151
|
Moreno-Delgado D, Gómez-Ramírez J, Torrent-Moreno A, González-Sepúlveda M, Blanco I, Ortiz J. Different role of cAMP dependent protein kinase and CaMKII in H3 receptor regulation of histamine synthesis and release. Neuroscience 2009; 164:1244-51. [PMID: 19735700 DOI: 10.1016/j.neuroscience.2009.08.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/28/2009] [Accepted: 08/12/2009] [Indexed: 11/29/2022]
Abstract
Histamine H(3) autoreceptors induce a negative feedback on histamine synthesis and release. While it is known that cAMP/cAMP dependent protein kinase (PKA) and Ca(2+)/CaMKII transduction pathways mediate H(3) effects on histamine synthesis, the pathways regulating neuronal histamine release are poorly known. Given the potential use of H(3) ligands in cognitive diseases, we have developed a technique for the determination of H(3) effects on histamine synthesis and release in brain cortical miniprisms. Potassium-induced depolarization effects were impaired by blockade of calcium entry through N and P/Q channels, as well as of CaMKII, but release was not affected by activators or inhibitors of the cAMP/PKA pathway (1-methyl-3-isobutylxanthine (IBMX), N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate sodium salt (db-cAMP) or myristoyl PKA inhibitor peptide 14-22 (PKI(14-22)). In contrast, forskolin stimulated histamine release, although independently of PKA. Stimulation of histamine H(3) receptors with the agonist imetit markedly reduced the depolarization increase of histamine release, apparently through P/Q calcium channel inhibition. The H(3) antagonist/inverse agonist thioperamide modestly stimulated histamine release. Thioperamide effect on release was not modified by the PKA inhibitor PKI(14-22), but it was blocked by the CaMKII inhibitor KN-62. These results indicate that H(3) autoreceptors regulate neuronal histamine release (1) independently of the cAMP/PKA cascade, and (2) through modulation of calcium entry and CaMKII activation during depolarization.
Collapse
Affiliation(s)
- D Moreno-Delgado
- Universitat Autonoma de Barcelona, Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, 08193 Bellaterra, Spain.
| | | | | | | | | | | |
Collapse
|
152
|
Bender VA, Pugh JR, Jahr CE. Presynaptically expressed long-term potentiation increases multivesicular release at parallel fiber synapses. J Neurosci 2009; 29:10974-8. [PMID: 19726655 PMCID: PMC2775459 DOI: 10.1523/jneurosci.2123-09.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/29/2009] [Accepted: 08/02/2009] [Indexed: 11/21/2022] Open
Abstract
At a number of synapses, long-term potentiation (LTP) can be expressed by an increase in presynaptic strength, but it is unknown whether presynaptic LTP is expressed solely through an increase in the probability that a single vesicle is released or whether it can increase multivesicular release (MVR). Here, we show that presynaptic LTP decreases inhibition of AMPA receptor EPSCs by a low-affinity antagonist at parallel fiber-molecular layer interneuron (PF-MLI) synapses. This indicates that LTP induction results in larger glutamate concentration transients in the synaptic cleft, a result indicative of MVR, and suggests that MVR can be modified by long-term plasticity. A similar decrease in inhibition was observed when release probability (PR) was increased by forskolin, elevated extracellular Ca2+, and paired-pulse facilitation. Furthermore, we show that MVR may occur under baseline physiological conditions, as inhibition increased when P(R) was lowered by reducing extracellular Ca2+ or by activating presynaptic adenosine receptors. These results suggest that at PF-MLI synapses, MVR occurs under control conditions and is increased when PR is elevated by both short- and long-term plasticity mechanisms.
Collapse
Affiliation(s)
- Vanessa A. Bender
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Jason R. Pugh
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Craig E. Jahr
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
153
|
Breustedt J, Gundlfinger A, Varoqueaux F, Reim K, Brose N, Schmitz D. Munc13-2 differentially affects hippocampal synaptic transmission and plasticity. ACTA ACUST UNITED AC 2009; 20:1109-20. [PMID: 19700493 DOI: 10.1093/cercor/bhp170] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The short-term dynamics of synaptic communication between neurons provides neural networks with specific frequency-filter characteristics for information transfer. The direction of short-term synaptic plasticity, that is, facilitation versus depression, is highly dependent on and inversely correlated to the basal release probability of a synapse. Amongst the processes implicated in shaping the release probability, proteins that regulate the docking and priming of synaptic vesicles at the active zone are of special importance. Here, we found that a member of the Munc13 protein family of priming proteins, namely Munc13-2, is essential for normal release probability at hippocampal mossy fiber synapses. Paired pulse and frequency facilitation were strongly increased, whereas mossy fiber long-term potentiation was unaffected in the absence of Munc13-2. In contrast, transmission at 3 other types of hippocampal synapses, Schaffer-collateral, associational-commissural, as well as inhibitory synapses onto CA3 pyramidal neurons was unaffected by the loss of Munc13-2.
Collapse
Affiliation(s)
- J Breustedt
- Neurowissenschaftliches Forschungszentrum, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
154
|
Ho MT, Ho TM, Pelkey KA, Pelletier JG, Huganir RL, Lacaille JC, McBain CJ. Burst firing induces postsynaptic LTD at developing mossy fibre-CA3 pyramid synapses. J Physiol 2009; 587:4441-54. [PMID: 19635819 DOI: 10.1113/jphysiol.2009.173880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synaptic development is an activity-dependent process utilizing coordinated network activity to drive synaptogenesis and subsequent refinement of immature connections. Hippocampal CA3 pyramidal neurons (PYRs) exhibit intense burst firing (BF) early in development, concomitant with the period of mossy fibre (MF) development. However, whether developing MF-PYR synapses utilize PYR BF to promote MF synapse maturation remains unknown. Recently, we demonstrated that transient tonic depolarization of postsynaptic PYRs induces a persistent postsynaptic form of long-term depression (depolarization-induced long-term depression, DiLTD) at immature MF-PYR synapses. DiLTD induction is NMDAR independent but does require postsynaptic Ca(2+) influx through L-type voltage gated Ca(2+) channels (L-VGCCs), and is expressed as a reduction in AMPAR function through the loss of GluR2-lacking AMPARs present at immature MF-PYR synapses. Here we examined whether more physiologically relevant phasic L-VGCC activation by PYR action potential (AP) BF activity patterns can trigger DiLTD. Using combined electrophysiological and Ca(2+) imaging approaches we demonstrate that PYR BF effectively drives L-VGCC activation and that brief periods of repetitive PYR BF, produced by direct current injection or intrinsic network activity induces NMDAR-independent LTD by promoting Ca(2+) influx through the activated L-VGCCs. This BF induced LTD, just like DiLTD, is specific for developing MF-PYR synapses, is PICK1 dependent, and is expressed postsynaptically. Our results demonstrate that DiLTD can be induced by phasic L-VGCC activation driven by PYR BF, suggesting the engagement of natural PYR network activity patterns for MF synapse maturation.
Collapse
Affiliation(s)
- M T Ho
- NICHD, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Qiu S, Jebelli AK, Ashe JH, Currás-Collazo MC. Domoic acid induces a long-lasting enhancement of CA1 field responses and impairs tetanus-induced long-term potentiation in rat hippocampal slices. Toxicol Sci 2009; 111:140-50. [PMID: 19564213 DOI: 10.1093/toxsci/kfp141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Domoic acid (DOM) is known to cause hippocampal neuronal damage and produces amnesic effects. We examined synaptic plasticity changes induced by DOM exposure in rat hippocampal CA1 region. Brief bath application of DOM to hippocampal slices produces a chemical form of long-term potentiation (LTP) of CA1 field synaptic potentials. The potentiation cannot be blocked by NMDA receptor antagonist MK-801 but can be blocked by the calcium-calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-62 or cAMP-dependent protein kinase (PKA) inhibitor H-89. DOM-potentiated slices show decreased autophosphorylated CaMKII (p-Thr286), an effect that is also dependent on the activity of CaMKII and PKA. Increased phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit GluR1 (p-Ser831) was seen in DOM-potentiated slices. Therefore, aberrant regulation of CaMKII and GluR1 phosphorylation occurs after DOM application. In addition, tetanus-induced LTP as well as the increase of phosphorylation of CaMKII (p-Thr286) were reduced in DOM-potentiated slices. Compared with brief exposure, slices recovering from prolonged exposure did not show potentiation or altered levels of CaMKII (p-Thr286) or GluR (p-Ser831). However, decreased phosphorylation of GluR1 at Ser845 was seen. These results describe a new chemical form of LTP and uncover novel molecular changes induced by DOM. The observed impairment of tetanus LTP and misregulation of CaMKII and GluR1 phosphorylation may partially account for DOM neurotoxicity and underlie the molecular basis for DOM-induced memory deficit.
Collapse
Affiliation(s)
- Shenfeng Qiu
- Department of Cell Biology & Neuroscience, University of California, Riverside, California 92521, USA.
| | | | | | | |
Collapse
|
156
|
Ladera C, Martín R, Bartolomé-Martín D, Torres M, Sánchez-Prieto J. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals. Eur J Neurosci 2009; 29:1131-40. [PMID: 19302149 DOI: 10.1111/j.1460-9568.2009.06675.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-type and P/Q-type Ca(2+) channels support glutamate release at central synapses. To determine whether the glutamate release mediated by these channels exhibits distinct properties, we have isolated each release component in cerebrocortical nerve terminals from wild-type mice by specifically blocking N-type Ca(2+) channels with omega-conotoxin-GVIA and P/Q-type Ca(2+) channels with omega-agatoxin-IVA. In addition, we have determined the release properties at terminals from mice lacking the alpha(1B) subunit of N-type channels (Ca(v) 2.2) to test the possibility that P/Q-type channels can compensate for the loss of N-type Ca(2+) channels. We recently demonstrated that, while evoked glutamate release depends on P/Q- and N-type channels in wild-type nerve terminals, only P/Q-type channels participate in these knockout mice. Moreover, in nerve terminals expressing solely P/Q-type channels, metabotropic glutamate receptor 7 (mGluR7) fails to inhibit the evoked Ca(2+) influx and glutamate release. Here, we show that the failure of mGluR7 to modulate evoked glutamate release is not due to a lack of receptors, as nerve terminals from mice lacking N-type Ca(2+) channels express mGluR7. Indeed, we show that other receptor responses, such as the inhibition of forskolin-induced release, are preserved in these knockout mice. N-type channels are more loosely coupled to release than P/Q-type channels in nerve terminals from wild-type mice, as reflected by the tighter coupling of release in knockout nerve terminals. We conclude that the glutamate release supported by N- and P/Q-type channels exhibits distinct properties, and that P/Q-type channels cannot fully compensate for the loss of N-type channels.
Collapse
Affiliation(s)
- Carolina Ladera
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
157
|
Abstract
Drugs of abuse usurp the mechanisms underlying synaptic plasticity in areas of the brain, a process that may contribute to the development of addiction. We previously reported that GABAergic synapses onto dopaminergic neurons in the ventral tegmental area (VTA) exhibit long-term potentiation (LTP(GABA)) blocked by in vivo exposure to morphine. The presynaptically maintained LTP requires the retrogradely released nitric oxide (NO) to activate a presynaptic cGMP signaling cascade. Previous work reported that inhibitory GABA(A) receptor synapses in the VTA are also potentiated by cAMP. Here, we explored the interactions between cGMP-dependent (PKG) and cAMP-dependent (PKA) protein kinases in the regulation of these GABAergic synapses and LTP(GABA). Activation of PKG was required for NO-cGMP signaling and was also essential for the induction of synaptically elicited LTP(GABA), but not for its maintenance. Synapses containing GABA(A) receptors were potentiated by NO-cGMP signaling, whereas synapses containing GABA(B) receptors on the same cells were not potentiated. Moreover, although the cAMP-PKA system potentiated GABA(A) synapses, synaptically induced LTP(GABA) was independent of PKA activation. Surprisingly, however, raising cGMP levels saturated potentiation of these synapses, precluding further potentiation by cAMP and suggesting a convergent end point for both signaling pathways in the regulation of GABAergic release. We further found that persistent GABAergic synaptic modifications observed with in vivo morphine did not involve the presynaptic cAMP-PKA cascade. Taken together, our data suggest a synapse-specific role for NO-cGMP-PKG signaling pathway in opioid-induced plasticity of VTA GABA(A) synapses.
Collapse
Affiliation(s)
- Fereshteh S Nugent
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
158
|
Zhong H, Sia GM, Sato TR, Gray NW, Mao T, Khuchua Z, Huganir RL, Svoboda K. Subcellular dynamics of type II PKA in neurons. Neuron 2009; 62:363-74. [PMID: 19447092 PMCID: PMC2702487 DOI: 10.1016/j.neuron.2009.03.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 11/12/2008] [Accepted: 03/18/2009] [Indexed: 02/05/2023]
Abstract
Protein kinase A (PKA) plays multiple roles in neurons. The localization and specificity of PKA are largely controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA in neurons and the roles of specific AKAPs are poorly understood. We imaged the distribution of type II PKA in hippocampal and cortical layer 2/3 pyramidal neurons in vitro and in vivo. PKA was concentrated in dendritic shafts compared to the soma, axons, and dendritic spines. This spatial distribution was imposed by the microtubule-binding protein MAP2, indicating that MAP2 is the dominant AKAP in neurons. Following cAMP elevation, catalytic subunits dissociated from the MAP2-tethered regulatory subunits and rapidly became enriched in nearby spines. The spatial gradient of type II PKA between dendritic shafts and spines was critical for the regulation of synaptic strength and long-term potentiation. Therefore, the localization and activity-dependent translocation of type II PKA are important determinants of PKA function.
Collapse
Affiliation(s)
- Haining Zhong
- Howard Hughes Medical Institute Janelia Farm Research Campus, Ashburn, VA 20147, USA.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
cAMP is a critical second messenger involved in synaptic transmission and synaptic plasticity. Here, we show that activation of the adenylyl cyclase by forskolin and application of the cAMP-analog Sp-5,6-DCl-cBIMPS both mimicked and occluded tetanus-induced long-term potentiation (LTP) in subicular bursting neurons, but not in subicular regular firing cells. Furthermore, LTP in bursting cells was inhibited by protein kinase A (PKA) inhibitors Rp-8-CPT-cAMP and H-89. Variations in the degree of EPSC blockade by the low-affinity competitive AMPA receptor-antagonist gamma-d-glutamyl-glycine (gamma-DGG), analysis of the coefficient of variance as well as changes in short-term potentiation suggest an increase of glutamate concentration in the synaptic cleft after expression of LTP. We conclude that presynaptic LTP in bursting cells requires activation of PKA by a calcium-dependent adenylyl cyclase while LTP in regular firing cells is independent of elevated cAMP levels. Our results provide evidence for a differential role of cAMP in LTP at hippocampal output synapses.
Collapse
|
160
|
Watson JB, Hatami A, David H, Masliah E, Roberts K, Evans CE, Levine MS. Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein. Neuroscience 2009; 159:501-13. [PMID: 19361478 PMCID: PMC2670358 DOI: 10.1016/j.neuroscience.2009.01.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/10/2009] [Accepted: 01/13/2009] [Indexed: 11/28/2022]
Abstract
Most forms of Parkinson's disease (PD) are sporadic in nature, but some have genetic causes as first described for the alpha-synuclein gene. The alpha-synuclein protein also accumulates as insoluble aggregates in Lewy bodies in sporadic PD as well as in most inherited forms of PD. The focus of the present study is the modulation of synaptic plasticity in the corticostriatal pathway of transgenic (Tg) mice that overexpress the human alpha-synuclein protein throughout the brain (ASOTg). Paired-pulse facilitation was detected in vitro by activation of corticostriatal afferents in ASOTg mice, consistent with a presynaptic effect of elevated human alpha-synuclein. However basal synaptic transmission was unchanged in ASOTg, suggesting that human alpha-synuclein could impact paired-pulse facilitation via a presynaptic mechanism not directly related to the probability of neurotransmitter release. Mice lacking alpha-synuclein or those expressing normal and A53T human alpha-synuclein in tyrosine hydroxylase-containing neurons showed, instead, paired-pulse depression. High-frequency stimulation induced a presynaptic form of long-term depression solely in ASOTg striatum. A presynaptic, N-methyl-d-aspartate receptor-independent form of chemical long-term potentiation induced by forskolin (FSK) was enhanced in ASOTg striatum, while FSK-induced cAMP levels were reduced in ASOTg synaptoneurosome fractions. Overall the results suggest that elevated human alpha-synuclein alters presynaptic plasticity in the corticostriatal pathway, possibly reflecting a reduction in glutamate at corticostriatal synapses by modulation of adenylyl cyclase signaling pathways. ASOTg mice may recapitulate an early stage in PD during which overexpressed alpha-synuclein dampens corticostriatal synaptic transmission and reduces movement.
Collapse
Affiliation(s)
- J B Watson
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
161
|
Zheng Z, Keifer J. PKA has a critical role in synaptic delivery of GluR1- and GluR4-containing AMPARs during initial stages of acquisition of in vitro classical conditioning. J Neurophysiol 2009; 101:2539-49. [PMID: 19261706 DOI: 10.1152/jn.91282.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cyclic AMP-dependent protein kinase (PKA) signaling pathway has been shown to be important in mechanisms of synaptic plasticity, although its direct and downstream signaling effects are not well understood. Using an in vitro model of eyeblink classical conditioning, we report that PKA has a critical role in initiating a signaling cascade that results in synaptic delivery of glutamate receptor 1 (GluR1)- and GluR4-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in abducens motor neurons during conditioning. PKA and the Ca(2+)-calmodulin-dependent protein kinases (CaMKs) II and IV are activated early in conditioning and are required for acquisition and expression of conditioned responses (CRs). cAMP-response-element-binding protein (CREB) is also activated early in conditioning but is blocked by coapplication of inhibitors to PKA and the CaMKs, suggesting that CREB is downstream of those signaling cascades. Moreover, evidence suggests that PKA activates extracellular signal-regulated kinase, which is also required for conditioning. Imaging studies after conditioning further indicate that colocalization of GluR1 AMPAR subunits with the synaptic marker synaptophysin requires PKA, but is insensitive to the N-methyl-d-aspartate receptor (NMDAR) inhibitor d,l-AP5. PKA activation also leads to synaptic localization of GluR4 subunits that, unlike GluR1, is dependent on NMDARs and is mediated by CaMKII. Together with previous studies, our findings support a two-stage model of AMPAR synaptic delivery during acquisition of classical conditioning. The first stage involves synaptic incorporation of GluR1-containing AMPARs that serves to activate silent synapses. This allows a second stage of NMDAR- and protein kinase C-dependent delivery of GluR4 AMPAR subunits that supports the acquisition of CRs.
Collapse
Affiliation(s)
- Zhaoqing Zheng
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | |
Collapse
|
162
|
Lachamp PM, Liu Y, Liu SJ. Glutamatergic modulation of cerebellar interneuron activity is mediated by an enhancement of GABA release and requires protein kinase A/RIM1alpha signaling. J Neurosci 2009; 29:381-92. [PMID: 19144838 PMCID: PMC2775555 DOI: 10.1523/jneurosci.2354-08.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 10/29/2008] [Accepted: 11/28/2008] [Indexed: 01/23/2023] Open
Abstract
Information processing in the CNS is controlled by the activity of neuronal networks composed of principal neurons and interneurons. Activity-dependent modification of synaptic transmission onto principal neurons is well studied, but little is known about the modulation of inhibitory transmission between interneurons. However, synaptic plasticity at this level has clear implications for the generation of synchronized activity. We investigated the molecular mechanism(s) and functional consequences of an activity-induced lasting increase in GABA release that occurs between inhibitory interneurons (stellate cells) in the cerebellum. Using whole-cell recording and cerebellar slices, we found that stimulation of glutamatergic inputs (parallel fibers) with a physiological-like pattern of activity triggered a lasting increase in GABA release from stellate cells. This activity also potentiated inhibitory transmission between synaptically connected interneurons. Extracellular recording revealed that the enhanced inhibitory transmission reduced the firing frequency and altered the pattern of action potential activity in stellate cells. The induction of the sustained increase in GABA release required activation of NMDA receptors. Using pharmacological and genetic approaches, we found that presynaptic cAMP/PKA (protein kinase A) signaling and RIM1alpha, an active zone protein, is the critical pathway that is required for the lasting enhancement of GABA release. Thus, a common mechanism can underlie presynaptic plasticity of both excitatory and inhibitory transmission. This activity-dependent regulation of synaptic transmission between inhibitory interneurons may serve as an important mechanism for interneuronal network plasticity.
Collapse
Affiliation(s)
- Philippe M. Lachamp
- Department of Biology, Pennsylvania State University, State College, Pennsylvania 16802
| | - Yu Liu
- Department of Biology, Pennsylvania State University, State College, Pennsylvania 16802
| | - Siqiong June Liu
- Department of Biology, Pennsylvania State University, State College, Pennsylvania 16802
| |
Collapse
|
163
|
Targeting the hippocampal mossy fiber synapse for the treatment of psychiatric disorders. Mol Neurobiol 2009; 39:24-36. [PMID: 19130314 DOI: 10.1007/s12035-008-8049-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 12/12/2008] [Indexed: 01/09/2023]
Abstract
It is widely known that new neurons are continuously generated in the dentate gyrus of the hippocampus in the adult mammalian brain. This neurogenesis has been implicated in depression and antidepressant treatments. Recent evidence also suggests that the dentate gyrus is involved in the neuropathology and pathophysiology of schizophrenia and other related psychiatric disorders. Especially, abnormal neuronal development in the dentate gyrus may be a plausible risk factor for the diseases. The synapse made by the mossy fiber, the output fiber of the dentate gyrus, plays a critical role in regulating neuronal activity in its target CA3 area. The mossy fiber synapse is characterized by remarkable activity-dependent short-term synaptic plasticity that is established during the postnatal development and is supposed to be central to the functional role of the mossy fiber. Any defects, including developmental abnormalities, in the dentate gyrus and drugs acting on the dentate gyrus can modulate the mossy fiber-CA3 synaptic transmission, which may eventually affect hippocampal functions. In this paper, I review recent evidence for involvement of the dentate gyrus and mossy fiber synapse in psychiatric disorders and discuss potential importance of drugs targeting the mossy fiber synapse either directly or indirectly in the therapeutic treatments of psychiatric disorders.
Collapse
|
164
|
Pelkey KA, Topolnik L, Yuan XQ, Lacaille JC, McBain CJ. State-dependent cAMP sensitivity of presynaptic function underlies metaplasticity in a hippocampal feedforward inhibitory circuit. Neuron 2008; 60:980-7. [PMID: 19109906 PMCID: PMC2630456 DOI: 10.1016/j.neuron.2008.11.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 10/30/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
At hippocampal mossy fiber (MF)-st. lucidum interneuron (SLIN) synapses, mGluR7 serves as a metaplastic switch controlling bidirectional plasticity. mGluR7 activation during high-frequency stimulation (HFS) triggers presynaptic LTD due to persistent P/Q-type Ca(2+) channel inhibition. However, following mGluR7 internalization HFS produces presynaptic LTP. Surprisingly, LTP is not a simple molecular reversal of Ca(2+) channel depression. Rather, mGluR7 activation/internalization controls plasticity polarity by gating cAMP sensitivity of release. While naive surface mGluR7 expressing MF-SLIN synapses are insensitive to cAMP elevation, synapses that have internalized mGluR7 robustly potentiate following cAMP increases. Moreover, MF-SLIN LTP requires adenylate cyclase (AC) and protein kinase A (PKA) activities. We also discovered an association between mGluR7 and RIM1alpha, an active zone molecule required for AC/PKA-dependent presynaptic LTP. Importantly, the mGluR7-RIM1alpha interaction is regulated by mGluR7 activation, and mice lacking RIM1alpha are deficient in MF-SLIN LTP. We conclude that state-dependent cAMP sensitivity controlled by mGluR7-RIM1alpha interactions underlies MF-SLIN metaplasticity.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
165
|
Sakisaka T, Yamamoto Y, Mochida S, Nakamura M, Nishikawa K, Ishizaki H, Okamoto-Tanaka M, Miyoshi J, Fujiyoshi Y, Manabe T, Takai Y. Dual inhibition of SNARE complex formation by tomosyn ensures controlled neurotransmitter release. ACTA ACUST UNITED AC 2008; 183:323-37. [PMID: 18936251 PMCID: PMC2568027 DOI: 10.1083/jcb.200805150] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitter release from presynaptic nerve terminals is regulated by soluble NSF attachment protein receptor (SNARE) complex–mediated synaptic vesicle fusion. Tomosyn inhibits SNARE complex formation and neurotransmitter release by sequestering syntaxin-1 through its C-terminal vesicle-associated membrane protein (VAMP)–like domain (VLD). However, in tomosyn-deficient mice, the SNARE complex formation is unexpectedly decreased. In this study, we demonstrate that the N-terminal WD-40 repeat domain of tomosyn catalyzes the oligomerization of the SNARE complex. Microinjection of the tomosyn N-terminal WD-40 repeat domain into neurons prevented stimulated acetylcholine release. Thus, tomosyn inhibits neurotransmitter release by catalyzing oligomerization of the SNARE complex through the N-terminal WD-40 repeat domain in addition to the inhibitory activity of the C-terminal VLD.
Collapse
Affiliation(s)
- Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Differential induction of long-term potentiation in the horizontal versus columnar superficial connections to layer II cells of the entorhinal cortex. Neural Plast 2008; 2008:814815. [PMID: 18604300 PMCID: PMC2442230 DOI: 10.1155/2008/814815] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 05/20/2008] [Indexed: 11/18/2022] Open
Abstract
The entorhinal cortex (EC) is a nodal and independent mnemonic element of the medial temporal lobe memory circuit as it forms a bidirectional interface between the neocortex and hippocampus. Within the EC, intra- and inter-lamellar associational connections occur via horizontal and columnar projections, respectively. We undertook a comparative study of these two inputs as they converge upon EC layer II cells using whole-cell patch techniques in an adult rat EC horizontal slice preparation in which the deepest layers (V-VI) had been dissected out. Electrical stimulation of layers I and III during GABA blockade allowed us to study excitatory synaptic properties and plasticity in the horizontal and columnar fibre systems, respectively. Both pathways exhibited AMPA- and NMDA-receptor mediated transmission and both exhibited long-term potentiation (LTP) after high-frequency (tetanic) stimulation. LTP in the horizontal, but not in the columnar pathway, was blocked by NMDA receptor antagonism. Intriguingly, LTP in both appeared to be mediated by post synaptic increases in Ca2+ that may be coupled to differing second messenger pathways. Thus, the superficial excitatory horizontal and columnar associative pathways to layer II have divergent mechanisms for LTP which may endow the EC with even more complex and dynamic processing characteristics than previously thought.
Collapse
|
167
|
Kelley DJ, Bhattacharyya A, Lahvis GP, Yin JCP, Malter J, Davidson RJ. The cyclic AMP phenotype of fragile X and autism. Neurosci Biobehav Rev 2008; 32:1533-43. [PMID: 18601949 PMCID: PMC2642647 DOI: 10.1016/j.neubiorev.2008.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/06/2008] [Accepted: 06/08/2008] [Indexed: 12/27/2022]
Abstract
Cyclic AMP (cAMP) is a second messenger involved in many processes including mnemonic processing and anxiety. Memory deficits and anxiety are noted in the phenotype of fragile X (FX), the most common heritable cause of mental retardation and autism. Here we review reported observations of altered cAMP cascade function in FX and autism. Cyclic AMP is a potentially useful biochemical marker to distinguish autism comorbid with FX from autism per se and the cAMP cascade may be a viable therapeutic target for both FX and autism.
Collapse
Affiliation(s)
- Daniel J Kelley
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
168
|
cAMP/PKA signaling and RIM1alpha mediate presynaptic LTP in the lateral amygdala. Proc Natl Acad Sci U S A 2008; 105:15130-5. [PMID: 18815362 DOI: 10.1073/pnas.0806938105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
NMDA receptor-dependent long-term potentiation (LTP) of glutamatergic synaptic transmission in sensory pathways from auditory thalamus or cortex to the lateral amygdala (LA) underlies the acquisition of auditory fear conditioning. Whereas the mechanisms of postsynaptic LTP at thalamo-LA synapses are well understood, much less is known about the sequence of events mediating presynaptic NMDA receptor-dependent LTP at cortico-LA synapses. Here, we show that presynaptic cortico-LA LTP can be entirely accounted for by a persistent increase in the vesicular release probability. At the molecular level, we found that signaling via the cAMP/PKA pathway is necessary and sufficient for LTP induction. Moreover, by using mice lacking the active-zone protein and PKA target RIM1alpha (RIM1alpha(-/-)), we demonstrate that RIM1alpha is required for both chemically and synaptically induced presynaptic LTP. Further analysis of cortico-LA synaptic transmission in RIM1alpha(-/-) mice revealed a deficit in Ca(2+)-release coupling leading to a lower baseline release probability. Our results reveal the molecular mechanisms underlying the induction of presynaptic LTP at cortico-LA synapses and indicate that RIM1alpha-dependent LTP may involve changes in Ca(2+)-release coupling.
Collapse
|
169
|
Application of an Epac activator enhances neurotransmitter release at excitatory central synapses. J Neurosci 2008; 28:7991-8002. [PMID: 18685024 DOI: 10.1523/jneurosci.0268-08.2008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
cAMP regulates secretory processes through both PKA-independent and PKA-dependent signaling pathways. Their relative contributions to fast neurotransmission are unclear at present, although forskolin, which is generally believed to enhance intracellular cAMP levels by stimulation of adenylyl cyclase activity, was shown to increase vesicular release probability (p) and the number of releasable vesicles (N) in various neuronal preparations. Using low-frequency (0.2 Hz) electrophysiological recordings in the presence of the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP (ESCA(1)), we find that Epac activation by this analog accounts on average for 38% of the forskolin-induced increase in evoked EPSC amplitudes and for 100% of the forskolin-induced increase in miniature EPSC (mEPSC) frequency in dissociated autaptic neuronal cultures from mouse hippocampus. From paired-pulse facilitation experiments, and considering the enhancement of mEPSC frequency, we conclude that ESCA(1)-induced Epac activity is presynaptic in origin and increases p. In addition, preapplication of ESCA(1) augmented a subsequent enhancement of evoked EPSC amplitudes by phorbol ester (PDBu). This effect was maximal when ESCA(1) application preceded the PDBu application by 3 min. Because the PDBu response was abolished after downregulation of intracellular PKC activity, we conclude that ESCA(1)-induced Epac activation leads to presynaptic changes involving Epac-to-PKC signaling.
Collapse
|
170
|
Protein kinase C modulates synaptic vesicle acidification in a ribbon type nerve terminal in the retina. Neurochem Int 2008; 53:155-64. [PMID: 18691623 DOI: 10.1016/j.neuint.2008.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/27/2008] [Accepted: 07/14/2008] [Indexed: 11/23/2022]
Abstract
The driving force for neurotransmitter accumulation into synaptic vesicles is provided by the generation of a transmembrane electrochemical gradient (DeltamicroH+) that has two components: a chemical gradient (DeltapH, inside acidic) and an electrical potential across the vesicular membrane (DeltaPsi, inside positive). This gradient is generated in situ by the electrogenic vacuolar H(+)-ATPase, which is responsible for the acidification and positive membrane potential of the vesicle lumen. Here, we investigate the modulation of vesicle acidification by using the acidic-organelle probe LysoTracker and the pH-sensitive probe LysoSensor at goldfish Mb-type bipolar cell terminals. Since phosphorylation can modulate secretory granule acidification in neuroendocrine cells, we investigated if drugs that affect protein kinases modulate LysoTracker staining of bipolar cell terminals. We find that protein kinase C (PKC) activation induces an increase in LysoTracker-fluorescence. By contrast, protein kinase A (PKA) or calcium/calmodulin kinase II (CaMKII) activation or inhibition did not change LysoTracker-fluorescence. Using a pH-dependent fluorescent dye (LysoSensor) we show that the PKC activation with PMA induces an increase in LysoSensor-fluorescence, whereas the inactive analog 4alpha-PMA was unable to cause the same effect. This increase induced by PMA was blocked by PKC inhibitors, calphostin C and staurosporine. These results suggest that phosphorylation by PKC may increase synaptic vesicle acidification in retinal bipolar cells and therefore has the potential to modulate glutamate concentrations inside synaptic vesicles.
Collapse
|
171
|
Chronic fluoxetine bidirectionally modulates potentiating effects of serotonin on the hippocampal mossy fiber synaptic transmission. J Neurosci 2008; 28:6272-80. [PMID: 18550770 DOI: 10.1523/jneurosci.1656-08.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been used to treat various psychiatric disorders. Although the cellular mechanisms underlying amelioration of particular symptoms are mostly unknown, recent studies have shown critical importance of the dentate gyrus of the hippocampus in behavioral effects of SSRIs in rodents. Here, we show that serotonin potentiates synaptic transmission between mossy fibers, the sole output of the dentate granule cells, and CA3 pyramidal cells in mouse hippocampal slices. This potentiation is mediated by activation of 5-HT(4) receptors and intracellular cAMP elevation. A chronic treatment of mice with fluoxetine, a widely used SSRI, bidirectionally modulates the 5-HT-induced potentiation: Fluoxetine enhances the potentiation induced by lower concentrations of serotonin, while attenuates that by the higher concentration, which represents stabilization of synaptic 5-HT action. In contrast to the chronic treatment, an acute application of fluoxetine in slices induces a leftward shift in the dose-response curve of the 5-HT-induced potentiation. Thus, acute and chronic fluoxetine treatments have distinct effects on the serotonergic modulation of the mossy fiber synaptic transmission. Exposure of mice to novel environments induces increases in locomotor activity and hippocampal extracellular 5-HT levels. In mice chronically treated with fluoxetine, the novelty-induced hyperactivity is reduced without significant alterations in home cage activity and motor skills. Our results suggest that the chronic fluoxetine treatment can stabilize the serotonergic modulation of the central synaptic transmission, which may contribute to attenuation of hyperactive behaviors.
Collapse
|
172
|
Ren J, Zhou X, Galligan JJ. 5-HT4 receptor activation facilitates recovery from synaptic rundown and increases transmitter release from single varicosities of myenteric neurons. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1376-83. [PMID: 18436623 PMCID: PMC4254768 DOI: 10.1152/ajpgi.00078.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
5-HT(4) receptor agonists facilitate synaptic transmission in the enteric nervous system, and these drugs are used to treat constipation. In the present study, we investigated the effects of the 5-HT(4) receptor agonist, renzapride, on rundown and recovery of fast excitatory postsynaptic potentials (fEPSPs) during and after trains of stimulation and on transmitter release from individual myenteric neuronal varicosities. Intracellular electrophysiological methods were used to record fEPSPs from neurons in longitudinal muscle myenteric plexus preparations of guinea pig ileum in vitro. During trains of supramaximal electrical stimulation (10 Hz, 2 s), fEPSP amplitude declined (time constant = 0.6 +/- 0.1 s) from 17 +/- 2 mV to 0.7 +/- 0.3 mV. Renzapride (0.1 microM) did not change the time constant for fEPSP rundown, but it decreased the time constant for recovery of fEPSP amplitude after the stimulus train from 7 +/- 2 s to 1.6 +/- 0.2 s (P < 0.05). 5-HT (0.1 microM) also increased fEPSPs and facilitated recovery from rundown. The adenylate cyclase activator, forskolin (1 muM), mimicked the actions of renzapride and 5-HT, whereas H-89, a protein kinase A (PKA) inhibitor, blocked the effects of renzapride. We used nicotinic acetylcholine receptor containing outside-out patches obtained from myenteric neurons maintained in primary culture to detect acetylcholine release from single varicosities. Renzapride (0.1 microM) increased release probability twofold. We conclude that 5-HT(4) receptors activate the adenylyl cyclase-PKA pathway to increase acetylcholine release from single varicosities and to accelerate recovery from synaptic rundown. These responses may contribute to the prokinetic actions of 5-HT(4) receptor agonists.
Collapse
Affiliation(s)
- Jianhua Ren
- Neuroscience Program, Michigan State Univ., East Lansing, MI 48824, USA
| | | | | |
Collapse
|
173
|
Moulder KL, Jiang X, Chang C, Taylor AA, Benz AM, Conti AC, Muglia LJ, Mennerick S. A specific role for Ca2+-dependent adenylyl cyclases in recovery from adaptive presynaptic silencing. J Neurosci 2008; 28:5159-68. [PMID: 18480272 PMCID: PMC2684782 DOI: 10.1523/jneurosci.5317-07.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 11/21/2022] Open
Abstract
Glutamate generates fast postsynaptic depolarization throughout the CNS. The positive-feedback nature of glutamate signaling likely necessitates flexible adaptive mechanisms that help prevent runaway excitation. We have previously explored presynaptic adaptive silencing, a form of synaptic plasticity produced by ongoing neuronal activity and by strong depolarization. Unsilencing mechanisms that maintain active synapses and restore normal function after adaptation are also important, but mechanisms underlying such presynaptic reactivation remain unexplored. Here we investigate the involvement of the cAMP pathway in the basal balance between silenced and active synapses, as well as the recovery of baseline function after depolarization-induced presynaptic silencing. Activation of the cAMP pathway activates synapses that are silent at rest, and pharmacological inhibition of cAMP signaling silences basally active synapses. Adenylyl cyclase (AC) 1 and AC8, the major Ca2+-sensitive AC isoforms, are not crucial for the baseline balance between silent and active synapses. In cells from mice doubly deficient in AC1 and AC8, the baseline percentage of active synapses was only modestly reduced compared with wild-type synapses, and forskolin unsilencing was similar in the two genotypes. Nevertheless, after strong presynaptic silencing, recovery of normal function was strongly inhibited in AC1/AC8-deficient synapses. The entire recovery phenotype of the double null was reproduced in AC8-deficient but not AC1-deficient cells. We conclude that, under normal conditions, redundant cyclase activity maintains the balance between presynaptically silent and active synapses, but AC8 plays a particularly important role in rapidly resetting the balance of active to silent synapses after adaptation to strong activity.
Collapse
Affiliation(s)
- Krista L Moulder
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Swanson GT, Contractor A. Recording in the cerebellar slice. CURRENT PROTOCOLS IN NEUROSCIENCE 2008; Chapter 6:Unit 6.18. [PMID: 18428602 DOI: 10.1002/0471142301.ns0618s25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit describes techniques for the preparation of mouse cerebellar slices and electrophysiological recording from neurons in the slice. The cerebellum provides a model of motor learning that can be correlated with alterations in synaptic function. In addition, the architecture and well-defined synaptic pathways in the cerebellar slice make this preparation a useful model for exploring general principles of synaptic transmission.
Collapse
|
175
|
Lonart G, Tang X, Simsek-Duran F, Machida M, Sanford LD. The role of active zone protein Rab3 interacting molecule 1 alpha in the regulation of norepinephrine release, response to novelty, and sleep. Neuroscience 2008; 154:821-31. [PMID: 18495360 DOI: 10.1016/j.neuroscience.2008.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/15/2008] [Accepted: 03/18/2008] [Indexed: 11/15/2022]
Abstract
Sleep mechanisms and synaptic plasticity are thought to interact to regulate homeostasis and memory formation. However, the influences of molecules that mediate synaptic plasticity on sleep are not well understood. In this study we demonstrate that mice lacking Rab3 interacting molecule 1 alpha (RIM1 alpha) (Rim1 alpha KO), a protein of the synaptic active zone required for certain types of synaptic plasticity and learning, had 53+/-5% less baseline rapid eye movement (REM) sleep compared with their wild type littermates. Also, compared with wild type littermates, exposure of the mice to an open field or to a novel object induced more robust and longer lasting locomotion suggesting altered habituation. This difference in exploratory behavior correlated with genotype specific changes in REM and deregulated release of norepinephrine in the cortex and basal amygdala of the Rim1 alpha KO mice. Also, moderate sleep deprivation (4 h), a test of the homeostatic sleep response, induced REM sleep rebound with different time course in Rim1 alpha KO and their wild type littermates. As norepinephrine plays an important role in regulating arousal and REM sleep, our data suggest that noradrenergic deficiency in Rim1 alpha KO animals impacts exploratory behavior and sleep regulation and contributes to impairments in learning.
Collapse
Affiliation(s)
- G Lonart
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | | | | | | |
Collapse
|
176
|
Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao XB. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 2008; 117:4022-33. [PMID: 18060037 DOI: 10.1172/jci32829] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022] Open
Abstract
Sleep is a natural process that preserves energy, facilitates development, and restores the nervous system in higher animals. Sleep loss resulting from physiological and pathological conditions exerts tremendous pressure on neuronal circuitry responsible for sleep-wake regulation. It is not yet clear how acute and chronic sleep loss modify neuronal activities and lead to adaptive changes in animals. Here, we show that acute and chronic prolonged wakefulness in mice induced by modafinil treatment produced long-term potentiation (LTP) of glutamatergic synapses on hypocretin/orexin neurons in the lateral hypothalamus, a well-established arousal/wake-promoting center. A similar potentiation of synaptic strength at glutamatergic synapses on hypocretin/orexin neurons was also seen when mice were sleep deprived for 4 hours by gentle handling. Blockade of dopamine D1 receptors attenuated prolonged wakefulness and synaptic plasticity in these neurons, suggesting that modafinil functions through activation of the dopamine system. Also, activation of the cAMP pathway was not able to further induce LTP at glutamatergic synapses in brain slices from mice treated with modafinil. These results indicate that synaptic plasticity due to prolonged wakefulness occurs in circuits responsible for arousal and may contribute to changes in the brain and body of animals experiencing sleep loss.
Collapse
Affiliation(s)
- Yan Rao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Abel T, Nguyen PV. Regulation of hippocampus-dependent memory by cyclic AMP-dependent protein kinase. PROGRESS IN BRAIN RESEARCH 2008; 169:97-115. [PMID: 18394470 PMCID: PMC2914307 DOI: 10.1016/s0079-6123(07)00006-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hippocampus is crucial for the consolidation of new declarative long-term memories. Genetic and behavioral experimentation have revealed that several protein kinases are critical for the formation of hippocampus-dependent long-term memories. Cyclic-AMP dependent protein kinase (PKA) is a serine-threonine kinase that has been strongly implicated in the expression of specific forms of hippocampus-dependent memory. We review evidence that PKA is required for hippocampus-dependent memory in mammals, and we highlight some of the proteins that have been implicated as targets of PKA. Future directions and open questions regarding the role of PKA in memory storage are also described.
Collapse
Affiliation(s)
- Ted Abel
- University of Pennsylvania, Department of Biology, Biological Basis of Behavior Program, Philadelphia, PA 19104, USA
| | - Peter V. Nguyen
- University of Alberta School of Medicine, Departments of Physiology and Psychiatry, Centre for Neuroscience, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
178
|
Abstract
G-proteins (guanine nucleotide-binding proteins) are membrane-attached proteins composed of three subunits, alpha, beta, and gamma. They transduce signals from G-protein coupled receptors (GPCRs) to target effector proteins. The agonistactivated receptor induces a conformational change in the G-protein trimer so that the alpha-subunit binds GTP in exchange for GDP and alpha-GTP, and betagamma-subunits separate to interact with the target effector. Effector-interaction is terminated by the alpha-subunit GTPase activity, whereby bound GTP is hydrolyzed to GDP. This is accelerated in situ by RGS proteins, acting as GTPase-activating proteins (GAPs). Galpha-GDP and Gbetagamma then reassociate to form the Galphabetagamma trimer. G-proteins primarily involved in the modulation of neurotransmitter release are G(o), G(q) and G(s). G(o) mediates the widespread presynaptic auto-inhibitory effect of many neurotransmitters (e.g., via M2/M4 muscarinic receptors, alpha(2) adrenoreceptors, micro/delta opioid receptors, GABAB receptors). The G(o) betagamma-subunit acts in two ways: first, and most ubiquitously, by direct binding to CaV2 Ca(2+) channels, resulting in a reduced sensitivity to membrane depolarization and reduced Ca(2+) influx during the terminal action potential; and second, through a direct inhibitory effect on the transmitter release machinery, by binding to proteins of the SNARE complex. G(s) and G(q) are mainly responsible for receptor-mediated facilitatory effects, through activation of target enzymes (adenylate cyclase, AC and phospholipase-C, PLC respectively) by the GTP-bound alpha-subunits.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
179
|
Matsuzaki K, Kenichi Miyazaki, Sakai S, Yawo H, Nakata N, Moriguchi S, Fukunaga K, Yokosuka A, Sashida Y, Mimaki Y, Yamakuni T, Ohizumi Y. Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus. Eur J Pharmacol 2008; 578:194-200. [DOI: 10.1016/j.ejphar.2007.09.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 08/28/2007] [Accepted: 09/25/2007] [Indexed: 11/28/2022]
|
180
|
Pelkey KA, McBain CJ. Target-cell-dependent plasticity within the mossy fibre-CA3 circuit reveals compartmentalized regulation of presynaptic function at divergent release sites. J Physiol 2007; 586:1495-502. [PMID: 18079156 DOI: 10.1113/jphysiol.2007.148635] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Individual axons of central neurons innervate a large number of distinct postsynaptic targets belonging to divergent functional categories such as glutamatergic principal cells and inhibitory interneurons. While each bouton along a common axon should experience the same activity pattern in response to action potential firing within the parent presynaptic neuron, accumulating evidence suggests that neighbouring boutons contacting functionally distinct postsynaptic targets regulate their release properties independently, despite being separated by only a few microns. This target-cell-specific autonomy of presynaptic function can greatly expand the computational prowess of central axons to allow for precise coordination of large neuronal ensembles within a given circuit. An excellent example of target-cell-specific presynaptic mechanisms occurs in the CA3 hippocampus where mossy fibre (MF) axons of dentate gyrus granule cells target both principal cells and local circuit inhibitory interneurons via both anatomically and functionally specialized terminals. Of particular interest, mechanisms of both short- and long-term plasticity remain autonomous at these divergent release sites due to an anatomical and biochemical segregation of discrete molecular signalling cascades. Here we review roughly a decades worth of research on the MF-CA3 pathway to showcase the target-cell dependence of presynaptically expressed NMDA receptor-independent synaptic plasticity.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Laboratory on Cellular and Synaptic Neurophysiology, Building 35, Rm 3C705, NICHD-LCSN, Bethesda, MD 20892, USA.
| | | |
Collapse
|
181
|
Ladera C, Godino MDC, Martín R, Luján R, Shigemoto R, Ciruela F, Torres M, Sánchez-Prieto J. The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration. J Neurochem 2007; 103:2314-26. [DOI: 10.1111/j.1471-4159.2007.04964.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
182
|
Rodríguez-Moreno A, Sihra TS. Kainate receptors with a metabotropic modus operandi. Trends Neurosci 2007; 30:630-7. [PMID: 17981346 DOI: 10.1016/j.tins.2007.10.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 11/25/2022]
Abstract
Kainate receptors (KARs), together with AMPA and NMDA, are typically described as ionotropic glutamate receptors. The functions of KARs have begun to be elucidated only in the last decade. Although some the actions of KARs are classically ionotropic, surprisingly others seem to involve the activation of second-messenger cascades and invoke metabotropic roles for this type of glutamate receptor. In this review, we describe these metabotropic actions of KARs in relation to the putative signalling cascades involved. Although it is still a mystery how KARs activate G proteins to stimulate second-messenger cascades, intriguingly, in very recent studies, specific subunits of KARs have been demonstrated to associate with G proteins. Altogether, the body of evidence supports the hypothesis that, together with the canonical ionotropic operation, KARs expedite long-lasting signalling by novel metabotropic modes of action.
Collapse
Affiliation(s)
- Antonio Rodríguez-Moreno
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Ctra. de Utrera Km. 1, Seville, Spain.
| | | |
Collapse
|
183
|
Martín R, Torres M, Sánchez-Prieto J. mGluR7 inhibits glutamate release through a PKC-independent decrease in the activity of P/Q-type Ca2+ channels and by diminishing cAMP in hippocampal nerve terminals. Eur J Neurosci 2007; 26:312-22. [PMID: 17650109 DOI: 10.1111/j.1460-9568.2007.05660.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The modulation of calcium channels by metabotropic glutamate receptors (mGluRs) is a key event in the fine-tuning of neurotransmitter release. Here we report that, in hippocampal nerve terminals from adult rats, the inhibition of glutamate release by the group III mGluR agonist L-2-amino-4-phosphonobutyrate (L-AP4) is largely mediated by mGluR7. In this preparation, P/Q-type Ca(2+) channels support the major component of glutamate release while the remaining release is supported by N-type Ca(2+) channels. The release associated with P/Q channels was modulated by mGluR7, either in the presence of omega-conotoxin-GVIA or after decreasing the extracellular Ca(2+) concentration [Ca(2+)](o) to abolish the contribution of N-type Ca(2+) channels. Under these conditions, L-AP4 (1 mm) reduced the evoked glutamate release by 35 +/- 2%. This inhibition was largely prevented by pertussis toxin, but it was insensitive to inhibitors of protein kinase C (bisindolylmaleimide) and protein kinase A (H-89). Furthermore, this inhibition was associated with a reduction in the Ca(2+) influx mediated by P/Q channels in the absence of any detectable change in cAMP levels. However, L-AP4 decreased the levels of cAMP in the presence of forskolin. The activation of this additional signalling pathway was very efficient in counteracting the facilitation of glutamate release induced by forskolin. Thus, mGluR7 mediates the inhibition of glutamate release at hippocampal nerve terminals primarily by inhibiting P/Q-type Ca(2+) channels, although augmenting the levels of cAMP reveals the ability of the receptor to decrease cAMP.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid 28040, Spain
| | | | | |
Collapse
|
184
|
Abstract
Kainate receptors (KARs), together with NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA), are typically described as ionotropic glutamate receptors. Although ionotropic functions for KARs are beginning to be characterized in multiple brain regions, both, in the pre- and post-synaptic compartments of the synapse, there is accumulating evidence that KARs mediate some of their effects without invoking ion-fluxes. Thus, since 1998, when the first metabotropic action of KARs was described in the modulation of GABA release in hippocampal interneurons, there have been increasing reports that some of the functions of KARs involve the participation of intracellular signalling cascades and depend on G protein activation. These surprising observations, attesting metabotropic actions of KARs, akin to those usually attributed to seven transmembrane region G protein-coupled receptors, make the physiological classification and description of glutamate receptors more complex. In the present review, we describe the metabotropic roles of KARs in the CNS and discuss the intriguing properties of this receptor which, structurally shows all the facets of a typical ionotropic receptor, but appears to express a metabotropic remit at some key synapses.
Collapse
Affiliation(s)
- Antonio Rodríguez-Moreno
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | | |
Collapse
|
185
|
Suyama S, Hikima T, Sakagami H, Ishizuka T, Yawo H. Synaptic vesicle dynamics in the mossy fiber-CA3 presynaptic terminals of mouse hippocampus. Neurosci Res 2007; 59:481-90. [PMID: 17933408 DOI: 10.1016/j.neures.2007.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/15/2007] [Accepted: 08/31/2007] [Indexed: 11/17/2022]
Abstract
The mossy fiber (MF)-CA3 synapse in the hippocampus is unique in the CNS because of its wide dynamic range of transmitter release during short- and long-term plasticity. The presynaptic mechanisms underlying the fidelity of transmission were investigated for the MF-CA3 synapses. The relative size of readily releasable pool (RRP) of vesicles was estimated by counting the number of docked vesicles at an active zone (AZ) on the transmission electron microscopy (TEM) image. The size of the releasable pool and the exo-endocytosis kinetics were directly measured from individual large MF boutons in hippocampal slices of transgenic mice that selectively express synaptopHluorin (SpH), a pH-sensitive GFP fused to the lumenal aspect of one of the vesicular membrane proteins, VAMP-2, in these boutons. Here we found (1) there are distinct two vesicle pools, the resting pool which is resistant to exocytosis, and the releasable pool, (2) the initially docked vesicles are easily depleted and the RRP is maintained by refilling from the reserve subpopulation of releasable pool ("reserve" releasable pool), and (3) the contribution of rapid reuse of recycled vesicles is relatively small. Therefore, the fidelity of transmission is suggested to be ensured by the rapid refilling rate of RRP.
Collapse
Affiliation(s)
- Shigetomo Suyama
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | | | | | | | | |
Collapse
|
186
|
Pinheiro PS, Perrais D, Coussen F, Barhanin J, Bettler B, Mann JR, Malva JO, Heinemann SF, Mulle C. GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 2007; 104:12181-6. [PMID: 17620617 PMCID: PMC1924597 DOI: 10.1073/pnas.0608891104] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Indexed: 01/25/2023] Open
Abstract
Presynaptic ionotropic glutamate receptors are emerging as key players in the regulation of synaptic transmission. Here we identify GluR7, a kainate receptor (KAR) subunit with no known function in the brain, as an essential subunit of presynaptic autoreceptors that facilitate hippocampal mossy fiber synaptic transmission. GluR7(-/-) mice display markedly reduced short- and long-term synaptic potentiation. Our data suggest that presynaptic KARs are GluR6/GluR7 heteromers that coassemble and are localized within synapses. We show that recombinant GluR6/GluR7 KARs exhibit low sensitivity to glutamate, and we provide evidence that presynaptic KARs at mossy fiber synapses are likely activated by high concentrations of glutamate. Overall, from our data, we propose a model whereby presynaptic KARs are localized in the presynaptic active zone close to release sites, display low affinity for glutamate, are likely Ca(2+)-permeable, are activated by single release events, and operate within a short time window to facilitate the subsequent release of glutamate.
Collapse
Affiliation(s)
- Paulo S. Pinheiro
- *Laboratoire “Physiologie Cellulaire de la Synapse,” Centre National de la Recherche Scientifique, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
- Center for Neuroscience and Cell Biology of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - David Perrais
- *Laboratoire “Physiologie Cellulaire de la Synapse,” Centre National de la Recherche Scientifique, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | - Françoise Coussen
- *Laboratoire “Physiologie Cellulaire de la Synapse,” Centre National de la Recherche Scientifique, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | - Jacques Barhanin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Bernhard Bettler
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Jeffrey R. Mann
- Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - João O. Malva
- Center for Neuroscience and Cell Biology of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Stephen F. Heinemann
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Christophe Mulle
- *Laboratoire “Physiologie Cellulaire de la Synapse,” Centre National de la Recherche Scientifique, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| |
Collapse
|
187
|
Willoughby D, Cooper DMF. Organization and Ca2+Regulation of Adenylyl Cyclases in cAMP Microdomains. Physiol Rev 2007; 87:965-1010. [PMID: 17615394 DOI: 10.1152/physrev.00049.2006] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adenylyl cyclases are variously regulated by G protein subunits, a number of serine/threonine and tyrosine protein kinases, and Ca2+. In some physiological situations, this regulation can be readily incorporated into a hormonal cascade, controlling processes such as cardiac contractility or neurotransmitter release. However, the significance of some modes of regulation is obscure and is likely only to be apparent in explicit cellular contexts (or stages of the cell cycle). The regulation of many of the ACs by the ubiquitous second messenger Ca2+provides an overarching mechanism for integrating the activities of these two major signaling systems. Elaborate devices have been evolved to ensure that this interaction occurs, to guarantee the fidelity of the interaction, and to insulate the microenvironment in which it occurs. Subcellular targeting, as well as a variety of scaffolding devices, is used to promote interaction of the ACs with specific signaling proteins and regulatory factors to generate privileged domains for cAMP signaling. A direct consequence of this organization is that cAMP will exhibit distinct kinetics in discrete cellular domains. A variety of means are now available to study cAMP in these domains and to dissect their components in real time in live cells. These topics are explored within the present review.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
188
|
Chevaleyre V, Heifets BD, Kaeser PS, Südhof TC, Castillo PE. Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron 2007; 54:801-12. [PMID: 17553427 PMCID: PMC2001295 DOI: 10.1016/j.neuron.2007.05.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 04/13/2007] [Accepted: 05/18/2007] [Indexed: 11/25/2022]
Abstract
Endocannabinoids (eCBs) have emerged as key activity-dependent signals that, by activating presynaptic cannabinoid receptors (i.e., CB1) coupled to G(i/o) protein, can mediate short-term and long-term synaptic depression (LTD). While the presynaptic mechanisms underlying eCB-dependent short-term depression have been identified, the molecular events linking CB1 receptors to LTD are unknown. Here we show in the hippocampus that long-term, but not short-term, eCB-dependent depression of inhibitory transmission requires presynaptic cAMP/PKA signaling. We further identify the active zone protein RIM1alpha as a key mediator of both CB1 receptor effects on the release machinery and eCB-dependent LTD in the hippocampus. Moreover, we show that eCB-dependent LTD in the amygdala and hippocampus shares major mechanistic features. These findings reveal the signaling pathway by which CB1 receptors mediate long-term effects of eCBs in two crucial brain structures. Furthermore, our results highlight a conserved mechanism of presynaptic plasticity in the brain.
Collapse
Affiliation(s)
- Vivien Chevaleyre
- Dept. of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 104612
| | - Boris D. Heifets
- Dept. of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 104612
| | - Pascal S. Kaeser
- Center for Basic Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Thomas C. Südhof
- Center for Basic Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pablo E. Castillo
- Dept. of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 104612
| |
Collapse
|
189
|
Gundlfinger A, Bischofberger J, Johenning FW, Torvinen M, Schmitz D, Breustedt J. Adenosine modulates transmission at the hippocampal mossy fibre synapse via direct inhibition of presynaptic calcium channels. J Physiol 2007; 582:263-77. [PMID: 17478533 PMCID: PMC2075290 DOI: 10.1113/jphysiol.2007.132613] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The modulation of synaptic transmission by presynaptic ionotropic and metabotropic receptors is an important means to control and dynamically adjust synaptic strength. Even though synaptic transmission and plasticity at the hippocampal mossy fibre synapse are tightly controlled by presynaptic receptors, little is known about the downstream signalling mechanisms and targets of the different receptor systems. In the present study, we identified the cellular signalling cascade by which adenosine modulates mossy fibre synaptic transmission. By means of electrophysiological and optical recording techniques, we found that adenosine activates presynaptic A1 receptors and reduces Ca2+ influx into mossy fibre terminals. Ca2+ currents are directly modulated via a membrane-delimited pathway and the reduction of presynaptic Ca2+ influx can explain the inhibition of synaptic transmission. Specifically, we found that adenosine modulates both P/Q- and N-type presynaptic voltage-dependent Ca2+ channels and thereby controls transmitter release at the mossy fibre synapse.
Collapse
Affiliation(s)
- A Gundlfinger
- Neurowissenschaftliches Forschungszentrum der Charité, Universitätsmedizin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
190
|
López de Armentia M, Sah P. Bidirectional synaptic plasticity at nociceptive afferents in the rat central amygdala. J Physiol 2007; 581:961-70. [PMID: 17379642 PMCID: PMC2170827 DOI: 10.1113/jphysiol.2006.121822] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamatergic inputs arising from the parabrachial nucleus to neurons in the lateral sector of the central amygdala were studied in vitro. Tetanic stimulation of these inputs led to LTP that did not require activation of NMDA receptors or a rise of postsynaptic calcium. LTP was accompanied by a reduction in the paired-pulse ratio, indicating that LTP results from an increase in transmitter release probability. Activation of adenylyl cyclase with forskolin potentiated these inputs with a similar reduction in paired-pulse facilitation and occluded LTP induction. LTP was inhibited by the protein kinase A blocker H89. Low-frequency stimulation led to LTD that required activation of postsynaptic NMDA receptors and a rise in postsynaptic calcium. There was no change in paired-pulse facilitation with LTD. LTD was blocked by protein phosphatase blockers calyculin and okadaic acid. We conclude that parabrachial inputs to the lateral sector of the central amygdala show presynaptic LTP that requires activation of a presynaptic protein kinase A via a calcium-dependent adenylyl cyclase while LTD at the same synapses is postsynaptic and requires a rise in postsynaptic calcium and activation of protein phosphatase.
Collapse
|
191
|
Krauter EM, Linden DR, Sharkey KA, Mawe GM. Synaptic plasticity in myenteric neurons of the guinea-pig distal colon: presynaptic mechanisms of inflammation-induced synaptic facilitation. J Physiol 2007; 581:787-800. [PMID: 17363386 PMCID: PMC2075198 DOI: 10.1113/jphysiol.2007.128082] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to investigate the pre- and postsynaptic mechanisms that contribute to synaptic facilitation in the myenteric plexus of the trinitrobenzene sulphonic acid-inflamed guinea-pig distal colon. Intracellular recordings of evoked fast excitatory postsynaptic potentials (fEPSPs) in myenteric S neurons were evaluated, and the density of synaptic terminals was morphometrically analysed by transmission electron microscopy. In inflamed tissue, fEPSPs were reduced to control levels by the protein kinase A (PKA) inhibitor, H89, but H89 did not affect the fEPSPs in control tissue. This PKA activation in inflamed tissue did not appear to involve 5-HT(4) receptors because the antagonist/inverse agonist, GR 125487, caused comparable decreases of fEPSPs in both tissues. Inhibition of BK channels with iberiotoxin did not alter the fEPSPs in inflamed tissue, but increased the fEPSPs in control tissue to the amplitude detected in inflamed tissue. During trains of stimuli, run-down of EPSPs was less extensive in inflamed tissue and there was a significant increase in the paired pulse ratio. Depolarizations in response to exogenous neurotransmitters were not altered in inflamed tissue. These inflammation-induced changes were not accompanied by alterations in the pharmacological profile of EPSPs, and no changes in synaptic density were detected by electron microscopy. Collectively, these data indicate that synaptic facilitation in the inflamed myenteric plexus involves a presynaptic increase in PKA activity, possibly involving an inhibition of BK channels, and an increase in the readily releasable pool of synaptic vesicles.
Collapse
Affiliation(s)
- Eric M Krauter
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
192
|
Suto F, Tsuboi M, Kamiya H, Mizuno H, Kiyama Y, Komai S, Shimizu M, Sanbo M, Yagi T, Hiromi Y, Chédotal A, Mitchell KJ, Manabe T, Fujisawa H. Interactions between Plexin-A2, Plexin-A4, and Semaphorin 6A Control Lamina-Restricted Projection of Hippocampal Mossy Fibers. Neuron 2007; 53:535-47. [PMID: 17296555 DOI: 10.1016/j.neuron.2007.01.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/13/2006] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Hippocampal mossy fibers project preferentially to the stratum lucidum, the proximal-most lamina of the suprapyramidal region of CA3. The molecular mechanisms that govern this lamina-restricted projection are still unknown. We examined the projection pattern of mossy fibers in mutant mice for semaphorin receptors plexin-A2 and plexin-A4, and their ligand, the transmembrane semaphorin Sema6A. We found that plexin-A2 deficiency causes a shift of mossy fibers from the suprapyramidal region to the infra- and intrapyramidal regions, while plexin-A4 deficiency induces inappropriate spreading of mossy fibers within CA3. We also report that the plexin-A2 loss-of-function phenotype is genetically suppressed by Sema6A loss of function. Based on these results, we propose a model for the lamina-restricted projection of mossy fibers: the expression of plexin-A4 on mossy fibers prevents them from entering the Sema6A-expressing suprapyramidal region of CA3 and restricts them to the proximal-most part, where Sema6A repulsive activity is attenuated by plexin-A2.
Collapse
Affiliation(s)
- Fumikazu Suto
- Division of Developmental Genetics, National Institute of Genetics, Mishima 411-8540, Japan; CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Pelkey KA, Topolnik L, Lacaille JC, McBain CJ. Compartmentalized Ca(2+) channel regulation at divergent mossy-fiber release sites underlies target cell-dependent plasticity. Neuron 2007; 52:497-510. [PMID: 17088215 DOI: 10.1016/j.neuron.2006.08.032] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/04/2006] [Accepted: 08/31/2006] [Indexed: 10/23/2022]
Abstract
Hippocampal mossy fibers (MFs) innervate CA3 targets via anatomically distinct presynaptic elements: MF boutons (MFBs) innervate pyramidal cells (PYRs), whereas filopodial extensions (Fils) of MFBs innervate st. lucidum interneurons (SLINs). Surprisingly, the same high-frequency stimulation (HFS) protocol induces presynaptically expressed LTP and LTD at PYR and SLIN inputs, respectively. This differential distribution of plasticity indicates that neighboring, functionally divergent presynaptic elements along the same axon serve as autonomous computational elements capable of modifying release independently. Indeed we report that HFS persistently depresses voltage-gated calcium channel (VGCC) function in Fil terminals, leaving MFB VGCCs unchanged despite similar contributions of N- and P/Q-type VGCCs to transmission at each terminal. Selective Fil VGCC depression results from HFS-induced mGluR7 activation leading to persistent P/Q-type VGCC inhibition. Thus, mGluR7 localization to MF-SLIN terminals and not MFBs allows for MF-SLIN LTD expression via depressed presynaptic VGCC function, whereas MF-PYR plasticity proceeds independently of VGCC alterations.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Building 35, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
194
|
Jaffe DB, Gutiérrez R. Mossy fiber synaptic transmission: communication from the dentate gyrus to area CA3. PROGRESS IN BRAIN RESEARCH 2007; 163:109-32. [PMID: 17765714 DOI: 10.1016/s0079-6123(07)63006-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Communication between the dentate gyrus (DG) and area CA3 of the hippocampus proper is transmitted via axons of granule cells--the mossy fiber (MF) pathway. In this review we discuss and compare the properties of transmitter release from the MFs onto pyramidal neurons and interneurons. An examination of the anatomical connectivity from DG to CA3 reveals a surprising interplay between excitation and inhibition for this circuit. In this respect it is particularly relevant that the major targets of the MFs are interneurons and that the consequence of MF input into CA3 may be inhibitory or excitatory, conditionally dependent on the frequency of input and modulatory regulation. This is further complicated by the properties of transmitter release from the MFs where a large number of co-localized transmitters, including GABAergic inhibitory transmitter release, and the effects of presynaptic modulation finely tune transmitter release. A picture emerges that extends beyond the hypothesis that the MFs are simply "detonators" of CA3 pyramidal neurons; the properties of synaptic information flow from the DG have more subtle and complex influences on the CA3 network.
Collapse
Affiliation(s)
- David B Jaffe
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
195
|
Deng PY, Lei S. Long-term depression in identified stellate neurons of juvenile rat entorhinal cortex. J Neurophysiol 2006; 97:727-37. [PMID: 17135466 DOI: 10.1152/jn.01089.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The entorhinal cortex (EC) serves as a gateway to the hippocampus and plays a pivotal role in memory processing in the brain. Superficial layers of the EC convey the cortical input projections to the hippocampus, whereas deep layers of the EC relay hippocampal output projections back to the superficial layers of the EC or to other cortical regions. Whereas the EC expresses long-term potentiation (LTP) and depression (LTD), the underlying cellular and molecular mechanisms have not been determined. Because the axons of the stellate neurons in layer II of the EC form the perforant path that innervates the dentate gyrus granule cells of the hippocampus, we studied the mechanisms underlying the long-term plasticity in identified stellate neurons. Application of high-frequency stimulation (100 Hz for 1 s, repeated 3 times at an interval of 10 s) or forskolin (50 microM) failed to induce significant changes in synaptic strength, whereas application of pairing (presynaptic stimulation at 0.33 Hz paired with postsynaptic depolarization from -60 to -10 mV for 5 min) or low-frequency stimulation (LFS, 1 Hz for 15 min) paradigm-induced LTD. Pairing- or LFS-induced LTDs were N-methyl-D-aspartate receptor-dependent and occluded each other suggesting that they have the similar cellular mechanism. Pairing-induced LTD required the activity of calcineurin and involved AMPA receptor endocytosis that required the function of ubiquitin-proteasome system. Our study provides a cellular mechanism that might in part explain the role of the EC in memory.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | |
Collapse
|
196
|
Kobayashi K, Suzuki H. Dopamine selectively potentiates hippocampal mossy fiber to CA3 synaptic transmission. Neuropharmacology 2006; 52:552-61. [PMID: 17049952 DOI: 10.1016/j.neuropharm.2006.08.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/30/2006] [Accepted: 08/23/2006] [Indexed: 11/18/2022]
Abstract
Dopamine has been implicated in various brain functions and the pathology of neurological diseases. In the hippocampus, dopamine has been shown to induce acute depression of synaptic transmission in the CA1 region, but it remains largely unknown how it works in the CA3 region. We here report that dopamine induces acute synaptic potentiation at the synapse formed by mossy fibers (MFs) on mouse hippocampal CA3 pyramidal cells, but not at converging associational/commissural synapses. Dopamine potentiated both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) components of MF synaptic responses similarly in respect of the magnitude and time course. The dopamine-induced potentiation was intact in the presence of picrotoxin, required activation of D(1)-like receptors and was apparently occluded by an activator of adenylate cyclase. The potentiation was accompanied by a decrease in magnitude of synaptic facilitation, suggesting the presynaptic site for the expression of the potentiation. The present study is the first demonstration of acute potentiation of hippocampal excitatory synaptic transmission by dopamine, which is most probably mediated by presynaptic D(1)-like receptor-cAMP cascades.
Collapse
Affiliation(s)
- Katsunori Kobayashi
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | |
Collapse
|
197
|
Negrete-Díaz JV, Sihra TS, Delgado-García JM, Rodríguez-Moreno A. Kainate Receptor–Mediated Inhibition of Glutamate Release Involves Protein Kinase A in the Mouse Hippocampus. J Neurophysiol 2006; 96:1829-37. [PMID: 16807342 DOI: 10.1152/jn.00280.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms involved in the inhibition of glutamate release mediated by the activation of presynaptic kainate receptors (KARs) at the hippocampal mossy fiber–CA3 synapse are not well understood. We have observed a long-lasting inhibition of CA3 evoked excitatory postsynaptic currents (eEPSCs) after a brief application of kainate (KA) at concentrations ranging from 0.3 to 10 μM. The inhibition outlasted the change in holding current caused by the activation of ionotropic KARs in CA3 pyramidal cells, indicating that this action is not contingent on the opening of the receptor channels. The inhibition of the eEPSCs by KA was prevented by G protein and protein kinase A (PKA) inhibitors and was enhanced after stimulation of the adenylyl cyclase (AC) with forskolin. We conclude that KARs present at mossy fiber terminals mediate the inhibition of glutamate release through a metabotropic mechanism that involves the activation of an AC-second messenger cAMP-PKA signaling cascade.
Collapse
|
198
|
Liu SJ, Lachamp P. The activation of excitatory glutamate receptors evokes a long-lasting increase in the release of GABA from cerebellar stellate cells. J Neurosci 2006; 26:9332-9. [PMID: 16957089 PMCID: PMC6674499 DOI: 10.1523/jneurosci.2929-06.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The excitability of a neuron is regulated by the balance of excitatory and inhibitory inputs that impinge on it. Such modulation can occur either presynaptically or postsynaptically. Here, we show that an excitatory transmitter can increase the release of an inhibitory transmitter and thus paradoxically produces a long-lasting enhancement of inhibitory synaptic transmission. This occurs at a near-physiological temperature. These findings from cerebellar stellate neurons reveal a novel form of long-term potentiation that is induced by the activation of NMDA-type glutamate receptors and that requires both glutamate and glycine. Our results indicate that Ca2+ entry into the presynaptic terminals during the activation of presynaptic NMDARs is necessary to induce the potentiation. This presynaptic modulation provides a mechanism by which an excitatory transmitter can induce a long-term increase in the release of an inhibitory transmitter and thus modify the activity of a simple neuronal circuit.
Collapse
Affiliation(s)
- Siqiong June Liu
- Department of Biology, Pennsylvania State University, State College, Pennsylvania 16802, USA.
| | | |
Collapse
|
199
|
Zhao MG, Ko SW, Wu LJ, Toyoda H, Xu H, Quan J, Li J, Jia Y, Ren M, Xu ZC, Zhuo M. Enhanced presynaptic neurotransmitter release in the anterior cingulate cortex of mice with chronic pain. J Neurosci 2006; 26:8923-30. [PMID: 16943548 PMCID: PMC6675332 DOI: 10.1523/jneurosci.2103-06.2006] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in learning and memory. Recent studies show that painful stimuli activate the prefrontal cortex and that brain chemistry is altered in this area in patients with chronic pain. Components of the CNS that are involved in pain transmission and modulation, from the spinal cord to the ACC, are very plastic and undergo rapid and long-term changes after injury. Patients suffering from chronic pain often complain of memory and concentration difficulties, but little is known about the neural circuitry underlying these deficits. To address this question, we analyzed synaptic transmission in the ACC from mice with chronic pain induced by hindpaw injection of complete Freund's adjuvant (CFA). In vitro whole-cell patch-clamp recordings revealed a significant enhancement in neurotransmitter release probability in ACC synapses from mice with chronic pain. Trace fear memory, which requires sustained attention and the activity of the ACC, was impaired in CFA-injected mice. Using knock-out mice, we found that calmodulin-stimulated adenylyl cyclases, AC1 and/or AC8, were crucial in mediating the long-lasting enhanced presynaptic transmitter release in the ACC of mice with chronic pain. Our findings provide strong evidence that presynaptic alterations caused by peripheral inflammation contribute to memory impairments after injury.
Collapse
Affiliation(s)
- Ming-Gao Zhao
- Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Department of Pharmacology, Fourth Military Medical University, Xi'an 710032, China, and
| | - Shanelle W Ko
- Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Long-Jun Wu
- Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hiroki Toyoda
- Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hui Xu
- Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Jessica Quan
- Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Jianguo Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yongheng Jia
- Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Ming Ren
- Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zao C. Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, and Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
200
|
Becherer U, Rettig J. Vesicle pools, docking, priming, and release. Cell Tissue Res 2006; 326:393-407. [PMID: 16819626 DOI: 10.1007/s00441-006-0243-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The release of neurotransmitter from synaptic vesicles represents the final event by which presynapses send their chemical signal to the receiving postsynapses. Prior to fusion, synaptic vesicles undergo a series of maturation events, most notably the membrane-delimited docking and priming steps. Physiological and optical experiments with high-time resolution have allowed the distinction of vesicles in different maturation states with respect to fusion, the so-called vesicle pools. In this review, we define the various vesicle pools and discuss pathways leading into and out of these pools. We also provide an overview of an array of proteins that have been identified or are speculated to play a role in the transition between the various vesicle pools.
Collapse
Affiliation(s)
- Ute Becherer
- Universität des Saarlandes, Physiologisches Institut, Gebäude 59, Kirrberger Strasse 8, 66421, Homburg/Saar, Germany
| | | |
Collapse
|