silico lineage tracing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609433. [PMID: 39253474 PMCID: PMC11383287 DOI: 10.1101/2024.08.23.609433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Data from cell viability assays, which measure cumulative division and death events in a population and reflect substantial cellular heterogeneity, are widely available. However, interpreting such data with mechanistic computational models is hindered because direct model/data comparison is often muddled. We developed an algorithm that tracks simulated division and death events in mechanistically detailed single-cell lineages to enable such a model/data comparison and suggest causes of cell-cell drug response variability. Using our previously developed model of mammalian single-cell proliferation and death signaling, we simulated drug dose response experiments for four targeted anti-cancer drugs (alpelisib, neratinib, trametinib and palbociclib) and compared them to experimental data. Simulations are consistent with data for strong growth inhibition by trametinib (MEK inhibitor) and overall lack of efficacy for alpelisib (PI-3K inhibitor), but are inconsistent with data for palbociclib (CDK4/6 inhibitor) and neratinib (EGFR inhibitor). Model/data inconsistencies suggest (i) the importance of CDK4/6 for driving the cell cycle may be overestimated, and (ii) that the cellular balance between basal (tonic) and ligand-induced signaling is a critical determinant of receptor inhibitor response. Simulations show subpopulations of rapidly and slowly dividing cells in both control and drug-treated conditions. Variations in mother cells prior to drug treatment all impinging on ERK pathway activity are associated with the rapidly dividing phenotype and trametinib resistance. This work lays a foundation for the application of mechanistic modeling to large-scale cell viability assay datasets and better understanding determinants of cellular heterogeneity in drug response.
Collapse
Affiliation(s)
- Arnab Mutsuddy
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Jonah R. Huggins
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Aurore Amrit
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Cemal Erdem
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Jon C. Calhoun
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
| | - Marc R. Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
186
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
187
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 PMCID: PMC11352263 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India;
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India;
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| |
Collapse
|
188
|
Li D, Li D, Wang Z, Li J, Shahzad KA, Wang Y, Tan F. Signaling pathways activated and regulated by stem cell-derived exosome therapy. Cell Biosci 2024; 14:105. [PMID: 39164778 PMCID: PMC11334359 DOI: 10.1186/s13578-024-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Stem cell-derived exosomes exert comparable therapeutic effects to those of their parental stem cells without causing immunogenic, tumorigenic, and ethical disadvantages. Their therapeutic advantages are manifested in the management of a broad spectrum of diseases, and their dosing versatility are exemplified by systemic administration and local delivery. Furthermore, the activation and regulation of various signaling cascades have provided foundation for the claimed curative effects of exosomal therapy. Unlike other relevant reviews focusing on the upstream aspects (e.g., yield, isolation, modification), and downstream aspects (e.g. phenotypic changes, tissue response, cellular behavior) of stem cell-derived exosome therapy, this unique review endeavors to focus on various affected signaling pathways. After meticulous dissection of relevant literature from the past five years, we present this comprehensive, up-to-date, disease-specific, and pathway-oriented review. Exosomes sourced from various types of stem cells can regulate major signaling pathways (e.g., the PTEN/PI3K/Akt/mTOR, NF-κB, TGF-β, HIF-1α, Wnt, MAPK, JAK-STAT, Hippo, and Notch signaling cascades) and minor pathways during the treatment of numerous diseases encountered in orthopedic surgery, neurosurgery, cardiothoracic surgery, plastic surgery, general surgery, and other specialties. We provide a novel perspective in future exosome research through bridging the gap between signaling pathways and surgical indications when designing further preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Ding Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
189
|
Kusuma IY, Habibie H, Bahar MA, Budán F, Csupor D. Anticancer Effects of Secoiridoids-A Scoping Review of the Molecular Mechanisms behind the Chemopreventive Effects of the Olive Tree Components Oleocanthal, Oleacein, and Oleuropein. Nutrients 2024; 16:2755. [PMID: 39203892 PMCID: PMC11357637 DOI: 10.3390/nu16162755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The olive tree (Olea europaea) and olive oil hold significant cultural and historical importance in Europe. The health benefits associated with olive oil consumption have been well documented. This paper explores the mechanisms of the anti-cancer effects of olive oil and olive leaf, focusing on their key bioactive compounds, namely oleocanthal, oleacein, and oleuropein. The chemopreventive potential of oleocanthal, oleacein, and oleuropein is comprehensively examined through this systematic review. We conducted a systematic literature search to identify eligible articles from Scopus, PubMed, and Web of Science databases published up to 10 October 2023. Among 4037 identified articles, there were 88 eligible articles describing mechanisms of chemopreventive effects of oleocanthal, oleacein, and oleuropein. These compounds have the ability to inhibit cell proliferation, induce cell death (apoptosis, autophagy, and necrosis), inhibit angiogenesis, suppress tumor metastasis, and modulate cancer-associated signalling pathways. Additionally, oleocanthal and oleuropein were also reported to disrupt redox hemostasis. This review provides insights into the chemopreventive mechanisms of O. europaea-derived secoiridoids, shedding light on their role in chemoprevention. The bioactivities summarized in the paper support the epidemiological evidence demonstrating a negative correlation between olive oil consumption and cancer risk. Furthermore, the mapped and summarized secondary signalling pathways may provide information to elucidate new synergies with other chemopreventive agents to complement chemotherapies and develop novel nutrition-based anti-cancer approaches.
Collapse
Affiliation(s)
- Ikhwan Yuda Kusuma
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Pharmacy Study Program, Universitas Harapan Bangsa, Purwokerto 53182, Indonesia
| | - Habibie Habibie
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Muh. Akbar Bahar
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Ferenc Budán
- Institute of Physiology, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Institute for Translational Medicine, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
190
|
Kularbkaew T, Thongmak T, Sandeth P, Durward CS, Vittayakittipong P, Duke P, Iamaroon A, Kintarak S, Intachai W, Ngamphiw C, Tongsima S, Jatooratthawichot P, Cox TC, Ketudat Cairns JR, Kantaputra P. Genetic Variants in the TBC1D2B Gene Are Associated with Ramon Syndrome and Hereditary Gingival Fibromatosis. Int J Mol Sci 2024; 25:8867. [PMID: 39201553 PMCID: PMC11354241 DOI: 10.3390/ijms25168867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Ramon syndrome (MIM 266270) is an extremely rare genetic syndrome, characterized by gingival fibromatosis, cherubism-like lesions, epilepsy, intellectual disability, hypertrichosis, short stature, juvenile rheumatoid arthritis, and ocular abnormalities. Hereditary or non-syndromic gingival fibromatosis (HGF) is also rare and considered to represent a heterogeneous group of disorders characterized by benign, slowly progressive, non-inflammatory gingival overgrowth. To date, two genes, ELMO2 and TBC1D2B, have been linked to Ramon syndrome. The objective of this study was to further investigate the genetic variants associated with Ramon syndrome as well as HGF. Clinical, radiographic, histological, and immunohistochemical examinations were performed on affected individuals. Exome sequencing identified rare variants in TBC1D2B in both conditions: a novel homozygous variant (c.1879_1880del, p.Glu627LysfsTer61) in a Thai patient with Ramon syndrome and a rare heterozygous variant (c.2471A>G, p.Tyr824Cys) in a Cambodian family with HGF. A novel variant (c.892C>T, p.Arg298Cys) in KREMEN2 was also identified in the individuals with HGF. With support from mutant protein modeling, our data suggest that TBC1D2B variants contribute to both Ramon syndrome and HGF, although variants in additional genes might also contribute to the pathogenesis of HGF.
Collapse
Affiliation(s)
- Thatphicha Kularbkaew
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (W.I.)
- Division of Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Phan Sandeth
- Department of Oral and Maxillofacial Surgery, Preah Ang Duong Hospital, Phnom Penh 120201, Cambodia;
| | - Callum S. Durward
- Faculty of Dentistry, University of Puthisastra, Phnom Penh 120201, Cambodia;
| | - Pichai Vittayakittipong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Paul Duke
- Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Anak Iamaroon
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sompid Kintarak
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (W.I.)
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (W.I.)
- Division of Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
191
|
Song SY, Park DH, Lee SH, Lim HK, Park JW, Seo JW, Cho SS. Protective Effects of 7S,15R-Dihydroxy-16S,17S-Epoxy-Docosapentaenoic Acid (diHEP-DPA) against Blue Light-Induced Retinal Damages in A2E-Laden ARPE-19 Cells. Antioxidants (Basel) 2024; 13:982. [PMID: 39199228 PMCID: PMC11351242 DOI: 10.3390/antiox13080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
The purpose of this study was to investigate the protective effects of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA) in retinal pigment epithelial (RPE) cell damage. ARPE-19 cells, a human RPE cell line, were cultured with diHEP-DPA and Bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E), followed by exposure to BL. Cell viability and cell death rates were determined. Western blotting was performed to determine changes in apoptotic factors, mitogen-activated protein kinase (MAPK) family proteins, inflammatory proteins, and oxidative and carbonyl stresses. The levels of pro-inflammatory cytokines in the culture medium supernatants were also measured. Exposure to A2E and BL increased the ARPE-19 cell death rate, which was alleviated by diHEP-DPA in a concentration-dependent manner. A2E and BL treatments induced apoptosis in ARPE-19 cells, which was also alleviated by diHEP-DPA. Analysis of the relationship with MAPK proteins revealed that the expression of p-JNK and p-P38 increased after A2E and BL treatments and decreased with exposure to diHEP-DPA in a concentration-dependent manner. DiHEP-DPA also affected the inflammatory response by suppressing the expression of inflammatory proteins and the production of pro-inflammatory cytokines. Furthermore, it was shown that diHEP-DPA regulated the proteins related to oxidative and carbonyl stresses. Taken together, our results provide evidence that diHEP-DPA can inhibit cell damage caused by A2E and BL exposure at the cellular level by controlling various pathways involved in apoptosis and inflammatory responses.
Collapse
Affiliation(s)
- Seung-Yub Song
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju-si 58245, Jeonnam, Republic of Korea;
| | - Sung-Ho Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Han-Kyu Lim
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Jeollabuk-do, Republic of Korea;
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (S.-Y.S.); (S.-H.L.); (J.-W.P.)
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea;
| |
Collapse
|
192
|
Lee CY, Tsai HN, Cheng EH, Lee TH, Lin PY, Lee MS, Lee CI. Transcriptomic Analysis of Vitrified-Warmed vs. Fresh Mouse Blastocysts: Cryo-Induced Physiological Mechanisms and Implantation Impact. Int J Mol Sci 2024; 25:8658. [PMID: 39201343 PMCID: PMC11354596 DOI: 10.3390/ijms25168658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Blastocyst vitrification has significantly improved embryo transfer methods, leading to higher implantation success rates and better pregnancy outcomes in subsequent frozen embryo transfer cycles. This study aimed to simulate the transcriptional changes caused by vitrifying human blastocysts using mouse blastocysts as a model and to further investigate these changes' effects. Utilizing a human vitrification protocol, we implanted both vitrified and fresh embryos into mice. We observed the implantation success rates and performed transcriptomic analysis on the blastocysts. To validate the results from messenger RNA sequencing, we conducted reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) to measure the expression levels of specific genes. Based on mRNA profiling, we predicted the microRNAs responsible for the regulation and used qPCR basic microRNA assays for validation. Our observations revealed a higher implantation success rate for vitrified embryos than fresh embryos. Transcriptomic analysis showed that vitrified-warmed blastocysts exhibited differentially expressed genes (DEGs) primarily associated with thermogenesis, chemical carcinogenesis-reactive oxygen species, oxidative phosphorylation, immune response, and MAPK-related signaling pathways. RT-qPCR confirmed increased expression of genes such as Cdk6 and Nfat2, and decreased expression of genes such as Dkk3 and Mapk10. Additionally, gene-microRNA interaction predictions and microRNA expression analysis identified twelve microRNAs with expression patterns consistent with the predicted results, suggesting potential roles in uterine epithelial cell adhesion, trophectoderm development, invasive capacity, and immune responses. Our findings suggest that vitrification induces transcriptomic changes in mouse blastocysts, and even small changes in gene expression can enhance implantation success. These results highlight the importance of understanding the molecular mechanisms underlying vitrification to optimize embryo transfer techniques and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Chi-Ying Lee
- Genetic Diagnosis Laboratory, Lee Women’s Hospital, Taichung 40652, Taiwan; (C.-Y.L.); (H.-N.T.); (E.-H.C.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Han-Ni Tsai
- Genetic Diagnosis Laboratory, Lee Women’s Hospital, Taichung 40652, Taiwan; (C.-Y.L.); (H.-N.T.); (E.-H.C.)
| | - En-Hui Cheng
- Genetic Diagnosis Laboratory, Lee Women’s Hospital, Taichung 40652, Taiwan; (C.-Y.L.); (H.-N.T.); (E.-H.C.)
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Tsung-Hsien Lee
- Division of Infertility, Lee Women’s Hospital, Taichung 40402, Taiwan; (T.-H.L.); (M.-S.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pin-Yao Lin
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40402, Taiwan; (T.-H.L.); (M.-S.L.)
| | - Maw-Sheng Lee
- Division of Infertility, Lee Women’s Hospital, Taichung 40402, Taiwan; (T.-H.L.); (M.-S.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chun-I Lee
- Division of Infertility, Lee Women’s Hospital, Taichung 40402, Taiwan; (T.-H.L.); (M.-S.L.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
193
|
Kwon D, Ahn J, Kim H, Kim H, Kim J, Wy S, Ko Y, Kim J. Convergent dwarfism consequences of minipigs under independent artificial selections. BMC Genomics 2024; 25:761. [PMID: 39107730 PMCID: PMC11301983 DOI: 10.1186/s12864-024-10677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Currently, diverse minipigs have acquired a common dwarfism phenotype through independent artificial selections. Characterizing the population and genetic diversity in minipigs is important to unveil genetic mechanisms regulating their body sizes and effects of independent artificial selections on those genetic mechanisms. However, full understanding for the genetic mechanisms and phenotypic consequences in minipigs still lag behind. RESULTS Here, using whole genome sequencing data of 41 pig breeds, including eight minipigs, we identified a large genomic diversity in a minipig population compared to other pig populations in terms of population structure, demographic signatures, and selective signatures. Selective signatures reveal diverse biological mechanisms related to body size in minipigs. We also found evidence for neural development mechanism as a minipig-specific body size regulator. Interestingly, selection signatures within those mechanisms containing neural development are also highly different among minipig breeds. Despite those large genetic variances, PLAG1, CHM, and ESR1 are candidate key genes regulating body size which experience different differentiation directions in different pig populations. CONCLUSIONS These findings present large variances of genetic structures, demographic signatures, and selective signatures in the minipig population. They also highlight how different artificial selections with large genomic diversity have shaped the convergent dwarfism.
Collapse
Affiliation(s)
- Daehong Kwon
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiyeong Ahn
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyeonji Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Heesun Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Junyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Suyeon Wy
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Gyeonggi-Do, 17035, Republic of Korea
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
194
|
Chen Y, Hou S. Targeted treatment of rat AKI induced by rhabdomyolysis using BMSC derived magnetic exosomes and its mechanism. NANOSCALE ADVANCES 2024; 6:4180-4195. [PMID: 39114150 PMCID: PMC11304081 DOI: 10.1039/d4na00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
Introduction: rhabdomyolysis (RM) is a serious syndrome. A large area of muscle injury and dissolution induces acute kidney injury (AKI), which results in a high incidence and mortality rate. Exosomes released by mesenchymal stem cells (MSCs) have been used to treat AKI induced by rhabdomyolysis and have shown regenerative effects. However, the most serious drawbacks of these methods are poor targeting and a low enrichment rate after systemic administration. Methods: in this study, we demonstrated that magnetic exosomes derived from bone marrow mesenchymal stem cells (BMSCs) can directly target damaged muscles rather than kidneys using an external magnetic field. Results: magnetic navigation exosomes reduced the dissolution of damaged muscles, greatly reduced the release of cellular contents, slowed the development of AKI. Discussion: in summary, our proposed method can overcome the shortcomings of poor targeting in traditional exosome therapy. Moreover, in the rhabdomyolysis-induced AKI model, we propose for the first time an exosome therapy mode that directly targets damaged muscles through magnetic navigation.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| |
Collapse
|
195
|
Bartkowiak-Wieczorek J, Malesza M, Malesza I, Hadada T, Winkler-Galicki J, Grzelak T, Mądry E. Methylsulfinyl Hexyl Isothiocyanate (6-MSITC) from Wasabi Is a Promising Candidate for the Treatment of Cancer, Alzheimer's Disease, and Obesity. Nutrients 2024; 16:2509. [PMID: 39125389 PMCID: PMC11313713 DOI: 10.3390/nu16152509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Methylsulfinyl hexyl isothiocyanate (6-MSITC) isolated from Eutrema japonicum is a promising candidate for the treatment of breast cancer, colorectal and stomach cancer, metabolic syndrome, heart diseases, diabetes, and obesity due to its anti-inflammatory and antioxidant properties. Also, its neuroprotective properties, improving cognitive function and protecting dopaminergic neurons, make it an excellent candidate for treating neurodegenerative diseases like dementia, Alzheimer's, and Parkinson's disease. 6-MSITC acts on many signaling pathways, such as PPAR, AMPK, PI3K/AKT/mTOR, Nrf2/Keap1-ARE, ERK1/2-ELK1/CHOP/DR5, and MAPK. However, despite the very promising results of in vitro and in vivo animal studies and a few human studies, the molecule has not yet been thoroughly tested in the human population. Nonetheless, wasabi should be classified as a "superfood" for the primary and secondary prevention of human diseases. This article reviews the current state-of-the-art research on 6-MSITC and its potential clinical uses, discussing in detail the signaling pathways activated by the molecule and their interactions.
Collapse
Affiliation(s)
- Joanna Bartkowiak-Wieczorek
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Michał Malesza
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Ida Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Tomasz Hadada
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Jakub Winkler-Galicki
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Teresa Grzelak
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| | - Edyta Mądry
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland; (M.M.); (T.H.); (J.W.-G.); (T.G.); (E.M.)
| |
Collapse
|
196
|
Jiang Y, Cai Y, Teng T, Wang X, Yin B, Li X, Yu Y, Liu X, Wang J, Wu H, He Y, Zhu ZJ, Zhou X. Dysregulations of amino acid metabolism and lipid metabolism in urine of children and adolescents with major depressive disorder: a case-control study. Psychopharmacology (Berl) 2024; 241:1691-1703. [PMID: 38605232 DOI: 10.1007/s00213-024-06590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
RATIONALE The mechanisms underlying major depressive disorder (MDD) in children and adolescents are unclear. Metabolomics has been utilized to capture metabolic signatures of various psychiatric disorders; however, urinary metabolic profile of MDD in children and adolescents has not been studied. OBJECTIVES We analyzed urinary metabolites in children and adolescents with MDD to identify potential biomarkers and metabolic signatures. METHODS Here, liquid chromatography-mass spectrometry was used to profile metabolites in urine samples from 192 subjects, comprising 80 individuals with antidepressant-naïve MDD (AN-MDD), 37 with antidepressant-treated MDD (AT-MDD) and 75 healthy controls (HC). We performed orthogonal partial least squares discriminant analysis to identify differential metabolites and employed logistic regression and receiver operating characteristic analysis to establish a diagnostic panel. RESULTS In total, 143 and 71 differential metabolites were identified in AN-MDD and AT-MDD, respectively. These were primarily linked to lipid metabolism, molecular transport, and small molecule biochemistry. AN-MDD additionally exhibited dysregulated amino acid metabolism. Compared to HC, a diagnostic panel of seven metabolites displayed area under the receiver operating characteristic curves of 0.792 for AN-MDD, 0.828 for AT-MDD, and 0.799 for all MDD. Furthermore, the urinary metabolic profiles of children and adolescents with MDD significantly differed from those of adult MDD. CONCLUSIONS Our research suggests dysregulated amino acid metabolism and lipid metabolism in the urine of children and adolescents with MDD, similar to results in plasma metabolomics studies. This contributes to the comprehension of mechanisms underlying children and adolescents with MDD.
Collapse
Affiliation(s)
- Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Wang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
197
|
Shen R, Cheng K, Li G, Pan Z, Qiaolongbatu X, Wang Y, Ma C, Huang X, Wang L, Li W, Wang Y, Jing L, Fan G, Wu Z. Alisol A, the Eye-Entering Ingredient of Alisma orientale, Relieves Macular Edema Through TNF-α as Revealed by UPLC-Triple-TOF/MS, Network Pharmacology, and Zebrafish Verification. Drug Des Devel Ther 2024; 18:3361-3382. [PMID: 39100223 PMCID: PMC11297588 DOI: 10.2147/dddt.s468119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Alisma orientale (AO, Alisma orientale (Sam). Juzep) has been widely employed for the treatment of macular edema (ME) in traditional Chinese medicine due to its renowned water-relief properties. Nonetheless, the comprehensive investigation of AO in alleviating ME remained unexplored. This study aims to identify the active components of AO that target the eye and investigate its pharmacological effects and mechanisms on ME. Methods The study commenced with UPLC-Triple-TOF/MS analysis to identify the primary constituents of AO. Zebrafish eye tissues were then analyzed after a five-day administration of AO to detect absorbed components and metabolites. Subsequently, network pharmacology, molecular docking, and molecular dynamics simulations were employed to predict the mechanisms of ME treatment via biological target pathways. In vivo experiments were conducted to corroborate the pharmacological actions and mechanisms. Results A total of 7 compounds, consisting of 2 prototype ingredients and 5 metabolites (including isomers), were found to traverse the blood-eye barrier and localized within eye tissues. Network pharmacology results showed that AO played a role in the treatment of ME mainly by regulating the pathway network of PI3K-AKT and MAPK with TNF-α centered. Computational analyses suggested that 11-dehydro-16-oxo-24-deoxy-alisol A, a metabolite of alisol A, mitigates edema through TNF-α inhibition. Furthermore, zebrafish fundus confocal experiments and HE staining of eyes confirmed the attenuating effects of alisol A on fundus angiogenesis and ocular edema, representing the first report of AO's ME-inhibitory effects. Conclusion In this study, computational analyses with experimental validation were used to understand the biological activity and mechanism of alisol A in the treatment of ME. The findings shed light on the bioactive constituents and pharmacological actions of AO, offering valuable insights and a theoretical foundation for its clinical application in managing ME.
Collapse
Affiliation(s)
- Rui Shen
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Kebin Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Zhendong Pan
- Department of Clinical Pharmacy, Eye and ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Xijier Qiaolongbatu
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Yuting Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Cui Ma
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Xucong Huang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Li Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Wenjing Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Lili Jing
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| |
Collapse
|
198
|
Mohanty A, Afkhami M, Reyes A, Pharaon R, Yin H, Li H, Do D, Bell D, Nam A, Chang S, Gernon T, Kang R, Amini A, Sampath S, Kulkarni P, Pillai R, Villaflor V, Salgia R, Maghami E, Massarelli E. Exploring markers of immunoresponsiveness in papillary thyroid carcinoma and future treatment strategies. J Immunother Cancer 2024; 12:e008505. [PMID: 39074963 PMCID: PMC11288153 DOI: 10.1136/jitc-2023-008505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The study summarizes the potential use of immunotherapy for BRAF-mutated papillary thyroid cancer (PTC) by analyzing the immune profile of City of Hope PTC patient samples and comparing them to the thyroid dataset available in the TCGA database. MATERIALS AND METHODS PTC cases with available formalin-fixed paraffin-embedded archived tumor tissue were identified. RNA was extracted from the tumor tissue and analyzed by NanoString to evaluate their immune gene expression profile. Immunohistochemistry was used to determine the expression of immune suppressive genes and lymphocytic infiltration into the tumor tissue. Thyroid cancer cell lines (MDA-T32, MDA-T68, MDA-T85, and MDA-T120) were used to determine the correlation between the BRAF inhibition and CD274 expression. RESULTS The study found that PTC cases with BRAF mutations had higher expression of immune checkpoint markers CD274 and CTLA4, as well as higher tumor-infiltrating lymphocytes, particularly CD4+T cells. Additionally, the study identified immunosuppressive markers expressed by tumor cells like CD73, CD276, and CD200 that could be targeted for immunotherapy. Further experiments using PTC cell lines lead to the conclusion that CD274 expression correlates with BRAF activity and that inhibitors of BRAF could potentially be used in combination with immunotherapy to treat PTC. CONCLUSIONS These findings suggest that PTC cases with BRAF mutations or high expression may be correlated with an immune hot signature and could benefit from immunotherapeutic strategies.
Collapse
Affiliation(s)
- Atish Mohanty
- City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Michelle Afkhami
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Amanda Reyes
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Holly Yin
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Haiqing Li
- Computational & Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Dana Do
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Diana Bell
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Sue Chang
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Thomas Gernon
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Robert Kang
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Sagus Sampath
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Raju Pillai
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Vicky Villaflor
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ellie Maghami
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
199
|
Stanic B, Kokai D, Opacic M, Pogrmic-Majkic K, Andric N. Transcriptome-centric approach to the derivation of adverse outcome pathway networks of vascular dysfunction after long-term low-level exposure of human endothelial cells to dibutyl phthalate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174918. [PMID: 39038667 DOI: 10.1016/j.scitotenv.2024.174918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Dibutyl phthalate (DBP) is an endocrine disruptor that adversely affects reproduction; however, evidence suggests it can also impact other systems, including vascular function. The mechanisms underlying DBP-induced vascular dysfunction, particularly after long-term low-level exposure of endothelial cells to this phthalate, remain largely unknown. To address this gap, we used experimentally derived data on differentially expressed genes (DEGs) obtained after 12 weeks of exposure of human vascular endothelial cells EA.hy926 to the concentrations of DBP to which humans are routinely exposed (10-9 M, 10-8 M, and 10-7 M) and various computational tools and manual data curation to build the first adverse outcome pathway (AOP) network relevant to DBP-induced vascular toxicity. DEGs were used to infer transcription factors (molecular initiating events) and molecular functions and biological processes (key events, KEs) using the Enrichr database. The AOP-helpFinder 2.0, an artificial intelligence-based web tool, was used to link genes and KEs and assign confidence scores to co-occurred terms. We constructed the AOP networks using Cytoscape and then manually arranged KEs to depict the flow of mechanistic information across different levels of network organization. An AOP network was created for each DBP concentration, revealing several distinct high-confidence subnetworks that could be involved in DBP-induced vascular toxicity: the insulin-like growth factor subnetwork for 10-7 M DBP, the CXCL8-dependent chemokine subnetwork for 10-8 M DBP, and the fatty acid subnetwork for 10-9 M DBP. We also developed an AOP network providing a mechanistic insight into the dose-dependent effects of DBP in endothelial cells leading to vascular dysfunction. In summary, we present novel putative AOP networks describing the mechanistic flow of information involved in DBP-induced vascular dysfunction in a long-term low-level exposure scenario.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Dunja Kokai
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Marija Opacic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
200
|
Yu Q, Zhou X, Kapini R, Arsecularatne A, Song W, Li C, Liu Y, Ren J, Münch G, Liu J, Chang D. Cytokine Storm in COVID-19: Insight into Pathological Mechanisms and Therapeutic Benefits of Chinese Herbal Medicines. MEDICINES (BASEL, SWITZERLAND) 2024; 11:14. [PMID: 39051370 PMCID: PMC11270433 DOI: 10.3390/medicines11070014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cytokine storm (CS) is the main driver of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) in severe coronavirus disease-19 (COVID-19). The pathological mechanisms of CS are quite complex and involve multiple critical molecular targets that turn self-limited and mild COVID-19 into a severe and life-threatening concern. At present, vaccines are strongly recommended as safe and effective treatments for preventing serious illness or death from COVID-19. However, effective treatment options are still lacking for people who are at the most risk or hospitalized with severe disease. Chinese herbal medicines have been shown to improve the clinical outcomes of mild to severe COVID-19 as an adjunct therapy, particular preventing the development of mild to severe ARDS. This review illustrates in detail the pathogenesis of CS-involved ARDS and its associated key molecular targets, cytokines and signalling pathways. The therapeutic targets were identified particularly in relation to the turning points of the development of COVID-19, from mild symptoms to severe ARDS. Preclinical and clinical studies were reviewed for the effects of Chinese herbal medicines together with conventional therapies in reducing ARDS symptoms and addressing critical therapeutic targets associated with CS. Multiple herbal formulations, herbal extracts and single bioactive phytochemicals with or without conventional therapies demonstrated strong anti-CS effects through multiple mechanisms. However, evidence from larger, well-designed clinical trials is lacking and their detailed mechanisms of action are yet to be well elucidated. More research is warranted to further evaluate the therapeutic value of Chinese herbal medicine for CS in COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
- Xiyuan Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Wenting Song
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| |
Collapse
|