201
|
Georgievska B, Kirik D, Rosenblad C, Lundberg C, Björklund A. Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. Neuroreport 2002; 13:75-82. [PMID: 11924898 DOI: 10.1097/00001756-200201210-00019] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used a recombinant lentiviral vector (rLV) for gene delivery of GDNF to the striatum, and assessed its neuroprotective effects in the intrastriatal 6-hydroxydopamine (6-OHDA) lesion model. The level of GDNF expression obtained with the rLV-GDNF vector was dose-related and ranged between 0.9-9.3 ng/mg tissue in the transduced striatum, as determined by ELISA, and 0.2-3.0 ng/mg tissue were detected in the ipsilateral substantia nigra (SN), due to anterograde transport of the GDNF protein. GDNF expression was apparent at 4 days and maintained for > 8 months after injection. Striatal delivery of rLV-GDNF efficiently protected the nigral dopamine (DA) neurons and their projection, against the 6-OHDA lesion (65-77% of intact side). Sprouting of the lesioned axons was observed along the nigrostriatal pathway, precisely corresponding to the areas containing anterogradely transported GDNF.
Collapse
Affiliation(s)
- Biljana Georgievska
- Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sweden
| | | | | | | | | |
Collapse
|
202
|
Bensadoun JC, de Almeida LP, Dréano M, Aebischer P, Déglon N. Neuroprotective effect of interleukin-6 and IL6/IL6R chimera in the quinolinic acid rat model of Huntington's syndrome. Eur J Neurosci 2001; 14:1753-61. [PMID: 11860469 DOI: 10.1046/j.0953-816x.2001.01802.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliary neurotrophic factor prevents behavioural deficits and striatal degeneration in rat and primate models of Huntington's disease. Interleukin-6, another member of the cytokine family, and the chimeric molecule (IL6/IL6R) in which interleukin-6 and its soluble receptor are fused, have been shown to exert trophic action on various neuronal populations in the central nervous system. Therefore, we investigated the neuroprotective effect of these two molecules in the quinolinic acid model of Huntington's disease. LacZ-, interleukin-6- and IL6/IL6R-expressing lentiviral vectors were stereotaxically injected into the striatum of Wistar rats. Three weeks later the animals were lesioned through the intrastriatal injection of 180 nmol of quinolinic acid. The extent of the striatal damage was significantly diminished in the rats that had been treated with interleukin-6 or IL6/IL6R. The neuroprotective effect was, however, more pronounced with the IL6/IL6R chimera than with interleukin-6 as indicated by the volume of the lesions (38.6 +/- 10% in the IL6/IL6R group, 63.3 +/- 3.6% in the IL-6 group and 84.3 +/-2.9% in the control group). Quantitative analysis of striatal interneurons further demonstrated that the IL6/IL6R chimera is more neuroprotective than IL-6 on ChAT- and NADPH-d-immunoreactive neurons. These results suggest that the IL6/IL6R chimera is a potential treatment for Huntington's disease.
Collapse
Affiliation(s)
- J C Bensadoun
- Division of Surgical Research and Gene Therapy Center, Lausanne Medical School, Pavillon 4, CHUV, 1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
203
|
Emborg ME, Deglon N, Leventhal L, Aebischer P, Kordower JH. Viral vector-mediated gene therapy for Parkinson's disease. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1566-2772(01)00027-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
204
|
Connor B. Adenoviral vector-mediated delivery of glial cell line-derived neurotrophic factor provides neuroprotection in the aged parkinsonian rat. Clin Exp Pharmacol Physiol 2001; 28:896-900. [PMID: 11703392 DOI: 10.1046/j.1440-1681.2001.03544.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The long-term delivery of neurotrophic factors to specific regions of the central nervous system via gene therapy offers a new strategy for the treatment of neurodegenerative disorders. 2. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) is a potent dopaminergic (DA) trophic factor that ameliorates the behavioural and histological consequences of lesioning DA neurons in rodent and primate models of Parkinson's disease. 3. Glial cell line-derived neurotrophic factor gene therapy may have a potential use in the clinical treatment of Parkinson's disease. 4. We examined whether injection of an adenoviral vector encoding human GDNF preproprotein (Ad GDNF) could protect the rat nigrostriatal DA system from progressive neuronal degeneration. Because Parkinson's disease occurs primarily in the elderly population, we studied the effect of GDNF gene delivery in an aged rat model of Parkinson's disease. 5. In the aged (20 month) Fischer 344 rat, Ad GDNF was injected either near DA cell bodies in the substantia nigra (SN) or at the DA terminals in the striatum. One week following gene delivery, the neurotoxin 6-hydroxydopamine (6-OHDA) was injected unilaterally into the striatum to cause progressive degeneration of the DA neurons. 6. Injection of GDNF vector into either the striatum or the SN provided significant cell protection against 6-OHDA. However, only striatal injection of Ad GDNF protected against the development of behavioural and neurochemical changes that occur in the DA-depleted brain. 7. The results of this study are reviewed here and the behavioural and cellular effects of GDNF gene delivery into striatal versus mesencephalic sites are discussed.
Collapse
Affiliation(s)
- B Connor
- Children's Memorial Institute for Education and Research, Department of Paediatrics, Northwestern University Medical School, Chicago, Illinois, USA.
| |
Collapse
|
205
|
Zurn AD, Widmer HR, Aebischer P. Sustained delivery of GDNF: towards a treatment for Parkinson's disease. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:222-9. [PMID: 11690619 DOI: 10.1016/s0165-0173(01)00098-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of nigral dopaminergic neurons. Although symptomatic therapies to substitute for the missing neurotransmitter dopamine are efficient at the early stages of the disease, the goal is to find alternative therapies which could protect dopaminergic neurons from the degenerative process. We have used two distinct gene therapy approaches to deliver the neuroprotective molecule glial cell line-derived neurotrophic factor (GDNF) in animal models of the disease: (i) an encapsulated genetically engineered cell line releasing GDNF (ex vivo gene therapy); and (ii) a lentiviral vector encoding the GDNF gene (in vivo gene therapy). Both approaches allowed protection of nigral dopaminergic neurons against lesion-induced cell death in rodent as well as monkey models of PD. Behavioral symptoms were also ameliorated in these animals. In addition, co-transplantation of embryonic dopaminergic neuronal grafts and a GDNF-releasing capsule allowed improvement of graft survival and differentiation, thereby accelerating behavioral recovery. These results should lead to clinical application in the near future.
Collapse
Affiliation(s)
- A D Zurn
- Division of Surgical Research and Gene Therapy Center, Pavillon 4, CHUV, CH-1011, Lausanne, Switzerland.
| | | | | |
Collapse
|
206
|
Hurelbrink CB, Barker RA. Prospects for the treatment of Parkinson's disease using neurotrophic factors. Expert Opin Pharmacother 2001; 2:1531-43. [PMID: 11825297 DOI: 10.1517/14656566.2.10.1531] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative condition that is characterised by a progressive loss of dopaminergic neurones of the substantia nigra pars compacta (SNpc) and the presence of alpha-synuclein cytoplasmic inclusions (Lewy bodies). Cardinal symptoms include tremor, bradykinesia, and rigidity, although cognitive and autonomic disturbances are not uncommon. Pharmacological treatment targeting the dopaminergic network is relatively effective at ameliorating these symptoms, especially in the early stages of the disease, but none of these therapies are curative and they generate their own problems. As dopaminergic neuronal death in PD occurs in a gradual manner, it is amenable to treatments that can either protect remaining dopaminergic neurones or prevent death of those neurones that have begun to die. Use of neurotrophic factors is a potential candidate, as various factors have been shown to increase dopaminergic neuronal survival in culture and promote survival and axonal growth in animal models of PD. Glial cell line-derived neurotrophic factor (GDNF) is currently the most effective substance that has been intensively studied and shown to have a specific 'dopaminotrophic' effect. This review will therefore focus on studies that have investigated GDNF and discuss the potential for neurotrophic factor treatment in PD.
Collapse
Affiliation(s)
- C B Hurelbrink
- Cambridge Centre for Brain Repair, Addenbrooke's Hospital, Cambridge CB2 2PY, UK.
| | | |
Collapse
|
207
|
Castro M, Hurtado-Lorenzo A, Umana P, Smith-Arica JR, Zermansky A, Abordo-Adesida E, Löwenstein PR. Regulatable and cell-type specific transgene expression in glial cells: prospects for gene therapy for neurological disorders. PROGRESS IN BRAIN RESEARCH 2001; 132:655-81. [PMID: 11545027 DOI: 10.1016/s0079-6123(01)32109-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- M Castro
- Molecular Medicine and Gene Therapy Unit, Room 1.302, Stopford Building, School of Medicine, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | | | |
Collapse
|
208
|
Keppler OT, Yonemoto W, Welte FJ, Patton KS, Iacovides D, Atchison RE, Ngo T, Hirschberg DL, Speck RF, Goldsmith MA. Susceptibility of rat-derived cells to replication by human immunodeficiency virus type 1. J Virol 2001; 75:8063-73. [PMID: 11483751 PMCID: PMC115050 DOI: 10.1128/jvi.75.17.8063-8073.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progress in developing a small animal model of human immunodeficiency virus type 1 (HIV-1) disease would greatly facilitate studies of transmission, pathogenesis, host immune responses, and antiviral strategies. In this study, we have explored the potential of rats as a susceptible host. In a single replication cycle, rat cell lines Rat2 and Nb2 produced infectious virus at levels 10- to 60-fold lower than those produced by human cells. Rat-derived cells supported substantial levels of early HIV-1 gene expression, which was further enhanced by overexpression of human cyclin T1. Rat cells displayed quantitative, qualitative, and cell-type-specific limitations in the late phase of the HIV-1 replication cycle including relative expression levels of HIV-1 Gag proteins, intracellular Gag processing, and viral egress. Nb2 cells were rendered permissive to HIV-1 R5 viruses by coexpression of human CD4 and CCR5, indicating that the major restriction on HIV-1 replication was at the level of cellular entry. We also found that primary rat lymphocytes, macrophages, and microglia expressed considerable levels of early HIV-1 gene products following infection with pseudotyped HIV-1. Importantly, primary rat macrophages and microglia, but not lymphocytes, also expressed substantial levels of HIV-1 p24 CA and produced infectious virions. Collectively, these results identify the rat as a promising candidate for a transgenic small animal model of HIV-1 infection and highlight pertinent cell-type-specific restrictions that are features of this species.
Collapse
Affiliation(s)
- O T Keppler
- Gladstone Institute of Virology and Immunology, School of Medicine, University of California San Francisco, San Francisco, California 94141-9100, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
Tackling neurodegenerative diseases represents a formidable challenge for our ageing society. Recently, major achievements have been made in understanding the molecular mechanisms responsible for such diseases, and, simultaneously, numerous proteins such as neurotrophic factors, anti-apoptotic or anti-oxidant have been identified as potential therapeutic agents. Although many neurotrophic factors have been tested on individuals suffering from various neurodegenerative disorders, to date none has shown efficacy. Inadequate protein delivery is believed to be part of the problem. Recent improvements in pump technology, as well as in cell and gene therapy, are providing innovative ways to allow localized, regulatable delivery of proteins in brain parenchyma, opening new avenues for clinical trials in the not so distant future.
Collapse
Affiliation(s)
- P Aebischer
- Gene Therapy Center, Lausanne University Medical Hospital, CHUV, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
210
|
Schwarz EJ, Reger RL, Alexander GM, Class R, Azizi SA, Prockop DJ. Rat marrow stromal cells rapidly transduced with a self-inactivating retrovirus synthesize L-DOPA in vitro. Gene Ther 2001; 8:1214-23. [PMID: 11509954 DOI: 10.1038/sj.gt.3301517] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2000] [Accepted: 05/22/2001] [Indexed: 01/14/2023]
Abstract
Autologous bone marrow stromal cells engineered to produce 3,4,-dihydroxyphenylalanine (L-DOPA) can potentially be used as donor cells for neural transplantation in Parkinson's disease. Here, we examined the possibility of using several different promoters and either a self-inactivating retrovirus (pSIR) or standard retroviruses to introduce into marrow stromal cells (MSCs), the two genes necessary for the cells to synthesize L-DOPA. pSIR vectors were constructed using the mouse phosphoglycerate kinase-1 (PGK) promoter or the cytomegalovirus (CMV) promoter to drive expression of either a GFP reporter gene or a bicistronic sequence containing the genes for human tyrosine hydroxylase type I (TH) and rat GTP cyclohydrolase I (GC) separated by an internal ribosome entry site (IRES). rMSCs were successfully transduced with both standard retroviral vectors and pSIR containing the PGK promoter. Transduced rMSCs expressed GFP (90.4--94.4% of cells) or were able to synthesize and secrete L-DOPA (89.0--283 pmols/10(6) cells/h). After transduced rMSCs were plated at low density (3--6 cells/cm(2)), the cells expanded over 1000-fold in 3--4 weeks, and the rMSCs continued to either express GFP or produce L-DOPA. Furthermore, two high-expressing clones were isolated and expanded at low-density from rMSCs transduced with pSIR driven by the PGK promoter (97.0% GFP+ or 1096.0 pmols L-DOPA/10(6) cells/h).
Collapse
Affiliation(s)
- E J Schwarz
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
211
|
Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Déglon N, Kostic C, Zurn A, Aebischer P. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 2001; 170:48-62. [PMID: 11421583 DOI: 10.1006/exnr.2001.7691] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multipotent precursors able to generate neurons, astrocytes, and oligodendrocytes have previously been isolated from human brain embryos and recently from neurogenic regions of the adult human brains. The isolation of multipotent neural precursors from adult human should open new perspectives to study adult neurogenesis and for brain repair. The present study describes the in vitro isolation from adult human brains of a progenitor responsive to both epidermal and basic fibroblast growth factors that forms spheres as it proliferates. Single spheres derived from various regions of the brain generate in vitro neurons, astrocytes, and oligodendrocytes. The clonal origin of the spheres was revealed by genomic viral insertion using lentiviral vector. Interestingly, this vector appears to be a potent tool for gene transfer into human neural progeny. Ninety-six percent of the spheres investigated were multipotent. Multipotent precursors were isolated from all brain regions studied, including the temporal and the frontal cortex, the amygdala, the hippocampus, and the ventricular zone. This study is the first evidence that primitive precursors such as multipotent precursors exist in the adult human cortex and can reside far from the ventricles. Neurogenesis derived from adult human progenitors differ to murine neurogenesis by the requirement of laminin for oligodendrocyte generation and by the action of basic-fibroblast growth factor and platelet derived growth factor that prevented the formation of oligodendrocytes and neurons. Moreover, the differentiation of human adult precursors seems to differ from fetal ones: adult precursors do not necessitate the removal of mitogen for differentiation. These results indicate that the study of adult multipotent precursors is a new platform to study adult human neurogenesis, potentially generate neural cells for transplantation, and design protocols for in vivo stimulation.
Collapse
Affiliation(s)
- Y Arsenijevic
- Gene Therapy Center & Surgical Research Division, Lausanne University Medical School, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Gatlin J, Padgett A, Melkus MW, Kelly PF, Garcia JV. Long-term engraftment of nonobese diabetic/severe combined immunodeficient mice with human CD34+ cells transduced by a self-inactivating human immunodeficiency virus type 1 vector. Hum Gene Ther 2001; 12:1079-89. [PMID: 11399229 DOI: 10.1089/104303401750214294] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human hematopoietic cells with in vivo repopulating potential hold much promise as a target for corrective gene transfer for numerous inherited or acquired hematopoietic disorders. Here we demonstrate long-term hematopoietic reconstitution of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice with human CD34(+) cells transduced by an HIV-1-based self-inactivating (SIN) vector encoding the enhanced green fluorescent protein (EGFP). Human umbilical cord CD34(+) cells were transduced (up to 76%) at a low multiplicity of infection (MOI of 5) in the absence of cytokine prestimulation. Introduction of transduced hCD34(+) cells into irradiated recipients resulted in multilineage engraftment and stable transgene expression for 18 weeks posttransplantation. Bone marrow from transplanted mice contained up to 50% hCD45(+) cells and up to 63% hCD45(+)/EGFP(+) cells. Analysis of extramedullar splenic reconstitution showed up to 13% hCD45(+) cells and up to 41% hCD45(+)/EGFP(+) cells. Analysis of human progenitor cells isolated from bone marrow of recipient animals showed equivalent percentages of EGFP(+) colony-forming cells (CFCs) by fluorescence microscopy and by PCR analysis of provirus sequences, indicating minimal transgene silencing in vivo. These findings demonstrate the utility of lentivirus-based SIN vectors for hematopoietic stem cell gene transfer and provide strong support for their future clinical evaluation.
Collapse
Affiliation(s)
- J Gatlin
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
213
|
de Almeida LP, Zala D, Aebischer P, Déglon N. Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington's disease. Neurobiol Dis 2001; 8:433-46. [PMID: 11442352 DOI: 10.1006/nbdi.2001.0388] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases represent promising targets for gene therapy approaches provided effective transfer vectors. In the present study, we evaluated the effectiveness of LacZ-expressing lentiviral vectors with two different internal promoters, the mouse phosphoglycerate kinase 1 (PGK) and cytomegalovirus (CMV), to infect striatal cells. The intrastriatal injection of lenti-beta-Gal vectors lead to 207, 400 +/- 11,500 and 303,100 +/- 4,300 infected cells in adult rats, respectively. Importantly, the beta-galactosidase activity was higher in striatal extracts from PGK-LacZ-injected animals as compared to CMV-LacZ animals. The efficacy of the system was further examined with a potential therapeutic gene for the treatment of Huntington's disease, the human ciliary neurotrophic factor (CNTF). PGK-LacZ- or PGK-CNTF-expressing viruses were stereotaxically injected into the striatum of rats, 3 weeks later the animals were unilaterally lesioned with 180 nmol of quinolinic acid (QA). Control animals displayed 148 +/- 43 apomorphine-induced rotations ipsilateral to the lesion 5 days postlesion as compared to 26 +/- 22 turns/45 min in the CNTF-treated group. The extent of the striatal damage was significantly diminished in the CNTF-treated rats as indicated by the 52 +/- 9.7% decrease of the lesion volume and the sparing of DARPP-32, ChAT and NADPH-d neuronal populations. These results further establish that lentiviruses may represent an efficient gene delivery system for the screening of therapeutic molecules in Huntington's disease.
Collapse
Affiliation(s)
- L P de Almeida
- Division of Surgical Research and Gene Therapy Center, Lausanne Medical School, Switzerland
| | | | | | | |
Collapse
|
214
|
|
215
|
Connor B, Kozlowski DA, Unnerstall JR, Elsworth JD, Tillerson JL, Schallert T, Bohn MC. Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects dopaminergic terminals from degeneration. Exp Neurol 2001; 169:83-95. [PMID: 11312561 DOI: 10.1006/exnr.2001.7638] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we observed that injection of an adenoviral (Ad) vector expressing glial cell line-derived neurotrophic factor (GDNF) into the striatum, but not the substantia nigra (SN), prior to a partial 6-OHDA lesion protects dopaminergic (DA) neuronal function and prevents the development of behavioral impairment in the aged rat. This suggests that striatal injection of AdGDNF maintains nigrostriatal function either by protecting DA terminals or by stimulating axonal sprouting to the denervated striatum. To distinguish between these possible mechanisms, the present study examines the effect of GDNF gene delivery on molecular markers of DA terminals and neuronal sprouting in the aged (20 month) rat brain. AdGDNF or a control vector coding for beta-galactosidase (AdLacZ) was injected unilaterally into either the striatum or the SN. One week later, rats received a unilateral intrastriatal injection of 6-OHDA on the side of vector injection. Two weeks postlesion, rats injected with AdGDNF into either the striatum or the SN exhibited a reduction in the area of striatal denervation and increased binding of the DA transporter ligand [(125)I]IPCIT in the lesioned striatum compared to control animals. Furthermore, injections of AdGDNF into the striatum, but not the SN, increased levels of tyrosine hydroxylase mRNA in lesioned DA neurons in the SN and prevented the development of amphetamine-induced rotational asymmetry. In contrast, the level of T1 alpha-tubulin mRNA, a marker of neuronal sprouting, was not increased in lesioned DA neurons in the SN following injection of AdGDNF either into the striatum or into the SN. These results suggest that GDNF gene delivery prior to a partial lesion ameliorates damage caused by 6-OHDA in aged rats by inhibiting the degeneration of DA terminals rather than by inducing sprouting of nigrostriatal axons.
Collapse
Affiliation(s)
- B Connor
- Department of Pediatrics, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, Illinois, 60614, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Van Tendeloo VF, Van Broeckhoven C, Berneman ZN. Gene therapy: principles and applications to hematopoietic cells. Leukemia 2001; 15:523-44. [PMID: 11368355 DOI: 10.1038/sj.leu.2402085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ever since the development of technology allowing the transfer of new genes into eukaryotic cells, the hematopoietic system has been an obvious and desirable target for gene therapy. The last 10 years have witnessed an explosion of interest in this approach to treat human disease, both inherited and acquired, with the initiation of multiple clinical protocols. All gene therapy strategies have two essential technical requirements. These are: (1) the efficient introduction of the relevant genetic material into the target cell and (2) the expression of the transgene at therapeutic levels. Conceptual and technical hurdles involved with these requirements are still the objects of active research. To date, the most widely used and best understood vectors for gene transfer in hematopoietic cells are derived from retroviruses, although they suffer from several limitations. However, as gene transfer mechanisms become more efficient and long-term gene expression is enhanced, the variety of diseases that can be tackled by gene therapy will continue to expand. However, until the problem of delivery and subsequent expression is adequately resolved, gene therapy will not realize its full potential. The first part of this review gives an overview of the gene delivery technology available at present to transfer genetic sequences in human somatic cells. The relevance of the hematopoietic system to the development of gene therapy strategies as well as hematopoietic cell-based gene therapy is discussed in the second part.
Collapse
Affiliation(s)
- V F Van Tendeloo
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp University Hospital, Belgium
| | | | | |
Collapse
|
217
|
Abstract
The application of gene transfer techniques to immunotherapy has animated the field of gene-based cancer vaccine research. Gene transfer strategies were developed to bring about active immunization against tumor-associated antigens (TAA) through gene transfer technology. A wide variety of viral and nonviral gene transfer methods have been investigated for immunotherapeutic purposes. Ex vivo strategies include gene delivery into tumor cells and into cellular components of the immune system, including cytotoxic T cells and dendritic cells (DC). The nature of the transferred genetic material as well as the gene transfer method has varied widely depending on the application. Several of these approaches have already been translated into clinical gene therapy trials. In this review, we will focus on the rationale and types of ex vivo gene-based immunotherapy of cancer. Critical areas for future development of gene-based cancer vaccines are addressed, with particular emphasis on use of DC and on the danger-tolerance hypothesis. Finally, the use of gene-modified DC for tumor vaccination and its prospects are discussed.
Collapse
Affiliation(s)
- V F Van Tendeloo
- Laboratory of Experimental Hematology, University Hospital, University of Antwerp, Belgium
| | | | | |
Collapse
|
218
|
Ehrengruber MU, Hennou S, Büeler H, Naim HY, Déglon N, Lundstrom K. Gene Transfer into Neurons from Hippocampal Slices: Comparison of Recombinant Semliki Forest Virus, Adenovirus, Adeno-Associated Virus, Lentivirus, and Measles Virus. Mol Cell Neurosci 2001; 17:855-71. [PMID: 11358483 DOI: 10.1006/mcne.2001.0982] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Viral vectors are useful for transferring genes into neurons. Here, we characterized recombinant Semliki Forest virus (SFV), adenovirus type 5 (Ad5), adeno-associated virus type 2 (AAV), lentivirus, and measles virus (MV) by their expression of green fluorescent protein (GFP) in rat hippocampal slice cultures. SFV infected more neurons (>90% of all GFP-positive cells) than AAV, lentivirus, and MV (71, 69, and 62%, respectively), whereas no infected neurons were identified with Ad5. AAV-mediated GFP expression was neuron-specific when the platelet-derived growth factor beta-chain promoter rather than cytomegalovirus promoter was used. Transgene expression occurred rapidly but transiently for SFV, increased slowly but remained stable with AAV and lentivirus, and was fast with MV. Resting membrane potential and conductance, action potentials, firing accommodation, and H-current appeared normal in infected CA1 pyramidal cells. Thus, SFV is useful for short-term and AAV and lentivirus for long-term transduction of hippocampal slices, while MV constitutes a novel vector.
Collapse
Affiliation(s)
- M U Ehrengruber
- Brain Research Institute, Institute of Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
219
|
Lacy-Hulbert A, Thomas R, Li XP, Lilley CE, Coffin RS, Roes J. Interruption of coding sequences by heterologous introns can enhance the functional expression of recombinant genes. Gene Ther 2001; 8:649-53. [PMID: 11320412 DOI: 10.1038/sj.gt.3301440] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2000] [Accepted: 01/30/2001] [Indexed: 11/09/2022]
Abstract
Sustained expression of recombinant proteins is a critical factor for the effectiveness of numerous applications in the biomedical sciences including the treatment of human disease by gene therapy, the large scale production of therapeutic proteins, as well as the investigation of gene function by transgenesis or cell type specific mutagenesis. Although much attention has been paid to the optimisation of regulatory sequences such as promoters, untranslated regions and polyadenylation signals, effective and sustained expression of recombinant genes in vivo is often difficult to achieve. Here we report that the creation of artificial exons, by insertion of two short heterologous introns into open reading frames, is not only compatible with functional expression, but also leads to a 30-fold enhancement of mRNA production for both green fluorescent protein and the bacteriophage P1-derived Cre recombinase. The levels of green fluorescence were increased five-fold in cell lines and sustained long-term expression at increased levels was observed in rat brain after transduction with a herpes simplex virus-based vector. The data presented identify a means by which the expression of recombinant genes can be enhanced considerably, in addition to and independently from the surrounding regulatory sequences. The method should help obtain sustained and effective expression of recombinant proteins in vivo.
Collapse
Affiliation(s)
- A Lacy-Hulbert
- Department of Medicine, Windeyer Institute of Medical Science, University College London, UK
| | | | | | | | | | | |
Collapse
|
220
|
Douglas JL, Lin WY, Panis ML, Veres G. Efficient human immunodeficiency virus-based vector transduction of unstimulated human mobilized peripheral blood CD34+ cells in the SCID-hu Thy/Liv model of human T cell lymphopoiesis. Hum Gene Ther 2001; 12:401-13. [PMID: 11242532 DOI: 10.1089/10430340150504028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The methods available to efficiently transduce human CD34(+) hematopoietic stem cells (HSCs) derived from mobilized peripheral blood, such that they fully retain their engraftment potential and maintain high levels of transgene expression in vivo, have been unsatisfactory. The current murine retrovirus-based gene transfer systems require dividing cells for efficient transduction, and therefore the target HSCs must be activated ex vivo by cytokines to cycle, which may limit their engrafting ability. Lentivirus-based gene transfer systems do not require cell division and, thus, may allow for efficient gene transfer to human HSCs in the absence of any ex vivo cytokine stimulation. We constructed human immunodeficiency virus (HIV)-based vectors and compared them in vitro and in vivo with MuLV-based vectors in their ability to transduce unstimulated human CD34(+) HSCs isolated from mobilized peripheral blood. Both sets of vectors contained the marker gene that expresses the enhanced green fluorescent protein (EGFP) for evaluating transduction efficiency and were pseudotyped with either vesicular stomatitis virus glycoprotein (VSV-G) or the amphotropic murine leukemia virus envelope (A-MULV Env). The VSV-G-pseudotyped HIV-based vectors containing an internal mouse phosphoglycerate kinase promoter (PGK) were able to transduce up to 48% of the unstimulated CD34(+) cells as measured by EGFP expression. When these cells were injected into the human fetal thymus implants of irradiated SCID-hu Thy/Liv mice, up to 18% expressed EGFP after 8 weeks in vivo. In contrast, the MULV-based vectors were effective at transducing HSCs only in the presence of cytokines. Our results demonstrate that the improved HIV-based gene transfer system can effectively transduce unstimulated human CD34(+) HSCs, which can then differentiate into thymocytes and provide long-term transgene expression in vivo.
Collapse
|
221
|
Consiglio A, Quattrini A, Martino S, Bensadoun JC, Dolcetta D, Trojani A, Benaglia G, Marchesini S, Cestari V, Oliverio A, Bordignon C, Naldini L. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med 2001; 7:310-6. [PMID: 11231629 DOI: 10.1038/85454] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metachromatic leukodystrophy (MLD) is a lipidosis caused by deficiency of arylsulfatase A (ARSA). Although the genetics of MLD are known, its pathophysiology is not understood. The disease leads to progressive demyelination and early death and no effective treatment is available. We used lentiviral vectors to deliver a functional ARSA gene (human ARSA) into the brain of adult mice with germ-line inactivation of the mouse gene encoding ARSA, As2. We report sustained expression of active enzyme throughout a large portion of the brain, with long-term protection from development of neuropathology and hippocampal-related learning impairments. We show that selective degeneration of hippocampal neurons is a central step in disease pathogenesis, and provide evidence that in vivo transfer of ARSA by lentiviral vectors reverts the disease phenotype in all investigated areas. Therefore, in vivo gene therapy offers a unique option for MLD and other storage diseases affecting the central nervous system.
Collapse
Affiliation(s)
- A Consiglio
- Telethon Institute for Gene Therapy and Department of Neurology, Scientific Institute H.S. Raffaele HSR-TIGET, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Björklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ. Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 2000; 886:82-98. [PMID: 11119690 DOI: 10.1016/s0006-8993(00)02915-2] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
During the last few years, recombinant viral vectors derived from adenovirus (Ad), adeno-associated virus (AAV) or lentivirus (LV) have been developed into highly effective vehicles for gene transfer to the adult central nervous system. In recent experiments, in the rat model of Parkinson's disease, all three vector systems have been shown to be effective for long-term delivery of glial cell line-derived neurotrophic factor (GDNF) at biologically relevant levels in the nigrostriatal system. Injection of the GDNF encoding vectors into either striatum or substantia nigra thus makes it possible to obtain a regionally restricted over-expression of GDNF within the nigrostriatal system that is sufficient to block the toxin-induced degeneration of the nigral dopamine neurons. Injection of GDNF vectors in the striatum, in particular, is effective not only in rescuing the cell bodies in the substantia nigra, but also in preserving the nigrostriatal projection and a functional striatal dopamine innervation in the rat Parkinson model. Long-term experiments using AAV-GDNF and LV-GDNF vectors show, moreover, that sustained GDNF delivery over 3-6 months can promote regeneration and significant functional recovery in both 6-OHDA-lesioned rats and MPTP-lesioned monkeys. The impressive efficacy of the novel AAV and LV vectors in rodent and primate Parkinson models suggests that the time may now be ripe to explore these vector systems as tools for neuroprotective treatments in patients with Parkinson's disease.
Collapse
Affiliation(s)
- A Björklund
- Wallenberg Neuroscience Center, Section of Neurobiology, Lund University, Solvegatan 17, S-22362, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
223
|
Mikkola H, Woods NB, Sjögren M, Helgadottir H, Hamaguchi I, Jacobsen SE, Trono D, Karlsson S. Lentivirus gene transfer in murine hematopoietic progenitor cells is compromised by a delay in proviral integration and results in transduction mosaicism and heterogeneous gene expression in progeny cells. J Virol 2000; 74:11911-8. [PMID: 11090191 PMCID: PMC112474 DOI: 10.1128/jvi.74.24.11911-11918.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1-based lentivirus vectors containing the green fluorescent protein (GFP) gene were used to transduce murine Lin(-) c-kit(+) Sca1(+) primitive hematopoietic progenitor cells. Following transduction, the cells were plated into hematopoietic progenitor cell assays in methylcellulose and the colonies were scored for GFP positivity. After incubation for 20 h, lentivirus vectors transduced 27.3% +/- 6.7% of the colonies derived from unstimulated target cells, but transduction was more efficient when the cells were supported with stem cell factor (SCF) alone (42. 0% +/- 5.5%) or SCF, interleukin-3 (IL-3), and IL-6 (53.3 +/- 1.8%) during transduction. The, vesicular stomatitis virus glycoprotein-pseudotyped MGIN oncoretrovirus control vector required IL-3, IL-6, and SCF for significant transduction (39.3 +/- 9.4%). Interestingly, only a portion of the progeny cells within the lentivirus-transduced methylcellulose colonies expressed GFP, in contrast to the homogeneous expression in oncoretrovirus-transduced colonies. Secondary plating of the primary GFP(+) lentivirus vector-transduced colonies revealed vector PCR(+) GFP(+) (42%), vector PCR(-) GFP(-) (46%), and vector PCR(+) GFP(-) (13%) secondary colonies, indicating true genetic mosaicism with respect to the viral genome in the progeny cells. The degree of vector mosaicism in individual colonies could be reduced by extending the culture time after transduction and before plating into the clonal progenitor cell assay, indicating a delay in the lentiviral integration process. Furthermore, supplementation with exogenous deoxynucleoside triphosphates during transduction decreased mosaicism within the colonies. Although cytokine stimulation during transduction correlates with higher transduction efficiency, rapid cell division after transduction may result in loss of the viral genome in the progeny cells. Therefore, optimal transduction may require activation without promoting intense cell proliferation prior to vector integration.
Collapse
Affiliation(s)
- H Mikkola
- Section for Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
One of the greatest challenges to gene therapy is the targetting of gene delivery selectively to the sites of disease and regulation of transgene expression without adverse effects. Ultimately, the successful realization of these goals is dependent upon improvements in vector design. Over the years, viral vector design has progressed from various types of replication-defective viral mutants to replication-conditioned viruses and, more recently, to 'gutted' and hybrid vectors, which have, respectively, eliminated expression of non-relevant or toxic viral genes and incorporated desired elements of different viruses so as to increase the efficacy of gene delivery in vivo. This review will focus on the different viral and cellular elements which have been incorporated into virus vectors to: improve transduction efficiencies; alter the entry specificity of virions; control the fate of transgenes in the host cells; and regulate transgene expression.
Collapse
Affiliation(s)
- P Y Lam
- Massachusetts General Hospital, and Department of Neurology, Harvard Medical School, Boston 02114, USA
| | | |
Collapse
|
225
|
Affiliation(s)
- A Björklund
- Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden.
| | | |
Collapse
|
226
|
Abstract
Lentiviral vectors are tools for gene transfer derived from lentiviruses. From their first application to now they have been strongly developed in design, in biosafety and in their ability of transgene expression into target cells. Primate and non-primate derived lentiviral vectors are now available and with both types of systems a lot of studies tuned to improve their performances in a large number of tissues are ongoing. Here we review the state of the art of lentiviral vector systems discussing their potential for gene therapy.
Collapse
Affiliation(s)
- E Vigna
- Laboratory for Gene Transfer and Therapy, IRCC, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy
| | | |
Collapse
|
227
|
Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus. J Neurosci 2000. [PMID: 10908595 DOI: 10.1523/jneurosci.20-15-05587.2000] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To date, delivery of neurotrophic factors has only allowed to transiently protect axotomized facial motoneurons against cell death. In the present report, long-term protection of these neurons was evaluated by continuously expressing the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) within the facial nucleus using a lentiviral vector system. The viral vector was injected unilaterally into the facial nucleus of 4-month-old Balb/C mice. In contrast to axotomy in other adult rodents, facial nerve lesion in these animals leads to a progressive and sustained loss and/or atrophy of >50% of the motoneurons. This model thus represents an attractive model to evaluate potential protective effects of neurotrophic factors for adult-onset motoneuron diseases, such as amyotrophic lateral sclerosis. One month after unilateral lentiviral vector injection, the facial nerve was sectioned, and the animals were killed 3 months later. Viral delivery of the GDNF gene led to long-term expression and extensive diffusion of GDNF within the brainstem. In addition, axotomized motoneurons were completely protected against cell death, because 95% of the motoneurons were present as demonstrated by both Nissl staining and choline acetyltransferase immunoreactivity. Furthermore, GDNF prevented lesion-induced neuronal atrophy and maintained proximal motoneuron axons, despite the absence of target cell reinnervation. This is the first evidence that viral-mediated delivery of GDNF close to the motoneuron cell bodies of the facial nucleus of adult mice can lead to complete and long-term protection against lesion-induced cell death.
Collapse
|
228
|
Klages N, Zufferey R, Trono D. A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2000; 2:170-6. [PMID: 10947945 DOI: 10.1006/mthe.2000.0103] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lentiviral vectors open exciting perspectives for the genetic treatment of a wide array of inherited and acquired diseases, owing to their ability to govern the efficient delivery, integration, and long-term expression of transgenes into nondividing cells both in vitro and in vivo. The genomic complexity of HIV, where a whole set of genes encode virulence factors essential for pathogenesis but not required for gene transfer, allowed a major step toward clinical acceptability through the creation of multiply attenuated packaging systems. Until now, however, vector particles could only be produced by transient transfection because no high-output, stable packaging cell line was available that produced the latest generation of HIV-based vectors. Here we describe such a line, based on the doxycycline-repressible expression of HIV-1 Rev/Gag/Pol and of the vesicular stomatitis virus G envelope (VSV G) in 293 human embryonic kidney cells. Upon induction, the LVG clones can produce 1 to 20 HeLa-transducing units per cell per day for about a week, a yield that compares favorably with that of transiently transfected 293T cells. These virions exhibit functional properties similar to those of viruses produced transiently, in particular the ability to transduce nonmitotic targets. This system will facilitate the further development of lentiviral vectors for gene therapy.
Collapse
Affiliation(s)
- N Klages
- Department of Genetics and Microbiology, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
229
|
Bensadoun JC, Déglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P. Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF. Exp Neurol 2000; 164:15-24. [PMID: 10877911 DOI: 10.1006/exnr.2000.7409] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Local delivery of therapeutic molecules represents one of the limiting factors for the treatment of neurodegenerative disorders. In vivo gene transfer using viral vectors constitutes a powerful strategy to overcome this limitation. The aim of the present study was to validate the lentiviral vector as a gene delivery system in the mouse midbrain in the perspective of screening biotherapeutic molecules in mouse models of Parkinson's disease. A preliminary study with a LacZ-encoding vector injected above the substantia nigra of C57BL/6j mice indicated that lentiviral vectors can infect approximately 40,000 cells and diffuse over long distances. Based on these results, glial cell line-derived neurotrophic factor (GDNF) was assessed as a neuroprotective molecule in a 6-hydroxydopamine model of Parkinson's disease. Lentiviral vectors carrying the cDNA for GDNF or mutated GDNF were unilaterally injected above the substantia nigra of C57BL/6j mice. Two weeks later, the animals were lesioned ipsilaterally with 6-hydroxydopamine into the striatum. Apomorphine-induced rotation was significantly decreased in the GDNF-injected group compared to control animals. Moreover, GDNF efficiently protected 69.5% of the tyrosine hydroxylase-positive cells in the substantia nigra against 6-hydroxydopamine-induced toxicity compared to 33.1% with control mutated GDNF. These data indicate that lentiviral vectors constitute a powerful gene delivery system for the screening of therapeutic molecules in mouse models of Parkinson's disease.
Collapse
Affiliation(s)
- J C Bensadoun
- Division of Surgical Research and Gene Therapy Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
230
|
Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 2000. [PMID: 10844038 DOI: 10.1523/jneurosci.20-12-04686.2000] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have used recombinant adeno-associated viral (rAAV) vectors to deliver glial cell line-derived neurotrophic factor (GDNF) in the substantia nigra to protect the nigral dopamine (DA) neurons from 6-hydroxydopamine-induced damage. However, no regeneration or functional recovery was observed in these experiments. Here, we have used an rAAV-GDNF vector to express GDNF long-term (6 months) in either the nigral DA neurons themselves, in the striatal target cells, or in both of these structures. The results demonstrate that both nigral and striatal transduction provide significant protection of nigral DA neurons against the toxin-induced degeneration. However, only the rats receiving rAAV-GDNF in the striatum displayed behavioral recovery, accompanied by significant reinnervation of the lesioned striatum, which developed gradually over the first 4-5 months after the lesion. GDNF transgene expression was maintained at high levels throughout this period. These results provide evidence that rAAV is a highly efficient vector system for long-term expression of therapeutic proteins in the nigrostriatal system.
Collapse
|
231
|
Cisterni C, Henderson CE, Aebischer P, Pettmann B, Déglon N. Efficient gene transfer and expression of biologically active glial cell line-derived neurotrophic factor in rat motoneurons transduced wit lentiviral vectors. J Neurochem 2000; 74:1820-8. [PMID: 10800924 DOI: 10.1046/j.1471-4159.2000.0741820.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several studies have shown the ability of human immunodeficiency virus type 1 (HIV1)-based lentiviral vectors to infect nondividing brain and retinal neurons with high efficiency and long-term expression of the transduced gene. We show that purified embryonic motoneurons can be efficiently (>95%) transduced in culture using an HIV1-based lentiviral vector encoding LacZ. Expression of beta-galactosidase was observed for at least 9 days in these conditions. Furthermore, motoneurons transduced with a lentiviral vector expressing glial cell line-derived neurotrophic factor survived in the absence of additional trophic support, showing that the overexpressed protein was biologically active. Our results demonstrate the potential of lentiviral vectors in studying the biological effects of proteins expressed in motoneurons and in the development of future gene therapy for motoneuron diseases.
Collapse
Affiliation(s)
- C Cisterni
- INSERM U.382, Developmental Biology Institute of Marseille (CNRS-INSERM-Université Méditerranée-AP), France
| | | | | | | | | |
Collapse
|