201
|
Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydr Res 2014; 402:56-66. [PMID: 25497333 DOI: 10.1016/j.carres.2014.06.031] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 12/25/2022]
Abstract
Xyloglucans are structurally complex plant cell wall polysaccharides that are involved in cell growth and expansion, energy metabolism, and signaling. Determining the structure-function relationships of xyloglucans would benefit from the availability of a comprehensive and structurally diverse collection of rigorously characterized xyloglucan oligosaccharides. Here, we present a workflow for the semi-preparative scale generation and purification of neutral and acidic xyloglucan oligosaccharides using a combination of enzymatic and chemical treatments and size-exclusion chromatography. Twenty-six of these oligosaccharides were purified to near homogeneity and their structures validated using a combination of matrix-assisted laser desorption/ionization mass spectrometry, high-performance anion exchange chromatography, and 1H nuclear magnetic resonance spectroscopy. Mass spectrometry and analytical chromatography were compared as methods for xyloglucan oligosaccharide quantification. 1H chemical shifts were assigned using two-dimensional correlation spectroscopy. A comprehensive update of the nomenclature describing xyloglucan side-chain structures is provided for reference.
Collapse
|
202
|
Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J. Root hairs. THE ARABIDOPSIS BOOK 2014; 12:e0172. [PMID: 24982600 PMCID: PMC4075452 DOI: 10.1199/tab.0172] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology.
Collapse
Affiliation(s)
- Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK BS8 1UG
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Tijs Ketelaarc
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
203
|
Roycewicz PS, Malamy JE. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2057-69. [PMID: 24619997 PMCID: PMC3991740 DOI: 10.1093/jxb/eru056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.
Collapse
|
204
|
Ade CP, Bemm F, Dickson JMJ, Walter C, Harris PJ. Family 34 glycosyltransferase (GT34) genes and proteins in Pinus radiata (radiata pine) and Pinus taeda (loblolly pine). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:305-318. [PMID: 24517843 DOI: 10.1111/tpj.12468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Using a functional genomics approach, four candidate genes (PtGT34A, PtGT34B, PtGT34C and PtGT34D) were identified in Pinus taeda. These genes encode CAZy family GT34 glycosyltransferases that are involved in the synthesis of cell-wall xyloglucans and heteromannans. The full-length coding sequences of three orthologs (PrGT34A, B and C) were isolated from a xylem-specific cDNA library from the closely related Pinus radiata. PrGT34B is the ortholog of XXT1 and XXT2, the two main xyloglucan (1→6)-α-xylosyltransferases in Arabidopsis thaliana. PrGT34C is the ortholog of XXT5 in A. thaliana, which is also involved in the xylosylation of xyloglucans. PrGT34A is an ortholog of a galactosyltransferase from fenugreek (Trigonella foenum-graecum) that is involved in galactomannan synthesis. Truncated coding sequences of the genes were cloned into plasmid vectors and expressed in a Sf9 insect cell-culture system. The heterologous proteins were purified, and in vitro assays showed that, when incubated with UDP-xylose and cellotetraose, cellopentaose or cellohexaose, PrGT34B showed xylosyltransferase activity, and, when incubated with UDP-galactose and the same cello-oligosaccharides, PrGT34B showed some galactosyltransferase activity. The ratio of xylosyltransferase to galactosyltransferase activity was 434:1. Hydrolysis of the galactosyltransferase reaction products using galactosidases showed the linkages formed were α-linkages. Analysis of the products of PrGT34B by MALDI-TOF MS showed that up to three xylosyl residues were transferred from UDP-xylose to cellohexaose. The heterologous proteins PrGT34A and PrGT34C showed no detectable enzymatic activity.
Collapse
Affiliation(s)
- Carsten P Ade
- Scion Research, Private Bag 3020, Rotorua, 3046, New Zealand; School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
205
|
Bashline L, Lei L, Li S, Gu Y. Cell wall, cytoskeleton, and cell expansion in higher plants. MOLECULAR PLANT 2014; 7:586-600. [PMID: 24557922 DOI: 10.1093/mp/ssu018] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.
Collapse
Affiliation(s)
- Logan Bashline
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
206
|
Chimeric repressor analysis identifies MYB87 as a possible regulator of morphogenesis via cell wall organization and remodeling in Arabidopsis. Biotechnol Lett 2014; 36:1049-57. [PMID: 24563287 DOI: 10.1007/s10529-013-1451-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Plant growth and development require proper cell wall organization but little is known about the transcription factors responsible for the regulation of gene expression involved in cell wall organization. Here we show, using Arabidopsis thaliana, that constitutive expression of the chimeric repressor for the MYB87 transcription factor causes suppression of longitudinal elongation, aberrant radial growth, and radially expanded or swollen cells in multiple organs. Microarray analysis revealed that plants expressing the chimeric repressor have altered expression of various cell wall related genes. MYB87 may therefore function as a regulator of genes affecting cell wall organization and remodeling. These findings improve our understanding of cell wall regulation and its roles in plant growth and development and also contribute information that may allow engineering of plant growth and architecture.
Collapse
|
207
|
Uehara M, Wang S, Kamiya T, Shigenobu S, Yamaguchi K, Fujiwara T, Naito S, Takano J. Identification and Characterization of an Arabidopsis Mutant with Altered Localization of NIP5;1, a Plasma Membrane Boric Acid Channel, Reveals the Requirement for d-Galactose in Endomembrane Organization. ACTA ACUST UNITED AC 2014; 55:704-14. [DOI: 10.1093/pcp/pct191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
208
|
Larson ER, Tierney ML, Tinaz B, Domozych DS. Using monoclonal antibodies to label living root hairs: a novel tool for studying cell wall microarchitecture and dynamics in Arabidopsis. PLANT METHODS 2014; 10:30. [PMID: 25309618 PMCID: PMC4192329 DOI: 10.1186/1746-4811-10-30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/23/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND The Arabidopsis root hair represents a valuable cell model for elucidating polar expansion mechanisms in plant cells and the overall biology of roots. The deposition and development of the cell wall is central to the root hair expansion apparatus. During this process, incorporation of specific wall polymers into the growing wall architecture constitutes a critical spatio-temporal event that controls hair size and growth rate and one that is closely coordinated with the cell's endomembrane, cytoskeletal and signal transduction apparatuses. RESULTS In this study, the protocol for live cell labeling of roots with monoclonal antibodies that bind to specific wall polymers is presented. This method allows for rapid assessment of root hair cell wall composition during development and assists in describing changes to cell wall composition in transgenic mutant lines. Enzymatic "unmasking" of specific polymers prior to labeling allows for refined interpretation of cell wall chemistry. Live cell immunofluorescence data may also be correlated with transmission electron microscopy-based immunogold labeling. CONCLUSIONS Live Arabidopsis root hairs may be labeled with cell wall polymer-specific antibodies. This methodology allows for direct visualization of cell wall dynamics throughout development in stable transgenic plant lines. It also provides an important new tool in the elucidation of the specific interactions occurring between membrane trafficking networks, cytoskeleton and the cell wall deposition/remodeling mechanism.
Collapse
Affiliation(s)
- Emily R Larson
- />Cellular, Molecular, and Biomedical Science Program, University of Vermont, Burlington, VT USA
- />Laboratory of Plant Physiology and Biophysics, Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow, G12 8QQ UK
| | - Mary L Tierney
- />Cellular, Molecular, and Biomedical Science Program, University of Vermont, Burlington, VT USA
- />Department of Plant Biology, University of Vermont, Burlington, VT USA
| | - Berke Tinaz
- />Department of Biology, Skidmore College, Saratoga Springs, NY USA
| | - David S Domozych
- />Department of Biology, Skidmore College, Saratoga Springs, NY USA
| |
Collapse
|
209
|
Tenhaken R. Cell wall remodeling under abiotic stress. FRONTIERS IN PLANT SCIENCE 2014; 5:771. [PMID: 25709610 PMCID: PMC4285730 DOI: 10.3389/fpls.2014.00771] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 05/18/2023]
Abstract
Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs.
Collapse
Affiliation(s)
- Raimund Tenhaken
- *Correspondence: Raimund Tenhaken, Department of Cell Biology, Plant Physiology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria e-mail:
| |
Collapse
|
210
|
Paque S, Mouille G, Grandont L, Alabadí D, Gaertner C, Goyallon A, Muller P, Primard-Brisset C, Sormani R, Blázquez MA, Perrot-Rechenmann C. AUXIN BINDING PROTEIN1 links cell wall remodeling, auxin signaling, and cell expansion in arabidopsis. THE PLANT CELL 2014; 26:280-95. [PMID: 24424095 PMCID: PMC3963575 DOI: 10.1105/tpc.113.120048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall-related genes, especially cell wall remodeling genes, mainly via an SCF(TIR/AFB)-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion.
Collapse
Affiliation(s)
- Sébastien Paque
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Laurie Grandont
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Planta, Consejo Superior de Investigaciones Científicas, Universitat Politécnica de Valencia, 46022 Valencia, Spain
| | - Cyril Gaertner
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Arnaud Goyallon
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Philippe Muller
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Catherine Primard-Brisset
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Rodnay Sormani
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Planta, Consejo Superior de Investigaciones Científicas, Universitat Politécnica de Valencia, 46022 Valencia, Spain
| | - Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
- Address correspondence to
| |
Collapse
|
211
|
Plant Cell Wall Polysaccharides: Structure and Biosynthesis. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_73-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
212
|
|
213
|
How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 2013; 11:648-55. [PMID: 23949603 DOI: 10.1038/nrmicro3090] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In budding yeast, the neck that connects the mother and daughter cell is the site of essential functions such as organelle trafficking, septum formation and cytokinesis. Therefore, the morphology of this region, which depends on the surrounding cell wall, must be maintained throughout the cell cycle. Growth at the neck is prevented, redundantly, by a septin ring inside the cell membrane and a chitin ring in the cell wall. Here, we describe recent work supporting the hypothesis that attachment of the chitin ring, which forms at the mother-bud neck during budding, to β-1,3-glucan in the cell wall is necessary to stop growth at the neck. Thus, in this scenario, chemistry controls morphogenesis.
Collapse
|
214
|
Kong Y, Zhou G, Abdeen AA, Schafhauser J, Richardson B, Atmodjo MA, Jung J, Wicker L, Mohnen D, Western T, Hahn MG. GALACTURONOSYLTRANSFERASE-LIKE5 is involved in the production of Arabidopsis seed coat mucilage. PLANT PHYSIOLOGY 2013; 163:1203-17. [PMID: 24092888 PMCID: PMC3813644 DOI: 10.1104/pp.113.227041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/02/2013] [Indexed: 05/17/2023]
Abstract
The function of a putative galacturonosyltransferase from Arabidopsis (Arabidopsis thaliana; At1g02720; GALACTURONOSYLTRANSFERASE-LIKE5 [AtGATL5]) was studied using a combination of molecular genetic, chemical, and immunological approaches. AtGATL5 is expressed in all plant tissues, with highest expression levels in siliques 7 DPA. Furthermore, its expression is positively regulated by several transcription factors that are known to regulate seed coat mucilage production. AtGATL5 is localized in both endoplasmic reticulum and Golgi, in comparison with marker proteins resident to these subcellular compartments. A transfer DNA insertion in the AtGATL5 gene generates seed coat epidermal cell defects both in mucilage synthesis and cell adhesion. Transformation of atgatl5-1 mutants with the wild-type AtGATL5 gene results in the complementation of all morphological phenotypes. Compositional analyses of the mucilage isolated from the atgatl5-1 mutant demonstrated that galacturonic acid and rhamnose contents are decreased significantly in atgatl5-1 compared with wild-type mucilage. No changes in structure were observed between soluble mucilage isolated from wild-type and mutant seeds, except that the molecular weight of the mutant mucilage increased 63% compared with that of the wild type. These data provide evidence that AtGATL5 might function in the regulation of the final size of the mucilage rhamnogalacturonan I.
Collapse
|
215
|
Burgert I, Keplinger T. Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4635-49. [PMID: 24064925 DOI: 10.1093/jxb/ert255] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the last few decades, micro- and nanomechanical methods have become increasingly important analytical techniques to gain deeper insight into the nanostructure and mechanical design of plant cell walls. The objective of this article is to review the most common micro- and nanomechanical approaches that are utilized to study primary and secondary cell walls from a biomechanics perspective. In light of their quite disparate functions, the common and opposing structural features of primary and secondary cell walls are reviewed briefly. A significant part of the article is devoted to an overview of the methodological aspects of the mechanical characterization techniques with a particular focus on new developments and advancements in the field of nanomechanics. This is followed and complemented by a review of numerous studies on the mechanical role of cellulose fibrils and the various matrix components as well as the polymer interactions in the context of primary and secondary cell-wall function.
Collapse
Affiliation(s)
- Ingo Burgert
- ETH Zurich, Institute for Building Materials, Schafmattstrasse 6, 8093 Zurich & Empa, Applied Wood Materials Laboratory, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland
| | | |
Collapse
|
216
|
Suo B, Seifert S, Kirik V. Arabidopsis GLASSY HAIR genes promote trichome papillae development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4981-91. [PMID: 24014871 PMCID: PMC3830481 DOI: 10.1093/jxb/ert287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Specialized plant cells form cell walls with distinct composition and properties pertinent to their function. Leaf trichomes in Arabidopsis form thick cell walls that support the upright growth of these large cells and, curiously, have strong light-reflective properties. To understand the process of trichome cell-wall maturation and the molecular origins of this optical property, mutants affected in trichome light reflection were isolated and characterized. It was found that GLASSY HAIR (GLH) genes are required for the formation of surface papillae structures at late stages of trichome development. Trichomes in these mutants appeared transparent due to unobstructed light transmission. Genetic analysis of the isolated mutants revealed seven different gene loci. Two--TRICHOME BIREFRINGENCE (TBR) and NOK (Noeck)--have been reported previously to have the glassy trichome mutant phenotype. The other five glh mutants were analysed for cell-wall-related phenotypes. A significant reduction was found in cellulose content in glh2 and glh4 mutant trichomes. In addition to the glassy trichome phenotype, the glh6 mutants showed defects in leaf cuticular wax, and glh6 was found to represent a new allele of the eceriferum 10 (cer10) mutation. Trichomes of the glh1 and glh3 mutants did not show any other phenotypes beside reduced papillae formation. These data suggest that the GLH1 and GLH3 genes may have specific functions in trichome papillae formation, whereas GLH2, GLH4, and GLH6 genes are also involved in deposition of other cell-wall components.
Collapse
Affiliation(s)
- Bangxia Suo
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Stephanie Seifert
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
217
|
Hirano K, Aya K, Morinaka Y, Nagamatsu S, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M. Survey of Genes Involved in Rice Secondary Cell Wall Formation Through a Co-Expression Network. ACTA ACUST UNITED AC 2013; 54:1803-21. [DOI: 10.1093/pcp/pct121] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
218
|
Lampugnani ER, Moller IE, Cassin A, Jones DF, Koh PL, Ratnayake S, Beahan CT, Wilson SM, Bacic A, Newbigin E. In vitro grown pollen tubes of Nicotiana alata actively synthesise a fucosylated xyloglucan. PLoS One 2013; 8:e77140. [PMID: 24116212 PMCID: PMC3792914 DOI: 10.1371/journal.pone.0077140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Nicotiana alata pollen tubes are a widely used model for studies of polarized tip growth and cell wall synthesis in plants. To better understand these processes, RNA-Seq and de novo assembly methods were used to produce a transcriptome of N. alata pollen grains. Notable in the reconstructed transcriptome were sequences encoding proteins that are involved in the synthesis and remodelling of xyloglucan, a cell wall polysaccharide previously not thought to be deposited in Nicotiana pollen tube walls. Expression of several xyloglucan-related genes in actively growing pollen tubes was confirmed and xyloglucan epitopes were detected in the wall with carbohydrate-specific antibodies: the major xyloglucan oligosaccharides found in N. alata pollen grains and tubes were fucosylated, an unusual structure for the Solanaceae, the family to which Nicotiana belongs. Finally, carbohydrate linkages consistent with xyloglucan were identified chemically in the walls of N. alata pollen grains and pollen tubes grown in culture. The presence of a fucosylated xyloglucan in Nicotiana pollen tube walls was thus confirmed. The consequences of this discovery to models of pollen tube growth dynamics and more generally to polarised tip-growing cells in plants are discussed.
Collapse
Affiliation(s)
| | - Isabel E. Moller
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Cassin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel F. Jones
- Department of Botany, La Trobe University, Bundoora, Victoria, Australia
| | - Poh Ling Koh
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Sunil Ratnayake
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Cherie T. Beahan
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah M. Wilson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| | - Antony Bacic
- Bio21 Institute for Molecular Science & Biotechnology, University of Melbourne, Victoria, Australia
| | - Ed Newbigin
- School of Botany, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
219
|
Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G. Hemicellulose biosynthesis. PLANTA 2013; 238:627-42. [PMID: 23801299 DOI: 10.1007/s00425-013-1921-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/14/2013] [Indexed: 05/17/2023]
Abstract
One major component of plant cell walls is a diverse group of polysaccharides, the hemicelluloses. Hemicelluloses constitute roughly one-third of the wall biomass and encompass the heteromannans, xyloglucan, heteroxylans, and mixed-linkage glucan. The fine structure of these polysaccharides, particularly their substitution, varies depending on the plant species and tissue type. The hemicelluloses are used in numerous industrial applications such as food additives as well as in medicinal applications. Their abundance in lignocellulosic feedstocks should not be overlooked, if the utilization of this renewable resource for fuels and other commodity chemicals becomes a reality. Fortunately, our understanding of the biosynthesis of the various hemicelluloses in the plant has increased enormously in recent years mainly through genetic approaches. Taking advantage of this knowledge has led to plant mutants with altered hemicellulosic structures demonstrating the importance of the hemicelluloses in plant growth and development. However, while we are on a solid trajectory in identifying all necessary genes/proteins involved in hemicellulose biosynthesis, future research is required to combine these single components and assemble them to gain a holistic mechanistic understanding of the biosynthesis of this important class of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Markus Pauly
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA,
| | | | | | | | | | | | | |
Collapse
|
220
|
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Proc Natl Acad Sci U S A 2013; 110:16444-9. [PMID: 24065828 DOI: 10.1073/pnas.1316290110] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins, which weaken the noncovalent network formed by cellulose, hemicellulose, and pectins, but the CW target of expansins has remained elusive because of the minute amount of the protein required for activity and the complex nature of the CW. Using solid-state NMR spectroscopy, combined with sensitivity-enhancing dynamic nuclear polarization (DNP) and differential isotopic labeling of expansin and polysaccharides, we have now determined the functional binding target of expansin in the Arabidopsis thaliana CW. By transferring the electron polarization of a biradical dopant to the nuclei, DNP allowed selective detection of (13)C spin diffusion from trace concentrations of (13)C, (15)N-labeled expansin in the CW to nearby polysaccharides. From the spin diffusion data of wild-type and mutant expansins, we conclude that to loosen the CW, expansin binds highly specific cellulose domains enriched in xyloglucan, whereas more abundant binding to pectins is unrelated to activity. Molecular dynamics simulations indicate short (13)C-(13)C distances of 4-6 Å between a hydrophobic surface of the cellulose microfibril and an aromatic motif on the expansin surface, consistent with the observed NMR signals. DNP-enhanced 2D (13)C correlation spectra further reveal that the expansin-bound cellulose has altered conformation and is enriched in xyloglucan, thus providing unique insight into the mechanism of CW loosening. DNP-enhanced NMR provides a powerful, generalizable approach for investigating protein binding to complex macromolecular targets.
Collapse
|
221
|
Barbacci A, Lahaye M, Magnenet V. Another brick in the cell wall: biosynthesis dependent growth model. PLoS One 2013; 8:e74400. [PMID: 24066142 PMCID: PMC3774806 DOI: 10.1371/journal.pone.0074400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/01/2013] [Indexed: 11/19/2022] Open
Abstract
Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.
Collapse
Affiliation(s)
- Adelin Barbacci
- Biopolymers Interactions Assembly UR 1268 (BIA), Institut National de la Recherche Agronomique (INRA), Nantes, France
- * E-mail: (AB); (VM)
| | - Marc Lahaye
- Biopolymers Interactions Assembly UR 1268 (BIA), Institut National de la Recherche Agronomique (INRA), Nantes, France
| | - Vincent Magnenet
- Laboratoire des sciences de l'ingnieur, de l'informatique et de l'imagerie (ICube), Université de Strasbourg, UMR CNRS 7357, Illkirch, France
- * E-mail: (AB); (VM)
| |
Collapse
|
222
|
Qi G, Hu R, Yu L, Chai G, Cao Y, Zuo R, Kong Y, Zhou G. Two poplar cellulose synthase-like D genes, PdCSLD5 and PdCSLD6, are functionally conserved with Arabidopsis CSLD3. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1267-1276. [PMID: 23746994 DOI: 10.1016/j.jplph.2013.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/01/2013] [Accepted: 04/07/2013] [Indexed: 06/02/2023]
Abstract
Root hairs are tip-growing long tubular outgrowths of specialized epidermal cells, and are important for nutrient and water uptake and interaction with the soil microflora. Here we characterized two poplar cellulose synthase-like D (CSLD) genes, PdCSLD5 and PdCSLD6, the most probable orthologs to the Arabidopsis AtCSLD3/KOJAK gene. Both PdCSLD5 and PdCSLD6 are strongly expressed in roots, including in the root hairs. Subcellular localization experiments showed that these two proteins are located not only in the polarized plasma membrane of root hair tips, but also in Golgi apparatus of the root hair and non-hair-forming cells. Overexpression of these two poplar genes in the atcsld3 mutant was able to rescue most of the defects caused by disruption of AtCSLD3, including root hair morphological changes, altered cell wall monosaccharide composition, increased non-crystalline β-1,4-glucan and decreased crystalline cellulose contents. Taken together, our results provide evidence indicating that PdCSLD5 and PdCSLD6 are functionally conserved with AtCSLD3 and support a role for PdCSLD5 and PdCSL6 specifically in crystalline cellulose production in poplar root hair tips. The results presented here also suggest that at least part of the mechanism of root hair formation is conserved between herbaceous and woody plants.
Collapse
Affiliation(s)
- Guang Qi
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Schultink A, Cheng K, Park YB, Cosgrove DJ, Pauly M. The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents. PLANT PHYSIOLOGY 2013; 163:86-94. [PMID: 23893172 PMCID: PMC3762667 DOI: 10.1104/pp.113.221788] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/25/2013] [Indexed: 05/18/2023]
Abstract
Xyloglucan (XyG) is the dominant hemicellulose present in the primary cell walls of dicotyledonous plants. Unlike Arabidopsis (Arabidopsis thaliana) XyG, which contains galactosyl and fucosyl substituents, tomato (Solanum lycopersicum) XyG contains arabinofuranosyl residues. To investigate the biological function of these differing substituents, we used a functional complementation approach. Candidate glycosyltransferases were identified from tomato by using comparative genomics with known XyG galactosyltransferase genes from Arabidopsis. These candidate genes were expressed in an Arabidopsis mutant lacking XyG galactosylation, and two of them resulted in the production of arabinosylated XyG, a structure not previously found in this plant species. These genes may therefore encode XyG arabinofuranosyltransferases. Moreover, the addition of arabinofuranosyl residues to the XyG of this Arabidopsis mutant rescued a growth and cell wall biomechanics phenotype, demonstrating that the function of XyG in plant growth, development, and mechanics has considerable flexibility in terms of the specific residues in the side chains. These experiments also highlight the potential of reengineering the sugar substituents on plant wall polysaccharides without compromising growth or viability.
Collapse
|
224
|
Gu F, Nielsen E. Targeting and regulation of cell wall synthesis during tip growth in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:835-46. [PMID: 23758901 DOI: 10.1111/jipb.12077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/20/2013] [Indexed: 05/20/2023]
Abstract
Root hairs and pollen tubes are formed through tip growth, a process requiring synthesis of new cell wall material and the precise targeting and integration of these components to a selected apical plasma membrane domain in the growing tips of these cells. Presence of a tip-focused calcium gradient, control of actin cytoskeleton dynamics, and formation and targeting of secretory vesicles are essential to tip growth. Similar to cells undergoing diffuse growth, cellulose, hemicelluloses, and pectins are also deposited in the growing apices of tip-growing cells. However, differences in the manner in which these cell wall components are targeted and inserted in the expanding portion of tip-growing cells is reflected by the identification of elements of the plant cell wall synthesis machinery which have been shown to play unique roles in tip-growing cells. In this review, we summarize our current understanding of the tip growth process, with a particular focus on the subcellular targeting of newly synthesized cell wall components, and their roles in this form of plant cell expansion.
Collapse
Affiliation(s)
- Fangwei Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
225
|
Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 2013; 14:382-92. [PMID: 23698585 DOI: 10.1038/nrm3588] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
226
|
Gendre D, McFarlane HE, Johnson E, Mouille G, Sjödin A, Oh J, Levesque-Tremblay G, Watanabe Y, Samuels L, Bhalerao RP. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. THE PLANT CELL 2013; 25:2633-46. [PMID: 23832588 PMCID: PMC3753388 DOI: 10.1105/tpc.113.112482] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The secretion of cell wall polysaccharides through the trans-Golgi network (TGN) is required for plant cell elongation. However, the components mediating the post-Golgi secretion of pectin and hemicellulose, the two major cell wall polysaccharides, are largely unknown. We identified evolutionarily conserved YPT/RAB GTPase Interacting Protein 4a (YIP4a) and YIP4b (formerly YIP2), which form a TGN-localized complex with ECHIDNA (ECH) in Arabidopsis thaliana. The localization of YIP4 and ECH proteins at the TGN is interdependent and influences the localization of VHA-a1 and SYP61, which are key components of the TGN. YIP4a and YIP4b act redundantly, and the yip4a yip4b double mutants have a cell elongation defect. Genetic, biochemical, and cell biological analyses demonstrate that the ECH/YIP4 complex plays a key role in TGN-mediated secretion of pectin and hemicellulose to the cell wall in dark-grown hypocotyls and in secretory cells of the seed coat. In keeping with these observations, Fourier transform infrared microspectroscopy analysis revealed that the ech and yip4a yip4b mutants exhibit changes in their cell wall composition. Overall, our results reveal a TGN subdomain defined by ECH/YIP4 that is required for the secretion of pectin and hemicellulose and distinguishes the role of the TGN in secretion from its roles in endocytic and vacuolar trafficking.
Collapse
Affiliation(s)
- Delphine Gendre
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Heather E. McFarlane
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Errin Johnson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France
| | - Andreas Sjödin
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | - Jaesung Oh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
| | | | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden
- Address correspondence to
| |
Collapse
|
227
|
Gu T, Held MA, Faik A. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. ENVIRONMENTAL TECHNOLOGY 2013; 34:1735-49. [PMID: 24350431 DOI: 10.1080/09593330.2013.809777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of cellulose crystallinity largely contributes to biomass recalcitrance. Additionally, cellulose microfibrils are embedded into both hemicellulose and lignin polymeric networks, making cellulose accessibility an additional obstacle. Pretreatment is necessary before enzymatic hydrolysis in order to liberate high yields of glucose and other fermentable sugars from biomass polysaccharides. This work discusses two pretreatment methods, supercritical CO2 and ionic liquids (ILs). Both methods utilize green solvents that do not emit toxic vapours. Mechanisms for destroying or weakening biomass recalcitrance have been explored. Various pretreatment operating parameters such as temperature, pressure, time, dry biomass/solvent ratio, water content, etc. have been investigated for the pretreatment of various biomass types such as corn stover, switchgrass, sugarcane bagasse, soft and hard wood. The two pretreatment methods have their pros and cons. For example, supercritical CO2 explosion pretreatment uses inexpensive CO2, but requires a high pressure. By comparison, while IL pretreatment does not require an elevated pressure, ILs are still too expensive for large-scale uses. Further research and development are needed to make the two green pretreatment methods practical.
Collapse
Affiliation(s)
- Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA.
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Ahmed Faik
- Environmental and Plant Biology Department, Ohio University Athens, OH 45701, USA
| |
Collapse
|
228
|
Landrein B, Hamant O. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:324-38. [PMID: 23551516 DOI: 10.1111/tpj.12188] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 05/19/2023]
Abstract
Microtubules have a key role in plant morphogenesis, as they control the oriented deposition of cellulose in the cell wall, and thus growth anisotropy. The idea that mechanical stress could be one of the main determinants behind the orientation of microtubules in plant cells emerged very soon after their discovery. The cause of mechanical stress in plant cells is turgor pressure, which can build up to 1 MPa and is restrained by cell wall stiffness. On the tissue scale, this can lead to regional patterns of tension, in particular in the epidermis of aerial organs, which resist the stress generated by cells in internal tissues. Here we summarize more than 50 years of work on the contribution of mechanical stress in guiding microtubule behavior, and the resulting impact on growth anisotropy and growth heterogeneity. We propose a conceptual model on microtubule dynamics and their ability to self-organize in bundles parallel to the direction of maximal stress, as well as a synthetic representation of the putative mechanotransducers at play.
Collapse
Affiliation(s)
- Benoît Landrein
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, 46 Allee d'Italie, Lyon, Cedex 07 69364, France
| | | |
Collapse
|
229
|
Alonso-Simón A, Encina AE, Seyama T, Kondo T, García-Angulo P, Álvarez JM, Acebes JL, Hayashi T. Purification and characterization of a soluble β-1,4-glucan from bean (Phaseolus vulgaris L.)-cultured cells dehabituated to dichlobenil. PLANTA 2013; 237:1475-1482. [PMID: 23455460 DOI: 10.1007/s00425-013-1861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/14/2013] [Indexed: 06/01/2023]
Abstract
Bean cells habituated to grow in the presence of dichlobenil exhibited reduced cellulose and hemicellulose content and an increase in pectic polysaccharides. Furthermore, following the extraction of pectins and hemicelluloses, a large amount of neutral sugars was released. These sugars were found to be part of a soluble β-1,4-glucan in a preliminary characterization, as reported by Encina et al. (Physiol Plant 114:182-191, 2002). When habituated cells were subcultured in the absence of the herbicide (dehabituated cells), the release of neutral sugars after the extraction of pectins and hemicelluloses was maintained. In this study, we have isolated a soluble β-1,4-glucan from dehabituated cells by sonication of the wall residue (cellulose fraction) remaining after fractionation. Gel filtration chromatography revealed that its average molecular size was 14 kDa. Digestion of the sample with endocellulase revealed the presence of cellobiose, cellotriose, and cellotetraose. Methylation analysis showed that 4-linked glucose was the most abundant sugar residue, but 4,6-linked glucose, terminal arabinose and 4-linked galactose for xyloglucan, and arabinogalactan were also identified. NMR analysis showed that this 1,4-glucan may be composed of various kinds of substitutions along the glucan backbone together with acetyl groups linked to the OH group of sugar residues. Thus, despite its relatively high molecular mass, the β-glucan remains soluble because of its unique configuration. This is the first time that a glucan with such characteristics has been isolated and described. The discovery of new molecules, as this β-glucan with unique features, may help understand the composition and arrangement of the polymers within plant cell walls, contributing to a better understanding of this complex structure.
Collapse
Affiliation(s)
- Ana Alonso-Simón
- Área de Fisiología Vegetal, Universidad de León, 24071 León, Spain
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Gribaa A, Dardelle F, Lehner A, Rihouey C, Burel C, Ferchichi A, Driouich A, Mollet JC. Effect of water deficit on the cell wall of the date palm (Phoenix dactylifera 'Deglet nour', Arecales) fruit during development. PLANT, CELL & ENVIRONMENT 2013; 36:1056-70. [PMID: 23176574 DOI: 10.1111/pce.12042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 05/24/2023]
Abstract
Date palm (Phoenix dactylifera) is an important crop providing a valuable nutrition source for people in many countries including the Middle East and North Africa. In recent years, the amount of rain in North Africa and especially in the Tunisian palm grove areas has dropped significantly. We investigated the growth and cell wall remodelling of fruits harvested at three key development stages from trees grown with or without water supply. During development, cell wall solubilization and remodelling was characterized by a decrease of the degree of methylesterification of pectin, an important loss of galactose content and a reduction of the branching of xylan by arabinose in irrigated condition. Water deficit had a profound effect on fruit size, pulp content, cell wall composition and remodelling. Loss of galactose content was not as important, arabinose content was significantly higher in the pectin-enriched extracts from non-irrigated condition, and the levels of methylesterification of pectin and O-acetylation of xyloglucan were lower than in irrigated condition. The lower levels of hydrophobic groups (methylester and O-acetyl) and the less intensive degradation of the hydrophilic galactan, arabinan and arabinogalactan in the cell wall may be implicated in maintaining the hydration status of the cells under water deficit.
Collapse
Affiliation(s)
- Ali Gribaa
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, IRIB, Normandy University, Université de Rouen, 76821 Mont Saint-Aignan Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Miedes E, Suslov D, Vandenbussche F, Kenobi K, Ivakov A, Van Der Straeten D, Lorences EP, Mellerowicz EJ, Verbelen JP, Vissenberg K. Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2481-97. [PMID: 23585673 DOI: 10.1093/jxb/ert107] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. XTH-OE plants deposited 65-84% more cell wall material per hypocotyl cross-sectional area than wild-type plants. As a result, their wall stress under each external load was lower than in the wild-type. Growing XTH-OE hypocotyls had higher values of initial deformation·stress(-1) compared with the wild type. Plotting creep rates for each line under different loads against the respective wall stress values gave straight lines. Their slopes and intercepts with the abscissa correspond to ϕ (in vitro cell wall extensibility) and y (in vitro cell wall yield threshold) values characterizing cell wall material properties. The wall material in XTH-OE lines was more pliant than in the wild type due to lower y values. In contrast, the acid-induced wall extension in vitro resulted from increasing ϕ values. Thus, three factors contributed to the XTH-OE-stimulated growth in Arabidopsis hypocotyls: their more linear creep, higher values of initial deformation·stress(-1), and lower y values.
Collapse
Affiliation(s)
- Eva Miedes
- Department of Biology, Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Kuo YC, Tan CC, Ku JT, Hsu WC, Su SC, Lu CA, Huang LF. Improving pharmaceutical protein production in Oryza sativa. Int J Mol Sci 2013; 14:8719-39. [PMID: 23615467 PMCID: PMC3676753 DOI: 10.3390/ijms14058719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 01/01/2023] Open
Abstract
Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed.
Collapse
Affiliation(s)
- Yu-Chieh Kuo
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Chia-Chun Tan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
- Department of Life Sciences, National Central University, 300, Jhongda Rd., Taoyuan 32001, Taiwan; E-Mail:
| | - Jung-Ting Ku
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Wei-Cho Hsu
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Sung-Chieh Su
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Chung-An Lu
- Department of Life Sciences, National Central University, 300, Jhongda Rd., Taoyuan 32001, Taiwan; E-Mail:
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| |
Collapse
|
233
|
Djonović S, Urbach JM, Drenkard E, Bush J, Feinbaum R, Ausubel JL, Traficante D, Risech M, Kocks C, Fischbach MA, Priebe GP, Ausubel FM. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog 2013; 9:e1003217. [PMID: 23505373 PMCID: PMC3591346 DOI: 10.1371/journal.ppat.1003217] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/13/2013] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic pathway (trehalose biosynthesis) as a potent virulence factor that allows it to replicate in the intercellular environment of a leaf.
Collapse
Affiliation(s)
- Slavica Djonović
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan M. Urbach
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eliana Drenkard
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jenifer Bush
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rhonda Feinbaum
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan L. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - David Traficante
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Martina Risech
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Christine Kocks
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael A. Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Gregory P. Priebe
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
234
|
Mollet JC, Leroux C, Dardelle F, Lehner A. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth. PLANTS 2013; 2:107-47. [PMID: 27137369 PMCID: PMC4844286 DOI: 10.3390/plants2010107] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.
Collapse
Affiliation(s)
- Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Christelle Leroux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| |
Collapse
|
235
|
Avci U, Pattathil S, Singh B, Brown VL, Hahn MG, Haigler CH. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLoS One 2013; 8:e56315. [PMID: 23457548 PMCID: PMC3572956 DOI: 10.1371/journal.pone.0056315] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/08/2013] [Indexed: 12/15/2022] Open
Abstract
Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.
Collapse
Affiliation(s)
- Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Bir Singh
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Virginia L. Brown
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Candace H. Haigler
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
236
|
Kaewthai N, Gendre D, Eklöf JM, Ibatullin FM, Ezcurra I, Bhalerao RP, Brumer H. Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. PLANT PHYSIOLOGY 2013; 161:440-54. [PMID: 23104861 PMCID: PMC3532273 DOI: 10.1104/pp.112.207308] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/25/2012] [Indexed: 05/05/2023]
Abstract
The molecular basis of primary wall extension endures as one of the central enigmas in plant cell morphogenesis. Classical cell wall models suggest that xyloglucan endo-transglycosylase activity is the primary catalyst (together with expansins) of controlled cell wall loosening through the transient cleavage and religation of xyloglucan-cellulose cross links. The genome of Arabidopsis (Arabidopsis thaliana) contains 33 phylogenetically diverse XYLOGLUCAN ENDO-TRANSGLYCOSYLASE/HYDROLASE (XTH) gene products, two of which were predicted to be predominant xyloglucan endohydrolases due to clustering into group III-A. Enzyme kinetic analysis of recombinant AtXTH31 confirmed this prediction and indicated that this enzyme had similar catalytic properties to the nasturtium (Tropaeolum majus) xyloglucanase1 responsible for storage xyloglucan hydrolysis during germination. Global analysis of Genevestigator data indicated that AtXTH31 and the paralogous AtXTH32 were abundantly expressed in expanding tissues. Microscopy analysis, utilizing the resorufin β-glycoside of the xyloglucan oligosaccharide XXXG as an in situ probe, indicated significant xyloglucan endohydrolase activity in specific regions of both roots and hypocotyls, in good correlation with transcriptomic data. Moreover, this hydrolytic activity was essentially completely eliminated in AtXTH31/AtXTH32 double knockout lines. However, single and double knockout lines, as well as individual overexpressing lines, of AtXTH31 and AtXTH32 did not demonstrate significant growth or developmental phenotypes. These results suggest that although xyloglucan polysaccharide hydrolysis occurs in parallel with primary wall expansion, morphological effects are subtle or may be compensated by other mechanisms. We hypothesize that there is likely to be an interplay between these xyloglucan endohydrolases and recently discovered apoplastic exo-glycosidases in the hydrolytic modification of matrix xyloglucans.
Collapse
Affiliation(s)
| | | | - Jens M. Eklöf
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Farid M. Ibatullin
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Ines Ezcurra
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Rishikesh P. Bhalerao
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, S–106 91 Stockholm, Sweden (N.K., J.M.E., F.M.I., I.E., H.B.); Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE–901 83 Umea, Sweden (D.G., R.P.B.); Biophysics Division, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina 188300, Russia (F.M.I.); and Michael Smith Laboratories and Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (H.B.)
| |
Collapse
|
237
|
Abstract
Recent progress in the identification and characterization of pectin biosynthetic proteins and the discovery of pectin domain-containing proteoglycans are changing our view of how pectin, the most complex family of plant cell wall polysaccharides, is synthesized. The functional confirmation of four types of pectin biosynthetic glycosyltransferases, the identification of multiple putative pectin glycosyl- and methyltransferases, and the characteristics of the GAUT1:GAUT7 homogalacturonan biosynthetic complex with its novel mechanism for retaining catalytic subunits in the Golgi apparatus and its 12 putative interacting proteins are beginning to provide a framework for the pectin biosynthetic process. We propose two partially overlapping hypothetical and testable models for pectin synthesis: the consecutive glycosyltransferase model and the domain synthesis model.
Collapse
Affiliation(s)
- Melani A Atmodjo
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712, USA.
| | | | | |
Collapse
|
238
|
Oikawa A, Lund CH, Sakuragi Y, Scheller HV. Golgi-localized enzyme complexes for plant cell wall biosynthesis. TRENDS IN PLANT SCIENCE 2013; 18:49-58. [PMID: 22925628 DOI: 10.1016/j.tplants.2012.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
The plant cell wall mostly comprises complex glycans, which are synthesized by numerous enzymes located in the Golgi apparatus and plasma membrane. Protein-protein interactions have been shown to constitute an important organizing principle for glycan biosynthetic enzymes in mammals and yeast. Recent genetic and biochemical data also indicate that such interactions could be common in plant cell wall biosynthesis. In this review, we examine the new findings in protein-protein interactions among plant cell wall biosynthetic enzymes and discuss the possibilities for enzyme complexes in the Golgi apparatus. These new insights in the field may contribute to novel strategies for molecular engineering of the cell wall.
Collapse
Affiliation(s)
- Ai Oikawa
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
239
|
Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 2012; 8:e1003064. [PMID: 23166516 PMCID: PMC3499364 DOI: 10.1371/journal.pgen.1003064] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus.
Collapse
|
240
|
Lee KJ, Dekkers BJ, Steinbrecher T, Walsh CT, Bacic A, Bentsink L, Leubner-Metzger G, Knox JP. Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae. PLANT PHYSIOLOGY 2012; 160:1551-66. [PMID: 22961130 PMCID: PMC3490593 DOI: 10.1104/pp.112.203661] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/04/2012] [Indexed: 05/04/2023]
Abstract
In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics.
Collapse
Affiliation(s)
- Kieran J.D. Lee
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | - Bas J.W. Dekkers
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | | | - Cherie T. Walsh
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | - Antony Bacic
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | - Leónie Bentsink
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | | | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| |
Collapse
|
241
|
Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhou YH, Braam J, Jiang T, Xu XY, Mao CZ, Pan YJ, Yang JL, Wu P, Zheng SJ. XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. THE PLANT CELL 2012; 24:4731-47. [PMID: 23204407 PMCID: PMC3531863 DOI: 10.1105/tpc.112.106039] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/08/2012] [Accepted: 10/20/2012] [Indexed: 05/18/2023]
Abstract
Xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET) activities, encoded by xyloglucan endotransglucosylase-hydrolase (XTH) genes, are involved in cell wall extension by cutting or cutting and rejoining xyloglucan chains, respectively. However, the physiological significance of this biochemical activity remains incompletely understood. Here, we find that an XTH31 T-DNA insertion mutant, xth31, is more Al resistant than the wild type. XTH31 is bound to the plasma membrane and the encoding gene is expressed in the root elongation zone and in nascent leaves, suggesting a role in cell expansion. XTH31 transcript accumulation is strongly downregulated by Al treatment. XTH31 expression in yeast yields a protein with an in vitro XEH:XET activity ratio of >5000:1. xth31 accumulates significantly less Al in the root apex and cell wall, shows remarkably lower in vivo XET action and extractable XET activity, has a lower xyloglucan content, and exhibits slower elongation. An exogenous supply of xyloglucan significantly ameliorates Al toxicity by reducing Al accumulation in the roots, owing to the formation of an Al-xyloglucan complex in the medium, as verified by an obvious change in chemical shift of (27)Al-NMR. Taken together, the data indicate that XTH31 affects Al sensitivity by modulating cell wall xyloglucan content and Al binding capacity.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan Zhi Shi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Hangzhou 310008, China
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| | - Gui Jie Lei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Stephen C. Fry
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| | - Bao Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Janet Braam
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Tao Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Yan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan Jiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
242
|
Handford M, Rodríguez-Furlán C, Marchant L, Segura M, Gómez D, Alvarez-Buylla E, Xiong GY, Pauly M, Orellana A. Arabidopsis thaliana AtUTr7 encodes a golgi-localized UDP-glucose/UDP-galactose transporter that affects lateral root emergence. MOLECULAR PLANT 2012; 5:1263-80. [PMID: 22933714 DOI: 10.1093/mp/sss074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nucleotide sugar transporters (NSTs) are antiporters comprising a gene family that plays a fundamental role in the biosynthesis of complex cell wall polysaccharides and glycoproteins in plants. However, due to the limited number of related mutants that have observable phenotypes, the biological function(s) of most NSTs in cell wall biosynthesis and assembly have remained elusive. Here, we report the characterization of AtUTr7 from Arabidopsis (Arabidopsis thaliana (L.) Heynh.), which is homologous to multi-specific UDP-sugar transporters from Drosophila melanogaster, humans, and Caenorhabditis elegans. We show that AtUTr7 possesses the common structural characteristics conserved among NSTs. Using a green fluorescent protein (GFP) tagged version, we demonstrate that AtUTr7 is localized in the Golgi apparatus. We also show that AtUTr7 is widely expressed, especially in the roots and in specific floral organs. Additionally, the results of an in vitro nucleotide sugar transport assay carried out with a tobacco and a yeast expression system suggest that AtUTr7 is capable of transferring UDP-Gal and UDP-Glc, but not a range of other UDP- and GDP-sugars, into the Golgi lumen. Mutants lacking expression of AtUTr7 exhibited an early proliferation of lateral roots as well as distorted root hairs when cultivated at high sucrose concentrations. Furthermore, the distribution of homogalacturonan with a low degree of methyl esterification differed in lateral root tips of the mutant compared to wild-type plants, although additional analytical procedures revealed no further differences in the composition of the root cell walls. This evidence suggests that the transport of UDP-Gal and UDP-Glc into the Golgi under conditions of high root biomass production plays a role in lateral root and root hair development.
Collapse
|
243
|
Peña MJ, Kong Y, York WS, O’Neill MA. A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth. THE PLANT CELL 2012; 24:4511-24. [PMID: 23175743 PMCID: PMC3531849 DOI: 10.1105/tpc.112.103390] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/08/2012] [Accepted: 10/30/2012] [Indexed: 05/17/2023]
Abstract
Root hairs provide a model system to study plant cell growth, yet little is known about the polysaccharide compositions of their walls or the role of these polysaccharides in wall expansion. We report that Arabidopsis thaliana root hair walls contain a previously unidentified xyloglucan that is composed of both neutral and galacturonic acid-containing subunits, the latter containing the β-D-galactosyluronic acid-(1→2)-α-D-xylosyl-(1→ and/or α-L-fucosyl-(1→2)-β-D-galactosyluronic acid-(1→2)-α-D-xylosyl-(1→) side chains. Arabidopsis mutants lacking root hairs have no acidic xyloglucan. A loss-of-function mutation in At1g63450, a root hair-specific gene encoding a family GT47 glycosyltransferase, results in the synthesis of xyloglucan that lacks galacturonic acid. The root hairs of this mutant are shorter than those of the wild type. This mutant phenotype and the absence of galacturonic acid in the root xyloglucan are complemented by At1g63450. The leaf and stem cell walls of wild-type Arabidopsis contain no acidic xyloglucan. However, overexpression of At1g63450 led to the synthesis of galacturonic acid-containing xyloglucan in these tissues. We propose that At1g63450 encodes XYLOGLUCAN-SPECIFIC GALACTURONOSYLTRANSFERASE1, which catalyzes the formation of the galactosyluronic acid-(1→2)-α-D-xylopyranosyl linkage and that the acidic xyloglucan is present only in root hair cell walls. The role of the acidic xyloglucan in root hair tip growth is discussed.
Collapse
Affiliation(s)
- Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Yingzhen Kong
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - William S. York
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Malcolm A. O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
244
|
Nikolovski N, Rubtsov D, Segura MP, Miles GP, Stevens TJ, Dunkley TP, Munro S, Lilley KS, Dupree P. Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. PLANT PHYSIOLOGY 2012; 160:1037-51. [PMID: 22923678 PMCID: PMC3461528 DOI: 10.1104/pp.112.204263] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/22/2012] [Indexed: 05/18/2023]
Abstract
The Golgi apparatus is the central organelle in the secretory pathway and plays key roles in glycosylation, protein sorting, and secretion in plants. Enzymes involved in the biosynthesis of complex polysaccharides, glycoproteins, and glycolipids are located in this organelle, but the majority of them remain uncharacterized. Here, we studied the Arabidopsis (Arabidopsis thaliana) membrane proteome with a focus on the Golgi apparatus using localization of organelle proteins by isotope tagging. By applying multivariate data analysis to a combined data set of two new and two previously published localization of organelle proteins by isotope tagging experiments, we identified the subcellular localization of 1,110 proteins with high confidence. These include 197 Golgi apparatus proteins, 79 of which have not been localized previously by a high-confidence method, as well as the localization of 304 endoplasmic reticulum and 208 plasma membrane proteins. Comparison of the hydrophobic domains of the localized proteins showed that the single-span transmembrane domains have unique properties in each organelle. Many of the novel Golgi-localized proteins belong to uncharacterized protein families. Structure-based homology analysis identified 12 putative Golgi glycosyltransferase (GT) families that have no functionally characterized members and, therefore, are not yet assigned to a Carbohydrate-Active Enzymes database GT family. The substantial numbers of these putative GTs lead us to estimate that the true number of plant Golgi GTs might be one-third above those currently annotated. Other newly identified proteins are likely to be involved in the transport and interconversion of nucleotide sugar substrates as well as polysaccharide and protein modification.
Collapse
|
245
|
Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M. RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis. MOLECULAR PLANT 2012; 5:984-92. [PMID: 22474179 PMCID: PMC3440008 DOI: 10.1093/mp/sss032] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/20/2012] [Indexed: 05/23/2023]
Abstract
A deep-sequencing approach was pursued utilizing 454 and Illumina sequencing methods to discover new genes involved in xyloglucan biosynthesis. cDNA sequences were generated from developing nasturtium (Tropaeolum majus) seeds, which produce large amounts of non-fucosylated xyloglucan as a seed storage polymer. In addition to known xyloglucan biosynthetic genes, a previously uncharacterized putative xyloglucan galactosyltransferase was identified. Analysis of an Arabidopsis thaliana mutant line defective in the corresponding ortholog (AT5G62220) revealed that this gene shows no redundancy with the previously characterized xyloglucan galactosyltransferase, MUR3, but is required for galactosyl-substitution of xyloglucan at a different position. The gene was termed XLT2 for Xyloglucan L-side chain galactosylTransferase position 2. It represents an enzyme in the same subclade of glycosyltransferase family 47 as MUR3. A double mutant defective in both MUR3 (mur3.1) and XLT2 led to an Arabidopsis plant with xyloglucan that consists essentially of only xylosylated glucosyl units, with no further substitutions.
Collapse
Affiliation(s)
- Jacob K. Jensen
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Alex Schultink
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Kenneth Keegstra
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Curtis G. Wilkerson
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Pauly
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA
- Energy Biosciences Institute, University of California, Berkeley, 30 Calvin Hall, MC 5230, Berkeley, CA 94720, USA
| |
Collapse
|
246
|
Neumetzler L, Humphrey T, Lumba S, Snyder S, Yeats TH, Usadel B, Vasilevski A, Patel J, Rose JKC, Persson S, Bonetta D. The FRIABLE1 gene product affects cell adhesion in Arabidopsis. PLoS One 2012; 7:e42914. [PMID: 22916179 PMCID: PMC3419242 DOI: 10.1371/journal.pone.0042914] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 07/15/2012] [Indexed: 11/18/2022] Open
Abstract
Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.
Collapse
Affiliation(s)
- Lutz Neumetzler
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Tania Humphrey
- Vineland Research and Innovation Centre, Vineland Station, Ontario, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Snyder
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Trevor H. Yeats
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Björn Usadel
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | | | - Jignasha Patel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyn K. C. Rose
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Staffan Persson
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Dario Bonetta
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
247
|
Braybrook SA, Hofte H, Peaucelle A. Probing the mechanical contributions of the pectin matrix: insights for cell growth. PLANT SIGNALING & BEHAVIOR 2012; 7:1037-41. [PMID: 22836501 PMCID: PMC3474675 DOI: 10.4161/psb.20768] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant cell wall has a somewhat paradoxical mechanical role in the plant: it must be strong enough to resist the high turgor of the cell contents, but at the right moment it must yield to that pressure to allow cell growth. The control of the cell wall's mechanical properties underlies its ability to regulate growth correctly. Recently, we have reported on changes in cell wall elasticity associated with organ formation at the shoot apical meristem in Arabidopsis thaliana. These changes in cell wall elasticity were strongly correlated with changes in pectin matrix chemistry, and we have previously shown that changes in pectin chemistry can dramatically effect organ formation. These findings point to a important role of the cell wall pectin matrix in cell growth control of higher plants. In this addendum we will discuss the biological significance of these new observations, and will place the scientific advances made possible through Atomic Force Microscopy-based nano-indentations in a relatable context with past experiments on cell wall mechanics.
Collapse
|
248
|
Vuttipongchaikij S, Brocklehurst D, Steele-King C, Ashford DA, Gomez LD, McQueen-Mason SJ. Arabidopsis GT34 family contains five xyloglucan α-1,6-xylosyltransferases. THE NEW PHYTOLOGIST 2012; 195:585-595. [PMID: 22670626 DOI: 10.1111/j.1469-8137.2012.04196.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis genome includes seven family 34 glycosyltransferase (GT34) encoding genes. XXT1 and XXT2 have previously been shown to encode XyG α-1,6-xylosyltransferases, while knockout mutants of a third, XXT5, exhibit decreased XyG content, suggesting a similar activity. Here, we extend the study to the rest of the Arabidopsis GT34 genes in terms of biochemical activity and their roles in XyG biosynthesis. The enzyme activity of XXTs was investigated using recombinant protein expressed in E. coli. XyG analysis of single and double T-DNA insertion knockouts, together with overexpression of GT34s in selected mutant lines, provided detailed function of each gene. We reveal the activity of the third member of the GT34 gene family (XXT4) that exhibits xylosyltransferase activity. Double mutants for either xxt2 or xxt5 had a large impact on XyG content, structure and size distribution. Overexpression of the remaining member, XXT3, was able to restore XyG epitopes in xxt2, xxt5 and xxt2 xxt5 double knockouts, suggesting that it also encodes a protein with XXT activity. Our work demonstrates that five of the seven Arabidopsis GT34 genes encode XXT enzymes.
Collapse
Affiliation(s)
- Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - David Brocklehurst
- CNAP, Biology Department, University of York, Heslington, York YO10 5DD, UK
| | - Clare Steele-King
- CNAP, Biology Department, University of York, Heslington, York YO10 5DD, UK
| | - David A Ashford
- CNAP, Biology Department, University of York, Heslington, York YO10 5DD, UK
| | - Leonardo D Gomez
- CNAP, Biology Department, University of York, Heslington, York YO10 5DD, UK
| | | |
Collapse
|
249
|
Zabotina OA, Avci U, Cavalier D, Pattathil S, Chou YH, Eberhard S, Danhof L, Keegstra K, Hahn MG. Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis. PLANT PHYSIOLOGY 2012; 159:1367-84. [PMID: 22696020 PMCID: PMC3425184 DOI: 10.1104/pp.112.198119] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 06/07/2012] [Indexed: 05/18/2023]
Abstract
Xyloglucan is an important hemicellulosic polysaccharide in dicot primary cell walls. Most of the enzymes involved in xyloglucan synthesis have been identified. However, many important details of its synthesis in vivo remain unknown. The roles of three genes encoding xylosyltransferases participating in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana) were further investigated using reverse genetic, biochemical, and immunological approaches. New double mutants (xxt1 xxt5 and xxt2 xxt5) and a triple mutant (xxt1 xxt2 xxt5) were generated, characterized, and compared with three single mutants and the xxt1 xxt2 double mutant that had been isolated previously. Antibody-based glycome profiling was applied in combination with chemical and immunohistochemical analyses for these characterizations. From the combined data, we conclude that XXT1 and XXT2 are responsible for the bulk of the xylosylation of the glucan backbone, and at least one of these proteins must be present and active for xyloglucan to be made. XXT5 plays a significant but as yet uncharacterized role in this process. The glycome profiling data demonstrate that the lack of detectable xyloglucan does not cause significant compensatory changes in other polysaccharides, although changes in nonxyloglucan polysaccharide amounts cannot be ruled out. Structural rearrangements of the polysaccharide network appear responsible for maintaining wall integrity in the absence of xyloglucan, thereby allowing nearly normal plant growth in plants lacking xyloglucan. Finally, results from immunohistochemical studies, combined with known information about expression patterns of the three genes, suggest that different combinations of xylosyltransferases contribute differently to xyloglucan biosynthesis in the various cell types found in stems, roots, and hypocotyls.
Collapse
Affiliation(s)
- Olga A Zabotina
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Dick-Perez M, Wang T, Salazar A, Zabotina OA, Hong M. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50:539-50. [PMID: 22777793 DOI: 10.1002/mrc.3836] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 05/14/2023]
Abstract
Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with (13)C and their NMR spectra were compared. Recent (13)C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D (13)C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. (13)C spin-lattice relaxation times and (1)H rotating-frame spin-lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions.
Collapse
Affiliation(s)
- Marilu Dick-Perez
- Department of Chemistry and the Ames Laboratory, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|