1
|
Vachon A, Keeshan A, Galipeau Y, Crawley AM, Langlois MA, Cooper CL. Alcohol consumption does not influence SARS-CoV-2 vaccine immunogenicity: A stop the spread Ottawa cohort analysis. Vaccine 2025; 55:127034. [PMID: 40121732 DOI: 10.1016/j.vaccine.2025.127034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The effect of alcohol consumption on COVID-19 vaccine immunogenicity was evaluated. Participants from the Stop the Spread Ottawa cohort were categorized by alcohol consumption categorized as excessive or non-excessive based on the Canadian Centre on Substance Abuse and Addiction's (CCSA) 2023 guidelines on alcohol use. Our analyses showed that alcohol consumption did not influence SARS-CoV-2 antibody baseline levels, post vaccine increase or decay over time.
Collapse
Affiliation(s)
- Alicia Vachon
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, Ontario, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angela M Crawley
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Curtis L Cooper
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Villota SD, Veloz-Villavicencio E, Garcia-Iturralde S, Arévalo JV, Lu S, Jaenes K, Guo Y, Cicek S, Colwill K, Gingras AC, Bremner R, Ponce P, Pardee K, Cevallos VE. Validation of new equipment for SARS-CoV-2 diagnosis in Ecuador: Detection of the virus and antibodies generated by disease and vaccines with one POC device. PLoS One 2025; 20:e0321794. [PMID: 40238804 PMCID: PMC12002511 DOI: 10.1371/journal.pone.0321794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
The COVID-19 pandemic underscored the critical need to enhance screening capabilities and streamline diagnosis. Point-of-care (POC) tests offer a promising solution by decentralizing testing. We aimed to validate the PLUM device (LSK Technologies Inc.), a portable optical reader, to detect SARS-CoV-2 RNA using direct RT-LAMP targeting the ORF1a and E1 genes and patient antibodies by ELISA. The direct RT-LAMP assays employ nasopharyngeal swabs and bypass RNA extraction protocols through a brief chemical and physical lysis step. Test sensitivity and specificity were assessed against gold-standard detection methods in laboratory and field conditions. For samples with Ct values below 25, direct RT-LAMP showed 83% sensitivity and 90% specificity under laboratory conditions and 91% sensitivity and 92% specificity under field conditions. The nucleocapsid antigen antibody assay had 99% positive percent agreement (PPA) and 97% negative percent agreement (NPA), outperforming spike-RBD antigen (98% PPA, 92% NPA) and seroprevalence (98% PPA, 88% NPA) under laboratory conditions. Under field conditions, similar results were found for antibody detection for the nucleocapsid antigen (93% PPA; 100% NPA), spike-RBD (100% PPA; 94% NPA), and seroprevalence (90% PPA; 94% NPA). This study validated the PLUM device as a dual POC tool for direct RT-LAMP-based SARS-CoV-2 and ELISA-based COVID-19 antibody detection.
Collapse
Affiliation(s)
- Stephany D. Villota
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
- Facultad de Ciencias Médicas y Bienestar. Universidad Iberoamericana del Ecuador – UNIB.E, Quito, Ecuador
| | - Eliana Veloz-Villavicencio
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Santiago Garcia-Iturralde
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de las Américas, Quito, Ecuador
| | - Johanna Valentina Arévalo
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Suying Lu
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Yuxiu Guo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- LSK Technologies Inc., Kitchener, Canada
| | - Seray Cicek
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- LSK Technologies Inc., Kitchener, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- LSK Technologies Inc., Kitchener, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Varsovia Enid Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| |
Collapse
|
3
|
Renner TM, Stuible M, Rossotti MA, Rohani N, Cepero-Donates Y, Sauvageau J, Deschatelets L, Dudani R, Harrison BA, Baardsnes J, Koyuturk I, St Michael F, Hill JJ, Hemraz UD, Lenferink AEG, Tanha J, Fernandes B, Roldao A, McCluskie MJ, Akache B, Durocher Y. Modifying the glycosylation profile of SARS-CoV-2 spike-based subunit vaccines alters focusing of the humoral immune response in a mouse model. COMMUNICATIONS MEDICINE 2025; 5:111. [PMID: 40217109 PMCID: PMC11992040 DOI: 10.1038/s43856-025-00830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Protein subunit vaccines have a strong track record of efficacy and safety and have been widely applied for prevention of a variety of infectious diseases. The impacts of post-translational modifications of vaccine antigens are often overlooked, despite the fact that they can vary significantly depending on the expression hosts (e.g., bacteria, yeast, plant, insect or mammalian cells) and the culture conditions used for their manufacturing. METHODS Using SARS-CoV-2 spike trimers as model antigens, we sought to evaluate the immunological impact of modulating their state of glycosylation. Spike proteins rich in complex-type (CT), high-mannose (HM) or paucimannose (PM) N-linked glycans were produced using Chinese Hamster Ovary (CHO) cells (cultured with or without the mannosidase inhibitor kifunensine) or insect cells. RESULTS Here we show that when these antigens are adjuvanted with liposomes composed of sulfated lactosyl archaeol (SLA), all glycoforms are highly immunogenic and induce abundant spike-specific serum IgG and IFN-γ producing T-cells within female C57BL/6 mice. The spike antigen with CT glycans induces a significantly more potent neutralizing immune response, which directly correlates to more abundant receptor binding domain (RBD)-specific IgG when comparing to the antigen with HM glycans. This observation remains true whether the spike is resistin- or T4 foldon-trimerized, indicating that the glycosylation effect is not trimerization domain-specific. Spike with PM glycans induces remarkably low titers of neutralizing antibodies and RBD-specific IgG. CONCLUSIONS The results highlight the significant impacts of a vaccine's antigen glycosylation profile in directing the immune response, which should be an important consideration for designing efficient protein-based vaccines.
Collapse
Affiliation(s)
- Tyler M Renner
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Matthew Stuible
- National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, Canada
| | - Martin A Rossotti
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Nazanin Rohani
- National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, Canada
| | - Yuneivy Cepero-Donates
- National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, Canada
| | - Janelle Sauvageau
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Blair A Harrison
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Jason Baardsnes
- National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, Canada
| | - Izel Koyuturk
- National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Frank St Michael
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Jennifer J Hill
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Usha D Hemraz
- National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, Canada
| | - Anne E G Lenferink
- National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, Canada
| | - Jamshid Tanha
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara Fernandes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Antonio Roldao
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Bassel Akache
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, Ontario, Canada
| | - Yves Durocher
- National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, Quebec, Canada.
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Demers A, Zakaria D, Cheta N, Abdullah P, Aziz S. Associations between self-reported SARS-CoV-2 infection status, serology and common longer-term COVID-19 symptoms among adults in Canada, a cross-sectional study. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2025; 51:145-151. [PMID: 40264816 PMCID: PMC12013782 DOI: 10.14745/ccdr.v51i04a05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Background A variety of methods, including self-report and antibody testing, has been used to estimate the prevalence of SARS-CoV-2 infections and related longer-term symptoms, but the impact of employed methods on conclusions has not been thoroughly explored. Objective We examined associations between self-report and antibody findings in the Canadian adult (aged 18 years and older) population. Methods We used data from a large population-based cross-sectional probability survey conducted between April and August 2022. Self-reported infection status and experiences with common longer-term COVID-19 symptoms since the start of the pandemic was collected, as well as a dried blood spot to measure SARS-CoV-2 antibodies. Results As of August 2022, the number of adults reported having had a confirmed or suspected infection was 37.9% (95% CI: 36.8%-39.1%), while the overall mean probability of having infection-related antibodies was 52.9% (95% CI: 51.8%-54.0%) and increased with respondent certainty they had been infected. However, the mean probability of having infection-related antibodies was not associated with infection severity or the reporting of common longer-term COVID-19 symptoms. More than one in five adults were unaware they had been infected. Conclusion Self-report surveys may misclassify the SARS-CoV-2 infection status of a substantial proportion of untested people and may bias estimates of the percentage infected, the severity of infections and the risk of developing infection-related longer-term symptoms. Common longer-term COVID-19 symptoms reported by some could have been caused by other infections or diseases.
Collapse
Affiliation(s)
- Alain Demers
- Health Promotion and Chronic Disease Prevention Branch, Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, ON
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB
| | - Dianne Zakaria
- Health Promotion and Chronic Disease Prevention Branch, Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, ON
| | - Nicholas Cheta
- Health Promotion and Chronic Disease Prevention Branch, Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, ON
| | - Peri Abdullah
- Health Promotion and Chronic Disease Prevention Branch, Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, ON
| | - Samina Aziz
- Health Promotion and Chronic Disease Prevention Branch, Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, ON
| |
Collapse
|
5
|
Fahim C, Wang S, Paul N, Colwill K, Dayam R, Boyd JM, Ma H, Gruppuso V, Mrazovac A, Firman J, Patel A, Bach V, de Launay KQ, Takaoka A, Grubac V, Gingras AC, Straus SE, Mishra S. Patterns of SARS-CoV-2 seropositivity among essential workers in long term care and retirement homes in Ontario, Canada: A descriptive cross-sectional study. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004294. [PMID: 40153448 PMCID: PMC11952236 DOI: 10.1371/journal.pgph.0004294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/27/2025] [Indexed: 03/30/2025]
Abstract
Understanding patterns of SARS-CoV-2 seroprevalence among Long-Term Care Home and Retirement Home (LTCH/RH) staff is critical to designing effective public health interventions. We estimated SARS-CoV-2 seroprevalence among LTCH/RH staff in Ontario, Canada between May 2021-October 2022 using a cross-sectional analysis. Eligible participants completed a demographic questionnaire and provided a dried blood spot sample. Positive seroprevalence was defined as the proportion of individuals in a population who were positive for a SARS-CoV-2 infection, determined using anti-nucleocapsid total IgG antibodies analyzed with a validated chemiluminescent ELISA. We report age-adjusted prevalence ratios [PR; confidence interval, CI] by participant socio-demographic, household, neighbourhood, and occupational characteristics and stratified the analyses over two time periods (period 1: 2021-05-17 to 2021-12-31; period 2: 2022-01-02 to 2022-10-25). A total of 603 staff were included in our analysis; n=235 (39%) were enrolled in period 1 and n=368 (61%) were enrolled in period 2. Seroprevalence was 24% and 44% in periods 1 and 2, respectively. Age-adjusted prevalence ratios were nearly 2-fold higher among Black [PR 1.78; CI 1.28-2.48], East and Southeast Asian [PR 1.55, CI 1.18-2.04] and other racialized participants [PR 1.42, CI 1.03-1.96] compared to White participants. We did not observe a pattern across household characteristics, although we observed a trend towards higher seropositivity among participants living in COVID-19 hotspots. Prevalence ratios were lower for participants in higher income neighbourhoods [PR 0.72, CI 0.58-0.98]. We did not observe variability in seroprevalence across occupational characteristics with the exception of paid sick leave which was higher among participants with home-provided paid sick leave at the time of the survey [PR 0.58, CI 0.45-0.75]. Among LTCH/RH staff, we found important sources of variability of SARS-CoV-2 seroprevalence and strong correlations with socioeconomic disparities. Our findings show the importance of designing equity-rooted health interventions that recognize the intersection between community and the workplace.
Collapse
Affiliation(s)
- Christine Fahim
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Siyi Wang
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Nimitha Paul
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Roya Dayam
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Jamie M. Boyd
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Huiting Ma
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Vincenza Gruppuso
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Ana Mrazovac
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Jessica Firman
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Anjali Patel
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Vanessa Bach
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | | | - Alyson Takaoka
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Vanja Grubac
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Sharon E. Straus
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Sharmistha Mishra
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Institute of Clinical and Evaluative Sciences, Toronto, Canada
| |
Collapse
|
6
|
Maltseva M, Galipeau Y, McCluskie P, Castonguay N, Cooper CL, Langlois MA. Systemic and Mucosal Antibody Responses to SARS-CoV-2 Variant-Specific Prime-and-Boost and Prime-and-Spike Vaccination: A Comparison of Intramuscular and Intranasal Bivalent Vaccine Administration in a Murine Model. Vaccines (Basel) 2025; 13:351. [PMID: 40333249 PMCID: PMC12031244 DOI: 10.3390/vaccines13040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Background: The rapid genetic evolution of SARS-CoV-2 has led to the emergence of immune-evading, highly transmissible variants of concern (VOCs). This prompts the need for next-generation vaccines that elicit robust mucosal immunity in the airways to directly curb viral infection. Objective: Here, we investigate the impact of heterologous variant prime-boost regimens on humoral responses, focusing on intramuscular (IM) and intranasal (IN) routes of administration. Using a murine model, we assessed the immunogenicity of unadjuvanted protein boosts with Wu-1, Omicron BA.4/5, or Wu-1 + BA.4/5 spike antigens following monovalent or bivalent IM priming with mRNA-LNP vaccines. Results: IM priming induced strong systemic total and neutralizing antibody responses that were further enhanced by IN boosts with BA.4/5. IN boosting achieved the broadest serum neutralization across all VOCs tested. Notably, bivalent mRNA-LNP IM priming induced robust, cross-variant serum neutralizing antibody production, independent of subsequent IN boost combinations. Conclusions: Our findings highlight the benefit of including distinct antigenic variants in the prime vaccination followed by a variant-tailored IN boost to elicit both systemic and mucosal variant-specific responses that are potentially capable of reducing SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pauline McCluskie
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Curtis L. Cooper
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Korosec CS, Conway JM, Matveev VA, Ostrowski M, Heffernan JM, Ghaemi MS. Machine Learning Reveals Distinct Immunogenic Signatures of Th1 Imprinting in ART-Treated Individuals with HIV Following Repeated SARS-CoV-2 Vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643769. [PMID: 40166325 PMCID: PMC11956973 DOI: 10.1101/2025.03.18.643769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The human immune system is intrinsically variable and remarkably diverse across a population. The immune response to antigens is driven by a complex interplay of time-dependent interdependencies across components of the immune system. After repeated vaccination, the humoral and cellular arms of the immune response display highly heterogeneous dynamics, further complicating the attribution of a phenotypic outcome to specific immune system components. We employ a random forest (RF) approach to classify informative differences in immunogenicity between older people living with HIV (PLWH) on ART and an age-matched control group who received up to five SARS-CoV-2 vaccinations over 104 weeks. RFs identify immunological variables of importance, interpreted as evidence for Th1 imprinting, and suggest novel distinguishing immune features, such as saliva-based antibody screening, as promising diagnostic features towards classifying responses (whereas serum IgG is not). Additionally, we implement supervised and unsupervised Machine Learning methods to produce physiologically accurate synthetic datasets that conform to the statistical distribution of the original immunological data, thus enabling further data-driven hypothesis testing and model validation. Our results highlight the effectiveness of RFs in utilizing informative immune feature interdependencies for classification tasks and suggests broad impacts of ML applications for personalized vaccination strategies among high-risk populations.
Collapse
|
8
|
Samaan P, Korosec CS, Budylowski P, Chau SLL, Pasculescu A, Qi F, Delgado-Brand M, Tursun TR, Mailhot G, Dayam RM, Arnold CR, Langlois MA, Mendoza J, Morningstar T, Law R, Mihelic E, Sheikh-Mohamed S, Cao EY, Paul N, Patel A, de Launay KQ, Boyd JM, Takaoka A, Colwill K, Matveev V, Yue FY, McGeer A, Straus S, Gingras AC, Heffernen JM, Ostrowski M. mRNA vaccine-induced SARS-CoV-2 spike-specific IFN-γ and IL-2 T-cell responses are predictive of serological neutralization and are transiently enhanced by pre-existing cross-reactive immunity. J Virol 2025; 99:e0168524. [PMID: 39887249 PMCID: PMC11915849 DOI: 10.1128/jvi.01685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
The contributions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells to vaccine efficacy and durability are unclear. We investigated relationships between mRNA vaccine-induced spike-specific interferon- gamma (IFN-γ) and interleukin-2 (IL-2) T-cell responses and neutralizing antibody development in long-term care home staff doubly vaccinated with BNT162b2 or mRNA-1273. The impacts of pre-existing cross-reactive T-cell immunity on cellular and humoral responses to vaccination were additionally assessed. Mathematical modeling of the kinetics of spike-specific IFN-γ and IL-2 T-cell responses over 6 months post-second dose was bifurcated into recipients who exhibited gradual increases with doubling times of 155 and 167 days or decreases with half-lives of 165 and 132 days, respectively. Differences in kinetics did not correlate with clinical phenotypes. Serological anti-spike IgG, anti-receptor binding domain (RBD) IgG, anti-spike IgA, and anti-RBD IgA antibody levels otherwise decayed in all participants with half-lives of 63, 57, 79, and 46 days, respectively, alongside waning neutralizing capacity (t1/2 = 408 days). Spike-specific T-cell responses induced at 2-6 weeks positively correlated with live viral neutralization at 6 months post-second dose, especially in hybrid immune individuals. Participants with pre-existing cross-reactive T-cell immunity to SARS-CoV-2 exhibited greater spike-specific T-cell responses, reduced anti-RBD IgA antibody levels, and a trending increase in neutralization at 2-6 weeks post-second dose. Non-spike-specific T-cells predominantly targeted SARS-CoV-2 non-structural protein at 6 months post-second dose in cross-reactive participants. mRNA vaccination was lastly shown to induce off-target T-cell responses against unrelated antigens. In summary, vaccine-induced spike-specific T-cell immunity appeared to influence serological neutralizing capacity, with only a modest effect induced by pre-existing cross-reactivity. IMPORTANCE Our findings provide valuable insights into the potential contributions of mRNA vaccine-induced spike-specific T-cell responses to the durability of neutralizing antibody levels in both uninfected and hybrid immune recipients. Our study additionally sheds light on the precise impacts of pre-existing cross-reactive T-cell immunity to severe acute respiratory syndrome coronavirus 2 on the magnitude and kinetics of cellular and humoral responses to vaccination. Accordingly, our data will help optimize the development of next-generation T cell-based coronavirus vaccines and vaccine regimens to maximize efficacy and durability.
Collapse
Affiliation(s)
- Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Chapin S. Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, Ontario, Canada
- Center for Disease Modelling, Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Patrick Budylowski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Serena L. L. Chau
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | | | - Tulunay R. Tursun
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Geneviève Mailhot
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Corey R. Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Justin Mendoza
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Ryan Law
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erik Mihelic
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nimitha Paul
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Anjali Patel
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | | | - Jamie M. Boyd
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Alyson Takaoka
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Vitaliy Matveev
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yun Yue
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Sharon Straus
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jane M. Heffernen
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, Ontario, Canada
- Center for Disease Modelling, Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
- Keenan Research Center for Biomedical Science, St Michael's Hospital Keenan, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Galipeau Y, Castonguay N, McCluskie PS, Sonoda MT, Keeshan A, Collins E, Arnold C, Pelchat M, Burns K, Cooper C, Langlois M. Autoantibodies targeting angiotensin-converting enzyme 2 are prevalent and not induced by SARS-CoV-2 infection. FASEB J 2025; 39:e70390. [PMID: 39950298 PMCID: PMC11826374 DOI: 10.1096/fj.202402694r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
Clinical outcomes resulting from SARS-CoV-2 infection vary widely, ranging from asymptomatic cases to the development of mild to severe respiratory illness, and in some instances, chronic lingering disease and mortality. The underlying biological mechanisms driving this wide spectrum of pathogenicity among certain individuals and demographics remain elusive. Autoantibodies have emerged as potential contributors to the severity of COVID-19. Although preliminary reports have suggested the induction of antibodies targeting Angiotensin-Converting Enzyme II (ACE2) post-infection, this assertion lacks confirmation in large-scale studies. In this study, our objective is to comprehensively characterize and quantify the prevalence and expression levels of autoantibodies directed against ACE2 in a sizable cohort (n = 464). Our findings reveal that ACE2-reactive IgM antibodies are the most prevalent, with an overall seroprevalence of 18.8%, followed by IgG at 10.3% and IgA at 6.3%. Longitudinal analysis of individuals with multiple blood draws showed stable ACE2 IgG and IgA levels over time. Upon stratifying individuals based on molecular testing for SARS-CoV-2 or serological evidence of past infection, no significant differences were observed between groups. Functional assessment of ACE2 autoantibodies demonstrated that they are non-neutralizing and failed to inhibit spike-ACE2 interaction or affect the enzymatic activity of ACE2. Our results highlight that ACE2 autoantibodies are prevalent in the general population and were not induced by SARS-CoV-2 infection in our cohort. Notably, we found no substantiated evidence supporting a direct role for ACE2 autoantibodies in SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Yannick Galipeau
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Alexa Keeshan
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Clinical EpidemiologyOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Erin Collins
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Clinical EpidemiologyOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Corey Arnold
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Infection, Immunity and Inflammation (CI3)University of OttawaOttawaOntarioCanada
| | - Kevin Burns
- Division of Nephrology, Department of MedicineUniversity of OttawaOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - Curtis Cooper
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
- Division of Infectious Diseases, Department of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Marc‐André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Infection, Immunity and Inflammation (CI3)University of OttawaOttawaOntarioCanada
| |
Collapse
|
10
|
Richard L, Carter B, Liu M, Nisenbaum R, Hwang SW. Incidence and factors associated with SARS-CoV-2 infection and re-infection among people experiencing homelessness in Toronto, Canada: A prospective cohort study. PLoS One 2025; 20:e0319296. [PMID: 40019892 PMCID: PMC11870375 DOI: 10.1371/journal.pone.0319296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/30/2025] [Indexed: 03/03/2025] Open
Abstract
People experiencing homelessness are at elevated risk of SARS-CoV-2 infection, yet estimates generally exclude re-infections and rely on data sources affected by testing policies or study timing. In this prospective cohort study, we report incidence of SARS-CoV-2 infection and re-infections over time using a combination of community-based and study-administered testing, and assessed individual and housing-related factors associated with new infection. Individuals experiencing homelessness were randomly selected from 62 sites across Toronto, Canada, between June and September 2021. Participants provided detailed surveys and biological samples to test for SARS-CoV-2 (by RT-PCR and ELISA) every three months for one year. Self-reported data were verified and augmented through linkage to health administrative databases. Among 640 participants who completed 2,401 interviews, we identified 613 SARS-CoV-2 infection events, representing an incidence rate of 35.3 infections/100-person years (95% CI 31.6-39.4) prior to the onset of Omicron and 97.2 infections/100 person-years (95% CI 86.8-108.8) after Omicron. Nearly 30% (n = 182) of these events were re-infections. In multivariable models, post-Omicron interviews (adjusted rate ratio [aRR] 3.54 [95% CI 3.12-4.02]), history of prior COVID-19 infection (1 infection aRR 2.55 [95% CI 2.29-2.83]; 2 + infections aRR 2.28 [95% CI 1.80-2.89]) and residing in high- or moderate-exposure risk (congregate and shared) housing settings (high-exposure aRR 1.74 [95% CI 1.43-2.11]; moderate-exposure aRR 1.39 [1.15-1.68]) were most significantly associated with new infection. Our findings highlight that existing reports significantly underestimate SARS-CoV-2 infection burden among people experiencing homelessness, but confirms previously reported factors associated with infection, including congregate and shared housing settings. Reducing reliance on overcrowded emergency housing is necessary to reduce infection incidence in this population as well as associated inequities in downstream acute and chronic complications.
Collapse
Affiliation(s)
- Lucie Richard
- MAP Centre for Urban Health Solutions, Unity Health Toronto, Toronto, Ontario, Canada
| | - Brooke Carter
- ICES Western, London Health Sciences Research Institute, London, Ontario, Canada
| | - Michael Liu
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rosane Nisenbaum
- MAP Centre for Urban Health Solutions, Unity Health Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Applied Health Research Centre, Unity Health Toronto, Toronto, Ontario, Canada
| | - Stephen W. Hwang
- MAP Centre for Urban Health Solutions, Unity Health Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- ICES Toronto, Toronto, Ontario, Canada
- Department of General Internal Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Tan J, Bernatsky S, Lee JLF, Fortin PR, Dayam RM, Gingras AC, Colmegna I, Bowdish DME, Berger C, Chan D, Larché MJ, Richards DP, Gonzalez Arreola L, Hitchon CA, Lalonde N, Aviña-Zubieta JA. COVID-19 Breakthrough Infections in Immune-Mediated Inflammatory Diseases: Data from the SUCCEED (Safety and Immunogenicity of COVID-19 Vaccines in Systemic Autoimmune-Mediated Inflammatory Diseases) Study. Vaccines (Basel) 2025; 13:104. [PMID: 40006651 PMCID: PMC11860671 DOI: 10.3390/vaccines13020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The Safety and Immunogenicity of COVID-19 Vaccines in Systemic Autoimmune-Mediated Inflammatory Diseases (SUCCEED) study was created to better understand COVID-19 vaccination in immune-mediated inflammatory disease (IMID). Knowing the frequency of COVID-19 breakthrough infections is important, particularly in IMID. Our objective was to assess these events in IMID. Methods: We prospectively studied IMID participants who had received ≥three COVID-19 vaccine doses. Individuals provided saliva samples monthly (September 2022 to August 2023). These were evaluated by polymerase chain reaction (PCR) for SARS-CoV-2. We also assessed antibodies against SARS-CoV-2 (anti-spike, SmT1, receptor binding domain, RBD, and nucleocapsid, NP) based on dried blood spots. Multivariable general estimating equation regression produced odd ratios (OR) for PCR SARS-CoV-2 positivity, related to demographics, immunosuppressives, and antibody levels. Results: Diagnoses included rheumatoid arthritis RA (N = 161, 44% of the total), systemic lupus, psoriatic arthritis, spondylarthritis, vasculitis, systemic sclerosis, and inflammatory bowel disease. Of the 366 participants, most were taking immunosuppressive medication. Of 1266 saliva samples, 56 (5.1%) were positive for SARS-CoV-2 on PCR. Higher anti-SmT1 antibodies were inversely associated with SARS-CoV-2 detection on PCR (adjusted OR 0.66, 95% confidence interval 0.45-0.97). Antibodies to SmT1, RBD, and NP were correlated and thus could not be included in a single model, but when anti-RBD was used in place of anti-SmT1, the results were similar. No other factor (including prior COVID-19 infection) was clearly associated with SARS-CoV-2 detection. Conclusions: This is the first study of SARS-CoV-2 in a large prospective cohort of triple (or more) vaccinated individuals with IMIDs. Anti-SmT1 antibodies appeared to be protective against later SARS-CoV-2 positivity, although recent past infection was not clearly related. This suggests the importance of maintaining robust vaccine-induced immunity through vaccination in IMID.
Collapse
Affiliation(s)
- Jeremiah Tan
- Arthritis Research Canada and Division of Rheumatology, University of British Columbia, Vancouver, BC V5Y 3P2, Canada
| | - Sasha Bernatsky
- The Research Institute of the McGill University Health Centre, Montreal, QC H3A 0E9, Canada
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H3A 0E9, Canada
| | - Jennifer L. F. Lee
- The Research Institute of the McGill University Health Centre, Montreal, QC H3A 0E9, Canada
| | - Paul R. Fortin
- Centre de Recherche ARThrite—UL, Division of Rheumatology, Department of Medicine, CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
| | - Roya M. Dayam
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Ines Colmegna
- The Research Institute of the McGill University Health Centre, Montreal, QC H3A 0E9, Canada
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H3A 0E9, Canada
| | - Dawn M. E. Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Claudie Berger
- The Research Institute of the McGill University Health Centre, Montreal, QC H3A 0E9, Canada
| | - Dora Chan
- Arthritis Research Canada and Division of Rheumatology, University of British Columbia, Vancouver, BC V5Y 3P2, Canada
| | - Maggie J. Larché
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Dawn P. Richards
- Canadian Arthritis Patient Alliance, Toronto, ON M6R 2J6, Canada
| | - Lourdes Gonzalez Arreola
- Arthritis Research Canada and Division of Rheumatology, University of British Columbia, Vancouver, BC V5Y 3P2, Canada
| | - Carol A. Hitchon
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Nadine Lalonde
- Canadian Arthritis Patient Alliance, Toronto, ON M6R 2J6, Canada
| | - J. Antonio Aviña-Zubieta
- Arthritis Research Canada and Division of Rheumatology, University of British Columbia, Vancouver, BC V5Y 3P2, Canada
| |
Collapse
|
12
|
Morgan G, Fung CYJ, Gingras AC, Colwill K, Briollais L, Frangione E, Wolday D, Qi F, Pasculescu A, Delgado-Brand M, Mailhot G, Tursun T, Arnoldo S, Bearss E, Binnie A, Borgundvaag B, Casalino S, Chowdhary S, Dagher M, Devine L, Elliott LT, Friedman SM, Khan Z, Lapadula E, MacDonald G, Mazzulli T, McLeod SL, Mighton C, Nirmalanathan K, Richardson D, Stern S, Taher A, Young J, Lerner-Ellis J, Taher J. Characterizing the SARS-CoV-2 antibody response and associations with patient factors: Serological profiling of participants enrolled in the GENCOV study. Clin Biochem 2025; 135:110859. [PMID: 39645018 DOI: 10.1016/j.clinbiochem.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION The GENCOV study sought to evaluate serological differences between individuals with differing COVID-19 severity and outcomes. We assessed the SARS-CoV-2 antibody response of GENCOV participants cross-sectionally 1-, 6-, and 12-months following COVID-19 diagnosis to identify patient factors associated with more robust and durable humoral immune responses. MATERIALS AND METHODS COVID-19 patients and a control cohort of vaccinated infection-naïve participants were recruited at hospital sites across the Greater Toronto Area in Ontario, Canada. Commercially available and laboratory-developed serological assays were used to characterize features of participants' antibody responses, including both binding and neutralizing antibodies. Regression analyses were performed to identify associations between participant characteristics and features of the SARS-CoV-2 antibody response. RESULTS Samples were obtained from participants 1- (n = 938), 6- (n = 842), and 12-months (n = 662) post-infection or vaccination. At all time points, vaccinees, and to a greater extent those who were both infected and vaccinated, had significantly elevated anti-spike antibody levels compared to unvaccinated participants. Increasing age and/or illness severity were associated with significantly higher antibody levels among unvaccinated participants. Among vaccines, those who were vaccinated after infection (i.e., hybrid immunity) had consistently higher antibody levels compared to participants who were infection-naïve or vaccinated before their infection (i.e., breakthrough infections). Additionally, receiving more vaccine doses and having a more recent vaccination were strongly associated with higher antibody levels across all time points. CONCLUSIONS Our findings highlight various patient factors, including vaccination, which contribute to robust, durable SARS-CoV-2 antibody responses. Overall, the findings presented here may inform future vaccine development and rollout plans.
Collapse
Affiliation(s)
- Gregory Morgan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chun Yiu Jordan Fung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Laurent Briollais
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Erika Frangione
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Dawit Wolday
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Melanie Delgado-Brand
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Genevieve Mailhot
- Princess Margaret Genomics Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Tulunay Tursun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Saranya Arnoldo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; William Osler Health System, Brampton, ON L6R 3J, Canada
| | - Erin Bearss
- Mount Sinai Academic Family Health Team, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Alexandra Binnie
- Department of Critical Care, William Osler Health System, Etobicoke, ON M9V 1R8, Canada
| | - Bjug Borgundvaag
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON M5G 2A2, Canada
| | - Selina Casalino
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Sunakshi Chowdhary
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Marc Dagher
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Women's College Hospital, Toronto, ON M5S 1B2, Canada
| | - Luke Devine
- Division of General Internal Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Steven M Friedman
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Emergency Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Zeeshan Khan
- Mackenzie Health, Richmond Hill, ON L4C 4Z3, Canada
| | - Elisa Lapadula
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Georgia MacDonald
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tony Mazzulli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Microbiology, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Shelley L McLeod
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON M5G 2A2, Canada
| | - Chloe Mighton
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1A6, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| | | | | | - Seth Stern
- Mackenzie Health, Richmond Hill, ON L4C 4Z3, Canada
| | - Ahmed Taher
- Mackenzie Health, Richmond Hill, ON L4C 4Z3, Canada; Division of Emergency Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Juliet Young
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jordan Lerner-Ellis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Djaïleb A, Parker MF, Lavallée É, Stuible M, Durocher Y, Thériault M, Santerre K, Gilbert C, Boudreau D, Baz M, Masson JF, Langlois MA, Trottier S, Quaglia D, Pelletier JN. Longitudinal determination of seroprevalence and immune response to SARS-CoV-2 in a population of food and retail workers through decentralized testing and transformation of ELISA datasets. PLoS One 2024; 19:e0314499. [PMID: 39680559 DOI: 10.1371/journal.pone.0314499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Since the onset of the global COVID-19 pandemic in early 2020, numerous studies have been conducted worldwide to understand our immune response to the virus and to vaccination. This study investigates the humoral response elicited by SARS-CoV-2 infection and by vaccination in the poorly studied population of food and retail workers. These occupations were classified as essential by the Public Health Agency of Canada, potentially placing this population at greater risk of infection. Such a risk requires access to reliable and adaptable serological assays that can be rapidly deployed to guide public health strategies. Here we investigate the benefits and limitations of applying adaptable, decentralized tests for population-level immune surveillance in response to a pandemic, even before centralized testing is available. METHODS AND FINDINGS The 1.5-year study period spans from early 2021, when vaccination became available in this region, to mid-2022, following the emergence of the first Omicron variants. The cohort of 304 food and retail workers was recruited in the Québec City area. Participants attended five evenly spaced visits, providing blood samples as well as information on SARS-CoV-2 symptoms or risk factors, prior antigen or PCR test results and vaccination status, as well as work-related risk factors and protective measures. Parallel COVID-19 serological assays were performed using both a standardized chemiluminescent ELISA assay at the centralized platform operated in partnership with the Public Health Agency of Canada, and a semi-automated in-house colorimetric ELISA assay developed at our decentralized site. The YES/NO determination of SARS-CoV-2 vaccine seroconversion and/or infection events using the SARS-CoV-2 ancestral spike protein and nucleocapsid protein validated coherence of the centralized and decentralized assays. The flexibility of the decentralized assays allowed broadening the study to determine cross-reactivity of IgG directed against the spike protein of the SARS-CoV-2 Delta and Omicron VOCs, and IgM directed against the ancestral spike and nucleocapsid proteins. The nature of the data obtained in the decentralized assays allowed treatment with a recently developed mathematical transformation to obtain normal distribution, enabling ANOVA-Welsh statistical analysis. Although no significant differences were observed in humoral response as related to BMI, age, level of education, or chronic illnesses in this cohort of workers, statistically higher levels of vaccine-induced antibodies were observed for restaurant workers and hardware store workers in the early stages of the study, compared to workers in bars and grocery stores and in non-smokers versus smokers. CONCLUSIONS This work highlights the importance of developing adaptable, decentralized tests for population-level immune surveillance in response to a pandemic, even before centralized testing is available. To our knowledge, no other study has reported such an extensive longitudinal investigation during key periods of the COVID-19 pandemic in a cohort of food and retail workers to analyze two types of immunoglobulin, three epitopes and antigens to three VOC. This study will inform strategies and measures to be implemented in the event of a future pandemic.
Collapse
Affiliation(s)
- Abdelhadi Djaïleb
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
| | - Megan-Faye Parker
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Étienne Lavallée
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
| | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Canada
| | - Yves Durocher
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Canada
| | - Mathieu Thériault
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Kim Santerre
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Caroline Gilbert
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Denis Boudreau
- Département de Chimie, Université Laval, Québec, Canada
- Centre d'Optique, Photonique et Laser, Université Laval, Québec, Canada
| | - Mariana Baz
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Jean-Francois Masson
- Département de Chimie, Université de Montréal, Montréal, Canada
- Institut Courtois, Université de Montréal, Montréal, Canada
- Centre Québécois sur les Matériaux Fonctionnels, Regroupement Québécois sur les Matériaux de Pointe, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Montréal, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, Canada
| | - Sylvie Trottier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Daniela Quaglia
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
- Département de Chimie, Université du Québec à Montréal, Montréal, Canada
| | - Joelle N Pelletier
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
14
|
Santerre K, Thériault M, Brousseau N, Langlois MA, Arnold C, Pelletier JN, Gilbert C, Masson JF, Baz M, Boudreau D, Trottier S. Infection Rate and Risk Factors of SARS-CoV-2 Infection in Retail Workers at the Onset of the COVID-19 Pandemic, Quebec, Canada. Infect Dis Rep 2024; 16:1240-1253. [PMID: 39728020 DOI: 10.3390/idr16060098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: During the pandemic, client-facing workers were perceived to be at greater risk of SARS-CoV-2 infection. This study investigated the risk factors for SARS-CoV-2 infection among a cohort of 304 retail workers in the Quebec City metropolitan area. Methods: After providing consent, participants were interviewed to gather information on demographic, socioeconomic, behavioural, and occupational variables. They were subsequently followed for up to five visits, scheduled every 12 ± 4 weeks. The study covered critical periods before and during the emergence of the Omicron variants and included retrospective reporting of COVID-19 symptoms and virus detection tests to capture the pandemic's early stages. Results: During the observation period, 173 (57%) participants experienced a first episode of COVID-19. Serological evidence of recent infection was detected in 160 participants (53%), while 117 (38%) reported a positive virus detection test. In adjusted analyses, risk factors for infection included younger age, a diagnosis of lung disease, longer weekly working hours, more frequent social gatherings, and having received fewer than three doses of vaccine. Notably, the increased risk associated with younger age and longer working hours was observed only after the relaxation of public health measures in the spring of 2022. Conclusions: These data suggest that during the early years of the pandemic when strict public health measures were in place, retail work was not a significant risk factor for SARS-CoV-2 infection in Quebec City metropolitan area. These findings highlight the complex dynamics of COVID-19 transmission and the effectiveness of workplace protective measures.
Collapse
Affiliation(s)
- Kim Santerre
- Infectious Diseases Research Center of Laval University, CHU de Québec-Université Laval (CHUL Hospital), Quebec City, QC G1V 4G2, Canada
| | - Mathieu Thériault
- Infectious Diseases Research Center of Laval University, CHU de Québec-Université Laval (CHUL Hospital), Quebec City, QC G1V 4G2, Canada
| | - Nicholas Brousseau
- Biological Risks Department, Institut National de Santé Publique du Québec, Quebec City, QC G1V 5B3, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Université d'Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Université d'Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joelle N Pelletier
- Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada
- Department of Biochemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada
- The Québec Network for Research on Protein Function, Engineering and Applications (PROTEO), Quebec City, QC G1V 0A6, Canada
| | - Caroline Gilbert
- Infectious Diseases Research Center of Laval University, CHU de Québec-Université Laval (CHUL Hospital), Quebec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Jean-François Masson
- Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada
- Quebec Center for Advanced Materials, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Institut Courtois, Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Mariana Baz
- Infectious Diseases Research Center of Laval University, CHU de Québec-Université Laval (CHUL Hospital), Quebec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Denis Boudreau
- Département de Chimie et Centre d'Optique, Photonique et Laser (COPL), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sylvie Trottier
- Infectious Diseases Research Center of Laval University, CHU de Québec-Université Laval (CHUL Hospital), Quebec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
15
|
D'Souza M, Keeshan A, Gravel CA, Langlois MA, Cooper CL. Obesity does not influence SARS-CoV-2 humoral vaccine immunogenicity. NPJ Vaccines 2024; 9:226. [PMID: 39557875 PMCID: PMC11574036 DOI: 10.1038/s41541-024-01022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Obesity is a recognized factor influencing immune function and infectious disease outcomes. Characterization of the influence of obesity on SARS-CoV-2 humoral vaccine immunogenicity is required to properly tailor vaccine type (mRNA, viral-vector, protein subunit vaccines) and dosing schedule. Data from a prospective cohort study collected over 34 months was used to evaluate the slope of antibody production and decay and neutralizing capacity following SARS-CoV-2 vaccination in individuals with and without obesity at baseline. Most participants were female (65.4%), white (92.4%), and received mRNA vaccines. 210 were obese and 697 non-obese. Sex and infection-acquired immunity were identified as effect modifiers for the relationship between obesity and COVID-19 vaccine humoral immunogenicity. No consistent influence of obesity on peak titres, titre retention, antibody isotype (IgG, IgM, IgA), or neutralization was identified when controlling for other key variables. It may not be necessary to consider this variable when developing SARS-CoV-2 vaccine dosing strategies.
Collapse
Affiliation(s)
| | - Alexa Keeshan
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Christopher A Gravel
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
- Data Literacy Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis L Cooper
- Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Division of Infectious Diseases, Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Bhella S, Wilkin AM, Hueniken K, Vijenthira A, Sebag M, Wang P, Hicks LK, Hay AE, Assouline S, Fraser G, Balitsky A, Mangel J, Owen C, Reiman A, Sehn L, Sutherland H, Zhang T, Arnold C, Leite T, McCarthy E, Cooper C, Langlois MA, Arianne Buchan C. COVID-19 vaccine immunogenicity and safety surrounding fourth and subsequent vaccine doses in patients with hematologic malignancies. Vaccine 2024; 42:126074. [PMID: 38944577 DOI: 10.1016/j.vaccine.2024.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Immune response to COVID-19 vaccine is diminished in patients with hematologic malignancy. There is limited data regarding response to vaccine doses in these patients. PURPOSE To quantify the humoral immune response engendered by 4th and subsequent doses of SARS-CoV-2 vaccination as measured by anti-Spike (anti-S) antibody levels, based on dried blood spot (DBS) testing, in patients with hematologic malignancies. Anti-S binds to the spike protein of the SARS-CoV-2 virus and is indicative of vaccine immunogenicity. METHODS We conducted a prospective study of hematologic malignancies between August 2021 and January 2023 at 12 sites across Canada. Participants were followed longitudinally and submitted finger-prick DBS cards at set intervals associated with vaccination. Samples were processed via high throughput ELISA assay to detect serum antibodies against nucleocapsid (N) and spike (S) proteins. RESULTS We obtained 3071 samples on 790 unique patients. Of these, 372 unique participants with 1840 samples had anti-S results available post-4th, 5th or 6th COVID-19 vaccine dose and were included for analysis. Three hundred thirty-three patients of the 372 participants submitted a DBS sample post 4th dose. Of these, 257 patients (77.2%) had a positive anti-S antibody. A total of 198 patients had paired samples pre- and post-dose 4, of which 59 (29.7%) had a negative anti-S antibody pre-dose 4. Of these, 20 (33.4%) developed positive anti-S antibody post-dose 4. One hundred forty-nine patients submitted a DBS sample post-dose 5. Of these, 135 patients (90.6%) had positive anti-S antibody. A total of 52 had paired samples pre- and post-dose 5. Six (8.7%) had a negative anti-S antibody pre-dose 5, of which two (33.3%) developed positive anti-S antibody post-dose 5. Of these 372 patients, 123 (34%) reported COVID-19 infection and 4 (1%) had a COVID-19 related hospitalization. There were no reported deaths from COVID-19. CONCLUSIONS This prospective cohort study showed that humoral immune response improved with subsequent doses of COVID-19 vaccines.
Collapse
Affiliation(s)
- Sita Bhella
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto ON, Canada.
| | | | - Katrina Hueniken
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto ON, Canada
| | - Abi Vijenthira
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto ON, Canada
| | - Michael Sebag
- McGill University Health Centre, Montreal, QC, Canada
| | - Peng Wang
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Lisa K Hicks
- Division of Hematology/Oncology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | - Graeme Fraser
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Amaris Balitsky
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Joy Mangel
- Division of Hematology, Department of Medicine, Schulich School of Medicine & Dentistry, London, ON, Canada
| | - Carolyn Owen
- University of Calgary, Tom Baker Cancer Centre, Division of Hematology and Hematological Malignancies, Calgary, AB, Canada
| | - Anthony Reiman
- Department of Oncology, Saint John Regional Hospital, Saint John, NB, Canada
| | - Laurie Sehn
- BC Cancer Centre for Lymphoma Cancer, University of British Columbia, Vancouver, BC, Canada
| | - Heather Sutherland
- Leukemia/Bone Marrow Transplant Program of British Columbia, Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - Tinghua Zhang
- Ottawa Hospital Research Institute, Ottawa ON, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tamara Leite
- Ottawa Hospital Research Institute, Ottawa ON, Canada
| | - Erinn McCarthy
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto ON, Canada
| | - Curtis Cooper
- Ottawa Hospital Research Institute, Ottawa ON, Canada
| | - Marc-Andre Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
17
|
Osman A, Aimone A, Ansumana R, Bogoch I, Gelband H, Colwill K, Gingras AC, Langlois MA, Carshon-Marsh R, Swaray IB, Jambai A, Vandi M, Vandi A, Massaquoi M, Assalif A, Birnboim HC, Brown PE, Nagelkerke N, Jha P. High SARS-CoV-2 seroincidence but low excess COVID mortality in Sierra Leone in 2020-2022. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003411. [PMID: 39255307 PMCID: PMC11386415 DOI: 10.1371/journal.pgph.0003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
While SARS-CoV-2 infection appears to have spread widely throughout Africa, documentation of associated mortality is limited. We implemented a representative serosurvey in one city of Sierra Leone in Western Africa, paired with nationally representative mortality and selected death registration data. Cumulative seroincidence using high quality SARS-CoV-2 serological assays was 69% by July 2021, rising to 84% by April 2022, mostly preceding SARS-CoV-2 vaccination. About half of infections showed evidence of neutralizing antibodies. However, excess death rates were low, and were concentrated at older ages. During the peak weeks of viral activity, excess mortality rates were 22% for individuals aged 30-69 years and 70% for those over 70. Based on electronic verbal autopsy with dual independent physician assignment of causes, excess deaths during viral peaks from respiratory infections were notable. Excess deaths differed little across specific causes that, a priori, are associated with COVID, and the pattern was consistent among adults with or without chronic disease risk factors. The overall 6% excess of deaths at ages ≥30 from 2020-2022 in Sierra Leone is markedly lower than reported from South Africa, India, and Latin America. Thus, while SARS-CoV-2 infection was widespread, our study highlights as yet unidentified mechanisms of heterogeneity in susceptibility to severe disease in parts of Africa.
Collapse
Affiliation(s)
- Ahmed Osman
- Centre for Global Health Research, Unity Health Toronto and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- School of Community Health Sciences Njala University, Bo, Sierra Leone
| | - Ashley Aimone
- Centre for Global Health Research, Unity Health Toronto and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Rashid Ansumana
- School of Community Health Sciences Njala University, Bo, Sierra Leone
| | - Isaac Bogoch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hellen Gelband
- Centre for Global Health Research, Unity Health Toronto and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Ibrahim Bob Swaray
- Centre for Global Health Research, Unity Health Toronto and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Amara Jambai
- Ministry of Health, Government of Sierra Leone, Freetown, Sierra Leone
| | - Mohamed Vandi
- Ministry of Health, Government of Sierra Leone, Freetown, Sierra Leone
| | - Alimatu Vandi
- School of Community Health Sciences Njala University, Bo, Sierra Leone
| | | | - Anteneh Assalif
- School of Community Health Sciences Njala University, Bo, Sierra Leone
| | | | - Patrick E. Brown
- Centre for Global Health Research, Unity Health Toronto and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Nico Nagelkerke
- Centre for Global Health Research, Unity Health Toronto and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Prabhat Jha
- Centre for Global Health Research, Unity Health Toronto and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Stocks BB, Thibeault MP, L'Abbé D, Umer M, Liu Y, Stuible M, Durocher Y, Melanson JE. Characterization of biotinylated human ACE2 and SARS-CoV-2 Omicron BA.4/5 spike protein reference materials. Anal Bioanal Chem 2024; 416:4861-4872. [PMID: 38942955 PMCID: PMC11330416 DOI: 10.1007/s00216-024-05413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Accurate diagnostic and serology assays are required for the continued management of the COVID-19 pandemic yet spike protein mutations and intellectual property concerns with antigens and antibodies used in various test kits render comparability assessments difficult. As the use of common, well-characterized reagents can help address this lack of standardization, the National Research Council Canada has produced two protein reference materials (RMs) for use in SARS-CoV-2 serology assays: biotinylated human angiotensin-converting enzyme 2 RM, ACE2-1, and SARS-CoV-2 Omicron BA.4/5 spike protein RM, OMIC-1. Reference values were assigned through a combination of amino acid analysis via isotope dilution liquid chromatography tandem mass spectrometry following acid hydrolysis, and ultraviolet-visible (UV-Vis) spectrophotometry at 280 nm. Vial-to-vial homogeneity was established using UV-Vis measurements, and protein oligomeric status, monitored by size exclusion liquid chromatography (LC-SEC), was used to evaluate transportation, storage, and freeze-thaw stabilities. The molar protein concentration in ACE2-1 was 25.3 ± 1.7 µmol L-1 (k = 2, 95% CI) and consisted almost exclusively (98%) of monomeric ACE2, while OMIC-1 contained 5.4 ± 0.5 µmol L-1 (k = 2) spike protein in a mostly (82%) trimeric form. Glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection facilitated calculation of corresponding mass concentrations. To confirm protein functionality, the binding of OMIC-1 to immobilized ACE2-1 was investigated with surface plasmon resonance and the resulting dissociation constant, KD ~ 4.4 nM, was consistent with literature values.
Collapse
Affiliation(s)
- Bradley B Stocks
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Marie-Pier Thibeault
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Denis L'Abbé
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Muhammad Umer
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yali Liu
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Jeremy E Melanson
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
19
|
Cuperlovic-Culf M, Bennett SA, Galipeau Y, McCluskie PS, Arnold C, Bagheri S, Cooper CL, Langlois MA, Fritz JH, Piccirillo CA, Crawley AM. Multivariate analyses and machine learning link sex and age with antibody responses to SARS-CoV-2 and vaccination. iScience 2024; 27:110484. [PMID: 39156648 PMCID: PMC11328020 DOI: 10.1016/j.isci.2024.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Prevention of negative COVID-19 infection outcomes is associated with the quality of antibody responses, whose variance by age and sex is poorly understood. Network approaches identified sex and age effects in antibody responses and neutralization potential of de novo infection and vaccination throughout the COVID-19 pandemic. Neutralization values followed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific receptor binding immunoglobulin G (RIgG), spike immunoglobulin G (SIgG) and spike and receptor immunoglobulin G (S, and RIgA) levels based on COVID-19 status. Serum immunoglobulin A (IgA) antibody titers correlated with neutralization only in females 40-60 years old (y.o.). Network analysis found males could improve IgA responses after vaccination dose 2. Complex correlation analyses found vaccination induced less antibody isotype switching and neutralization in older persons, especially in females. Sex-dependent antibody and neutralization decayed the fastest in older males. Shown sex and age characterization can direct studies integrating cell-mediated responses to define yet elusive correlates of protection and inform age and sex precision-focused vaccine design.
Collapse
Affiliation(s)
- Miroslava Cuperlovic-Culf
- Digital Technologies Research Centre, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Steffany A.L. Bennett
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Salman Bagheri
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Curtis L. Cooper
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jörg H. Fritz
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
- McGill University Research Centre on Complex Traits (MRCCT), Montréal, QC, Canada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
20
|
Tsampalieros A, Zemek R, Barrowman N, Langlois MA, Arnold C, McGahern C, Plint AC, Pham-Huy A, Bhatt M. Hybrid immunity after BNT162b2 Covid-19 vaccine administration in children aged 5 to 11 years. Vaccine 2024; 42:125981. [PMID: 38789373 DOI: 10.1016/j.vaccine.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The immune response to coronavirus disease 2019 (COVID-19) vaccination is stronger among adults with prior infection (hybrid immunity). It is important to understand if children demonstrate a similar response to better inform vaccination strategies. Our study investigated the humoral response after BNT162b2 COVID-19 vaccine doses in SARS-CoV-2 naïve and recovered children (5-11 years). METHODS A multi-institutional, longitudinal, prospective cohort study was conducted. Children were enrolled in a case-ascertained antibody surveillance study in Ottawa, Ontario from September/2020-March/2021; at least one household member was severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) positive on RT-PCR. In November 2021, BNT162b2 COVID-19 vaccine was authorized for children aged 5-11 in Canada. Children enrolled in the surveillance study intending to receive two vaccine doses were invited to participate in this study from November 2021-April 2022. Main exposure was prior SARS-CoV-2 infection, defined by positive RT-PCR or SARS-CoV-2 anti-N IgG antibody presence. Primary outcome was spike IgG antibody levels measured following the first vaccine dose (2-3 weeks) and second vaccine dose (3-4 weeks). RESULTS Of the 153 eligible children, 75 participants (median age 8.9 IQR (7.4, 10.2) years; 38 (50.7 %) female; 59 (78.7 %) Caucasian) had complete follow-up. Fifty-four (72 %) children had prior SARS-COV-2 infection. Spike IgG antibody levels are significantly higher in SARS-CoV-2 recovered participants after receiving the first dose (p < 0.001) and the second (p = 0.01) compared to infection naïve children. CONCLUSIONS AND RELEVANCE SARS-CoV-2 recovered children (5-11 years) demonstrated higher antibody levels following first BNT162b2 vaccine dose compared with naïve children. Most reached antibody saturation two to three weeks after the first dose; a second dose didn't change the saturation level. A single vaccine dose in SARS-CoV-2 recovered children may be equivalent or superior to a 2-dose primary series in naïve children. Further research is needed on the durability and quality of a single vaccine dose in this population.
Collapse
Affiliation(s)
- Anne Tsampalieros
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Omntario, University of Ottawa, Ottawa, Canada
| | - Nick Barrowman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Candice McGahern
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Amy C Plint
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Omntario, University of Ottawa, Ottawa, Canada
| | - Anne Pham-Huy
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Maala Bhatt
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
21
|
Toft CJ, Stocks BB, Schaeffer PM. Comparison of the analytical sensitivity of COVID-19 rapid antigen tests in Australia and Canada. Talanta 2024; 275:126147. [PMID: 38677170 DOI: 10.1016/j.talanta.2024.126147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Rapid testing has become an indispensable strategy to identify the most infectious individuals and prevent the transmission of SARS-CoV-2 in vulnerable populations. As such, COVID-19 rapid antigen tests (RATs) are being manufactured faster than ever yet lack relevant comparative analyses required to inform on absolute analytical sensitivity and performance, limiting end-user ability to accurately compare brands for decision making. To date, more than 1000 different COVID-19 RATs are commercially available in the world, most of which detect the viral nucleocapsid protein (NP). Here, we examine and compare the analytical sensitivity of 26 RATs that are readily available in Canada and/or Australia using two NP reference materials (RMs) - a fluorescent NP-GFP expressed in bacterial cells and NCAP-1 produced in a mammalian expression system. Both RMs generate highly comparable results within each RAT, indicating minimal bias due to differing expression systems and final buffer compositions. However, we demonstrate orders of magnitude differences in analytical sensitivities among distinct RATs, and find little correlation with the median tissue culture infectious dose (TCID50) assay values reported by manufacturers. In addition, two COVID-19/Influenza A&B combination RATs were evaluated with influenza A NP-GFP. Finally, important logistics considerations are discussed regarding the robustness, ease of international shipping and safe use of these reference proteins. Taken together, our data highlight the need for and practicality of readily available, reliable reference proteins for end-users that will ensure that manufacturers maintain batch-to-batch quality and accuracy of RATs. They will aid international public health and government agencies, as well as health and aged care facilities to reliably benchmark and select the best RATs to curb transmission of future SARS-CoV-2 and influenza outbreaks.
Collapse
Affiliation(s)
- Casey J Toft
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia
| | - Bradley B Stocks
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada.
| | - Patrick M Schaeffer
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia.
| |
Collapse
|
22
|
Bowdish DME, Chandran V, Hitchon CA, Kaplan GG, Avina-Zubieta JA, Fortin PR, Larché MJ, Boire G, Gingras AC, Dayam RM, Colmegna I, Lukusa L, Lee JLF, Richards DP, Pereira D, Watts TH, Silverberg MS, Bernstein CN, Lacaille D, Benoit J, Kim J, Lalonde N, Gunderson J, Allard-Chamard H, Roux S, Quan J, Hracs L, Turnbull E, Valerio V, Bernatsky S. When Should I Get My Next COVID-19 Vaccine? Data From the Surveillance of Responses to COVID-19 Vaccines in Systemic Immune-Mediated Inflammatory Diseases (SUCCEED) Study. J Rheumatol 2024; 51:721-727. [PMID: 38621797 DOI: 10.3899/jrheum.2023-1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE To determine how serologic responses to coronavirus disease 2019 (COVID-19) vaccination and infection in immune-mediated inflammatory disease (IMID) are affected by time since last vaccination and other factors. METHODS Post-COVID-19 vaccination, data, and dried blood spots or sera were collected from adults with rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis and spondylarthritis, and psoriasis and psoriatic arthritis. The first sample was collected at enrollment, then at 2 to 4 weeks and 3, 6, and 12 months after the latest vaccine dose. Multivariate generalized estimating equation regressions (including medications, demographics, and vaccination history) evaluated serologic response, based on log-transformed anti-receptor-binding domain (RBD) IgG titers; we also measured antinucleocapsid (anti-N) IgG. RESULTS Positive associations for log-transformed anti-RBD titers were seen with female sex, number of doses, and self-reported COVID-19 infections in 2021 to 2023. Negative associations were seen with prednisone, anti-tumor necrosis factor agents, and rituximab. Over the 2021-2023 period, most (94%) of anti-N positivity was associated with a self-reported infection in the 3 months prior to testing. From March 2021 to February 2022, anti-N positivity was present in 5% to 15% of samples and was highest in the post-Omicron era, with antinucleocapsid positivity trending to 30% to 35% or higher as of March 2023. Anti-N positivity in IMID remained lower than Canada's general population seroprevalence (> 50% in 2022 and > 75% in 2023). Time since last vaccination was negatively associated with log-transformed anti-RBD titers, particularly after 210 days. CONCLUSION Ours is the first pan-Canadian IMID assessment of how vaccine history and other factors affect serologic COVID-19 vaccine responses. These findings may help individuals personalize vaccination decisions, including consideration of additional vaccination when > 6 months has elapsed since last COVID-19 vaccination/infection.
Collapse
Affiliation(s)
- Dawn M E Bowdish
- D.M.E. Bowdish, PhD, J. Benoit, Department of Medicine, McMaster University, Hamilton, Ontario
| | - Vinod Chandran
- V. Chandran, MD, PhD, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, and Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Ontario
| | - Carol A Hitchon
- C.A. Hitchon, MD, MSc, C.N. Bernstein, MD, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba
| | - Gilaad G Kaplan
- G.G. Kaplan, MD, MPH, J. Quan, MSc, L. Hracs, PhD, Division of Gastroenterology and Hepatology, Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, Alberta
| | - J Antonio Avina-Zubieta
- J.A. Avina-Zubieta, MD, PhD, D. Lacaille, MD, MHSc, Arthritis Research Canada, and Division of Rheumatology, University of British Columbia, Vancouver, British Columbia
| | - Paul R Fortin
- P.R. Fortin, MD, MPH, Centre de Recherche Arthrite, Division of Rheumatology, Department of Medicine, CHU de Québec - Université Laval, Quebec City, Quebec
| | - Maggie J Larché
- M.J. Larché, MD, PhD, Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, Ontario
| | - Gilles Boire
- G. Boire, MD, MSc, H. Allard-Chamard, MD, PhD, S. Roux, MD, PhD, Division of Rheumatology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec
| | - Anne-Claude Gingras
- A.C. Gingras, PhD, R.M. Dayam, PhD, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario
| | - Roya M Dayam
- A.C. Gingras, PhD, R.M. Dayam, PhD, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario
| | - Ines Colmegna
- I. Colmegna, MD, S. Bernatsky, MD, PhD, The Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, and Department of Medicine, Division of Rheumatology, McGill University, Montreal, Quebec
| | - Luck Lukusa
- L. Lukusa, MSc, J.L.F. Lee, BSc, E. Turnbull, RN, V. Valerio, MD, The Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec
| | - Jennifer L F Lee
- L. Lukusa, MSc, J.L.F. Lee, BSc, E. Turnbull, RN, V. Valerio, MD, The Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec
| | - Dawn P Richards
- D.P. Richards, PhD, N. Lalonde, BSc, J. Gunderson, BEd, Canadian Arthritis Patient Alliance, Toronto, Ontario
| | - Daniel Pereira
- D. Pereira, BSc, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario
| | - Tania H Watts
- T.H. Watts, PhD, Department of Immunology, University of Toronto, Toronto, Ontario
| | - Mark S Silverberg
- M.S. Silverberg, MD, PhD, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, and Zane Cohen Center for Digestive Diseases, Division of Gastroenterology, Mount Sinai Hospital, Sinai Health, Toronto, Ontario
| | - Charles N Bernstein
- C.A. Hitchon, MD, MSc, C.N. Bernstein, MD, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba
| | - Diane Lacaille
- J.A. Avina-Zubieta, MD, PhD, D. Lacaille, MD, MHSc, Arthritis Research Canada, and Division of Rheumatology, University of British Columbia, Vancouver, British Columbia
| | - Jenna Benoit
- D.M.E. Bowdish, PhD, J. Benoit, Department of Medicine, McMaster University, Hamilton, Ontario
| | - John Kim
- J. Kim, PhD, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nadine Lalonde
- D.P. Richards, PhD, N. Lalonde, BSc, J. Gunderson, BEd, Canadian Arthritis Patient Alliance, Toronto, Ontario
| | - Janet Gunderson
- D.P. Richards, PhD, N. Lalonde, BSc, J. Gunderson, BEd, Canadian Arthritis Patient Alliance, Toronto, Ontario
| | - Hugues Allard-Chamard
- G. Boire, MD, MSc, H. Allard-Chamard, MD, PhD, S. Roux, MD, PhD, Division of Rheumatology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec
| | - Sophie Roux
- G. Boire, MD, MSc, H. Allard-Chamard, MD, PhD, S. Roux, MD, PhD, Division of Rheumatology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec
| | - Joshua Quan
- G.G. Kaplan, MD, MPH, J. Quan, MSc, L. Hracs, PhD, Division of Gastroenterology and Hepatology, Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, Alberta
| | - Lindsay Hracs
- G.G. Kaplan, MD, MPH, J. Quan, MSc, L. Hracs, PhD, Division of Gastroenterology and Hepatology, Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, Alberta
| | - Elizabeth Turnbull
- L. Lukusa, MSc, J.L.F. Lee, BSc, E. Turnbull, RN, V. Valerio, MD, The Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec
| | - Valeria Valerio
- L. Lukusa, MSc, J.L.F. Lee, BSc, E. Turnbull, RN, V. Valerio, MD, The Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec
| | - Sasha Bernatsky
- I. Colmegna, MD, S. Bernatsky, MD, PhD, The Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, and Department of Medicine, Division of Rheumatology, McGill University, Montreal, Quebec;
| |
Collapse
|
23
|
Heiskanen A, Galipeau Y, Little J, Langlois M, Cooper CL. Reduced seasonal coronavirus incidence in high-risk population groups during the COVID-19 pandemic. Immun Inflamm Dis 2024; 12:e1342. [PMID: 39023424 PMCID: PMC11256882 DOI: 10.1002/iid3.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Epidemiological data on seasonal coronaviruses (sCoVs) may provide insight on transmission patterns and demographic factors that favor coronaviruses (CoVs) with greater disease severity. This study describes the incidence of CoVs in several high-risk groups in Ottawa, Canada, from October 2020 to March 2022. METHODS Serological assays quantified IgG and IgM antibodies to SARS-CoV-2, HCoV-OC43, HCoV-NL63, HCoV-HKU1, and HCoV-229E. Incident infections were compared between four population groups: individuals exposed to children, transit users, immunocompromised, and controls. Associations between antibody prevalence indicative of natural infection and demographic variables were assessed using regression analyses. RESULTS Transit users and those exposed to children were at no greater risk of infection compared to the control group. Fewer infections were detected in the immunocompromised group (p = .03). SARS-CoV-2 seroprevalence was greater in individuals with low income and within ethnic minorities. CONCLUSIONS Our findings suggest that nonpharmaceutical interventions intended to reduce SAR-CoV-2 transmission protected populations at high risk of exposure. The re-emergence of sCoVs and other common respiratory viruses alongside SARS-CoV-2 may alter infection patterns and increase the risk in vulnerable populations.
Collapse
Affiliation(s)
- Aliisa Heiskanen
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Marc‐André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Infection, Immunity and Inflammation (CI3)University of OttawaOttawaOntarioCanada
| | - Curtis L. Cooper
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
| |
Collapse
|
24
|
Brown PE, Fu SH, Newcombe L, Tang X, Nagelkerke N, Birnboim HC, Bansal A, Colwill K, Mailhot G, Delgado-Brand M, Tursun T, Qi F, Gingras AC, Slutsky AS, Pasic MD, Companion J, Bogoch II, Morawski E, Lam T, Reid A, Jha P, Ab-C Study Collaborators. Hybrid immunity from severe acute respiratory syndrome coronavirus 2 infection and vaccination in Canadian adults: A cohort study. eLife 2024; 13:e89961. [PMID: 38916134 PMCID: PMC11281784 DOI: 10.7554/elife.89961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
Background Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots (DBSs) to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels. Results Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than 6 months earlier, spike levels fell notably and continuously for the 9-month post-vaccination. In contrast, among adults infected within 6 months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than 6 months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% confidence interval 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the coronavirus disease 2019 (COVID-19) weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity. Conclusions Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected DBSs are a practicable biological surveillance platform. Funding Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.
Collapse
Affiliation(s)
- Patrick E Brown
- Centre for Global Health Research, Unity Health Toronto and University of TorontoTorontoCanada
| | - Sze Hang Fu
- Centre for Global Health Research, Unity Health Toronto and University of TorontoTorontoCanada
| | - Leslie Newcombe
- Centre for Global Health Research, Unity Health Toronto and University of TorontoTorontoCanada
| | - Xuyang Tang
- Centre for Global Health Research, Unity Health Toronto and University of TorontoTorontoCanada
| | - Nico Nagelkerke
- Centre for Global Health Research, Unity Health Toronto and University of TorontoTorontoCanada
| | - H Chaim Birnboim
- Centre for Global Health Research, Unity Health Toronto and University of TorontoTorontoCanada
| | - Aiyush Bansal
- Centre for Global Health Research, Unity Health Toronto and University of TorontoTorontoCanada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai HealthTorontoCanada
| | | | | | - Tulunay Tursun
- Lunenfeld-Tanenbaum Research Institute, Sinai HealthTorontoCanada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Sinai HealthTorontoCanada
| | | | | | | | | | - Isaac I Bogoch
- Toronto General Hospital, University Hospital NetworkTorontoCanada
| | | | | | | | - Prabhat Jha
- Centre for Global Health Research, Unity Health Toronto and University of TorontoTorontoCanada
| | | |
Collapse
|
25
|
Ives CM, Nguyen L, Fogarty CA, Harbison AM, Durocher Y, Klassen J, Fadda E. Role of N343 glycosylation on the SARS-CoV-2 S RBD structure and co-receptor binding across variants of concern. eLife 2024; 13:RP95708. [PMID: 38864493 PMCID: PMC11168744 DOI: 10.7554/elife.95708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work, we show through over 45 μs of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how this glycan's structural role changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2), and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha, and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.
Collapse
Affiliation(s)
- Callum M Ives
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | - Linh Nguyen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Carl A Fogarty
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | | | - Yves Durocher
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council CanadaQuébecCanada
- Département de Biochimie et Médecine Moléculaire, Université de MontréalQuébecCanada
| | - John Klassen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Elisa Fadda
- School of Biological Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
26
|
Walmsley S, Nabipoor M, Qi F, Lovblom LE, Ravindran R, Colwill K, Dayam RM, Tursun TR, Silva A, Gingras AC, on behalf of the STOPCoV Team. Declining Levels of Neutralizing Antibodies to SARS-CoV-2 Omicron Variants Are Enhanced by Hybrid Immunity and Original/Omicron Bivalent Vaccination. Vaccines (Basel) 2024; 12:564. [PMID: 38932293 PMCID: PMC11209254 DOI: 10.3390/vaccines12060564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
We determined neutralizing antibody levels to the ancestral Wuhan SARS-CoV-2 strain and three Omicron variants, namely BA.5, XBB.1.5, and EG.5, in a heavily vaccinated cohort of 178 adults 15-19 months after the initial vaccine series and prospectively after 4 months. Although all participants had detectable neutralizing antibodies to Wuhan, the proportion with detectable neutralizing antibodies to the Omicron variants was decreased, and the levels were lower. Individuals with hybrid immunity at the baseline visit and those receiving the Original/Omicron bivalent vaccine between the two sampling times demonstrated increased neutralizing antibodies to all strains. Both a higher baseline neutralizing antibody titer to Omicron BA.5 and hybrid immunity were associated with protection against a breakthrough SARS-CoV-2 infection during a 4-month period of follow up during the Omicron BA.5 wave. Neither were associated with protection from a breakthrough infection at 10 months follow up. Receipt of an Original/Omicron BA.4/5 vaccine was associated with protection from a breakthrough infection at both 4 and 10 months follow up. This work demonstrates neutralizing antibody escape with the emerging Omicron variants and supports the use of additional vaccine doses with components that match circulating SARS-CoV-2 variants. A threshold value for neutralizing antibodies for protection against reinfection cannot be determined.
Collapse
Affiliation(s)
- Sharon Walmsley
- Division of Infectious Diseases, University Health Network, Toronto, ON M5G 2C4, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Majid Nabipoor
- Biostatistics Department, University Health Network, Toronto, ON M5G 2C4, Canada; (M.N.); (L.E.L.)
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, ON M5G 2C4, Canada; (M.N.); (L.E.L.)
| | - Rizani Ravindran
- Division of Infectious Diseases, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Tulunay R. Tursun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
| | - Amanda Silva
- DATA Team, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; (F.Q.); (K.C.); (R.M.D.); (T.R.T.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | |
Collapse
|
27
|
Collins E, Galipeau Y, Arnold C, Bhéreur A, Booth R, Buchan AC, Cooper C, Crawley AM, McCluskie PS, McGuinty M, Pelchat M, Rocheleau L, Saginur R, Gravel C, Hawken S, Langlois MA, Little J. Clinical and serological predictors of post COVID-19 condition-findings from a Canadian prospective cohort study. Front Public Health 2024; 12:1276391. [PMID: 38784593 PMCID: PMC11111987 DOI: 10.3389/fpubh.2024.1276391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction More than 3 years into the pandemic, there is persisting uncertainty as to the etiology, biomarkers, and risk factors of Post COVID-19 Condition (PCC). Serological research data remain a largely untapped resource. Few studies have investigated the potential relationships between post-acute serology and PCC, while accounting for clinical covariates. Methods We compared clinical and serological predictors among COVID-19 survivors with (n = 102 cases) and without (n = 122 controls) persistent symptoms ≥12 weeks post-infection. We selected four primary serological predictors (anti-nucleocapsid (N), anti-Spike, and anti-receptor binding domain (RBD) IgG titres, and neutralization efficiency), and specified clinical covariates a priori. Results Similar proportions of PCC-cases (66.7%, n = 68) and infected-controls (71.3%, n = 87) tested positive for anti-N IgG. More cases tested positive for anti-Spike (94.1%, n = 96) and anti-RBD (95.1%, n = 97) IgG, as compared with controls (anti-Spike: 89.3%, n = 109; anti-RBD: 84.4%, n = 103). Similar trends were observed among unvaccinated participants. Effects of IgG titres on PCC status were non-significant in univariate and multivariate analyses. Adjusting for age and sex, PCC-cases were more likely to be efficient neutralizers (OR 2.2, 95% CI 1.11-4.49), and odds was further increased among cases to report deterioration in quality of life (OR 3.4, 95% CI 1.64-7.31). Clinical covariates found to be significantly related to PCC included obesity (OR 2.3, p = 0.02), number of months post COVID-19 (OR 1.1, p < 0.01), allergies (OR 1.8, p = 0.04), and need for medical support (OR 4.1, p < 0.01). Conclusion Despite past COVID-19 infection, approximately one third of PCC-cases and infected-controls were seronegative for anti-N IgG. Findings suggest higher neutralization efficiency among cases as compared with controls, and that this relationship is stronger among cases with more severe PCC. Cases also required more medical support for COVID-19 symptoms, and described complex, ongoing health sequelae. More data from larger cohorts are needed to substantiate results, permit subgroup analyses of IgG titres, and explore for differences between clusters of PCC symptoms. Future assessment of IgG subtypes may also elucidate new findings.
Collapse
Affiliation(s)
- Erin Collins
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Anne Bhéreur
- Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Ronald Booth
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Arianne C. Buchan
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michaeline McGuinty
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Raphael Saginur
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Health Science Network Research Ethics Board (OHSN-REB), Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Chris Gravel
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Steven Hawken
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Costiniuk CT, Lee T, Singer J, Galipeau Y, Arnold C, Langlois MA, Needham J, Jenabian MA, Burchell AN, Samji H, Chambers C, Walmsley S, Ostrowski M, Kovacs C, Tan DHS, Harris M, Hull M, Brumme ZL, Lapointe HR, Brockman MA, Margolese S, Mandarino E, Samarani S, Lebouché B, Angel JB, Routy JP, Cooper CL, Anis AH. Correlates of Breakthrough SARS-CoV-2 Infections in People with HIV: Results from the CIHR CTN 328 Study. Vaccines (Basel) 2024; 12:447. [PMID: 38793698 PMCID: PMC11125718 DOI: 10.3390/vaccines12050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
COVID-19 breakthrough infection (BTI) can occur despite vaccination. Using a multi-centre, prospective, observational Canadian cohort of people with HIV (PWH) receiving ≥2 COVID-19 vaccines, we compared the SARS-CoV-2 spike (S) and receptor-binding domain (RBD)-specific IgG levels 3 and 6 months post second dose, as well as 1 month post third dose, in PWH with and without BTI. BTI was defined as positivity based on self-report measures (data up to last study visit) or IgG data (up to 1 month post dose 3). The self-report measures were based on their symptoms and either a positive PCR or rapid antigen test. The analysis was restricted to persons without previous COVID-19 infection. Persons without BTI remained COVID-19-naïve until ≥3 months following the third dose. Of 289 participants, 92 developed BTI (31.5 infections per 100 person-years). The median days between last vaccination and BTI was 128 (IQR 67, 176), with the most cases occurring between the third and fourth dose (n = 59), corresponding to the Omicron wave. In analyses adjusted for age, sex, race, multimorbidity, hypertension, chronic kidney disease, diabetes and obesity, a lower IgG S/RBD (log10 BAU/mL) at 1 month post dose 3 was significantly associated with BTI, suggesting that a lower IgG level at this time point may predict BTI in this cohort of PWH.
Collapse
Affiliation(s)
- Cecilia T. Costiniuk
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Joel Singer
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
| | - Judy Needham
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2X 1Y4, Canada;
| | - Ann N. Burchell
- Department of Family and Community Medicine, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada;
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada;
| | - Hasina Samji
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (H.S.); (Z.L.B.); (M.A.B.)
- British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Catharine Chambers
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada;
- MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada;
| | - Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
| | - Mario Ostrowski
- Clinical Sciences Division, Department of Immunology, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Colin Kovacs
- Division of Infectious Diseases, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
| | - Darrell H. S. Tan
- MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada;
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Institute of Public Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 3M6, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Mark Hull
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (H.S.); (Z.L.B.); (M.A.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Hope R. Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (H.S.); (Z.L.B.); (M.A.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shari Margolese
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
| | - Enrico Mandarino
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
| | - Suzanne Samarani
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bertrand Lebouché
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3S 1Z1, Canada
| | - Jonathan B. Angel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Jean-Pierre Routy
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Hematology, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Curtis L. Cooper
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Aslam H. Anis
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
29
|
Pschunder B, Locati L, López O, Martin Aispuro P, Zurita E, Stuible M, Durocher Y, Hozbor D. Outer membrane vesicles derived from Bordetella pertussis are potent adjuvant that drive Th1-biased response. Front Immunol 2024; 15:1387534. [PMID: 38650936 PMCID: PMC11033331 DOI: 10.3389/fimmu.2024.1387534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
For several years, we have been committed to exploring the potential of Bordetella pertussis-derived outer membrane vesicles (OMVBp) as a promising third-generation vaccine against the reemerging pertussis disease. The results of our preclinical trials not only confirm its protective capacity against B. pertussis infection but also set the stage for forthcoming human clinical trials. This study delves into the examination of OMVBp as an adjuvant. To accomplish this objective, we implemented a two-dose murine schedule to evaluate the specific immune response induced by formulations containing OMVBp combined with 3 heterologous immunogens: Tetanus toxoid (T), Diphtheria toxoid (D), and the SARS-CoV-2 Spike protein (S). The specific levels of IgG, IgG1, and IgG2a triggered by the different tested formulations were evaluated using ELISA in dose-response assays for OMVBp and the immunogens at varying levels. These assays demonstrated that OMVBp exhibits adjuvant properties even at the low concentration employed (1.5 μg of protein per dose). As this effect was notably enhanced at medium (3 μg) and high concentrations (6 μg), we chose the medium concentration to determine the minimum immunogen dose at which the OMV adjuvant properties are significantly evident. These assays demonstrated that OMVBp exhibits adjuvant properties even at the lowest concentration tested for each immunogen. In the presence of OMVBp, specific IgG levels detected for the lowest amount of antigen tested increased by 2.5 to 10 fold compared to those found in animals immunized with formulations containing adjuvant-free antigens (p<0.0001). When assessing the adjuvant properties of OMVBp compared to the widely recognized adjuvant alum, we detected similar levels of specific IgG against D, T and S for both adjuvants. Experiments with OMVs derived from E. coli (OMVE.coli) reaffirmed that the adjuvant properties of OMVs extend across different bacterial species. Nonetheless, it's crucial to highlight that OMVBp notably skewed the immune response towards a Th1 profile (p<0.05). These collective findings emphasize the dual role of OMVBp as both an adjuvant and modulator of the immune response, positioning it favorably for incorporation into combined vaccine formulations.
Collapse
Affiliation(s)
- Bernarda Pschunder
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Lucia Locati
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Oriana López
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Eugenia Zurita
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Matthew Stuible
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Daniela Hozbor
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| |
Collapse
|
30
|
Nantel S, Sheikh-Mohamed S, Chao GYC, Kurtesi A, Hu Q, Wood H, Colwill K, Li Z, Liu Y, Seifried L, Bourdin B, McGeer A, Hardy WR, Rojas OL, Al-Aubodah TA, Liu Z, Ostrowski MA, Brockman MA, Piccirillo CA, Quach C, Rini JM, Gingras AC, Decaluwe H, Gommerman JL. Comparison of Omicron breakthrough infection versus monovalent SARS-CoV-2 intramuscular booster reveals differences in mucosal and systemic humoral immunity. Mucosal Immunol 2024; 17:201-210. [PMID: 38278415 DOI: 10.1016/j.mucimm.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Our understanding of the quality of cellular and humoral immunity conferred by COVID-19 vaccination alone versus vaccination plus SARS-CoV-2 breakthrough (BT) infection remains incomplete. While the current (2023) SARS-CoV-2 immune landscape of Canadians is complex, in late 2021 most Canadians had either just received a third dose of COVID-19 vaccine, or had received their two-dose primary series and then experienced an Omicron BT. Herein we took advantage of this coincident timing to contrast cellular and humoral immunity conferred by three doses of vaccine versus two doses plus BT. Our results show thatBT infection induces cell-mediated immune responses to variants comparable to an intramuscular vaccine booster dose. In contrast, BT subjects had higher salivary immunoglobulin (Ig)G and IgA levels against the Omicron spike and enhanced reactivity to the ancestral spike for the IgA isotype, which also reacted with SARS-CoV-1. Serumneutralizing antibody levels against the ancestral strain and the variants were also higher after BT infection. Our results support the need for the development of intranasal vaccines that could emulate the enhanced mucosal and humoral immunity induced by Omicron BT without exposing individuals to the risks associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sabryna Nantel
- Sainte-Justine University Hospital and Research Center, Montréal, Québec, Canada; Microbiology, Infectiology and Immunology Department, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada
| | | | - Gary Y C Chao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Kurtesi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Heidi Wood
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ying Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Laurie Seifried
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Benoîte Bourdin
- Sainte-Justine University Hospital and Research Center, Montréal, Québec, Canada
| | - Allison McGeer
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - William R Hardy
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Mario A Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Caroline Quach
- Sainte-Justine University Hospital and Research Center, Montréal, Québec, Canada; Microbiology, Infectiology and Immunology Department, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hélène Decaluwe
- Sainte-Justine University Hospital and Research Center, Montréal, Québec, Canada; Microbiology, Infectiology and Immunology Department, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada; Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
31
|
Almeida ND, Schiller I, Ke D, Sakr E, Plesa M, Vanamala S, Moneger AL, Bazan M, Lucchesi C, Wozniak N, Fritz JH, Piccirillo CA, Pelchat M, Arnold C, Galipeau Y, McCluskie PS, Langlois MA, Dasgupta K, Mazer BD. The effect of dose-interval on antibody response to mRNA COVID-19 vaccines: a prospective cohort study. Front Immunol 2024; 15:1330549. [PMID: 38433831 PMCID: PMC10904688 DOI: 10.3389/fimmu.2024.1330549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Background Vaccination against COVID-19 is highly effective in preventing severe disease and hospitalization, but primary COVID mRNA vaccination schedules often differed from those recommended by the manufacturers due to supply chain issues. We investigated the impact of delaying the second dose on antibody responses to COVID mRNA-vaccines in a prospective cohort of health-care workers in Quebec. Methods We recruited participants from the McGill University Health Centre who provided serum or participant-collected dried blood samples (DBS) at 28-days, 3 months, and 6 months post-second dose and at 28-days after a third dose. IgG antibodies to SARS-CoV2 spike (S), the receptor-binding domain (RBD), nucleocapsid (N) and neutralizing antibodies to the ancestral strain were assessed by enzyme-linked immunosorbent assay (ELISA). We examined associations between long (≤89 days) versus short (<89 days) between-dose intervals and antibody response through multivariable mixed-effects models adjusted for age, sex, prior covid infection status, time since vaccine dose, and assay batch. Findings The cohort included 328 participants who received up to three vaccine doses (>80% Pfizer-BioNTech). Weighted averages of the serum (n=744) and DBS (n=216) cohort results from the multivariable models showed that IgG anti-S was 31% higher (95% CI: 12% to 53%) and IgG anti-RBD was 37% higher (95% CI: 14% to 65%) in the long vs. short interval participants, across all time points. Interpretation Our study indicates that extending the covid primary series between-dose interval beyond 89 days (approximately 3 months) provides stronger antibody responses than intervals less than 89 days. Our demonstration of a more robust antibody response with a longer between dose interval is reassuring as logistical and supply challenges are navigated in low-resource settings.
Collapse
Affiliation(s)
- Nisha D. Almeida
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Health Technology Assessment Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Ian Schiller
- Health Technology Assessment Unit, McGill University Health Centre, Montreal, QC, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Danbing Ke
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Elsa Sakr
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Maria Plesa
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Sandeep Vanamala
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Anne-Laure Moneger
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Maria Bazan
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Chiara Lucchesi
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Natalia Wozniak
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Jorg H. Fritz
- Goodman Cancer Centre, and Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Ciriaco A. Piccirillo
- Infectious Diseases and Immunology in Global Health Program, Research Institute of Research Institute of the McGill University Health Center, and Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Martin Pelchat
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Corey Arnold
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Yannick Galipeau
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Pauline S. McCluskie
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Marc-Andre Langlois
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology and University of Ottawa, Ottawa, ON, Canada
| | - Kaberi Dasgupta
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Bruce D. Mazer
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| |
Collapse
|
32
|
Richard L, Nisenbaum R, Colwill K, Mishra S, Dayam RM, Liu M, Pedersen C, Gingras AC, Hwang SW. Enhancing detection of SARS-CoV-2 re-infections using longitudinal sero-monitoring: demonstration of a methodology in a cohort of people experiencing homelessness in Toronto, Canada. BMC Infect Dis 2024; 24:125. [PMID: 38302878 PMCID: PMC10835952 DOI: 10.1186/s12879-024-09013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Accurate estimation of SARS-CoV-2 re-infection is crucial to understanding the connection between infection burden and adverse outcomes. However, relying solely on PCR testing results in underreporting. We present a novel approach that includes longitudinal serologic data, and compared it against testing alone among people experiencing homelessness. METHODS We recruited 736 individuals experiencing homelessness in Toronto, Canada, between June and September 2021. Participants completed surveys and provided saliva and blood serology samples every three months over 12 months of follow-up. Re-infections were defined as: positive PCR or rapid antigen test (RAT) results > 90 days after initial infection; new serologic evidence of infection among individuals with previous infection who sero-reverted; or increases in anti-nucleocapsid in seropositive individuals whose levels had begun to decrease. RESULTS Among 381 participants at risk, we detected 37 re-infections through PCR/RAT and 98 re-infections through longitudinal serology. The comprehensive method identified 37.4 re-infection events per 100 person-years, more than four-fold more than the rate detected through PCR/RAT alone (9.0 events/100 person-years). Almost all test-confirmed re-infections (85%) were also detectable by longitudinal serology. CONCLUSIONS Longitudinal serology significantly enhances the detection of SARS-CoV-2 re-infections. Our findings underscore the importance and value of combining data sources for effective research and public health surveillance.
Collapse
Affiliation(s)
- Lucie Richard
- MAP Centre for Urban Health Solutions, Unity Health Toronto, 30 Bond St, M5B1W8, Toronto, ON, Canada.
| | - Rosane Nisenbaum
- MAP Centre for Urban Health Solutions, Unity Health Toronto, 30 Bond St, M5B1W8, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, Canada
| | - Karen Colwill
- Sinai Health, Lunenfeld-Tanenbaum Research Institute, 600 University Ave, Toronto, ON, Canada
| | - Sharmistha Mishra
- MAP Centre for Urban Health Solutions, Unity Health Toronto, 30 Bond St, M5B1W8, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, Canada
- Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Roya M Dayam
- Sinai Health, Lunenfeld-Tanenbaum Research Institute, 600 University Ave, Toronto, ON, Canada
| | - Michael Liu
- MAP Centre for Urban Health Solutions, Unity Health Toronto, 30 Bond St, M5B1W8, Toronto, ON, Canada
- Harvard Medical School, 25 Shattuck St, Boston, MA, USA
| | - Cheryl Pedersen
- MAP Centre for Urban Health Solutions, Unity Health Toronto, 30 Bond St, M5B1W8, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Sinai Health, Lunenfeld-Tanenbaum Research Institute, 600 University Ave, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Stephen W Hwang
- MAP Centre for Urban Health Solutions, Unity Health Toronto, 30 Bond St, M5B1W8, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, Canada
- Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, Canada
| |
Collapse
|
33
|
Enilama O, Yau K, Er L, Atiquzzaman M, Oliver MJ, Romney MG, Leis JA, Abe KT, Qi F, Colwill K, Gingras AC, Hladunewich MA, Levin A. Humoral Response Following 3 Doses of mRNA COVID-19 Vaccines in Patients With Non-Dialysis-Dependent CKD: An Observational Study. Can J Kidney Health Dis 2024; 11:20543581231224127. [PMID: 38292817 PMCID: PMC10826386 DOI: 10.1177/20543581231224127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Background Chronic kidney disease (CKD) is associated with a lower serologic response to vaccination compared to the general population. There is limited information regarding the serologic response to coronavirus disease 2019 (COVID-19) vaccination in the non-dialysis-dependent CKD (NDD-CKD) population, particularly after the third dose and whether this response varies by estimated glomerular filtration rate (eGFR). Methods The NDD-CKD (G1-G5) patients who received 3 doses of mRNA COVID-19 vaccines were recruited from renal clinics within British Columbia and Ontario, Canada. Between August 27, 2021, and November 30, 2022, blood samples were collected serially for serological testing every 3 months within a 9-month follow-up period. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-spike, anti-receptor binding domain (RBD), and anti-nucleocapsid protein (NP) levels were determined by enzyme-linked immunosorbent assay (ELISA). Results Among 285 NDD-CKD patients, the median age was 67 (interquartile range [IQR], 52-77) years, 58% were men, 48% received BNT162b2 as their third dose, 22% were on immunosuppressive treatment, and COVID-19 infection by anti-NP seropositivity was observed in 37 of 285 (13%) patients. Following the third dose, anti-spike and anti-RBD levels peaked at 2 months, with geometric mean levels at 1131 and 1672 binding antibody units per milliliter (BAU/mL), respectively, and seropositivity rates above 93% and 85%, respectively, over the 9-month follow-up period. There was no association between eGFR or urine albumin-creatinine ratio (ACR) with mounting a robust antibody response or in antibody levels over time. The NDD-CKD patients on immunosuppressive treatment were less likely to mount a robust anti-spike response in univariable (odds ratio [OR] 0.43, 95% confidence interval [CI]: 0.20, 0.93) and multivariable (OR 0.52, 95% CI: 0.25, 1.10) analyses. An interaction between age, immunoglobulin G (IgG) antibody levels, and time was observed in both unadjusted (anti-spike: P = .005; anti-RBD: P = .03) and adjusted (anti-spike: P = .004; anti-RBD: P = .03) models, with older individuals having a more pronounced decline in antibody levels over time. Conclusion Most NDD-CKD patients were seropositive for anti-spike and anti-RBD after 3 doses of mRNA COVID-19 vaccines and we did not observe any differences in the antibody response by eGFR.
Collapse
Affiliation(s)
- Omosomi Enilama
- Experimental Medicine, Department of Medicine, The University of British Columbia, Vancouver, Canada
- Nephrology Research Program, Providence Research, Vancouver, BC, Canada
| | - Kevin Yau
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Nephrology, Department of Medicine, Unity Health Toronto, ON, Canada
| | - Lee Er
- BC Renal, Vancouver, BC, Canada
| | | | - Matthew J. Oliver
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Ontario Renal Network, Toronto, ON, Canada
| | - Marc G. Romney
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Jerome A. Leis
- Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kento T. Abe
- Department of Molecular Genetics, University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Michelle A. Hladunewich
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Ontario Renal Network, Toronto, ON, Canada
| | - Adeera Levin
- BC Renal, Vancouver, BC, Canada
- Division of Nephrology, The University of British Columbia, Vancouver, Canada
- St. Paul’s Hospital, Vancouver, BC, Canada
| |
Collapse
|
34
|
Yau K, Tam P, Chan CT, Hu Q, Qi F, Abe KT, Kurtesi A, Jiang Y, Estrada-Codecido J, Brown T, Liu L, Siwakoti A, Leis JA, Levin A, Oliver MJ, Colwill K, Gingras AC, Hladunewich MA. BNT162b2 versus mRNA-1273 Third Dose COVID-19 Vaccine in Patients with CKD and Maintenance Dialysis Patients. Clin J Am Soc Nephrol 2024; 19:85-97. [PMID: 37847518 PMCID: PMC10843183 DOI: 10.2215/cjn.0000000000000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND There is a lack of randomized controlled trial data regarding differences in immunogenicity of varying coronavirus disease 2019 (COVID-19) mRNA vaccine regimens in CKD populations. METHODS We conducted a randomized controlled trial at three kidney centers in Toronto, Ontario, Canada, evaluating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody response after third dose vaccination. Participants ( n =273) with CKD not on dialysis or receiving dialysis were randomized 1:1 to third dose 30- µ g BNT162b2 (Pfizer-BioNTech) or 100- µ g mRNA-1273 (Moderna). The primary outcome of this study was SARS-CoV-2 IgG-binding antibodies to the receptor-binding domain (anti-RBD). Spike protein (antispike), nucleocapsid protein, and vaccine reactogenicity were also evaluated. Serology was measured before third dose and 1, 3, and 6 months after third dose. A subset of participants ( n =100) were randomly selected to assess viral pseudovirus neutralization against wild-type D614G, B.1.617.2 (Delta), and B.1.1.529 (Omicron BA.1). RESULTS Among 273 participants randomized, 94% were receiving maintenance dialysis and 59% received BNT162b2 for initial two dose COVID-19 vaccination. Third dose of mRNA-1273 was associated with higher mean anti-RBD levels (1871 binding antibody units [BAU]/ml; 95% confidence interval [CI], 829 to 2988) over a 6-month period in comparison with third dose BNT162b2 (1332 BAU/ml; 95% CI, 367 to 2402) with a difference of 539 BAU/ml (95% CI, 139 to 910; P = 0.009). Neither antispike levels nor neutralizing antibodies to wild-type, Delta, and Omicron BA.1 pseudoviruses were statistically different. COVID-19 infection occurred in 10% of participants: 15 (11%) receiving mRNA-1273 and 11 (8%) receiving BNT162b2. Third dose BNT162b2 was not associated with a significant different risk for COVID-19 in comparison with mRNA-1273 (hazard ratio, 0.78; 95% CI, 0.27 to 2.2; P = 0.63). CONCLUSIONS In patients with CKD, third dose COVID-19 mRNA vaccination with mRNA-1273 elicited higher SARS-CoV-2 anti-RBD levels in comparison with BNT162b2 over a 6-month period. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER COVID-19 Vaccine Boosters in Patients With CKD (BOOST KIDNEY), NCT05022329 .
Collapse
Affiliation(s)
- Kevin Yau
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul Tam
- Division of Nephrology, Department of Medicine, Scarborough Health Network, Toronto, Ontario, Canada
| | - Christopher T. Chan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Kento T. Abe
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Kurtesi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Yidi Jiang
- Clinical Trial Support, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jose Estrada-Codecido
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Tyler Brown
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Lisa Liu
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Aswani Siwakoti
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jerome A. Leis
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Adeera Levin
- British Columbia Provincial Renal Agency, Vancouver, British Columbia, Canada
| | - Matthew J. Oliver
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ontario Renal Network, Ontario Health, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michelle A. Hladunewich
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ontario Renal Network, Ontario Health, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Delafosse L, Lord-Dufour S, Pelletier A, Perret S, Burlacu A, Ouimet M, Cass B, Joubert S, Stuible M, Durocher Y. Recombinant Protein Production from Stable CHO Cell Pools. Methods Mol Biol 2024; 2810:99-121. [PMID: 38926275 DOI: 10.1007/978-1-0716-3878-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The continuous improvement of expression platforms is necessary to respond to the increasing demand for recombinant proteins that are required to carry out structural or functional studies as well as for their characterization as biotherapeutics. While transient gene expression (TGE) in mammalian cells constitutes a rapid and well-established approach, non-clonal stably transfected cells, or "pools," represent another option, which is especially attractive when recurring productions of the same protein are required. From a culture volume of just a few liters, stable pools can provide hundreds of milligrams to gram quantities of high-quality secreted recombinant proteins.In this chapter, we describe a highly efficient and cost-effective procedure for the generation of Chinese Hamster Ovary cell stable pools expressing secreted recombinant proteins using commercially available serum-free media and polyethylenimine (PEI) as the transfection reagent. As a specific example of how this protocol can be applied, the production and downstream purification of recombinant His-tagged trimeric SARS-CoV-2 spike protein ectodomain (SmT1) are described.
Collapse
Affiliation(s)
- Laurence Delafosse
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Simon Lord-Dufour
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Alina Burlacu
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Manon Ouimet
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Brian Cass
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Simon Joubert
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada.
| |
Collapse
|
36
|
Baardsnes J, Paul-Roc B. SARS-CoV-2S-Protein-Ace2 Binding Analysis Using Surface Plasmon Resonance. Methods Mol Biol 2024; 2762:71-87. [PMID: 38315360 DOI: 10.1007/978-1-0716-3666-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Surface plasmon resonance (SPR) allows for the label-free determination of the binding affinity and rate constants of bimolecular interactions. Here, we describe the method used for the analysis of the Ace2-SARS-CoV2 S-protein interaction using indirect capture of the S-protein onto the SPR surface, and flowing monomeric Ace2. This method will allow for the determination of the rate constants for affinity, with additional analysis that is achievable using S-protein capture levels in conjunction with the sensorgram response for relative activity benchmarking.
Collapse
Affiliation(s)
- Jason Baardsnes
- Quality Attributes and Characterization, Human Health Therapeutics, National Research Council Canada, Montréal, QC, Canada.
| | - Béatrice Paul-Roc
- Quality Attributes and Characterization, Human Health Therapeutics, National Research Council Canada, Montréal, QC, Canada
| |
Collapse
|
37
|
Walmsley S, Nabipoor M, Lovblom LE, Ravindran R, Colwill K, McGeer A, Dayam RM, Manase D, Gingras AC, on behalf of the STOPCoV Team. Predictors of Breakthrough SARS-CoV-2 Infection after Vaccination. Vaccines (Basel) 2023; 12:36. [PMID: 38250849 PMCID: PMC10820583 DOI: 10.3390/vaccines12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The initial two-dose vaccine series and subsequent booster vaccine doses have been effective in modulating SARS-CoV-2 disease severity and death but do not completely prevent infection. The correlates of infection despite vaccination continue to be under investigation. In this prospective decentralized study (n = 1286) comparing antibody responses in an older- (≥70 years) to a younger-aged cohort (aged 30-50 years), we explored the correlates of breakthrough infection in 983 eligible subjects. Participants self-reported data on initial vaccine series, subsequent booster doses and COVID-19 infections in an online portal and provided self-collected dried blood spots for antibody testing by ELISA. Multivariable survival analysis explored the correlates of breakthrough infection. An association between higher antibody levels and protection from breakthrough infection observed during the Delta and Omicron BA.1/2 waves of infection no longer existed during the Omicron BA.4/5 wave. The older-aged cohort was less likely to have a breakthrough infection at all time-points. Receipt of an original/Omicron vaccine and the presence of hybrid immunity were associated with protection of infection during the later Omicron BA.4/5 and XBB waves. We were unable to determine a threshold antibody to define protection from infection or to guide vaccine booster schedules.
Collapse
Affiliation(s)
- Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Majid Nabipoor
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Rizani Ravindran
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Alison McGeer
- Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada;
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Dorin Manase
- DATA Team, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A1, Canada
| | | |
Collapse
|
38
|
Camirand Lemyre F, Honfo SH, Caya C, Cheng MP, Colwill K, Corsini R, Gingras AC, Jassem A, Krajden M, Márquez AC, Mazer BD, McLennan M, Renaud C, Yansouni CP, Papenburg J, Lewin A. Two-phase Bayesian latent class analysis to assess diagnostic test performance in the absence of a gold standard: COVID-19 serological assays as a proof of concept. Vox Sang 2023; 118:1069-1077. [PMID: 37850270 DOI: 10.1111/vox.13545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND OBJECTIVES In this proof-of-concept study, which included blood donor samples, we aimed to demonstrate how Bayesian latent class models (BLCMs) could be used to estimate SARS-CoV-2 seroprevalence in the absence of a gold standard assay under a two-phase sampling design. MATERIALS AND METHODS To this end, 6810 plasma samples from blood donors who resided in Québec (Canada) were collected from May to July 2020 and tested for anti-SARS-CoV-2 antibodies using seven serological assays (five commercial and two non-commercial). RESULTS SARS-CoV-2 seroprevalence was estimated at 0.71% (95% credible interval [CrI] = 0.53%-0.92%). The cPass assay had the lowest sensitivity estimate (88.7%; 95% CrI = 80.6%-94.7%), while the Héma-Québec assay had the highest (98.7%; 95% CrI = 97.0%-99.6%). CONCLUSION The estimated low seroprevalence (which indicates a relatively limited spread of SARS-CoV-2 in Quebec) might change rapidly-and this tool, developed using blood donors, could enable a rapid update of the prevalence estimate in the absence of a gold standard. Further, the present analysis illustrates how a two-stage BLCM sampling design, along with blood donor samples, can be used to estimate the performance of new diagnostic tests and inform public health decisions regarding a new or emerging disease for which a perfect reference standard does not exist.
Collapse
Affiliation(s)
- Felix Camirand Lemyre
- Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sewanou Hermann Honfo
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Chelsea Caya
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Matthew P Cheng
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Rachel Corsini
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Agatha Jassem
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Ana Citlali Márquez
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce D Mazer
- COVID-19 Immunity Task Force, Secretariat, McGill University, Montreal, Quebec, Canada
- Division of Allergy and Immunology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Meghan McLennan
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Christian Renaud
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- J.D. MacLean Centre for Tropical Diseases, McGill University, Montreal, Quebec, Canada
| | - Jesse Papenburg
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montreal Children's Hospital, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, School of Population and Global Health, McGill University, Montreal, Quebec, Canada
| | - Antoine Lewin
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Lao T, Farnos O, Bueno A, Alvarez A, Rodríguez E, Palacios J, de la Luz KR, Kamen A, Carpio Y, Estrada MP. Transient Expression in HEK-293 Cells in Suspension Culture as a Rapid and Powerful Tool: SARS-CoV-2 N and Chimeric SARS-CoV-2N-CD154 Proteins as a Case Study. Biomedicines 2023; 11:3050. [PMID: 38002050 PMCID: PMC10669214 DOI: 10.3390/biomedicines11113050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In a previous work, we proposed a vaccine chimeric antigen based on the fusion of the SARS-CoV-2 N protein to the extracellular domain of the human CD40 ligand (CD154). This vaccine antigen was named N-CD protein and its expression was carried out in HEK-293 stably transfected cells, grown in adherent conditions and serum-supplemented medium. The chimeric protein obtained in these conditions presented a consistent pattern of degradation. The immunization of mice and monkeys with this chimeric protein was able to induce a high N-specific IgG response with only two doses in pre-clinical experiments. In order to explore ways to diminish protein degradation, in the present work, the N and N-CD proteins were produced in suspension cultures and serum-free media following transient transfection of the HEK-293 clone 3F6, at different scales, including stirred-tank controlled bioreactors. The results showed negligible or no degradation of the target proteins. Further, clones stably expressing N-CD were obtained and adapted to suspension culture, obtaining similar results to those observed in the transient expression experiments in HEK-293-3F6. The evidence supports transient protein expression in suspension cultures and serum-free media as a powerful tool to produce in a short period of time high levels of complex proteins susceptible to degradation, such as the SARS-CoV-2 N protein.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Omar Farnos
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Alexi Bueno
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Anays Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Elsa Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Julio Palacios
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Kathya Rashida de la Luz
- Process Development Department, Center of Molecular Immunology, Havana 11600, Cuba (J.P.); (K.R.d.l.L.)
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (O.F.); (A.K.)
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana 10600, Cuba; (T.L.)
| |
Collapse
|
40
|
Di Meo A, Ma L, Yau K, Abe KT, Colwill K, Gingras AC, Kozak R, Hladunewich MA, Yip PM. Evaluation of commercial assays for the assessment of SARS-CoV-2 antibody response in hemodialysis patients. Clin Biochem 2023; 121-122:110681. [PMID: 37913837 DOI: 10.1016/j.clinbiochem.2023.110681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Hemodialysis patients exhibit variable immunogenicity following administration of the SARS-CoV-2 mRNA vaccine. The aim of the current study was to evaluate the use of two commercial assays in the assessment of SARS-CoV-2 antibody response in hemodialysis patients and to compare their utility to commonly used SARS-CoV-2 serological assays developed in Canada. METHODS We evaluated serologic antibody response in 85 hemodialysis patients up to 6 months after receiving both doses of the Pfizer-BioNTech BNT162b2 COVID-19 mRNA vaccine. In addition, antibody response was assessed in 46 chronic kidney disease patients and 40 COVID-19 naïve health care workers (HCW) up to 3 months and 9 months, respectively. Anti-spike (S) and anti-nucleocapsid (N) levels were measured using Elecsys anti-SARS-CoV-2 immunoassays on the Roche analyzer and compared to ELISA-based detection of anti-S, anti-receptor binding domain (RBD), and anti-N. RESULTS The Elecsys anti-N immunoassay showed 93 % concordance with the anti-N ELISA. The Elecsys anti-S immunoassay showed 97 % concordance with the anti-S ELISA and 89 % concordance with the anti-RBD ELISA. HCWs exhibited significantly higher anti-S levels relative to hemodialysis patients. Anti-S levels decreased significantly over a 6-month period (p < 0.001) in patients receiving maintenance hemodialysis. In addition, anti-S levels decreased significantly over a 9-month (p < 0.001) and 3-month period (p < 0.001) in HCWs and CKD patients, respectively. CONCLUSIONS There is high concordance between commercial SARS-CoV-2 serological assays and SARS-CoV-2 serological assays developed in Canada. Hemodialysis patients exhibited varying immunogenicity following two doses of the COVID-19 mRNA vaccine with anti-S levels decreasing over time.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Liyan Ma
- Precision Medicine & Therapeutics Program (Laboratory Medicine), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kevin Yau
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kento T Abe
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert Kozak
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Precision Medicine & Therapeutics Program (Laboratory Medicine), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Michelle A Hladunewich
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Paul M Yip
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Precision Medicine & Therapeutics Program (Laboratory Medicine), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Keeshan A, Galipeau Y, Heiskanen A, Collins E, McCluskie PS, Arnold C, Saginur R, Booth R, Little J, McGuinty M, Buchan CA, Crawley A, Langlois MA, Cooper C. Results of the Stop the Spread Ottawa (SSO) cohort study: a Canadian urban-based prospective evaluation of antibody responses and neutralisation efficiency to SARS-CoV-2 infection and vaccination. BMJ Open 2023; 13:e077714. [PMID: 37907304 PMCID: PMC10619119 DOI: 10.1136/bmjopen-2023-077714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Predictors of COVID-19 vaccine immunogenicity and the influence of prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require elucidation. METHODS Stop the Spread Ottawa is a prospective cohort of individuals at-risk for or who have been infected with SARS-CoV-2, initially enrolled for 10 months beginning October 2020. This cohort was enriched for public-facing workers. This analysis focuses on safety and immunogenicity of the initial two doses of COVID-19 vaccine. RESULTS Post-vaccination data with blood specimens were available for 930 participants. 22.8% were SARS-CoV2 infected prior to the first vaccine dose. Cohort characteristics include: median age 44 (IQR: 22-56), 66.6% women, 89.0% white, 83.2% employed. 38.1% reported two or more comorbidities and 30.8% reported immune compromising condition(s). Over 95% had detectable IgG levels against the spike and receptor binding domain (RBD) 3 months post second vaccine dose. By multivariable analysis, increasing age and high-level immune compromise predicted diminishing IgG spike and RBD titres at month 3 post second dose. IgG spike and RBD titres were higher immediately post vaccination in those with SARS-CoV-2 infection prior to first vaccination and spike titres were higher at 6 months in those with wider time intervals between dose 1 and 2. IgG spike and RBD titres and neutralisation were generally similar by sex, weight and whether receiving homogeneous or heterogeneous combinations of vaccines. Common symptoms post dose 1 vaccine included fatigue (64.7%), injection site pain (47.5%), headache (27.2%), fever/chills (26.2%) and body aches (25.3%). These symptoms were similar with subsequent doses. CONCLUSION The initial two COVID-19 vaccine doses are safe, well-tolerated and highly immunogenic across a broad spectrum of vaccine recipients including those working in public facing environments.
Collapse
Affiliation(s)
- Alexa Keeshan
- Dept of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Yannick Galipeau
- Department of Biochemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Aliisa Heiskanen
- Dept of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Erin Collins
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Pauline S McCluskie
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Corey Arnold
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Raphael Saginur
- Department of Medicine, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Ronald Booth
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Michaeline McGuinty
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital, Ottawa, Ontario, Canada
| | - C Arianne Buchan
- Dept of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Anglea Crawley
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network, Ottawa, Ontario, Canada
| | - Marc-Andre Langlois
- Coronavirus Variants Rapid Response Network, Ottawa, Ontario, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Curtis Cooper
- Dept of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network, Ottawa, Ontario, Canada
- Division of Infectious Diseases, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa,Canada, Ontario, Canada
| |
Collapse
|
42
|
Matveev VA, Mihelic EZ, Benko E, Budylowski P, Grocott S, Lee T, Korosec CS, Colwill K, Stephenson H, Law R, Ward LA, Sheikh-Mohamed S, Mailhot G, Delgado-Brand M, Pasculescu A, Wang JH, Qi F, Tursun T, Kardava L, Chau S, Samaan P, Imran A, Copertino DC, Chao G, Choi Y, Reinhard RJ, Kaul R, Heffernan JM, Jones RB, Chun TW, Moir S, Singer J, Gommerman J, Gingras AC, Kovacs C, Ostrowski M. Immunogenicity of COVID-19 vaccines and their effect on HIV reservoir in older people with HIV. iScience 2023; 26:107915. [PMID: 37790281 PMCID: PMC10542941 DOI: 10.1016/j.isci.2023.107915] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. Our study on 68 PWH and 23 HIV-negative participants aged 55 and older post-three vaccine doses showed equally strong anti-spike IgG responses in serum and saliva through week 48 from baseline, while PWH salivary IgA responses were low. PWH had diminished live-virus neutralization responses after two vaccine doses, which were 'rescued' post-booster. Spike-specific T cell immunity was enhanced in PWH with normal CD4+ T cell count, suggesting Th1 imprinting. The frequency of detectable HIV viremia increased post-vaccination, but vaccines did not affect the size of the HIV reservoir in most PWH, except those with low-level viremia. Thus, older PWH require three doses of COVID-19 vaccine for maximum protection, while individuals with unsuppressed viremia should be monitored for adverse reactions from HIV reservoirs.
Collapse
Affiliation(s)
- Vitaliy A. Matveev
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Erik Z. Mihelic
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto ON M5G 1K2, Canada
| | - Patrick Budylowski
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Sebastian Grocott
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Microbiology and Immunology, McGill University, Montreal QC H3A 2B4, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN), Vancouver BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver BC V6Z IY6, Canada
| | - Chapin S. Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Henry Stephenson
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Bioengineering, McGill University, Montreal QC H3A 0E9, Canada
| | - Ryan Law
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Lesley A. Ward
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | | | - Geneviève Mailhot
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | | | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Jenny H. Wang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Tulunay Tursun
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Serena Chau
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Annam Imran
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Dennis C. Copertino
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Gary Chao
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Yoojin Choi
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Robert J. Reinhard
- Independent Public/Global Health Consultant, San Francisco, CA 94114, USA
| | - Rupert Kaul
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Jane M. Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
| | - R. Brad Jones
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel Singer
- CIHR Canadian HIV Trials Network (CTN), Vancouver BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver BC V6Z IY6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Jennifer Gommerman
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto ON M5G 1K2, Canada
- Department of Internal Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health, Toronto ON M5B 1W8, Canada
| |
Collapse
|
43
|
Stuible M, Schrag JD, Sheff J, Zoubchenok D, Lord-Dufour S, Cass B, L'Abbé D, Pelletier A, Rossotti MA, Tanha J, Gervais C, Maurice R, El Bakkouri M, Acchione M, Durocher Y. Influence of variant-specific mutations, temperature and pH on conformations of a large set of SARS-CoV-2 spike trimer vaccine antigen candidates. Sci Rep 2023; 13:16498. [PMID: 37779126 PMCID: PMC10543594 DOI: 10.1038/s41598-023-43661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
SARS-CoV-2 subunit vaccines continue to be the focus of intense clinical development worldwide. Protein antigens in these vaccines most commonly consist of the spike ectodomain fused to a heterologous trimerization sequence, designed to mimic the compact, prefusion conformation of the spike on the virus surface. Since 2020, we have produced dozens of such constructs in CHO cells, consisting of spike variants with different mutations fused to different trimerization sequences. This set of constructs displayed notable conformational heterogeneity, with two distinct trimer species consistently detected by analytical size exclusion chromatography. A recent report showed that spike ectodomain fusion constructs can adopt an alternative trimer conformation consisting of loosely associated ectodomain protomers. Here, we applied multiple biophysical and immunological techniques to demonstrate that this alternative conformation is formed to a significant extent by several SARS-CoV-2 variant spike proteins. We have also examined the influence of temperature and pH, which can induce inter-conversion of the two forms. The substantial structural differences between these trimer types may impact their performance as vaccine antigens.
Collapse
Affiliation(s)
- Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Joseph D Schrag
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Joey Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Daria Zoubchenok
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Simon Lord-Dufour
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Brian Cass
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Denis L'Abbé
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Christian Gervais
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Roger Maurice
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Majida El Bakkouri
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Mauro Acchione
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.
| |
Collapse
|
44
|
Costiniuk CT, Singer J, Lee T, Galipeau Y, McCluskie PS, Arnold C, Langlois MA, Needham J, Jenabian MA, Burchell AN, Samji H, Chambers C, Walmsley S, Ostrowski M, Kovacs C, Tan DH, Harris M, Hull M, Brumme ZL, Lapointe HR, Brockman MA, Margolese S, Mandarino E, Samarani S, Vulesevic B, Lebouché B, Angel JB, Routy JP, Cooper CL, Anis AH. Antibody neutralization capacity after coronavirus disease 2019 vaccination in people with HIV in Canada. AIDS 2023; 37:F25-F35. [PMID: 37534695 PMCID: PMC10481923 DOI: 10.1097/qad.0000000000003680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES Many vaccines require higher/additional doses or adjuvants to provide adequate protection for people with HIV (PWH). Here, we compare coronavirus disease 2019 (COVID-19) vaccine-induced antibody neutralization capacity in PWH vs. HIV-negative individuals following two vaccine doses. DESIGN In Canadian prospective observational cohorts, including a multicentre study of PWH receiving at least two COVID-19 vaccinations (mRNA or ChAdOx1-S), and a parallel study of HIV-negative controls (Stop the Spread Ottawa Cohort), we measured vaccine-induced neutralization capacity 3 months post dose 2 (±1 month). METHODS COVID-19 neutralization efficiency was measured by calculating the half maximal inhibitory dilution (ID50) using a high-throughput protein-based neutralization assay for Ancestral (Wuhan), Delta and Omicron (BA.1) spike variants. Univariable and multivariable quantile regression were used to compare COVID-19-specific antibody neutralization capacity by HIV status. RESULTS Neutralization assays were performed on 256 PWH and 256 controls based on specimen availability at the timepoint of interest, having received two vaccines and known date of vaccination. There was a significant interaction between HIV status and previous COVID-19 infection status in median ID50. There were no differences in median ID50 for HIV+ vs. HIV-negative persons without past COVID-19 infection. For participants with past COVID-19 infection, median ICD50 was significantly higher in controls than in PWH for ancestral SARS-CoV-2 and Omicron variants, with a trend for the Delta variant in the same direction. CONCLUSION Vaccine-induced SARS-CoV-2 neutralization capacity was similar between PWH vs. HIV-negative persons without past COVID-19 infection, demonstrating favourable humoral-mediated immunogenicity. Both HIV+ and HIV-negative persons demonstrated hybrid immunity. TRIAL REGISTRATION clinicaltrials.gov NCT04894448.
Collapse
Affiliation(s)
- Cecilia T. Costiniuk
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital
- Infectious Diseases and Immunity in Global Health Research Program, Research Institute of McGill University Health Centre
- Department of Experimental Medicine, McGill University, Montreal, Québec
| | - Joel Singer
- School of Population and Public Health, University of British Columbia
- CIHR Canadian HIV Trials Network (CTN)
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, British Columbia
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN)
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, British Columbia
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
| | - Pauline S. McCluskie
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
| | - Judy Needham
- CIHR Canadian HIV Trials Network (CTN)
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, British Columbia
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Québec
| | - Ann N. Burchell
- Department of Family and Community Medicine, St Michael's Hospital, Unity Health Toronto
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario
| | - Hasina Samji
- Faculty of Health Sciences, Simon Fraser University, Burnaby
- British Columbia Centre for Disease Control, Vancouver, British Columbia
| | - Catharine Chambers
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario
- MAP Centre for Urban Health Solutions, St Michael's Hospital
| | - Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University of Toronto
| | - Mario Ostrowski
- Clinical Sciences Division and Department of Immunology, University of Toronto, Li Ka Shing Knowledge Institute, St. Michael's Hospital
| | | | - Darrell H.S. Tan
- MAP Centre for Urban Health Solutions, St Michael's Hospital
- Division of Infectious Diseases, Department of Medicine, University of Toronto
- Institute of Public Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver
| | - Mark Hull
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver
| | | | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia
| | | | | | - Suzanne Samarani
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital
| | - Branka Vulesevic
- CIHR Canadian HIV Trials Network (CTN)
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Bertrand Lebouché
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital
- Infectious Diseases and Immunity in Global Health Research Program, Research Institute of McGill University Health Centre
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University
- Canadian Institutes of Health Research Strategy for Patient-Oriented Research Mentorship Chair in Innovative Clinical Trials
| | - Jonathan B. Angel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Jean-Pierre Routy
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital
- Infectious Diseases and Immunity in Global Health Research Program, Research Institute of McGill University Health Centre
- Division of Hematology, Department of Medicine, McGill University Health Centre, Montreal, Québec, Canada
| | - Curtis L. Cooper
- Division of Infectious Diseases, Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Aslam H. Anis
- School of Population and Public Health, University of British Columbia
- CIHR Canadian HIV Trials Network (CTN)
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, British Columbia
| |
Collapse
|
45
|
Yau K, Kurtesi A, Qi F, Delgado-Brand M, Tursun TR, Hu Q, Dhruve M, Kandel C, Enilama O, Levin A, Jiang Y, Hardy WR, Yuen DA, Perl J, Chan CT, Leis JA, Oliver MJ, Colwill K, Gingras AC, Hladunewich MA. Omicron variant neutralizing antibodies following BNT162b2 BA.4/5 versus mRNA-1273 BA.1 bivalent vaccination in patients with end-stage kidney disease. Nat Commun 2023; 14:6041. [PMID: 37758707 PMCID: PMC10533557 DOI: 10.1038/s41467-023-41678-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Neutralization of Omicron subvariants by different bivalent vaccines has not been well evaluated. This study characterizes neutralization against Omicron subvariants in 98 individuals on dialysis or with a kidney transplant receiving the BNT162b2 (BA.4/BA.5) or mRNA-1273 (BA.1) bivalent COVID-19 vaccine. Neutralization against Omicron BA.1, BA.5, BQ.1.1, and XBB.1.5 increased by 8-fold one month following bivalent vaccination. In comparison to wild-type (D614G), neutralizing antibodies against Omicron-specific variants were 7.3-fold lower against BA.1, 8.3-fold lower against BA.5, 45.8-fold lower against BQ.1.1, and 48.2-fold lower against XBB.1.5. Viral neutralization was not significantly different by bivalent vaccine type for wild-type (D614G) (P = 0.48), BA.1 (P = 0.21), BA.5 (P = 0.07), BQ.1.1 (P = 0.10), nor XBB.1.5 (P = 0.10). Hybrid immunity conferred higher neutralizing antibodies against all Omicron subvariants. This study provides evidence that BNT162b2 (BA.4/BA.5) and mRNA-1273 (BA.1) induce similar neutralization against Omicron subvariants, even when antigenically divergent from the circulating variant.
Collapse
Affiliation(s)
- Kevin Yau
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alexandra Kurtesi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Melanie Delgado-Brand
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Tulunay R Tursun
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Miten Dhruve
- Division of Nephrology, Michael Garron Hospital, Toronto, ON, Canada
| | - Christopher Kandel
- Division of Infectious Diseases, Michael Garron Hospital, Toronto, ON, Canada
| | - Omosomi Enilama
- Division of Experimental Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Adeera Levin
- British Columbia Provincial Renal Agency, Vancouver, BC, Canada
| | - Yidi Jiang
- Centre for Clinical Trial Support, Sunnybrook Research Institute, Toronto, ON, Canada
| | - W Rod Hardy
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Darren A Yuen
- Division of Nephrology, Department of Medicine, Unity Health Toronto, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jeffrey Perl
- Division of Nephrology, Department of Medicine, Unity Health Toronto, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christopher T Chan
- Division of Nephrology, Department of Medicine, University Health Network, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jerome A Leis
- Division of Infectious Diseases, Department of Medicine, Sunnybrook Health Sciences Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Matthew J Oliver
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Ontario Renal Network, Toronto, ON, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle A Hladunewich
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Ontario Renal Network, Toronto, ON, Canada.
| |
Collapse
|
46
|
Limoges MA, Quenum AJI, Chowdhury MMH, Rexhepi F, Namvarpour M, Akbari SA, Rioux-Perreault C, Nandi M, Lucier JF, Lemaire-Paquette S, Premkumar L, Durocher Y, Cantin A, Lévesque S, Dionne IJ, Menendez A, Ilangumaran S, Allard-Chamard H, Piché A, Ramanathan S. SARS-CoV-2 spike antigen-specific B cell and antibody responses in pre-vaccination period COVID-19 convalescent males and females with or without post-covid condition. Front Immunol 2023; 14:1223936. [PMID: 37809081 PMCID: PMC10551145 DOI: 10.3389/fimmu.2023.1223936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Background Following SARS-CoV-2 infection a significant proportion of convalescent individuals develop the post-COVID condition (PCC) that is characterized by wide spectrum of symptoms encompassing various organs. Even though the underlying pathophysiology of PCC is not known, detection of viral transcripts and antigens in tissues other than lungs raise the possibility that PCC may be a consequence of aberrant immune response to the viral antigens. To test this hypothesis, we evaluated B cell and antibody responses to the SARS-CoV-2 antigens in PCC patients who experienced mild COVID-19 disease during the pre-vaccination period of COVID-19 pandemic. Methods The study subjects included unvaccinated male and female subjects who developed PCC or not (No-PCC) after clearing RT-PCR confirmed mild COVID-19 infection. SARS-CoV-2 D614G and omicron RBD specific B cell subsets in peripheral circulation were assessed by flow cytometry. IgG, IgG3 and IgA antibody titers toward RBD, spike and nucleocapsid antigens in the plasma were evaluated by ELISA. Results The frequency of the B cells specific to D614G-RBD were comparable in convalescent groups with and without PCC in both males and females. Notably, in females with PCC, the anti-D614G RBD specific double negative (IgD-CD27-) B cells showed significant correlation with the number of symptoms at acute of infection. Anti-spike antibody responses were also higher at 3 months post-infection in females who developed PCC, but not in the male PCC group. On the other hand, the male PCC group also showed consistently high anti-RBD IgG responses compared to all other groups. Conclusions The antibody responses to the spike protein, but not the anti-RBD B cell responses diverge between convalescent males and females who develop PCC. Our findings also suggest that sex-related factors may also be involved in the development of PCC via modulating antibody responses to the SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Marc-André Limoges
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | | | | | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Mozhdeh Namvarpour
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Sara Ali Akbari
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Christine Rioux-Perreault
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Jean-François Lucier
- Department of Biology, Faculty of Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Samuel Lemaire-Paquette
- Unité de Recherche Clinique et épidémiologique, Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - André Cantin
- Departments of Medicine, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Simon Lévesque
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
- Laboratoire de Microbiologie, CIUSSS de l’Estrie – CHUS, Sherbrooke, QC, Canada
| | - Isabelle J. Dionne
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging, Affiliated with CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Hugues Allard-Chamard
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alain Piché
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| |
Collapse
|
47
|
Perera DJ, Domenech P, Babuadze GG, Naghibosadat M, Alvarez F, Koger-Pease C, Labrie L, Stuible M, Durocher Y, Piccirillo CA, Lametti A, Fiset PO, Elahi SM, Kobinger GP, Gilbert R, Olivier M, Kozak R, Reed MB, Ndao M. BCG administration promotes the long-term protection afforded by a single-dose intranasal adenovirus-based SARS-CoV-2 vaccine. iScience 2023; 26:107612. [PMID: 37670783 PMCID: PMC10475483 DOI: 10.1016/j.isci.2023.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Recent publications have explored intranasal (i.n.) adenovirus-based (Ad) vaccines as an effective strategy for SARS-CoV-2 in pre-clinical models. However, the effects of prior immunizations and infections have yet to be considered. Here, we investigate the immunomodulatory effects of Mycobacterium bovis BCG pre-immunization followed by vaccination with an S-protein-expressing i.n. Ad, termed Ad(Spike). While i.n. Ad(Spike) retains some protective effect after 6 months, a single administration of BCG-Danish prior to Ad(Spike) potentiates its ability to control viral replication of the B.1.351 SARS-CoV-2 variant within the respiratory tract. Though BCG-Danish did not affect Ad(Spike)-generated humoral immunity, it promoted the generation of cytotoxic/Th1 responses over suppressive FoxP3+ TREG cells in the lungs of infected mice. Thus, this vaccination strategy may prove useful in limiting future pandemics by potentiating the long-term efficacy of mucosal vaccines within the context of the widely distributed BCG vaccine.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Pilar Domenech
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - George Giorgi Babuadze
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maedeh Naghibosadat
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Fernando Alvarez
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Lydia Labrie
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Matthew Stuible
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Yves Durocher
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - André Lametti
- Department of Pathology, McGill University, Montréal, QC, Canada
| | | | - Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Gary P. Kobinger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Martin Olivier
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Robert Kozak
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael B. Reed
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- National Reference Centre for Parasitology, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
48
|
Sauvageau J, Koyuturk I, St Michael F, Brochu D, Goneau MF, Schoenhofen I, Perret S, Star A, Robotham A, Haqqani A, Kelly J, Gilbert M, Durocher Y. Simplifying glycan monitoring of complex antigens such as the SARS-CoV-2 spike to accelerate vaccine development. Commun Chem 2023; 6:189. [PMID: 37684364 PMCID: PMC10491790 DOI: 10.1038/s42004-023-00988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Glycosylation is a key quality attribute that must be closely monitored for protein therapeutics. Established assays such as HILIC-Fld of released glycans and LC-MS of glycopeptides work well for glycoproteins with a few glycosylation sites but are less amenable for those with multiple glycosylation sites, resulting in complex datasets that are time consuming to generate and difficult to analyze. As part of efforts to improve preparedness for future pandemics, researchers are currently assessing where time can be saved in the vaccine development and production process. In this context, we evaluated if neutral and acidic monosaccharides analysis via HPAEC-PAD could be used as a rapid and robust alternative to LC-MS and HILIC-Fld for monitoring glycosylation between protein production batches. Using glycoengineered spike proteins we show that the HPAEC-PAD monosaccharide assays could quickly and reproducibly detect both major and minor glycosylation differences between batches. Moreover, the monosaccharide results aligned well with those obtained by HILIC-Fld and LC-MS.
Collapse
Affiliation(s)
- Janelle Sauvageau
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.
| | - Izel Koyuturk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada
- Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Frank St Michael
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Denis Brochu
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Marie-France Goneau
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Ian Schoenhofen
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Alexandra Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Arsalan Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Centre, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada
- Human Health Therapeutics Research Centre, National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| |
Collapse
|
49
|
Alpuche-Lazcano SP, Stuible M, Akache B, Tran A, Kelly J, Hrapovic S, Robotham A, Haqqani A, Star A, Renner TM, Blouin J, Maltais JS, Cass B, Cui K, Cho JY, Wang X, Zoubchenok D, Dudani R, Duque D, McCluskie MJ, Durocher Y. Preclinical evaluation of manufacturable SARS-CoV-2 spike virus-like particles produced in Chinese Hamster Ovary cells. COMMUNICATIONS MEDICINE 2023; 3:116. [PMID: 37612423 PMCID: PMC10447459 DOI: 10.1038/s43856-023-00340-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND As the COVID-19 pandemic continues to evolve, novel vaccines need to be developed that are readily manufacturable and provide clinical efficacy against emerging SARS-CoV-2 variants. Virus-like particles (VLPs) presenting the spike antigen at their surface offer remarkable benefits over other vaccine antigen formats; however, current SARS-CoV-2 VLP vaccines candidates in clinical development suffer from challenges including low volumetric productivity, poor spike antigen density, expression platform-driven divergent protein glycosylation and complex upstream/downstream processing requirements. Despite their extensive use for therapeutic protein manufacturing and proven ability to produce enveloped VLPs, Chinese Hamster Ovary (CHO) cells are rarely used for the commercial production of VLP-based vaccines. METHODS Using CHO cells, we aimed to produce VLPs displaying the full-length SARS-CoV-2 spike. Affinity chromatography was used to capture VLPs released in the culture medium from engineered CHO cells expressing spike. The structure, protein content, and glycosylation of spikes in VLPs were characterized by several biochemical and biophysical methods. In vivo, the generation of neutralizing antibodies and protection against SARS-CoV-2 infection was tested in mouse and hamster models. RESULTS We demonstrate that spike overexpression in CHO cells is sufficient by itself to generate high VLP titers. These VLPs are evocative of the native virus but with at least three-fold higher spike density. In vivo, purified VLPs elicit strong humoral and cellular immunity at nanogram dose levels which grant protection against SARS-CoV-2 infection. CONCLUSIONS Our results show that CHO cells are amenable to efficient manufacturing of high titers of a potently immunogenic spike protein-based VLP vaccine antigen.
Collapse
Affiliation(s)
- Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Anh Tran
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada
| | - Sabahudin Hrapovic
- Aquatic and Crop Resources Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada
| | - Arsalan Haqqani
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada
| | - Alexandra Star
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada
| | - Tyler M Renner
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Julie Blouin
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Jean-Sébastien Maltais
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Brian Cass
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Kai Cui
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9, Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9, Canada
| | - Xinyu Wang
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9, Canada
| | - Daria Zoubchenok
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Renu Dudani
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.
| |
Collapse
|
50
|
Murphy TJ, Swail H, Jain J, Anderson M, Awadalla P, Behl L, Brown PE, Charlton CL, Colwill K, Drews SJ, Gingras AC, Hinshaw D, Jha P, Kanji JN, Kirsh VA, Lang ALS, Langlois MA, Lee S, Lewin A, O'Brien SF, Pambrun C, Skead K, Stephens DA, Stein DR, Tipples G, Van Caeseele PG, Evans TG, Oxlade O, Mazer BD, Buckeridge DL. The evolution of SARS-CoV-2 seroprevalence in Canada: a time-series study, 2020-2023. CMAJ 2023; 195:E1030-E1037. [PMID: 37580072 PMCID: PMC10426348 DOI: 10.1503/cmaj.230249] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND During the first year of the COVID-19 pandemic, the proportion of reported cases of COVID-19 among Canadians was under 6%. Although high vaccine coverage was achieved in Canada by fall 2021, the Omicron variant caused unprecedented numbers of infections, overwhelming testing capacity and making it difficult to quantify the trajectory of population immunity. METHODS Using a time-series approach and data from more than 900 000 samples collected by 7 research studies collaborating with the COVID-19 Immunity Task Force (CITF), we estimated trends in SARS-CoV-2 seroprevalence owing to infection and vaccination for the Canadian population over 3 intervals: prevaccination (March to November 2020), vaccine roll-out (December 2020 to November 2021), and the arrival of the Omicron variant (December 2021 to March 2023). We also estimated seroprevalence by geographical region and age. RESULTS By November 2021, 9.0% (95% credible interval [CrI] 7.3%-11%) of people in Canada had humoral immunity to SARS-CoV-2 from an infection. Seroprevalence increased rapidly after the arrival of the Omicron variant - by Mar. 15, 2023, 76% (95% CrI 74%-79%) of the population had detectable antibodies from infections. The rapid rise in infection-induced antibodies occurred across Canada and was most pronounced in younger age groups and in the Western provinces: Manitoba, Saskatchewan, Alberta and British Columbia. INTERPRETATION Data up to March 2023 indicate that most people in Canada had acquired antibodies against SARS-CoV-2 through natural infection and vaccination. However, given variations in population seropositivity by age and geography, the potential for waning antibody levels, and new variants that may escape immunity, public health policy and clinical decisions should be tailored to local patterns of population immunity.
Collapse
Affiliation(s)
- Tanya J Murphy
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Hanna Swail
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Jaspreet Jain
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Maureen Anderson
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Philip Awadalla
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Lesley Behl
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Patrick E Brown
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Carmen L Charlton
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Karen Colwill
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Steven J Drews
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Anne-Claude Gingras
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Deena Hinshaw
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Prabhat Jha
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Jamil N Kanji
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Victoria A Kirsh
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Amanda L S Lang
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Marc-André Langlois
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Stephen Lee
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Antoine Lewin
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Sheila F O'Brien
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Chantale Pambrun
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Kimberly Skead
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - David A Stephens
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que.
| | - Derek R Stein
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Graham Tipples
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Paul G Van Caeseele
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Timothy G Evans
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Olivia Oxlade
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - Bruce D Mazer
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| | - David L Buckeridge
- COVID-19 Immunity Task Force (Murphy, Swail, Jain, Evans, Oxlade, Mazer, Buckeridge), School of Population and Global Health, McGill University, Montréal, Que.; Department of Community Health and Epidemiology (Anderson, Behl), University of Saskatchewan; Saskatchewan Health Authority (Anderson), Population Health, Saskatoon, Sask.; Department of Molecular Genetics (Awadalla), University of Toronto; Department of Computational Biology (Awadalla), Ontario Institute for Cancer Research; Centre for Global Health Research (Brown), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Charlton, Hinshaw, Tipples), Alberta Precision Laboratories, University of Alberta Hospital; Department of Laboratory Medicine and Pathology (Charlton, Tipples), and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alta.; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital (Colwill, Gingras), Sinai Health System, Toronto, Ont.; Canadian Blood Services (Drews); Department of Laboratory Medicine and Pathology (O'Brien, Pambrun, Drews), University of Alberta, Edmonton, Alta.; Department of Molecular Genetics (Gingras, Skead), University of Toronto; Centre for Global Health Research (Jha), Unity Health Toronto and University of Toronto, Toronto, Ont.; Public Health Laboratory (Kanji), Alberta Precision Laboratories, Foothills Medical Centre, and Section of Medical Microbiology (Kanji), Department of Pathology and Laboratory Medicine, and Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alta.; Ontario Health Study (Kirsh, Skead), Ontario Institute for Cancer Research; Department of Molecular Genetics (Kirsh, Skead), and Dalla Lana School of Public Health (Kirsh), University of Toronto, Toronto, Ont.; Roy Romanow Provincial Lab (Lang), Saskatchewan Health Authority; College of Medicine (Lang), University of Saskatchewan, Saskatoon, Sask.; Department of Biochemistry, Microbiology and Immunology (Langlois), and Centre for Infection, Immunity and Inflammation (Langlois), University of Ottawa, Ottawa, Ont.; Division of Infectious Diseases-Regina (Lee), University of Saskatchewan; Saskatchewan Health Authority (Lee), Saskatoon, Sask.; Medical Affair and Innovation (Lewin), Héma-Québec, Montréal, Que.; Departments of Epidemiology and Community Medicine (O'Brien), and Pathology and Laboratory Medicine (Pambrun), Faculty of Medicine, University of Ottawa, Ottawa, Ont.; Department of Mathematics & Statistics (Stephens), McGill University, Montréal, Que.; Department of Medical Microbiology (Stein, Van Caeseele), University of Manitoba, and Cadham Provincial Laboratory, Winnipeg, Man.; School of Population and Global Health (Evans), McGill University; The Research Institute of the McGill University Health Centre (Mazer, Buckeridge), Montréal, Que
| |
Collapse
|