151
|
Native Conformation and Canonical Disulfide Bond Formation Are Interlinked Properties of HIV-1 Env Glycoproteins. J Virol 2015; 90:2884-94. [PMID: 26719247 DOI: 10.1128/jvi.01953-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED We investigated whether there is any association between a native-like conformation and the presence of only the canonical (i.e., native) disulfide bonds in the gp120 subunits of a soluble recombinant human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein. We used a mass spectrometry (MS)-based method to map the disulfide bonds present in nonnative uncleaved gp140 proteins and native-like SOSIP.664 trimers based on the BG505 env gene. Our results show that uncleaved gp140 proteins were not homogeneous, in that substantial subpopulations (20 to 80%) contained aberrant disulfide bonds. In contrast, the gp120 subunits of the native-like SOSIP.664 trimer almost exclusively retained the canonical disulfide bond pattern. We also observed that the purification method could influence the proportion of an Env protein population that contained aberrant disulfide bonds. We infer that gp140 proteins may always contain a variable but substantial proportion of aberrant disulfide bonds but that the impact of this problem can be minimized via design and/or purification strategies that yield native-like trimers. The same factors may also be relevant to the production and purification of monomeric gp120 proteins that are free of aberrant disulfide bonds. IMPORTANCE It is widely thought that a successful HIV-1 vaccine will include a recombinant form of the Env protein, a trimer located on the virion surface. To increase yield and simplify purification, Env proteins are often made in truncated, soluble forms. A consequence, however, can be the loss of the native conformation concomitant with the virion-associated trimer. Moreover, some soluble recombinant Env proteins contain aberrant disulfide bonds that are not expected to be present in the native trimer. To assess whether these observations are linked, to determine the extent of disulfide bond scrambling, and to understand why scrambling occurs, we determined the disulfide bond profiles of two soluble Env proteins with different designs that are being assessed as vaccine candidates. We found that uncleaved gp140 forms heterogeneous mixtures in which aberrant disulfide bonds abound. In contrast, BG505 SOSIP.664 trimers are more homogeneous, native-like entities that contain predominantly the native disulfide bond profile.
Collapse
|
152
|
Cohen YZ, Lavine CL, Miller CA, Garrity J, Carey BR, Seaman MS. Glycan-Dependent Neutralizing Antibodies Are Frequently Elicited in Individuals Chronically Infected with HIV-1 Clade B or C. AIDS Res Hum Retroviruses 2015; 31:1192-201. [PMID: 26149894 DOI: 10.1089/aid.2015.0135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A number of potent broadly neutralizing antibodies against HIV-1 have recently been identified that target epitopes on the viral envelope that contain N-linked glycans. It remains unknown how frequently glycan-dependent neutralizing antibodies generally arise during the course of natural infection or whether particular glycosylation sites are preferentially targeted. We tested sera with a broad range of neutralization activity from individuals infected with HIV-1 clades B or C against panels of HIV-1 Env pseudoviruses that lacked specific glycans in the outer domain glycan cluster (ODGC) or inner domain glycan cluster (IDGC) to determine the presence of glycan-dependent neutralizing antibodies. Overall, 54% of individuals were observed to have neutralizing antibodies targeting these glycan regions. Glycan-specific neutralizing antibodies were readily detected in sera that were selected for having broad, moderate, or weak neutralization potency and breadth. Our results demonstrate that glycan-specific neutralizing antibodies arise with appreciable frequency in individuals chronically infected with HIV-1 clades B and C. Antibody responses that commonly occur during natural infection may be more feasible to induce by vaccination; thus glycan-specific neutralizing antibodies may be desirable responses to elicit with candidate HIV-1 vaccines.
Collapse
Affiliation(s)
- Yehuda Z. Cohen
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christy L. Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Caroline A. Miller
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jetta Garrity
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Brittany R. Carey
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
153
|
Pearce OMT, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology 2015; 26:111-28. [DOI: 10.1093/glycob/cwv097] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
|
154
|
Doores KJ. The HIV glycan shield as a target for broadly neutralizing antibodies. FEBS J 2015; 282:4679-91. [PMID: 26411545 PMCID: PMC4950053 DOI: 10.1111/febs.13530] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/30/2022]
Abstract
The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host-derived N-linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host-derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose-type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein-directed and cell-directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies.
Collapse
Affiliation(s)
- Katie J Doores
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, UK
| |
Collapse
|
155
|
Sliepen K, van Montfort T, Ozorowski G, Pritchard LK, Crispin M, Ward AB, Sanders RW. Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer. Biomolecules 2015; 5:2919-34. [PMID: 26512709 PMCID: PMC4693263 DOI: 10.3390/biom5042919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/03/2022] Open
Abstract
Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env) trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664) has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2) virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP), a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP). Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Thijs van Montfort
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Laura K Pritchard
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
156
|
Byrareddy SN, Little D, Mayne AE, Villinger F, Ansari AA. Phenotypic and Functional Characterization of Monoclonal Antibodies with Specificity for Rhesus Macaque CD200, CD200R and Mincle. PLoS One 2015; 10:e0140689. [PMID: 26468886 PMCID: PMC4607400 DOI: 10.1371/journal.pone.0140689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Abstract
Lectin-like molecules and their receptors are cell surface molecules that have been shown to play a role in either facilitating infection or serving as transporters of HIV/SIV in vivo. The role of these lectin-like molecules in the pathogenesis of HIV/SIV infection continues to be defined. In efforts to gain further insight on the potential role of these lectin-like molecules, our laboratory generated monoclonal antibodies (mAb) against the human analogs of rhesus macaque CD200, CD200R and Mincle, since the rhesus macaques are accepted as the most reliable animal model to study human HIV infection. The characterization of the cell lineages from the blood and various tissues of rhesus macaques that express these lectin-like molecules are described herein. Among the mononuclear cells, the cells of the myeloid lineage of rhesus macaques are the predominant cell lineages that express readily detectable levels of CD200, CD200R and Mincle that is similar to the expression of Siglec-1 and Siglec-3 reported by our laboratory earlier. Subset analysis revealed that a higher frequency of the CD14+/CD16- subset from normal rhesus macaques express CD200, CD200R and Mincle. Differences in the frequencies and density of expression of these molecules by the gated population of CD14+ cells from various tissues are noted with PBMC and bone marrow expressing the highest and the mononuclear cells isolated from the colon and ileum expressing the lowest levels. While a significant frequency of pDCs and mDCs express Siglec-1/Siglec-3, a much lower frequency expresses CD200, CD200R and Mincle in PBMCs from rhesus macaques. The mAb against CD200 and CD200R but not Mincle appear to inhibit the infection of macrophage tropic SIV/SHIV in vitro. We conclude that these mAbs may have potential to be used as adjunctive therapeutic agents to control/inhibit SIV/HIV infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibody Specificity
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cells, Cultured
- Humans
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Macaca mulatta/immunology
- Macaca mulatta/metabolism
- Macrophages/metabolism
- Macrophages/virology
- Phenotype
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Immunodeficiency Virus/immunology
- U937 Cells
Collapse
Affiliation(s)
- Siddappa N. Byrareddy
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dawn Little
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ann E. Mayne
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Francois Villinger
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology & Immunology, The Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Aftab A. Ansari
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
157
|
Harvey DJ, Crispin M, Bonomelli C, Scrivens JH. Ion Mobility Mass Spectrometry for Ion Recovery and Clean-Up of MS and MS/MS Spectra Obtained from Low Abundance Viral Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015. [PMID: 26204966 PMCID: PMC4811024 DOI: 10.1007/s13361-015-1163-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many samples of complex mixtures of N-glycans released from small amounts of material, such as glycoproteins from viruses, present problems for mass spectrometric analysis because of the presence of contaminating material that is difficult to remove by conventional methods without involving sample loss. This study describes the use of ion mobility for extraction of glycan profiles from such samples and for obtaining clean CID spectra when targeted m/z values capture additional ions from those of the target compound. N-glycans were released enzymatically from within SDS-PAGE gels, from the representative recombinant glycoprotein, gp120 of the human immunodeficiency virus, and examined by direct infusion electrospray in negative mode followed by ion mobility with a Waters Synapt G2 mass spectrometer (Waters MS-Technologies, Manchester, UK). Clean profiles of singly, doubly, and triply charged N-glycans were obtained from samples in cases where the raw electrospray spectra displayed only a few glycan ions as the result of low sample concentration or the presence of contamination. Ion mobility also enabled uncontaminated CID spectra to be obtained from glycans when their molecular ions displayed coincidence with ions from fragments or multiply charged ions with similar m/z values. This technique proved to be invaluable for removing extraneous ions from many CID spectra. The presence of such ions often produces spectra that are difficult to interpret. Most CID spectra, even those from abundant glycan constituents, benefited from such clean-up, showing that the extra dimension provided by ion mobility was invaluable for studies of this type.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK.
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Camille Bonomelli
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jim H Scrivens
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK
| |
Collapse
|
158
|
Stieh DJ, King DF, Klein K, Aldon Y, McKay PF, Shattock RJ. Discrete partitioning of HIV-1 Env forms revealed by viral capture. Retrovirology 2015; 12:81. [PMID: 26399966 PMCID: PMC4581120 DOI: 10.1186/s12977-015-0207-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Background The structure of HIV-1 envelope glycoprotein (Env) is flexible and heterogeneous on whole virions. Although functional Env complexes are thought to require trimerization of cleaved gp41/gp120 heterodimers, variable processing can result in the potential incorporation of non-functional uncleaved proteins (gp160), non-trimeric arrangements of gp41/gp120 heterodimers, and gp120 depleted gp41 stumps. The potential distribution of functional and non-functional Env forms across replication-competent viral populations may have important implications for neutralizing and non-neutralizing antibody functions. This study applied an immuno-bead viral capture assay (VCA) to interrogate the potential distribution (heterologous vs homologous) of functional and non-functional forms of virion associated Env. Results The VCA revealed a significant association between depletion of infectious virions and virion Env incorporation, but not between infectivity and p24-gag. Three distinct subpopulations of virions were identified within pools of genetically homogenous viral particles. Critically, a significant subpopulation of infectious virions were exclusively captured by neutralizing antibodies (nAbs) indicative of a homologous distribution of functional trimeric Env forms. A second infectious subpopulation bound both neutralizing and non-neutralizing antibodies (nnAbs) representative of a heterologous distribution of Env forms, while a third non-infectious subpopulation was predominantly bound by nnAbs recognizing gp41 stumps. Conclusions The observation that a distinct and significant subpopulation of infectious virions is exclusively captured by neutralizing antibodies has important implications for understanding antibody binding and neutralization, as well as other antibody effector functions. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel J Stieh
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Deborah F King
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Katja Klein
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Yoann Aldon
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Paul F McKay
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Robin J Shattock
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
159
|
Exclusive Decoration of Simian Immunodeficiency Virus Env with High-Mannose Type N-Glycans Is Not Compatible with Mucosal Transmission in Rhesus Macaques. J Virol 2015; 89:11727-33. [PMID: 26355090 PMCID: PMC4645679 DOI: 10.1128/jvi.01358-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope (Env) proteins are extensively decorated with N-glycans, predominantly of the high-mannose type. However, it is unclear how high-mannose N-glycans on Env impact viral spread. We show that exclusive modification of SIV Env with these N-glycans reduces viral infectivity and abrogates mucosal transmission, despite increasing viral capture by immune cell lectins. Thus, high-mannose N-glycans have opposed effects on SIV infectivity and lectin reactivity, and a balance might be required for efficient mucosal transmission.
Collapse
|
160
|
Park C, Arthos J, Cicala C, Kehrl JH. The HIV-1 envelope protein gp120 is captured and displayed for B cell recognition by SIGN-R1(+) lymph node macrophages. eLife 2015; 4. [PMID: 26258881 PMCID: PMC4574315 DOI: 10.7554/elife.06467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/08/2015] [Indexed: 01/08/2023] Open
Abstract
The HIV-1 envelope protein gp120 is both the target of neutralizing antibodies and a
major focus of vaccine efforts; however how it is delivered to B cells to elicit an
antibody response is unknown. Here, we show that following local gp120 injection
lymph node (LN) SIGN-R1+ sinus macrophages located in
interfollicular pockets and underlying SIGN-R1+ macrophages form a
cellular network that rapidly captures gp120 from the afferent lymph. In contrast,
two other antigens, phycoerythrin and hen egg lysozyme, were not captured by these
cells. Intravital imaging of mouse LNs revealed persistent, but transient
interactions between gp120 bearing interfollicular network cells and both trafficking
and LN follicle resident gp120 specific B cells. The gp120 specific, but not the
control B cells repetitively extracted gp120 from the network cells. Our findings
reveal a specialized LN antigen delivery system poised to deliver gp120 and likely
other pathogen derived glycoproteins to B cells. DOI:http://dx.doi.org/10.7554/eLife.06467.001 The human immune system contains many different cell types, which play specific roles
in defending the body from invading pathogens, such as bacteria and viruses. For
example, macrophages engulf and digest foreign material, whereas specialized B cells
termed plasma cells produce molecules called antibodies that help to destroy specific
pathogens. However, specific antibodies are only produced if naive B cells have
already encountered the pathogen or its surface proteins. Attempts to improve how the immune system responds to the human immunodeficiency
virus (HIV-1) have failed to control and prevent infection. One of the main
components of many prospective HIV-1 vaccines is a protein called gp120, which is
located on the surface of the virus. Specific B cells recognize this protein and can
develop into plasma cells that produce antibodies against HIV-1. However, little is
known about how these specific B cells initially get exposed to gp120. Park et al. injected gp120 into mice, and used sophisticated microscopy to track its
movement through the animal. This revealed that gp120 is rapidly transported to
nearby lymph nodes—organs that are spread throughout the body, and play an
important role in maintaining the immune response. Specialized macrophages can then
capture and deliver gp120 to other macrophages in the lymph node. These specialized macrophages serve as a gp120 reservoir and are located in part of
the lymph node that is a bit like a traffic hub, in that other immune cells
constantly pass through it. As such, B cells that specifically recognize gp120 have a
high likelihood of encountering these gp120-bearing macrophages, thereby allowing the
specific B cells to extract gp120, develop into plasma cells, and produce HIV-1
specific antibodies. Manipulating this macrophage network may help to optimize the
antibody responses to gp120 and so, in the future, could provide a way of treating or
preventing HIV-1 infections. DOI:http://dx.doi.org/10.7554/eLife.06467.002
Collapse
Affiliation(s)
- Chung Park
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, United States
| | - James Arthos
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, United States
| | - Claudia Cicala
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, United States
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, United States
| |
Collapse
|
161
|
Chatterjee A, Ratner DM, Ryan CM, Johnson PJ, O’Keefe BR, Secor WE, Anderson DJ, Robbins PW, Samuelson J. Anti-Retroviral Lectins Have Modest Effects on Adherence of Trichomonas vaginalis to Epithelial Cells In Vitro and on Recovery of Tritrichomonas foetus in a Mouse Vaginal Model. PLoS One 2015; 10:e0135340. [PMID: 26252012 PMCID: PMC4529277 DOI: 10.1371/journal.pone.0135340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/21/2015] [Indexed: 11/24/2022] Open
Abstract
Trichomonas vaginalis causes vaginitis and increases the risk of HIV transmission by heterosexual sex, while Tritrichomonas foetus causes premature abortion in cattle. Our goals were to determine the effects, if any, of anti-retroviral lectins, which are designed to prevent heterosexual transmission of HIV, on adherence of Trichomonas to ectocervical cells and on Tritrichomonas infections in a mouse model. We show that Trichomonas Asn-linked glycans (N-glycans), like those of HIV, bind the mannose-binding lectin (MBL) that is part of the innate immune system. N-glycans of Trichomonas and Tritrichomonas bind anti-retroviral lectins (cyanovirin-N and griffithsin) and the 2G12 monoclonal antibody, each of which binds HIV N-glycans. Binding of cyanovirin-N appears to be independent of susceptibility to metronidazole, the major drug used to treat Trichomonas. Anti-retroviral lectins, MBL, and galectin-1 cause Trichomonas to self-aggregate and precipitate. The anti-retroviral lectins also increase adherence of ricin-resistant mutants, which are less adherent than parent cells, to ectocervical cell monolayers and to organotypic EpiVaginal tissue cells. Topical application of either anti-retroviral lectins or yeast N-glycans decreases by 40 to 70% the recovery of Tritrichomonas from the mouse vagina. These results, which are explained by a few simple models, suggest that the anti-retroviral lectins have a modest potential for preventing or treating human infections with Trichomonas.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Daniel M. Ratner
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Christopher M. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Barry R. O’Keefe
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - W. Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Deborah J. Anderson
- Department of Obstetrics and Gynecology, Boston Medical Center, Boston, Massachusetts, United States of America
| | - Phillips W. Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
162
|
Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood 2015; 126:1902-10. [PMID: 26194765 DOI: 10.1182/blood-2015-04-640805] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/09/2015] [Indexed: 12/30/2022] Open
Abstract
The vast majority of cases of follicular lymphoma (FL), but not normal B cells, acquire N-glycosylation sites in the immunoglobulin variable regions during somatic hypermutation. Glycans added to sites are unusual in terminating at high mannoses. We showed previously that the C-type lectins, dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and mannose receptor, bound to FL surface immunoglobulin (sIg), generating an intracellular Ca(2+) flux. We have now mapped further intracellular pathways activated by DC-SIGN in a range of primary FL cells with detection of phosphorylated ERK1/2, AKT, and PLCγ2. The SYK inhibitor (tamatinib) or the BTK inhibitor (ibrutinib) each blocked phosphorylation. Activation by DC-SIGN occurred in both IgM(+) and IgG(+) cases and led to upregulation of MYC expression, with detection in vivo observed in lymph nodes. Unlike cells of chronic lymphocytic leukemia, FL cells expressed relatively high levels of sIg, unchanged by long-term incubation in vitro, indicating no antigen-mediated downregulation in vivo. In contrast, expression of CXCR4 increased in vitro. Engagement of sIg in FL cells or normal B cells by anti-Ig led to endocytosis in vitro as expected, but DC-SIGN, even when cross-linked, did not lead to significant endocytosis of sIg. These findings indicate that lectin binding generates signals via sIg but does not mediate endocytosis, potentially maintaining a supportive antigen-independent signal in vivo. Location of DC-SIGN in FL tissue revealed high levels in sinusoidlike structures and in some colocalized mononuclear cells, suggesting a role for lectin-expressing cells at this site.
Collapse
|
163
|
Pritchard LK, Spencer DIR, Royle L, Bonomelli C, Seabright GE, Behrens AJ, Kulp DW, Menis S, Krumm SA, Dunlop DC, Crispin DJ, Bowden TA, Scanlan CN, Ward AB, Schief WR, Doores KJ, Crispin M. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat Commun 2015; 6:7479. [PMID: 26105115 PMCID: PMC4500839 DOI: 10.1038/ncomms8479] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/13/2015] [Indexed: 12/22/2022] Open
Abstract
The envelope spike of HIV-1 employs a ‘glycan shield’ to protect itself from antibody-mediated neutralization. Paradoxically, however, potent broadly neutralizing antibodies (bnAbs) have been isolated which target this shield. The unusually high glycan density on the gp120 subunit limits processing during biosynthesis, leaving a region of under-processed oligomannose-type structures which is a primary target of these bnAbs. Here we investigate the contribution of individual glycosylation sites to formation of this so-called intrinsic mannose patch. Deletion of individual sites has a limited effect on the overall size of the intrinsic mannose patch but leads to changes in the processing of neighboring glycans. These structural changes are largely tolerated by a panel of glycan-dependent bnAbs targeting these regions, indicating a degree of plasticity in their recognition. These results support the intrinsic mannose patch as a stable target for vaccine design.
Collapse
Affiliation(s)
- Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Louise Royle
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK
| | - Camille Bonomelli
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel W Kulp
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sergey Menis
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Stefanie A Krumm
- King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - D Cameron Dunlop
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel J Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christopher N Scanlan
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - William R Schief
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Katie J Doores
- King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
164
|
Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope. J Virol 2015; 89:8932-44. [PMID: 26085151 DOI: 10.1128/jvi.01190-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The gp120/gp41 HIV-1 envelope glycoprotein (Env) is highly glycosylated, with up to 50% of its mass consisting of N-linked glycans. This dense carbohydrate coat has emerged as a promising vaccine target, with its glycans acting as epitopes for a number of potent and broadly neutralizing antibodies (bnAbs). Characterizing the glycan structures present on native HIV-1 Env is thus a critical goal for the design of Env immunogens. In this study, we used a complementary, multistep approach involving ion mobility mass spectrometry and high-performance liquid chromatography to comprehensively characterize the glycan structures present on HIV-1 gp120 produced in peripheral blood mononuclear cells (PBMCs). The capacity of different expression systems, including pseudoviral particles and recombinant cell surface trimers, to reproduce native-like glycosylation was then assessed. A population of oligomannose glycans on gp120 was reproduced across all expression systems, supporting this as an intrinsic property of Env that can be targeted for vaccine design. In contrast, Env produced in HEK 293T cells failed to accurately reproduce the highly processed complex-type glycan structures observed on PBMC-derived gp120, and in particular the precise linkage of sialic acid residues that cap these glycans. Finally, we show that unlike for gp120, the glycans decorating gp41 are mostly complex-type sugars, consistent with the glycan specificity of bnAbs that target this region. These findings provide insights into the glycosylation of native and recombinant HIV-1 Env and can be used to inform strategies for immunogen design and preparation. IMPORTANCE Development of an HIV vaccine is desperately needed to control new infections, and elicitation of HIV bnAbs will likely be an important component of an effective vaccine. Increasingly, HIV bnAbs are being identified that bind to the N-linked glycans coating the HIV envelope glycoproteins gp120 and gp41, highlighting them as important targets for vaccine design. It is therefore important to characterize the glycan structures present on native, virion-associated gp120 and gp41 for development of vaccines that accurately mimic native-Env glycosylation. In this study, we used a number of analytical techniques to precisely study the structures of both the oligomannose and complex-type glycans present on native Env to provide a reference for determining the ability of potential HIV immunogens to accurately replicate the glycosylation pattern on these native structures.
Collapse
|
165
|
Pritchard LK, Vasiljevic S, Ozorowski G, Seabright GE, Cupo A, Ringe R, Kim HJ, Sanders RW, Doores KJ, Burton DR, Wilson IA, Ward AB, Moore JP, Crispin M. Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Rep 2015; 11:1604-13. [PMID: 26051934 DOI: 10.1016/j.celrep.2015.05.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022] Open
Abstract
A highly glycosylated, trimeric envelope glycoprotein (Env) mediates HIV-1 cell entry. The high density and heterogeneity of the glycans shield Env from recognition by the immune system, but paradoxically, many potent broadly neutralizing antibodies (bNAbs) recognize epitopes involving this glycan shield. To better understand Env glycosylation and its role in bNAb recognition, we characterized a soluble, cleaved recombinant trimer (BG505 SOSIP.664) that is a close structural and antigenic mimic of native Env. Large, unprocessed oligomannose-type structures (Man8-9GlcNAc2) are notably prevalent on the gp120 components of the trimer, irrespective of the mammalian cell expression system or the bNAb used for affinity purification. In contrast, gp41 subunits carry more highly processed glycans. The glycans on uncleaved, non-native oligomeric gp140 proteins are also highly processed. A homogeneous, oligomannose-dominated glycan profile is therefore a hallmark of a native Env conformation and a potential Achilles' heel that can be exploited for bNAb recognition and vaccine design.
Collapse
Affiliation(s)
- Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA
| | - Rajesh Ringe
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA
| | - Helen J Kim
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA; Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Katie J Doores
- King's College London School of Medicine at Guy's, King's and St. Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02142, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
166
|
Guttman M, Váradi C, Lee KK, Guttman A. Comparative glycoprofiling of HIV gp120 immunogens by capillary electrophoresis and MALDI mass spectrometry. Electrophoresis 2015; 36:1305-13. [PMID: 25809283 PMCID: PMC4544863 DOI: 10.1002/elps.201500054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/14/2023]
Abstract
The human immunodeficiency virus (HIV) envelope glycoprotein (Env) is the primary antigenic feature on the surface of the virus and is of key importance in HIV vaccinology. Vaccine trials with the gp120 subunit of Env are ongoing, with the recent RV144 trial showing moderate efficacy. gp120 is densely covered with N-linked glycans that are thought to help evade the host's humoral immune response. To assess how the global glycosylation patterns vary between gp120 constructs, the glycan profiles of several gp120s were examined by CE with LIF detection and MALDI-MS. The glycosylation profiles were found to be similar for chronic versus transmitter/founder isolates and only varied moderately between gp120s from different clades. This study revealed that the addition of specific tags, such as the herpes simplex virus glycoprotein D tag used in the RV144 trial, had significant effects on the overall glycosylation patterns. Such effects are likely to influence the immunogenicity of various Env immunogens and should be considered for future vaccine strategies, emphasizing the importance of the glycosylation analysis approach described in this paper.
Collapse
Affiliation(s)
- Miklós Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Csaba Váradi
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - András Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary
- MTA-PE Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprem, Hungary
| |
Collapse
|
167
|
Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140. J Virol 2015; 89:8245-57. [PMID: 26018173 DOI: 10.1128/jvi.00628-15] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/23/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, which consists of the gp120 and gp41 subunits, is the focus of multiple strategies for vaccine development. Extensive Env glycosylation provides HIV-1 with protection from the immune system, yet the glycans are also essential components of binding epitopes for numerous broadly neutralizing antibodies. Recent studies have shown that when Env is isolated from virions, its glycosylation profile differs significantly from that of soluble forms of Env (gp120 or gp140) predominantly used in vaccine discovery research. Here we show that exogenous membrane-anchored Envs, which can be produced in large quantities in mammalian cells, also display a virion-like glycan profile, where the glycoprotein is extensively decorated with high-mannose glycans. Additionally, because we characterized the glycosylation with a high-fidelity profiling method, glycopeptide analysis, an unprecedented level of molecular detail regarding membrane Env glycosylation and its heterogeneity is presented. Each glycosylation site was characterized individually, with about 500 glycoforms characterized per Env protein. While many of the sites contain exclusively high-mannose glycans, others retain complex glycans, resulting in a glycan profile that cannot currently be mimicked on soluble gp120 or gp140 preparations. These site-level studies are important for understanding antibody-glycan interactions on native Env trimers. Additionally, we report a newly observed O-linked glycosylation site, T606, and we show that the full O-linked glycosylation profile of membrane-associated Env is similar to that of soluble gp140. These findings provide new insight into Env glycosylation and clarify key molecular-level differences between membrane-anchored Env and soluble gp140. IMPORTANCE A vaccine that protects against human immunodeficiency virus type 1 (HIV-1) infection should elicit antibodies that bind to the surface envelope glycoproteins on the membrane of the virus. The envelope glycoproteins have an extensive coat of carbohydrates (glycans), some of which are recognized by virus-neutralizing antibodies and some of which protect the virus from neutralizing antibodies. We found that the HIV-1 membrane envelope glycoproteins have a unique pattern of carbohydrates, with many high-mannose glycans and also, in some places, complex glycans. This pattern was very different from the carbohydrate profile seen for a more easily produced soluble version of the envelope glycoprotein. Our results provide a detailed characterization of the glycans on the natural membrane envelope glycoproteins of HIV-1, a carbohydrate profile that would be desirable to mimic with a vaccine.
Collapse
|
168
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
169
|
Stansell E, Panico M, Canis K, Pang PC, Bouché L, Binet D, O'Connor MJ, Chertova E, Bess J, Lifson JD, Haslam SM, Morris HR, Desrosiers RC, Dell A. Gp120 on HIV-1 Virions Lacks O-Linked Carbohydrate. PLoS One 2015; 10:e0124784. [PMID: 25915761 PMCID: PMC4410959 DOI: 10.1371/journal.pone.0124784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/05/2015] [Indexed: 01/31/2023] Open
Abstract
As HIV-1-encoded envelope protein traverses the secretory pathway, it may be modified with N- and O-linked carbohydrate. When the gp120s of HIV-1 NL4-3, HIV-1 YU2, HIV-1 Bal, HIV-1 JRFL, and HIV-1 JRCSF were expressed as secreted proteins, the threonine at consensus position 499 was found to be O-glycosylated. For SIVmac239, the corresponding threonine was also glycosylated when gp120 was recombinantly expressed. Similarly-positioned, highly-conserved threonines in the influenza A virus H1N1 HA1 and H5N1 HA1 envelope proteins were also found to carry O-glycans when expressed as secreted proteins. In all cases, the threonines were modified predominantly with disialylated core 1 glycans, together with related core 1 and core 2 structures. Secreted HIV-1 gp140 was modified to a lesser extent with mainly monosialylated core 1 O-glycans, suggesting that the ectodomain of the gp41 transmembrane component may limit the accessibility of Thr499 to glycosyltransferases. In striking contrast to these findings, gp120 on purified virions of HIV-1 Bal and SIV CP-MAC lacked any detectable O-glycosylation of the C-terminal threonine. Our results indicate the absence of O-linked carbohydrates on Thr499 as it exists on the surface of virions and suggest caution in the interpretation of analyses of post-translational modifications that utilize recombinant forms of envelope protein.
Collapse
Affiliation(s)
- Elizabeth Stansell
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, 01772, United States of America
| | - Maria Panico
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Kevin Canis
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Laura Bouché
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Daniel Binet
- MS-RTC (Mass Spectrometry Research and Training Centre), Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, United Kingdom
| | - Michael-John O'Connor
- MS-RTC (Mass Spectrometry Research and Training Centre), Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, United Kingdom
| | - Elena Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, 21702, United States of America
| | - Julian Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, 21702, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, 21702, United States of America
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Howard R. Morris
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
- MS-RTC (Mass Spectrometry Research and Training Centre), Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, United Kingdom
| | - Ronald C. Desrosiers
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, 01772, United States of America
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| |
Collapse
|
170
|
Glycan Microheterogeneity at the PGT135 Antibody Recognition Site on HIV-1 gp120 Reveals a Molecular Mechanism for Neutralization Resistance. J Virol 2015; 89:6952-9. [PMID: 25878100 DOI: 10.1128/jvi.00230-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/01/2015] [Indexed: 12/16/2022] Open
Abstract
Broadly neutralizing antibodies have been isolated that bind the glycan shield of the HIV-1 envelope spike. One such antibody, PGT135, contacts the intrinsic mannose patch of gp120 at the Asn332, Asn392, and Asn386 glycosylation sites. Here, site-specific glycosylation analysis of recombinant gp120 revealed glycan microheterogeneity sufficient to explain the existence of a minor population of virions resistant to PGT135 neutralization. Target microheterogeneity and antibody glycan specificity are therefore important parameters in HIV-1 vaccine design.
Collapse
|
171
|
Bagdonaite I, Nordén R, Joshi HJ, Dabelsteen S, Nyström K, Vakhrushev SY, Olofsson S, Wandall HH. A strategy for O-glycoproteomics of enveloped viruses--the O-glycoproteome of herpes simplex virus type 1. PLoS Pathog 2015; 11:e1004784. [PMID: 25830354 PMCID: PMC4382219 DOI: 10.1371/journal.ppat.1004784] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of viral envelope proteins is important for infectivity and interaction with host immunity, however, our current knowledge of the functions of glycosylation is largely limited to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation. Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B were previously implicated in virus attachment to immune cells. We show that HSV-1 infection distorts the secretory pathway and that infected cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability to elongate most of the surface glycans. With the use of precise gene editing, we further demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratinocytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-glycans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked glycosylation for viral entry, formation, secretion, and immune recognition are poorly understood, and the O-glycoproteomics strategy presented here now opens for unbiased discovery on all enveloped viruses. Information on site-specific O-glycosylation of viral envelope glycoproteins is generally very limited despite important functions. We present a powerful mass-spectrometry based strategy to globally identify O-glycosylation sites on viral envelope proteins of a given virus in the context of a productive infection. We successfully utilized the strategy to map O-linked glycosylation sites on the complex HSV-1 virus demonstrating that O-glycosylation is widely distributed on most envelope proteins. Moreover, we used genetically engineered keratinocytes lacking O-glycan elongation capacity to demonstrate that O-linked glycans are indeed important for HSV-1 biology as HSV-1 particles produced in these cells had significantly lower titers compared to wild-type keratinocytes. These tools enable wider discovery and detailed analysis of the role of site-specific O-glycosylation in virology.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rickard Nordén
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Institute of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Nyström
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sigvard Olofsson
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
172
|
Abstract
Despite three decades of intensive research efforts, the development of an effective prophylactic vaccine against HIV remains an unrealized goal in the global campaign to contain the HIV/AIDS pandemic. Recent characterization of novel epitopes for inducing broadly neutralizing antibodies has fueled research in the design and synthesis of new, well-defined antigenic constructs for the development of HIV envelope-directed vaccines. The present review will cover previous and recent efforts toward the design of synthetic vaccines based on the HIV viral envelope glycoproteins, with special emphasis on examples from our own laboratories. The biological evaluation of some of the most representative vaccine candidates, in terms of their antigenicity and immunogenicity, will also be discussed to illustrate the current state-of-the-art toward the development of fully synthetic HIV vaccines.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Laboratory for Bioorganic Chemistry, Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, NY 10065, USA
| | | | | |
Collapse
|
173
|
Wang D, Tang J, Tang J, Wang LX. Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins. Molecules 2015; 20:4610-22. [PMID: 25774492 PMCID: PMC4633014 DOI: 10.3390/molecules20034610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 11/16/2022] Open
Abstract
Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA), for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV), and human cytomegalovirus (HCMV). In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9)-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn). These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.
Collapse
Affiliation(s)
- Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA 94025, USA.
| | - Jin Tang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA 94025, USA.
| | - Jiulai Tang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Lai-Xi Wang
- Instituteof Human Virology, Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, USA.
| |
Collapse
|
174
|
Crispin M, Doores KJ. Targeting host-derived glycans on enveloped viruses for antibody-based vaccine design. Curr Opin Virol 2015; 11:63-9. [PMID: 25747313 DOI: 10.1016/j.coviro.2015.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
The surface of enveloped viruses can be extensively glycosylated. Unlike the glycans coating pathogens such as bacteria and fungi, glycans on viruses are added and processed by the host-cell during biosynthesis. Glycoproteins are typically subjected to α-mannosidase processing and Golgi-mediated glycosyltransferase extension to form complex-type glycans. In envelope viruses, exceptions to this default pathway are common and lead to the presence of oligomannose-type glycan structures on the virion surface. In one extreme example, HIV-1 utilises a high density of glycans to limit host antibody recognition of protein. However, the high density limits glycan processing and the resulting oligomannose structures can be recognised by broadly neutralising antibodies isolated from HIV-1 infected patients. Here we discuss how divergence from host-cell glycosylation can be targeted for vaccine design.
Collapse
Affiliation(s)
- Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences and Medicine, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom.
| |
Collapse
|
175
|
Acharya P, Lusvarghi S, Bewley CA, Kwong PD. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 2015; 19:765-83. [PMID: 25724219 DOI: 10.1517/14728222.2015.1010513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high-affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. AREAS COVERED An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. EXPERT OPINION The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms that have evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target.
Collapse
Affiliation(s)
- Priyamvada Acharya
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Vaccine Research Center, Structural Biology Section , Room 4609B, 40 Convent Drive, Bethesda, MD 20892 , USA
| | | | | | | |
Collapse
|
176
|
Gordts SC, Renders M, Férir G, Huskens D, Van Damme EJM, Peumans W, Balzarini J, Schols D. NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J Antimicrob Chemother 2015; 70:1674-85. [PMID: 25700718 PMCID: PMC7537945 DOI: 10.1093/jac/dkv034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/18/2015] [Accepted: 01/25/2015] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES This study aimed to assess the antiviral properties of a unique lectin (NICTABA) produced by the tobacco plant, Nicotiana tabacum. METHODS Cellular assays were used to investigate the antiviral activity of NICTABA and Urtica dioica agglutinin (UDA). Surface plasmon resonance (SPR) studies were performed to study the sugar specificity and the interactions of both lectins with the envelope glycoproteins of HIV-1. RESULTS The N-acetyl-d-glucosamine (GlcNAc)-binding lectins exhibited broad-spectrum activity against several families of enveloped viruses including influenza A/B, Dengue virus type 2, herpes simplex virus types 1 and 2 and HIV-1/2. The IC50 of NICTABA for various HIV-1 strains, clinical isolates and HIV-2 assessed in PBMCs ranged from 5 to 30 nM. Furthermore, NICTABA inhibited syncytium formation between persistently HIV-1-infected T cells and uninfected CD4+ T lymphocytes and prevented DC-SIGN-mediated HIV-1 transmission to CD4+ target T lymphocytes. However, unlike many other antiviral carbohydrate-binding agents (CBAs) described so far, NICTABA did not block HIV-1 capture to DC-SIGN+ cells and it did not interfere with the binding of the human monoclonal antibody 2G12 to gp120. SPR studies with HIV-1 envelope glycoproteins showed that the affinity of NICTABA for gp120 and gp41 was in the low nanomolar range. The specific binding of NICTABA to gp120 could be prevented in the presence of a GlcNAc trimer, but not in the presence of mannose trimers. NICTABA displayed no antiviral activity against non-enveloped viruses. CONCLUSIONS Since CBAs possess a high genetic barrier for the development of viral resistance and NICTABA shows a broad antiviral activity profile, this CBA may qualify as a potential antiviral candidate with a pleiotropic mode of action aimed at targeting the entry of enveloped viruses.
Collapse
Affiliation(s)
- Stephanie C Gordts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Marleen Renders
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Geoffrey Férir
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Dana Huskens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Willy Peumans
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
177
|
Hennig R, Rapp E, Kottler R, Cajic S, Borowiak M, Reichl U. N-Glycosylation Fingerprinting of Viral Glycoproteins by xCGE-LIF. Methods Mol Biol 2015; 1331:123-43. [PMID: 26169738 DOI: 10.1007/978-1-4939-2874-3_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ongoing threat of pathogens, increasing resistance against antibiotics, and the risk of fast spreading of infectious diseases in a global community resulted in an intensified development of vaccines. Antigens used for vaccination comprise a wide variety of macromolecules including glycoproteins, lipopolysaccharides, and complex carbohydrates. For all of these antigens the sugar composition plays a crucial role for immunogenicity and protective efficacy of the vaccine. Here, we provide a protocol for N-glycosylation fingerprinting utilizing high performance multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) technology. The method described, enables to analyze the N-glycosylation of specific proteins out of a complex sample or even the total of all N-glycans contained in such a sample. The protocol is exemplarily demonstrated for N-glycosylation fingerprinting of cell culture-derived influenza A and B viruses and their major antigens, the membrane glycoproteins hemagglutinin and neuraminidase.
Collapse
Affiliation(s)
- René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse1, 39106, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
178
|
Bitto D, Harvey DJ, Halldorsson S, Doores KJ, Pritchard LK, Huiskonen JT, Bowden TA, Crispin M. Determination of N-linked Glycosylation in Viral Glycoproteins by Negative Ion Mass Spectrometry and Ion Mobility. Methods Mol Biol 2015; 1331:93-121. [PMID: 26169737 PMCID: PMC4817836 DOI: 10.1007/978-1-4939-2874-3_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans.
Collapse
Affiliation(s)
- David Bitto
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David J. Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Steinar Halldorsson
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Katie J. Doores
- King’s College London, School of Medicine at Guy’s, King’s and St Thomas’ Hospitals, Guy’s Hospital, Great Maze Pond, London, UK
| | - Laura K. Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Juha T. Huiskonen
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas A. Bowden
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Max Crispin
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK,To whom correspondence should be addressed, Max Crispin, , Tel: +44(0)1865 285445
| |
Collapse
|
179
|
Sok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL, Ramos A, Kulp DW, Julien JP, Menis S, Wickramasinghe L, Seaman MS, Schief WR, Wilson IA, Poignard P, Burton DR. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci Transl Med 2014; 6:236ra63. [PMID: 24828077 DOI: 10.1126/scitranslmed.3008104] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Broadly neutralizing monoclonal antibodies (bnmAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates because they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viremia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site, and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnmAbs can use alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/N334 glycan site and up to 66% coverage for viruses that lack the N332/N334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near-equivalent coverage as a combination of bnmAbs targeting multiple epitopes. Additionally, the ability of some bnmAbs to use other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnmAbs to the high-mannose patch for optimal antiviral activity in either protective or therapeutic modalities.
Collapse
Affiliation(s)
- Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katie J Doores
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK.
| | - Bryan Briney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khoa M Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen L Saye-Francisco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Daniel W Kulp
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Jean-Philippe Julien
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergey Menis
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Lalinda Wickramasinghe
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | | | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02142, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02142, USA.
| |
Collapse
|
180
|
Férir G, Gordts SC, Schols D. HIV-1 and its resistance to peptidic carbohydrate-binding agents (CBAs): an overview. Molecules 2014; 19:21085-112. [PMID: 25517345 PMCID: PMC6270665 DOI: 10.3390/molecules191221085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/16/2022] Open
Abstract
The glycoproteins on the surfaces of enveloped viruses, such as HIV, can be considered as a unique target for antiviral therapy. Different carbohydrate-binding agents (CBAs) target specific glycans present on viral glycoproteins of enveloped viruses. It has been shown that long-term CBA pressure in vitro can result in mutant HIV-1 isolates with several N-linked glycan deletions on gp120. These studies demonstrated that mainly high-mannose type glycans are deleted. However, interestingly, N241, N262 and N356 on gp120 have never been found to be affected after prolonged CBA exposure. Here, we review the mutation and (cross)-resistance profiles of eleven specific generated CBA-resistant HIV-1 strains. We observed that the broad-neutralizing anti-carbohydrate binding mAb 2G12 became completely inactive against all the generated CBA-resistant HIV-1 clade B isolates. In addition, all of the CBAs discussed in this review, with the exception of NICTABA, interfered with the binding of 2G12 mAb to gp120 expressed on HIV-1-infected T cells. The cross-resistance profiles of mutant HIV-1 strains are varying from increased susceptibility to very high resistance levels, even among different classes of CBAs with dissimilar sugar specificities or binding moieties [e.g., α(1,3), α(1,2), α(1,6)]. Recent studies demonstrated promising results in non-topical formulations (e.g., intranasally or subcutaneously), highlighting their potential for prevention (microbicides) and antiviral therapy.
Collapse
Affiliation(s)
- Geoffrey Férir
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10. Leuven B-3000, Belgium.
| | - Stephanie C Gordts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10. Leuven B-3000, Belgium.
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10. Leuven B-3000, Belgium.
| |
Collapse
|
181
|
Miglietta R, Pastori C, Venuti A, Ochsenbauer C, Lopalco L. Synergy in monoclonal antibody neutralization of HIV-1 pseudoviruses and infectious molecular clones. J Transl Med 2014; 12:346. [PMID: 25496375 PMCID: PMC4274758 DOI: 10.1186/s12967-014-0346-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/26/2014] [Indexed: 12/26/2022] Open
Abstract
Background Early events in HIV infection are still poorly understood; virus derived from acute infections, the transmitted/founders IMCs, could provide more reliable information as they represent strains that established HIV infection in vivo, and therefore are investigated to elucidate potentially shared biological features. Methods This study examined synergy in neutralization by six monoclonal antibodies targeting different domains in gp120 and gp41 and assayed in pairwise combination against 11 HIV-1 clade B strains, either Env pseudoviruses (PV, n = 5) or transmitted/founder infectious molecular clones (T/F IMCs, n = 6). Three of the early-infection env tested as PV were juxtaposed with T/F viruses derived from the same three patients, respectively. Results All antibodies reaching IC50 were assayed pairwise (n = 50). T/F IMCs showed overall lower sensitivity to neutralization by single antibodies than PV, including within the three patient-matched pairs. Remarkably, combination index (CI) calculated using the Chow and Talalay method indicated synergy (CI < 0.9) in 42 data sets, and occurred in T/F IMC at similar proportions (15 of 17 antibody-T/F IMC combinations tested) as in pseudoviruses (27 of 33). CI values indicative of additivity and low-level antagonism were seen in 5 and 3 cases, respectively. Most pairs showed comparable synergic neutralizing effects on both virus groups, with the 4E10 + PG16 pair achieving the best synergic effects. Variability in neutralization was mostly observed on pseudovirus isolates, suggesting that factors other than virus isolation technology, such as env conformation, epitope accessibility and antibody concentration, are likely to affect polyclonal neutralization. Conclusions The findings from this study suggest that inhibitory activity of bNAbs can be further augmented through appropriate combination, even against viruses representing circulating strains, which are likely to exhibit a less sensitive Tier 2 neutralization phenotype. This notion has important implications for the design and development of anti-Env bNAb-inducing vaccines and polyclonal sera for passive immunization. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0346-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riccardo Miglietta
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy. .,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | - Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA. .,CFAR, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
182
|
Horiya S, MacPherson IS, Krauss IJ. Recent strategies targeting HIV glycans in vaccine design. Nat Chem Biol 2014; 10:990-9. [PMID: 25393493 PMCID: PMC4431543 DOI: 10.1038/nchembio.1685] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/03/2014] [Indexed: 12/20/2022]
Abstract
Although efforts to develop a vaccine against HIV have so far met with little success, recent studies of HIV-positive patients with strongly neutralizing sera have shown that the human immune system is capable of producing potent and broadly neutralizing antibodies (bnAbs), some of which neutralize up to 90% of HIV strains. These antibodies bind conserved vulnerable sites on the viral envelope glycoprotein gp120, and identification of these sites has provided exciting clues about the design of potentially effective vaccines. Carbohydrates have a key role in this field, as a large fraction of bnAbs bind carbohydrates or combinations of carbohydrate and peptide elements on gp120. Additionally, carbohydrates partially mask some peptide surfaces recognized by bnAbs. The use of engineered glycoproteins and other glycostructures as vaccines to elicit antibodies with broad neutralizing activity is therefore a key area of interest in HIV vaccine design.
Collapse
Affiliation(s)
- Satoru Horiya
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Iain S MacPherson
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
183
|
Bailey JJ, Bundle DR. Synthesis of high-mannose 1-thio glycans and their conjugation to protein. Org Biomol Chem 2014; 12:2193-213. [PMID: 24549150 DOI: 10.1039/c3ob42194e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oligosaccharides Man4 and Man5, substructures of the high-mannose glycans of HIV glycoprotein gp120, were synthesized with a terminal 1-thiomannopyranose residue. The anomeric thiol can be readily converted to an azidomethyl aglycone through reaction with dichloromethane and displacement with sodium azide. The resulting oligomannans were then conjugated to ubiquitin utilizing thiol alkylation or azide/alkyne reactive tethers of minimal length. By combining high efficiency conjugation reactions and a short tether, we sought to establish conjugation conditions that would permit high density clustering of oligomannans in conjugate vaccines that could produce antibodies able to bind gp120 and potentially neutralize virus. LC-UV-MS was used to separate, identify and quantify the ubiquitin glycoconjugates with differing degrees of oligomannan incorporation. Binding of the HIV protective monoclonal antibody 2G12 and concanavalin A to microtitre plates coated with glycoconjugates was measured by ELISA.
Collapse
Affiliation(s)
- Justin J Bailey
- Alberta Glycomics Centre and the Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | | |
Collapse
|
184
|
Synthesis of unsymmetrical 3,6-branched Man5 oligosaccharide: a comparison between one-pot sequential glycosylation and stepwise synthesis. Carbohydr Res 2014; 401:109-14. [PMID: 25481531 DOI: 10.1016/j.carres.2014.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023]
Abstract
An expeditious three-component, one-pot sequential glycosylation protocol has been developed for the preparation of 3,6-branched unsymmetrical mannopentaose (Man5), employing a mannose trisaccharide donor, a mannose monosaccharide donor and a mannose monosaccharide acceptor. The high efficiency of this one-pot procedure was demonstrated by comparison study with a stepwise synthesis using the same three building blocks.
Collapse
|
185
|
Two classes of broadly neutralizing antibodies within a single lineage directed to the high-mannose patch of HIV envelope. J Virol 2014; 89:1105-18. [PMID: 25378488 DOI: 10.1128/jvi.02905-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The high-mannose patch of human immunodeficiency virus (HIV) envelope (Env) elicits broadly neutralizing antibodies (bnAbs) during natural infection relatively frequently, and consequently, this region has become a major target of vaccine design. However, it has also become clear that antibody recognition of the region is complex due, at least in part, to variability in neighboring loops and glycans critical to the epitopes. bnAbs against this region have some shared features and some distinguishing features that are crucial to understand in order to design optimal immunogens that can induce different classes of bnAbs against this region. Here, we compare two branches of a single antibody lineage, in which all members recognize the high-mannose patch. One branch (prototype bnAb PGT128) has a 6-amino-acid insertion in CDRH2 that is crucial for broad neutralization. Antibodies in this branch appear to favor a glycan site at N332 on gp120, and somatic hypermutation is required to accommodate the neighboring V1 loop glycans and glycan heterogeneity. The other branch (prototype bnAb PGT130) lacks the CDRH2 insertion. Antibodies in this branch are noticeably effective at neutralizing viruses with an alternate N334 glycan site but are less able to accommodate glycan heterogeneity. We identify a new somatic variant within this branch that is predominantly dependent on N334. The crystal structure of PGT130 offers insight into differences from PGT128. We conclude that different immunogens may be required to elicit bnAbs that have the optimal characteristics of the two branches of the lineage described. IMPORTANCE Development of an HIV vaccine is of vital importance for prevention of new infections, and it is thought that elicitation of HIV bnAbs will be an important component of an effective vaccine. Increasingly, bnAbs that bind to the cluster of high-mannose glycans on the HIV envelope glycoprotein, gp120, are being highlighted as important templates for vaccine design. In particular, bnAbs from IAVI donor 36 (PGT125 to PGT131) have been shown to be extremely broad and potent. Combination of these bnAbs enhanced neutralization breadth considerably, suggesting that an optimal immunogen should elicit several antibodies from this family. Here we study the evolution of this antibody family to inform immunogen design. We identify two classes of bnAbs that differ in their recognition of the high-mannose patch and show that different immunogens may be required to elicit these different classes.
Collapse
|
186
|
Luo Y, Muesing MA. Mass spectrometry-based proteomic approaches for discovery of HIV-host interactions. Future Virol 2014; 9:979-992. [PMID: 25544858 DOI: 10.2217/fvl.14.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A molecular understanding of viral infection requires a multi-disciplinary approach. Mass spectrometry has emerged as an indispensable tool to investigate the complex and dynamic interactions between HIV-1 and its host. It has been employed to study protein associations, changes in protein abundance and post-translational modifications occurring after viral infection. Here, we review and provide examples of mass spectrometry-based proteomic approaches currently used to explore virus-host interaction. Efforts in this area are certain to accelerate the discovery of the unique molecular strategies utilized by the virus to commandeer the cell as well as mechanisms of host defense.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| | - Mark A Muesing
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| |
Collapse
|
187
|
Abstract
UNLABELLED The HIV-1 envelope protein (Env) is heavily glycosylated, with approximately 50% of the Env molecular mass being contributed by N-glycans. HIV-1 Env N-glycans shield the protein backbone and have been shown to play key roles in determining Env structure, surface exposure, and, consequently, antigenicity, infectivity, antibody neutralization, and carbohydrate and receptor binding. Studies of HIV-1 glycosylation have focused mainly on the position of glycosylation, rather than the types of glycans. Also, the role of Env glycan moieties on HIV-1 transmission has not been systematically defined. Using viruses with modified Env glycan content and heterogeneity, we examined the effects of Env glycan moieties on the major events of HIV-1 transmission. Compared to viruses with less oligomannose and more complex Env glycans, viruses with more oligomannose and less complex glycans more efficiently (i) transcytosed across an epithelial cell monolayer, (ii) attached to monocyte-derived macrophages (MDMs), (iii) bound monocyte-derived dendritic cells (MoDCs), and (iv) trans-infected primary lymphocytes via MoDCs. However, viruses with more oligomannose and less complex glycans displayed impaired infectivity in TZMbl cells, MDMs, primary lymphocytes, and fresh human intestinal tissue. Thus, N-linked Env glycans display discordant effects on the major events of HIV-1 transmission, with mature oligosaccharide structures on Env playing a crucial role in HIV-1 infection. Env glycosylation should be taken into consideration in the development of vaccine strategies to interdict HIV-1 transmission. IMPORTANCE HIV-1 Env N-glycans shield the protein backbone and play key roles in determining Env structure and surface exposure, thereby impacting Env antigenicity, infectivity, antibody neutralization, and carbohydrate and receptor binding. Studies of HIV-1 glycosylation have focused mainly on the position of glycosylation, rather than the types of glycans. In the study described in this report, we investigated systematically the role of Env glycan moieties on HIV-1 transmission. We show that N-linked Env glycans display discordant effects on the major events of HIV-1 transmission. These data indicate that Env glycan moieties impact HIV-1 transmission and that modulation of Env glycan moieties offers a potential strategy for the development of therapeutic or prophylactic vaccines against HIV-1.
Collapse
|
188
|
Rabinovich S, Powell RLR, Lindsay RWB, Yuan M, Carpov A, Wilson A, Lopez M, Coleman JW, Wagner D, Sharma P, Kemelman M, Wright KJ, Seabrook JP, Arendt H, Martinez J, DeStefano J, Chiuchiolo MJ, Parks CL. A novel, live-attenuated vesicular stomatitis virus vector displaying conformationally intact, functional HIV-1 envelope trimers that elicits potent cellular and humoral responses in mice. PLoS One 2014; 9:e106597. [PMID: 25215861 PMCID: PMC4162551 DOI: 10.1371/journal.pone.0106597] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/03/2014] [Indexed: 01/09/2023] Open
Abstract
Though vaccination with live-attenuated SIV provides the greatest protection from progressive disease caused by SIV challenge in rhesus macaques, attenuated HIV presents safety concerns as a vaccine; therefore, live viral vectors carrying HIV immunogens must be considered. We have designed a replication-competent vesicular stomatitis virus (VSV) displaying immunogenic HIV-1 Env trimers and attenuating quantities of the native surface glycoprotein (G). The clade B Env immunogen is an Env-VSV G hybrid (EnvG) in which the transmembrane and cytoplasmic tail regions are derived from G. Relocation of the G gene to the 5'terminus of the genome and insertion of EnvG into the natural G position induced a ∼1 log reduction in surface G, significant growth attenuation compared to wild-type, and incorporation of abundant EnvG. Western blot analysis indicated that ∼75% of incorporated EnvG was a mature proteolytically processed form. Flow cytometry showed that surface EnvG bound various conformationally- and trimer-specific antibodies (Abs), and in-vitro growth assays on CD4+CCR5+ cells demonstrated EnvG functionality. Neither intranasal (IN) or intramuscular (IM) administration in mice induced any observable pathology and all regimens tested generated potent Env-specific ELISA titers of 10(4)-10(5), with an IM VSV prime/IN VSV boost regimen eliciting the highest binding and neutralizing Ab titers. Significant quantities of Env-specific CD4+ T cells were also detected, which were augmented as much as 70-fold by priming with IM electroporated plasmids encoding EnvG and IL-12. These data suggest that our novel vector can achieve balanced safety and immunogenicity and should be considered as an HIV vaccine platform.
Collapse
Affiliation(s)
- Svetlana Rabinovich
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Rebecca L. R. Powell
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Ross W. B. Lindsay
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Maoli Yuan
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Alexei Carpov
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Aaron Wilson
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Mary Lopez
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - John W. Coleman
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Denise Wagner
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Palka Sharma
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Marina Kemelman
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Kevin J. Wright
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - John P. Seabrook
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Heather Arendt
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Jennifer Martinez
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Joanne DeStefano
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Maria J. Chiuchiolo
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Christopher L. Parks
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
189
|
Breadth of HIV-1 Env-specific antibody-dependent cellular cytotoxicity: relevance to global HIV vaccine design. AIDS 2014; 28:1859-70. [PMID: 24937308 DOI: 10.1097/qad.0000000000000310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study is to determine the breadth of HIV-1 Env-specific antibody-dependent cellular cytotoxicity (ADCC) in HIV controllers and HIV progressors with a view to design globally relevant HIV vaccines. DESIGN The breadth of ADCC towards four major HIV-1 Env subtypes was measured in vitro for 11 HIV controllers and 11 HIV progressors. METHODS Plasma from 11 HIV controllers (including long-term slow progressors, viremic controllers, elite controller and posttreatment controller) and 11 HIV progressors, mostly infected with HIV-1 subtype B, was analysed for ADCC responses. ADCC assays were performed against 10 HIV-1 gp120 and 8 gp140 proteins from four major HIV-1 subtypes (A, B, C and E) and 3 glycosylation-mutant gp140 proteins. RESULTS ADCC-mediated natural killer cell activation was significantly broader (P = 0.02) and of higher magnitude (P < 0.001) in HIV controllers than in HIV progressors. HIV controllers also showed significantly higher magnitude of ADCC-mediated killing of Env-coated target cells than HIV progressors to both HIV-1 subtype B and the heterologous subtype E gp140 (P = 0.001). We found good ADCC reactivity to subtype B and E Envs, less cross-reactivity to subtype A and minimal cross-reactivity to subtype C Envs. Glycosylation-dependent ADCC epitopes comprise a significant proportion of the total Env-specific ADCC response, as evident from the reduction in ADCC to nonglycosylated form of HIV-1 gp140 (P = 0.004). CONCLUSION HIV controllers have robust ADCC responses that recognize a broad range of HIV-1 Env. Glycosylation of Env was found to be important for recognition of ADCC epitopes. Identifying conserved ADCC epitopes will assist in designing globally relevant ADCC-based HIV vaccines.
Collapse
|
190
|
Go EP, Hua D, Desaire H. Glycosylation and disulfide bond analysis of transiently and stably expressed clade C HIV-1 gp140 trimers in 293T cells identifies disulfide heterogeneity present in both proteins and differences in O-linked glycosylation. J Proteome Res 2014; 13:4012-27. [PMID: 25026075 PMCID: PMC4156237 DOI: 10.1021/pr5003643] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The HIV-1 envelope protein (Env) mediates viral entry into host cells to initiate infection and is the sole target of antibody-based vaccine development. Significant efforts have been made toward the design, engineering, and expression of various soluble forms of HIV Env immunogen, yet a highly effective immunogen remains elusive. One of the key challenges in the development of an effective HIV vaccine is the presence of the complex set of post-translational modifications (PTMs) on Env, namely, glycosylation and disulfide bonds, that affect protein folding, epitope accessibility, and immunogenecity. Although these PTMs vary with expression systems, variations in Env's PTMs due to changes in the expression method are not yet well established. In this study, we compared the disulfide bond network and glycosylation profiles of clade C recombinant HIV-1 Env trimers, C97ZA012 gp140, expressed by stable and transient transfections using an integrated mass mapping workflow that combines collision induced dissociation (CID) and electron transfer dissociation (ETD). Site-specific analysis of the N- and O-glycosylation profiles revealed that C97ZA012 gp140 produced by both transfection methods displayed a high degree of similarity in N-glycosylation profiles and site occupancy except for one site. By contrast, different O-glycosylation profiles were detected. Analysis of the disulfide bond networks of the Env revealed that both transfection methods yielded C97ZA012 gp140 adopting the expected disulfide bond pattern identified for the monomeric gp120 and gp41 as well as alternative disulfide bond patterns in the C1, V1/V2, and C2 regions. The finding that disulfide bonding is consistently heterogeneous in these proteins is perhaps the most significant outcome of these studies; this disulfide heterogeneity has been reported for multiple other recombinant gp140s, and it is likely present in most recombinantly expressed Env immunogens.
Collapse
Affiliation(s)
- Eden P Go
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | | | | |
Collapse
|
191
|
Raska M, Czernekova L, Moldoveanu Z, Zachova K, Elliott MC, Novak Z, Hall S, Hoelscher M, Maboko L, Brown R, Smith PD, Mestecky J, Novak J. Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther 2014; 11:23. [PMID: 25120578 PMCID: PMC4130436 DOI: 10.1186/1742-6405-11-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/26/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND HIV-1 entry into host cells is mediated by interactions between the virus envelope glycoprotein (gp120/gp41) and host-cell receptors. N-glycans represent approximately 50% of the molecular mass of gp120 and serve as potential antigenic determinants and/or as a shield against immune recognition. We previously reported that N-glycosylation of recombinant gp120 varied, depending on the producer cells, and the glycosylation variability affected gp120 recognition by serum antibodies from persons infected with HIV-1 subtype B. However, the impact of gp120 differential glycosylation on recognition by broadly neutralizing monoclonal antibodies or by polyclonal antibodies of individuals infected with other HIV-1 subtypes is unknown. METHODS Recombinant multimerizing gp120 antigens were expressed in different cells, HEK 293T, T-cell, rhabdomyosarcoma, hepatocellular carcinoma, and Chinese hamster ovary cell lines. Binding of broadly neutralizing monoclonal antibodies and polyclonal antibodies from sera of subtype A/C HIV-1-infected subjects with individual gp120 glycoforms was assessed by ELISA. In addition, immunodetection was performed using Western and dot blot assays. Recombinant gp120 glycoforms were tested for inhibition of infection of reporter cells by SF162 and YU.2 Env-pseudotyped R5 viruses. RESULTS We demonstrated, using ELISA, that gp120 glycans sterically adjacent to the V3 loop only moderately contribute to differential recognition of a short apex motif GPGRA and GPGR by monoclonal antibodies F425 B4e8 and 447-52D, respectively. The binding of antibodies recognizing longer peptide motifs overlapping with GPGR epitope (268 D4, 257 D4, 19b) was significantly altered. Recognition of gp120 glycoforms by monoclonal antibodies specific for other than V3-loop epitopes was significantly affected by cell types used for gp120 expression. These epitopes included CD4-binding site (VRC03, VRC01, b12), discontinuous epitope involving V1/V2 loop with the associated glycans (PG9, PG16), and an epitope including V3-base-, N332 oligomannose-, and surrounding glycans-containing epitope (PGT 121). Moreover, the different gp120 glycoforms variably inhibited HIV-1 infection of reporter cells. CONCLUSION Our data support the hypothesis that the glycosylation machinery of different cells shapes gp120 glycosylation and, consequently, impacts envelope recognition by specific antibodies as well as the interaction of HIV-1 gp120 with cellular receptors. These findings underscore the importance of selection of appropriately glycosylated HIV-1 envelope as a vaccine antigen.
Collapse
|
192
|
Abstract
The heavy glycosylation of HIV envelope constitutes a strong defense mechanism for the virus to evade host immune response, which accounts for a major barrier for HIV vaccine development. Nevertheless, the identification of a number of glycan-dependent broadly HIV-neutralizing antibodies from HIV-infected individuals, including 2G12, PG9, PG16, PGT121-123, PGT125-128, and PGT135, strongly suggests that the defensive viral 'glycan shield' can be important targets of vaccines. The novel glycan recognition mode exhibited by these antibodies provides new templates for immunogen design. This review highlights recent work on the characterization of the glycan-dependent epitopes of these neutralizing antibodies and recent advances in the synthesis of the relevant carbohydrate antigens for HIV vaccine design.
Collapse
|
193
|
Morales JF, Morin TJ, Yu B, Tatsuno GP, O'Rourke SM, Theolis R, Mesa KA, Berman PW. HIV-1 envelope proteins and V1/V2 domain scaffolds with mannose-5 to improve the magnitude and quality of protective antibody responses to HIV-1. J Biol Chem 2014; 289:20526-42. [PMID: 24872420 PMCID: PMC4110267 DOI: 10.1074/jbc.m114.554089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/07/2014] [Indexed: 01/15/2023] Open
Abstract
Two lines of investigation have highlighted the importance of antibodies to the V1/V2 domain of gp120 in providing protection from HIV-1 infection. First, the recent RV144 HIV-1 vaccine trial documented a correlation between non-neutralizing antibodies to the V2 domain and protection. Second, multiple broadly neutralizing monoclonal antibodies to the V1/V2 domain (e.g. PG9) have been isolated from rare infected individuals, termed elite neutralizers. Interestingly, the binding of both types of antibodies appears to depend on the same cluster of amino acids (positions 167–171) adjacent to the junction of the B and C strands of the four-stranded V1/V2 domain β-sheet structure. However, the broadly neutralizing mAb, PG9, additionally depends on mannose-5 glycans at positions 156 and 160 for binding. Because the gp120 vaccine immunogens used in previous HIV-1 vaccine trials were enriched for complex sialic acid-containing glycans, and lacked the high mannose structures required for the binding of PG9-like mAbs, we wondered if these immunogens could be improved by limiting glycosylation to mannose-5 glycans. Here, we describe the PG9 binding activity of monomeric gp120s from multiple strains of HIV-1 produced with mannose-5 glycans. We also describe the properties of glycopeptide scaffolds from the V1/V2 domain also expressed with mannose-5 glycans. The V1/V2 scaffold from the A244 isolate was able to bind the PG9, CH01, and CH03 mAbs with high affinity provided that the proper glycans were present. We further show that immunization with A244 V1/V2 fragments alone, or in a prime/boost regimen with gp120, enhanced the antibody response to sequences in the V1/V2 domain associated with protection in the RV144 trial.
Collapse
Affiliation(s)
- Javier F. Morales
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Trevor J. Morin
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Bin Yu
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Gwen P. Tatsuno
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Sara M. O'Rourke
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Richard Theolis
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Kathryn A. Mesa
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Phillip W. Berman
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
194
|
Guttman M, Garcia NK, Cupo A, Matsui T, Julien JP, Sanders RW, Wilson IA, Moore JP, Lee KK. CD4-induced activation in a soluble HIV-1 Env trimer. Structure 2014; 22:974-84. [PMID: 24931470 PMCID: PMC4231881 DOI: 10.1016/j.str.2014.05.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 01/05/2023]
Abstract
The HIV envelope glycoprotein (Env) trimer undergoes receptor-induced conformational changes that drive fusion of the viral and cellular membranes. Env conformational changes have been observed using low-resolution electron microscopy, but only large-scale rearrangements have been visible. Here, we use hydrogen-deuterium exchange and oxidative labeling to gain a more precise understanding of the unliganded and CD4-bound forms of soluble Env trimers (SOSIP.664), including their glycan composition. CD4 activation induces the reorganization of bridging sheet elements, V1/V2 and V3, much of the gp120 inner domain, and the gp41 fusion subunit. Two CD4 binding site-targeted inhibitors have substantially different effects: NBD-556 partially mimics CD4-induced destabilization of the V1/V2 and V3 crown, whereas BMS-806 only affects regions around the gp120/gp41 interface. The structural information presented here increases our knowledge of CD4- and small molecule-induced conformational changes in Env and the allosteric pathways that lead to membrane fusion.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Natalie K Garcia
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Albert Cupo
- Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Weill Medical College of Cornell University, New York, NY 10021, USA; Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John P Moore
- Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
195
|
Yang W, Shah P, Toghi Eshghi S, Yang S, Sun S, Ao M, Rubin A, Jackson JB, Zhang H. Glycoform analysis of recombinant and human immunodeficiency virus envelope protein gp120 via higher energy collisional dissociation and spectral-aligning strategy. Anal Chem 2014; 86:6959-67. [PMID: 24941220 PMCID: PMC4215848 DOI: 10.1021/ac500876p] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Envelope
protein gp120 of human immunodeficiency virus (HIV) is
armored with a dense glycan shield, which plays critical roles in
envelope folding, immune-evasion, infectivity, and immunogenicity.
Site-specific glycosylation profiling of recombinant gp120 is very
challenging. Therefore, glycoproteomic analysis of native viral gp120
is still formidable to date. This challenge promoted us to employ
a Q-Exactive mass spectrometer to identify low abundant glycopeptides
from virion-associated gp120. To search the HCD-MS data for glycopeptides,
a novel spectral-aligning strategy was developed. This strategy depends
on the observation that glycopeptides and the corresponding deglycosylated
peptides share very similar MS/MS pattern in terms of b- and y-ions
that do not contain the site of glycosylation. Moreover, glycopeptides
with an identical peptide backbone show nearly resembling spectra
regardless of the attached glycan structures. For the recombinant
gp120, this “copy–paste” spectral pattern of
glycopeptides facilitated identification of 2224 spectra using only
18 spectral templates, and after precursor mass correction, 1268 (57%)
spectra were assigned to 460 unique glycopeptides accommodating 19
N-linked and one O-linked glycosylation sites (glycosites). Strikingly,
we were able to observe five N- and one O-linked glycosites in native
gp120. We further revealed that except for Asn276 in the C2 region,
glycans were processed to contain both high mannose and hybrid/complex
glycans; an additional four N-linked glycosites were decorated with
high mannose type. Core 1 O-linked glycan Gal1GalNAc1 was seen for the O-linked glycosite at Thr499. This direct
observation of site-specific glycosylation of virion-derived gp120
has implications in HIV glycobiology and vaccine design.
Collapse
Affiliation(s)
- Weiming Yang
- Department of Pathology, School of Medicine, Johns Hopkins University , 1550 Orleans Street , Baltimore, Maryland 21205, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ. Bitter-sweet symphony: glycan-lectin interactions in virus biology. FEMS Microbiol Rev 2014; 38:598-632. [PMID: 24188132 PMCID: PMC7190080 DOI: 10.1111/1574-6976.12052] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 01/01/2023] Open
Abstract
Glycans are carbohydrate modifications typically found on proteins or lipids, and can act as ligands for glycan-binding proteins called lectins. Glycans and lectins play crucial roles in the function of cells and organs, and in the immune system of animals and humans. Viral pathogens use glycans and lectins that are encoded by their own or the host genome for their replication and spread. Recent advances in glycobiological research indicate that glycans and lectins mediate key interactions at the virus-host interface, controlling viral spread and/or activation of the immune system. This review reflects on glycan-lectin interactions in the context of viral infection and antiviral immunity. A short introduction illustrates the nature of glycans and lectins, and conveys the basic principles of their interactions. Subsequently, examples are discussed highlighting specific glycan-lectin interactions and how they affect the progress of viral infections, either benefiting the host or the virus. Moreover, glycan and lectin variability and their potential biological consequences are discussed. Finally, the review outlines how recent advances in the glycan-lectin field might be transformed into promising new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Wander Van Breedam
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Herman W. Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Raoul J. de Groot
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hans J. Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
197
|
Mathys L, François KO, Quandte M, Braakman I, Balzarini J. Deletion of the highly conserved N-glycan at Asn260 of HIV-1 gp120 affects folding and lysosomal degradation of gp120, and results in loss of viral infectivity. PLoS One 2014; 9:e101181. [PMID: 24967714 PMCID: PMC4072736 DOI: 10.1371/journal.pone.0101181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
N-linked glycans covering the surface of the HIV-1 glycoprotein gp120 are of major importance for the correct folding of this glycoprotein. Of the, on average, 24 N-linked glycans present on gp120, the glycan at Asn260 was reported to be essential for the correct expression of gp120 and gp41 in the virus particle and deletion of the N260 glycan in gp120 heavily compromised virus infectivity. We show here that gp160 containing the N260Q mutation reaches the Golgi apparatus during biosynthesis. Using pulse-chase experiments with [35S] methionine/cysteine, we show that oxidative folding was slightly delayed in case of mutant N260Q gp160 and that CD4 binding was markedly compromised compared to wild-type gp160. In the search of compensatory mutations, we found a mutation in the V1/V2 loop of gp120 (S128N) that could partially restore the infectivity of mutant N260Q gp120 virus. However, the mutation S128N did not enhance any of the above-mentioned processes so its underlying compensatory mechanism must be a conformational effect that does not affect CD4 binding per se. Finally, we show that mutant N260Q gp160 was cleaved to gp120 and gp41 to a much lower extent than wild-type gp160, and that it was subject of lysosomal degradation to a higher extent than wild-type gp160 showing a prominent role of this process in the breakdown of N260-glycan-deleted gp160, which could not be counteracted by the S128N mutation. Moreover, at least part of the wild-type or mutant gp160 that is normally targeted for lysosomal degradation reached a conformation that enabled CD4 binding.
Collapse
Affiliation(s)
- Leen Mathys
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Matthias Quandte
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
198
|
Structure of 2G12 Fab2 in complex with soluble and fully glycosylated HIV-1 Env by negative-stain single-particle electron microscopy. J Virol 2014; 88:10177-88. [PMID: 24965454 DOI: 10.1128/jvi.01229-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The neutralizing anti-HIV-1 antibody 2G12 is of particular interest due to the sterilizing protection it provides from viral challenge in animal models. 2G12 is a unique, domain-exchanged antibody that binds exclusively to conserved N-linked glycans that form the high-mannose patch on the gp120 outer domain centered on a glycan at position N332. Several glycans in and around the 2G12 epitope have been shown to interact with other potent, broadly neutralizing antibodies; therefore, this region constitutes a supersite of vulnerability on gp120. While crystal structures of 2G12 and 2G12 bound to high-mannose glycans have been solved, no structural information that describes the interaction of 2G12 with gp120 or the Env trimer is available. Here, we present a negative-stain single-particle electron microscopy reconstruction of 2G12 Fab2 in complex with a soluble, trimeric Env at ∼17-Å resolution that reveals the antibody's interaction with its native and fully glycosylated epitope. We also mapped relevant glycans in this epitope by fitting high-resolution crystal structures and by performing neutralization assays of glycan knockouts. In addition, a reconstruction at ∼26 Å of the ternary complex formed by 2G12 Fab2, soluble CD4, and Env indicates that 2G12 may block membrane fusion by induced steric hindrance upon primary receptor binding, thereby abrogating Env's interaction with coreceptor(s). These structures provide a basis for understanding 2G12 binding and neutralization, and our low-resolution model and glycan assignments provide a basis for higher-resolution studies to determine the molecular nature of the 2G12 epitope. IMPORTANCE HIV-1 is a human virus that results in the deaths of millions of people around the world each year. While there are several effective therapeutics available to prolong life, a vaccine is the best long-term solution for curbing this global epidemic. Here, we present structural data that reveal the viral binding site of one of the first HIV-1-neutralizing antibodies isolated, 2G12, and provide a rationale for its effectiveness. These structures provide a basis for higher-resolution studies to determine the molecular nature of the 2G12 epitope, which will aid in vaccine design and antibody-based therapies.
Collapse
|
199
|
Abstract
Uukuniemi virus (UUKV) is a model system for investigating the genus Phlebovirus of the Bunyaviridae. We report the UUKV glycome, revealing differential processing of the Gn and Gc virion glycoproteins. Both glycoproteins display poly-N-acetyllactosamines, consistent with virion assembly in the medial Golgi apparatus, whereas oligomannose-type glycans required for DC-SIGN-dependent cellular attachment are predominant on Gc. Local virion structure and the route of viral egress from the cell leave a functional imprint on the phleboviral glycome.
Collapse
|
200
|
Wang Y, Qu K, Tang L, Li Z, Moore E, Zeng X, Liu Y, Li J. Nanomaterials in carbohydrate biosensors. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|