251
|
Haq SK, Atif SM, Khan RH. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 2004; 431:145-59. [PMID: 15464737 DOI: 10.1016/j.abb.2004.07.022] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 07/20/2004] [Indexed: 11/24/2022]
Abstract
The continual need to increase food production necessitates the development and application of novel biotechnologies to enable the provision of improved crop varieties in a timely and cost-effective way. A milestone in this field was the introduction of Bacillus thuringiensis (Bt) entomotoxic proteins into plants. Despite the success of this technology, there is need for development of alternative strategies of phytoprotection. Biotechnology offers sustainable solutions to the problem of pests, pathogens, and plant parasitic nematodes in the form of other insecticidal protein genes. A variety of genes, besides (Bt) toxins that are now available for genetic engineering for pest resistance are genes for vegetative insecticidal proteins, proteinase inhibitors, alpha-amylase inhibitors, and plant lectins. This review presents a comprehensive summary of research efforts that focus on the potential use and advantages of using proteinase inhibitor genes to engineer insect- and pest-resistance. Crop protection by means of PI genes is an important component of Integrated Pest Management programmes.
Collapse
Affiliation(s)
- Soghra Khatun Haq
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India
| | | | | |
Collapse
|
252
|
Efremova N, Schreiber L, Bär S, Heidmann I, Huijser P, Wellesen K, Schwarz-Sommer Z, Saedler H, Yephremov A. Functional conservation and maintenance of expression pattern of FIDDLEHEAD-like genes in Arabidopsis and Antirrhinum. PLANT MOLECULAR BIOLOGY 2004; 56:821-37. [PMID: 15803418 DOI: 10.1007/s11103-004-5576-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 10/28/2004] [Indexed: 05/07/2023]
Abstract
In Arabidopsis, loss of function of the epidermis-specific FDH gene coding for a putative beta-ketoacyl-CoA synthase results in ectopic organ fusions in mutants. Corresponding mutants are not available for Antirrhinum majus, however, organ fusions can be induced in both species by chloroacetamide inhibitors of beta-ketoacyl-CoA synthases using a chemical genetics approach. We isolated the ortholog of FDH from Antirrhinum majus, the ANTIRRHINUM FIDDLEHEAD (AFI ) gene, and showed that AFI complements fdh when expressed in the epidermis under control of the FDH promoter. Like FDH, the AFI gene exhibits protodermis- and epidermis-specific expression, and its promoter directs the expression of reporter genes to the epidermis in transgenic Antirrhinum and Arabidopsis. We demonstrate down-regulation of the FDH promoter in the epidermis of the ovary septum, thereby supporting the assumption that FDH-like genes may directly facilitate the cell-cell interactions that need to occur during carpel fusion and pollen tube growth. Up-regulation of FDH in the stomium, on the other hand, provides evidence for its possible involvement in cell separation during anther dehiscence. Down-regulation of the FDH and AFI promoters in the septum is observed in transgenic Arabidopsis but not in Antirrhinum plants. This probably reflects differences in the ontogeny of the ovary septum between the two species. We also show that epidermis-specific FDH-like genes may not be able to efficiently elongate fatty acid chains when misexpressed in seeds.
Collapse
Affiliation(s)
- Nadia Efremova
- Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Differentiation and degeneration of cells that play a major role in tobacco anther dehiscence. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/s00497-004-0231-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
254
|
Noiriel A, Benveniste P, Banas A, Stymne S, Bouvier-Navé P. Expression in yeast of a novel phospholipase A1 cDNA from Arabidopsis thaliana. ACTA ACUST UNITED AC 2004; 271:3752-64. [PMID: 15355352 DOI: 10.1111/j.1432-1033.2004.04317.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During a search for cDNAs encoding plant sterol acyltransferases, we isolated four full-length cDNAs from Arabidopsis thaliana that encode proteins with substantial identity with animal lecithin : cholesterol acyltransferases (LCATs). The expression of one of these cDNAs, AtLCAT3 (At3g03310), in various yeast strains resulted in the doubling of the triacylglycerol content. Furthermore, a complete lipid analysis of the transformed wild-type yeast showed that its phospholipid content was lower than that of the control (void plasmid-transformed) yeast whereas lysophospholipids and free fatty acids increased. When microsomes from the AtLCAT3-transformed yeast were incubated with di-[1-14C]oleyl phosphatidylcholine, both the lysophospholipid and free fatty acid fractions were highly and similarly labelled, whereas the same incubation with microsomes from the control yeast produced a negligible labelling of these fractions. Moreover when microsomes from AtLCAT3-transformed yeast were incubated with either sn-1- or sn-2-[1-14C]acyl phosphatidylcholine, the distribution of the labelling between the free fatty acid and the lysophosphatidylcholine fractions strongly suggested a phospholipase A1 activity for AtLCAT3. The sn-1 specificity of this phospholipase was confirmed by gas chromatography analysis of the hydrolysis of 1-myristoyl, 2-oleyl phosphatidylcholine. Phosphatidylethanolamine and phosphatidic acid were shown to be also hydrolysed by AtLCAT3, although less efficiently than phosphatidylcholine. Lysophospatidylcholine was a weak substrate whereas tripalmitoylglycerol and cholesteryl oleate were not hydrolysed at all. This novel A. thaliana phospholipase A1 shows optimal activity at pH 6-6.5 and 60-65 degrees C and appears to be unaffected by Ca2+. Its sequence is unrelated to all other known phospholipases. Further studies are in progress to elucidate its physiological role.
Collapse
Affiliation(s)
- Alexandre Noiriel
- Institut de Biologie Moléculaire des Plantes du CNRS, Département Isoprénoïdes, Institut de Botanique, Strasbourg, France
| | | | | | | | | |
Collapse
|
255
|
Matsui K, Fukutomi S, Ishii M, Kajiwara T. A tomato lipase homologous to DAD1 (LeLID1) is induced in post-germinative growing stage and encodes a triacylglycerol lipase. FEBS Lett 2004; 569:195-200. [PMID: 15225633 DOI: 10.1016/j.febslet.2004.05.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 05/26/2004] [Accepted: 05/26/2004] [Indexed: 11/27/2022]
Abstract
A tomato lipase gene homologous to Arabidopsis DAD1 (lipase homologous to DAD1; LeLID1) was cloned and characterized. The corresponding transcript increased rapidly during germination of the seeds and reached a maximum level at four days after germination. Thereafter, it decreased rapidly. Little expression could be found in flowers or fruits. Immunoblot analyses showed that the gene products could be found in the cotyledons and hypocotyls, but not in the roots. In the cotyledons most LeLID1 could be recovered in a soluble fraction. The recombinant LeLID1 protein showed maximum lipase activity at pH 8.0. It showed high activity against triacylglycerols (TAGs) with long acyl chains, but little activity with phosphatidylcholine or monogalactosyldiacylglycerol. TAGs composed of short acyl chains could not be a substrate for the enzyme. A possible involvement of LeLID1 in fat mobilization during seed germination is discussed.
Collapse
Affiliation(s)
- Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | | | | | | |
Collapse
|
256
|
Abstract
Various lipids are involved in mediating plant growth, development and responses to biotic and abiotic cues, and their production is regulated by lipid-signaling enzymes. Lipid-hydrolyzing enzymes play a pivotal role both in the production of lipid messengers and in other processes, such as cytoskeletal rearrangement, membrane trafficking, and degradation. Studies on the downstream targets and modes of action of lipid signals in plants are still in their early stages but distinguishing features of plant lipid-based signaling are being recognized. Phospholipase D enzymes and phosphatidic acid may play a broader role in lipid signaling in plants than in other systems.
Collapse
Affiliation(s)
- Xuemin Wang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
257
|
Ryu SB. Phospholipid-derived signaling mediated by phospholipase A in plants. TRENDS IN PLANT SCIENCE 2004; 9:229-235. [PMID: 15130548 DOI: 10.1016/j.tplants.2004.03.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Stephen B Ryu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
258
|
Cecchetti V, Pomponi M, Altamura MM, Pezzotti M, Marsilio S, D'Angeli S, Tornielli GB, Costantino P, Cardarelli M. Expression of rolB in tobacco flowers affects the coordinated processes of anther dehiscence and style elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:512-25. [PMID: 15086797 DOI: 10.1111/j.0960-7412.2004.02064.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effect of auxin on stamen and pistil development in tobacco flowers was investigated by means of the localized expression of rolB (root loci B), an Agrobacterium oncogene that increases auxin sensitivity in a cell-autonomous fashion. When rolB is driven by the promoter of the meiosis-specific Arabidopsis gene DMC1 (disrupted meiotic cDNA 1), expression occurs earlier in male than in female developing organs, resulting in a delay in anther dehiscence with respect to normal timing of pistil development. As a consequence of this developmental uncoupling, self-pollination is prevented in pDMC1:rolB plants. Histological analysis of pDMC1:GFP plants indicates that in tobacco, this promoter is active not only in meiocytes but also in somatic tissues of the anther. In contrast, simultaneous expression of rolB in anther and pistil somatic tissues, achieved by expressing a construct containing rolB under the control of the promoter of the petunia gene FBP7 (floral binding protein 7), results in a concomitant delay of both anther dehiscence and pistil development without affecting self-pollination of the plants. Analysis of plants harboring the pFBP7:GUS construct shows that in tobacco, this promoter is active not only in the ovules, as described for petunia, but also in pistil and anther somatic tissues involved in the dehiscence program. The delay in anther dehiscence and pistil development could be phenocopied by exogenous application of auxin. Jasmonic acid (JA) could not rescue the delay in anther dehiscence. These results suggest that auxin plays a key role in the timing of anther dehiscence, the dehiscence program is controlled by the somatic tissues of the anther, and auxin also regulates pistil development.
Collapse
Affiliation(s)
- Valentina Cecchetti
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Agrawal GK, Tamogami S, Han O, Iwahashi H, Rakwal R. Rice octadecanoid pathway. Biochem Biophys Res Commun 2004; 317:1-15. [PMID: 15047141 DOI: 10.1016/j.bbrc.2004.03.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 10/26/2022]
Abstract
Plant jasmonic acid (JA) and structurally similar animal prostaglandins play pivotal roles in regulating cellular responses against environmental cues, including the innate immune response(s). In plants, JA and its immediate precursor 12-oxo-phytodienoic acid (OPDA) are synthesized by the octadecanoid pathway, which employs at least five enzymes (lipase, lipoxygenase, allene oxide synthase and cyclase, and OPDA reductase), in addition to the enzymes involved in the beta-oxidation steps. Genetic, molecular, and biochemical analyses have led to the identification of almost all the genes of the octadecanoid pathway in Arabidopsis--a model dicotyledonous plant. In this regard, rice (Oryza sativa L.)--an important socio-economic monocotyledonous model research plant--remains poorly characterized. Until now, no gene has been specifically associated with this pathway. It is therefore of utmost importance to identify, characterize, and assign the pathway specific genes in rice. In this review, we have surveyed the rice genome, extracted a large number of putative genes of the octadecanoid pathway, and discussed their relationship with the known pathway genes from other plant species. Moreover, the achievements made so far on the rice octadecanoid pathway have also been summarized to reflect the contribution of rice towards extending our knowledge on this critical pathway in plants.
Collapse
Affiliation(s)
- Ganesh K Agrawal
- Research Laboratory for Agricultural Biotechnology and Biochemistry, Kathmandu, Nepal.
| | | | | | | | | |
Collapse
|
260
|
Miersch O, Weichert H, Stenzel I, Hause B, Maucher H, Feussner I, Wasternack C. Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves. PHYTOCHEMISTRY 2004; 65:847-56. [PMID: 15081284 DOI: 10.1016/j.phytochem.2004.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 01/22/2004] [Indexed: 05/05/2023]
Abstract
The allene oxide cyclase (AOC), an enzyme in jasmonate biosynthesis, occurs in vascular bundles and ovules of tomato flowers which exhibit a tissue-specific oxylipin signature (Plant J. 24, 113-126, 2000). Constitutive overexpression of the AOC did not led to altered levels of jasmonates in leaves, but these levels increased upon wounding or other stresses suggesting regulation of jasmonate biosynthesis by substrate availability (Plant J. 33, 577-589, 2003). Here, we show dramatic changes in levels of jasmonic acid (JA), of 12-oxo-phytodienoic acid (OPDA), their methyl esters (JAME, OPDAME), and of dinor-OPDA in most flower organs upon constitutive overexpression of AOC. Beside a dominant occurrence of OPDAME and JA in most flower organs, the ratio among the various compounds was altered differentially in the organs of transgenic flowers, e.g. OPDAME increased up to 53-fold in stamen, and JA increased about 51-fold in buds and 7.5-fold in sepals. The increase in jasmonates and octadecanoids was accompanied by decreased levels of free lipid hydro(per)oxy compounds. Except for 16:2, the AOC overexpression led to a significant increase in free but not esterified polyunsaturated fatty acids in all flower organs. The data suggest different regulation of JA biosynthesis in leaves and flowers of tomato.
Collapse
Affiliation(s)
- Otto Miersch
- Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle/S, Germany
| | | | | | | | | | | | | |
Collapse
|
261
|
Maucher H, Stenzel I, Miersch O, Stein N, Prasad M, Zierold U, Schweizer P, Dorer C, Hause B, Wasternack C. The allene oxide cyclase of barley (Hordeum vulgare L.)--cloning and organ-specific expression. PHYTOCHEMISTRY 2004; 65:801-811. [PMID: 15081279 DOI: 10.1016/j.phytochem.2004.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 01/12/2004] [Indexed: 05/24/2023]
Abstract
The naturally occurring enantiomer of the various octadecanoids and jasmonates is established in a biosynthetic step catalyzed by the allene oxide cyclase (AOC). The AOC converts an allene oxide formed by an allene oxide synthase (AOS). Here, we show cloning and characterization of cDNAs encoding the AOC and a third AOS, respectively, in addition to the two AOSs previously published (Plant J. 21, 199-213, 2000). The ORF of the AOC-cDNA of 717 bp codes for a protein of 238 amino acid residues carrying a putative chloroplast target sequence. Overexpression without chloroplast target sequence revealed AOC activity. The AOC was found to be a single copy gene which mapped on chromosome 6H. AOC mRNA accumulation appeared in leaf segments upon treatment with various jasmonates, octadecanoids and ABA or during stress such as treatment with sorbitol or glucose solutions. Infection with powdery mildew activated AOC expression in susceptible and resistant lines of barley which correlated with PR1b expression. Among different tissues of barley seedlings, the scutellar node and leaf base accumulated AOC mRNA preferentially which correlated with accumulation of mRNAs for other biosynthetic enzymes (lipoxygenases, AOSs). AOC mRNA accumulation appeared also abundantly in parts of the root containing the tip and correlated with elevated levels of jasmonates. The data suggest a link of AOC expression and JA formation and support role of JA in stress responses and development of barley.
Collapse
Affiliation(s)
- Helmut Maucher
- Institute of Plant Science and Crop Research, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T. Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 2004; 198:267-84. [PMID: 15199968 DOI: 10.1111/j.0105-2896.2004.0129.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. To survive, plants have acquired, during evolution, complex mechanisms to detect their aggressors and defend themselves. Receptors and signaling pathways that are involved in such interactions with the environment are just beginning to be uncovered. What has been known for several decades is the extraordinary variety of chemical compounds the plants are capable to synthesize, and many of these products are implicated in defense responses. The number of natural products occurring in plants may be estimated in the range of hundreds of thousands, but only a fraction have been fully characterized. Despite the great importance of these metabolites for plant and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for phenylpropanoid and oxylipin metabolism, which are emphasized in this review. Both pathways are involved in plant resistance at several levels: by providing building units of physical barriers against pathogen invasion, by synthesizing an array of antibiotic compounds, and by producing signals implicated in the mounting of plant resistance.
Collapse
Affiliation(s)
- Sylvain La Camera
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
263
|
Von Dahl CC, Baldwin IT. Methyl jasmonate and cis-jasmone do not dispose of the herbivore-induced jasmonate burst in Nicotiana attenuata. PHYSIOLOGIA PLANTARUM 2004; 120:474-481. [PMID: 15032845 DOI: 10.1111/j.0031-9317.2004.00269.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oxylipin pathway mediates wound- and herbivore-induced defense reactions in Nicotiana attenuata as evidenced by a transient jasmonic acid (JA)-burst that precedes these defense responses. The fate of this induced JA-burst remains unknown. Two derivatives of JA, its methylester, methyl jasmonate (MeJA) and cis-jasmone (cisJ), are thought to be a means of disposing of JA through volatilization at the plant surface. In N. attenuata, the headspace quantities of these compounds did not change over 3 days, although levels of MeJA and cisJ increased 100- and 70-fold, respectively, in surface extracts of attacked leaves after feeding of Manduca sexta larvae or application of larval regurgitant to mechanical wounds. Inhibition of the wound-induced increase in JA with indole-3-acetic acid (IAA) revealed an association between the JA accumulation and subsequent increases in MeJA and cisJ. Induced systemic increases of MeJA were not of local origin and therefore do not contribute to the inactivation of the JA-burst in the wounded leaf. The total amount of MeJA and cisJ produced could only account for 9% of the JA-burst elicited by herbivore attack and therefore their production do not represent major disposal pathways of JA in N. attenuata.
Collapse
Affiliation(s)
- Caroline C. Von Dahl
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Beutenberg Campus, Hans-KnIll-Strasse 8, 07745 Jena, Germany
| | | |
Collapse
|
264
|
Haga K, Iino M. Phytochrome-Mediated Transcriptional Up-regulation of ALLENE OXIDE SYNTHASE in Rice Seedlings. ACTA ACUST UNITED AC 2004; 45:119-28. [PMID: 14988482 DOI: 10.1093/pcp/pch025] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Allene oxide synthase (AOS) is a key enzyme for the biosynthesis of jasmonic acid (JA). We identified four AOS gene homologs, named OsAOS1-4, in the database of a japonica rice genome and cloned a full-length cDNA of OsAOS1. The analysis of deduced amino acid sequences indicated that only OsAOS1 has a chloroplast transit peptide among all the identified monocot AOSs including OsAOSs. We found that the transcripts of OsAOS1 and OsAOS4 are up-regulated by red and far-red light in seedling shoots. The response in OsAOS1 transcripts occurred rapidly and transiently, while the response in OsAOS4 transcripts was slower and more sustainable; the maximal enhancement was greater in OsAOS1 transcripts than in OsAOS4 transcripts. The transcript of OsAOS1 was also up-regulated transiently in response to wounding, as reported for dicot AOSs. No wound-induced enhancement occurred, however, in OsAOS4 transcripts. Our results also indicated that OsAOS1, responding to both light and wounding, is the most highly expressed of all the OsAOSs in seedling shoots. By using phyA mutants of rice, it was demonstrated that the photoregulation of the AOS transcript level is mediated by phytochrome. It is suggested that this transcriptional photoregulation participates in the phytochrome-mediated inhibition of rice coleoptile growth.
Collapse
Affiliation(s)
- Ken Haga
- Botanical Gardens, Research School of Science, Osaka City University, Kisaichi, Katano-shi, Osaka, 576-0004 Japan
| | | |
Collapse
|
265
|
Bahn SC, Lee HY, Kim HJ, Ryu SB, Shin JS. Characterization of Arabidopsis secretory phospholipase A2-gamma cDNA and its enzymatic properties. FEBS Lett 2003; 553:113-8. [PMID: 14550557 DOI: 10.1016/s0014-5793(03)00982-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plant secretory phospholipases A(2) (sPLA(2)s) probably play important roles in phospholipid signaling based on the data reported from other organisms, but their functions are poorly understood because of the lack of cloned sPLA(2) genes. In this study, we cloned and characterized an Arabidopsis secretory phospholipase A(2)-gamma (AtsPLA(2)-gamma) cDNA, and examined its enzymatic properties. The recombinant protein of AtsPLA(2)-gamma showed maximal enzyme activity at pH 8.0, and required Ca(2+) for activity. Moreover, AtsPLA(2)-gamma showed sn-2 position specificity but no prominent acyl preference, though it showed head group specificity to phosphatidylethanolamine rather than to phosphatidylcholine. AtsPLA(2)-gamma was found to predominate in the mature flower rather than in other tissues, and subcellular localization analysis confirmed that AtsPLA(2)-gamma is secreted into the intercellular space.
Collapse
Affiliation(s)
- Sung Chul Bahn
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
266
|
Hause B, Stenzel I, Miersch O, Wasternack C. Occurrence of the allene oxide cyclase in different organs and tissues of Arabidopsis thaliana. PHYTOCHEMISTRY 2003; 64:971-980. [PMID: 14561513 DOI: 10.1016/s0031-9422(03)00447-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Occurrence of an essential enzyme in jasmonate (JA) biosynthesis, the allene oxide cyclase, (AOC) was analyzed in different developmental stages and various organs of Arabidopsis thaliana plants by immuno blot analysis and immunocytological approaches. Levels of AOC and of the two preceding enzymes in JA biosynthesis increased during seedling development accompanied by increased levels of JA and 12-oxophytodienoic acid levels after 4 and 8 weeks. Most tissues including all vascular bundles and that of flower buds contain AOC protein. Flowers shortly before opening, however, contain AOC protein preferentially in ovules, stigma cells and vascular bundles, whereas in anthers and pollen AOC could not be detected. The putative roles of AOC and JA in development are discussed.
Collapse
Affiliation(s)
- Bettina Hause
- Institute of Plant Biochemistry, Department of Secondary Metabolism, Weinberg 3, D-06120 Halle/S., Germany
| | | | | | | |
Collapse
|
267
|
Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen THH, Murata N. Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:165-76. [PMID: 14535882 DOI: 10.1046/j.1365-313x.2003.01873.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Previously, we showed that transformation with the codA gene for choline oxidase allows plants to synthesize glycine betaine (GB) and enhances their ability to tolerate various kinds of stress during germination and vegetative growth. In this study, we examined the tolerance of transformed plants to salt stress at the reproductive stage, which is the stage at which plants are most sensitive to environmental stress. Salt-shock treatment of wild-type plants for 3 days resulted in the abortion of flower buds and decreased the number of seeds per silique. These deleterious effects were clearly visible 6 days after the termination of salt-shock treatment. Microscopic examination of floral structures revealed that salt stress inhibited the development of anthers, pistils, and petals. In particular, the production of pollen grains and ovules was dramatically inhibited. These effects of salt stress were significantly reduced by transformation with the codA gene, and our observations suggested that the enhanced tolerance of the transgenic plants was a result of the accumulation of GB in the reproductive organs. Indeed, levels of GB in flowers, siliques, and inflorescence apices were about five times higher than in leaves.
Collapse
Affiliation(s)
- Ronan Sulpice
- Department of Regulation Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
268
|
Abstract
The plant floral scent methyl jasmonate (MeJA) has been identified as a vital cellular regulator that mediates diverse developmental processes and defense responses against biotic and abiotic stresses. The pleiotropic effects of MeJA have raised numerous questions about its regulation for biogenesis and mode of action. Characterization of the gene encoding jasmonic acid carboxyl methyltransferase has provided basic information on the role(s) of this phytohormone in gene-activation control and systemic long-distance signaling. Recent approaches using functional genomics and bioinformatics have identified a whole set of MeJA-responsive genes, and provide insights into how plants use volatile signals to withstand diverse and variable environments.
Collapse
Affiliation(s)
- Jong-Joo Cheong
- School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, South Korea
| | | |
Collapse
|
269
|
Hause B, Hause G, Kutter C, Miersch O, Wasternack C. Enzymes of jasmonate biosynthesis occur in tomato sieve elements. PLANT & CELL PHYSIOLOGY 2003; 44:643-648. [PMID: 12826630 DOI: 10.1093/pcp/pcg072] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The allene oxide cyclase (AOC) is a plastid-located enzyme in the biosynthesis of the signaling compound jasmonic acid (JA). In tomato, AOC occurs specifically in ovules and vascular bundles [Hause et al. (2000) Plant J. 24; 113]. Immunocytological analysis of longitudinal sections of petioles and flower stalks revealed the occurrence of AOC in companion cells (CC) and sieve elements (SE). Electron microscopic analysis led to the conclusion that the AOC-containing structures of SE are plastids. AOC was not detected in SE of 35S::AOCantisense plants. The enzymes preceding AOC in JA biosynthesis, the allene oxide synthase (AOS) and the lipoxygenase, were also detected in SE. In situ hybridization showed that the SE are free of AOC-mRNA suggesting AOC protein traffic from CC to SE via plasmodesmata. A control by in situ hybridization of AOS mRNA coding for a protein with a size above the exclusion limit of plasmodesmata indicated mRNA in CC and SE. The data suggest that SE carry the capacity to form 12-oxo-phytodienoic acid, the unique precursor of JA. Together with preferential generation of JA in vascular bundles [Stenzel et al. (2003) Plant J. 33: 577], the data support a role of JA in systemic wound signaling.
Collapse
Affiliation(s)
- Bettina Hause
- Department of Secondary Product Metabolism, Institute for Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| | | | | | | | | |
Collapse
|
270
|
Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. PLANT & CELL PHYSIOLOGY 2003; 44:463-72. [PMID: 12773632 DOI: 10.1093/pcp/pcg064] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have previously generated a large pool of T-DNA insertional lines in rice. In this study, we screened those T-DNA pools for rice mutants that had defective chlorophylls. Among the 1,995 lines examined in the T2 generation, 189 showed a chlorophyll-deficient phenotype that segregated as a single recessive locus. Among the mutants, 10 lines were beta-glucuronidase (GUS)-positive in the leaves. Line 9-07117 has a T-DNA insertion into the gene that is highly homologous to XANTHA-F in barley and CHLH in Arabidopsis: This OsCHLH gene encodes the largest subunit of the rice Mg-chelatase, a key enzyme in the chlorophyll branch of the tetrapyrrole biosynthetic pathway. In the T2 and T3 generations, the chlorina mutant phenotypes are co-segregated with the T-DNA. We have identified two additional chlorina mutants that have a Tos17 insertion in the OsCHLH gene. Those phenotypes were co-segregated with Tos17 in the progeny. GUS assays and RNA blot analysis showed that expression of the OsCHLH gene is light inducible, while TEM analysis revealed that the thylakoid membrane of the mutant chloroplasts is underdeveloped. The chlorophyll content was very low in the OschlH mutants. This is the first report that T-DNA insertional mutagenesis can be used for functional analysis of rice genes.
Collapse
Affiliation(s)
- Ki-Hong Jung
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H. Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:519-28. [PMID: 12753590 DOI: 10.1046/j.1365-313x.2003.01745.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A male sterile mutant with a defect in anther dehiscence was identified in an Arabidopsis thaliana population mutagenized with the Zea mays transposon En-1/Spm. Mutants produce viable pollen that can fertilize when released mechanically from the anthers. Mutant stamens are of normal size and shape, but lack cell wall fortifications in the endothecial cell layer of the anther, which are required for the dehiscence process. The mutant phenotype was shown to be caused by a transposon insertion in AtMYB26, disrupting the putative DNA-binding domain of this R2R3-type MYB transcription factor. RT-PCR revealed that expression of AtMYB26 is restricted to inflorescences. Sterility was shown to be stable under several environmental conditions. The high stability of the sterile phenotype, together with the fact that pollen is functional, makes AtMYB26 and its orthologs a valuable tool for manipulating male fertility in higher plants.
Collapse
Affiliation(s)
- Sabine Steiner-Lange
- Zentrum zur Identifizierung von Genfunktionen durch Insertionsmutagenese in Arabidopsis thaliana (ZIGIA), Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, 50829 Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Murray F, Kalla R, Jacobsen J, Gubler F. A role for HvGAMYB in anther development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:481-91. [PMID: 12581306 DOI: 10.1046/j.1365-313x.2003.01641.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
HvGAMYB is a transcription factor that was first identified in barley aleurone cells and shown to be upregulated by gibberellin (GA). Using RNA and immunoblot analysis we have shown HvGAMYB is also strongly expressed in barley anthers. Transgenic barley expressing a HvGAMYB:GFP fusion gene have been created and GAMYB expression in anthers analysed. GFP expression was clearly visible during early anther development in the nuclei of the epidermis, endothecium, middle layer and tapetum. Expression in the epidermis and endothecium persists until just prior to anther dehiscence, expression in the other two cell layers is visible until they are compressed and broken down as the microspores develop. Further evidence of a role for HvGAMYB in anther development was provided by the creation of transgenic barley over-expressing the HvGAMYB gene. Associated with the increase in HvGAMYB levels was a progressive decrease in anther size, particularly a decrease in anther length. Anthers also became increasingly lighter in colour. Anthers with fourfold more HvGAMYB protein than non-transgenic controls failed to dehisce and were male sterile, anthers with approximately three to fourfold endogenous GAMYB protein levels were smaller and paler but still shed normally. To investigate the hormonal regulation of HvGAMYB expression in anthers, HvGAMYB and SLN1 protein levels in anthers were analysed following application of GA3. As in cereal aleurone, HvGAMYB levels were found to increase and SLN1 levels decrease following GA3 application suggesting a similar GA-signalling pathway to that in aleurone exists in anthers.
Collapse
Affiliation(s)
- Fiona Murray
- CSIRO Plant Industry, GPO Box 1600, Canberra City, Australia
| | | | | | | |
Collapse
|
273
|
Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C. Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signalling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:577-89. [PMID: 12581315 DOI: 10.1046/j.1365-313x.2003.01647.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The allene oxide cyclase (AOC)-catalyzed step in jasmonate (JA) biosynthesis is important in the wound response of tomato. As shown by treatments with systemin and its inactive analog, and by analysis of 35S::prosysteminsense and 35S::prosysteminantisense plants, the AOC seems to be activated by systemin (and JA) leading to elevated formation of JA. Data are presented on the local wound response following activation of AOC and generation of JA, both in vascular bundles. The tissue-specific occurrence of AOC protein and generation of JA is kept upon wounding or other stresses, but is compromised in 35S::AOCsense plants, whereas 35S::AOCantisense plants exhibited residual AOC expression, a less than 10% rise in JA, and no detectable expression of wound response genes. The (i). activation of systemin-dependent AOC and JA biosynthesis occurring only upon substrate generation, (ii). the tissue-specific occurrence of AOC in vascular bundles, where the prosystemin gene is expressed, and (iii). the tissue-specific generation of JA suggest an amplification in the wound response of tomato leaves allowing local and rapid defense responses.
Collapse
Affiliation(s)
- Irene Stenzel
- Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Abstract
Phospholipids are emerging as novel second messengers in plant cells. They are rapidly formed in response to a variety of stimuli via the activation of lipid kinases or phospholipases. These lipid signals can activate enzymes or recruit proteins to membranes via distinct lipid-binding domains, where the local increase in concentration promotes interactions and downstream signaling. Here, the latest developments in phospholipid-based signaling are discussed, including the lipid kinases and phospholipases that are activated, the signals they produce, the domains that bind them, the downstream targets that contain them and the processes they control.
Collapse
Affiliation(s)
- Harold J G Meijer
- Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, NL-1098 SM Amsterdam, The Netherlands
| | | |
Collapse
|
275
|
Strassner J, Schaller F, Frick UB, Howe GA, Weiler EW, Amrhein N, Macheroux P, Schaller A. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:585-601. [PMID: 12445129 DOI: 10.1046/j.1365-313x.2002.01449.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
12-Oxophytodienoate reductases (OPRs) belong to a family of flavin-dependent oxidoreductases. With two new tomato isoforms reported here, three OPRs have now been characterized in both tomato and Arabidopsis. Only one of these isoforms (OPR3) participates directly in the octadecanoid pathway for jasmonic acid biosynthesis, as only OPR3 reduces the 9S,13S-stereoisomer of 12-oxophytodienoic acid, the biological precursor of jasmonic acid. The subcellular localization of OPRs was analyzed in tomato and Arabidopsis. The OPR3 protein and activity were consistently found in peroxisomes where they co-localize with the enzymes of beta-oxidation which catalyze the final steps in the formation of jasmonic acid. The octadecanoid pathway is thus confined to plastids and peroxisomes and, in contrast to previous assumptions, does not involve the cytosolic compartment. The expression of tomato (Lycopersicon esculentum,Le) OPR3 was analyzed in the context of defense-related genes using a microarray comprising 233 cDNA probes. LeOPR3 was found to be up-regulated after wounding with induction kinetics resembling those of other octadecanoid pathway enzymes. In contrast to the induction of genes for wound response proteins (e.g. proteinase inhibitors), the accumulation of octadecanoid pathway transcripts was found to be more rapid and transient in wounded leaves, but hardly detectable in unwounded, systemic leaves. Consistent with the expression data, OPDA and JA were found to accumulate locally but not systemically in the leaves of wounded tomato plants. The transcriptional activation of the octadecanoid pathway and the accumulation of JA to high levels are, thus not required for the activation of defense gene expression in systemic tissues.
Collapse
Affiliation(s)
- Jochen Strassner
- Plant Biochemistry and Physiology Group, Institute of Plant Sciences, ETH-Zürich, Universitätstrasse 2, CH-8092 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Ito T, Shinozaki K. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. PLANT & CELL PHYSIOLOGY 2002; 43:1285-92. [PMID: 12461128 DOI: 10.1093/pcp/pcf154] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We identified the Arabidopsis MALE STERILITY1 (MS1) gene by transposon-mediated mutagenesis. In the transposon-inserted allele ms1-8, normal immature microspores separated from tetrads, but their subsequent maturation was abnormal: the outer layer of the microspore was absent, and both the microspore and the tapetal layer gradually became vacuolated. Empty locules resulted. The MS1 gene was expressed only in the tapetal layer during a very short period when the microspores were packed as tetrads. By the time the microspores had separated, the gene was no longer expressed. MS1 was not expressed in microspores. MS1 encodes a protein with a PHD-finger motif characteristic of some transcriptional regulators. A fusion protein consisting of the N-terminus of MS1 and green fluorescent protein was localized in the nucleus. These results suggest that MS1 protein is a nuclear signal molecule indispensable for pollen maturation.
Collapse
Affiliation(s)
- Takuya Ito
- Laboratory of Plant Molecular Biology, RIKEN, 3-1-1 Koyadai, Tsukuba, 305-0074 Japan
| | | |
Collapse
|
277
|
Wasternack C, Hause B. Jasmonates and octadecanoids: signals in plant stress responses and development. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:165-221. [PMID: 12206452 DOI: 10.1016/s0079-6603(02)72070-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plants are sessile organisms. Consequently they have to adapt constantly to fluctuations in the environment. Some of these changes involve essential factors such as nutrients, light, and water. Plants have evolved independent systems to sense nutrients such as phosphate and nitrogen. However, many of the environmental factors may reach levels which represent stress for the plant. The fluctuations can range between moderate and unfavorable, and the factors can be of biotic or abiotic origin. Among the biotic factors influencing plant life are pathogens and herbivores. In case of bacteria and fungi, symbiotic interactions such as nitrogen-fixating nodules and mycorrhiza, respectively, may be established. In case of insects, a tritrophic interaction of herbivores, carnivores, and plants may occur mutualistically or parasitically. Among the numerous abiotic factors are low temperature, frost, heat, high light conditions, ultraviolet light, darkness, oxidation stress, hypoxia, wind, touch, nutrient imbalance, salt stress, osmotic adjustment, water deficit, and desiccation. In the last decade jasmonates were recognized as being signals in plant responses to most of these biotic and abiotic factors. Signaling via jasmonates was found to occur intracellularly, intercellularly, and systemically as well as interorganismically. Jasmonates are a group of ubiquitously occurring plant growth regulators originally found as the major constituents in the etheric oil of jasmine, and were first suggested to play a role in senescence due to a strong senescence-promoting effect. Subsequently, numerous developmental processes were described in which jasmonates exhibited hormone-like properties. Recent knowledge is reviewed here on jasmonates and their precursors, the octadecanoids. After discussing occurrence and biosynthesis, emphasis is placed upon the signal transduction pathways in plant stress responses in which jasmonates act as a signal. Finally, examples are described on the role of jasmonates in developmental processes.
Collapse
|
278
|
Bachmann A, Hause B, Maucher H, Garbe E, Vörös K, Weichert H, Wasternack C, Feussner I. Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol Chem 2002; 383:1645-57. [PMID: 12452441 DOI: 10.1515/bc.2002.185] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In addition to a previously characterized 13-lipoxygenase of 100 kDa encoded by LOX2:Hv:1 [Vörös et al., Eur. J. Biochem. 251 (1998), 36-44], two full-length cDNAs (LOX2:Hv:2, LOX2:Hv:3) were isolated from barley leaves (Hordeum vulgare cv. Salome) and characterized. Both of them encode 13-lipoxygenases with putative target sequences for chloroplast import. Immunogold labeling revealed preferential, if not exclusive, localization of lipoxygenase proteins in the stroma. The ultrastructure of the chloroplast was dramatically altered following methyl jasmonate treatment, indicated by a loss of thylakoid membranes, decreased number of stacks and appearance of numerous osmiophilic globuli. The three 13-lipoxygenases are differentially expressed during treatment with jasmonate, salicylate, glucose or sorbitol. Metabolite profiling of free linolenic acid and free linoleic acid, the substrates of lipoxygenases, in water floated or jasmonate-treated leaves revealed preferential accumulation of linolenic acid. Remarkable amounts of free 9- as well as 13-hydroperoxy linolenic acid were found. In addition, metabolites of these hydroperoxides, such as the hydroxy derivatives and the respective aldehydes, appeared following methyl jasmonate treatment. These findings were substantiated by metabolite profiling of isolated chloroplasts, and subfractions including the envelope, the stroma and the thylakoids, indicating a preferential occurrence of lipoxygenase-derived products in the stroma and in the envelope. These data revealed jasmonate-induced activation of the hydroperoxide lyase and reductase branch within the lipoxygenase pathway and suggest differential activity of the three 13-lipoxygenases under different stress conditions.
Collapse
Affiliation(s)
- Astrid Bachmann
- Institute for Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
279
|
de Torres Zabela M, Fernandez-Delmond I, Niittyla T, Sanchez P, Grant M. Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:808-16. [PMID: 12182338 DOI: 10.1094/mpmi.2002.15.8.808] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phospholipase D (PLD; EC 3.1.4.4) has been linked to a number of cellular processes, including Tran membrane signaling and membrane degradation. Four PLD genes (alpha, beta, gamma1, and gamma2) have been cloned from Arabidopsis thalami. They encode isoforms with distinct regulatory and catalytic properties but little is known about their physiological roles. Using cDNA amplified fragment length polymorphism display and RNA blot analysis, we identified Arabidopsis PLDgamma1 and a gene encoding a lysophospholipase (EC 3.1.1.5), lysoPL1, to be differentially expressed during host response to virulent and avirulent pathogen challenge. Examination of the expression pattern of phospholipase genes induced in response to pathogen challenge was undertaken using the lysoPL1 and gene-specific probes corresponding to the PLD isoforms a, beta, and gamma1. Each mRNA class exhibited different temporal patterns of expression after infiltration of leaves with Pseudomonas syringae pv. tomato with or without avrRpm1. PLDalpha was rapidly induced and remained constitutively elevated regardless of treatment. PLDbeta was transiently induced upon pathogen challenge. However, mRNA for the lysoPL1 and PLDgamma1 genes showed enhanced and sustained elevation during an incompatible interaction, in both ndr1 and overexpressing NahG genetic backgrounds. Further evidence for differential engagement of these PLD mRNA during defense responses, other than gene-for-gene interactions, was demonstrated by their response to salicylic acid treatment or wounding. Our results indicate that genes encoding lysoPL1, PLDgamma1, and PLDbeta are induced during early responses to pathogen challenge and, additionally, PLDyl and lysoPL1 are specifically upregulated during gene-for-gene interactions, leading to the hypersensitive response. We discuss the possible role of these genes in plant-pathogen interactions.
Collapse
|
280
|
Abstract
Phospholipid-derived molecules are emerging as novel second messengers in plant defence signalling. Recent research has begun to reveal the signals produced by the enzymes phospholipase C, phospholipase D and phospholipase A2 and their putative downstream targets. These include the activation of a MAP kinase cascade and triggering of an oxidative burst by phosphatidic acid; the regulation of ion channels and proton pumps by lysophospholipids and free fatty acids; and the conversion of free fatty acids into bioactive octadecanoids such as jasmonic acid.
Collapse
Affiliation(s)
- Ana M Laxalt
- Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
| | | |
Collapse
|
281
|
Abstract
Phyto-oxylipins are metabolites produced in plants by the oxidative transformation of unsaturated fatty acids via a series of diverging metabolic pathways. Biochemical dissection and genetic approaches have provided compelling evidence that these oxygenated derivatives actively participate in plant defense mechanisms. During the past decade, interest in this field was focused on the biosynthesis of jasmonic acid (one branch of C18 polyunsaturated fatty acid metabolism) and on its relationship to the other plant defense-signaling pathways. However, recently, antisense strategies have revealed that oxylipins other than jasmonates are probably also essential for the resistance of plants to pathogens.
Collapse
Affiliation(s)
- Elizabeth Blée
- Laboratoire des Phytooxylipines, IBMP-CNRS-UPR 2357, 28 Rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
282
|
Abstract
Oxylipins comprise a group of biologically active compounds whose structural diversity is generated by the coordinate action of lipases, lipoxygenases, and a group of cytochromes P450 that are specialized for the metabolism of hydroperoxy fatty acids. Research on oxylipins has focused mainly on the biosynthesis of the plant signaling molecule jasmonic acid, and its role in the regulation of developmental and defense-related processes. Recent genetic studies indicate that metabolic precursors of jasmonate are active as signals in their own right, and that the synthesis and perception of jasmonates is critical for wound-induced systemic defense responses. Increasing evidence indicates that the collective biological importance of oxylipins in plants is comparable to that of the eicosanoid family of lipid mediators in animals.
Collapse
Affiliation(s)
- Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
283
|
Abstract
Plants synthesize many fatty acid derivatives, several of which play important regulatory roles. Jasmonates are the best characterized examples. Jasmonate-insensitive mutants and mutants with a constitutive jasmonate response have given us new insights into jasmonate signalling. The jasmonate biosynthesis mutant opr3 allowed the dissection of cyclopentanone and cyclopentenone signalling, thus defining specific roles for these molecules. Jasmonate signalling is a complex network of individual signals and recent findings on specific activities of methyl jasmonate and (Z)-jasmone add to this picture. In addition, there are keto, hydroxy and hydroperoxy fatty acids that might be involved in cell death and the expression of stress-related genes. Finally, there are bruchins and volicitin, signal molecules from insects that are perceived by plants in the picomole to femtomole range. They highlight the importance of fatty acid-derived molecules in interspecies communication and in plant defence.
Collapse
Affiliation(s)
- Hans Weber
- Gene Expression Laboratory, Ecology Institute, University of Lausanne, Biology Building, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
284
|
Abstract
Polyunsaturated acyl lipids constitute approximately 50% of the hydrophobic membrane barriers that delineate the compartments of cells. The composition of these lipids is critically important for many membrane functions and, thus, for proper growth and development of all living organisms. In the model plant Arabidopsis, the isolation of mutants with altered lipid compositions has facilitated biochemical and molecular approaches to understanding lipid metabolism and membrane biogenesis. Just as importantly, the availability of a series of plant lines with specific changes in membrane lipids have provided a new resource to study the structural and adaptive roles of lipids. Now, the sequencing of the Arabidopsis genome, and the development of reverse-genetics approaches provide the tools needed to make additional discoveries about the relationships between lipid structure and membrane function in plant cells.
Collapse
Affiliation(s)
- James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
285
|
Abstract
Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes of plants. The hydroperoxy polyunsaturated fatty acids, synthesized by the action of various highly specialized forms of lipoxygenases, are substrates of at least seven different enzyme families. Signaling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many lipoxygenases and other key enzymes within the lipoxygenase pathway, as well as analyses by reverse genetic and metabolic profiling, revealed new reactions and the first hints of enzyme mechanisms, multiple functions, and regulation. These aspects are reviewed with respect to activation of this pathway as an initial step in the interaction of plants with pathogens, insects, or abiotic stress and at distinct stages of development.
Collapse
Affiliation(s)
- Ivo Feussner
- Department of Molecular Cell Biology, Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany.
| | | |
Collapse
|
286
|
Creelman RA, Mulpuri R. The oxylipin pathway in Arabidopsis. THE ARABIDOPSIS BOOK 2002; 1:e0012. [PMID: 22303193 PMCID: PMC3243350 DOI: 10.1199/tab.0012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on how free fatty acids are produced and the role of beta-oxidation in the biosynthetic pathway for oxylipins. It is also becoming apparent that oxylipin content and composition changes during growth and development and during pathogen or insect attack. Oxylipins such as jasmonic acid (JA) or 12-oxo-phytodienoic acid modulate the expression of numerous genes and influence specific aspects of plant growth, development and responses to abiotic and biotic stresses. Although oxylipins are believed to act alone, several examples were presented to illustrate that JA-induced responses are modulated by the type and the nature of crosstalk with other signaling molecules such as ethylene and salicylic acid. How oxylipins cause changes in gene expression and instigate a physiological response is becoming understood with the isolation of mutations in both positive and negative regulators in the jasmonate signaling pathway and the use of cDNA microarrays.
Collapse
Affiliation(s)
- Robert A. Creelman
- Mendel Biotechnology, Incorporated, 21375 Cabot Blvd., Hayward, CA 94545
- Corresponding author,
, phone: 510-259-6109, fax: 510-264-0254
| | - Rao Mulpuri
- Paradigm Genetics, Inc., 108 Alexander Drive, Research Triangle Park, NC 27709
| |
Collapse
|