201
|
Eleme K, Taner SB, Onfelt B, Collinson LM, McCann FE, Chalupny NJ, Cosman D, Hopkins C, Magee AI, Davis DM. Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. ACTA ACUST UNITED AC 2004; 199:1005-10. [PMID: 15051759 PMCID: PMC2211882 DOI: 10.1084/jem.20032194] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cell surface proteins major histocompatibility complex (MHC) class I–related chain A (MICA) and UL16-binding proteins (ULBP) 1, 2, and 3 are up-regulated upon infection or tumor transformation and can activate human natural killer (NK) cells. Patches of cross-linked raft resident ganglioside GM1 colocalized with ULBP1, 2, 3, or MICA, but not CD45. Thus, ULBPs and MICA are expressed in lipid rafts at the cell surface. Western blotting revealed that glycosylphosphatidylinositol (GPI)-anchored ULBP3 but not transmembrane MICA, MHC class I protein, or transferrin receptor, accumulated in detergent-resistant membranes containing GM1. Thus, MICA may have a weaker association with lipid rafts than ULBP3, yet both proteins accumulate at an activating human NK cell immune synapse. Target cell lipid rafts marked by green fluorescent protein–tagged GPI also accumulate with ULBP3 at some synapses. Electron microscopy reveals constitutive clusters of ULBP at the cell surface. Regarding a specific molecular basis for the organization of these proteins, ULBP1, 2, and 3 and MICA are lipid modified. ULBP1, 2, and 3 are GPI anchored, and we demonstrate here that MICA is S-acylated. Finally, expression of a truncated form of MICA that lacks the putative site for S-acylation and the cytoplasmic tail can be expressed at the cell surface, but is unable to activate NK cells.
Collapse
Affiliation(s)
- Konstantina Eleme
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Filipp D, Leung BL, Zhang J, Veillette A, Julius M. Enrichment of Lck in Lipid Rafts Regulates Colocalized Fyn Activation and the Initiation of Proximal Signals through TCRαβ. THE JOURNAL OF IMMUNOLOGY 2004; 172:4266-74. [PMID: 15034040 DOI: 10.4049/jimmunol.172.7.4266] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent results provide insight into the temporal and spatial relationship governing lck-dependent fyn activation and demonstrate TCR/CD4-induced activation and translocation of lck into lipid rafts and the ensuing activation of colocalized fyn. The prediction follows that directly targeting lck to lipid rafts will bypass the requirement for juxtaposing TCR and CD4-lck, and rescue cellular activation mediated by Ab specific for the constant region of TCRbeta chain. The present study uses a family of murine IL-2-dependent CD4(+) T cell clonal variants in which anti-TCRCbeta signaling is impaired in an lck-dependent fashion. Importantly, these variants respond to Ag- and mAb-mediated TCR-CD4 coaggregation, both of which enable the coordinated interaction of CD4-associated lck with the TCR/CD3 complex. We have previously demonstrated that anti-TCRCbeta responsiveness in this system correlates with the presence of kinase-active, membrane-associated lck and preformed hypophosphorylated TCRzeta:zeta-associated protein of 70 kDa complexes, a phenotype recapitulated in primary resting CD4(+) T cells. We show in this study that forced expression of wild-type lck achieved the same basal composition of the TCR/CD3 complex and yet did not rescue anti-TCRCbeta signaling. In contrast, forced expression of C20S/C23S-mutated lck (double-cysteine lck), unable to bind CD4, rescues anti-TCRCbeta proximal signaling and cellular growth. Double-cysteine lck targets lipid rafts, colocalizes with >98% of cellular fyn, and results in a 7-fold increase in basal fyn kinase activity. Coaggregation of CD4 and TCR achieves the same outcome. These results underscore the critical role of lipid rafts in spatially coordinating the interaction between lck and fyn that predicates proximal TCR/CD3 signaling.
Collapse
MESH Headings
- Animals
- CD4 Antigens/metabolism
- CD4 Antigens/physiology
- Cell Aggregation/genetics
- Cell Aggregation/immunology
- Clone Cells
- Enzyme Activation/genetics
- Enzyme Activation/immunology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/biosynthesis
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Male
- Membrane Microdomains/enzymology
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Mice
- Mice, Inbred C57BL
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-fyn
- Receptor Aggregation/genetics
- Receptor Aggregation/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Dominik Filipp
- Sunnybrook and Women's College Health Sciences Center and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
203
|
Starr TK, Daniels MA, Lucido MM, Jameson SC, Hogquist KA. Thymocyte sensitivity and supramolecular activation cluster formation are developmentally regulated: a partial role for sialylation. THE JOURNAL OF IMMUNOLOGY 2004; 171:4512-20. [PMID: 14568924 DOI: 10.4049/jimmunol.171.9.4512] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TCR reactivity is tuned during thymic development. Immature thymocytes respond to low-affinity self-ligands resulting in positive selection. Following differentiation, T cells no longer respond to low-affinity ligands, but respond well to high-affinity (foreign) ligands. We show in this study that this response includes integrin activation, supramolecular activation cluster formation, Ca(2+) flux, and CD69 expression. Because glycosylation patterns are known to change during T cell development, we tested whether alterations in sialylation influence CD8 T cell sensitivity to low affinity TCR ligands. Using neuraminidase treatment or genetic deficiency in the ST3Gal-I sialyltransferase, we show that desialylation of mature CD8 T cells enhances their sensitivity to low-affinity ligands, although these treatments do not completely recapitulate the dynamic range of immature T cells. These studies identify sialylation as one of the factors that regulate CD8 T cell tuning during development.
Collapse
Affiliation(s)
- Timothy K Starr
- Center for Immunology, Laboratory of Medicine and Pathology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | | | | |
Collapse
|
204
|
Bonvini E, DeBell KE, Verí MC, Graham L, Stoica B, Laborda J, Aman MJ, DiBaldassarre A, Miscia S, Rellahan BL. On the mechanism coupling phospholipase Cgamma1 to the B- and T-cell antigen receptors. ADVANCES IN ENZYME REGULATION 2004; 43:245-69. [PMID: 12791395 DOI: 10.1016/s0065-2571(02)00033-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ezio Bonvini
- Division of Monoclonal Antibodies, Center for Biologics Evaluation & Research, US-FDA, HFM-564, NIH Campus, Bldg.29B/Rm.3NN10, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Minetti G, Ciana A, Balduini C. Differential sorting of tyrosine kinases and phosphotyrosine phosphatases acting on band 3 during vesiculation of human erythrocytes. Biochem J 2004; 377:489-97. [PMID: 14527338 PMCID: PMC1223870 DOI: 10.1042/bj20031401] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 10/06/2003] [Indexed: 01/02/2023]
Abstract
One of the most intensively studied post-translational modifications of erythrocyte proteins is the phosphorylation of tyrosine residues of band 3, which is strictly regulated in vivo by PTKs (protein-tyrosine kinases) and PTPs (protein-phosphotyrosine phosphatases). Two PTKs (p72(syk) and p56/53(lyn)) and two PTP activities (PTP1B and SHPTP-2) have been immunologically identified so far in mature human erythrocytes. We have shown previously that band 3 undergoes tyrosine phosphorylation upon a decrease in cell volume, as occurs when erythrocytes treated with Ca(2+)/Ca(2+) ionophore (A23187) lose KCl and release microvesicles. Similar levels of band 3 tyrosine phosphorylation in vesicles and in the parent cells are induced by this treatment. However, we have found that tyrosine phosphorylation of band 3 in vesicles is more stable than in whole erythrocytes. Examination of how the identified PTPs and PTKs are partitioned between the vesicles and the remnant cells during vesiculation reveals that PTP1B, unlike the PTKs, is retained entirely in the parent cell compartment. Since a tight association between PTP1B and band 3 has been documented previously, we have investigated the partitioning of PTP1B and band 3 between the membrane and the membrane-skeletal fractions prepared from resting or Ca(2+)/A23187-treated cells. Our results rule out the possibility that the preferential retention of PTP1B within the cell was due to an increase in the amount of membrane-skeleton-associated band 3 (and of PTP1B) during the release of spectrin-free vesicles, suggesting a more complex modality of interaction of PTP1B with band 3 in the erythrocyte membrane. Analysis of erythrocytes of different cell ages revealed that PTP1B, unlike the other enzymes examined, was quantitatively conserved during erythrocyte aging. This suggests important roles for the down-regulation of tyrosine phosphorylation of band 3 in erythrocyte physiology, and for vesiculation as a mechanism of human erythrocyte senescence.
Collapse
Affiliation(s)
- Giampaolo Minetti
- Università di Pavia, Dipartimento di Biochimica A. Castellani, Sezione di Scienze, via Bassi 21, I-27100 Pavia, Italy.
| | | | | |
Collapse
|
206
|
Abstract
While the basic cellular contributions to bone differentiation and mineralization are widely accepted, the regulation of these processes at the intracellular level remains inadequately understood. Our laboratory recently identified annexin 2 as a protein involved in osteoblastic mineralization. Annexin 2 was overexpressed twofold in SaOSLM2 osteoblastic cells as a fusion protein with green fluorescent protein. The overexpression of annexin 2 led to an increase in alkaline phosphatase activity as well as an increase in mineralization. Our data suggest that the increase in alkaline phosphatase activity does not result from increased alkaline phosphatase transcript or protein levels; therefore we evaluated mechanism of action. We determined that both annexin 2 and alkaline phosphatase activity were localized to membrane microdomains called lipid rafts in osteoblastic cells. Annexin 2 overexpression resulted in an increase in alkaline phosphatase activity that was associated with lipid microdomains in a cholesterol-dependent manner. Furthermore, disruption of lipid rafts with a cholesterol sequestering agent or reduction of annexin 2 expression by specific antisense oligonucleotides each resulted in diminished mineralization. Therefore, intact lipid rafts containing annexin 2 appear to be important for alkaline phosphatase activity and may facilitate the osteoblastic mineralization process.
Collapse
Affiliation(s)
- Jennifer M Gillette
- Department of Cellular and Developmental Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
207
|
Tu X, Huang A, Bae D, Slaughter N, Whitelegge J, Crother T, Bickel PE, Nel A. Proteome Analysis of Lipid Rafts in Jurkat Cells Characterizes a Raft Subset That Is Involved in NF-κB Activation. J Proteome Res 2004; 3:445-54. [PMID: 15253425 DOI: 10.1021/pr0340779] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lipid rafts are detergent-insoluble membrane domains that play a key role in signal transduction by the T-cell antigen receptor. Proteome analysis revealed the presence of amidosulfobetaine-soluble signal transducing, integral membrane, cytoskeletal, heat shock, and GTP-binding proteins in rafts prepared from Jurkat cells. Several of these proteins were recruited to rafts by CD3/CD28 costimulation. Of particular interest is the inducible association of activated IkappaB kinase complexes with raft vesicles that could be captured with anti-flotillin-1 antibodies. Following amidosulfobetaine solubilization, flotillin-beta and IKKbeta underwent reciprocal co-immunoprecipitation. Treatment of Jurkat cells with methyl-beta-cyclodextrin disrupted the assembly and activation of this raft complex and also interfered in CD3/ CD28-induced activation of a NF-kappaB response element in the IL-2 promoter.
Collapse
Affiliation(s)
- Xiaolin Tu
- Division of Clinical Immunology and Allergy, Department of Medicine, The Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
The isolation of subfractions of cell membranes on the basis of their solubility in non-ionic detergents has led to the discovery of lipid domain structure in membranes. Detergents used for this purpose include Triton, Brij, Lubrol and CHAPS. Different lipid constituents are known to resist solubilization by different detergents and the resulting fractions may associate with different membrane proteins. In general, the detergent-resistant membrane fractions tend to be dominated by saturated molecular species of sphingomyelin and phosphatidylcholine and invariably include significant proportions of cholesterol. The lipid composition is consistent with formation of liquid-ordered phases. The present evidence favours a model in which the lateral segregation of membrane proteins takes place on the basis of their affinity for liquid-ordered lipid domains within the membrane.
Collapse
Affiliation(s)
- Kamen S Koumanov
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
209
|
Abstract
In the last few years it has become clear that in cells of the immune system, specialized microdomains present in the plasma membrane, called lipid rafts, have been found to play a central role in regulating signalling by immune receptors. Recent studies have looked at whether lipid rafts may be connected to the abnormalities in signalling seen in T lymphocytes isolated from patients with systemic lupus erythematosus (SLE). These early findings show that in SLE T cells, the expression and protein composition of lipid rafts is different when compared with normal T cells. These results also demonstrate changes in the function and localization of critical signalling molecules such as the LCK tyrosine kinase and the CD45 tyrosine phosphatase.
Collapse
Affiliation(s)
- E C Jury
- Centre for Rheumatology, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
210
|
Li H, Ayer LM, Lytton J, Deans JP. Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem 2003; 278:42427-42434. [PMID: 12920111 DOI: 10.1074/jbc.m308802200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
B cell activation requires sustained elevation of cytoplasmic free calcium, achieved by influx through store-operated calcium (SOC) channels. The molecular identity of these channels is not known. Ectopic expression of the raft-associated tetraspan protein CD20 in Chinese hamster ovary cells introduced a novel SOC entry pathway that was permeable to strontium as well as to calcium. The activity of this SOC pathway was abolished by deletion of a cytoplasmic sequence in CD20 essential for its efficient raft localization. Strontium-permeable SOC channels were detected in B cells, and B cell receptor-stimulated influx was significantly reduced by downregulation of CD20 expression using short interfering RNA and also by cholesterol depletion. This is the first evidence that raft-associated CD20 constitutes a component of a SOC entry pathway activated by the B cell receptor.
Collapse
Affiliation(s)
- Haidong Li
- Immunology Research Group, Department of Biochemistry and Molecular Biology, University of Calgary Health Sciences Center, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
211
|
Fülöp T, Larbi A, Dupuis G, Pawelec G. Ageing, autoimmunity and arthritis: Perturbations of TCR signal transduction pathways with ageing - a biochemical paradigm for the ageing immune system. Arthritis Res Ther 2003; 5:290-302. [PMID: 14680505 PMCID: PMC333419 DOI: 10.1186/ar1019] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 10/01/2003] [Accepted: 10/13/2003] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that cell-mediated immune functions decline with age, rendering an individual more susceptible to infection and possibly cancer, as well as to age-associated autoimmune diseases. The exact causes of T-cell functional decline are not known. One possible cause could be the development of defects in the transduction of mitogenic signals following TCR stimulation. This T-cell hyporesponsiveness due to defects of signalling through the TCR either from healthy elderly subjects or from individuals with autoimmune diseases such as rheumatoid arthritis or systemic lupus erythematosus results in an impaired ability to mount efficient immune responses and to maintain responsiveness to foreign antigens. This implies that a high proportion of autoreactive T cells might accumulate either intrathymically or in the periphery. T-cell anergy and differential TCR signalling could thus also be key players in the disruption of tolerance and the onset of autoimmune diseases. The increasing number of the elderly may lead to an increase of clinically important autoimmune diseases. We will review the signal transduction changes through the TCR-CD3 complex in T lymphocytes from healthy elderly subjects, which result in a modification of the activation of transcription factors involved in IL-2 gene expression leading to decreased IL-2 production. The putative contribution of altered T-cell signalling with ageing in the development of autoimmune diseases will be also discussed.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Research Center on Ageing, Sherbrooke Geriatric University Institute, University of Sherbrooke, Quebec, Canada.
| | | | | | | |
Collapse
|
212
|
Stüven E, Porat A, Shimron F, Fass E, Kaloyanova D, Brügger B, Wieland FT, Elazar Z, Helms JB. Intra-Golgi protein transport depends on a cholesterol balance in the lipid membrane. J Biol Chem 2003; 278:53112-22. [PMID: 14561753 DOI: 10.1074/jbc.m300402200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transport of proteins between intracellular membrane compartments is mediated by a protein machinery that regulates the budding and fusion processes of individual transport steps. Although the core proteins of both processes are defined at great detail, much less is known about the involvement of lipids. Here we report that changing the cellular balance of cholesterol resulted in changes of the morphology of the Golgi apparatus, accompanied by an inhibition of protein transport. By using a well characterized cell-free intra-Golgi transport assay, these observations were further investigated, and it was found that the transport reaction is sensitive to small changes in the cholesterol content of Golgi membranes. Addition as well as removal of cholesterol (10 +/- 6%) to Golgi membranes by use of methyl-beta-cyclodextrin specifically inhibited the intra-Golgi transport assay. Transport inhibition occurred at the fusion step. Modulation of the cholesterol content changed the lipid raft partitioning of phosphatidylcholine and heterotrimeric G proteins, but not of other (non) lipid raft proteins and lipids. We suggest that the cholesterol balance in Golgi membranes plays an essential role in intra-Golgi protein transport and needs to be carefully regulated to maintain the structural and functional organization of the Golgi apparatus.
Collapse
Affiliation(s)
- Ernstpeter Stüven
- Biochemie-Zentrum Heidelberg, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Hare KJ, Pongracz J, Jenkinson EJ, Anderson G. Modeling TCR signaling complex formation in positive selection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2825-31. [PMID: 12960303 DOI: 10.4049/jimmunol.171.6.2825] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell receptor signaling in the thymus can result in positive selection, and hence progressive maturation to the CD4(+)8(-) or CD4(-)8(+) stage, or induction of apoptosis by negative selection. Although it is poorly understood how TCR ligation at the CD4(+)8(+) stage can lead to such different cell fates, it is thought that the strength of signal may play a role in determining the outcome of TCR signaling. In this study, we have characterized the formation of an active signaling complex in thymocytes undergoing positive selection as a result of interaction with thymic epithelial cells. Although this signaling complex involves redistribution of cell surface and intracellular molecules, reminiscent of that observed in T cell activation, accumulation of GM1-containing lipid rafts was not observed. However, enforced expression of the costimulatory molecule CD80 on thymic epithelium induced GM1 polarization in thymocytes, and was accompanied by reduced positive selection and increased apoptosis. We suggest that the presence or absence of CD80 costimulation influences the outcome of TCR signaling in CD4(+)8(+) thymocytes through differential lipid raft recruitment, thus determining overall signal strength and influencing developmental cell fate.
Collapse
MESH Headings
- Animals
- Antigens, CD
- CD3 Complex/metabolism
- Cell Aggregation/genetics
- Cell Aggregation/immunology
- Cell Communication/genetics
- Cell Communication/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Separation
- Epithelial Cells/cytology
- Epithelial Cells/immunology
- G(M1) Ganglioside/metabolism
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Leukocyte Common Antigens/metabolism
- Leukosialin
- Major Histocompatibility Complex/physiology
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Models, Immunological
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Sialoglycoproteins/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Katherine J Hare
- Department of Anatomy, Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom.
| | | | | | | |
Collapse
|
214
|
Rimoldi V, Reversi A, Taverna E, Rosa P, Francolini M, Cassoni P, Parenti M, Chini B. Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains. Oncogene 2003; 22:6054-60. [PMID: 12955084 DOI: 10.1038/sj.onc.1206612] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have recently shown that oxytocin inhibits cell proliferation when the vast majority of oxytocin receptors are excluded from caveolin-1-enriched microdomains, and that, on the contrary, it has a mitogenic effect when the receptors are targeted to these plasma membrane domains. In this study, we investigated whether the receptors located inside and outside caveolar microdomains initiate different signalling pathways and how this may lead to opposite effects on cell proliferation. Our data indicate that, depending on their localization, oxytocin receptors transactivate EGFR and activate ERK1/2 using different signalling intermediates. The final outcome is a different temporal pattern of EGFR and ERK1/2 phosphorylation, which is more persistent when the receptors are located outside caveolar microdomains and inhibit cell growth, and very transient when they are located in caveolar microdomains and stimulate cell growth. Finally, only the activation of receptors located outside caveolar microdomains correlates with the activation of the cell cycle inhibitor p21(WAF1/CIP1), thus suggesting that the antiproliferative OTR effects may, in this case, be achieved by a sustained activation of EGFR and MAPK leading to the induction of this cell cycle regulator.
Collapse
Affiliation(s)
- Valeria Rimoldi
- CNR Institute of Neuroscience, Cellular and Molecular Pharmacology Section, Via Vanvitelli 32, 20129 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK. Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 2003; 21:457-81. [PMID: 12615889 DOI: 10.1146/annurev.immunol.21.120601.141021] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cells of both the adaptive and innate immune systems express a dizzying array of receptors that transduce and integrate an enormous amount of information about the environment that allows the cells to mount effective immune responses. Over the past several years, significant advances have been made in elucidating the molecular details of signal cascades initiated by the engagement of immune cell receptors by their ligands. Recent evidence indicates that immune receptors and components of their signaling cascades are spatially organized and that this spatial organization plays a central role in the initiation and regulation of signaling. A key organizing element for signaling receptors appears to be cholesterol- and sphingolipid-rich plasma membrane microdomains termed lipid rafts. Research into the molecular basis of the spatial segregation and organization of signaling receptors provided by rafts is adding fundamentally to our understanding of the initiation and prolongation of signals in the immune system.
Collapse
Affiliation(s)
- Michelle Dykstra
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | | | | | | | |
Collapse
|
216
|
Ishikawa H, Tsuyama N, Kawano MM. Interleukin-6-induced proliferation of human myeloma cells associated with CD45 molecules. Int J Hematol 2003; 78:95-105. [PMID: 12953802 DOI: 10.1007/bf02983376] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytokines exert multiple biological functions through binding to their specific receptors that triggers activation of intracellular signaling cascades. The cytokine-mediated signals may produce variable and even opposing effects on different cell types, depending on cellular context, which also are dictated by the differentiation stage of the cell. Multiple myeloma is a monoclonal proliferative disorder of human plasma cells. Despite their clonal origin, myeloma cells appear to include mixed subpopulations in accordance with expression of their surface antigens, such as CD45, CD49e, and MPC-1. Although interleukin-6 (IL-6) is widely accepted as the most relevant growth factor for myeloma cells in vitro and in vivo, only a few subpopulations of tumor cells, such as CD45(+)MPC-1(-)CD49e- immature cells, proliferate in response to IL-6. We recently showed that IL-6 efficiently activated both signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase 1/2 (ERK1/2) in CD45- myeloma cell lines, although CD45- cells failed to proliferate in response to IL-6. In contrast, src family protein-tyrosine kinases (PTKs), the most important substrates for CD45 protein-tyrosine phosphatase (PTP) are found activated independently of STAT3 and ERK1/2 activation in CD45+ but not in CD45- myeloma cell lines. Therefore activation of both STAT3 and ERK1/2 is not sufficient for IL-6-induced proliferation of myeloma cells, which requires the src family kinase activation associated with CD45 expression. We propose a mechanism for IL-6-induced cell proliferation that is strictly dependent on the cellular context in myelomas.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan.
| | | | | |
Collapse
|
217
|
Slaughter N, Laux I, Tu X, Whitelegge J, Zhu X, Effros R, Bickel P, Nel A. The flotillins are integral membrane proteins in lipid rafts that contain TCR-associated signaling components: implications for T-cell activation. Clin Immunol 2003; 108:138-51. [PMID: 12921760 DOI: 10.1016/s1521-6616(03)00097-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipid rafts play an important role in signal integration and cellular activation by the T-cell antigen receptor (TCR). We demonstrate that flotillin-1 and flotillin-2 are important structural raft components, which redistribute to the site of TCR engagement. An antibody to flotillin-1 was able to immobilize other TCR-associated raft components. Although rafts purified from unstimulated cells demonstrated abundant Lck but inabundant LAT, rafts from stimulated cells include an abundance of both components. This suggests dynamic changes in lipid raft composition during CD3/CD28 costimulation. Stimulation of primary human CD4(+) T cells leads to increased GM1 and flotillin-1 expression in the surface membrane, where these components colocalize. This may reconstitute new signaling complexes required for T-cell activation. Altered lipid raft composition and function may play a role in the decline of antigen responsiveness in senescent T cells. In this regard, we observed an increase in the raft-associated gangliolipid, GM1, in resting human CD4(+) and CD8(+) lymphocytes with aging.
Collapse
Affiliation(s)
- Ndaisha Slaughter
- Division of Clinical Immunology and Allergy, Department of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Park J, Cho NH, Choi JK, Feng P, Choe J, Jung JU. Distinct roles of cellular Lck and p80 proteins in herpesvirus saimiri Tip function on lipid rafts. J Virol 2003; 77:9041-51. [PMID: 12885920 PMCID: PMC167239 DOI: 10.1128/jvi.77.16.9041-9051.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are proposed to function as platforms for both receptor signaling and trafficking. Following interaction with antigenic peptides, the T-cell receptor (TCR) rapidly translocates to lipid rafts, where it transmits signals and subsequently undergoes endocytosis. The Tip protein of herpesvirus saimiri (HVS), which is a T-lymphotropic tumor virus, interacts with cellular Lck tyrosine kinase and p80, a WD domain-containing endosomal protein. Interaction of Tip with p80 induces enlarged vesicles and recruits Lck and TCR complex into these vesicles for trafficking. We report here that Tip is constitutively present in lipid rafts and that Tip interaction with p80 but not with Lck is necessary for its efficient localization in lipid rafts. The Tip-Lck interaction was required for recruitment of the TCR complex to lipid rafts, and the Tip-p80 interaction was critical for the aggregation and internalization of lipid rafts. These results suggest the potential mechanism for Tip-mediated TCR downregulation: Tip interacts with Lck to recruit TCR complex to lipid rafts, and it subsequently interacts with p80 to initiate the aggregation and internalization of the lipid raft domain and thereby downregulate the TCR complex. Thus, the signaling and targeting functions of HVS Tip rely on two functionally and genetically separable mechanisms that independently target cellular Lck tyrosine kinase and p80 endosomal protein.
Collapse
Affiliation(s)
- Junsoo Park
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
219
|
Yu G, Luo H, Wu Y, Wu J. Ephrin B2 induces T cell costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:106-14. [PMID: 12816988 DOI: 10.4049/jimmunol.171.1.106] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eph kinases form the largest family of receptor tyrosine kinases, and their ligands are ephrins (EFNs), which are cell surface proteins. Some Eph kinases and EFNs are expressed on T cells, B cells, and dendritic cells, but their functions in the immune system are largely unknown. In this study, we investigated the effect of EFNB2 on murine T cells. EFNB2 mRNA was expressed in the cortex of the thymus and white pulp of the spleen. At the protein level, it was expressed on T cells and monocytes/macrophages, but not on B cells. EFNB2Rs were expressed mainly on T cells. Solid-phase EFNB2 along with suboptimal anti-CD3 strongly stimulated T cell proliferation, with concomitant augmentation of IFN-gamma but not IL-2 or IL-4 secretion. The activity of cytotoxic T cells was also significantly enhanced in the presence of solid-phase EFNB2. These results indicate that EFNB2R cross-linking results in costimulation of T cells. EFNB2Rs were normally scattered on the T cell surface; after TCR cross-linking, they rapidly congregated to capped TCR complexes and then to patched rafts. This provides a morphological base for EFNB2Rs to participate in T cell costimulation. We also demonstrated that EFNB2R signaling led to augmented p38 and p44/42 mitogen-activated protein kinase activation. Our study shows that EFNB2 plays important roles in immune regulation.
Collapse
Affiliation(s)
- Guang Yu
- Laboratory of Immunology and. Nephrology Service, Notre Dame Hospital, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | | | | | | |
Collapse
|
220
|
Thomas S, Kumar R, Preda-Pais A, Casares S, Brumeanu TD. A model for antigen-specific T-cell anergy: displacement of CD4-p56(lck) signalosome from the lipid rafts by a soluble, dimeric peptide-MHC class II chimera. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5981-92. [PMID: 12794125 DOI: 10.4049/jimmunol.170.12.5981] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Soluble, dimeric peptide-MHC chimeras were shown to induce Ag-specific T cell anergy in vitro and in vivo. In this study, we describe a mechanism by which a soluble, dimeric peptide MHC class II chimera (DEF) induces Ag-specific T cell anergy. The anergic cells showed a displacement of the CD4-p56(lck) signaling module from the GM1-rich plasma membrane microdomains (lipid rafts), and subsequently an increase in p59(fyn) kinase activity, a dominant expression of p21 inhibitory TCR zeta-chain, and a poor phosphorylation and recruitment of zeta-associated protein of 70 kDa kinase to the TCR's immunoreceptor tyrosine-based activation motifs. The Th1 and Th2 transcription was suppressed and the cells were arrested in the Th0 stage of differentiation. Recovery from DEF anergy occurred late and spontaneously at the expense of low thresholds for activation-induced cell death. In contrast to DEF, a combination of TCR and CD4 mAbs did not induce such alterations or anergy, indicating that the ligand-mediated topology of TCR and CD4 coengagement can differentially affect the T cell function. Our results argue for a model of anergy in which the defective partitioning of signaling molecules in lipid rafts is an early, negative signaling event in T cells. Physiological ligands like DEF chimeras may provide new tools for silencing the autoimmune processes, and may also help in deciphering new mechanisms of negative regulation in T cells.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- CD4 Antigens/biosynthesis
- CD4 Antigens/metabolism
- Clonal Anergy/genetics
- DNA-Binding Proteins/physiology
- Dimerization
- Dose-Response Relationship, Immunologic
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Lymphocyte Activation/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Milk Proteins
- Models, Immunological
- Peptides/genetics
- Peptides/physiology
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/physiology
- Receptors, Interleukin-2/physiology
- Recombinant Fusion Proteins/physiology
- STAT5 Transcription Factor
- Signal Transduction/genetics
- Signal Transduction/immunology
- Solubility
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Trans-Activators/physiology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Sunil Thomas
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
221
|
Kersh EN, Kaech SM, Onami TM, Moran M, Wherry EJ, Miceli MC, Ahmed R. TCR signal transduction in antigen-specific memory CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5455-63. [PMID: 12759421 DOI: 10.4049/jimmunol.170.11.5455] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory T cells are more responsive to Ag than naive cells. To determine whether memory T cells also have more efficient TCR signaling, we compared naive, effector, and memory CD8 T cells of the same antigenic specificity. Surprisingly, initial CD3 signaling events are indistinguishable. However, memory T cells have more extensive lipid rafts with higher phosphoprotein content before TCR engagement. Upon activation in vivo, they more efficiently induce phosphorylation of-LAT (linker for activation of T cells), ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38. Thus, memory CD8 T cells do not increase their TCR sensitivity, but are better poised to augment downstream signals. We propose that this regulatory mechanism might increase signal transduction in memory T cells, while limiting TCR cross-reactivity and autoimmunity.
Collapse
Affiliation(s)
- Ellen N Kersh
- Department of Microbiology and Immunology, Emory Vaccine Center and Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Neuregulin (NRG) regulates synapse formation and synaptic plasticity, but little is known about the regulation of NRG signaling at synapses. Here we show that the NRG receptor ErbB4 was localized in anatomically defined postsynaptic densities in the brain. In cultured cortical neurons, ErbB4 was recruited to the neuronal lipid raft fraction after stimulation by NRG. Along with ErbB4, adaptor proteins Grb2 and Shc were translocated to lipid rafts by NRG stimulation. In transfected human embryonic kidney 293 cells, the partitioning of ErbB4 into a detergent-insoluble fraction that includes lipid rafts was increased by PSD-95 (postsynaptic density-95), through interaction of the ErbB4 C terminus with the PDZ [PSD-95/Discs large/zona occludens-1] domains of PSD-95. Disruption of lipid rafts inhibited NRG-induced activation of Erk and prevented NRG-induced blockade of induction of long-term potentiation at hippocampal CA1 synapses. Thus, our results indicate that NRG stimulation causes translocation of ErbB4 into lipid rafts and that lipid rafts are necessary for signaling by ErbB4.
Collapse
|
223
|
Filipp D, Zhang J, Leung BL, Shaw A, Levin SD, Veillette A, Julius M. Regulation of Fyn through translocation of activated Lck into lipid rafts. J Exp Med 2003; 197:1221-7. [PMID: 12732664 PMCID: PMC2193969 DOI: 10.1084/jem.20022112] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Whether or how the activation of Lck and Fyn during T cell receptor (TCR) signaling is coordinated, and their delivery of function integrated, is unknown. Here we show that lipid rafts function to segregate Lck and Fyn in T cells before activation. Coaggregation of TCR and CD4 leads to Lck activation within seconds outside lipid rafts, followed by its translocation into lipid rafts and the activation of colocalized Fyn. Genetic evidence demonstrates that Fyn activation is strictly dependent on receptor-induced translocation of Lck. These results characterize the interdependence of Lck and Fyn function and establish the spatial and temporal distinctions of their roles in the cellular activation process.
Collapse
Affiliation(s)
- Dominik Filipp
- Sunnybrook and Women's College Health Sciences Centre, and Departmentof Immunology, University of Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | |
Collapse
|
224
|
Jury EC, Kabouridis PS, Abba A, Mageed RA, Isenberg DA. Increased ubiquitination and reduced expression of LCK in T lymphocytes from patients with systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 2003; 48:1343-54. [PMID: 12746907 DOI: 10.1002/art.10978] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To explore regulation of proximal signaling and composition of lipid rafts in T lymphocytes from patients with systemic lupus erythematosus (SLE). METHODS The expression, phosphorylation, and degradation of lipid raft-associated signaling molecules in T lymphocytes from 50 patients with SLE compared with 28 healthy controls and 22 rheumatoid arthritis patients were investigated. Lipid raft and nonraft fractions from T cells were isolated by ultracentrifugation. Proteins in the lipid raft and nonraft fractions were analyzed by Western blotting and probed for phosphotyrosine activity and for LCK, LAT, and CD3 epsilon. Immunoprecipitation experiments were performed to assess protein ubiquitination in T cell lysates. T cell phenotype and levels of intracellular LCK were determined by flow cytometry. RESULTS LCK, an essential signaling molecule for T cell activation, was significantly reduced in both lipid raft and nonraft fractions of T lymphocytes from patients with active SLE compared with controls, and the reduction was independent of treatment. To identify the likely causes of reduced LCK, we explored the possibility that chronic activation of T lymphocytes underlies LCK degradation. The results revealed an increase in protein ubiquitination, and specifically LCK ubiquitination, in T cells from SLE patients. However, our findings suggest that the increase in ubiquitination is independent of T cell activation. CONCLUSION LCK is reduced in T cell lipid rafts from patients with SLE. This reduction appears to be independent of activation and may be associated with abnormal ubiquitin-mediated regulation mechanisms.
Collapse
Affiliation(s)
- Elizabeth C Jury
- Royal Free and University College Medical School, University College, London, UK.
| | | | | | | | | |
Collapse
|
225
|
Kabouridis PS. Selective interaction of LAT (linker of activated T cells) with the open-active form of Lck in lipid rafts reveals a new mechanism for the regulation of Lck in T cells. Biochem J 2003; 371:907-15. [PMID: 12570875 PMCID: PMC1223349 DOI: 10.1042/bj20021578] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 01/15/2003] [Accepted: 02/06/2003] [Indexed: 11/17/2022]
Abstract
In T cells, the lipid raft-associated Lck is strongly tyrosine phosphorylated and has reduced enzymic activity in contrast with the detergent-soluble pool, which has substantial activity. Lck tagged at the C-terminus (Lck/V5-His) was efficiently captured by epitope-specific reagents from the detergent-soluble fraction but not from lipid rafts. Binding was restored following urea denaturation, suggesting that Lck/V5-His is in a 'closed' conformation in these domains. In agreement with this hypothesis, the Tyr(505) --> Phe/V5-His and Arg(154) --> Lys/V5-His mutants, which disrupt the SH2-Tyr(505) intramolecular interaction, were efficiently precipitated from lipid rafts. In contrast to Lck, Fyn/V5-His was precipitated equally well from both fractions. In the LAT(linker of activated T cells)-deficient J.CaM2 cells, Tyr(505) phosphorylation of raft-associated Lck was reduced whereas its enzymic activity was elevated. This correlated with decreased levels of raft-localized Csk (C-terminal Src kinase) kinase. Increased tyrosine phosphorylation of Lck was restored in LAT-reconstituted J.CaM2 cells suggesting that LAT negatively regulates Lck activity in lipid rafts. Co-immunoprecipitation experiments from Tyr(505) --> Phe/V5-His-expressing cells revealed that LAT preferentially interacts with the 'open' form of Lck in T cell raft domains. These results demonstrate that, unlike the non-raft pool, Lck in lipid rafts has a 'closed'-inactive structure, and that LAT plays a role in maintaining this conformation, possibly by facilitating critical associations within lipid rafts via its capacity to interact with the 'open' form of the kinase.
Collapse
Affiliation(s)
- Panagiotis S Kabouridis
- Bone and Joint Research Unit, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
226
|
Nath MD, Ruscetti FW, Petrow-Sadowski C, Jones KS. Regulation of the cell-surface expression of an HTLV-I binding protein in human T cells during immune activation. Blood 2003; 101:3085-92. [PMID: 12506039 DOI: 10.1182/blood-2002-07-2277] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the requirements for human T-cell leukemia virus type I (HTLV-I) entry, including the identity of the cellular receptor(s). Recently, we have generated an HTLV-I surface glycoprotein (SU) immunoadhesin, HTSU-IgG, which binds specifically to cell-surface protein(s) critical for HTLV-I-mediated entry in cell lines. Here, expression of the HTLV-I SU binding protein on primary cells of the immune system was examined. The immunoadhesin specifically bound to adult T cells, B cells, NK cells, and macrophages. Cell stimulation dramatically increased the amount of binding, with the highest levels of binding on CD4(+) and CD8(+) T cells. Naive (CD45RA(high), CD62L(high)) CD4(+) T cells derived from cord blood cells, in contrast to other primary cells and all cell lines examined, bound no detectable HTLV-I SU. However, following stimulation, the level of HTSU-IgG binding was rapidly induced (fewer than 6 hours), reaching the level of binding seen on adult CD4(+) T cells by 72 hours. In contrast to HTLV-I virions, the soluble HTSU-IgG did not effect T-cell activation or proliferation. When incubated with human peripheral blood mononuclear cells in a mixed leukocyte reaction, HTSU-IgG inhibited proliferation at less than 1 ng/mL. These results indicate that cell-surface expression of the HTLV SU binding protein is up-regulated during in vitro activation and suggest a role for the HTLV-I SU binding proteins in the immunobiology of CD4(+) T cells.
Collapse
Affiliation(s)
- Manisha D Nath
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, MD 21702, USA
| | | | | | | |
Collapse
|
227
|
Parmryd I, Adler J, Patel R, Magee AI. Imaging metabolism of phosphatidylinositol 4,5-bisphosphate in T-cell GM1-enriched domains containing Ras proteins. Exp Cell Res 2003; 285:27-38. [PMID: 12681284 DOI: 10.1016/s0014-4827(02)00048-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and Ras proteins are involved in signalling pathways originating at the plasma membrane. The localisation and metabolism of PI(4,5)P(2) was studied in Jurkat T cells using fluorescence microscopic imaging with EGFP-tagged and antibody probes. Software was developed to objectively quantitate colocalisation and was used to show that plasma membrane PI(4,5)P(2) was enriched in lipid raft-containing patches of GM1 ganglioside, formed by crosslinking cholera toxin B-subunit (CT-B). The PI(4,5)P(2) metabolites phosphatidylinositol 3,4,5-trisphosphate and diacylglycerol appeared in plasma membrane CT-B-GM1 patches upon induction of signalling. Transferrin receptor and the CD45 tyrosine phosphatase did not colocalise with CT-B-GM1 patches, whereas the tyrosine kinase Lck, the scaffolding protein LAT, and endogenous Ras proteins did partially colocalise with CT-B-GM1 patches as did transfected EGFP-K-Ras(4B) and EGFP-H-Ras. The results demonstrate that T-cell PI(4,5)P(2) metabolism is occurring in GM1-enriched domains and that Ras proteins are present in these domains in vivo.
Collapse
Affiliation(s)
- Ingela Parmryd
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | | | | | | |
Collapse
|
228
|
Mustelin T, Taskén K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 2003; 371:15-27. [PMID: 12485116 PMCID: PMC1223257 DOI: 10.1042/bj20021637] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/12/2002] [Accepted: 12/16/2002] [Indexed: 11/17/2022]
Abstract
The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
229
|
Pierini LM, Eddy RJ, Fuortes M, Seveau S, Casulo C, Maxfield FR. Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 2003; 278:10831-41. [PMID: 12522144 DOI: 10.1074/jbc.m212386200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to chemoattractants neutrophils extend an actin-rich pseudopod, which imparts morphological polarity and is required for migration. Even when stimulated by an isotropic bath of chemoattractant, neutrophils exhibit persistent polarization and continued lamellipod formation at the front, suggesting that the cells establish an internal polarity. In this report, we show that perturbing lipid organization by depleting plasma membrane cholesterol levels reversibly inhibits cell polarization and migration. Among other receptor-mediated responses, beta(2) integrin up-regulation was unaffected, and initial calcium mobilization was only partially reduced by cholesterol depletion, indicating that this treatment did not abrogate initial receptor-mediated signal transduction. Interestingly, cholesterol depletion did not prevent initial activation of the GTPase Rac or an initial burst of actin polymerization, but rather it inhibited prolonged activation of Rac and sustained actin polymerization. Collectively, these findings support a model in which the plasma membrane is organized into domains that aid in amplifying the chemoattractant gradient and maintaining cell polarization.
Collapse
Affiliation(s)
- Lynda M Pierini
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
230
|
McCann FE, Vanherberghen B, Eleme K, Carlin LM, Newsam RJ, Goulding D, Davis DM. The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2862-70. [PMID: 12626536 DOI: 10.4049/jimmunol.170.6.2862] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we report the organization of cytoskeletal and large transmembrane proteins at the inhibitory and activating NK cell immunological or immune synapse (IS). Filamentous actin accumulates at the activating, but not the inhibitory, NK cell IS. However, surprisingly, ezrin and the associated protein CD43 are excluded from the inhibitory, but not the activating, NK cell IS. This distribution of ezrin and CD43 at the inhibitory NK cell IS is similar to that previously seen at the activating T cell IS. CD45 is also excluded from the inhibitory, but not activating, NK cell IS. In addition, electron microscopy reveals wide and narrow domains across the synaptic cleft. Target cell HLA-C, located by immunogold labeling, clusters where the synaptic cleft spans the size of HLA-C bound to the inhibitory killer Ig-like receptor. These data are consistent with assembly of the NK cell IS involving a combination of cytoskeletal-driven mechanisms and thermodynamics favoring the organization of receptor/ligand pairs according to the size of their extracellular domains.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/ultrastructure
- Actins/metabolism
- Actins/ultrastructure
- Antigens, CD
- Cell Communication/immunology
- Cell Line, Transformed
- Clone Cells
- Cytoskeletal Proteins
- Cytotoxicity, Immunologic
- HLA-C Antigens/metabolism
- Humans
- Intercellular Junctions/immunology
- Intercellular Junctions/metabolism
- Intercellular Junctions/ultrastructure
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/ultrastructure
- Leukocyte Common Antigens/biosynthesis
- Leukocyte Common Antigens/metabolism
- Leukocyte Common Antigens/ultrastructure
- Leukosialin
- Lymphocyte Activation/immunology
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Phosphoproteins/biosynthesis
- Phosphoproteins/metabolism
- Phosphoproteins/ultrastructure
- Receptors, Immunologic/biosynthesis
- Receptors, KIR2DL1
- Sialoglycoproteins/biosynthesis
- Sialoglycoproteins/metabolism
- Sialoglycoproteins/ultrastructure
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Fiona E McCann
- Department of Biological Sciences, Imperial College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
231
|
Van Laethem F, Liang X, Andris F, Urbain J, Vandenbranden M, Ruysschaert JM, Resh MD, Stulnig TM, Leo O. Glucocorticoids alter the lipid and protein composition of membrane rafts of a murine T cell hybridoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2932-9. [PMID: 12626544 DOI: 10.4049/jimmunol.170.6.2932] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glucocorticoids (GC) are widely used anti-inflammatory agents known to suppress T cell activation by interfering with the TCR activation cascade. The attenuation of early TCR signaling events by these compounds has been recently attributed to a selective displacement of key signaling proteins from membrane lipid rafts. In this study, we demonstrate that GC displace the acyl-bound adaptor proteins linker for activation of T cells and phosphoprotein associated with glycosphingolipid-enriched microdomains from lipid rafts of murine T cell hybridomas, possibly by inhibiting their palmitoylation status. Analysis of the lipid content of the membrane rafts revealed that GC treatment led to a significant decrease in palmitic acid content. Moreover, we found an overall decrease in the proportion of raft-associated saturated fatty acids. These changes were consistent with a decrease in fluorescence anisotropy of isolated lipid rafts, indicating an increase in their fluidity. These findings identify the mechanisms underlying the complex inhibitory effects of glucocorticoids on early TCR signaling and suggest that some of the inhibitory properties of GC on T cell responses may be related to their ability to affect the membrane lipid composition and the palmitoylation status of important signaling molecules.
Collapse
Affiliation(s)
- François Van Laethem
- Laboratoire de Physiologie Animale, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Fernandis AZ, Cherla RP, Ganju RK. Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J Biol Chem 2003; 278:9536-43. [PMID: 12519755 DOI: 10.1074/jbc.m211803200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phosphatase CD45, which regulates antigen receptor signaling in CXCR4-mediated chemotaxis and mitogen-activated protein kinase (MAPK) activation in T-cells. We observed a significant reduction in CXCL12-induced chemotaxis in the CD45-negative Jurkat cell line (J45.01) as compared with the CD45-positive control (JE6.1) cells. Expression of a chimeric protein containing the intracellular phosphatase domain of CD45 was able to partially restore CXCL12-induced chemotaxis in the J45.01 cells. However, reconstitution of CD45 into the J45.01 cells restored the CXCL12-induced chemotaxis to about 90%. CD45 had no significant effect on CXCL12 or human immunodeficiency virus gp120-induced internalization of the CXCR4 receptor. Furthermore, J45.01 cells showed a slight enhancement in CXCL12-induced MAP kinase activity as compared with the JE6.1 cells. We also observed that CXCL12 treatment enhanced the tyrosine phosphorylation of CD45 and induced its association with the CXCR4 receptor. Pretreatment of T-cells with the lipid raft inhibitor, methyl-beta-cyclodextrin, blocked the association between CXCR4 and CD45 and markedly abolished CXCL12-induced chemotaxis. Comparisons of signaling pathways induced by CXCL12 in JE6.1 and J45.01 cells revealed that CD45 might moderately regulate the tyrosine phosphorylation of the focal adhesion components the related adhesion focal tyrosine kinase/Pyk2, focal adhesion kinase, p130Cas, and paxillin. CD45 has also been shown to regulate CXCR4-mediated activation and phosphorylation of T-cell receptor downstream effectors Lck, ZAP-70, and SLP-76. Our results show that CD45 differentially regulates CXCR4-mediated chemotactic activity and MAPK activation by modulating the activities of focal adhesion components and the downstream effectors of the T-cell receptor.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Blotting, Western
- Cell Line
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemotaxis
- Dose-Response Relationship, Drug
- Enzyme Activation
- Flow Cytometry
- Gene Expression Regulation
- Humans
- Jurkat Cells
- Leukocyte Common Antigens/metabolism
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphocytes/metabolism
- MAP Kinase Signaling System
- Microscopy, Confocal
- Microscopy, Fluorescence
- Phosphoproteins/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/metabolism
- Signal Transduction
- T-Lymphocytes/metabolism
- Time Factors
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Aaron Z Fernandis
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
233
|
Preston Mason R, Tulenko TN, Jacob RF. Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:198-207. [PMID: 12648774 DOI: 10.1016/s0005-2736(03)00018-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review will discuss the use of small-angle X-ray diffraction approaches to study the organization of lipids in plasma membranes derived from two distinct mammalian cell types: arterial smooth muscle cells and ocular lens fiber cells. These studies indicate that cholesterol at an elevated concentration can self-associate and form immiscible domains in the plasma membrane, a phenomenon that contributes to both physiologic and pathologic cellular processes, depending on tissue source. In plasma membrane samples isolated from atherosclerotic smooth muscle cells, the formation of sterol-rich domains is associated with loss of normal cell function, including ion transport activity and control of cell replication. Analysis of meridional diffraction patterns from intact and reconstituted plasma membrane samples indicates the presence of an immiscible cholesterol domain with a unit cell periodicity of 34 A, consistent with a cholesterol monohydrate tail-to-tail bilayer, under disease conditions. These cholesterol domains were observed in smooth muscle cells enriched with cholesterol in vitro as well as from cells obtained ex vivo from an animal model of atherosclerosis. By contrast, well-defined cholesterol domains appear to be essential to the normal physiology of fiber cell plasma membranes of the human ocular lens. The organization of cholesterol into separate domains underlies the role of lens fiber cell plasma membranes in maintaining lens transparency. These domains may also interfere with cataractogenic aggregation of soluble lens proteins at the membrane surface. Taken together, these analyses provide examples of both physiologic and pathologic roles that sterol-rich domains may have in mammalian plasma membranes. These findings support a model of the membrane in which cholesterol aggregates into structurally distinct regions that regulate the function of the cell membrane.
Collapse
Affiliation(s)
- R Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 01915, USA
| | | | | |
Collapse
|
234
|
Panyi G, Bagdány M, Bodnár A, Vámosi G, Szentesi G, Jenei A, Mátyus L, Varga S, Waldmann TA, Gáspar R, Damjanovich S. Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci U S A 2003; 100:2592-7. [PMID: 12604782 PMCID: PMC151385 DOI: 10.1073/pnas.0438057100] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2002] [Accepted: 12/31/2002] [Indexed: 12/15/2022] Open
Abstract
Distribution and lateral organization of Kv1.3 potassium channels and CD3 molecules were studied by using electron microscopy, confocal laser scanning microscopy, and fluorescence resonance energy transfer. Immunogold labeling and electron microscopy showed that the distribution of FLAG epitope-tagged Kv1.3 channels (Kv1.3/FLAG) significantly differs from the stochastic Poisson distribution in the plasma membrane of human T lymphoma cells. Confocal laser scanning microscopy images showed that Kv1.3/FLAG channels and CD3 molecules accumulated in largely overlapping membrane areas. The numerical analysis of crosscorrelation of the spatial intensity distributions yielded a high correlation coefficient (C = 0.64). A different hierarchical level of molecular proximity between Kv1.3/FLAG and CD3 proteins was reported by a high fluorescence resonance energy transfer efficiency (E = 51%). These findings implicate that reciprocal regulation of ion-channel activity, membrane potential, and the function of receptor complexes may contribute to the proper functioning of the immunological synapse.
Collapse
Affiliation(s)
- G Panyi
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, H-4012, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Affiliation(s)
- Richard Aspinall
- Department of Immunology, Faculty of Medicine, Imperial College of Science, Technology & Medicine, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.
| | | | | |
Collapse
|
236
|
Davidson D, Bakinowski M, Thomas ML, Horejsi V, Veillette A. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol 2003; 23:2017-28. [PMID: 12612075 PMCID: PMC149484 DOI: 10.1128/mcb.23.6.2017-2028.2003] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PAG/Cbp (hereafter named PAG) is a transmembrane adaptor molecule found in lipid rafts. In resting human T cells, PAG is tyrosine phosphorylated and associated with Csk, an inhibitor of Src-related protein tyrosine kinases. These modifications are rapidly lost in response to T-cell receptor (TCR) stimulation. Overexpression of PAG was reported to inhibit TCR-mediated responses in Jurkat T cells. Herein, we have examined the physiological relevance and the mechanism of PAG-mediated inhibition in T cells. Our studies showed that PAG tyrosine phosphorylation and association with Csk are suppressed in response to activation of normal mouse T cells. By expressing wild-type and phosphorylation-defective (dominant-negative) PAG polypeptides in these cells, we found that the inhibitory effect of PAG is dependent on its capacity to be tyrosine phosphorylated and to associate with Csk. PAG-mediated inhibition was accompanied by a repression of proximal TCR signaling and was rescued by expression of a constitutively activated Src-related kinase, implying that it is due to an inactivation of Src kinases by PAG-associated Csk. We also attempted to identify the protein tyrosine phosphatases (PTPs) responsible for dephosphorylating PAG in T cells. Through cell fractionation studies and analyses of genetically modified mice, we established that PTPs such as PEP and SHP-1 are unlikely to be involved in the dephosphorylation of PAG in T cells. However, the transmembrane PTP CD45 seems to play an important role in this process. Taken together, these data provide firm evidence that PAG is a bona fide negative regulator of T-cell activation as a result of its capacity to recruit Csk. They also suggest that the inhibitory function of PAG in T cells is suppressed by CD45. Lastly, they support the idea that dephosphorylation of proteins on tyrosine residues is critical for the initiation of T-cell activation.
Collapse
Affiliation(s)
- Dominique Davidson
- Laboratory of Molecular Oncology, IRCM, 110 Pine Avenue West, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
237
|
Giurisato E, McIntosh DP, Tassi M, Gamberucci A, Benedetti A. T cell receptor can be recruited to a subset of plasma membrane rafts, independently of cell signaling and attendantly to raft clustering. J Biol Chem 2003; 278:6771-8. [PMID: 12499387 DOI: 10.1074/jbc.m210758200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The constitutive/inducible association of the T cell receptor (TCR) with isolated detergent-resistant, lipid raft-derived membranes has been studied in Jurkat T lymphocytes. Membranes resistant to 1% Triton X-100 contained virtually no CD3epsilon, part of the TCR complex, irrespective of cell stimulation. On the other hand, membranes resistant either to a lower Triton X-100 concentration (i.e. 0.2%) or to the less hydrophobic detergent Brij 58 (1%) contained (i) a low CD3epsilon amount (approximate 2.7% of total) in resting cells and (ii) a several times higher amount of the TCR component, after T cell stimulation with either antigen-presenting cells or with phytohemagglutinin. It appeared that CD3/TCR was constitutively associated with and recruited to a raft-derived membrane subset because (i) all three membrane preparations contained a similar amount of the raft marker tyrosine kinase Lck but no detectable amounts of the conventional membrane markers, CD45 phosphatase and transferrin receptor; (ii) a larger amount of particulate membranes were resistant to solubilization with 0.2% Triton X-100 and Brij 58 than to solubilization with 1% Triton X-100; and (iii) higher cholesterol levels were present in membranes resistant to either the lower Triton X-100 concentration or to Brij 58, as compared with those resistant to 1% Triton X-100. The recruitment of CD3 to the raft-derived membrane subset appeared (i) to occur independently of cell signaling events, such as protein-tyrosine phosphorylation and Ca(2+) mobilization/influx, and (ii) to be associated with clustering of plasma membrane rafts induced by multiple cross-linking of either TCR or the raft component, ganglioside GM(1). We suggest that during T cell stimulation a lateral reorganization of rafts into polarized larger domains can determine the recruitment of TCR into these domains, which favors a polarization of the signaling cascade.
Collapse
Affiliation(s)
- Emanuele Giurisato
- Dipartimento di Fisiopatologia e Medicina Sperimentale, Università degli Studi di Siena, Viale Aldo Moro No. 1, 53100-Siena, Italy
| | | | | | | | | |
Collapse
|
238
|
Uhlin M, Masucci MG, Levitsky V. Pharmacological disintegration of lipid rafts decreases specific tetramer binding and disrupts the CD3 complex and CD8 heterodimer in human cytotoxic T lymphocytes. Scand J Immunol 2003; 57:99-106. [PMID: 12588655 DOI: 10.1046/j.1365-3083.2003.01188.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Accumulating evidence strongly supports the role of lipid rafts in the regulation of T-lymphocyte activation, but the organization and molecular composition of these cholesterol- and sphingolipid-rich membrane microdomains in different subsets of T cells remain poorly investigated. Here, we show that pharmacological disruption of lipid rafts in human CD8+ cytotoxic T-lymphocyte (CTL) clones disturbs the integrity of CD3 complex and CD8 heterodimer, without affecting the reactivity with T-cell receptor (TCR)-specific antibodies. This demonstrates that interaction with completely assembled CD3 complex is not required for the stable expression of TCR at the cell surface. The effect of raft disruption on CD3 and CD8 expression correlates with failure to bind specific tetrameric complexes by a proportion of surface TCR molecules. However, the interaction of specific tetramer with the rest of surface TCR pools appears to be unaffected, demonstrating that TCR-signalling complexes may differ in their requirement for cholesterol to stably maintain their composition and to rearrange for efficient tetramer binding. Together with previously published data, our results support the existence of molecular and/or structural heterogeneity of lipid rafts that may play an important role in controlling distinct functional properties of T-cell subsets.
Collapse
Affiliation(s)
- M Uhlin
- Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
239
|
Abstract
An effective inflammatory immune response first requires the recruitment of cells to the site of inflammation and then their appropriate activation and regulation. Chemokines are critical in this response since they are both chemotactic and immunoregulatory molecules. In this regard, the interaction between CCL5 and CCR5 may be critical in regulating T cell functions, by mediating their recruitment and polarization, activation, and differentiation. Various tyrosine phosphorylation signaling cascades can be engaged following chemokine receptor aggregation on T cells, including the Jak-Stat pathway, FAK activation, the MAP kinase pathway, PI3-kinase activation, and transactivation of the T cell receptor. This review will address specific aspects related to chemokine-T cell interactions and the molecular signaling mechanisms that influence T cell function in an inflammatory immune response.
Collapse
Affiliation(s)
- Mark M Wong
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
240
|
Abstract
Detergent-resistant membrane microdomains enriched in sphingolipids, cholesterol and glycosylphosphatidylinositol-anchored proteins play essential roles in T cell receptor (TCR) signaling. These 'membrane rafts' accumulate several cytoplasmic lipid-modified molecules, including Src-family kinases, coreceptors CD4 and CD8 and transmembrane adapters LAT and PAG/Cbp, essential for either initiation or amplification of the signaling process, while most other abundant transmembrane proteins are excluded from these structures. TCRs in various T cell subpopulations may differ in their use of membrane rafts. Membrane rafts also seem to be involved in many other aspects of T cell biology, such as functioning of cytokine and chemokine receptors, adhesion molecules, antigen presentation, establishing cell polarity or interaction with important pathogens. Although the concept of membrane rafts explains several diverse biological phenomena, many basic issues, such as composition, size and heterogeneity, under native conditions, as well as the dynamics of their interactions with TCRs and other immunoreceptors, remain unclear, partially because of technical problems.
Collapse
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic.
| |
Collapse
|
241
|
Tanimura N, Nagafuku M, Minaki Y, Umeda Y, Hayashi F, Sakakura J, Kato A, Liddicoat DR, Ogata M, Hamaoka T, Kosugi A. Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation. J Cell Biol 2003; 160:125-35. [PMID: 12515827 PMCID: PMC2172749 DOI: 10.1083/jcb.200207096] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipid rafts are known to aggregate in response to various stimuli. By way of raft aggregation after stimulation, signaling molecules in rafts accumulate and interact so that the signal received at a given membrane receptor is amplified efficiently from the site of aggregation. To elucidate the process of lipid raft aggregation during T cell activation, we analyzed the dynamic changes of a raft-associated protein, linker for activation of T cells (LAT), on T cell receptor stimulation using LAT fused to GFP (LAT-GFP). When transfectants expressing LAT-GFP were stimulated with anti-CD3-coated beads, LAT-GFP aggregated and formed patches at the area of bead contact. Photobleaching experiments using live cells revealed that LAT-GFP in patches was markedly less mobile than that in nonpatched regions. The decreased mobility in patches was dependent on raft organization supported by membrane cholesterol and signaling molecule binding sites, especially the phospholipase C gamma 1 binding site in the cytoplasmic domain of LAT. Thus, although LAT normally moves rapidly at the plasma membrane, it loses its mobility and becomes stably associated with aggregated rafts to ensure organized and sustained signal transduction required for T cell activation.
Collapse
Affiliation(s)
- Natsuko Tanimura
- School of Allied Health Sciences, Faculty of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 2003; 160:113-23. [PMID: 12515826 PMCID: PMC2172747 DOI: 10.1083/jcb.200207113] [Citation(s) in RCA: 822] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formation of senile plaques containing the beta-amyloid peptide (A beta) derived from the amyloid precursor protein (APP) is an invariant feature of Alzheimer's disease (AD). APP is cleaved either by beta-secretase or by alpha-secretase to initiate amyloidogenic (release of A beta) or nonamyloidogenic processing of APP, respectively. A key to understanding AD is to unravel how access of these enzymes to APP is regulated. Here, we demonstrate that lipid rafts are critically involved in regulating A beta generation. Reducing cholesterol levels in N2a cells decreased A beta production. APP and the beta-site APP cleavage enzyme (BACE1) could be induced to copatch at the plasma membrane upon cross-linking with antibodies and to segregate away from nonraft markers. Antibody cross-linking dramatically increased production of A beta in a cholesterol-dependent manner. A beta generation was dependent on endocytosis and was reduced after expression of the dynamin mutant K44A and the Rab5 GTPase-activating protein, RN-tre. This inhibition could be overcome by antibody cross-linking. These observations suggest the existence of two APP pools. Although APP inside raft clusters seems to be cleaved by beta-secretase, APP outside rafts undergoes cleavage by alpha-secretase. Thus, access of alpha- and beta-secretase to APP, and therefore A beta generation, may be determined by dynamic interactions of APP with lipid rafts.
Collapse
Affiliation(s)
- Robert Ehehalt
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
243
|
Badour K, Zhang J, Shi F, McGavin MKH, Rampersad V, Hardy LA, Field D, Siminovitch KA. The Wiskott-Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity 2003; 18:141-54. [PMID: 12530983 DOI: 10.1016/s1074-7613(02)00516-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Wiskott-Aldrich syndrome protein (WASp) couples actin cytoskeletal rearrangement to T cell activation, but the mechanisms involved are unknown. Here, we show that antigen-induced formation of T cell:APC conjugates and synapses is abrogated in WASp-deficient T cells and that CD2 engagement evokes interactions between the proline-rich region required for WASp translocation to the synapse and the PSTPIP1 adaptor SH3 domain and between the PSTPIp1 coiled-coil domain and both CD2 and another CD2-binding adaptor, CD2AP. The induced colocalization of these proteins at the synapse is disrupted by expression of coiled-coil domain-deleted PSTPIP1. These data, together with the impairment in CD2-induced actin polymerization observed in WASp-deficient cells, suggest that PSTPIP1 acts downstream of CD2/CD2AP to link CD2 engagement to the WASp-evoked actin polymerization required for synapse formation and T cell activation.
Collapse
Affiliation(s)
- Karen Badour
- Department of Medical Genetics and Microbiology, University of Toronto, 600 University Avenue, Toronto, M5G 1X5 Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Dienz O, Möller A, Strecker A, Stephan N, Krammer PH, Dröge W, Schmitz ML. Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and phospholipase C gamma 1 are required for NF-kappa B activation and lipid raft recruitment of protein kinase C theta induced by T cell costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:365-72. [PMID: 12496421 DOI: 10.4049/jimmunol.170.1.365] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NF-kappaB activation pathway induced by T cell costimulation uses various molecules including Vav1 and protein kinase C (PKC)theta. Because Vav1 inducibly associates with further proteins including phospholipase C (PLC)gamma1 and Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), we investigated their role for NF-kappaB activation in Jurkat leukemia T cell lines deficient for expression of these two proteins. Cells lacking SLP-76 or PLCgamma1 failed to activate NF-kappaB in response to T cell costimulation. In contrast, replenishment of SLP-76 or PLCgamma1 expression restored CD3/CD28-induced IkappaB kinase (IKK) activity as well as NF-kappaB DNA binding and transactivation. PKCtheta activated NF-kappaB in SLP-76- and PLCgamma1-deficient cells, showing that PKCtheta is acting further downstream. In contrast, Vav1-induced NF-kappaB activation was normal in SLP-76(-) cells, but absent in PLCgamma1(-) cells. CD3/CD28-stimulated recruitment of PKCtheta and IKKgamma to lipid rafts was lost in SLP-76- or PLCgamma1-negative cells, while translocation of Vav1 remained unaffected. Accordingly, recruitment of PKCtheta to the immunological synapse strictly relied on the presence of SLP-76 and PLCgamma1, but synapse translocation of Vav1 identified in this study was independent from both proteins. These results show the importance of SLP-76 and PLCgamma1 for NF-kappaB activation and raft translocation of PKCtheta and IKKgamma.
Collapse
Affiliation(s)
- Oliver Dienz
- Division of Immunochemistry, German Cancer Research Center (Deutsches Krebsforschungszentrum), Im Neuenheimer Feld, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
245
|
Kovacs B, Maus MV, Riley JL, Derimanov GS, Koretzky GA, June CH, Finkel TH. Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation. Proc Natl Acad Sci U S A 2002; 99:15006-11. [PMID: 12419850 PMCID: PMC137535 DOI: 10.1073/pnas.232058599] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts are important signaling platforms in T cells. Little is known about their properties in human CD8(+) T cells. We studied polarization of lipid rafts by digital immunofluorescence microscopy in primary human T cells, using beads coated with anti-CD3 and anti-CD28 mAbs (CD3/28 beads). Unlike CD4(+) T cells, CD8(+) T cells did not polarize lipid rafts when stimulated with CD3/28 beads, when the anti-CD28 antibody was substituted with B7.2Ig, or if an anti-CD8 antibody was added to the CD3/28 beads. This phenomenon was also observed in human antigen-specific CD8(+) T cells. On stimulation with CD3/28 beads, the T cell antigen receptor clustered at the cell/bead contact area in both CD4(+) and CD8(+) T cells. Examination of lipid rafts isolated by sucrose density gradient centrifugation revealed the constitutive expression of p(56)Lck in the raft fractions of unstimulated CD8(+) T cells, whereas p(56)Lck was recruited to the raft fraction of CD4(+) T cells only after stimulation with CD3/28 beads. Stimulation with CD3/28 beads induced marked calcium flux, recruitment of PKC-theta and F-actin to the cell/bead contact site, and similar proliferation patterns in CD4(+) and CD8(+) T cells. Thus, polarization of lipid rafts is not essential for early signal transduction events or proliferation of human CD8(+) lymphocytes. It is possible that the lower stringency of CD8(+) T cell activation obviates a requirement for raft polarization.
Collapse
Affiliation(s)
- Birgit Kovacs
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
246
|
McCann FE, Suhling K, Carlin LM, Eleme K, Taner SB, Yanagi K, Vanherberghen B, French PMW, Davis DM. Imaging immune surveillance by T cells and NK cells. Immunol Rev 2002; 189:179-92. [PMID: 12445274 DOI: 10.1034/j.1600-065x.2002.18915.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As T cells and natural killer (NK) cells survey the surface of other cells, cognate receptors and ligands are commonly organized into distinct micrometer-scale domains at the intercellular contact, creating an immune or immunological synapse (IS). We aim to address the still unanswered questions of how this organization of proteins aids immune surveillance and how these domains are biophysically constructed. Molecular mechanisms for the formation of the IS include a role for the cytoskeleton, segregation of proteins according to the size of their extracellular domains, and association of proteins with lipid rafts. Towards understanding the function of the IS, it is instructive to compare and contrast the supramolecular organization of proteins at the inhibitory and activating NK cell IS with that at the activating T cell IS. Finally, it is essential to develop new technologies for probing molecular recognition at cell surfaces. Imaging parameters other than fluorescence intensity, such as the lifetime of the fluorophore's excited state, could be used to report on protein environments.
Collapse
Affiliation(s)
- Fiona E McCann
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Edmonds SD, Ostergaard HL. Dynamic association of CD45 with detergent-insoluble microdomains in T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5036-42. [PMID: 12391219 DOI: 10.4049/jimmunol.169.9.5036] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The receptor-like protein tyrosine phosphatase CD45 is essential for TCR signal transduction. Substrates of CD45 include the protein tyrosine kinases p56(lck) and p59(fyn), both of which have been shown to be enriched in detergent-insoluble microdomains. Here we find that there is a cholesterol-dependent association between CD45 and the raft-associated protein linker for activation of T cells, suggesting that CD45 and linker for activation of T cells may colocalize in lipid rafts. Consistent with this observation, we find that approximately 5% of total CD45 can be detected in Triton X-100-insoluble buoyant fractions of sucrose gradients, demonstrating that CD45 is not excluded from lipid rafts. Upon stimulation of T cells with anti-CD3, there is a reduction in the amount of CD45 found associating with lipid rafts. Our data suggest that CD45 is present in lipid rafts in T cells before activation, perhaps to activate raft-associated p56(lck), allowing membrane-proximal signaling events to proceed. Furthermore, the reduction in CD45 content of lipid rafts after CD3 stimulation may serve to limit the amounts of activated p56(lck) in rafts and thus possibly the duration of T cell responses.
Collapse
Affiliation(s)
- Stuart D Edmonds
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
248
|
Garcia GG, Miller RA. Age-dependent defects in TCR-triggered cytoskeletal rearrangement in CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5021-7. [PMID: 12391217 DOI: 10.4049/jimmunol.169.9.5021] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous research has shown that many of the CD4 T cells from older mice do not form functional immune synapses after conjugation with peptide-pulsed APC. We now show that the defect lies at a very early stage in the cytoskeletal reorganization that precedes movement of protein kinases and their substrates to the TCR/APC interface. Antagonist peptides presented to T cells from young mice induce migration of talin (but not paxillin, vinculin, or F-actin) to the APC contact zone, but CD4 T cells from older donors typically fail to show the talin polarization response. A spreading assay in which contact with anti-CD3-coated slides induces CD4 T cells to assume a conical shape and develop lammelopodia also shows a decline with age in the proportion of T cells that can initiate cytoskeletal changes in response to this simplified stimulus. Finally, the transition from detergent-soluble to cytoskeletal forms of the p16, p21, and p23 isoforms of CD3zeta in response to CD3/CD4/CD28 cross-linking is much stronger in young than in old T cells. Thus, defects in cytoskeletal reorganization triggered by initial contact between TCR and peptide-bearing APC precede, and presumably contribute to, defective activation of protein kinase-mediated signals in the first few minutes of the activation cascade in T cells from aged mice.
Collapse
Affiliation(s)
- Gonzalo G Garcia
- Department of Pathology, School of Medicine, and Institute of Gerontology, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
249
|
Shrimpton CN, Borthakur G, Larrucea S, Cruz MA, Dong JF, López JA. Localization of the adhesion receptor glycoprotein Ib-IX-V complex to lipid rafts is required for platelet adhesion and activation. J Exp Med 2002; 196:1057-66. [PMID: 12391017 PMCID: PMC2194038 DOI: 10.1084/jem.20020143] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The platelet glycoprotein (GP) Ib-IX-V complex mediates the attachment of platelets to the blood vessel wall by binding von Willebrand factor (VWF), an interaction that also transmits signals for platelet activation and aggregation. Because the complex is extensively palmitoylated, a modification known to target proteins to lipid rafts, we investigated the role of raft localization in GP Ib-IX-V functions. In unstimulated platelets, a minor portion of the complex localized to Triton-insoluble raft fractions; this portion increased three to sixfold with platelet activation by VWF. Raft-associated GP Ib-IX-V was selectively palmitoylated, with GP Ib-IX-V-associated palmitate increasing in the raft fraction on VWF-mediated activation. The raft fraction was also the site of association between GP Ib-IX-V and the Fc receptor FcgammaRIIA. The importance of this association was demonstrated by the ability of the FcgammaRIIA antibody IV.3 to inhibit shear-induced platelet aggregation. Disruption of rafts by depleting membrane cholesterol impaired several GP Ib-IX-V-dependent platelet fractions: aggregation to VWF under static conditions and under shear stress, tyrosine phosphorylation, and adhesion to a VWF surface. Partial restoration of membrane cholesterol content partially restored shear-induced platelet aggregation and tyrosine phosphorylation. Thus, localization of the GP Ib-IX-V complex within rafts is crucial for both platelet adhesion and postadhesion signaling.
Collapse
Affiliation(s)
- Corie N Shrimpton
- Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
250
|
Diaz O, Berquand A, Dubois M, Di Agostino S, Sette C, Bourgoin S, Lagarde M, Nemoz G, Prigent AF. The mechanism of docosahexaenoic acid-induced phospholipase D activation in human lymphocytes involves exclusion of the enzyme from lipid rafts. J Biol Chem 2002; 277:39368-78. [PMID: 12140281 DOI: 10.1074/jbc.m202376200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid that inhibits T lymphocyte activation, has been shown to stimulate phospholipase D (PLD) activity in stimulated human peripheral blood mononuclear cells (PBMC). To elucidate the mechanisms underlying the DHA-induced PLD activation, we first characterized the PLD expression pattern of PBMC. We show that these cells express PLD1 and PLD2 at the protein and mRNA level and are devoid of oleate-dependent PLD activity. DHA enrichment of PBMC increased the DHA content of cell phospholipids, which was directly correlated with the extent of PLD activation. The DHA-induced PLD activation was independent of conventional protein kinase C but inhibited by brefeldin A, which suggests ADP-ribosylation factor (ARF)-dependent mechanism. Furthermore, DHA enrichment dose-dependently stimulated ARF translocation to cell membranes. Whereas 50% of the guanosine 5'-3-O-(thio)triphosphate plus ARF-dependent PLD activity and a substantial part of PLD1 protein were located to the detergent-insoluble membranes, so-called rafts, of non-enriched PBMC, DHA treatment strongly displaced them toward detergent-soluble membranes where ARF is present. Collectively, these results suggest that the exclusion of PLD1 from lipid rafts, due to their partial disorganization by DHA, and its relocalization in the vicinity of ARF, is responsible for its activation. This PLD activation might be responsible for the immunosuppressive effect of DHA because it is known to transmit antiproliferative signals in lymphoid cells.
Collapse
Affiliation(s)
- Olivier Diaz
- Unité INSERM 352, Laboratoire de Biochimie et Pharmacologie, INSA de Lyon, 69621 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|