151
|
Cheedarla N, Sundaramurthi JC, Hemalatha B, Anangi B, Nesakumar M, Ashokkumar M, Vidya Vijayan K, Tripathy SP, Swaminathan S, Vaniambadi SK, Ramanathan DV, Hanna LE. Mapping of Neutralizing Antibody Epitopes on the Envelope of Viruses Obtained from Plasma Samples Exhibiting Broad Cross-Clade Neutralization Potential Against HIV-1. AIDS Res Hum Retroviruses 2019; 35:169-184. [PMID: 30328700 DOI: 10.1089/aid.2018.0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several broadly neutralizing antibodies (bNAbs) that can target HIV strains with large degrees of variability have recently been identified. However, efforts to induce synthesis of such bNAbs that can protect against HIV infection have not met with much success. Identification of specific epitopes encoded in the HIV-1 envelope (Env) that can direct the host to synthesize bNAbs remains a challenge. In a previous study, we identified 12 antiretroviral therapy-naive HIV-1-infected individuals whose plasma exhibited broad cross-clade neutralization property against different clades of HIV-1. In this study, we sequenced the full-length HIV-1 gp160 from 11 of these individuals and analyzed the sequences to identify bNAb epitopes. We identified critical residues in the viral envelopes that contribute to the formation of conformational epitopes and possibly induce the production of bNAbs, using in silico methods. We found that many of the sequences had conserved glycans at positions N160 (10/11) and N332 (9/11), which are known to be critical for the binding of PG9/PG16-like and PGT128-like bNAbs, respectively. We also observed conservation of critical glycans at positions N234 and N276 critical for the interaction with CD4 binding site bNAbs in 8/11 and 11/11 sequences, respectively. We modeled the three-dimensional structure of the 11 HIV-1 envelopes and found that though each had structural differences, the critical residues were mostly present on the surface of the Env structures. The identified critical residues are proposed as candidates for further evaluation as bNAb epitopes.
Collapse
Affiliation(s)
- Narayanaiah Cheedarla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Babu Hemalatha
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Brahmaiah Anangi
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Manohar Nesakumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Manickam Ashokkumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - K.K. Vidya Vijayan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Soumya Swaminathan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | | | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
152
|
Trattnig N, Mayrhofer P, Kunert R, Mach L, Pantophlet R, Kosma P. Comparative Antigenicity of Thiourea and Adipic Amide Linked Neoglycoconjugates Containing Modified Oligomannose Epitopes for the Carbohydrate-Specific anti-HIV Antibody 2G12. Bioconjug Chem 2019; 30:70-82. [PMID: 30525492 PMCID: PMC6340131 DOI: 10.1021/acs.bioconjchem.8b00731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Indexed: 11/29/2022]
Abstract
Novel neoglycoproteins containing oligomannosidic penta- and heptasaccharides as structural variants of oligomannose-type N-glycans found on human immunodeficiency virus type 1 gp120 have been prepared using different conjugation methods. Two series of synthetic ligands equipped with 3-aminopropyl spacer moieties and differing in the anomeric configuration of the reducing mannose residue were activated either as isothiocyanates or as adipic acid succinimidoyl esters and coupled to bovine serum albumin. Coupling efficiency for adipic acid connected neoglycoconjugates was better than for the thiourea-linked derivatives; the latter constructs, however, exhibited higher reactivity toward antibody 2G12, an HIV-neutralizing antibody with exquisite specificity for oligomannose-type glycans. 2G12 binding avidities for the conjugates, as determined by Bio-Layer Interferometry, were mostly higher for the β-linked ligands and, as expected, increased with the numbers of covalently linked glycans, leading to approximate KD values of 10 to 34 nM for optimized ligand-to-BSA ratios. A similar correlation was observed by enzyme-linked immunosorbent assays. In addition, dendrimer-type ligands presenting trimeric oligomannose epitopes were generated by conversion of the amino-spacer group into a terminal azide, followed by triazole formation using "click chemistry". The severe steric bulk of the ligands, however, led to poor efficiency in the coupling step and no increased antibody binding by the resulting neoglycoconjugates, indicating that the low degree of substitution and the spatial orientation of the oligomannose epitopes within these trimeric ligands are not conducive to multivalent 2G12 binding.
Collapse
Affiliation(s)
- Nino Trattnig
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Patrick Mayrhofer
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Renate Kunert
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Lukas Mach
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ralph Pantophlet
- Faculty
of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | - Paul Kosma
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
153
|
Rudkin FM, Raziunaite I, Workman H, Essono S, Belmonte R, MacCallum DM, Johnson EM, Silva LM, Palma AS, Feizi T, Jensen A, Erwig LP, Gow NAR. Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nat Commun 2018; 9:5288. [PMID: 30538246 PMCID: PMC6290022 DOI: 10.1038/s41467-018-07738-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
The high global burden of over one million annual lethal fungal infections reflects a lack of protective vaccines, late diagnosis and inadequate chemotherapy. Here, we have generated a unique set of fully human anti-Candida monoclonal antibodies (mAbs) with diagnostic and therapeutic potential by expressing recombinant antibodies from genes cloned from the B cells of patients suffering from candidiasis. Single class switched memory B cells isolated from donors serum-positive for anti-Candida IgG were differentiated in vitro and screened against recombinant Candida albicans Hyr1 cell wall protein and whole fungal cell wall preparations. Antibody genes from Candida-reactive B cell cultures were cloned and expressed in Expi293F human embryonic kidney cells to generate a panel of human recombinant anti-Candida mAbs that demonstrate morphology-specific, high avidity binding to the cell wall. The species-specific and pan-Candida mAbs generated through this technology display favourable properties for diagnostics, strong opsono-phagocytic activity of macrophages in vitro, and protection in a murine model of disseminated candidiasis. Late diagnosis and ineffective treatment of fungal infections lead to high mortality. Here, Rudkin et al. generate anti-Candida human monoclonal antibodies with diagnostic and therapeutic potential, by expressing recombinant antibodies from genes cloned from B cells of patients suffering candidiasis.
Collapse
Affiliation(s)
- Fiona M Rudkin
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Ingrida Raziunaite
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Hillary Workman
- Global Biotherapeutic Technologies, Pfizer Inc, Cambridge Kendall Square, Cambridge, MA, 02139, USA
| | - Sosthene Essono
- Global Biotherapeutic Technologies, Pfizer Inc, Cambridge Kendall Square, Cambridge, MA, 02139, USA.,HiFiBiO, 325 Vassar Street, Cambridge, MA, 02139, USA
| | - Rodrigo Belmonte
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK.,MSD Animal Health Innovation AS, Thormøhlensgate 55, N-5006, Bergen, Norway
| | - Donna M MacCallum
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Elizabeth M Johnson
- National Infection Service, PHE South West Laboratory, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Lisete M Silva
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Du Cane Road, W12 0NN, UK
| | - Angelina S Palma
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 1099-085, Portugal
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Du Cane Road, W12 0NN, UK
| | - Allan Jensen
- Global Biotherapeutic Technologies, Pfizer Inc, Cambridge Kendall Square, Cambridge, MA, 02139, USA.,H. Lundbeck, Ottiliavej 9, 2500, Valby, Denmark
| | - Lars P Erwig
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Galvani Bioelectronics, 980 Great West Road, Brentford, TW8 9GS, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, AB25 2ZD, UK. .,School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| |
Collapse
|
154
|
Cai H, Zhang RS, Orwenyo J, Giddens J, Yang Q, LaBranche CC, Montefiori DC, Wang LX. Synthetic HIV V3 Glycopeptide Immunogen Carrying a N334 N-Glycan Induces Glycan-Dependent Antibodies with Promiscuous Site Recognition. J Med Chem 2018; 61:10116-10125. [PMID: 30384610 DOI: 10.1021/acs.jmedchem.8b01290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The N332 high-mannose glycan on the HIV-1 gp120 V3-loop is the target of many bNAbs. About 17% HIV isolates carry the N332 to N334 mutation, but the antibody recognition of the N334 N-glycan and its immunogenicity are not well characterized. Here we report the chemoenzymatic synthesis, antigenicity, and immunogenicity of the V3 N334 glycopeptides from HIV-1 A244 gp120, a key component in the partially successful Thai clinical trials. We found that synthetic V3 glycopeptide carrying a N334 high-mannose glycan could be recognized by bNAb PGT128 and PGT126 but not by 10-1074. Rabbit immunization with the synthetic three-component A244 glycopeptide immunogen elicited substantial glycan-dependent antibodies with broad reactivity to various HIV-1 gp120/gp140 carrying N332 or N334 glycosylation sites. These results indicated that the N334 site is vulnerable and the A244 V3 glycopeptide represents a valuable immunogen for further HIV-1 vaccine studies.
Collapse
Affiliation(s)
- Hui Cai
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Rou-Shu Zhang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Jared Orwenyo
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - John Giddens
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Qiang Yang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Celia C LaBranche
- Department of Surgery , Duke University Medical Center , Durham , North Carolina 27705 , United States
| | - David C Montefiori
- Department of Surgery , Duke University Medical Center , Durham , North Carolina 27705 , United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
155
|
Doran RC, Yu B, Wright M, O'Rourke SM, Yin L, Richardson JM, Byrne G, Mesa KA, Berman PW. Development of a Stable MGAT1 - CHO Cell Line to Produce Clade C gp120 With Improved Binding to Broadly Neutralizing Antibodies. Front Immunol 2018; 9:2313. [PMID: 30344523 PMCID: PMC6182045 DOI: 10.3389/fimmu.2018.02313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
The high rate of new HIV infections, particularly in Sub-Saharan Africa, emphasizes the need for a safe and effective vaccine to prevent acquired immunodeficiency syndrome (AIDS). To date, the only HIV vaccine trial that has exhibited protective efficacy in humans was the RV144 study completed in Thailand. The finding that protection correlated with antibodies to gp120 suggested that increasing the quality or magnitude of the antibody response that recognize gp120 might improve the modest yet significant protection (31.2%) achieved with this immunization regimen. However, the large-scale production of rgp120 suitable for clinical trials has been challenging due, in part, to low productivity and difficulties in purification. Moreover, the antigens that are currently available were produced largely by the same technology used in the early 1990s and fail to incorporate unique carbohydrates presented on HIV virions required for the binding of several major families of broadly neutralizing antibodies (bNAbs). Here we describe the development of a high-yielding CHO cell line expressing rgp120 from a clade C isolate (TZ97008), representative of the predominant circulating HIV subtype in Southern Africa and Southeast Asia. This cell line, produced using robotic selection, expresses high levels (1.2 g/L) of the TZ97008 rgp120 antigen that incorporates oligomannose glycans required for binding to multiple glycan dependent bNAbs. The resulting rgp120 displays a lower degree of net charge and glycoform heterogeneity as compared to rgp120s produced in normal CHO cells. This homogeneity in net charge facilitates purification by filtration and ion exchange chromatography methods, eliminating the need for expensive custom-made lectin, or immunoaffinity columns. The results described herein document the availability of a novel cell line for the large-scale production of clade C gp120 for clinical trials. Finally, the strategy used to produce a TZ97008 gp120 in the MGAT− CHO cell line can be applied to the production of other candidate HIV vaccines.
Collapse
Affiliation(s)
- Rachel C Doran
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Bin Yu
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Meredith Wright
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sara M O'Rourke
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Lu Yin
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jennie M Richardson
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Gabriel Byrne
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Kathryn A Mesa
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Phillip W Berman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
156
|
Jaworski JP, Cahn P. Preventive and therapeutic features of broadly neutralising monoclonal antibodies against HIV-1. Lancet HIV 2018; 5:e723-e731. [PMID: 30245003 DOI: 10.1016/s2352-3018(18)30174-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
The viral plasticity and the vast diversity of HIV-1 circulating strains necessitates the identification of new approaches to control this global pandemic. New generation broadly neutralising monoclonal antibodies (bnMAbs) against the HIV-1 viral envelope protein (Env) can prevent virus acquisition, reduce viraemia, enhance immunity, and induce the killing of infected cells in animal models of HIV-1 infection. Most importantly, passively administered bnMAbs are effective at decreasing viraemia and delaying viral rebound in people chronically infected with HIV-1. Single antibody treatment is associated with the emergence of viral escape mutants, and virus suppression is not maintained in the long term. However, a combination of bnMAbs and bioengineered multivalent antibodies that target different sites on Env might increase the efficacy of immunotherapy, adding a new relevant tool for clinical use. The aim of this Review is to highlight the potential benefits of this novel prophylactic and therapeutic approach to fight HIV-1.
Collapse
Affiliation(s)
- Juan P Jaworski
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| |
Collapse
|
157
|
West BR, Moyer CL, King LB, Fusco ML, Milligan JC, Hui S, Saphire EO. Structural Basis of Pan-Ebolavirus Neutralization by a Human Antibody against a Conserved, yet Cryptic Epitope. mBio 2018; 9:e01674-18. [PMID: 30206174 PMCID: PMC6134094 DOI: 10.1128/mbio.01674-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/02/2023] Open
Abstract
Only one naturally occurring human antibody has been described thus far that is capable of potently neutralizing all five ebolaviruses. Here we present two crystal structures of this rare, pan-ebolavirus neutralizing human antibody in complex with Ebola virus and Bundibugyo virus glycoproteins (GPs), respectively. The structures delineate the key protein and glycan contacts for binding that are conserved across the ebolaviruses, explain the antibody's unique broad specificity and neutralization activity, and reveal the likely mechanism behind a known escape mutation in the fusion loop region of GP2. We found that the epitope of this antibody, ADI-15878, extends along the hydrophobic paddle of the fusion loop and then dips down into a highly conserved pocket beneath the N-terminal tail of GP2, a mode of recognition unlike any other antibody elicited against Ebola virus, and likely critical for its broad activity. The fold of Bundibugyo virus glycoprotein, not previously visualized, is similar to the fold of Ebola virus GP, and ADI-15878 binds to each virus's GP with a similar strategy and angle of attack. These findings will be useful in deployment of this antibody as a broad-spectrum therapeutic and in the design of immunogens that elicit the desired broadly neutralizing immune response against all members of the ebolavirus genus and filovirus family.IMPORTANCE There are five different members of the Ebolavirus genus. Provision of vaccines and treatments able to protect against any of the five ebolaviruses is an important goal of public health. Antibodies are a desired result of vaccines and can be delivered directly as therapeutics. Most antibodies, however, are effective against only one or two, not all, of these pathogens. Only one human antibody has been thus far described to neutralize all five ebolaviruses, antibody ADI-15878. Here we describe the molecular structure of ADI-15878 bound to the relevant target proteins of Ebola virus and Bundibugyo virus. We explain how it achieves its rare breadth of activity and propose strategies to design improved vaccines capable of eliciting more antibodies like ADI-15878.
Collapse
Affiliation(s)
- Brandyn R West
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Crystal L Moyer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Liam B King
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Marnie L Fusco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Jacob C Milligan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Sean Hui
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California, USA
| |
Collapse
|
158
|
Phenotypic properties of envelope glycoproteins of transmitted HIV-1 variants from patients belonging to transmission chains. AIDS 2018; 32:1917-1926. [PMID: 29927786 DOI: 10.1097/qad.0000000000001906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Transmission of HIV-1 involves a bottleneck in which generally a single HIV-1 variant from a diverse viral population in the transmitting partner establishes infection in the new host. It is still unclear to what extent this event is driven by specific properties of the transmitted viruses or the result of a stochastic process. Our study aimed to better characterize this phenomenon and define properties shared by transmitted viruses. DESIGN We compared antigenic and functional properties of envelope glycoproteins of viral variants found during primary infection in 27 patients belonging to eight transmission chains. METHODS We generated pseudotyped viruses expressing Env variants of the viral quasispecies infecting each patient and compared their sensitivity to neutralization by eight human monoclonal broadly neutralizing antibodies (HuMoNAbs). We also compared their infectious properties by measuring their infectivity and sensitivity to various entry inhibitors. RESULTS Transmitted viruses from the same transmission chain shared many properties, including similar neutralization profiles, sensitivity to inhibitors, and infectivity, providing evidence that the transmission bottleneck is mainly nonstochastic. Transmitted viruses were CCR5-tropic, sensitive to MVC, and resistant to soluble forms of CD4, irrespective of the cluster to which they belonged. They were also sensitive to HuMoNAbs that target V3, the CD4-binding site, and the MPER region, suggesting that the loss of these epitopes may compromise their capacity to be transmitted. CONCLUSION Our data suggest that the transmission bottleneck is governed by selective forces. How these forces confer an advantage to the transmitted virus has yet to be determined.
Collapse
|
159
|
Wang H, Yuan T, Li T, Li Y, Qian F, Zhu C, Liang S, Hoffmann D, Dittmer U, Sun B, Yang R. Evaluation of susceptibility of HIV-1 CRF01_AE variants to neutralization by a panel of broadly neutralizing antibodies. Arch Virol 2018; 163:3303-3315. [PMID: 30196320 DOI: 10.1007/s00705-018-4011-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) are very promising agents for HIV-1 prophylaxis and AIDS treatment. However, the neutralization susceptibility of circulating recombinants such as CRF01_AE, which is becoming increasingly prevalent, has not been studied in detail until now. Here, we focused on CRF01_AE in China and aimed to find bNAbs that can be used for neutralization of CRF01_AE. Full-length env clones were obtained from the plasma samples of 22 HIV-1-infected individuals sampled in 2009 and 2015. An env-pseudovirus-based neutralization assay was conducted using five categories of bNAbs: VRC01, NIH45-46G54W, and 3BNC117 (targeting the CD4 binding site); PG9 and PG16 (targeting the V1V2 loop); 2G12 (glycan specific), PGT121 and 10-1074 (targeting the V3 glycan); 2F5, 4E10, and 10E8 (targeting the membrane-proximal external region (MPER)). The neutralizing efficiency was compared, and features of the escape pseudoviruses were analyzed. The CRF01_AE pseudoviruses exhibited different susceptibility to these bNAbs. Overall, 4E10, 10E8, and 3BNC117 neutralized all 22 env-pseudotyped viruses, followed by NIH45-46G54W and VRC01, which neutralized more than 90% of the viruses. 2F5, PG9, and PG16 showed only moderate breadth, while the other three bNAbs neutralized none of these pseudoviruses. Specifically, 10E8, NIH45-46G54Wand 3BNC117 showed the highest efficiency, combining neutralization potency and breadth. Mutations at position 160, 169, 171 were associated with resistance to PG9 and PG16, while loss of a potential glycan at position 332 conferred insensitivity to V3-glycan-targeting bNAbs. Our results may help for choosing bNAbs that can be used preferentially for prophylactic or therapeutic approaches in China.
Collapse
Affiliation(s)
- Hongye Wang
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Yuan
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tingting Li
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanpeng Li
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Feng Qian
- Division of HIV-1/AIDS, The Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Chuanwu Zhu
- Division of HIV-1/AIDS, The Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Shujia Liang
- Department of HIV/AIDS Control and Prevention, Guangxi Center for Disease Control and Prevention, Nanning, 530023, China
| | - Daniel Hoffmann
- Faculty of Biology, Center for Medical Biotechnology, Center for Computational Sciences and Simulation, University of Duisburg-Essen, Essen, 45122, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Binlian Sun
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,Department of Immunology, School of Medicine, Jianghan University, Wuhan, 430000, China.
| | - Rongge Yang
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
160
|
Blasi M, Negri D, LaBranche C, Alam SM, Baker EJ, Brunner EC, Gladden MA, Michelini Z, Vandergrift NA, Wiehe KJ, Parks R, Shen X, Bonsignori M, Tomaras GD, Ferrari G, Montefiori DC, Santra S, Haynes BF, Moody MA, Cara A, Klotman ME. IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Commun Biol 2018; 1:134. [PMID: 30272013 PMCID: PMC6125466 DOI: 10.1038/s42003-018-0131-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/06/2018] [Indexed: 01/21/2023] Open
Abstract
HIV continues to be a major global health issue. In spite of successful prevention interventions and treatment methods, the development of an HIV vaccine remains a major priority for the field and would be the optimal strategy to prevent new infections. We showed previously that a single immunization with a SIV-based integrase-defective lentiviral vector (IDLV) expressing the 1086.C HIV-1-envelope induced durable, high-magnitude immune responses in non-human primates (NHPs). In this study, we have further characterized the humoral responses by assessing antibody affinity maturation and antigen-specific memory B-cell persistence in two vaccinated macaques. These animals were also boosted with IDLV expressing the heterologous 1176.C HIV-1-Env to determine if neutralization breadth could be increased, followed by evaluation of the injection sites to assess IDLV persistence. IDLV-Env immunization was associated with persistence of the vector DNA for up to 6 months post immunization and affinity maturation of antigen-specific memory B cells. Maria Blasi et al. report the anti-HIV-1 humoral response elicited in rhesus macaques following vaccination with an SIV-based integrase-defective lentiviral vector (IDLV). They find that a single IDLV-Env immunization induces continuous antibody avidity maturation and boosting with a heterologous HIV-1 Env results in lower peak antibody titers than autologous boost.
Collapse
Affiliation(s)
- Maria Blasi
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA. .,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.
| | - Donatella Negri
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.,Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - S Munir Alam
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Erich J Baker
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Elizabeth C Brunner
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Morgan A Gladden
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | | | - Nathan A Vandergrift
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Kevin J Wiehe
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Robert Parks
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Xiaoying Shen
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Surgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, 02215, MA, USA
| | - Barton F Haynes
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Michael A Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pediatrics, Duke University Medical Center, Durham, 27710, NC, USA
| | - Andrea Cara
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA. .,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA. .,Istituto Superiore di Sanità, Rome, 00161, Italy.
| | - Mary E Klotman
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA. .,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.
| |
Collapse
|
161
|
Flemming J, Wiesen L, Herschhorn A. Conformation-Dependent Interactions Between HIV-1 Envelope Glycoproteins and Broadly Neutralizing Antibodies. AIDS Res Hum Retroviruses 2018; 34:794-803. [PMID: 29905080 DOI: 10.1089/aid.2018.0102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HIV type 1 (HIV-1) envelope glycoproteins (Env) mediate virus entry and are the target of neutralizing antibodies. Binding of the metastable HIV-1 Env trimer to the CD4 receptor triggers structural rearrangements that mediate Env conformational transitions from a closed conformation to a more open state through an intermediate step. Recent studies have revealed new insights on the dynamics, regulation, and molecular mechanisms of Env transitions along the entry pathway. In this study, we provide an overview of the current knowledge on Env conformational dynamics and the relationship between Env conformational states and neutralization selectivity of the broadly neutralizing antibodies that develop in 10%-20% of infected individuals and may provide guidance for the development of an effective HIV-1 vaccine.
Collapse
Affiliation(s)
- Juliana Flemming
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Lisa Wiesen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
162
|
Zhou JO, Ton T, Morriss JW, Nguyen D, Fera D. Structural Insights from HIV-Antibody Coevolution and Related Immunization Studies. AIDS Res Hum Retroviruses 2018; 34:760-768. [PMID: 29984587 DOI: 10.1089/aid.2018.0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a rapidly evolving pathogen that causes acquired immunodeficiency syndrome (AIDS) in humans. There are ∼30-35 million people infected with HIV around the world, and ∼25 million have died since the first reported cases in 1981. In addition, each year 2-3 million people become newly infected, and >1 million die of AIDS. An HIV-1 vaccine would help halt an AIDS pandemic, and efforts to develop a vaccine have focused on targeting the HIV-1 envelope, Env, found on the surface of the virus. A number of chronically infected individuals have been shown to produce antibodies, called broadly neutralizing antibodies (bnAbs), that target many strains of HIV-1 by binding to Env, thus suggesting promise for HIV-1 vaccine development. BnAbs take years to develop, and have a number of traits that inhibit their production; thus, a number of researchers are trying to understand the pathways that result in bnAb production, so that they can be elicited more rapidly by vaccination. This review discusses results and implications from two HIV-1-infected individuals studied longitudinally who produced bnAbs against two different sites on HIV-1 Env, and immunization studies that used Envs derived from those individuals.
Collapse
Affiliation(s)
- Jeffrey O. Zhou
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| | - Therese Ton
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Julia W. Morriss
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Diep Nguyen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania
| |
Collapse
|
163
|
Targeting the HIV-1 Spike and Coreceptor with Bi- and Trispecific Antibodies for Single-Component Broad Inhibition of Entry. J Virol 2018; 92:JVI.00384-18. [PMID: 29976677 DOI: 10.1128/jvi.00384-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
Protection against acquiring human immunodeficiency virus (HIV) infection may not require a vaccine in the conventional sense, because broadly neutralizing antibodies (bNAbs) alone prevent HIV infection in relevant animal challenge models. Additionally, bNAbs as therapeutics can effectively suppress HIV replication in infected humans and in animal models. Combinations of bNAbs are generally even more effective, and bNAb-derived multivalent antibody-like molecules also inhibit HIV replication both in vitro and in vivo To expand the available array of multispecific HIV inhibitors, we designed single-component molecules that incorporate two (bispecific) or three (trispecific) bNAbs that recognize HIV Env exclusively, a bispecific CrossMAb targeting two epitopes on the major HIV coreceptor, CCR5, and bi- and trispecifics that cross-target both Env and CCR5. These newly designed molecules displayed exceptional breadth, neutralizing 98 to 100% of a 109-virus panel, as well as additivity and potency compared to those of the individual parental control IgGs. The bispecific molecules, designed as tandem single-chain variable fragments (scFvs) (10E8fv-N6fv and m36.4-PRO 140fv), displayed median 50% inhibitory concentration (IC50s) of 0.0685 and 0.0131 μg/ml, respectively. A trispecific containing 10E8-PGT121-PGDM1400 Env-specific binding sites was equally potent (median IC50 of 0.0135 μg/ml), while a trispecific molecule targeting Env and CCR5 simultaneously (10E8Fab-PGDM1400fv-PRO 140fv) demonstrated even greater potency, with a median IC50 of 0.007 μg/ml. By design, some of these molecules lacked Fc-mediated effector function; therefore, we also constructed a trispecific prototype possessing reconstituted CH2-CH3 domains to restore Fc receptor binding capacity. The molecules developed here, along with those described previously, possess promise as prophylactic and therapeutic agents against HIV.IMPORTANCE Broadly neutralizing antibodies (bNAbs) prevent HIV infection in monkey challenge models and suppress HIV replication in infected humans. Combinations of bNAbs are more effective at suppression, and antibody-like molecules engineered to have two or three bNAb combining sites also inhibit HIV replication in monkeys and other animal models. To expand the available array of multispecific HIV inhibitors, we designed single-component molecules that incorporate two (bispecific) or three (trispecific) bNAb binding sites that recognize the HIV envelope glycoprotein (Env) or the HIV coreceptor (CCR5) or that cross-target both Env and CCR5. Several of the bi- and trispecific molecules neutralized most viruses in a diverse cross-clade panel, with greater breadth and potency than those of the individual parental bNAbs. The molecules described here provide additional options for preventing or suppressing HIV infection.
Collapse
|
164
|
Palanichamy K, Bravo MF, Shlain MA, Schiro F, Naeem Y, Marianski M, Braunschweig AB. Binding Studies on a Library of Induced‐Fit Synthetic Carbohydrate Receptors with Mannoside Selectivity. Chemistry 2018; 24:13971-13982. [DOI: 10.1002/chem.201803317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Kalanidhi Palanichamy
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - M. Fernando Bravo
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
| | - Milan A. Shlain
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Frank Schiro
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yasir Naeem
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Mateusz Marianski
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
| | - Adam B. Braunschweig
- Nanoscience Initiative Advanced Science Research Center at, The Graduate Center of the City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- The Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
| |
Collapse
|
165
|
Struwe WB, Chertova E, Allen JD, Seabright GE, Watanabe Y, Harvey DJ, Medina-Ramirez M, Roser JD, Smith R, Westcott D, Keele BF, Bess JW, Sanders RW, Lifson JD, Moore JP, Crispin M. Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen. Cell Rep 2018; 24:1958-1966.e5. [PMID: 30134158 PMCID: PMC6113929 DOI: 10.1016/j.celrep.2018.07.080] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/18/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
Many broadly neutralizing antibodies (bnAbs) against HIV-1 recognize and/or penetrate the glycan shield on native, virion-associated envelope glycoprotein (Env) spikes. The same bnAbs also bind to recombinant, soluble trimeric immunogens based on the SOSIP design. While SOSIP trimers are close structural and antigenic mimics of virion Env, the extent to which their glycan structures resemble ones on infectious viruses is undefined. Here, we compare the overall glycosylation of gp120 and gp41 subunits from BG505 (clade A) virions produced in a lymphoid cell line with those from recombinant BG505 SOSIP trimers, including CHO-derived clinical grade material. We also performed detailed site-specific analyses of gp120. Glycans relevant to key bnAb epitopes are generally similar on the recombinant SOSIP and virion-derived Env proteins, although the latter do contain hotspots of elevated glycan processing. Knowledge of native versus recombinant Env glycosylation will guide vaccine design and manufacturing programs.
Collapse
Affiliation(s)
- Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, UK
| | - Elena Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joel D Allen
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yasunori Watanabe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - David J Harvey
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Max Medina-Ramirez
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - James D Roser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rodman Smith
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David Westcott
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Julian W Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rogier W Sanders
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA; Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
166
|
HIV-1 Subtype C-Infected Children with Exceptional Neutralization Breadth Exhibit Polyclonal Responses Targeting Known Epitopes. J Virol 2018; 92:JVI.00878-18. [PMID: 29950423 PMCID: PMC6096808 DOI: 10.1128/jvi.00878-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023] Open
Abstract
An HIV vaccine is likely to require bNAbs, which have been shown to prevent HIV acquisition in nonhuman primates. Recent evidence suggests that HIV-infected children are inherently better at generating bNAbs than adults. Here, we show that exceptional neutralization breadth in a group of viremic HIV-1 subtype C-infected children was due to the presence of polyclonal bNAb responses. These bNAbs targeted multiple epitopes on the HIV envelope glycoprotein previously defined in adult infection, suggesting that the immature immune system recognizes HIV antigens similarly. Since elicitation of a polyclonal bNAb response is the basis of next-generation HIV envelope vaccines, further studies of how bNAb lineages are stimulated in children is warranted. Furthermore, our findings suggest that children may respond particularly well to vaccines designed to elicit antibodies to multiple bNAb epitopes. We have previously shown that HIV-1-infected children develop broader and more potent neutralizing antibody responses than adults. This study aimed to determine the antibody specificities in 16 HIV-1 subtype C-infected children who displayed exceptional neutralization breadth on a 22-multisubtype virus panel. All children were antiretroviral treatment (ART) naive with normal CD4 counts despite being infected for a median of 10.1 years with high viral loads. The specificity of broadly neutralizing antibodies (bNAbs) was determined using epitope-ablating mutants, chimeric constructs, and depletion or inhibition of activity with peptides and glycoproteins. We found that bNAbs in children largely targeted previously defined epitopes, including the V2-glycan, V3-glycan, CD4bs, and gp120-gp41 interface. Remarkably, 63% of children had antibodies targeting 2 or 3 and, in one case, 4 of these bNAb epitopes. Longitudinal analysis of plasma from a mother-child pair over 9 years showed that while they both had similar neutralization profiles, the antibody specificities differed. The mother developed antibodies targeting the V2-glycan and CD4bs, whereas bNAb specificities in the child could not be mapped until 6 years, when a minor V2-glycan response appeared. The child also developed high-titer membrane-proximal external region (MPER) binding antibodies not seen in the mother, although these were not a major bNAb specificity. Overall, exceptional neutralization breadth in this group of children may be the result of extended exposure to high antigenic load in the context of an intact immune system, which allowed for the activation of multiple B cell lineages and the generation of polyclonal responses targeting several bNAb epitopes. IMPORTANCE An HIV vaccine is likely to require bNAbs, which have been shown to prevent HIV acquisition in nonhuman primates. Recent evidence suggests that HIV-infected children are inherently better at generating bNAbs than adults. Here, we show that exceptional neutralization breadth in a group of viremic HIV-1 subtype C-infected children was due to the presence of polyclonal bNAb responses. These bNAbs targeted multiple epitopes on the HIV envelope glycoprotein previously defined in adult infection, suggesting that the immature immune system recognizes HIV antigens similarly. Since elicitation of a polyclonal bNAb response is the basis of next-generation HIV envelope vaccines, further studies of how bNAb lineages are stimulated in children is warranted. Furthermore, our findings suggest that children may respond particularly well to vaccines designed to elicit antibodies to multiple bNAb epitopes.
Collapse
|
167
|
Rathore U, Purwar M, Vignesh VS, Das R, Kumar AA, Bhattacharyya S, Arendt H, DeStefano J, Wilson A, Parks C, La Branche CC, Montefiori DC, Varadarajan R. Bacterially expressed HIV-1 gp120 outer-domain fragment immunogens with improved stability and affinity for CD4-binding site neutralizing antibodies. J Biol Chem 2018; 293:15002-15020. [PMID: 30093409 DOI: 10.1074/jbc.ra118.005006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Protein minimization is an attractive approach for designing vaccines against rapidly evolving pathogens such as human immunodeficiency virus, type 1 (HIV-1), because it can help in focusing the immune response toward conserved conformational epitopes present on complex targets. The outer domain (OD) of HIV-1 gp120 contains epitopes for a large number of neutralizing antibodies and therefore is a primary target for structure-based vaccine design. We have previously designed a bacterially expressed outer-domain immunogen (ODEC) that bound CD4-binding site (CD4bs) ligands with 3-12 μm affinity and elicited a modest neutralizing antibody response in rabbits. In this study, we have optimized ODEC using consensus sequence design, cyclic permutation, and structure-guided mutations to generate a number of variants with improved yields, biophysical properties, stabilities, and affinities (KD of 10-50 nm) for various CD4bs targeting broadly neutralizing antibodies, including the germline-reverted version of the broadly neutralizing antibody VRC01. In contrast to ODEC, the optimized immunogens elicited high anti-gp120 titers in rabbits as early as 6 weeks post-immunization, before any gp120 boost was given. Following two gp120 boosts, sera collected at week 22 showed cross-clade neutralization of tier 1 HIV-1 viruses. Using a number of different prime/boost combinations, we have identified a cyclically permuted OD fragment as the best priming immunogen, and a trimeric, cyclically permuted gp120 as the most suitable boosting molecule among the tested immunogens. This study also provides insights into some of the biophysical correlates of improved immunogenicity.
Collapse
Affiliation(s)
- Ujjwal Rathore
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Mansi Purwar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | | | - Raksha Das
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Aditya Arun Kumar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Sanchari Bhattacharyya
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012
| | - Heather Arendt
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Joanne DeStefano
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Aaron Wilson
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Christopher Parks
- the International AIDS Vaccine Initiative, Brooklyn, New York 11226, and
| | - Celia C La Branche
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27707
| | - David C Montefiori
- the Department of Surgery, Duke University Medical Center, Durham, North Carolina 27707
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560012,
| |
Collapse
|
168
|
O’Rourke SM, Byrne G, Tatsuno G, Wright M, Yu B, Mesa KA, Doran RC, Alexander D, Berman PW. Robotic selection for the rapid development of stable CHO cell lines for HIV vaccine production. PLoS One 2018; 13:e0197656. [PMID: 30071025 PMCID: PMC6071959 DOI: 10.1371/journal.pone.0197656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023] Open
Abstract
The production of envelope glycoproteins (Envs) for use as HIV vaccines is challenging. The yield of Envs expressed in stable Chinese Hamster Ovary (CHO) cell lines is typically 10-100 fold lower than other glycoproteins of pharmaceutical interest. Moreover, Envs produced in CHO cells are typically enriched for sialic acid containing glycans compared to virus associated Envs that possess mainly high-mannose carbohydrates. This difference alters the net charge and biophysical properties of Envs and impacts their antigenic structure. Here we employ a novel robotic cell line selection strategy to address the problems of low expression. Additionally, we employed a novel gene-edited CHO cell line (MGAT1- CHO) to address the problems of high sialic acid content, and poor antigenic structure. We demonstrate that stable cell lines expressing high levels of gp120, potentially suitable for biopharmaceutical production can be created using the MGAT1- CHO cell line. Finally, we describe a MGAT1- CHO cell line expressing A244-rgp120 that exhibits improved binding of three major families of bN-mAbs compared to Envs produced in normal CHO cells. The new strategy described has the potential to eliminate the bottleneck in HIV vaccine development that has limited the field for more than 25 years.
Collapse
Affiliation(s)
- Sara M. O’Rourke
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Gabriel Byrne
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Gwen Tatsuno
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Meredith Wright
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Bin Yu
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Kathryn A. Mesa
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Rachel C. Doran
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - David Alexander
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, The University of California at Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
169
|
Zhao WB, Qiu CX, Shen Y, Liu WH, Zhou J, Xu YC, Zhou Z, Chen SQ. In situ quantitative bioanalysis of monomethyl auristatin E-conjugated antibody-drug conjugates by flow cytometry. Eur J Pharm Sci 2018; 120:89-95. [PMID: 29727724 DOI: 10.1016/j.ejps.2018.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/10/2018] [Accepted: 04/29/2018] [Indexed: 11/26/2022]
Abstract
Antibody-drug conjugates (ADCs) consist of cytotoxic agents covalently conjugated to monoclonal antibodies that substantially improve antitumour activity and reduce systemic toxicity. With the growing number of ADCs in clinical applications, more accurate bioanalysis data are urgently needed to facilitate the development and rational use of ADCs. Herein, we used antigen-positive cells as antigen carriers and ofatumumab (OFA-HL) and ofatumumab-based ADC (OFA-HL-MMAE) as examples to establish a new ligand-binding assay (LBA) method based on flow cytometry. We proved that the new method met the required analytical performance criteria and the lower limit of quantitation (LOQ) was 0.2 μg/mL. In addition, the LOQ of the quantitative OFA-HL flow cytometry method was reduced to 0.025 μg/mL by choosing an optimized fluorescent antibody, which indicated that the LOQ of the new method can be improved. What's more, the new method showed good stability and specificity when we used it to determine the concentrations of OFA-HL and OFA-HL-MMAE in mouse serum. During the bioanalysis of ADCs, various factors should be considered. Therefore, choosing optimal methods for ADC bioanalysis is necessary. This new method using in situ antigens not only extends the scope of application of the conventional LBA methods by avoiding the need for soluble antigens, but also improves the authenticity of ADC bioanalysis as a supplementary approach, which is valuable for developing accurate ADC assays.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chi-Xiao Qiu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hui Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying-Chun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu-Qing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
170
|
Lakshminarayanan A, Richard M, Davis BG. Studying glycobiology at the single-molecule level. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0019-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
171
|
Qadir A, Riaz M, Saeed M, Shahzad-Ul-Hussan S. Potential targets for therapeutic intervention and structure based vaccine design against Zika virus. Eur J Med Chem 2018; 156:444-460. [PMID: 30015077 DOI: 10.1016/j.ejmech.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Continuously increasing number of reports of Zika virus (ZIKV) infections and associated severe clinical manifestations, including autoimmune abnormalities and neurological disorders such as neonatal microcephaly and Guillain-Barré syndrome have created alarming situation in various countries. To date, no specific antiviral therapy or vaccine is available against ZIKV. This review provides a comprehensive insight into the potential therapeutic targets and describes viral epitopes of broadly neutralizing antibodies (bNAbs) in vaccine design perspective. Interactions between ZIKV envelope glycoprotein E and cellular receptors mediate the viral fusion and entry to the target cell. Blocking these interactions by targeting cellular receptors or viral structural proteins mediating these interactions or viral surface glycans can inhibit viral entry to the cell. Similarly, different non-structural proteins of ZIKV and un-translated regions (UTRs) of its RNA play essential roles in viral replication cycle and potentiate for therapeutic interventions. Structure based vaccine design requires identity and structural description of the epitopes of bNAbs. We have described different conserved bNAb epitopes present in the ZIKV envelope as potential targets for structure based vaccine design. This review also highlights successes, unanswered questions and future perspectives in relation to therapeutic and vaccine development against ZIKV.
Collapse
Affiliation(s)
- Amina Qadir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Riaz
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
172
|
Zhao J, Nussinov R, Wu WJ, Ma B. In Silico Methods in Antibody Design. Antibodies (Basel) 2018; 7:E22. [PMID: 31544874 PMCID: PMC6640671 DOI: 10.3390/antib7030022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
Antibody therapies with high efficiency and low toxicity are becoming one of the major approaches in antibody therapeutics. Based on high-throughput sequencing and increasing experimental structures of antibodies/antibody-antigen complexes, computational approaches can predict antibody/antigen structures, engineering the function of antibodies and design antibody-antigen complexes with improved properties. This review summarizes recent progress in the field of in silico design of antibodies, including antibody structure modeling, antibody-antigen complex prediction, antibody stability evaluation, and allosteric effects in antibodies and functions. We listed the cases in which these methods have helped experimental studies to improve the affinities and physicochemical properties of antibodies. We emphasized how the molecular dynamics unveiled the allosteric effects during antibody-antigen recognition and antibody-effector recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
- Interagency Oncology Task Force (IOTF) Fellowship: Oncology Product Research/Review Fellow, National Cancer Institute, Bethesda, MD 20892, USA.
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Wen-Jin Wu
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
173
|
Toonstra C, Wu L, Li C, Wang D, Wang LX. Top-Down Chemoenzymatic Approach to Synthesizing Diverse High-Mannose N-Glycans and Related Neoglycoproteins for Carbohydrate Microarray Analysis. Bioconjug Chem 2018; 29:1911-1921. [PMID: 29738673 PMCID: PMC6013400 DOI: 10.1021/acs.bioconjchem.8b00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-mannose-type N-glycans are an important component of neutralizing epitopes on HIV-1 envelope glycoprotein gp120. They also serve as signals for protein folding, trafficking, and degradation in protein quality control. A number of lectins and antibodies recognize high-mannose-type N-glycans, and glycan array technology has provided an avenue to probe these oligomannose-specific proteins. We describe in this paper a top-down chemoenzymatic approach to synthesize a library of high-mannose N-glycans and related neoglycoproteins for glycan microarray analysis. The method involves the sequential enzymatic trimming of two readily available natural N-glycans, the Man9GlcNAc2Asn prepared from soybean flour and the sialoglycopeptide (SGP) isolated from chicken egg yolks, coupled with chromatographic separation to obtain a collection of a full range of natural high-mannose N-glycans. The Asn-linked N-glycans were conjugated to bovine serum albumin (BSA) to provide neoglycoproteins containing the oligomannose moieties. The glycoepitopes displayed were characterized using an array of glycan-binding proteins, including the broadly virus-neutralizing agents, glycan-specific antibody 2G12, Galanthus nivalis lectin (GNA), and Narcissus pseudonarcissus lectin (NPA).
Collapse
Affiliation(s)
- Christian Toonstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lisa Wu
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, California 94025, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, California 94025, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
174
|
Xu K, Acharya P, Kong R, Cheng C, Chuang GY, Liu K, Louder MK, O'Dell S, Rawi R, Sastry M, Shen CH, Zhang B, Zhou T, Asokan M, Bailer RT, Chambers M, Chen X, Choi CW, Dandey VP, Doria-Rose NA, Druz A, Eng ET, Farney SK, Foulds KE, Geng H, Georgiev IS, Gorman J, Hill KR, Jafari AJ, Kwon YD, Lai YT, Lemmin T, McKee K, Ohr TY, Ou L, Peng D, Rowshan AP, Sheng Z, Todd JP, Tsybovsky Y, Viox EG, Wang Y, Wei H, Yang Y, Zhou AF, Chen R, Yang L, Scorpio DG, McDermott AB, Shapiro L, Carragher B, Potter CS, Mascola JR, Kwong PD. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat Med 2018; 24:857-867. [PMID: 29867235 PMCID: PMC6358635 DOI: 10.1038/s41591-018-0042-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
A central goal of HIV-1 vaccine research is the elicitation of antibodies capable of neutralizing diverse primary isolates of HIV-1. Here we show that focusing the immune response to exposed N-terminal residues of the fusion peptide, a critical component of the viral entry machinery and the epitope of antibodies elicited by HIV-1 infection, through immunization with fusion peptide-coupled carriers and prefusion stabilized envelope trimers, induces cross-clade neutralizing responses. In mice, these immunogens elicited monoclonal antibodies capable of neutralizing up to 31% of a cross-clade panel of 208 HIV-1 strains. Crystal and cryoelectron microscopy structures of these antibodies revealed fusion peptide conformational diversity as a molecular explanation for the cross-clade neutralization. Immunization of guinea pigs and rhesus macaques induced similarly broad fusion peptide-directed neutralizing responses, suggesting translatability. The N terminus of the HIV-1 fusion peptide is thus a promising target of vaccine efforts aimed at eliciting broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chang W Choi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Venkata P Dandey
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward T Eng
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - S Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kurt R Hill
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexander J Jafari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany Y Ohr
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dongjun Peng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ariana P Rowshan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elise G Viox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy F Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rui Chen
- GenScript USA, Piscataway, NJ, USA
| | - Lu Yang
- GenScript USA, Piscataway, NJ, USA
| | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
175
|
Greczmiel U, Oxenius A. The Janus Face of Follicular T Helper Cells in Chronic Viral Infections. Front Immunol 2018; 9:1162. [PMID: 29887868 PMCID: PMC5982684 DOI: 10.3389/fimmu.2018.01162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic infections with non-cytopathic viruses constitutively expose virus-specific adaptive immune cells to cognate antigen, requiring their numeric and functional adaptation. Virus-specific CD8 T cells are compromised by various means in their effector functions, collectively termed T cell exhaustion. Alike CD8 T cells, virus-specific CD4 Th1 cell responses are gradually downregulated but instead, follicular T helper (TFH) cell differentiation and maintenance is strongly promoted during chronic infection. Thereby, the immune system promotes antibody responses, which bear less immune-pathological risk compared to cytotoxic and pro-inflammatory T cell responses. This emphasis on TFH cells contributes to tolerance of the chronic infection and is pivotal for the continued maturation and adaptation of the antibody response, leading eventually to the emergence of virus-neutralizing antibodies, which possess the potential to control the established chronic infection. However, sustained high levels of TFH cells can also result in a less stringent B cell selection process in active germinal center reactions, leading to the activation of virus-unspecific B cells, including self-reactive B cells, and to hypergammaglobulinemia. This dispersal of B cell help comes at the expense of a stringently selected virus-specific antibody response, thereby contributing to its delayed maturation. Here, we discuss these opposing facets of TFH cells in chronic viral infections.
Collapse
Affiliation(s)
- Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
176
|
Cai H, Zhang R, Orwenyo J, Giddens J, Yang Q, LaBranche CC, Montefiori DC, Wang LX. Multivalent Antigen Presentation Enhances the Immunogenicity of a Synthetic Three-Component HIV-1 V3 Glycopeptide Vaccine. ACS CENTRAL SCIENCE 2018; 4:582-589. [PMID: 29806004 PMCID: PMC5968512 DOI: 10.1021/acscentsci.8b00060] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 06/08/2023]
Abstract
HIV-1 envelope glycoproteins gp120 and gp41 are presented on the virus surface as a trimer of heterodimer and are the targets of broadly neutralizing antibodies (bNAbs). We describe here the synthesis and preliminary immunological evaluation of a three-component trivalent HIV-1 V3 glycopeptide immunogen aiming to raise glycopeptide epitope-specific antibodies. Click chemistry confers efficient synthesis of the lipopeptide-glycopeptide conjugate that carries three copies of HIV-1 JR-FL gp120 V3 glycopeptide with a high-mannose glycan at the N332 glycosylation site. We found that the multivalent presentation substantially enhanced the immunogenicity of the V3 glycopeptide. The antisera induced by the three-component multivalent glycopeptide immunogen exhibited stronger binding to heterologous HIV-1 gp120s and the trimeric gp140s than that from the monovalent glycopeptide immunogen. The antisera generated from this preliminary rabbit immunization did not show virus neutralization activity, probably due to the lack of somatic maturation. The ability to elicit substantial glycopeptide epitope-specific antibodies by the three-component trivalent glycopeptide immunogen suggests that it could serve as a valuable vaccine component in combination with other vaccine candidates for further immunization studies.
Collapse
Affiliation(s)
- Hui Cai
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Roushu Zhang
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Jared Orwenyo
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - John Giddens
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Qiang Yang
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Celia C. LaBranche
- Department
of Surgery, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - David C. Montefiori
- Department
of Surgery, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Lai-Xi Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
177
|
Sequential immunizations with a panel of HIV-1 Env virus-like particles coach immune system to make broadly neutralizing antibodies. Sci Rep 2018; 8:7807. [PMID: 29773829 PMCID: PMC5958130 DOI: 10.1038/s41598-018-25960-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are correlated with passive HIV/SHIV protection and are desirable components of a HIV protective immunity. In the current study, we have designed a sequential-immunization strategy with a panel of envelope glycoprotein (Env)-enriched virus-like particles (VLPs) from various HIV-1 clades (A-E) to elicit bnAbs with high breadth and potency of neutralization in rabbits. We have compared this regimen with repetitive immunizations of individual Env (subtype B) VLPs or a mixture of various Env VLPs. Our results demonstrate that the sequential immunization group of animals induced significantly higher IgG endpoint titers against respective HIV Env (autologous) antigen than other control groups. Animals vaccinated sequentially showed an increase in the antibody endpoint titers and IgG antibody secreting cells (ASCs) against Con-S Env protein. Sequential immunizations with various Env VLPs promoted antibody avidity indices and enhanced bnAb responses against a panel of HIV pseudotyped virions including some of the tier 3 pseudostrains. Sequential immunizations with various VLPs displaying "native-like" HIV-1 Envs elicited bnAb responses with increased breadth and potency of neutralization.
Collapse
|
178
|
HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity 2018; 48:855-871. [DOI: 10.1016/j.immuni.2018.04.029] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
|
179
|
Wen Y, Trinh HV, Linton CE, Tani C, Norais N, Martinez-Guzman D, Ramesh P, Sun Y, Situ F, Karaca-Griffin S, Hamlin C, Onkar S, Tian S, Hilt S, Malyala P, Lodaya R, Li N, Otten G, Palladino G, Friedrich K, Aggarwal Y, LaBranche C, Duffy R, Shen X, Tomaras GD, Montefiori DC, Fulp W, Gottardo R, Burke B, Ulmer JB, Zolla-Pazner S, Liao HX, Haynes BF, Michael NL, Kim JH, Rao M, O’Connell RJ, Carfi A, Barnett SW. Generation and characterization of a bivalent protein boost for future clinical trials: HIV-1 subtypes CR01_AE and B gp120 antigens with a potent adjuvant. PLoS One 2018; 13:e0194266. [PMID: 29698406 PMCID: PMC5919662 DOI: 10.1371/journal.pone.0194266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/28/2018] [Indexed: 01/23/2023] Open
Abstract
The RV144 Phase III clinical trial with ALVAC-HIV prime and AIDSVAX B/E subtypes CRF01_AE (A244) and B (MN) gp120 boost vaccine regime in Thailand provided a foundation for the future development of improved vaccine strategies that may afford protection against the human immunodeficiency virus type 1 (HIV-1). Results from this trial showed that immune responses directed against specific regions V1V2 of the viral envelope (Env) glycoprotein gp120 of HIV-1, were inversely correlated to the risk of HIV-1 infection. Due to the low production of gp120 proteins in CHO cells (2–20 mg/L), cleavage sites in V1V2 loops (A244) and V3 loop (MN) causing heterogeneous antigen products, it was an urgent need to generate CHO cells harboring A244 gp120 with high production yields and an additional, homogenous and uncleaved subtype B gp120 protein to replace MN used in RV144 for the future clinical trials. Here we describe the generation of Chinese Hamster Ovary (CHO) cell lines stably expressing vaccine HIV-1 Env antigens for these purposes: one expressing an HIV-1 subtype CRF01_AE A244 Env gp120 protein (A244.AE) and one expressing an HIV-1 subtype B 6240 Env gp120 protein (6240.B) suitable for possible future manufacturing of Phase I clinical trial materials with cell culture expression levels of over 100 mg/L. The antigenic profiles of the molecules were elucidated by comprehensive approaches including analysis with a panel of well-characterized monoclonal antibodies recognizing critical epitopes using Biacore and ELISA, and glycosylation analysis by mass spectrometry, which confirmed previously identified glycosylation sites and revealed unknown sites of O-linked and N-linked glycosylations at non-consensus motifs. Overall, the vaccines given with MF59 adjuvant induced higher and more rapid antibody (Ab) responses as well as higher Ab avidity than groups given with aluminum hydroxide. Also, bivalent proteins (A244.AE and 6240.B) formulated with MF59 elicited distinct V2-specific Abs to the epitope previously shown to correlate with decreased risk of HIV-1 infection in the RV144 trial. All together, these results provide critical information allowing the consideration of these candidate gp120 proteins for future clinical evaluations in combination with a potent adjuvant.
Collapse
Affiliation(s)
- Yingxia Wen
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Hung V. Trinh
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, United States of America
| | | | | | | | | | - Priyanka Ramesh
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Yide Sun
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Frank Situ
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | | | - Christopher Hamlin
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, United States of America
| | - Sayali Onkar
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, United States of America
| | - Sai Tian
- GSK, Rockville, MD, United States of America
| | - Susan Hilt
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Padma Malyala
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Rushit Lodaya
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Ning Li
- GSK, Rockville, MD, United States of America
| | - Gillis Otten
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Giuseppe Palladino
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | | | - Yukti Aggarwal
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Ryan Duffy
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - William Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Brian Burke
- Novartis Vaccines and Diagnostics, Cambridge, MA, United States of America
| | - Jeffrey B. Ulmer
- GSK, Rockville, MD, United States of America
- * E-mail: (SWB); (AC); (JBU)
| | - Susan Zolla-Pazner
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
- Biomedine Institute, College of Life Science, Jinan University, Guangzhou, China
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Robert J. O’Connell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Andrea Carfi
- GSK, Rockville, MD, United States of America
- * E-mail: (SWB); (AC); (JBU)
| | - Susan W. Barnett
- GSK, Rockville, MD, United States of America
- * E-mail: (SWB); (AC); (JBU)
| |
Collapse
|
180
|
Doran RC, Tatsuno GP, O’Rourke SM, Yu B, Alexander DL, Mesa KA, Berman PW. Glycan modifications to the gp120 immunogens used in the RV144 vaccine trial improve binding to broadly neutralizing antibodies. PLoS One 2018; 13:e0196370. [PMID: 29689099 PMCID: PMC5916523 DOI: 10.1371/journal.pone.0196370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/11/2018] [Indexed: 02/03/2023] Open
Abstract
To date, the RV144 HIV vaccine trial has been the only study to show that immunization can confer protection from HIV infection. While encouraging, the modest 31.2% (P = 0.04) efficacy achieved in this study left significant room for improvement, and created an incentive to optimize the AIDSVAX B/E vaccine immunogens to increase the level of vaccine efficacy. Since the completion of the RV144 trial, our understanding of the antigenic structure of the HIV envelope protein, gp120, and of the specificity of broadly neutralizing monoclonal antibodies (bN-mAbs) that bind to it, has significantly improved. In particular, we have learned that multiple families of bN-mAbs require specific oligomannose glycans for binding. Both of the monomeric gp120 immunogens (MN- and A244-rgp120) in the AIDSVAX B/E vaccine used in the RV144 trial were enriched for glycans containing high levels of sialic acid, and lacked critical N-linked glycosylation sites required for binding by several families of bN-mAbs. The absence of these epitopes may have contributed to the low level of efficacy achieved in this study. In this report, we describe our efforts to improve the antigenic structure of the rgp120 immunogens used in the vaccine by optimizing glycan-dependent epitopes recognized by multiple bN-mAbs. Our results demonstrated that by shifting the location of one PNGS in A244-rgp120, and by adding two PNGS to MN-rgp120, in conjunction with the production of both proteins in a cell line that favors the incorporation of oligomannose glycans, we could significantly improve the binding by three major families of bN-mAbs. The immunogens described here represent a second generation of gp120-based vaccine immunogens that exhibit potential for use in RV144 follow-up studies.
Collapse
Affiliation(s)
- Rachel C. Doran
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
- * E-mail:
| | - Gwen P. Tatsuno
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sara M. O’Rourke
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Bin Yu
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - David L. Alexander
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Kathryn A. Mesa
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
- Gladstone Institute of Virology & Immunology, San Francisco, California, United States of America
| |
Collapse
|
181
|
Wu X, Guo J, Niu M, An M, Liu L, Wang H, Jin X, Zhang Q, Lam KS, Wu T, Wang H, Wang Q, Du Y, Li J, Cheng L, Tang HY, Shang H, Zhang L, Zhou P, Chen Z. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice. J Clin Invest 2018; 128:2239-2251. [PMID: 29461979 DOI: 10.1172/jci96764] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/16/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral therapy (cART). Here, we investigate the potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving 2 single-chain variable fragment (scFv) binding domains of each parental bnAb, a single gene-encoded tandem bs-bnAb, BiIA-SG, displayed substantially improved breadth and potency. BiIA-SG neutralized all 124 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, variants not susceptible to parental bnAbs and to many other bnAbs with an average IC50 value of 0.073 μg/ml (range < 0.001-1.03 μg/ml). In humanized mice, an injection of BiIA-SG conferred sterile protection when administered prior to challenges with diverse live HIV-1 stains. Moreover, whereas BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of adeno-associated virus-transferred (AAV-transferred) BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for the prevention and treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Xilin Wu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Jia Guo
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Mengyue Niu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Minghui An
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Li Liu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hui Wang
- The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Xia Jin
- Unit of Antiviral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Ka Shing Lam
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Tongjin Wu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hua Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Qian Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yanhua Du
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jingjing Li
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Lin Cheng
- The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hang Ying Tang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
182
|
Yu WH, Zhao P, Draghi M, Arevalo C, Karsten CB, Suscovich TJ, Gunn B, Streeck H, Brass AL, Tiemeyer M, Seaman M, Mascola JR, Wells L, Lauffenburger DA, Alter G. Exploiting glycan topography for computational design of Env glycoprotein antigenicity. PLoS Comput Biol 2018; 14:e1006093. [PMID: 29677181 PMCID: PMC5931682 DOI: 10.1371/journal.pcbi.1006093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 05/02/2018] [Accepted: 03/16/2018] [Indexed: 11/20/2022] Open
Abstract
Mounting evidence suggests that glycans, rather than merely serving as a “shield”, contribute critically to antigenicity of the HIV envelope (Env) glycoprotein, representing critical antigenic determinants for many broadly neutralizing antibodies (bNAbs). While many studies have focused on defining the role of individual glycans or groups of proximal glycans in bNAb binding, little is known about the effects of changes in the overall glycan landscape in modulating antibody access and Env antigenicity. Here we developed a systems glycobiology approach to reverse engineer the complexity of HIV glycan heterogeneity to guide antigenicity-based de novo glycoprotein design. bNAb binding was assessed against a panel of 94 recombinant gp120 monomers exhibiting defined glycan site occupancies. Using a Bayesian machine learning algorithm, bNAb-specific glycan footprints were identified and used to design antigens that selectively alter bNAb antigenicity as a proof-of concept. Our approach provides a new design strategy to predictively modulate antigenicity via the alteration of glycan topography, thereby focusing the humoral immune response on sites of viral vulnerability for HIV. Carbohydrates on the HIV Env glycoprotein, previously often considered as a “shield” permitting immune evasion, can themselves represent targets for broadly neutralizing antibody (bNAb) recognition. Efforts to define the impact of individual glycans on bNAb recognition have clearly illustrated the critical nature of individual or groups of glycans on bNAb binding. However, glycans represent half the mass of the HIV envelope glycoprotein, representing a lattice of interacting sugars that shape the topographical landscape that alters antibody accessiblity to the underlying protein. However, whether alterations in individual glycans alter the broader interactions among glycans, proximal and distal, has not been heretofore rigorously examined, nor how this lattice may be actively exploited to improve antigenicity. To address this challenge, we describe here a systems glycobiology approach to reverse engineer the complex relationship between bNAb binding and glycan landscape effects on Env proteins spanning across various clades and tiers. Glycan occupancy was interrogated across every potential N-glycan site in 94 recombinant gp120 recombinant antigens. Sequences, glycan occupancy, as well as bNAb binding profiles were integrated across each of the 94-atngeins to generate a machine learning computational model enabling the identification of the glycan site determinants involved in binding to any given bNAb. Moreover, this model was used to generate a panel of novel gp120 variants with augmented selective bNAb binding profiles, further validating the contributions of glycans in Env antigen design. Whether glycan-optimization will additionally influence immunogenicity, particularly on emerging stabilized trimers, is unknown, but this study provides a proof of concept for selectively and agnostically exploiting both proximal and distal viral protein glycosylation in a principled manner to improve target Ab binding profiles.
Collapse
Affiliation(s)
- Wen-Han Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Monia Draghi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Claudia Arevalo
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Christina B Karsten
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Todd J Suscovich
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Bronwyn Gunn
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Michael Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Douglas A Lauffenburger
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
183
|
Ringel O, Vieillard V, Debré P, Eichler J, Büning H, Dietrich U. The Hard Way towards an Antibody-Based HIV-1 Env Vaccine: Lessons from Other Viruses. Viruses 2018; 10:v10040197. [PMID: 29662026 PMCID: PMC5923491 DOI: 10.3390/v10040197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Although effective antibody-based vaccines have been developed against multiple viruses, such approaches have so far failed for the human immunodeficiency virus type 1 (HIV-1). Despite the success of anti-retroviral therapy (ART) that has turned HIV-1 infection into a chronic disease and has reduced the number of new infections worldwide, a vaccine against HIV-1 is still urgently needed. We discuss here the major reasons for the failure of “classical” vaccine approaches, which are mostly due to the biological properties of the virus itself. HIV-1 has developed multiple mechanisms of immune escape, which also account for vaccine failure. So far, no vaccine candidate has been able to induce broadly neutralizing antibodies (bnAbs) against primary patient viruses from different clades. However, such antibodies were identified in a subset of patients during chronic infection and were shown to protect from infection in animal models and to reduce viremia in first clinical trials. Their detailed characterization has guided structure-based reverse vaccinology approaches to design better HIV-1 envelope (Env) immunogens. Furthermore, conserved Env epitopes have been identified, which are promising candidates in view of clinical applications. Together with new vector-based technologies, considerable progress has been achieved in recent years towards the development of an effective antibody-based HIV-1 vaccine.
Collapse
Affiliation(s)
- Oliver Ringel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany.
| | - Vincent Vieillard
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, 75013 Paris, France.
| | - Patrice Debré
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, 75013 Paris, France.
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, 91058 Erlangen, Germany.
| | - Hildegard Büning
- Laboratory for Infection Biology & Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany.
| |
Collapse
|
184
|
Ringel O, Müller K, Koch J, Brill B, Wolf T, Stephan C, Vieillard V, Debré P, Dietrich U. Optimization of the EC26-2A4 Epitope in the gp41 Membrane Proximal External Region Targeted by Neutralizing Antibodies from an Elite Controller. AIDS Res Hum Retroviruses 2018; 34:365-374. [PMID: 29262692 PMCID: PMC5899297 DOI: 10.1089/aid.2017.0250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The analysis of patient derived HIV neutralizing antibodies (nAbs) and their target epitopes in the viral envelope (Env) protein provides important basic information for vaccine design. In this study we optimized an epitope, EC26-2A4, that is targeted by neutralizing antibodies from an elite controller (EC26) and localizes in the membrane-proximal external region from the gp41 transmembrane protein. Due to its overlap with the epitope of the first generation broadly neutralizing monoclonal Ab (mAb) 2F5 associated with autoreactivity, we first defined the minimal core epitope reacting with antibodies from EC26 plasma, but not with mAb 2F5. The optimized minimal epitope, EC26-2A4ΔM, was able to induce neutralizing antibodies in vaccinated mice. We further analyzed the frequency of antibodies against the EC26-2A4ΔM peptide in HIV-positive patient sera from a treated cohort and an untreated long-term nonprogressor (LTNP) cohort. Interestingly, 27% of the LTNP sera reacted with the peptide, whereas only 9% showed reactivity in the treated cohort. Although there was no association between the presence of antibodies against the EC26-2A4ΔM epitope and viral load or CD4 count in these patients, the CD4 nadir in the treated cohort was higher in patients positive for EC26-2A4ΔM antibodies, in particular in patients having such antibodies at an early and a late timepoint after infection.
Collapse
Affiliation(s)
- Oliver Ringel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Karsten Müller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Department of Infectious Diseases, HIV Center, University Hospital, Frankfurt, Germany
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Boris Brill
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Timo Wolf
- Department of Infectious Diseases, HIV Center, University Hospital, Frankfurt, Germany
| | - Christoph Stephan
- Department of Infectious Diseases, HIV Center, University Hospital, Frankfurt, Germany
| | - Vincent Vieillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Patrice Debré
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| |
Collapse
|
185
|
Emsley P, Crispin M. Structural analysis of glycoproteins: building N-linked glycans with Coot. Acta Crystallogr D Struct Biol 2018; 74:256-263. [PMID: 29652253 PMCID: PMC5892875 DOI: 10.1107/s2059798318005119] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
Coot is a graphics application that is used to build or manipulate macromolecular models; its particular forte is manipulation of the model at the residue level. The model-building tools of Coot have been combined and extended to assist or automate the building of N-linked glycans. The model is built by the addition of monosaccharides, placed by variation of internal coordinates. The subsequent model is refined by real-space refinement, which is stabilized with modified and additional restraints. It is hoped that these enhanced building tools will help to reduce building errors of N-linked glycans and improve our knowledge of the structures of glycoproteins.
Collapse
Affiliation(s)
- Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Max Crispin
- Centre for Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, England
| |
Collapse
|
186
|
Abstract
Vaccine design efforts against the human immunodeficiency virus (HIV) have been greatly stimulated by the observation that many infected patients eventually develop highly potent broadly neutralizing antibodies (bnAbs). Importantly, these bnAbs have evolved to recognize not only the two protein components of the viral envelope protein (Env) but also the numerous glycans that form a protective barrier on the Env protein. Because Env is heavily glycosylated compared to host glycoproteins, the glycans have become targets for the antibody response. Therefore, considerable efforts have been made in developing and validating biophysical methods to elucidate the complex structure of the Env-spike glycoprotein, with its combination of glycan and protein epitopes. We illustrate here how the application of robust biophysical methods has transformed our understanding of the structure and function of the HIV Env spike and stimulated innovation in vaccine design strategies that takes into account the essential glycan components.
Collapse
Affiliation(s)
- Max Crispin
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom;
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; ,
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; , .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
187
|
Barnes CO, Gristick HB, Freund NT, Escolano A, Lyubimov AY, Hartweger H, West AP, Cohen AE, Nussenzweig MC, Bjorkman PJ. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat Commun 2018; 9:1251. [PMID: 29593217 PMCID: PMC5871869 DOI: 10.1038/s41467-018-03632-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/01/2018] [Indexed: 01/16/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from HIV-1-infected individuals inform HIV-1 vaccine design efforts. Developing bNAbs with increased efficacy requires understanding how antibodies interact with the native oligomannose and complex-type N-glycan shield that hides most protein epitopes on HIV-1 envelope (Env). Here we present crystal structures, including a 3.8-Å X-ray free electron laser dataset, of natively glycosylated Env trimers complexed with BG18, the most potent V3/N332gp120 glycan-targeting bNAb reported to date. Our structures show conserved contacts mediated by common D gene-encoded residues with the N332gp120 glycan and the gp120 GDIR peptide motif, but a distinct Env-binding orientation relative to PGT121/10-1074 bNAbs. BG18's binding orientation provides additional contacts with N392gp120 and N386gp120 glycans near the V3-loop base and engages protein components of the V1-loop. The BG18-natively-glycosylated Env structures facilitate understanding of bNAb-glycan interactions critical for using V3/N332gp120 bNAbs therapeutically and targeting their epitope for immunogen design.
Collapse
Affiliation(s)
- Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Department of Clinical Immunology and Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
188
|
Waltari E, Jia M, Jiang CS, Lu H, Huang J, Fernandez C, Finzi A, Kaufmann DE, Markowitz M, Tsuji M, Wu X. 5' Rapid Amplification of cDNA Ends and Illumina MiSeq Reveals B Cell Receptor Features in Healthy Adults, Adults With Chronic HIV-1 Infection, Cord Blood, and Humanized Mice. Front Immunol 2018; 9:628. [PMID: 29632541 PMCID: PMC5879793 DOI: 10.3389/fimmu.2018.00628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/13/2018] [Indexed: 12/17/2022] Open
Abstract
Using 5′ rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR) repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM), and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.
Collapse
Affiliation(s)
- Eric Waltari
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Caroline S Jiang
- Hospital Biostatistics, The Rockefeller University, New York, NY, United States
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Cristina Fernandez
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, United States
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, United States
| |
Collapse
|
189
|
Jan M, Upadhyay C, Alcami Pertejo J, Hioe CE, Arora SK. Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins. PLoS One 2018; 13:e0194498. [PMID: 29579062 PMCID: PMC5868795 DOI: 10.1371/journal.pone.0194498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Lectins that target N-glycans on the surface of HIV-1 envelope (Env) glycoprotein have the potential for use as antiviral agents. Although progress has been made in deciphering the molecular details of lectin and Env glycan interaction, further studies are needed to better understand Env glycan heterogeneity among HIV-1 isolates and its influence on virus-neutralization sensitivity to lectins. This study evaluated a panel of lectins with fine specificity for distinct oligosaccharides and assessed their ability to inhibit infection of HIV-1 viruses known to have differing sensitivity to anti-HIV Env antibodies. The results showed that HIV-1 isolates have different sensitivity to lectins specific for α1-3Man, α1-6Man, and α1-2Man binding lectins. Considering that lectins exclusively recognize the oligosaccharide components of virus Env, these data suggest that glycan heterogeneity among HIV-1 isolates may explain this differential sensitivity. To evaluate this further, chronic and acute viruses were produced in the presence of different glycosidase inhibitors to express more homogenous glycans. Viruses enriched for α1-2Man terminating Man5-9GlcNAc2 glycans became similarly sensitive to α1-2Man-binding lectins. The α1-3Man- and α1-6Man-binding lectins also were more potent against viruses expressing predominantly Man5GlcNAc2 and hybrid type glycans with terminal α1-3Man and α1-6Man. Furthermore, lectin-mediated inhibition was competitively alleviated by mannan and this effect was augmented by enrichment of mannose-type glycans on the virus. In addition, while Env of viruses enriched with mannose-type glycans were sensitive to Endo-H deglycosylation, Env of untreated viruses were partially resistant, indicating that HIV-1 Env glycans are heterogeneously comprised of complex, hybrid, and mannose types. Overall, our data demonstrate that HIV-1 isolates display differential sensitivity to lectins, in part due to the microheterogeneity of N-linked glycans expressed on the surface of the virus Env glycoprotein.
Collapse
Affiliation(s)
- Muzafar Jan
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Chitra Upadhyay
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - José Alcami Pertejo
- Imunopatologia Del SIDA, Centro Nacional De Microbiologia, Instituo De Salud Carlos III, Madrid, Spain
| | - Catarina E. Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Sunil K. Arora
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
190
|
Makeneni S, Thieker DF, Woods RJ. Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking. J Chem Inf Model 2018; 58:605-614. [PMID: 29431438 PMCID: PMC6067002 DOI: 10.1021/acs.jcim.7b00588] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this work, we developed a computational protocol that employs multiple molecular docking experiments, followed by pose clustering, molecular dynamic simulations (10 ns), and energy rescoring to produce reliable 3D models of antibody-carbohydrate complexes. The protocol was applied to 10 antibody-carbohydrate co-complexes and three unliganded (apo) antibodies. Pose clustering significantly reduced the number of potential poses. For each system, 15 or fewer clusters out of 100 initial poses were generated and chosen for further analysis. Molecular dynamics (MD) simulations allowed the docked poses to either converge or disperse, and rescoring increased the likelihood that the best-ranked pose was an acceptable pose. This approach is amenable to automation and can be a valuable aid in determining the structure of antibody-carbohydrate complexes provided there is no major side chain rearrangement or backbone conformational change in the H3 loop of the CDR regions. Further, the basic protocol of docking a small ligand to a known binding site, clustering the results, and performing MD with a suitable force field is applicable to any protein ligand system.
Collapse
Affiliation(s)
| | - David F. Thieker
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
191
|
Shivatare VS, Shivatare SS, Lee CCD, Liang CH, Liao KS, Cheng YY, Saidachary G, Wu CY, Lin NH, Kwong PD, Burton DR, Wu CY, Wong CH. Unprecedented Role of Hybrid N-Glycans as Ligands for HIV-1 Broadly Neutralizing Antibodies. J Am Chem Soc 2018; 140:5202-5210. [DOI: 10.1021/jacs.8b00896] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vidya S. Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nangang District, Taipei 115, Taiwan
| | - Sachin S. Shivatare
- CHO Pharma, Inc., 18F, Building F, No. 3, Park Street, Nangang District, Taipei 11503, Taiwan
| | - Chang-Chun David Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nangang District, Taipei 115, Taiwan
| | - Chi-Hui Liang
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nangang District, Taipei 115, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nangang District, Taipei 115, Taiwan
| | - Gannerla Saidachary
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nangang District, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nangang District, Taipei 115, Taiwan
| | - Nan-Horng Lin
- CHO Pharma, Inc., 18F, Building F, No. 3, Park Street, Nangang District, Taipei 11503, Taiwan
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, Maryland 20892, United States
| | - Dennis R. Burton
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nangang District, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nangang District, Taipei 115, Taiwan
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
192
|
Zhou T, Zheng A, Baxa U, Chuang GY, Georgiev IS, Kong R, O'Dell S, Shahzad-Ul-Hussan S, Shen CH, Tsybovsky Y, Bailer RT, Gift SK, Louder MK, McKee K, Rawi R, Stevenson CH, Stewart-Jones GBE, Taft JD, Waltari E, Yang Y, Zhang B, Shivatare SS, Shivatare VS, Lee CCD, Wu CY, Mullikin JC, Bewley CA, Burton DR, Polonis VR, Shapiro L, Wong CH, Mascola JR, Kwong PD, Wu X. A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity 2018; 48:500-513.e6. [PMID: 29548671 PMCID: PMC6421865 DOI: 10.1016/j.immuni.2018.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 01/26/2023]
Abstract
Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center. Somatic hypermutation occurred preferentially at antibody residues that interacted with these glycans, suggesting somatic development of glycan recognition. Resistance to VRC-PG05 in donor #74 involved shifting of glycan-N448 to N446 or mutation of glycan-proximal residue E293. HIV-1 neutralization can thus be achieved at the silent face center by glycan-recognizing antibody; along with other known epitopes, the VRC-PG05 epitope completes coverage by neutralizing antibody of all major exposed regions of the prefusion closed trimer.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Syed Shahzad-Ul-Hussan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Syna K Gift
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Catherine H Stevenson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Justin D Taft
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Eric Waltari
- Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sachin S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Vidya S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chang-Chun D Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - James C Mullikin
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
193
|
Richard J, Prévost J, Baxter AE, von Bredow B, Ding S, Medjahed H, Delgado GG, Brassard N, Stürzel CM, Kirchhoff F, Hahn BH, Parsons MS, Kaufmann DE, Evans DT, Finzi A. Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses. mBio 2018; 9:e00358-18. [PMID: 29559570 PMCID: PMC5874913 DOI: 10.1128/mbio.00358-18] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 11/20/2022] Open
Abstract
The conformation of the HIV-1 envelope glycoprotein (Env) substantially impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC) responses. In the absence of the CD4 receptor at the cell surface, primary Envs sample a "closed" conformation that occludes CD4-induced (CD4i) epitopes. The virus controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus protecting infected cells from ADCC responses. However, gp120 shed from infected cells can bind to CD4 present on uninfected bystander cells, sensitizing them to ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these bystander cells could impact the interpretation of ADCC measurements. To investigate this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutralizing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in the field. Our results indicate that the uninfected bystander cells coated with gp120 are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the uninfected bystander cells substantially affect in vitro measurements made with ADCC assays that fail to identify responses against infected versus uninfected cells. Moreover, using an mRNA flow technique that detects productively infected cells, we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo samples from HIV-1-infected individuals are CD4 negative and therefore do not expose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC assays unable to differentiate responses against infected versus uninfected cells overestimate responses mediated by CD4i ligands.IMPORTANCE Emerging evidence supports a role for antibody-dependent cellular cytotoxicity (ADCC) in protection against HIV-1 transmission and disease progression. However, there are conflicting reports regarding the ability of nonneutralizing antibodies targeting CD4-inducible (CD4i) Env epitopes to mediate ADCC. Here, we performed a side-by-side comparison of different methods currently being used in the field to measure ADCC responses to HIV-1. We found that assays which are unable to differentiate virus-infected from uninfected cells greatly overestimate ADCC responses mediated by antibodies to CD4i epitopes and underestimate responses mediated by broadly neutralizing antibodies (bNAbs). Our results strongly argue for the use of assays that measure ADCC against HIV-1-infected cells expressing physiologically relevant conformations of Env to evaluate correlates of protection in vaccine trials.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amy E Baxter
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew S Parsons
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
194
|
HIV envelope V3 region mimic embodies key features of a broadly neutralizing antibody lineage epitope. Nat Commun 2018; 9:1111. [PMID: 29549260 PMCID: PMC5856820 DOI: 10.1038/s41467-018-03565-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
HIV-1 envelope (Env) mimetics are candidate components of prophylactic vaccines and potential therapeutics. Here we use a synthetic V3-glycopeptide (“Man9-V3”) for structural studies of an HIV Env third variable loop (V3)-glycan directed, broadly neutralizing antibody (bnAb) lineage (“DH270”), to visualize the epitope on Env and to study how affinity maturation of the lineage proceeded. Unlike many previous V3 mimetics, Man9-V3 encompasses two key features of the V3 region recognized by V3-glycan bnAbs—the conserved GDIR motif and the N332 glycan. In our structure of an antibody fragment of a lineage member, DH270.6, in complex with the V3 glycopeptide, the conformation of the antibody-bound glycopeptide conforms closely to that of the corresponding segment in an intact HIV-1 Env trimer. An additional structure identifies roles for two critical mutations in the development of breadth. The results suggest a strategy for use of a V3 glycopeptide as a vaccine immunogen. The V3 region of HIV Env elicits broadly neutralizing antibodies (bnAbs) in patients and represents a potential vaccine antigen. Here, Fera et al. show that the structure of a synthetic V3-glycopeptide closely resembles the conformation in intact HIV Env and identify amino acids in bnAbs that are important for neutralization breadth.
Collapse
|
195
|
Cheng HD, Grimm SK, Gilman MS, Gwom LC, Sok D, Sundling C, Donofrio G, Karlsson Hedestam GB, Bonsignori M, Haynes BF, Lahey TP, Maro I, von Reyn CF, Gorny MK, Zolla-Pazner S, Walker BD, Alter G, Burton DR, Robb ML, Krebs SJ, Seaman MS, Bailey-Kellogg C, Ackerman ME. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight 2018. [PMID: 29515029 PMCID: PMC5922287 DOI: 10.1172/jci.insight.97018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.
Collapse
Affiliation(s)
- Hao D Cheng
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Morgan Sa Gilman
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Luc Christian Gwom
- Thayer School of Engineering and.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Christopher Sundling
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Gina Donofrio
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | - Timothy P Lahey
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isaac Maro
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,DarDar Health Programs, Dar es salaam, Tanzania.,Tokyo Medical and Dental University, Tokyo, Japan
| | - C Fordham von Reyn
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Susan Zolla-Pazner
- Departments of Medicine and Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.,Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Shelly J Krebs
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
196
|
Han SY, Antoine A, Howard D, Chang B, Chang WS, Slein M, Deikus G, Kossida S, Duroux P, Lefranc MP, Sebra RP, Smith ML, Fofana IBF. Coupling of Single Molecule, Long Read Sequencing with IMGT/HighV-QUEST Analysis Expedites Identification of SIV gp140-Specific Antibodies from scFv Phage Display Libraries. Front Immunol 2018; 9:329. [PMID: 29545792 PMCID: PMC5837965 DOI: 10.3389/fimmu.2018.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9–25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.
Collapse
Affiliation(s)
- Seung Yub Han
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Alesia Antoine
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - David Howard
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Bryant Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Woo Sung Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Matthew Slein
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Sofia Kossida
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Marie-Paule Lefranc
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | | |
Collapse
|
197
|
Behrens AJ, Kumar A, Medina-Ramirez M, Cupo A, Marshall K, Cruz Portillo VM, Harvey DJ, Ozorowski G, Zitzmann N, Wilson IA, Ward AB, Struwe WB, Moore JP, Sanders RW, Crispin M. Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. J Proteome Res 2018; 17:987-999. [PMID: 29420040 DOI: 10.1021/acs.jproteome.7b00639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) that target the trimeric HIV-1 envelope glycoprotein spike (Env) are tools that can guide the design of recombinant Env proteins intended to engage the predicted human germline precursors of bNAbs (gl-bNAbs). The protein components of gl-bNAb epitopes are often masked by glycans, while mature bNAbs can evolve to accommodate or bypass these shielding glycans. The design of germline-targeting Env immunogens therefore includes the targeted deletion of specific glycan sites. However, the processing of glycans on Env trimers can be influenced by the density with which they are packed together, a highly relevant point given the essential contributions under-processed glycans make to multiple bNAb epitopes. We sought to determine the impact of the removal of 15 potential N-glycan sites (5 per protomer) from the germline-targeting soluble trimer, BG505 SOSIP.v4.1-GT1, using quantitative, site-specific N-glycan mass spectrometry analysis. We find that, compared with SOSIP.664, there was little overall change in the glycan profile but only subtle increases in the extent of processing at sites immediately adjacent to where glycans had been deleted. We conclude that multiple glycans can be deleted from BG505 SOSIP trimers without perturbing the overall integrity of the glycan shield.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Abhinav Kumar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Max Medina-Ramirez
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam , 1105 AZ Amsterdam, The Netherlands
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Kevin Marshall
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Victor M Cruz Portillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute , La Jolla, California 92037, United States.,Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and CAVD, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Rogier W Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam , 1105 AZ Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weill Cornell Medical College, New York , New York, New York 10021, United States
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom.,Centre for Biological Sciences and Institute for Life Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
198
|
Hessell AJ, Malherbe DC, Haigwood NL. Passive and active antibody studies in primates to inform HIV vaccines. Expert Rev Vaccines 2018; 17:127-144. [PMID: 29307225 PMCID: PMC6587971 DOI: 10.1080/14760584.2018.1425619] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Prevention of infection remains the ultimate goal for HIV vaccination, and there is compelling evidence that antibodies directed to Envelope are necessary to block infection. Generating antibodies that are sufficiently broad, potent, and sustained to block infection by the diverse HIV-1 strains circulating worldwide remains an area of intense study. AREAS COVERED In this review, we have summarized progress from publications listed as PubMed citations in 2016-17 in the areas of passive antibody studies using human neutralizing monoclonal antibodies in nonhuman primates, HIV Envelope vaccine development and active vaccination studies to generate potent neutralizing antibodies. EXPERT COMMENTARY Passive transfer studies in nonhuman primates using human neutralizing monoclonal antibodies have informed the potency, specificity, and cooperativity of antibodies needed to prevent infection, leading to clinical studies now testing potent antibodies for prevention of HIV. Progress in understanding the structure of Envelope has led to novel vaccine constructs, including mimetics, scaffolds and native-like proteins. As yet, no single approach ensures protection against the circulating global HIV-1 strains, but there is progress in understanding why, and intense research continues in these and other areas for a solution. We offer perspectives on how this knowledge may shape the design of future HIV vaccines.
Collapse
|
199
|
Zhou T, Doria-Rose NA, Cheng C, Stewart-Jones GBE, Chuang GY, Chambers M, Druz A, Geng H, McKee K, Kwon YD, O'Dell S, Sastry M, Schmidt SD, Xu K, Chen L, Chen RE, Louder MK, Pancera M, Wanninger TG, Zhang B, Zheng A, Farney SK, Foulds KE, Georgiev IS, Joyce MG, Lemmin T, Narpala S, Rawi R, Soto C, Todd JP, Shen CH, Tsybovsky Y, Yang Y, Zhao P, Haynes BF, Stamatatos L, Tiemeyer M, Wells L, Scorpio DG, Shapiro L, McDermott AB, Mascola JR, Kwong PD. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Rep 2018; 19:719-732. [PMID: 28445724 DOI: 10.1016/j.celrep.2017.04.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralization character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rita E Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy G Wanninger
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Lemmin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
200
|
Structural Features of Broadly Neutralizing Antibodies and Rational Design of Vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:73-95. [PMID: 30030790 DOI: 10.1007/978-981-13-0484-2_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite sequence diversity, glycosylation, and conformational flexibility of the human immunodeficiency virus type 1 (HIV-1) envelope (Env), antibodies that neutralize diverse HIV-1 strains develop in selected HIV-1-infected individuals. The application of single B cell-based approaches has identified many broad and potent human antibodies from infected donors. Structural studies on antibody recognition of HIV Env have revealed that these broadly reactive antibodies target epitopes covering entire exposed and glycosylated surface on the viral spike; several classes of antibodies recognize the viral spike with converged modes. Critical structural features, such as antibody mimicry of cellular receptors, enable effective HIV-1 neutralization. However, other structural and genetic features, such as long CDR H3, fixed length of CDR L3, restricted germline usage, and high rate of somatic hypermutation, may explain the difficulties in eliciting these antibodies by vaccination. Accumulating information on antibody recognition of HIV-1 Env and ontogenesis suggests distinct pathways for generating effective HIV-1 vaccine based on specific antibody ontogeny or specific target site.
Collapse
|