201
|
Clayton E, Rohaim MA, Bayoumi M, Munir M. The Molecular Virology of Coronaviruses with Special Reference to SARS-CoV-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:15-31. [PMID: 35132592 DOI: 10.1007/978-3-030-85109-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Coronaviruses (CoVs) are large, enveloped and positive-sense RNA viruses which are responsible for a range of upper respiratory and digestive tract infections. Interest in coronaviruses has recently escalated due to the identification of a newly emerged coronavirus named severe acute respiratory syndrome 2 (SARS-CoV-2), which is the causative agent of the COVID-19 pandemic. In this chapter, we summarise molecular virological features of coronaviruses and understand their molecular mechanisms of replication in guiding the control of the global COVID-19 pandemic. METHODS We applied a holistic and comparative approach to assess the current understanding of coronavirus molecular virology and identify research gaps among different human coronaviruses. RESULTS Coronaviruses can utilise unique strategies that aid in their pathogenicity, replication and survival in multiple hosts. Replication of coronaviruses involves novel mechanisms such as ribosomal frameshifting and the synthesis of both genomic and sub-genomic RNAs. We summarised the key components in coronavirus molecular biology and molecular determinants of pathogenesis. Focusing largely on SARS-CoV-2 due to its current importance, this review explores the virology of recently emerged coronaviruses to gain an in-depth understanding of these infectious diseases. CONCLUSIONS The presented information provides fundamental bottlenecks to devise future disease control and management strategies to curtail the impact of coronaviruses in human populations.
Collapse
Affiliation(s)
- Emily Clayton
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK.
| |
Collapse
|
202
|
Kok KH, Wong SC, Chan WM, Lei W, Chu AWH, Ip JD, Lee LK, Wong ITF, Lo HWH, Cheng VCC, Ho AYM, Lam BHS, Tse H, Lung D, Ng KHL, Au AKW, Siu GKH, Yuen KY. Cocirculation of two SARS-CoV-2 variant strains within imported pet hamsters in Hong Kong. Emerg Microbes Infect 2022; 11:689-698. [PMID: 35135441 PMCID: PMC8890519 DOI: 10.1080/22221751.2022.2040922] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the investigation of a pet shop outbreak of severe acute respiratory coronavirus 2 (SARS-CoV-2) with probable hamster-to-human transmission, the environmental and hamster samples in epidemiologically linked pet shops were found positive for SARS-CoV-2 Delta variant AY.127 strains which are phylogenetically closely related to patient and reported European strains. This interspecies spill-over has triggered transmission chains involving 58 patients epidemiologically linked to three pet shops. Incidentally, three dwarf hamsters imported from Netherlands and centralized in a warehouse distributing animals to pet shops were positive for SARS-CoV-2 spike variant phylogenetically related to European B.1.258 strains since March 2020. This B.1.258 strain has almost disappeared since July 2021. While no hamster-to-human transmission of B.1.258-like strain was found in this outbreak, molecular docking showed that its spike receptor binding domain (RBD) has similar binding energy to human ACE2 when compared with that of Delta variant AY.127. Therefore, the potential of this B.1.258-related spike variant for interspecies jumping cannot be ignored. The co-circulation of both B.1.258-related spike variants with Delta AY.127 which originated in Europe and was not previously found in Hong Kong suggested that hamsters in our wholesale warehouse and retail pet shops more likely have acquired these viruses in Netherlands or stopovers during delivery by aviation than locally. The risk of human-to-hamster reverse zoonosis by multiple SARS-CoV-2 variants leading to further adaptive spike mutations with subsequent transmission back to human cannot be underestimated as outbreak source of COVID-19. Testing of imported pet animals susceptible to SARS-CoV-2 is warranted to prevent future outbreaks.
Collapse
Affiliation(s)
- Kin-Hang Kok
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Shuk-Ching Wong
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Wan-Mui Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wen Lei
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Allen Wing-Ho Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jonathan Daniel Ip
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ivan Tak-Fai Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Hazel Wing-Hei Lo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Vincent Chi-Chung Cheng
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Alex Yat-Man Ho
- Department of Pathology, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Bosco Hoi-Shiu Lam
- Department of Pathology, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Herman Tse
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong Special Administrative Region, China
| | - David Lung
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Kenneth Ho-Leung Ng
- Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Albert Ka-Wing Au
- Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| |
Collapse
|
203
|
Vandegrift KJ, Yon M, Surendran-Nair M, Gontu A, Amirthalingam S, Nissly RH, Levine N, Stuber T, DeNicola AJ, Boulanger JR, Kotschwar N, Aucoin SG, Simon R, Toal K, Olsen RJ, Davis JJ, Bold D, Gaudreault NN, Richt JA, Musser JM, Hudson PJ, Kapur V, Kuchipudi SV. Detection of SARS-CoV-2 Omicron variant (B.1.1.529) infection of white-tailed deer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.04.479189. [PMID: 35169802 PMCID: PMC8845426 DOI: 10.1101/2022.02.04.479189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
White-tailed deer ( Odocoileus virginianus ) are highly susceptible to infection by SARS-CoV-2, with multiple reports of widespread spillover of virus from humans to free-living deer. While the recently emerged SARS-CoV-2 B.1.1.529 Omicron variant of concern (VoC) has been shown to be notably more transmissible amongst humans, its ability to cause infection and spillover to non-human animals remains a challenge of concern. We found that 19 of the 131 (14.5%; 95% CI: 0.10-0.22) white-tailed deer opportunistically sampled on Staten Island, New York, between December 12, 2021, and January 31, 2022, were positive for SARS-CoV-2 specific serum antibodies using a surrogate virus neutralization assay, indicating prior exposure. The results also revealed strong evidence of age-dependence in antibody prevalence. A significantly (χ 2 , p < 0.001) greater proportion of yearling deer possessed neutralizing antibodies as compared with fawns (OR=12.7; 95% CI 4-37.5). Importantly, SARS-CoV-2 nucleic acid was detected in nasal swabs from seven of 68 (10.29%; 95% CI: 0.0-0.20) of the sampled deer, and whole-genome sequencing identified the SARS-CoV-2 Omicron VoC (B.1.1.529) is circulating amongst the white-tailed deer on Staten Island. Phylogenetic analyses revealed the deer Omicron sequences clustered closely with other, recently reported Omicron sequences recovered from infected humans in New York City and elsewhere, consistent with human to deer spillover. Interestingly, one individual deer was positive for viral RNA and had a high level of neutralizing antibodies, suggesting either rapid serological conversion during an ongoing infection or a "breakthrough" infection in a previously exposed animal. Together, our findings show that the SARS-CoV-2 B.1.1.529 Omicron VoC can infect white-tailed deer and highlights an urgent need for comprehensive surveillance of susceptible animal species to identify ecological transmission networks and better assess the potential risks of spillback to humans. KEY FINDINGS These studies provide strong evidence of infection of free-living white-tailed deer with the SARS-CoV-2 B.1.1.529 Omicron variant of concern on Staten Island, New York, and highlight an urgent need for investigations on human-to-animal-to-human spillovers/spillbacks as well as on better defining the expanding host-range of SARS-CoV-2 in non-human animals and the environment.
Collapse
Affiliation(s)
- Kurt J. Vandegrift
- The Center for Infectious Disease Dynamics, Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michele Yon
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Meera Surendran-Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Abhinay Gontu
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Saranya Amirthalingam
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| | - Nicole Levine
- Department of Animal Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tod Stuber
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | | | | | | | - Sarah Grimké Aucoin
- City of New York Parks & Recreation, 1234 5 Avenue, 5 Floor, New York, NY 10029, USA
| | - Richard Simon
- City of New York Parks & Recreation, 1234 5 Avenue, 5 Floor, New York, NY 10029, USA
| | - Katrina Toal
- City of New York Parks & Recreation, 1234 5 Avenue, 5 Floor, New York, NY 10029, USA
| | - Randall J. Olsen
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX 77030, USA
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, NY 10021, USA
| | - James J. Davis
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago and Division of Data Science and Learning, Argonne National Laboratory, Argonne, Illinois, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - James M. Musser
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX 77030, USA
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, NY 10021, USA
| | - Peter J. Hudson
- The Center for Infectious Disease Dynamics, Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vivek Kapur
- Department of Animal Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences and Huck Institutes of the Life Sciences, The Pennsylvania State University, PA,16802, USA
| |
Collapse
|
204
|
Bernstein AS, Ando AW, Loch-Temzelides T, Vale MM, Li BV, Li H, Busch J, Chapman CA, Kinnaird M, Nowak K, Castro MC, Zambrana-Torrelio C, Ahumada JA, Xiao L, Roehrdanz P, Kaufman L, Hannah L, Daszak P, Pimm SL, Dobson AP. The costs and benefits of primary prevention of zoonotic pandemics. SCIENCE ADVANCES 2022; 8:eabl4183. [PMID: 35119921 PMCID: PMC8816336 DOI: 10.1126/sciadv.abl4183] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 05/15/2023]
Abstract
The lives lost and economic costs of viral zoonotic pandemics have steadily increased over the past century. Prominent policymakers have promoted plans that argue the best ways to address future pandemic catastrophes should entail, "detecting and containing emerging zoonotic threats." In other words, we should take actions only after humans get sick. We sharply disagree. Humans have extensive contact with wildlife known to harbor vast numbers of viruses, many of which have not yet spilled into humans. We compute the annualized damages from emerging viral zoonoses. We explore three practical actions to minimize the impact of future pandemics: better surveillance of pathogen spillover and development of global databases of virus genomics and serology, better management of wildlife trade, and substantial reduction of deforestation. We find that these primary pandemic prevention actions cost less than 1/20th the value of lives lost each year to emerging viral zoonoses and have substantial cobenefits.
Collapse
Affiliation(s)
- Aaron S. Bernstein
- Boston Children’s Hospital and the Center for Climate, Health and the Global Environment, Boston, MA 02115, USA
| | - Amy W. Ando
- Department of Agricultural and Consumer Economics, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Resources for the Future, 1616 P Street NW, Washington, DC 20036, USA
| | - Ted Loch-Temzelides
- Department of Economics and Baker Institute for Public Policy, Rice University, Houston, TX 77005, USA
| | - Mariana M. Vale
- Ecology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Ecology, Evolution and Biodiversity Conservation, Goiania, Brazil
| | - Binbin V. Li
- Environment Research Center, Duke Kunshan University, Kunshan, Jiangsu Province 215317, China
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Hongying Li
- EcoHealth Alliance, 520 Eighth Avenue, New York, NY 10018, USA
| | - Jonah Busch
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Colin A. Chapman
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC 20004, USA
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, China
| | - Margaret Kinnaird
- Practice Leader, Wildlife, WWF International, The Mvuli, Mvuli Road, Westlands, Kenya
| | - Katarzyna Nowak
- The Safina Center, 80 North Country Road, Setauket, NY 11733, USA
| | - Marcia C. Castro
- Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | | | - Jorge A. Ahumada
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Lingyun Xiao
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Patrick Roehrdanz
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Les Kaufman
- Department of Biology and Pardee Center for the Study of the Longer-Range Future, Boston University, Boston, MA 02215, USA
| | - Lee Hannah
- Moore Center for Science, Conservation International, Arlington, VA 22202, USA
| | - Peter Daszak
- EcoHealth Alliance, 520 Eighth Avenue, New York, NY 10018, USA
| | - Stuart L. Pimm
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Santa Fe Institute, Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
205
|
Shehata AA, Attia YA, Rahman MT, Basiouni S, El-Seedi HR, Azhar EI, Khafaga AF, Hafez HM. Diversity of Coronaviruses with Particular Attention to the Interspecies Transmission of SARS-CoV-2. Animals (Basel) 2022; 12:ani12030378. [PMID: 35158701 PMCID: PMC8833600 DOI: 10.3390/ani12030378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Coronaviruses are a broad group of viruses that may infect a wide range of animals, including humans. Despite the fact that each coronavirus has a limited host range, frequent interspecies transmission of coronaviruses across diverse hosts has resulted in a complex ecology. The recently discovered SARS-CoV-2 virus is the clearest evidence of the danger of a global pandemic spreading. Natural infection with SARS-CoV-2 has been reported in a variety of domestic and wild animals, which may complicate the virus’s epidemiology and influence its development. In this review, we discussed the potential determinants of SARS-CoV-2 interspecies transmission. Additionally, despite the efforts that have been made to control this pandemic and to implement the One Health policy, several problems, such as the role of animals in SARS-CoV-2 evolution and the dynamics of interspecies transmission, are still unanswered. Abstract In December 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China with serious impacts on global health and economy that is still ongoing. Although interspecies transmission of coronaviruses is common and well documented, each coronavirus has a narrowly restricted host range. Coronaviruses utilize different receptors to mediate membrane fusion and replication in the cell cytoplasm. The interplay between the receptor-binding domain (RBD) of coronaviruses and their coevolution are determinants for host susceptibility. The recently emerged SARS-CoV-2 caused the coronavirus disease 2019 (COVID-19) pandemic and has also been reported in domestic and wild animals, raising the question about the responsibility of animals in virus evolution. Additionally, the COVID-19 pandemic might also substantially have an impact on animal production for a long time. In the present review, we discussed the diversity of coronaviruses in animals and thus the diversity of their receptors. Moreover, the determinants of the susceptibility of SARS-CoV-2 in several animals, with special reference to the current evidence of SARS-CoV-2 in animals, were highlighted. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to mitigate the threat for both humans and animals.
Collapse
Affiliation(s)
- Awad A. Shehata
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
| | - Youssef A. Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia;
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Hesham R. El-Seedi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Esam I. Azhar
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center and Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia;
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany
- Correspondence:
| |
Collapse
|
206
|
Smyth DS, Trujillo M, Gregory DA, Cheung K, Gao A, Graham M, Guan Y, Guldenpfennig C, Hoxie I, Kannoly S, Kubota N, Lyddon TD, Markman M, Rushford C, San KM, Sompanya G, Spagnolo F, Suarez R, Teixeiro E, Daniels M, Johnson MC, Dennehy JJ. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nat Commun 2022; 13:635. [PMID: 35115523 PMCID: PMC8813986 DOI: 10.1038/s41467-022-28246-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Tracking SARS-CoV-2 genetic diversity is strongly indicated because diversifying selection may lead to the emergence of novel variants resistant to naturally acquired or vaccine-induced immunity. To monitor New York City (NYC) for the presence of novel variants, we deep sequence most of the receptor binding domain coding sequence of the S protein of SARS-CoV-2 isolated from the New York City wastewater. Here we report detecting increasing frequencies of novel cryptic SARS-CoV-2 lineages not recognized in GISAID's EpiCoV database. These lineages contain mutations that had been rarely observed in clinical samples, including Q493K, Q498Y, E484A, and T572N and share many mutations with the Omicron variant of concern. Some of these mutations expand the tropism of SARS-CoV-2 pseudoviruses by allowing infection of cells expressing the human, mouse, or rat ACE2 receptor. Finally, pseudoviruses containing the spike amino acid sequence of these lineages were resistant to different classes of receptor binding domain neutralizing monoclonal antibodies. We offer several hypotheses for the anomalous presence of these lineages, including the possibility that these lineages are derived from unsampled human COVID-19 infections or that they indicate the presence of a non-human animal reservoir.
Collapse
Affiliation(s)
- Davida S Smyth
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX, 78224, USA
| | - Monica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College of The City University of New York, Queens, NY, 11364, USA
| | - Devon A Gregory
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA
| | - Kristen Cheung
- Biology Department, Queens College and The Graduate Center of The City University of New York, Queens, NY, 11367, USA
| | - Anna Gao
- Biology Department, Queens College and The Graduate Center of The City University of New York, Queens, NY, 11367, USA
| | - Maddie Graham
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA
| | - Yue Guan
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA
| | - Caitlyn Guldenpfennig
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA
| | - Irene Hoxie
- Biology Department, Queens College and The Graduate Center of The City University of New York, Queens, NY, 11367, USA
| | - Sherin Kannoly
- Biology Department, Queens College and The Graduate Center of The City University of New York, Queens, NY, 11367, USA
| | - Nanami Kubota
- Biology Department, Queens College and The Graduate Center of The City University of New York, Queens, NY, 11367, USA
| | - Terri D Lyddon
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA
| | - Michelle Markman
- Biology Department, Queens College and The Graduate Center of The City University of New York, Queens, NY, 11367, USA
| | - Clayton Rushford
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA
| | - Kaung Myat San
- Biology Department, Queens College and The Graduate Center of The City University of New York, Queens, NY, 11367, USA
| | - Geena Sompanya
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX, 78224, USA
| | - Fabrizio Spagnolo
- Department of Biological & Environmental Sciences, Long Island University-Post, Greenvale, New York, 11548, USA
| | - Reinier Suarez
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA
| | - Mark Daniels
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri-School of Medicine, Columbia, MO, 65212, USA.
| | - John J Dennehy
- Biology Department, Queens College and The Graduate Center of The City University of New York, Queens, NY, 11367, USA.
| |
Collapse
|
207
|
Galindo-González J. Live animal markets: Identifying the origins of emerging infectious diseases. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 25:100310. [PMID: 34931177 PMCID: PMC8674032 DOI: 10.1016/j.coesh.2021.100310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Emerging infectious diseases (EIDs) of zoonotic origin appear, affect a population and can spread rapidly. At the beginning of 2020, the World Health Organization pronounced an emergency public health advisory because of the SARS-CoV-2 coronavirus outbreak, and declared that COVID-19 had reached the level of a pandemic, rapidly spreading around the world. In order to identify one of the origins of EIDs, and propose some control alternatives, an extensive review was conducted of the available literature. The problem can originate in live animal markets, where animal species of all kinds, from different origins, ecosystems, and taxonomic groups are caged and crowded together, sharing the same unsanitary and unnatural space, food, water, and also the ecto- and endoparasitic vectors of disease. They defecate on each other, leading to the exchange of pathogenic and parasitic microorganisms, forcing interactions among species that should never happen. This is the ideal scenario for causing zoonoses and outbreaks of EIDs. We must start by stopping the illegal collection and sale of wild animals in markets. The destruction of ecosystems and forests also promote zoonoses and outbreaks of EIDs. Science and knowledge should be the basis of the decisions and policies for the development of management strategies. Wildlife belongs in its natural habitat, which must be defended, conserved, and restored at all costs.
Collapse
Affiliation(s)
- Jorge Galindo-González
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. Culturas Veracruzanas # 101, Zona Universitaria C.P. 91090, Xalapa, Ver., Mexico
| |
Collapse
|
208
|
First Evidence of Natural SARS-CoV-2 Infection in Domestic Rabbits. Vet Sci 2022; 9:vetsci9020049. [PMID: 35202302 PMCID: PMC8876202 DOI: 10.3390/vetsci9020049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
We tested 144 pet rabbits sampled in France between November 2020 and June 2021 for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by microsphere immunoassay. We reported the first evidence of a natural SARS-CoV-2 infection in rabbits with a low observed seroprevalence between 0.7% and 1.4%.
Collapse
|
209
|
Bouare N, Minta DK, Dabo A, Gerard C. COVID-19: A pluralistic and integrated approach for efficient management of the pandemic. World J Virol 2022; 11:20-39. [PMID: 35117969 PMCID: PMC8788213 DOI: 10.5501/wjv.v11.i1.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which triggered the ongoing pandemic, was first discovered in China in late 2019. SARS-CoV-2 is a respiratory virus responsible for coronavirus disease 2019 (COVID-19) that often manifests as a pneumonic syndrome. In the context of the pandemic, there are mixed views on the data provided by epidemiologists and the information collected by hospital clinicians about their patients. In addition, the literature reports a large proportion of patients free of pneumonia vs a small percentage of patients with severe pneumonia among confirmed COVID-19 cases. This raises the issue of the complexity of the work required to control or contain the pandemic. We believe that an integrative and pluralistic approach will help to put the analyses into perspective and reinforce collaboration and creativity in the fight against this major scourge. This paper proposes a comprehensive and integrative approach to COVID-19 research, prevention, control, and treatment to better address the pandemic. Thus, this literature review applies a pluralistic approach to fight the pandemic.
Collapse
Affiliation(s)
- Nouhoum Bouare
- Biomedical Sciences Researcher, National Institute of Public Health, Bamako 1771, Mali
| | | | - Abdoulaye Dabo
- Department Epidemiology & Infectiology Disease, Faculty Medicine & Dentistry, CNRST/Univ Bamako, Bamako 3052, Mali
| | - Christiane Gerard
- Formerly Responsible for the Blood Bank, CHU-Liège, University of Liège, Liège 4000, Belgium
| |
Collapse
|
210
|
Saravanan UB, Namachivayam M, Jeewon R, Huang JD, Durairajan SSK. Animal models for SARS-CoV-2 and SARS-CoV-1 pathogenesis, transmission and therapeutic evaluation. World J Virol 2022; 11:40-56. [PMID: 35117970 PMCID: PMC8788210 DOI: 10.5501/wjv.v11.i1.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/22/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
There is a critical need to develop animal models to alleviate vaccine and drug development difficulties against zoonotic viral infections. The coronavirus family, which includes severe acute respiratory syndrome coronavirus 1 and severe acute respiratory syndrome coronavirus 2, crossed the species barrier and infected humans, causing a global outbreak in the 21st century. Because humans do not have pre-existing immunity against these viral infections and with ethics governing clinical trials, animal models are therefore being used in clinical studies to facilitate drug discovery and testing efficacy of vaccines. The ideal animal models should reflect the viral replication, clinical signs, and pathological responses observed in humans. Different animal species should be tested to establish an appropriate animal model to study the disease pathology, transmission and evaluation of novel vaccine and drug candidates to treat coronavirus disease 2019. In this context, the present review summarizes the recent progress in developing animal models for these two pathogenic viruses and highlights the utility of these models in studying SARS-associated coronavirus diseases.
Collapse
Affiliation(s)
- Udhaya Bharathy Saravanan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Mayurikaa Namachivayam
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | | |
Collapse
|
211
|
Murer L, Volle R, Andriasyan V, Petkidis A, Gomez-Gonzalez A, Yang L, Meili N, Suomalainen M, Bauer M, Policarpo Sequeira D, Olszewski D, Georgi F, Kuttler F, Turcatti G, Greber UF. Identification of broad anti-coronavirus chemical agents for repurposing against SARS-CoV-2 and variants of concern. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2022; 3:100019. [PMID: 35072124 PMCID: PMC8760634 DOI: 10.1016/j.crviro.2022.100019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 01/18/2023]
Abstract
Endemic human coronaviruses (hCoVs) 229E and OC43 cause respiratory disease with recurrent infections, while severe acute respiratory syndrome (SARS)-CoV-2 spreads across the world with impact on health and societies. Here, we report an image-based multicycle infection procedure with α-coronavirus hCoV-229E-eGFP in an arrayed chemical library screen of 5440 clinical and preclinical compounds. Toxicity counter selection and challenge with the β-coronaviruses OC43 and SARS-CoV-2 in tissue culture and human airway epithelial explant cultures (HAEEC) identified four FDA-approved compounds with oral availability. Methylene blue (MB, used for the treatment of methemoglobinemia), Mycophenolic acid (MPA, used in organ transplantation) and the anti-fungal agent Posaconazole (POS) had the broadest anti-CoV spectrum. They inhibited the shedding of SARS-CoV-2 and variants-of-concern (alpha, beta, gamma, delta) from HAEEC in either pre- or post exposure regimens at clinically relevant concentrations. Co-treatment of cultured cells with MB and the FDA-approved SARS-CoV-2 RNA-polymerase inhibitor Remdesivir reduced the effective anti-viral concentrations of MB by 2-fold, and Remdesivir by 4 to 10-fold, indicated by BLISS independence synergy modelling. Neither MB, nor MPA, nor POS affected the cell delivery of SARS-CoV-2 or OC43 (+)sense RNA, but blocked subsequent viral RNA accumulation in cells. Unlike Remdesivir, MB, MPA or POS did not reduce the release of viral RNA in post exposure regimen, thus indicating infection inhibition at a post-replicating step as well. In summary, the data emphasize the power of unbiased, full cycle compound screens to identify and repurpose broadly acting drugs against coronaviruses.
Collapse
Affiliation(s)
- Luca Murer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Romain Volle
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Alfonso Gomez-Gonzalez
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Liliane Yang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nicole Meili
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Daniela Policarpo Sequeira
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, 1015, Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, 1015, Lausanne, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
212
|
Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proc Natl Acad Sci U S A 2022; 119:2121644119. [PMID: 35078920 PMCID: PMC8833191 DOI: 10.1073/pnas.2121644119] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/25/2022] Open
Abstract
The results provide strong evidence of extensive SARS-CoV-2 infection of white-tailed deer, a free-living wild animal species with widespread distribution across North, Central, and South America. The analysis shows infection of deer resulted from multiple spillovers from humans, followed by efficient deer-to-deer transmission. The discovery of widespread infection of white-tailed deer indicates their establishment as potential reservoir hosts for SARS-CoV-2, a finding with important implications for the ecology, long-term persistence, and evolution of the virus, including the potential for spillback to humans. Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for ∼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive “One Health” approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2.
Collapse
|
213
|
Cardillo L, de Martinis C, Brandi S, Levante M, Cozzolino L, Spadari L, Boccia F, Carbone C, Pompameo M, Fusco G. SARS-CoV-2 Serological and Biomolecular Analyses among Companion Animals in Campania Region (2020–2021). Microorganisms 2022; 10:microorganisms10020263. [PMID: 35208718 PMCID: PMC8879797 DOI: 10.3390/microorganisms10020263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
The first reports of SARS-CoV-2 among domestic and wild animals, together with the rapid emergence of new variants, have created serious concerns regarding a possible spillback from animal hosts, which could accelerate the evolution of new viral strains. The present study aimed to investigate the prevalence and the transmission of SARS-CoV-2 among both owned and stray pets. A total of 182 dogs and 313 cats were tested for SARS-CoV-2. Specimens collected among owned and stray pets were subjected to RT-PCR and serological examinations. No viral RNA was detected, while anti-N antibodies were observed in six animals (1.3%), one dog (0.8%) and five cats (1.7%). Animals’ background revealed that owned cats, living with owners with COVID-19, showed significantly different prevalence compared to stray ones (p = 0.0067), while no difference was found among dogs. Among the seropositive pets, three owned cats also showed moderate neutralizing antibody titers. Pets and other species are susceptible to SARS-CoV-2 infection because of the spike affinity towards their ACE2 cellular receptor. Nevertheless, the risk of retransmission remains unclear since pet-to-human transmission has never been described. Due to the virus’ high mutation rate, new reservoirs cannot be excluded; thus, it is reasonable to test pets, mostly if living in households affected by COVID-19.
Collapse
Affiliation(s)
- Lorena Cardillo
- Unit of Exotic and Vector-Borne Diseases, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (L.C.); (M.L.); (L.C.)
| | - Claudio de Martinis
- Unit of Exotic and Vector-Borne Diseases, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (L.C.); (M.L.); (L.C.)
- Correspondence: ; Tel.: +39-0817865509
| | - Sergio Brandi
- Unit of Virology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (S.B.); (G.F.)
| | - Martina Levante
- Unit of Exotic and Vector-Borne Diseases, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (L.C.); (M.L.); (L.C.)
| | - Loredana Cozzolino
- Unit of Exotic and Vector-Borne Diseases, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (L.C.); (M.L.); (L.C.)
| | - Luisa Spadari
- Unit of Serology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Federica Boccia
- Unit of Animal Health, Department of Prevention, Azienda Sanitaria Locale (ASL), Napoli 3 Sud, 80100 Naples, Italy; (F.B.); (C.C.)
| | - Carmine Carbone
- Unit of Animal Health, Department of Prevention, Azienda Sanitaria Locale (ASL), Napoli 3 Sud, 80100 Naples, Italy; (F.B.); (C.C.)
| | - Marina Pompameo
- Unit of Animal Health “Presidio Ospedaliero Veterinario”, Department of Prevention, Azienda Sanitaria Locale (ASL), Napoli 1 Centro, 80100 Naples, Italy;
| | - Giovanna Fusco
- Unit of Virology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (S.B.); (G.F.)
| |
Collapse
|
214
|
Badiola JJ, Otero A, Sevilla E, Marín B, García Martínez M, Betancor M, Sola D, Pérez Lázaro S, Lozada J, Velez C, Chiner-Oms Á, Comas I, Cancino-Muñoz I, Monleón E, Monzón M, Acín C, Bolea R, Moreno B. SARS-CoV-2 Outbreak on a Spanish Mink Farm: Epidemiological, Molecular, and Pathological Studies. Front Vet Sci 2022; 8:805004. [PMID: 35127883 PMCID: PMC8814420 DOI: 10.3389/fvets.2021.805004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 01/29/2023] Open
Abstract
Farmed minks have been reported to be highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may represent a risk to humans. In this study, we describe the first outbreak of SARS-CoV-2 occurred on a mink farm in Spain, between June and July 2020, involving 92,700 animals. The outbreak started shortly after some farm workers became seropositive for SARS-CoV-2. Minks showed no clinical signs compatible with SARS-CoV-2 infection throughout the outbreak. Samples from 98 minks were collected for histopathological, serological, and molecular studies. Twenty out of 98 (20.4%) minks were positive by RT-qPCR and 82 out 92 (89%) seroconverted. This finding may reflect a rapid spread of the virus at the farm with most of the animals overcoming the infection. Additionally, SARS-CoV-2 was detected by RT-qPCR in 30% of brain samples from positive minks. Sequencing analysis showed that the mink sequences were not closely related with the other mink SARS-CoV-2 sequences available, and that this mink outbreak has its probable origin in one of the genetic variants that were prevalent in Spain during the first COVID-19 epidemic wave. Histological studies revealed bronchointerstitial pneumonia in some animals. Immunostaining of viral nucleocapsid was also observed in nasal turbinate tissue. Farmed minks could therefore constitute an important SARS-CoV-2 reservoir, contributing to virus spread among minks and humans. Consequently, continuous surveillance of mink farms is needed.
Collapse
Affiliation(s)
- Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
- *Correspondence: Alicia Otero
| | - Eloisa Sevilla
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Mirta García Martínez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Diego Sola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Sonia Pérez Lázaro
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Jenny Lozada
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Carolina Velez
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, Argentina
| | - Álvaro Chiner-Oms
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Cientìficas (IBV-CSIC), CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Irving Cancino-Muñoz
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Eva Monleón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Marta Monzón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Cristina Acín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - Bernardino Moreno
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| |
Collapse
|
215
|
Dinesh Kumar N, ter Ellen BM, Bouma EM, Troost B, van de Pol DPI, van der Ende-Metselaar HH, van Gosliga D, Apperloo L, Carpaij OA, van den Berge M, Nawijn MC, Stienstra Y, Rodenhuis-Zybert IA, Smit JM. Moxidectin and Ivermectin Inhibit SARS-CoV-2 Replication in Vero E6 Cells but Not in Human Primary Bronchial Epithelial Cells. Antimicrob Agents Chemother 2022; 66:e0154321. [PMID: 34633839 PMCID: PMC8765325 DOI: 10.1128/aac.01543-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Antiviral therapies are urgently needed to treat and limit the development of severe COVID-19 disease. Ivermectin, a broad-spectrum anti-parasitic agent, has been shown to have anti-SARS-CoV-2 activity in Vero cells at a concentration of 5 μM. These limited in vitro results triggered the investigation of ivermectin as a treatment option to alleviate COVID-19 disease. However, in April 2021, the World Health Organization stated the following: "The current evidence on the use of ivermectin to treat COVID-19 patients is inconclusive." It is speculated that the in vivo concentration of ivermectin is too low to exert a strong antiviral effect. Here, we performed a head-to-head comparison of the antiviral activity of ivermectin and the structurally related, but metabolically more stable moxidectin in multiple in vitro models of SARS-CoV-2 infection, including physiologically relevant human respiratory epithelial cells. Both moxidectin and ivermectin exhibited antiviral activity in Vero E6 cells. Subsequent experiments revealed that these compounds predominantly act on the steps following virus cell entry. Surprisingly, however, in human-airway-derived cell models, both moxidectin and ivermectin failed to inhibit SARS-CoV-2 infection, even at concentrations of 10 μM. These disappointing results call for a word of caution in the interpretation of anti-SARS-CoV-2 activity of drugs solely based on their activity in Vero cells. Altogether, these findings suggest that even using a high-dose regimen of ivermectin, or switching to another drug in the same class, is unlikely to be useful for treatment of SARS-CoV-2 in humans.
Collapse
Affiliation(s)
- Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ellen M. Bouma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Berit Troost
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Denise P. I. van de Pol
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Heidi H. van der Ende-Metselaar
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Djoke van Gosliga
- Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Leonie Apperloo
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Orestes A. Carpaij
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Ymkje Stienstra
- Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
216
|
Francisco R, Hernandez SM, Mead DG, Adcock KG, Burke SC, Nemeth NM, Yabsley MJ. Experimental Susceptibility of North American Raccoons ( Procyon lotor) and Striped Skunks ( Mephitis mephitis) to SARS-CoV-2. Front Vet Sci 2022; 8:715307. [PMID: 35097038 PMCID: PMC8790025 DOI: 10.3389/fvets.2021.715307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Recent spillback events of SARS-CoV-2 from humans to animals has raised concerns about it becoming endemic in wildlife. A sylvatic cycle of SARS-CoV-2 could present multiple opportunities for repeated spillback into human populations and other susceptible wildlife. Based on their taxonomy and natural history, two native North American wildlife species -the striped skunk (Mephitis mephitis) and the raccoon (Procyon lotor) -represent a high likelihood of susceptibility and ecological opportunity of becoming infected with SARS-CoV-2. Eight skunks and raccoons were each intranasally inoculated with one of two doses of the virus (103 PFU and 105 PFU) and housed in pairs. To evaluate direct transmission, a naïve animal was added to each inoculated pair 48 h post-inoculation. Four control animals of each species were handled like the experimental groups. At predetermined intervals, we collected nasal and rectal swabs to quantify virus shed via virus isolation and detect viral RNA via rRT-PCR and blood for serum neutralization. Lastly, animals were euthanized at staggered intervals to describe disease progression through histopathology and immunohistochemistry. No animals developed clinical disease. All intranasally inoculated animals seroconverted, suggesting both species are susceptible to SARS-CoV-2 infection. The highest titers in skunks and raccoons were 1:128 and 1:64, respectively. Low quantities of virus were isolated from 2/8 inoculated skunks for up to day 5 post-inoculation, however no virus was isolated from inoculated raccoons or direct contacts of either species. Neither species had gross lesions, but recovering mild chronic pneumonia consistent with viral insult was recorded histologically in 5/8 inoculated skunks. Unlike another SARS-CoV-2 infection trial in these species, we detected neutralizing antibodies in inoculated raccoons; thus, future wildlife serologic surveillance results must be interpreted with caution. Due to the inability to isolate virus from raccoons, the lack of evidence of direct transmission between both species, and low amount of virus shed by skunks, it seems unlikely for SARS-CoV-2 to become established in raccoon and skunk populations and for virus to spillback into humans. Continued outbreaks in non-domestic species, wild and captive, highlight that additional research on the susceptibility of SARS-CoV-2 in wildlife, especially musteloidea, and of conservation concern, is needed.
Collapse
Affiliation(s)
- Raquel Francisco
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Sonia M. Hernandez
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Daniel G. Mead
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla G. Adcock
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Sydney C. Burke
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Nicole M. Nemeth
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael J. Yabsley
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
217
|
SARS-CoV-2 Reverse Zoonoses to Pumas and Lions, South Africa. Viruses 2022; 14:v14010120. [PMID: 35062324 PMCID: PMC8778549 DOI: 10.3390/v14010120] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/05/2023] Open
Abstract
Reverse-zoonotic infections of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) from humans to wildlife species internationally raise concern over the emergence of new variants in animals. A better understanding of the transmission dynamics and pathogenesis in susceptible species will mitigate the risk to humans and wildlife occurring in Africa. Here we report infection of an exotic puma (July 2020) and three African lions (July 2021) in the same private zoo in Johannesburg, South Africa. One Health genomic surveillance identified transmission of a Delta variant from a zookeeper to the three lions, similar to those circulating in humans in South Africa. One lion developed pneumonia while the other cases had mild infection. Both the puma and lions remained positive for SARS-CoV-2 RNA for up to 7 weeks.
Collapse
|
218
|
Mohebali M, Hassanpour G, Zainali M, Gouya MM, Khayatzadeh S, Parsaei M, Sarafraz N, Hassanzadeh M, Azarm A, Salehi-Vaziri M, Sasani F, Heidari Z, Jalali T, Pouriayevali MH, Shoja Z, Ahmadi Z, Sadjadi M, Tavakoli M, Azad-Manjiri S, Karami C, Zarei Z. SARS-CoV-2 in domestic cats (Felis catus) in the northwest of Iran: Evidence for SARS-CoV-2 circulating between human and cats. Virus Res 2022; 310:198673. [PMID: 34998863 DOI: 10.1016/j.virusres.2022.198673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the prevalence of COVID-19 in domestic cats, focusing on the disease in the northwest of Iran and then showing the natural transmission of SARS-COV-2 circulating between domestic cats and humans. After receiving ethic codes from Tehran University of Medical Sciences (IR.TUMS.VCR.REC.1399.303) and confirmed by the Center of Communicable Diseases Control (CDC) of Iran, 124 domestic cats were collected from the homes and only one hospital of Meshkin -Shahr district from northwestern Iran where SARS-CoV-2 patients were hospitalized and quarantined during 2020. Samples were prepared from fluid materials of oropharynx and nasopharynx. All samples were tested by real-time PCR (RT-PCR) using specific genes N and ORF1ab in Pasteur Institute of Iran, and then partial sequence analyses of S gene were performed. All collected cats were kept in separated cages until SARS-COV-2 infection was confirmed with the RT-PCR. RT- PCR Ct values of 123 collected cats were ≥40; thus, all of them showed negative results, but one of the collected cats with close contact with its owner, whom confirmed SARS-CoV-2 showed positive results with gene N(Ct=30) and gene ORF1ab (Ct=32). Furthermore, the positive pet cat showed respiratory and gastro-intestinal clinical manifestations, and its owner was infected with SARS-CoV-2 two weeks ago. Cats are susceptible animals to SARS-CoV-2 infection. Epidemiological evidence showed that SARS-COV-2 is able to transmit to healthy cats due to having close contact with its owner as a reverse zoonosis.
Collapse
Affiliation(s)
- Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zainali
- Department of Zoonoses, Center of Communicable Diseases Management, Ministry of Health, Treatment and Medical Education, Tehran, Iran
| | - Mohammad Mehdi Gouya
- Center of Communicable diseases management, Ministry of Health, Treatment and Medical Education, Tehran, Iran
| | - Simin Khayatzadeh
- Province Health Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Parsaei
- Province Health Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Sarafraz
- Province Health Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanzadeh
- Province Health Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amrollah Azarm
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhang Sasani
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Heidari
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tahmineh Jalali
- COVID-19 National Refernce Laboratoty, Pasteur Institute of Iran, Tehran, Iran
| | | | - Zabihollah Shoja
- COVID-19 National Refernce Laboratoty, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Ahmadi
- COVID-19 National Refernce Laboratoty, Pasteur Institute of Iran, Tehran, Iran
| | - Marzieh Sadjadi
- COVID-19 National Refernce Laboratoty, Pasteur Institute of Iran, Tehran, Iran
| | - Mahsa Tavakoli
- COVID-19 National Refernce Laboratoty, Pasteur Institute of Iran, Tehran, Iran
| | - Sanam Azad-Manjiri
- COVID-19 National Refernce Laboratoty, Pasteur Institute of Iran, Tehran, Iran
| | - Chiman Karami
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zabihollah Zarei
- Meshkin-Shahr Research Station, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
219
|
Host adaptation of codon usage in SARS-CoV-2 from mammals indicates potential natural selection and viral fitness. Arch Virol 2022; 167:2677-2688. [PMID: 36166106 PMCID: PMC9514192 DOI: 10.1007/s00705-022-05612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 infection, which is the cause of the COVID-19 pandemic, has expanded across various animal hosts, and the virus can be transmitted particularly efficiently in minks. It is still not clear how SARS-CoV-2 is selected and evolves in its hosts, or how mutations affect viral fitness. In this report, sequences of SARS-CoV-2 isolated from human and animal hosts were analyzed, and the binding energy and capacity of the spike protein to bind human ACE2 and the mink receptor were compared. Codon adaptation index (CAI) analysis indicated the optimization of viral codons in some animals such as bats and minks, and a neutrality plot demonstrated that natural selection had a greater influence on some SARS-CoV-2 sequences than mutational pressure. Molecular dynamics simulation results showed that the mutations Y453F and N501T in mink SARS-CoV-2 could enhance the binding of the viral spike to the mink receptor, indicating the involvement of these mutations in natural selection and viral fitness. Receptor binding analysis revealed that the mink SARS-CoV-2 spike interacted more strongly with the mink receptor than the human receptor. Tracking the variations and codon bias of SARS-CoV-2 is helpful for understanding the fitness of the virus in virus transmission, pathogenesis, and immune evasion.
Collapse
|
220
|
Korath ADJ, Janda J, Untersmayr E, Sokolowska M, Feleszko W, Agache I, Adel Seida A, Hartmann K, Jensen‐Jarolim E, Pali‐Schöll I. One Health: EAACI Position Paper on coronaviruses at the human-animal interface, with a specific focus on comparative and zoonotic aspects of SARS-CoV-2. Allergy 2022; 77:55-71. [PMID: 34180546 PMCID: PMC8441637 DOI: 10.1111/all.14991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022]
Abstract
The latest outbreak of a coronavirus disease in 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), evolved into a worldwide pandemic with massive effects on health, quality of life, and economy. Given the short period of time since the outbreak, there are several knowledge gaps on the comparative and zoonotic aspects of this new virus. Within the One Health concept, the current EAACI position paper dwells into the current knowledge on SARS-CoV-2's receptors, symptoms, transmission routes for human and animals living in close vicinity to each other, usefulness of animal models to study this disease and management options to avoid intra- and interspecies transmission. Similar pandemics might appear unexpectedly and more frequently in the near future due to climate change, consumption of exotic foods and drinks, globe-trotter travel possibilities, the growing world population, the decreasing production space, declining room for wildlife and free-ranging animals, and the changed lifestyle including living very close to animals. Therefore, both the society and the health authorities need to be aware and well prepared for similar future situations, and research needs to focus on prevention and fast development of treatment options (medications, vaccines).
Collapse
Affiliation(s)
- Anna D. J. Korath
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
| | - Jozef Janda
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF),University of ZurichZurichSwitzerland
| | - Wojciech Feleszko
- Department of Paediatric Allergy and PulmonologyThe Medical University of WarsawWarsawPoland
| | | | - Ahmed Adel Seida
- Department of Microbiology and ImmunologyFaculty of Veterinary MedicineCairo UniversityCairoEgypt
| | - Katrin Hartmann
- Medizinische KleintierklinikZentrum für Klinische TiermedizinLMUMunichGermany
| | - Erika Jensen‐Jarolim
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Isabella Pali‐Schöll
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
221
|
Phyu S, Joseph T, Goulart M. Strengthening Biorisk Management in Research Laboratories with Security-Sensitive Biological Agents Like SARS-CoV-2. Methods Mol Biol 2022; 2452:395-439. [PMID: 35554919 DOI: 10.1007/978-1-0716-2111-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, we discuss potential incidents associated with SARS-CoV-2 experimental work in high containment research laboratories. The risk landscape in high containment laboratories is changing due to the strong innovation drive of the life sciences research. Thus, the WHO has recommended life sciences organizations to incorporate good research practices and ethical principles into a risk-based approach of the biorisk management (BRM). Currently, BRM systems in high containment laboratories are predominantly steered by operational personnel and laboratory professional. It is well known that without having a systematic approach and leadership support from the organization, the BRM system in the high containment laboratory will not be sustainable. Even though the roles of organizations and their leadership in establishing the BRM system are spelt out in many international standards, guidance documents and national legislations, operational aspects of these roles are rarely discussed.It is therefore important for everyone to understand about their roles in organizational processes (communication, decision, and performance evaluation) involved in implementation of BRM related operational activities. In this chapter, discussion is based on operational activities of four main organizational behaviors that are considered to have strengthened BRM systems in high containment laboratories: (1) displaying a visible commitment and support to the BRM system from different levels of management, (2) developing a competent and responsible workforce with BRM technical skills and problem identification/solving skills, (3) integrating learning and improvement principles into the BRM system, and (4) enhancing the continuous motivation of laboratory personnel to avoid complacency. The categorization of these organizational behaviors is based on the International Atomic Energy Agency's principles and guidance for strengthening the safety and security culture in nuclear facilities. Furthermore, we encourage the laboratory management to identify gaps in processes and activities related to those organizational behaviors so that one could rapidly address biosafety and biosecurity vulnerabilities in high containment laboratories.
Collapse
Affiliation(s)
- Sabai Phyu
- Laboratory Biorisk Consultancy & Training Pte. Ltd., Singapore, Singapore.
- European Union Chemical, Biological, Radiological and Nuclear Risk Mitigation Centres of Excellence Regional Secretariat-South East Asia/B&S Europe, Manila, Philippines.
| | - Tessy Joseph
- BSL-3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
222
|
Frazzini S, Amadori M, Turin L, Riva F. SARS CoV-2 infections in animals, two years into the pandemic. Arch Virol 2022; 167:2503-2517. [PMID: 36207554 PMCID: PMC9543933 DOI: 10.1007/s00705-022-05609-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Abstract
In December 2019, several cases of pneumonia caused by a novel coronavirus, later identified as SARS-CoV-2, were detected in the Chinese city of Wuhan. Due to its rapid worldwide spread, on 11 March 2020 the World Health Organization declared a pandemic state. Since this new virus is genetically similar to the coronaviruses of bats, SARS-CoV-2 was hypothesized to have a zoonotic origin. Within a year of the appearance of SARS-CoV-2, several cases of infection were also reported in animals, suggesting human-to-animal and animal-to-animal transmission among mammals. Natural infection has been found in companion animals as well as captive animals such as lions, tigers, and gorillas. Among farm animals, so far, minks have been found to be susceptible to SARS-CoV-2 infection, whereas not all the relevant studies agree on the susceptibility of pigs. Experimental infections have documented the susceptibility to SARS-CoV-2 of further animal species, including mice, hamsters, cats, dogs, ferrets, raccoon dogs, cattle, and non-human primates. Experimental infections have proven crucial for clarifying the role of animals in transmission and developing models for viral pathogenesis and immunotherapy. On the whole, this review aims to update and critically revise the current information on natural and experimental SARS-CoV-2 infections in animals.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | | | - Lauretta Turin
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | - Federica Riva
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| |
Collapse
|
223
|
Bora M, M M, Mathew DD, Das H, Bora DP, Barman NN. Point of care diagnostics and non-invasive sampling strategy: a review on major advances in veterinary diagnostics. ACTA VET BRNO 2022; 91:17-34. [DOI: 10.2754/avb202291010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The use of point of care diagnostics (POCD) in animal diseases has steadily increased over the years since its introduction. Its potential application to diagnose infectious diseases in remote and resource limited settings have made it an ideal diagnostic in animal disease diagnosis and surveillance. The rapid increase in incidence of emerging infectious diseases requires urgent attention where POCD could be indispensable tools for immediate detection and early warning of a potential pathogen. The advantages of being rapid, easily affordable and the ability to diagnose an infectious disease on spot has driven an intense effort to refine and build on the existing technologies to generate advanced POCD with incremental improvements in analytical performance to diagnose a broad spectrum of animal diseases. The rural communities in developing countries are invariably affected by the burden of infectious animal diseases due to limited access to diagnostics and animal health personnel. Besides, the alarming trend of emerging and transboundary diseases with pathogen spill-overs at livestock-wildlife interfaces has been identified as a threat to the domestic population and wildlife conservation. Under such circumstances, POCD coupled with non-invasive sampling techniques could be successfully deployed at field level without the use of sophisticated laboratory infrastructures. This review illustrates the current and prospective POCD for existing and emerging animal diseases, the status of non-invasive sampling strategies for animal diseases, and the tremendous potential of POCD to uplift the status of global animal health care.
Collapse
|
224
|
Zeiss CJ, Compton S, Veenhuis RT. Animal Models of COVID-19. I. Comparative Virology and Disease Pathogenesis. ILAR J 2021; 62:35-47. [PMID: 33836527 PMCID: PMC8083356 DOI: 10.1093/ilar/ilab007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has fueled unprecedented development of animal models to understand disease pathogenesis, test therapeutics, and support vaccine development. Models previously developed to study severe acute respiratory syndrome coronavirus (SARS-CoV) have been rapidly deployed to study SARS-CoV-2. However, it has become clear that despite the common use of ACE2 as a receptor for both viruses, the host range of the 2 viruses does not entirely overlap. Distinct ACE2-interacting residues within the receptor binding domain of SARS-CoV and SARS-CoV-2, as well as species differences in additional proteases needed for activation and internalization of the virus, are likely sources of host differences between the 2 viruses. Spontaneous models include rhesus and cynomolgus macaques, African Green monkeys, hamsters, and ferrets. Viral shedding and transmission studies are more frequently reported in spontaneous models. Mice can be infected with SARS-CoV; however, mouse and rat ACE2 does not support SARS-CoV-2 infection. Murine models for COVID-19 are induced through genetic adaptation of SARS-CoV-2, creation of chimeric SARS-CoV and SARS-CoV-2 viruses, use of human ACE2 knock-in and transgenic mice, and viral transfection of wild-type mice with human ACE2. Core aspects of COVID-19 are faithfully reproduced across species and model. These include the acute nature and predominantly respiratory source of viral shedding, acute transient and nonfatal disease with a largely pulmonary phenotype, similar short-term immune responses, and age-enhanced disease. Severity of disease and tissue involvement (particularly brain) in transgenic mice varies by promoter. To date, these models have provided a remarkably consistent template on which to test therapeutics, understand immune responses, and test vaccine approaches. The role of comorbidity in disease severity and the range of severe organ-specific pathology in humans remains to be accurately modeled.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Susan Compton
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
225
|
Ajuwon BI, Roper K, Richardson A, Lidbury BA. One Health Approach: A Data-Driven Priority for Mitigating Outbreaks of Emerging and Re-Emerging Zoonotic Infectious Diseases. Trop Med Infect Dis 2021; 7:tropicalmed7010004. [PMID: 35051120 PMCID: PMC8780196 DOI: 10.3390/tropicalmed7010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
This paper discusses the contributions that One Health principles can make in improving global response to zoonotic infectious disease. We highlight some key benefits of taking a One Health approach to a range of complex infectious disease problems that have defied a more traditional sectoral approach, as well as public health policy and practice, where gaps in surveillance systems need to be addressed. The historical examples demonstrate the scope of One Health, partly from an Australian perspective, but also with an international flavour, and illustrate innovative approaches and outcomes with the types of collaborative partnerships that are required.
Collapse
Affiliation(s)
- Busayo I. Ajuwon
- National Centre for Epidemiology and Population Health, Research School of Population Health, ANU College of Health and Medicine, The Australian National University, Acton, ACT 2601, Australia; (K.R.); (B.A.L.)
- Department of Microbiology, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria
- Correspondence:
| | - Katrina Roper
- National Centre for Epidemiology and Population Health, Research School of Population Health, ANU College of Health and Medicine, The Australian National University, Acton, ACT 2601, Australia; (K.R.); (B.A.L.)
| | - Alice Richardson
- Statistical Support Network, The Australian National University, Acton, ACT 2601, Australia;
| | - Brett A. Lidbury
- National Centre for Epidemiology and Population Health, Research School of Population Health, ANU College of Health and Medicine, The Australian National University, Acton, ACT 2601, Australia; (K.R.); (B.A.L.)
| |
Collapse
|
226
|
Fernández-Bastit L, Rodon J, Pradenas E, Marfil S, Trinité B, Parera M, Roca N, Pou A, Cantero G, Lorca-Oró C, Carrillo J, Izquierdo-Useros N, Clotet B, Noguera-Julián M, Blanco J, Vergara-Alert J, Segalés J. First Detection of SARS-CoV-2 Delta (B.1.617.2) Variant of Concern in a Dog with Clinical Signs in Spain. Viruses 2021; 13:v13122526. [PMID: 34960795 PMCID: PMC8704391 DOI: 10.3390/v13122526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Several cases of naturally infected dogs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported despite the apparently low susceptibility of this species. Here, we document the first reported case of infection caused by the Delta (B.1.617.2) variant of concern (VOC) in a dog in Spain that lived with several household members suffering from Coronavirus Infectious Disease 2019 (COVID-19). The animal displayed mild digestive and respiratory clinical signs and had a low viral load in the oropharyngeal swab collected at the first sampling. Whole-genome sequencing indicated infection with the Delta variant, coinciding with the predominant variant during the fifth pandemic wave in Spain. The dog seroconverted, as detected 21 days after the first sampling, and developed neutralizing antibodies that cross-neutralized different SARS-CoV-2 variants. This study further emphasizes the importance of studying the susceptibility of animal species to different VOCs and their potential role as reservoirs in the context of COVID-19.
Collapse
Affiliation(s)
- Leira Fernández-Bastit
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Jordi Rodon
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
| | - Mariona Parera
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
| | - Núria Roca
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Anna Pou
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Guillermo Cantero
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Cristina Lorca-Oró
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Barcelona, Spain
| | - Marc Noguera-Julián
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
- Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Barcelona, Spain
| | - Júlia Vergara-Alert
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca en Tecnologies Agroalimentaries (IRTA), Campus de la UAB, 08193 Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence:
| |
Collapse
|
227
|
The SARS-CoV-2 Reproduction Number R 0 in Cats. Viruses 2021; 13:v13122480. [PMID: 34960749 PMCID: PMC8704225 DOI: 10.3390/v13122480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Domestic cats are susceptible to SARS-CoV-2 virus infection and given that they are in close contact with people, assessing the potential risk cats represent for the transmission and maintenance of SARS-CoV-2 is important. Assessing this risk implies quantifying transmission from humans-to-cats, from cats-to-cats and from cats-to-humans. Here we quantified the risk of cat-to-cat transmission by reviewing published literature describing transmission either experimentally or under natural conditions in infected households. Data from these studies were collated to quantify the SARS-CoV-2 reproduction number R0 among cats. The estimated R0 was significantly higher than one, hence cats could play a role in the transmission and maintenance of SARS-CoV-2. Questions that remain to be addressed are the risk of transmission from humans-to-cats and cats-to-humans. Further data on household transmission and data on virus levels in both the environment around infected cats and their exhaled air could be a step towards assessing these risks.
Collapse
|
228
|
Palermo PM, Orbegozo J, Watts DM, Morrill JC. SARS-CoV-2 Neutralizing Antibodies in White-Tailed Deer from Texas. Vector Borne Zoonotic Dis 2021; 22:62-64. [PMID: 34890284 PMCID: PMC8787703 DOI: 10.1089/vbz.2021.0094] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Serological evidence of SARS-CoV-2 infection among white-tailed deer has been reported from Illinois, Michigan, Pennsylvania, and New York. This study was conducted to determine whether deer in Texas also had evidence of SARS-CoV-2 infection. Archived sera samples collected from deer in Travis County, Texas, during 2018, before and during the pandemic in 2021 were tested for neutralizing antibody to this virus by a standard plaque reduction neutralization assay. SARS-CoV-2 antibody was not detected in 40 deer sera samples collected during 2018, but 37% (20/54) samples collected in 2021 were positive for antibody. The seroprevalence rate between males and females differed significantly (p < 0.05) and the highest rate (82%) was detected in the 1.5-year-old animals. These findings extended the geographical range of prior SARS-CoV-2 infection among white-tailed deer in the United States and further confirm that infection was common among this species.
Collapse
Affiliation(s)
- Pedro M Palermo
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Jeanette Orbegozo
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas M Watts
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - John C Morrill
- Orion Research and Management Services, Gatesville, Texas, USA
| |
Collapse
|
229
|
Jacob Machado D, White RA, Kofsky J, Janies DA. Fundamentals of genomic epidemiology, lessons learned from the coronavirus disease 2019 (COVID-19) pandemic, and new directions. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2021; 1:e60. [PMID: 36168505 PMCID: PMC9495640 DOI: 10.1017/ash.2021.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 04/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic was one of the significant causes of death worldwide in 2020. The disease is caused by severe acute coronavirus syndrome (SARS) coronavirus 2 (SARS-CoV-2), an RNA virus of the subfamily Orthocoronavirinae related to 2 other clinically relevant coronaviruses, SARS-CoV and MERS-CoV. Like other coronaviruses and several other viruses, SARS-CoV-2 originated in bats. However, unlike other coronaviruses, SARS-CoV-2 resulted in a devastating pandemic. The SARS-CoV-2 pandemic rages on due to viral evolution that leads to more transmissible and immune evasive variants. Technology such as genomic sequencing has driven the shift from syndromic to molecular epidemiology and promises better understanding of variants. The COVID-19 pandemic has exposed critical impediments that must be addressed to develop the science of pandemics. Much of the progress is being applied in the developed world. However, barriers to the use of molecular epidemiology in low- and middle-income countries (LMICs) remain, including lack of logistics for equipment and reagents and lack of training in analysis. We review the molecular epidemiology literature to understand its origins from the SARS epidemic (2002-2003) through influenza events and the current COVID-19 pandemic. We advocate for improved genomic surveillance of SARS-CoV and understanding the pathogen diversity in potential zoonotic hosts. This work will require training in phylogenetic and high-performance computing to improve analyses of the origin and spread of pathogens. The overarching goals are to understand and abate zoonosis risk through interdisciplinary collaboration and lowering logistical barriers.
Collapse
Affiliation(s)
- Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| | - Richard Allen White
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
- University of North Carolina at Charlotte, North Carolina Research Campus (NCRC), Kannapolis, North Carolina
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| | - Daniel A. Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| |
Collapse
|
230
|
Pulido J, García-Durán M, Fernández-Antonio R, Galán C, López L, Vela C, Venteo Á, Rueda P, Rivas LA. Receptor-binding domain-based immunoassays for serosurveillance differentiate efficiently between SARS-CoV2-exposed and non-exposed farmed mink. J Vet Diagn Invest 2021; 34:190-198. [PMID: 34852683 DOI: 10.1177/10406387211057859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During the COVID-19 pandemic, infection of farmed mink has become not only an economic issue but also a widespread public health concern. International agencies have advised the use of strict molecular and serosurveillance methods for monitoring the SARS-CoV2 status on mink farms. We developed 2 ELISAs and a duplex protein microarray immunoassay (MI), all in a double-recognition format (DR), to detect SARS-CoV2 antibodies specific to the receptor-binding domain (RBD) of the spike protein and to the full-length nucleoprotein (N) in mink sera. We collected 264 mink serum samples and 126 oropharyngeal samples from 5 Spanish mink farms. In both of the ELISAs and the MI, RBD performed better than N protein for serologic differentiation of mink from SARS-CoV2-positive and -negative farms. Therefore, RBD was the optimal antigenic target for serosurveillance of mink farms.
Collapse
Affiliation(s)
- Jorge Pulido
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| | | | - Ricardo Fernández-Antonio
- Department of Animal Health, Galician Mink Breeders Association (AGAVI), Santiago de Compostela, Spain
| | - Carmen Galán
- Molecular Diagnostics, Eurofins-Ingenasa, Madrid, Spain
| | | | - Carmen Vela
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| | - Ángel Venteo
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| | - Paloma Rueda
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| | - Luis A Rivas
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| |
Collapse
|
231
|
Zahedi A, Monis P, Deere D, Ryan U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol Res 2021; 120:4167-4188. [PMID: 33409629 PMCID: PMC7787619 DOI: 10.1007/s00436-020-07023-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Waterborne diseases are a major global problem, resulting in high morbidity and mortality, and massive economic costs. The ability to rapidly and reliably detect and monitor the spread of waterborne diseases is vital for early intervention and preventing more widespread disease outbreaks. Pathogens are, however, difficult to detect in water and are not practicably detectable at acceptable concentrations that need to be achieved in treated drinking water (which are of the order one per million litre). Furthermore, current clinical-based surveillance methods have many limitations such as the invasive nature of the testing and the challenges in testing large numbers of people. Wastewater-based epidemiology (WBE), which is based on the analysis of wastewater to monitor the emergence and spread of infectious disease at a population level, has received renewed attention in light of the current coronavirus disease 2019 (COVID-19) pandemic. The present review will focus on the application of WBE for the detection and surveillance of pathogens with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waterborne protozoan parasites Cryptosporidium and Giardia. The review highlights the benefits and challenges of WBE and the future of this tool for community-wide infectious disease surveillance.
Collapse
Affiliation(s)
- Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, Australia
| | - Daniel Deere
- Water Futures and Water Research Australia, Sydney, Australia
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia.
| |
Collapse
|
232
|
Bi Z, Hong W, Yang J, Lu S, Peng X. Animal models for SARS-CoV-2 infection and pathology. MedComm (Beijing) 2021; 2:548-568. [PMID: 34909757 PMCID: PMC8662225 DOI: 10.1002/mco2.98] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiology of coronavirus disease 2019 (COVID-19) pandemic. Current variants including Alpha, Beta, Gamma, Delta, and Lambda increase the capacity of infection and transmission of SARS-CoV-2, which might disable the in-used therapies and vaccines. The COVID-19 has now put an enormous strain on health care system all over the world. Therefore, the development of animal models that can capture characteristics and immune responses observed in COVID-19 patients is urgently needed. Appropriate models could accelerate the testing of therapeutic drugs and vaccines against SARS-CoV-2. In this review, we aim to summarize the current animal models for SARS-CoV-2 infection, including mice, hamsters, nonhuman primates, and ferrets, and discuss the details of transmission, pathology, and immunology induced by SARS-CoV-2 in these animal models. We hope this could throw light to the increased usefulness in fundamental studies of COVID-19 and the preclinical analysis of vaccines and therapeutic agents.
Collapse
Affiliation(s)
- Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| |
Collapse
|
233
|
de Rooij MMT, Hakze-Van der Honing RW, Hulst MM, Harders F, Engelsma M, van de Hoef W, Meliefste K, Nieuwenweg S, Oude Munnink BB, van Schothorst I, Sikkema RS, van der Spek AN, Spierenburg M, Spithoven J, Bouwstra R, Molenaar RJ, Koopmans M, Stegeman A, van der Poel WHM, Smit LAM. Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms. Occup Environ Med 2021; 78:893-899. [PMID: 34330815 DOI: 10.1101/2021.01.06.20248760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/29/2021] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. METHODS Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. RESULTS Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. CONCLUSIONS Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Marcel M Hulst
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Marc Engelsma
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Wouter van de Hoef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sigrid Nieuwenweg
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Arco N van der Spek
- Netherlands Food and Consumer Product Safety Authority, Utrecht, The Netherlands
| | - Marcel Spierenburg
- Netherlands Food and Consumer Product Safety Authority, Utrecht, The Netherlands
| | - Jack Spithoven
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | - Marion Koopmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Arjan Stegeman
- Farm Animal Health, Utrecht University, Utrecht, The Netherlands
| | | | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
234
|
Hassanin AA, Haidar Abbas Raza S, Ahmed Ujjan J, Aysh ALrashidi A, Sitohy BM, AL-surhanee AA, Saad AM, Mohamed Al -Hazani T, Osman Atallah O, Al Syaad KM, Ezzat Ahmed A, Swelum AA, El-Saadony MT, Sitohy MZ. Emergence, evolution, and vaccine production approaches of SARS-CoV-2 virus: Benefits of getting vaccinated and common questions. Saudi J Biol Sci 2021; 29:1981-1997. [PMID: 34924802 PMCID: PMC8667566 DOI: 10.1016/j.sjbs.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of coronavirus disease 2019 (COVID-19) pandemic in Wuhan city, China at the end of 2019 made it urgent to identify the origin of the causal pathogen and its molecular evolution, to appropriately design an effective vaccine. This study analyzes the evolutionary background of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS-2) in accordance with its close relative SARS-CoV (SARS-1), which was emerged in 2002. A comparative genomic and proteomic study was conducted on SARS-2, SARS-1, and Middle East respiratory syndrome coronavirus (MERS), which was emerged in 2012. In silico analysis inferred the genetic variability among the tested viruses. The SARS-1 genome harbored 11 genes encoding 12 proteins, while SARS-2 genome contained only 10 genes encoding for 10 proteins. MERS genome contained 11 genes encoding 11 proteins. The analysis also revealed a slight variation in the whole genome size of SARS-2 comparing to its siblings resulting from sequential insertions and deletions (indels) throughout the viral genome particularly ORF1AB, spike, ORF10 and ORF8. The effective indels were observed in the gene encoding the spike protein that is responsible for viral attachment to the angiotensin-converting enzyme 2 (ACE2) cell receptor and initiating infection. These indels are responsible for the newly emerging COVID-19 variants αCoV, βCoV, γCoV and δCoV. Nowadays, few effective COVID-19 vaccines developed based on spike (S) glycoprotein were approved and become available worldwide. Currently available vaccines can relatively prevent the spread of COVID-19 and suppress the disease. The traditional (killed or attenuated virus vaccine and antibody-based vaccine) and innovated vaccine production technologies (RNA- and DNA-based vaccines and viral vectors) are summarized in this review. We finally highlight the most common questions related to COVID-19 disease and the benefits of getting vaccinated.
Collapse
|
235
|
Dileepan M, Di D, Huang Q, Ahmed S, Heinrich D, Ly H, Liang Y. Seroprevalence of SARS-CoV-2 (COVID-19) exposure in pet cats and dogs in Minnesota, USA. Virulence 2021; 12:1597-1609. [PMID: 34125647 PMCID: PMC8205054 DOI: 10.1080/21505594.2021.1936433] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is continuing to spread globally. SARS-CoV-2 infections of feline and canine species have also been reported. However, it is not entirely clear to what extent natural SARS-CoV-2 infection of pet dogs and cats is in households. We have developed enzyme-linked immunosorbent assays (ELISAs) using recombinant SARS-CoV-2 nucleocapsid (N) protein and the receptor-binding-domain (RBD) of the spike protein, and the SARS-CoV-2 spike-pseudotyped vesicular stomatitis virus (VSV)-based neutralization assay to screen serum samples of 239 pet cats and 510 pet dogs in Minnesota in the early phase of the COVID-19 pandemic from mid-April to early June 2020 for evidence of SARS-CoV-2 exposures. A cutoff value was used to identify the seropositive samples in each experiment. The average seroprevalence of N- and RBD-specific antibodies in pet cats were 8% and 3%, respectively. Among nineteen (19) N-seropositive cat sera, fifteen (15) exhibited neutralizing activity and seven (7) were also RBD-seropositive. The N-based ELISA is also specific and does not cross react with antigens of common feline coronaviruses. In contrast, SARS-CoV-2 antibodies were detected at a very low percentage in pet dogs (~ 1%) and were limited to IgG antibodies against SARS-CoV-2 N protein with no neutralizing activities. Our results demonstrate that SARS-CoV-2 seropositive rates are higher in pet cats than in pet dogs in MN early in the pandemic and that SARS-CoV-2 N-specific IgG antibodies can detect SARS-CoV-2 infections in companion animals with higher levels of specificity and sensitivity than RBD-specific IgG antibodies in ELISA-based assays.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Da Di
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Qinfeng Huang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Shamim Ahmed
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Daniel Heinrich
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| |
Collapse
|
236
|
Embregts CW, Verstrepen B, Langermans JA, Böszörményi KP, Sikkema RS, de Vries RD, Hoffmann D, Wernike K, Smit LA, Zhao S, Rockx B, Koopmans MP, Haagmans BL, Kuiken T, GeurtsvanKessel CH. Evaluation of a multi-species SARS-CoV-2 surrogate virus neutralization test. One Health 2021; 13:100313. [PMID: 34458548 PMCID: PMC8378998 DOI: 10.1016/j.onehlt.2021.100313] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Assays to measure SARS-CoV-2-specific neutralizing antibodies are important to monitor seroprevalence, to study asymptomatic infections and to reveal (intermediate) hosts. A recently developed assay, the surrogate virus-neutralization test (sVNT) is a quick and commercially available alternative to the "gold standard" virus neutralization assay using authentic virus, and does not require processing at BSL-3 level. The assay relies on the inhibition of binding of the receptor binding domain (RBD) on the spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) by antibodies present in sera. As the sVNT does not require species- or isotype-specific conjugates, it can be similarly used for antibody detection in human and animal sera. In this study, we used 298 sera from PCR-confirmed COVID-19 patients and 151 sera from patients confirmed with other coronavirus or other (respiratory) infections, to evaluate the performance of the sVNT. To analyze the use of the assay in a One Health setting, we studied the presence of RBD-binding antibodies in 154 sera from nine animal species (cynomolgus and rhesus macaques, ferrets, rabbits, hamsters, cats, cattle, mink and dromedary camels). The sVNT showed a moderate to high sensitivity and a high specificity using sera from confirmed COVID-19 patients (91.3% and 100%, respectively) and animal sera (93.9% and 100%), however it lacked sensitivity to detect low titers. Significant correlations were found between the sVNT outcomes and PRNT50 and the Wantai total Ig and IgM ELISAs. While species-specific validation will be essential, our results show that the sVNT holds promise in detecting RBD-binding antibodies in multiple species.
Collapse
Affiliation(s)
| | - Babs Verstrepen
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Jan A.M. Langermans
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
- Department Population Health Sciences, Division Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - Reina S. Sikkema
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Insel Riems, Germany
| | - Lidwien A.M. Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Virology Division, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
237
|
Gaudreault NN, Carossino M, Morozov I, Trujillo JD, Meekins DA, Madden DW, Cool K, Artiaga BL, McDowell C, Bold D, Balaraman V, Kwon T, Ma W, Henningson J, Wilson DW, Wilson WC, Balasuriya UBR, García-Sastre A, Richt JA. Experimental re-infected cats do not transmit SARS-CoV-2. Emerg Microbes Infect 2021; 10:638-650. [PMID: 33704016 PMCID: PMC8023599 DOI: 10.1080/22221751.2021.1902753] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and responsible for the current global pandemic. We and others have previously demonstrated that cats are susceptible to SARS-CoV-2 infection and can efficiently transmit the virus to naïve cats. Here, we address whether cats previously exposed to SARS-CoV-2 can be re-infected with SARS-CoV-2. In two independent studies, SARS-CoV-2-infected cats were re-challenged with SARS-CoV-2 at 21 days post primary challenge (DPC) and necropsies performed at 4, 7 and 14 days post-secondary challenge (DP2C). Sentinels were co-mingled with the re-challenged cats at 1 DP2C. Clinical signs were recorded, and nasal, oropharyngeal, and rectal swabs, blood, and serum were collected and tissues examined for histologic lesions. Viral RNA was transiently shed via the nasal, oropharyngeal and rectal cavities of the re-challenged cats. Viral RNA was detected in various tissues of re-challenged cats euthanized at 4 DP2C, mainly in the upper respiratory tract and lymphoid tissues, but less frequently and at lower levels in the lower respiratory tract when compared to primary SARS-CoV-2 challenged cats at 4 DPC. Viral RNA and antigen detected in the respiratory tract of the primary SARS-CoV-2 infected cats at early DPCs were absent in the re-challenged cats. Naïve sentinels co-housed with the re-challenged cats did not shed virus or seroconvert. Together, our results indicate that cats previously infected with SARS-CoV-2 can be experimentally re-infected with SARS-CoV-2; however, the levels of virus shed was insufficient for transmission to co-housed naïve sentinels. We conclude that SARS-CoV-2 infection in cats induces immune responses that provide partial, non-sterilizing immune protection against re-infection.
Collapse
Affiliation(s)
- Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dennis W. Wilson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - William C. Wilson
- Arthropod Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
238
|
Sharun K, Dhama K, Pawde AM, Gortázar C, Tiwari R, Bonilla-Aldana DK, Rodriguez-Morales AJ, de la Fuente J, Michalak I, Attia YA. SARS-CoV-2 in animals: potential for unknown reservoir hosts and public health implications. Vet Q 2021; 41:181-201. [PMID: 33892621 PMCID: PMC8128218 DOI: 10.1080/01652176.2021.1921311] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously 2019-nCoV) is suspected of having originated in 2019 in China from a coronavirus infected bat of the genus Rhinolophus. Following the initial emergence, possibly facilitated by a mammalian bridge host, SARS-CoV-2 is currently transmitted across the globe via efficient human-to-human transmission. Results obtained from experimental studies indicate that animal species such as cats, ferrets, raccoon dogs, cynomolgus macaques, rhesus macaques, white-tailed deer, rabbits, Egyptian fruit bats, and Syrian hamsters are susceptible to SARS-CoV-2 infection, and that cat-to-cat and ferret-to-ferret transmission can take place via contact and air. However, natural infections of SARS-CoV-2 have been reported only in pet dogs and cats, tigers, lions, snow leopards, pumas, and gorillas at zoos, and farmed mink and ferrets. Even though human-to-animal spillover has been reported at several instances, SARS-CoV-2 transmission from animals-to-humans has only been reported from mink-to-humans in mink farms. Following the rapid transmission of SARS-CoV-2 within the mink population, a new mink-associated SARS-CoV-2 variant emerged that was identified in both humans and mink. The increasing reports of SARS-CoV-2 in carnivores indicate the higher susceptibility of animal species belonging to this order. The sporadic reports of SARS-CoV-2 infection in domestic and wild animal species require further investigation to determine if SARS-CoV-2 or related Betacoronaviruses can get established in kept, feral or wild animal populations, which may eventually act as viral reservoirs. This review analyzes the current evidence of SARS-CoV-2 natural infection in domestic and wild animal species and their possible implications on public health.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Abhijit M. Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Christian Gortázar
- SaBio IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-Universidad de Castilla-La Mancha), Ciudad Real, Spain
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - D. Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigacion BIOECOS, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Faculty of Health Sciences, Public Health and Infection Research Group, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Public Health and Infection Research Group, Universidad Tecnologica de Pereira, Pereira, Colombia
- Faculty of Medicine, Grupo de Investigacion Biomedicina, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Colombia
- School of Medicine, Universidad Privada Franz Tamayo, (UNIFRANZ), Cochabamba, Bolivia
| | - José de la Fuente
- SaBio IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-Universidad de Castilla-La Mancha), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Youssef A. Attia
- Faculty of Environmental Sciences, Department of Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Agriculture, Animal and Poultry Production Department, Damanhour University, Damanhour, Egypt
| |
Collapse
|
239
|
Mykytyn AZ, Lamers MM, Okba NMA, Breugem TI, Schipper D, van den Doel PB, van Run P, van Amerongen G, de Waal L, Koopmans MPG, Stittelaar KJ, van den Brand JMA, Haagmans BL. Susceptibility of rabbits to SARS-CoV-2. Emerg Microbes Infect 2021; 10:1-7. [PMID: 33356979 PMCID: PMC7832544 DOI: 10.1080/22221751.2020.1868951] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022]
Abstract
Transmission of severe acute respiratory coronavirus-2 (SARS-CoV-2) between livestock and humans is a potential public health concern. We demonstrate the susceptibility of rabbits to SARS-CoV-2, which excrete infectious virus from the nose and throat upon experimental inoculation. Therefore, investigations on the presence of SARS-CoV-2 in farmed rabbits should be considered.
Collapse
Affiliation(s)
- Anna Z. Mykytyn
- Viroscience department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M. Lamers
- Viroscience department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Nisreen M. A. Okba
- Viroscience department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tim I. Breugem
- Viroscience department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Debby Schipper
- Viroscience department, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Peter van Run
- Viroscience department, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Leon de Waal
- Viroclinics Biosciences B.V., Viroclinics Xplore, Schaijk, the Netherlands
| | | | | | - Judith M. A. van den Brand
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bart L. Haagmans
- Viroscience department, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
240
|
de Rooij MMT, Hakze-Van der Honing RW, Hulst MM, Harders F, Engelsma M, van de Hoef W, Meliefste K, Nieuwenweg S, Oude Munnink BB, van Schothorst I, Sikkema RS, van der Spek AN, Spierenburg M, Spithoven J, Bouwstra R, Molenaar RJ, Koopmans M, Stegeman A, van der Poel WHM, Smit LAM. Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms. Occup Environ Med 2021; 78:893-899. [PMID: 34330815 PMCID: PMC8327637 DOI: 10.1136/oemed-2021-107443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. METHODS Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. RESULTS Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. CONCLUSIONS Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Marcel M Hulst
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Marc Engelsma
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Wouter van de Hoef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sigrid Nieuwenweg
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Arco N van der Spek
- Netherlands Food and Consumer Product Safety Authority, Utrecht, The Netherlands
| | - Marcel Spierenburg
- Netherlands Food and Consumer Product Safety Authority, Utrecht, The Netherlands
| | - Jack Spithoven
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | - Marion Koopmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Arjan Stegeman
- Farm Animal Health, Utrecht University, Utrecht, The Netherlands
| | | | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
241
|
Farag EA, Islam MM, Enan K, El-Hussein ARM, Bansal D, Haroun M. SARS-CoV-2 at the human-animal interphase: A review. Heliyon 2021; 7:e08496. [PMID: 34869934 PMCID: PMC8626158 DOI: 10.1016/j.heliyon.2021.e08496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Since its emergence in China in December 2019, COVID-19 remains the recent leading disease of concern drawing the public health attention globally. The disease is known of viral origin and zoonotic nature originating from animals. However, to date neither the source of the spillover nor the intermediate hosts are identified. Moreover, the public health situation is intermittently aggravated by identification of new animals susceptible to the SARS-CoV-2 infection, potentially replicating the virus and maintaining intra and interspecies spread of the disease. Although the role of a given animal and/or its produce is important to map the disease pattern, continuous efforts should be undertaken to further understand the epidemiology of SARS-CoV-2, a vital step to establish effective disease prevention and control strategy. This manuscript attempted to review updates regarding SARS-CoV-2 infection at the human-animal interface with consideration to postulations on the genetic relatedness and origin of the different SARS-CoV-2 variants isolated from different animal species. Also, the review addresses the possible role of different animal species and their produce in transmission of the disease. Also, the manuscript discussed the contamination potentiality of the virus and its environmental stability. Finally, we reviewed the currently instituted measures to prevent and manage the spread of SARS-CoV-2 infection. The manuscript suggested the One Health based control measures that could prove of value for the near future.
Collapse
Affiliation(s)
| | - Md Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
| | - Khalid Enan
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
| | | | | | | |
Collapse
|
242
|
Cox-Witton K, Baker ML, Edson D, Peel AJ, Welbergen JA, Field H. Risk of SARS-CoV-2 transmission from humans to bats - An Australian assessment. One Health 2021; 13:100247. [PMID: 33969168 PMCID: PMC8092928 DOI: 10.1016/j.onehlt.2021.100247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2, the cause of COVID-19, infected over 100 million people globally by February 2021. Reverse zoonotic transmission of SARS-CoV-2 from humans to other species has been documented in pet cats and dogs, big cats and gorillas in zoos, and farmed mink. As SARS-CoV-2 is closely related to known bat viruses, assessment of the potential risk of transmission of the virus from humans to bats, and its subsequent impacts on conservation and public health, is warranted. A qualitative risk assessment was conducted by a multi-disciplinary group to assess this risk in bats in the Australian context, with the aim of informing risk management strategies for human activities involving interactions with bats. The overall risk of SARS-CoV-2 establishing in an Australian bat population was assessed to be Low, however with a High level of uncertainty. The outcome of the assessment indicates that, for the Australian situation where the prevalence of COVID-19 in humans is very low, it is reasonable for research and rehabilitation of bats to continue, provided additional biosecurity measures are applied. Risk assessment is challenging for an emerging disease where information is lacking and the situation is changing rapidly; assessments should be revised if human prevalence or other important factors change significantly. The framework developed here, based on established animal disease risk assessment approaches adapted to assess reverse zoonotic transmission, has potential application to a range of wildlife species and situations.
Collapse
Affiliation(s)
| | - Michelle L. Baker
- CSIRO, Health and Biosecurity Business Unit, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Dan Edson
- Australian Department of Agriculture, Water and the Environment, Canberra, ACT, 2601, Australia
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, 4111, Australia
| | - Justin A. Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
- Australasian Bat Society Inc, Milsons Point NSW 1565, Australia
| | - Hume Field
- EcoHealth Alliance, New York, NY, USA
- The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
243
|
Akter R, Rahman MH, Bhattacharya T, Kaushik D, Mittal V, Parashar J, Kumar K, Kabir MT, Tagde P. Novel coronavirus pathogen in humans and animals: an overview on its social impact, economic impact, and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68071-68089. [PMID: 34664166 PMCID: PMC8523003 DOI: 10.1007/s11356-021-16809-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/25/2021] [Indexed: 04/15/2023]
Abstract
In the light of thousands of infections and deaths, the World Health Organization (WHO) has declared the outbreak of coronavirus disease (COVID-19) a worldwide pandemic. It has spread to about 22 million people worldwide, with a total of 0.45 million expiries, limiting the movement of most people worldwide in the last 6 months. However, COVID-19 became the foremost health, economic, and humanitarian challenge of the twenty-first century. Measures intended to curb the pandemic of COVID-19 included travel bans, lockdowns, and social distances through shelter orders, which will further stop human activities suddenly and eventually impact the world and the national economy. The viral disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After SARS-CoV-2 virus and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most significant lethal disease to humans. According to WHO, COVID-19 mortality exceeded that of SARS and MERS since COVID-19 was declared an international public health emergency. Genetic sequencing has recently established that COVID-19 is close to SARS-CoV and bat coronavirus which has not yet been recognized as the key cause of this pandemic outbreak, its transmission, and human pathogen mechanism. This review focuses on a brief introduction of novel coronavirus pathogens, including coronavirus in humans and animals, its taxonomic classification, symptoms, pathogenicity, social impact, economic impact, and potential treatment therapy for COVID-19.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213, Bangladesh.
| | - Tanima Bhattacharya
- School of Chemistry & Chemical Engineering, Hubei University, Wuhan, People's Republic of China, 430062
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal, M.P, India
| |
Collapse
|
244
|
Sikkema RS, Tobias T, Oreshkova N, de Bruin E, Okba N, Chandler F, Hulst MM, Rodon J, Houben M, van Maanen K, Bultman H, Meester M, Gerhards NM, Bouwknegt M, Urlings B, Haagmans B, Kluytmans J, GeurtsvanKessel CH, van der Poel WHM, Koopmans MPG, Stegeman A. Experimental and field investigations of exposure, replication and transmission of SARS-CoV-2 in pigs in the Netherlands. Emerg Microbes Infect 2021; 11:91-94. [PMID: 34839786 PMCID: PMC8725821 DOI: 10.1080/22221751.2021.2011625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In order to assess the risk of SARS-CoV-2 infection, transmission and reservoir development in swine, we combined results of an experimental and two observational studies. First, intranasal and intratracheal challenge of eight pigs did not result in infection, based on clinical signs and PCR on swab and lung tissue samples. Two serum samples returned a low positive result in virus neutralization, in line with findings in other infection experiments in pigs. Next, a retrospective observational study was performed in the Netherlands in the spring of 2020. Serum samples (N =417) obtained at slaughter from 17 farms located in a region with a high human case incidence in the first wave of the pandemic. Samples were tested with protein micro array, plaque reduction neutralization test and receptor-binding-domain ELISA. None of the serum samples was positive in all three assays, although six samples from one farm returned a low positive result in PRNT (titers 40-80). Therefore we conclude that serological evidence for large scale transmission was not observed. Finally, an outbreak of respiratory disease in pigs on one farm, coinciding with recent exposure to SARS-CoV-2 infected animal caretakers, was investigated. Tonsil swabs and paired serum samples were tested. No evidence for infection with SARS-CoV-2 was found. In conclusion, Although in both the experimental and the observational study few samples returned low antibody titer results in PRNT infection with SARS-CoV-2 was not confirmed. It was concluded that sporadic infections in the field cannot be excluded, but large-scale SARS-CoV-2 transmission among pigs is unlikely.
Collapse
Affiliation(s)
- Reina S Sikkema
- Department Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Tijs Tobias
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nadia Oreshkova
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Erwin de Bruin
- Department Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nisreen Okba
- Department Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Felicity Chandler
- Department Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marcel M Hulst
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain
| | - Manon Houben
- Royal GD Animal Health, Deventer, The Netherlands
| | | | - Hans Bultman
- Royal GD Animal Health, Deventer, The Netherlands
| | - Marina Meester
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nora M Gerhards
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | | | - Bart Haagmans
- Department Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jan Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Arjan Stegeman
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
245
|
Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands. Nat Commun 2021; 12:6802. [PMID: 34815406 PMCID: PMC8611045 DOI: 10.1038/s41467-021-27096-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface. SARS-CoV-2 was detected in mink farms in the Netherlands in the first wave of the pandemic with evidence of human-to-mink and mink-to-human transmission. Here, the authors investigate this outbreak using phylodynamic analysis and show that personnel links and spatial proximity are predictors of transmission between farms.
Collapse
|
246
|
Greber UF. Two years into COVID-19 - Lessons in SARS-CoV-2 and a perspective from papers in FEBS Letters. FEBS Lett 2021; 595:2847-2853. [PMID: 34787897 PMCID: PMC8652506 DOI: 10.1002/1873-3468.14226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 2019 outbreak of coronavirus disease (COVID‐19) in Wuhan (Hubei province of China) has given rise to a pandemic spread of virus, more than 240 million incidences and a death toll larger than 5 million people. COVID‐19 has set off large efforts in research, therapy and patient care, as well as public and private debates in every imaginable form. A number of scientists used the publication platforms provided by the Federation of the European Biochemical Societies (FEBS) to present their research data, reviews, opinions and other contributions relating to COVID‐19 and severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Here, I highlight the recent COVID‐19 papers which have been published and collected in a Virtual Issue in FEBS Letters, and discuss their implications towards understanding the molecular, biochemical and cellular mechanisms of SARS‐CoV‐2 infections, vaccine development and antiviral discovery strategies.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Switzerland
| |
Collapse
|
247
|
Geng R, Zhou P. Severe acute respiratory syndrome (SARS) related coronavirus in bats. ANIMAL DISEASES 2021; 1:4. [PMID: 34778877 PMCID: PMC8062212 DOI: 10.1186/s44149-021-00004-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/06/2021] [Indexed: 11/25/2022] Open
Abstract
Three major human coronavirus disease outbreaks, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and 2019 coronavirus disease (COVID-19), occurred in the twenty-first century and were caused by different coronaviruses (CoVs). All these viruses are considered to have originated from bats and transmitted to humans through intermediate hosts. SARS-CoV-1 and SARS-CoV-2, disease agent of COVID-19, shared around 80% genomic similarity, and thus belong to SARS-related CoVs. As a natural reservoir of viruses, bats harbor numerous other SARS-related CoVs that could potentially infect humans around the world, causing SARS or COVID-19 like outbreaks in the future. In this review, we summarized the current knowledge of CoVs on geographical distribution, genetic diversity, cross-species transmission potential and possible pathogenesis in humans, aiming for a better understanding of bat SARS-related CoVs in the context of prevention and control.
Collapse
Affiliation(s)
- Rong Geng
- CAS key laboratory of special pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- CAS key laboratory of special pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
248
|
Rasmussen TB, Fonager J, Jørgensen CS, Lassaunière R, Hammer AS, Quaade ML, Boklund A, Lohse L, Strandbygaard B, Rasmussen M, Michaelsen TY, Mortensen S, Fomsgaard A, Belsham GJ, Bøtner A. Infection, recovery and re-infection of farmed mink with SARS-CoV-2. PLoS Pathog 2021; 17:e1010068. [PMID: 34780574 PMCID: PMC8629378 DOI: 10.1371/journal.ppat.1010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/29/2021] [Accepted: 10/27/2021] [Indexed: 11/19/2022] Open
Abstract
Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Jannik Fonager
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Charlotte Sværke Jørgensen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Ria Lassaunière
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Anne Sofie Hammer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Michelle Lauge Quaade
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anette Boklund
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Louise Lohse
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Bertel Strandbygaard
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Morten Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | | | - Sten Mortensen
- Danish Veterinary and Food Administration, Glostrup, Denmark
| | - Anders Fomsgaard
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen S, Denmark
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail: (GJB); (AB)
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail: (GJB); (AB)
| |
Collapse
|
249
|
Bosco-Lauth AM, Walker A, Guilbert L, Porter S, Hartwig A, McVicker E, Bielefeldt-Ohmann H, Bowen RA. Susceptibility of livestock to SARS-CoV-2 infection. Emerg Microbes Infect 2021; 10:2199-2201. [PMID: 34749583 PMCID: PMC8635583 DOI: 10.1080/22221751.2021.2003724] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We report pilot studies to evaluate the susceptibility of common domestic livestock (cattle, sheep, goat, alpaca, rabbit, and horse) to intranasal infection with SARS-CoV-2. None of the infected animals shed infectious virus via nasal, oral, or faecal routes, although viral RNA was detected in several animals. Further, neutralizing antibody titres were low or non-existent one month following infection. These results suggest that domestic livestock are unlikely to contribute to SARS-CoV-2 epidemiology.
Collapse
Affiliation(s)
- Angela M Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Audrey Walker
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lauren Guilbert
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Stephanie Porter
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Airn Hartwig
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Emma McVicker
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Australia
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
250
|
Chetboul V, Foulex P, Kartout K, Klein AM, Sailleau C, Dumarest M, Delaplace M, Gouilh MA, Mortier J, Le Poder S. Myocarditis and Subclinical-Like Infection Associated With SARS-CoV-2 in Two Cats Living in the Same Household in France: A Case Report With Literature Review. Front Vet Sci 2021; 8:748869. [PMID: 34746286 PMCID: PMC8566889 DOI: 10.3389/fvets.2021.748869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
This report provides the first clinical, radiographic, echocardiographic, and biological description of SARS-CoV-2-associated myocarditis with a 6-month follow-up in a 5-year-old obese male domestic shorthair cat (Cat-1) presented for refractory congestive heart failure, with high cardiac troponin-I level (5.24 ng/ml), and a large lingual ulcer. The animal was SARS-CoV-2 positive on serology. The other cat living in the same household (Cat-2) never showed any clinical sign but was also confirmed SARS-CoV-2 positive on serology. Both cats were SARS-CoV-2 PCR negative. Cat-1 had closer contact than Cat-2 with their owner, who had been in close contact with a coworker tested PCR positive for COVID-19 (Alpha (B.1.1.7) variant) 4 weeks before Cat-1's first episode of congestive heart failure. A focused point-of-care echocardiography at presentation revealed for Cat-1 numerous B-lines, pleural effusion, severe left atrial dilation and dysfunction, and hypertrophic cardiomyopathy phenotype associated with focal pulmonary consolidations. Both myocarditis and pneumonia were suspected, leading to the prescription of cardiac medications and antibiotics. One month later, Cat-1 recovered, with normalization of left atrial size and function, and radiographic and echocardiography disappearance of heart failure signs and pulmonary lesions. An extensive literature review of SARS-CoV-2-related cardiac injury in pets in comparison with human pathology is discussed.
Collapse
Affiliation(s)
- Valérie Chetboul
- École Nationale Vétérinaire d'Alfort, CHUVA, Unité de Cardiologie d'Alfort (UCA), Maisons-Alfort, France.,Université Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Pierre Foulex
- École Nationale Vétérinaire d'Alfort, CHUVA, Unité de Cardiologie d'Alfort (UCA), Maisons-Alfort, France
| | - Kahina Kartout
- École Nationale Vétérinaire d'Alfort, CHUVA, Unité de Cardiologie d'Alfort (UCA), Maisons-Alfort, France
| | | | - Corinne Sailleau
- École Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, INRAE, ANSES, Laboratoire de santé animale, Université Paris-Est, Maisons-Alfort, France
| | - Marine Dumarest
- École Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, INRAE, ANSES, Laboratoire de santé animale, Université Paris-Est, Maisons-Alfort, France
| | - Manon Delaplace
- École Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, INRAE, ANSES, Laboratoire de santé animale, Université Paris-Est, Maisons-Alfort, France
| | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0), Normandie Université, UNICAEN, 13 UNIROUEN, Caen, France
| | - Jeremy Mortier
- École Nationale Vétérinaire d'Alfort, CHUVA, Service d'Imagerie Médicale, Maisons-Alfort, France
| | - Sophie Le Poder
- École Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, INRAE, ANSES, Laboratoire de santé animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|