1
|
Tu R, Zheng H, Zheng B, Zhong Q, Qian J, Wu F, Shiokawa T, Ochiai Y, Kobayashi H, Waterbury QT, Zamechek LB, Takahashi S, Mizuno S, Huang C, Li P, Hayakawa Y, Wang TC. Tff2 marks gastric corpus progenitors that give rise to pyloric metaplasia/SPEM following injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.647847. [PMID: 40291734 PMCID: PMC12027342 DOI: 10.1101/2025.04.09.647847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In Brief Tu et al. show that Tff2 + corpus isthmus cells are TA progenitors, and they, not chief cells, are the primary source of SPEM following injury. Upon Kras mutation, these progenitors directly progress to dysplasia, bypassing metaplasia, highlighting them as a potential origin of gastric cancer. Highlights Tff2 + corpus cells are TA progenitors that give rise to secretory cells. Tff2 + progenitors, not chief cells, are the primary source of SPEM after injury. Kras-mutant Tff2 + progenitors progress directly to dysplasia, bypassing metaplasia. Multi-omics analysis reveals distinct trajectories for SPEM and gastric cancer. Abstract Figure Pyloric metaplasia, also known as spasmolytic polypeptide-expressing metaplasia (SPEM), arises in the corpus in response to oxyntic atrophy, but its origin and role in gastric cancer remain poorly understood. Using Tff2-CreERT knockin mice, we identified highly proliferative Tff2 + progenitors in the corpus isthmus that give rise to multiple secretory lineages, including chief cells. While lacking long-term self-renewal ability, Tff2 + corpus progenitors rapidly expand to form short-term SPEM following acute injury or loss of chief cells. Genetic ablation of Tff2 + progenitors abrogated SPEM formation, while genetic ablation of GIF + chief cells enhanced SPEM formation from Tff2 + progenitors. In response to H. pylori infection, Tff2 + progenitors progressed first to metaplasia and then later to dysplasia. Interestingly, induction of Kras G12D mutations in Tff2 + progenitors facilitated direct progression to dysplasia in part through the acquisition of stem cell-like properties. In contrast, Kras-mutated SPEM and chief cells were not able to progress to dysplasia. Tff2 mRNA was downregulated in isthmus cells during progression to dysplasia. Single-cell RNA sequencing and spatial transcriptomics of human tissues revealed distinct differentiation trajectories for SPEM and gastric cancer. These findings challenge the conventional interpretation of the stepwise progression through metaplasia and instead identify Tff2 + progenitor cells as potential cells of origin for SPEM and possibly for gastric cancer.
Collapse
|
2
|
Brown JW, Lin X, Nicolazzi GA, Liu X, Nguyen T, Radyk MD, Burclaff J, Mills JC. Cathartocytosis: Jettisoning of Unwanted Material during Cellular Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.11.598489. [PMID: 38915707 PMCID: PMC11195262 DOI: 10.1101/2024.06.11.598489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Injury can cause differentiated cells to undergo massive reprogramming to become proliferative to repair tissue via a cellular program called paligenosis. Gastric digestive-enzyme-secreting chief cells use paligenosis to reprogram into progenitor-like Spasmolytic-Polypeptide Expressing Metaplasia (SPEM) cells. Stage 1 of paligenosis is the downscaling of mature cell architecture via a process involving lysosomes. Here, we noticed that sulfated glycoproteins were not only digested during paligenosis but also excreted into the gland lumen. Various genetic and pharmacological approaches showed that endoplasmic reticulum membranes and secretory granule cargo were also excreted and that the process proceeded in parallel with, but was mechanistically independent of autophagy. 3-dimensional light and electron-microscopy demonstrated that excretion occurred via unique, complex, multi-chambered invaginations of the apical plasma membrane. As this lysosome-independent cell cleansing process does not seem to have been priorly described, we termed it "cathartocytosis". Cathartocytosis allows a cell to rapidly eject excess material without waiting for autophagic and lysosomal digestion. We speculate the ejection of sulfated glycoproteins would aid in downscaling and might also help bind and flush pathogens away from tissue.
Collapse
|
3
|
Trinh VQH, Ankenbauer KE, Torbit SM, Liu J, Batardiere M, Kumar B, Maurer HC, Revetta F, Chen Z, Kruse A, Judd A, Copeland C, Wong J, Ben-Levy O, Jarvis B, Brown M, Brown JW, Das K, Makino Y, Spraggins JM, Lau K, Azadi P, Maitra A, Tan MCB, DelGiorno KE. Mutant GNAS drives a pyloric metaplasia with tumor suppressive glycans in intraductal papillary mucinous neoplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.25.581948. [PMID: 38464029 PMCID: PMC10925208 DOI: 10.1101/2024.02.25.581948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND & AIMS Intraductal Papillary Mucinous Neoplasms (IPMNs) are cystic lesions and bona fide precursors for pancreatic ductal adenocarcinoma (PDAC). Recent studies have shown that pancreatic precancer is characterized by a transcriptomic program similar to gastric metaplasia. The aims of this study were to assay IPMN for pyloric markers, to identify molecular drivers, and to determine a functional role for this program in the pancreas. METHODS Pyloric marker expression was evaluated by RNA-seq and multiplex immunostaining in patient samples. Cell lines and organoids expressing KrasG12D +/- GNASR201C underwent RNA sequencing. A PyScenic-based regulon analysis was performed to identify molecular drivers, and candidates were evaluated by RNA-seq, immunostaining, and small interfering RNA knockdown. Glycosylation profiling was performed to identify GNASR201C-driven changes. Glycan abundance was evaluated in patient samples. RESULTS Pyloric markers were identified in human IPMN. GNASR201C drove expression of this program as well as an indolent phenotype characterized by distinct glycosyltransferase changes. Glycan profiling identified an increase in LacdiNAcs and loss of pro-tumorigenic Lewis antigens. Knockdown of transcription factors Spdef or Creb3l1 or chitinase treatment reduced LacdiNAc deposition and reversed the indolent phenotype. LacdiNAc and 3-sulfoLeA/C abundance discriminated low from high grade patient IPMN. CONCLUSION GNASR201C drives an indolent phenotype in IPMN by amplifying a differentiated, pyloric phenotype through SPDEF/CREB3L1 which is characterized by distinct glycans. Acting as a glycan rheostat, mutant GNAS elevates LacdiNAcs at the expense of pro-tumorigenic acidic Lewis epitopes, inhibiting cancer cell invasion and disease progression. LacdiNAc and 3-Sulfo-LeA/C are mutually exclusive and may serve as markers of disease progression.
Collapse
|
4
|
Hoft SG, Brennan M, Carrero JA, Jackson NM, Pretorius CA, Bigley TM, Sáenz JB, DiPaolo RJ. Unveiling Cancer-Related Metaplastic Cells in Both Helicobacter pylori Infection and Autoimmune Gastritis. Gastroenterology 2025; 168:53-67. [PMID: 39236896 PMCID: PMC11663102 DOI: 10.1053/j.gastro.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND & AIMS Gastric metaplasia may arise as a consequence of chronic inflammation and is associated with an increased risk of gastric cancer development. Although Helicobacter pylori (Hp) infection and autoimmune gastritis (AIG) both induce gastric metaplasia, possible distinctions in resulting metaplastic cells and their respective cancer risks requires further investigation. METHODS Using both mouse models and human participants, we scrutinized the metaplasia originating from Hp infection and AIG. Gastric pathology and metaplasia were examined through histopathologic assessment. Molecular features of metaplastic cells were defined using single-cell transcriptomics in murine models of Hp infection and AIG, as well as in human biopsy specimens from patients with Hp infection and AIG. Expression of a newly defined cancer-related metaplastic biomarker was confirmed through immunofluorescence. RESULTS Metaplasia in Hp infection and AIG displayed comparable histopathologic and transcriptional features. Diverse metaplastic subtypes were identified across both disease settings, with subtle differences in the prevalence of certain subtypes between inflammatory contexts. Notably, Hp infection did not drive a unique metaplastic cell phenotype. One metaplastic subtype, which resembled incomplete intestinal metaplasia and shared transcriptional features with gastric cancer, was identified in both diseases. This cancer-like metaplastic subtype was characterized by expression of the cancer-associated biomarker ANPEP/CD13. CONCLUSION Both Hp infection and AIG trigger a diverse array of metaplastic cell types. Identification of a cancer-related metaplastic cell uniquely expressing ANPEP/CD13, present in both Hp- and AIG-induced gastritis, indicates the carcinogenic capacity of both diseases. This discovery can guide early detection and risk stratification for patients with chronic gastritis.
Collapse
Affiliation(s)
- Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michelle Brennan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Javier A Carrero
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Nicholas M Jackson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Challen A Pretorius
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Tarin M Bigley
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - José B Sáenz
- Division of Gastroenterology, Departments of Medicine and Molecular Cell Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
5
|
Ye Q, Zhu Y, Ma Y, Wang Z, Xu G. Emerging role of spasmolytic polypeptide-expressing metaplasia in gastric cancer. J Gastrointest Oncol 2024; 15:2673-2683. [PMID: 39816029 PMCID: PMC11732338 DOI: 10.21037/jgo-24-508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer (GC) ranks among the top five most diagnosed cancers globally, with particularly high incidence and mortality rates observed in Asian regions. Despite certain advancements achieved through early screening and treatment strategies in many countries, GC continues to pose a significant public health challenge. Approximately 20% of patients infected with Helicobacter pylori develop precancerous lesions, among which metaplasia is the most critical. Except for intestinal metaplasia (IM), which is characterized by goblet cells appearing in the stomach glands, one type of mucous cell metaplasia, spasmolytic polypeptide-expressing metaplasia (SPEM), has attracted much attention. SPEM represents a specific epithelial cell alteration within the gastric mucosa, characterized by the expressing trefoil factor 2 (TFF2) in basal glands, resembling the basal metaplasia of deep antral gland cells. It primarily arises from the transdifferentiation of mature chief cells, mucous neck cells (MNCs), or isthmus stem cells. SPEM is commonly regarded as a precursor lesion in the development of gastric inflammation and subsequent carcinogenesis. The formation of SPEM is intricately associated with chronic gastric inflammation, Helicobacter pylori infection, and various other environmental and genetic factors. Recently, with the profound exploration of the biological and molecular mechanisms underlying SPEM, a deeper understanding of its role in GC initiation and progression has emerged. This review summarizes the role, molecular mechanisms, and clinical significance of SPEM in the onset and progression of GC.
Collapse
Affiliation(s)
- Qiange Ye
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanmei Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichun Ma
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhangding Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Makino Y, Rajapakshe KI, Chellakkan Selvanesan B, Okumura T, Date K, Dutta P, Abou-Elkacem L, Sagara A, Min J, Sans M, Yee N, Siemann MJ, Enriquez J, Smith P, Bhattacharya P, Kim M, Dede M, Hart T, Maitra A, Thege FI. Metabolic reprogramming by mutant GNAS creates an actionable dependency in intraductal papillary mucinous neoplasms of the pancreas. Gut 2024; 74:75-88. [PMID: 39277181 PMCID: PMC12014225 DOI: 10.1136/gutjnl-2024-332412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Oncogenic 'hotspot' mutations of KRAS and GNAS are two major driver alterations in intraductal papillary mucinous neoplasms (IPMNs), which are bona fide precursors to pancreatic ductal adenocarcinoma. We previously reported that pancreas-specific Kras G12D and Gnas R201C co-expression in p48Cre; KrasLSL-G12D; Rosa26LSL-rtTA; Tg (TetO-GnasR201C) mice ('Kras;Gnas' mice) caused development of cystic lesions recapitulating IPMNs. OBJECTIVE We aim to unveil the consequences of mutant Gnas R201C expression on phenotype, transcriptomic profile and genomic dependencies. DESIGN We performed multimodal transcriptional profiling (bulk RNA sequencing, single-cell RNA sequencing and spatial transcriptomics) in the 'Kras;Gnas' autochthonous model and tumour-derived cell lines (Kras;Gnas cells), where Gnas R201C expression is inducible. A genome-wide CRISPR/Cas9 screen was conducted to identify potential vulnerabilities in KrasG12D;GnasR201C co-expressing cells. RESULTS Induction of Gnas R201C-and resulting G(s)alpha signalling-leads to the emergence of a gene signature of gastric (pyloric type) metaplasia in pancreatic neoplastic epithelial cells. CRISPR screening identified the synthetic essentiality of glycolysis-related genes Gpi1 and Slc2a1 in Kras G12D;Gnas R201C co-expressing cells. Real-time metabolic analyses in Kras;Gnas cells and autochthonous Kras;Gnas model confirmed enhanced glycolysis on Gnas R201C induction. Induction of Gnas R201C made Kras G12D expressing cells more dependent on glycolysis for their survival. Protein kinase A-dependent phosphorylation of the glycolytic intermediate enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) was a driver of increased glycolysis on Gnas R201C induction. CONCLUSION Multiple orthogonal approaches demonstrate that Kras G12D and Gnas R201C co-expression results in a gene signature of gastric pyloric metaplasia and glycolytic dependency during IPMN pathogenesis. The observed metabolic reprogramming may provide a potential target for therapeutics and interception of IPMNs.
Collapse
Affiliation(s)
- Yuki Makino
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Kimal I Rajapakshe
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Benson Chellakkan Selvanesan
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Takashi Okumura
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Kenjiro Date
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | | | - Lotfi Abou-Elkacem
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Akiko Sagara
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Jimin Min
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Marta Sans
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Nathaniel Yee
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Megan J Siemann
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Jose Enriquez
- Cancer Systems Imaging, UTMDACC, Houston, Texas, USA
| | | | | | - Michael Kim
- Surgical Oncology, UTMDACC, Houston, Texas, USA
| | - Merve Dede
- Bioinformatics & Computational Biology, UTMDACC, Houston, Texas, USA
| | - Traver Hart
- Bioinformatics & Computational Biology, UTMDACC, Houston, Texas, USA
- Department of Cancer Biology, UTMDACC, Houston, Texas, USA
| | - Anirban Maitra
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Fredrik Ivar Thege
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| |
Collapse
|
7
|
Delgado-Guillena P, Jimeno M, López-Nuñez A, Córdova H, Fernández-Esparrach G. The endoscopic model for gastric carcinogenesis and Helicobacter pylori infection: A potential visual mind-map during gastroscopy examination. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502214. [PMID: 38844201 DOI: 10.1016/j.gastrohep.2024.502214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Helicobacter pylori (Hp) is the main trigger of chronic gastric atrophy and the main leading cause of gastric cancer. Hp infects the normal gastric mucosa and can lead to chronic inflammation, glandular atrophy, intestinal metaplasia, dysplasia and finally adenocarcinoma. Chronic inflammation and gastric atrophy associated with Hp infection appear initially in the distal part of the stomach (the antrum) before progressing to the proximal part (the corpus-fundus). In recent years, endoscopic developments have allowed for the characterization of various gastric conditions including the normal mucosa (pyloric/fundic gland pattern and regular arrangement of collecting venules), Hp-related gastritis (Kyoto classification), glandular atrophy (Kimura-Takemoto classification), intestinal metaplasia (Endoscopic Grading of Gastric Intestinal Metaplasia), and dysplasia/adenocarcinoma (Vessel plus Surface classification). Despite being independent classifications, all these scales can be integrated into a single model: the endoscopic model for gastric carcinogenesis. This model would assist endoscopists in comprehending the process of gastric carcinogenesis and conducting a systematic examination during gastroscopy. Having this model in mind would enable endoscopists to promptly recognize the implications of Hp infection and the potential patient's risk of developing gastric cancer.
Collapse
Affiliation(s)
| | - Mireya Jimeno
- Department of Pathology, Hospital of Germans Trias i Pujol, Badalona, Spain
| | | | - Henry Córdova
- Department of Gastroenterology, Hospital Clinic of Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Gloria Fernández-Esparrach
- Department of Gastroenterology, Hospital Clinic of Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| |
Collapse
|
8
|
Sejben A, Bàthori Á, Hegedűs F, Vasas B, Lauwers GY, Kővári B. Gastric-like (pseudopyloric and pseudofoveolar) metaplasia and Paneth cell hyperplasia-neglected histological features of chronic ileal inflammation. Virchows Arch 2024:10.1007/s00428-024-03954-x. [PMID: 39496819 DOI: 10.1007/s00428-024-03954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024]
Abstract
Architectural distortion and basal plasmacytosis are the most widely recognized histologic features of chronic ileal inflammation. However, these features might be difficult to assess in small, poorly oriented, or superficial biopsies. Additional features of chronic mucosal damage, including pseudopyloric or pseudofoveolar metaplasia and Paneth cell hyperplasia, have been less commonly reported, and their broader appreciation could facilitate the diagnosis of chronic ileal inflammatory conditions. The prevalence of gastric-like (pseudopyloric and pseudofoveolar) metaplasia and Paneth cell hyperplasia was evaluated in 102 ileal biopsies obtained from patients with Crohn's disease (n = 47), ulcerative colitis with endoscopically normal ileum (n = 20) or with backwash ileitis (n = 20), and nonsteroidal anti-inflammatory drugs- (NSAIDs-) induced ileitis (n = 15). Gastric-like metaplasia was identified in 23% of CD and 13% of NSAID-induced ileitis cases, whereas it was absent among all ulcerative colitis cases. Pseudopyloric metaplasia, pseudofoveolar metaplasia, or a combination of both was documented in 13%, 2%, and 9% of Crohn's disease cases, respectively. NSAID-associated cases showed only pseudopyloric metaplasia. Paneth cell hyperplasia was detected in 43% of Crohn's disease cases, 13% of NSAID-induced ileitis cases, and 5% of backwash ileitis cases. Accordingly, pseudofoveolar metaplasia, pseudopyloric metaplasia, and Paneth cell hyperplasia are not uncommon in conditions causing chronic ileal inflammation. They are most frequently detected in Crohn's disease, but may also be present in NSAID-induced ileitis, whereas they are significantly less common in backwash ileitis and absent in normal ileum. Given the surface localization of pseudofoveolar metaplasia, its identification can be particularly helpful when dealing with poorly oriented or superficial samples.
Collapse
Affiliation(s)
- Anita Sejben
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, 2 Állomás Utca, Szeged, Hungary, 6725
| | - Ágnes Bàthori
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, 2 Állomás Utca, Szeged, Hungary, 6725
| | - Fanni Hegedűs
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, 2 Állomás Utca, Szeged, Hungary, 6725
| | - Béla Vasas
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, 2 Állomás Utca, Szeged, Hungary, 6725
| | - Gregory Y Lauwers
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Bence Kővári
- Department of Pathology, Mass General Brigham, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Oliver AJ, Huang N, Bartolome-Casado R, Li R, Koplev S, Nilsen HR, Moy M, Cakir B, Polanski K, Gudiño V, Melón-Ardanaz E, Sumanaweera D, Dimitrov D, Milchsack LM, FitzPatrick MEB, Provine NM, Boccacino JM, Dann E, Predeus AV, To K, Prete M, Chapman JA, Masi AC, Stephenson E, Engelbert J, Lobentanzer S, Perera S, Richardson L, Kapuge R, Wilbrey-Clark A, Semprich CI, Ellams S, Tudor C, Joseph P, Garrido-Trigo A, Corraliza AM, Oliver TRW, Hook CE, James KR, Mahbubani KT, Saeb-Parsy K, Zilbauer M, Saez-Rodriguez J, Høivik ML, Bækkevold ES, Stewart CJ, Berrington JE, Meyer KB, Klenerman P, Salas A, Haniffa M, Jahnsen FL, Elmentaite R, Teichmann SA. Single-cell integration reveals metaplasia in inflammatory gut diseases. Nature 2024; 635:699-707. [PMID: 39567783 PMCID: PMC11578898 DOI: 10.1038/s41586-024-07571-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2024] [Indexed: 11/22/2024]
Abstract
The gastrointestinal tract is a multi-organ system crucial for efficient nutrient uptake and barrier immunity. Advances in genomics and a surge in gastrointestinal diseases1,2 has fuelled efforts to catalogue cells constituting gastrointestinal tissues in health and disease3. Here we present systematic integration of 25 single-cell RNA sequencing datasets spanning the entire healthy gastrointestinal tract in development and in adulthood. We uniformly processed 385 samples from 189 healthy controls using a newly developed automated quality control approach (scAutoQC), leading to a healthy reference atlas with approximately 1.1 million cells and 136 fine-grained cell states. We anchor 12 gastrointestinal disease datasets spanning gastrointestinal cancers, coeliac disease, ulcerative colitis and Crohn's disease to this reference. Utilizing this 1.6 million cell resource (gutcellatlas.org), we discover epithelial cell metaplasia originating from stem cells in intestinal inflammatory diseases with transcriptional similarity to cells found in pyloric and Brunner's glands. Although previously linked to mucosal healing4, we now implicate pyloric gland metaplastic cells in inflammation through recruitment of immune cells including T cells and neutrophils. Overall, we describe inflammation-induced changes in stem cells that alter mucosal tissue architecture and promote further inflammation, a concept applicable to other tissues and diseases.
Collapse
Affiliation(s)
- Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Raquel Bartolome-Casado
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, US
| | - Simon Koplev
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Hogne R Nilsen
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Madelyn Moy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Victoria Gudiño
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Elisa Melón-Ardanaz
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | | | - Daniel Dimitrov
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | | | - Michael E B FitzPatrick
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas M Provine
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Ken To
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Justin Engelbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Sebastian Lobentanzer
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Rakeshlal Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | - Sophie Ellams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Alba Garrido-Trigo
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ana M Corraliza
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Thomas R W Oliver
- Department of Histopathology and Cytology, Cambridge University Hospitals, Cambridge, UK
| | | | - Kylie R James
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Matthias Zilbauer
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Cambridge, UK
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Marte Lie Høivik
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen S Bækkevold
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Frode L Jahnsen
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- CIFAR Macmillan Multi-scale Human Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Feakins RM. Inflammatory disorders of the large intestine. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2024:709-857. [DOI: 10.1002/9781119423195.ch35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Contreras-Panta EW, Lee SH, Won Y, Norlander AE, Simmons AJ, Peebles RS, Lau KS, Choi E, Goldenring JR. Interleukin 13 Promotes Maturation and Proliferation in Metaplastic Gastroids. Cell Mol Gastroenterol Hepatol 2024; 18:101366. [PMID: 38815928 PMCID: PMC11292363 DOI: 10.1016/j.jcmgh.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND & AIMS Type 2 innate lymphoid cells (ILC2s) and interleukin-13 (IL-13) promote the onset of spasmolytic polypeptide-expressing metaplasia (SPEM) cells. However, little is known about molecular effects of IL-13 in SPEM cells. We now sought to establish a reliable organoid model, Meta1 gastroids, to model SPEM cells in vitro. We evaluated cellular and molecular effects of ILC2s and IL-13 on maturation and proliferation of SPEM cells. METHODS We performed single-cell RNA sequencing to characterize Meta1 gastroids, which were derived from stomachs of Mist1-Kras transgenic mice that displayed pyloric metaplasia. Cell sorting was used to isolate activated ILC2s from stomachs of IL-13-tdTomato reporter mice treated with L635. Three-dimensional co-culture was used to determine the effects of ILC2s on Meta1 gastroids. Mouse normal or metaplastic (Meta1) and human metaplastic gastroids were cultured with IL-13 to evaluate cell responses. Air-Liquid Interface culture was performed to test long-term culture effects of IL-13. In silico analysis determined possible STAT6-binding sites in gene promoter regions. STAT6 inhibition was performed to corroborate STAT6 role in SPEM cells maturation. RESULTS Meta1 gastroids showed the characteristics of SPEM cell lineages in vitro even after several passages. We demonstrated that co-culture with ILC2s or IL-13 treatment can induce phosphorylation of STAT6 in Meta1 and normal gastroids and promote the maturation and proliferation of SPEM cell lineages. IL-13 up-regulated expression of mucin-related proteins in human metaplastic gastroids. Inhibition of STAT6 blocked SPEM-related gene expression in Meta1 gastroids and maturation of SPEM in both normal and Meta1 gastroids. CONCLUSIONS IL-13 promotes the maturation and proliferation of SPEM cells consistent with gastric mucosal regeneration.
Collapse
Affiliation(s)
- Ela W Contreras-Panta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Su-Hyung Lee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yoonkyung Won
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Allison E Norlander
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
12
|
Arevalo F, Rayme S, Ramírez R, Rolando R, Fustamante J, Monteghirfo M, Chavez R, Monge E. Immunohistochemistry and real-time Polymerase Chain Reaction: importance in the diagnosis of intestinal tuberculosis in a Peruvian population. BMC Gastroenterol 2024; 24:166. [PMID: 38755577 PMCID: PMC11097500 DOI: 10.1186/s12876-024-03235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION The diagnosis of intestinal tuberculosis is challenging even nowadays. This study aims to report the positivity rates of new diagnostic methods such as immunohistochemistry and Real-Time Polymerase Chain Reaction in patients with intestinal tuberculosis, as well as describe the pathological and endoscopic features of intestinal tuberculosis in our population. METHODS This was a retrospective observational study conducted in patients diagnosed with intestinal tuberculosis, between 2010 to 2023 from the Hospital Nacional Daniel Alcides Carrion and a Private Pathology Center, both located in Peru. Clinical data was obtained, histologic features were independently re-evaluated by three pathologists; and immunohistochemistry and real-time Polymerase Chain Reaction evaluation were performed. The 33 patients with intestinal tuberculosis who fulfilled the inclusion criteria were recruited. RESULTS Immunohistochemistry was positive in 90.9% of cases, while real-time Polymerase Chain Reaction was positive in 38.7%. The ileocecal region was the most affected area (33.3%), and the most frequent endoscopic appearance was an ulcer (63.6%). Most of the granulomas were composed solely of epithelioid histiocytes (75.8%). Crypt architectural disarray was the second most frequent histologic finding (78.8%) after granulomas, but most of them were mild. CONCLUSION Since immunohistochemistry does not require an intact cell wall, it demonstrates higher sensitivity compared to Ziehl-Neelsen staining. Therefore, it could be helpful for the diagnosis of paucibacillary tuberculosis.
Collapse
Affiliation(s)
- Fernando Arevalo
- Pathology Department, Hospital Nacional Daniel A. Carrión, Callao, Lima, Perú.
- Histodiagnóstico Gastrointestinal Private Pathology Center, Lima, Perú.
- Universidad Nacional Mayor de San Marcos, Lima, Perú.
| | - Soledad Rayme
- Pathology Department, Hospital Nacional Daniel A. Carrión, Callao, Lima, Perú
- Histodiagnóstico Gastrointestinal Private Pathology Center, Lima, Perú
| | - Rocío Ramírez
- Pathology Department, Hospital Nacional Daniel A. Carrión, Callao, Lima, Perú
- Histodiagnóstico Gastrointestinal Private Pathology Center, Lima, Perú
| | - Romy Rolando
- Instituto de Medicina Legal y Ciencias Forenses - Perú, Lima, Perú
- Histodiagnóstico Gastrointestinal Private Pathology Center, Lima, Perú
| | - Jaime Fustamante
- Gastroenterology Department, Hospital Nacional Daniel A., Carrión, Lima, Perú
| | - Mario Monteghirfo
- Departamento de Ciencias Dinámicas, Facultad de Medicina, Instituto de Investigacion de Bioquímica y Nutrición Alberto Guzmán Barrón, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Rocio Chavez
- Gastroenterology Department, Hospital Nacional Adolfo Guevara Velasco EsSalud, Cuzco, Perú
- Universidad San Antonio Abad, Cuzco, Perú
- Instituto de Gastroenterologia del Sur, Cuzco, Perú
| | - Eduardo Monge
- Gastroenterology Department, Hospital Nacional Daniel A., Carrión, Lima, Perú
- Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
13
|
Delgado-de la Mora J, Montante-Montes de Oca D, Ángeles-Ángeles A, Quintanilla de Fend L, Martínez Benitez B. Indolent T-cell Lymphoproliferative Disorder of the Gastrointestinal Tract Mimicking Crohn's Disease. Cureus 2024; 16:e60467. [PMID: 38882977 PMCID: PMC11180528 DOI: 10.7759/cureus.60467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Indolent clonal T-cell lymphoproliferative disorder (iCTLD-GI)/indolent T-cell lymphoma of the gastrointestinal tract (iTLP-GI) poses diagnostic challenges, and despite its rarity, accurate diagnosis is crucial for appropriate management. We report the case of 34-year-old female with a 19-year history of gastrointestinal symptoms suggestive of inflammatory bowel disease (IBD). Subsequent evaluation revealed iCTLD-GI/iTLP-GI with extensive Crohn's disease-like morphological alterations, previously unreported. These macroscopic and microscopic aspects underscore the need for a comprehensive evaluation to avoid misdiagnosis with IBD. Additionally, molecular studies have identified potential therapeutic targets, highlighting the evolving management strategies. This case underscores the diagnostic complexity of iCTLD-GI/iTLP-GI, especially when the condition mimicks IBD such as Crohn's disease.
Collapse
Affiliation(s)
| | | | - Arturo Ángeles-Ángeles
- Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, MEX
| | | | - Braulio Martínez Benitez
- Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, MEX
| |
Collapse
|
14
|
Liu L, Fan XH, Tang XD. Revolutionizing Gastric Cancer Prevention: Novel Insights on Gastric Mucosal Inflammation-Cancer Transformation and Chinese Medicine. Chin J Integr Med 2024:10.1007/s11655-024-3806-5. [PMID: 38676828 DOI: 10.1007/s11655-024-3806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 04/29/2024]
Abstract
The progression from gastric mucosal inflammation to cancer signifies a pivotal event in the trajectory of gastric cancer (GC) development. Chinese medicine (CM) exhibits unique advantages and holds significant promise in inhibiting carcinogenesis of the gastric mucosa. This review intricately examines the critical pathological events during the transition from gastric mucosal inflammation-cancer transformation (GMICT), with a particular focus on pathological evolution mechanisms of spasmolytic polypeptide-expressing metaplasia (SPEM). Moreover, it investigates the pioneering applications and advancements of CM in intervening within the medical research domain of precancerous transformations leading to GC. Furthermore, the analysis extends to major shortcomings and challenges confronted by current research in gastric precancerous lesions, and innovative studies related to CM are presented. We offer a highly succinct yet optimistic outlook on future developmental trends. This paper endeavors to foster a profound understanding of forefront dynamics in GMICT research and scientific implications of modernizing CM. It also introduces a novel perspective for establishing a collaborative secondary prevention system for GC that integrates both Western and Chinese medicines.
Collapse
Affiliation(s)
- Lin Liu
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiao-Hui Fan
- School of Pharmacy, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang Province, 314100, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
15
|
Sohn Y, Flores Semyonov B, El-Mekkoussi H, Wright CVE, Kaestner KH, Choi E, Goldenring JR. Telocyte Recruitment During the Emergence of a Metaplastic Niche in the Stomach. Cell Mol Gastroenterol Hepatol 2024; 18:101347. [PMID: 38670488 PMCID: PMC11177065 DOI: 10.1016/j.jcmgh.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND & AIM Telocytes, a recently identified type of subepithelial interstitial cell, have garnered attention for their potential roles in tissue homeostasis and repair. However, their contribution to gastric metaplasia remains unexplored. This study elucidates the role of telocytes in the development of metaplasia within the gastric environment. METHODS To investigate the presence and behavior of telocytes during metaplastic transitions, we used drug-induced acute injury models (using DMP-777 or L635) and a genetically engineered mouse model (Mist1-Kras). Lineage tracing via the Foxl1-CreERT2;R26R-tdTomato mouse model was used to track telocyte migratory dynamics. Immunofluorescence staining was used to identify telocyte markers and evaluate their correlation with metaplasia-related changes. RESULTS We confirmed the existence of FOXL1+/PDGFRα+ double-positive telocytes in the stomach's isthmus region. As metaplasia developed, we observed a marked increase in the telocyte population. The distribution of telocytes expanded beyond the isthmus to encompass the entire gland and closely reflected the expansion of the proliferative cell zone. Rather than a general response to mucosal damage, the shift in telocyte distribution was associated with the establishment of a metaplastic cell niche at the gland base. Furthermore, lineage-tracing experiments highlighted the active recruitment of telocytes to the emerging metaplastic cell niche, and we observed expression of Wnt5a, Bmp4, and Bmp7 in PDGFRα+ telocytes. CONCLUSIONS These results suggest that telocytes contribute to the evolution of a gastric metaplasia niche. The dynamic behavior of these stromal cells, their responsiveness to metaplastic changes, and potential association with Wnt5a, Bmp4, and Bmp7 signaling emphasize the significance of telocytes in tissue adaptation and repair.
Collapse
Affiliation(s)
- Yoojin Sohn
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Blake Flores Semyonov
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hilana El-Mekkoussi
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Klaus H Kaestner
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eunyoung Choi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
16
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
17
|
Feakins R, Borralho Nunes P, Driessen A, Gordon IO, Zidar N, Baldin P, Christensen B, Danese S, Herlihy N, Iacucci M, Loughrey MB, Magro F, Mookhoek A, Svrcek M, Rosini F. Definitions of Histological Abnormalities in Inflammatory Bowel Disease: an ECCO Position Paper. J Crohns Colitis 2024; 18:175-191. [PMID: 37607017 PMCID: PMC10896637 DOI: 10.1093/ecco-jcc/jjad142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Histological assessment of endoscopic biopsies in inflammatory bowel disease [IBD] plays an important role in clinical management, investigative studies, and clinical trials. Scoring schemes consisting of multiple histological items and offering considerable precision are widely available. However, definitions of histological abnormalities are often inconsistent. Furthermore, interobserver variability for their recognition and assessment may be high. The European Crohn's and Colitis Organisation [ECCO] formed an expert panel to explore definitions of histological abnormalities in IBD, with the aim of improving the quality of diagnosis and facilitating development of scoring schemes. The process confirmed that the current definitions often have no evidence base and vary between sources. Using available evidence and expert knowledge, the panel produced a series of ECCO consensus position statements on histological features in IBD.
Collapse
Affiliation(s)
- Roger Feakins
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust; University College London; London, UK
| | - Paula Borralho Nunes
- Department of Pathology, Hospital Cuf Descobertas, Lisboa and Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ann Driessen
- Department of Pathology, University Hospital Antwerp, University of Antwerp, Edegem, Belgium
| | - Ilyssa O Gordon
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Pamela Baldin
- Department of Pathology, Cliniques Universitaires St-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Britt Christensen
- Royal Melbourne Hospital Melbourne, Department of Gastroenterology, Parkville; University of Melbourne, Department of Medicine, Melbourne, Victoria, Australia
| | - Silvio Danese
- IRCCS Ospedale and University Vita-Salute San Raffaele, Department of Gastroenterology, Milan, Italy
| | - Naoimh Herlihy
- Department of Cellular Pathology, University College London Hospital NHS Foundation Trust, London, UK
| | - Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Maurice B Loughrey
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast; Department of Cellular Pathology, Royal Victoria Hospital, Belfast Health and Social Care Trust;Belfast,UK
| | - Fernando Magro
- CINTESIS@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Aart Mookhoek
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Magali Svrcek
- Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Department of Pathology, Paris, France
| | - Francesca Rosini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
18
|
Rugge M, Genta RM, Malfertheiner P, Dinis-Ribeiro M, El-Serag H, Graham DY, Kuipers EJ, Leung WK, Park JY, Rokkas T, Schulz C, El-Omar EM. RE.GA.IN.: the Real-world Gastritis Initiative-updating the updates. Gut 2024; 73:407-441. [PMID: 38383142 DOI: 10.1136/gutjnl-2023-331164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 02/23/2024]
Abstract
At the end of the last century, a far-sighted 'working party' held in Sydney, Australia addressed the clinicopathological issues related to gastric inflammatory diseases. A few years later, an international conference held in Houston, Texas, USA critically updated the seminal Sydney classification. In line with these initiatives, Kyoto Global Consensus Report, flanked by the Maastricht-Florence conferences, added new clinical evidence to the gastritis clinicopathological puzzle.The most relevant topics related to the gastric inflammatory diseases have been addressed by the Real-world Gastritis Initiative (RE.GA.IN.), from disease definitions to the clinical diagnosis and prognosis. This paper reports the conclusions of the RE.GA.IN. consensus process, which culminated in Venice in November 2022 after more than 8 months of intense global scientific deliberations. A forum of gastritis scholars from five continents participated in the multidisciplinary RE.GA.IN. consensus. After lively debates on the most controversial aspects of the gastritis spectrum, the RE.GA.IN. Faculty amalgamated complementary knowledge to distil patient-centred, evidence-based statements to assist health professionals in their real-world clinical practice. The sections of this report focus on: the epidemiology of gastritis; Helicobacter pylori as dominant aetiology of environmental gastritis and as the most important determinant of the gastric oncogenetic field; the evolving knowledge on gastric autoimmunity; the clinicopathological relevance of gastric microbiota; the new diagnostic horizons of endoscopy; and the clinical priority of histologically reporting gastritis in terms of staging. The ultimate goal of RE.GA.IN. was and remains the promotion of further improvement in the clinical management of patients with gastritis.
Collapse
Affiliation(s)
- Massimo Rugge
- Department of Medicine-DIMED, University of Padova, Padua, Italy
- Azienda Zero, Veneto Tumour Registry, Padua, Italy
| | - Robert M Genta
- Gastrointestinal Pathology, Inform Diagnostics Research Institute, Dallas, Texas, USA
- Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Malfertheiner
- Medizinische Klinik und Poliklinik II, Ludwig Maximilian Universität Klinikum München, Munich, Germany
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Mario Dinis-Ribeiro
- Porto Comprehensive Cancer Center & RISE@CI-IPO, University of Porto, Porto, Portugal
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Hashem El-Serag
- Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
- Houston VA Health Services Research & Development Center of Excellence, Michael E DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - David Y Graham
- Department of Medicine, Michael E DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Ernst J Kuipers
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jin Young Park
- International Agency for Research on Cancer, Lyon, France
| | - Theodore Rokkas
- Gastroenterology, Henry Dunant Hospital Center, Athens, Greece
| | | | - Emad M El-Omar
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Contreras-Panta EW, Choi E, Goldenring JR. The Fibroblast Landscape in Stomach Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 17:671-678. [PMID: 38342299 PMCID: PMC10957461 DOI: 10.1016/j.jcmgh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Numerous recent studies using single cell RNA sequencing and spatial transcriptomics have shown the vast cell heterogeneity, including epithelial, immune, and stromal cells, present in the normal human stomach and at different stages of gastric carcinogenesis. Fibroblasts within the metaplastic and dysplastic mucosal stroma represent key contributors to the carcinogenic microenvironment in the stomach. The heterogeneity of fibroblast populations is present in the normal stomach, but plasticity within these populations underlies their alterations in association with both metaplasia and dysplasia. In this review, we summarize and discuss efforts over the past several years to study the fibroblast components in human stomach from normal to metaplasia, dysplasia, and cancer. In the stomach, myofibroblast populations increase during late phase carcinogenesis and are a source of matrix proteins. PDGFRA-expressing telocyte-like cells are present in normal stomach and expand during metaplasia and dysplasia in close proximity with epithelial lineages, likely providing support for both normal and metaplastic progenitor niches. The alterations in fibroblast transcriptional signatures across the stomach carcinogenesis process indicate that fibroblast populations are likely as plastic as epithelial populations during the evolution of carcinogenesis.
Collapse
Affiliation(s)
- Ela W Contreras-Panta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
20
|
Pateras IS, Igea A, Nikas IP, Leventakou D, Koufopoulos NI, Ieronimaki AI, Bergonzini A, Ryu HS, Chatzigeorgiou A, Frisan T, Kittas C, Panayiotides IG. Diagnostic Challenges during Inflammation and Cancer: Current Biomarkers and Future Perspectives in Navigating through the Minefield of Reactive versus Dysplastic and Cancerous Lesions in the Digestive System. Int J Mol Sci 2024; 25:1251. [PMID: 38279253 PMCID: PMC10816510 DOI: 10.3390/ijms25021251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.
Collapse
Affiliation(s)
- Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Ana Igea
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Mobile Genomes, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Danai Leventakou
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Nektarios I. Koufopoulos
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Argyro Ioanna Ieronimaki
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Anna Bergonzini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52 Stockholm, Sweden;
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Christos Kittas
- Department of Histopathology, Biomedicine Group of Health Company, 156 26 Athens, Greece;
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| |
Collapse
|
21
|
Tertychnyy AS, Protsenko DD, Pachuashvili NV, Nagornaya DP, Pavlov PV, Kiruhin AP, Fedorenko AA. Clinical and morphological characteristics of patients with chronic gastritis and high risk of gastric cancer. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:107-116. [DOI: 10.31146/1682-8658-ecg-217-9-107-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The purpose of this study is to conduct a clinical and morphological analysis of cases of chronic gastritis with a high risk of gastric cancer (GC). Materials and methods. The study included 26 cases of chronic atrophic gastritis of stages 3 and 4 with a high risk of developing GC according to the assessment using the OLGA system (Operative Link for Gastritis Assessment). The cases were diagnosed on material of gastric tissue biopsy in 2022. In total, 678 histological studies were performed during the year. Cases of chronic gastritis with a high risk of developing GC accounted for 3.8% of all chronic gastritis. Results. Cases of chronic gastritis with a high risk of developing GC were more often observed in older men (average age 67±12 years, ratio 2.25:1). Multifocal atrophic gastritis was in the first place in frequency of occurrence (61.5%), the connection with helicobacter infection was confirmed only in a third of cases (34.6%). Morphological changes were characterized by a predominant lesion of the antrum of the stomach and mixed complete and incomplete intestinal metaplasia. With the exception of one case in which pseudopancreatic metaplasia was detected in the antrum of the stomach, all cases of autoimmune gastritis (n=26) were assigned to stage 2 with a low risk of developing GC, which seems controversial to us. Conclusion. The results of our study showed a high percentage of pre-existing tumor lesions of the stomach in the group of chronic gastritis with a high risk of developing GC. Dysplasia was diagnosed in 5 out of 26 cases, GC with previously performed mucosectomy in 3 out of 26 cases. In addition, the patients had other tumor and precancerous lesions of the gastrointestinal tract. These data show the validity and practical value of using the OLGA system to identify high-risk groups for the development of tumors not only of the stomach, but also of gastrointestinal tumors of other localizations.
Collapse
Affiliation(s)
- A. S. Tertychnyy
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - D. D. Protsenko
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - N. V. Pachuashvili
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - D. P. Nagornaya
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - P. V. Pavlov
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. P. Kiruhin
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. A. Fedorenko
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
22
|
Zhang S, Shen Y, Liu H, Zhu D, Fang J, Pan H, Liu W. Inflammatory microenvironment in gastric premalignant lesions: implication and application. Front Immunol 2023; 14:1297101. [PMID: 38035066 PMCID: PMC10684945 DOI: 10.3389/fimmu.2023.1297101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Gastric precancerous lesions (GPL) are a major health concern worldwide due to their potential to progress to gastric cancer (GC). Understanding the mechanism underlying the transformation from GPL to GC can provide a fresh insight for the early detection of GC. Although chronic inflammation is prevalent in the GPL, how the inflammatory microenvironment monitored the progression of GPL-to-GC are still elusive. Inflammation has been recognized as a key player in the progression of GPL. This review aims to provide an overview of the inflammatory microenvironment in GPL and its implications for disease progression and potential therapeutic applications. We discuss the involvement of inflammation in the progression of GPL, highlighting Helicobacter pylori (H. pylori) as a mediator for inflammatory microenvironment and a key driver to GC progression. We explore the role of immune cells in mediating the progression of GPL, and focus on the regulation of inflammatory molecules in this disease. Furthermore, we discuss the potential of targeting inflammatory pathways for GPL. There are currently no specific drugs for GPL treatment, but traditional Chinese Medicine (TCM) and natural antioxidants, known as antioxidant and anti-inflammatory properties, exhibit promising effects in suppressing or reversing the progression of GPL. Finally, the challenges and future perspectives in the field are proposed. Overall, this review highlights the central role of the inflammatory microenvironment in the progression of GPL, paving the way for innovative therapeutic approaches in the future.
Collapse
Affiliation(s)
- Shengxiong Zhang
- Rehabilitation Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
- Department of Spleen and Stomach, GuangZhou Tianhe District Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Shen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- Science and Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
24
|
Takada H, Sasagawa Y, Yoshimura M, Tanaka K, Iwayama Y, Hayashi T, Isomura-Matoba A, Nikaido I, Kurisaki A. Single-cell transcriptomics uncovers EGFR signaling-mediated gastric progenitor cell differentiation in stomach homeostasis. Nat Commun 2023; 14:3750. [PMID: 37386010 PMCID: PMC10310803 DOI: 10.1038/s41467-023-39113-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Defects in gastric progenitor cell differentiation are associated with various gastric disorders, including atrophic gastritis, intestinal metaplasia, and gastric cancer. However, the mechanisms underlying the multilineage differentiation of gastric progenitor cells during healthy homeostasis remain poorly understood. Here, using a single-cell RNA sequencing method, Quartz-Seq2, we analyzed the gene expression dynamics of progenitor cell differentiation toward pit cell, neck cell, and parietal cell lineages in healthy adult mouse corpus tissues. Enrichment analysis of pseudotime-dependent genes and a gastric organoid assay revealed that EGFR-ERK signaling promotes pit cell differentiation, whereas NF-κB signaling maintains gastric progenitor cells in an undifferentiated state. In addition, pharmacological inhibition of EGFR in vivo resulted in a decreased number of pit cells. Although activation of EGFR signaling in gastric progenitor cells has been suggested as one of the major inducers of gastric cancers, our findings unexpectedly identified that EGFR signaling exerts a differentiation-promoting function, not a mitogenic function, in normal gastric homeostasis.
Collapse
Affiliation(s)
- Hitomi Takada
- Laboratory of Stem Cell Technologies, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
- Department of Functional Genome Informatics, Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Kaori Tanaka
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
- Department of Functional Genome Informatics, Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Ayako Isomura-Matoba
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan.
- Department of Functional Genome Informatics, Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan.
- Master's/Doctoral Program in Life Science Innovation (Bioinformatics), Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Akira Kurisaki
- Laboratory of Stem Cell Technologies, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara, Japan.
| |
Collapse
|
25
|
Nguyen T, Mills JC, Cho CJ. The coordinated management of ribosome and translation during injury and regeneration. Front Cell Dev Biol 2023; 11:1186638. [PMID: 37427381 PMCID: PMC10325863 DOI: 10.3389/fcell.2023.1186638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. Mills
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J. Cho
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
26
|
Maslenkina K, Mikhaleva L, Naumenko M, Vandysheva R, Gushchin M, Atiakshin D, Buchwalow I, Tiemann M. Signaling Pathways in the Pathogenesis of Barrett's Esophagus and Esophageal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24119304. [PMID: 37298253 DOI: 10.3390/ijms24119304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Barrett's esophagus (BE) is a premalignant lesion that can develop into esophageal adenocarcinoma (EAC). The development of Barrett's esophagus is caused by biliary reflux, which causes extensive mutagenesis in the stem cells of the epithelium in the distal esophagus and gastro-esophageal junction. Other possible cellular origins of BE include the stem cells of the mucosal esophageal glands and their ducts, the stem cells of the stomach, residual embryonic cells and circulating bone marrow stem cells. The classical concept of healing a caustic lesion has been replaced by the concept of a cytokine storm, which forms an inflammatory microenvironment eliciting a phenotypic shift toward intestinal metaplasia of the distal esophagus. This review describes the roles of the NOTCH, hedgehog, NF-κB and IL6/STAT3 molecular pathways in the pathogenesis of BE and EAC.
Collapse
Affiliation(s)
- Ksenia Maslenkina
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Liudmila Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Maxim Naumenko
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Rositsa Vandysheva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Michail Gushchin
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Dmitri Atiakshin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| |
Collapse
|
27
|
Kumagai K, Shimizu T, Nikaido M, Hirano T, Kakiuchi N, Takeuchi Y, Minamiguchi S, Sakurai T, Teramura M, Utsumi T, Hiramatsu Y, Nakanishi Y, Takai A, Miyamoto S, Ogawa S, Seno H. On the origin of gastric tumours: analysis of a case with intramucosal gastric carcinoma and oxyntic gland adenoma. J Pathol 2023; 259:362-368. [PMID: 36625379 DOI: 10.1002/path.6050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Most gastric cancers develop in inflamed gastric mucosa due to Helicobacter pylori infection, typically with metaplastic changes. However, the origins of gastric cancer remain unknown. Here, we present a case of intramucosal gastric carcinoma (IGC) and oxyntic gland adenoma (OGA) derived from spasmolytic polypeptide-expressing metaplasia (SPEM). Early gastric cancer adjacent to a polyp was found in the upper corpus of a 71-year-old woman without H. pylori infection and was endoscopically resected. Histological examination showed IGC and OGA, both of which had predominant MUC6 expression. Interestingly, gastric glands with enriched MUC6-positive mucous cells, referred to as SPEM, expanded between them. Whole-exome sequencing analysis revealed a truncating KRAS(G12D) mutation in IGC, OGA, and SPEM. In addition, TP53 and CDKN2A mutations and a loss of chromosome 17p were found in the IGC, whereas a GNAS mutation was observed in the OGA. These results indicated that IGC and OGA originated from the KRAS-mutated SPEM. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ken Kumagai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Nikaido
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Takeuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.,Clinical Bio Resource Center, Kyoto University Hospital, Kyoto, Japan
| | | | - Takaki Sakurai
- Department of Diagnostic Pathology, Kansai Electric Power Hospital, Osaka, Japan
| | - Mari Teramura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Utsumi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin'ichi Miyamoto
- Department of Gastroenterology and Hepatology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Liu L, Wang Y, Zhao Y, Zhang W, Liu J, Wang F, Wang P, Tang X. Global knowledge mapping and emerging trends in research between spasmolytic polypeptide-expressing metaplasia and gastric carcinogenesis: A bibliometric analysis from 2002 to 2022. Front Cell Infect Microbiol 2023; 12:1108378. [PMID: 36776551 PMCID: PMC9912936 DOI: 10.3389/fcimb.2022.1108378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/30/2023] Open
Abstract
Background Spasmolytic polypeptide expression metaplasia (SPEM) occurs in the corpus of the stomach and is closely related to inflammations caused by H. pylori infection. Recently, SPEM was suggested as one of the dubious precancerous lesions of gastric cancer (GC). Thus, further research on SPEM cell transdifferentiation and its underlying mechanisms could facilitate the development of new molecular targets improving the therapeutics of GC. Using bibliometrics, we analyzed publications, summarized the research hotspots and provided references for scientific researchers engaged in related research fields. Methods We searched the Web of Science Core Collection (WoSCC) for publications related to SPEM-GC from 2002 to 2022. The VOSviewer, SCImago, CiteSpace and R software were used to visualize and analyze the data. Gene targets identified in the keyword list were analyzed for functional enrichment using the KEGG and GO databases. Results Of the 292 articles identified in the initial search, we observed a stable trend in SPEM-GC research but rapid growth in the number of citations. The United States was the leader in terms of quality publications and international cooperation among them. The total number of articles published by Chinese scholars was second to the United States. Additionally, despite its low centrality and average citation frequency, China has become one of the world's most dynamic countries in academics. In terms of productivity, Vanderbilt University was identified as the most productive institution. Further, we also observed that Gastroenterology was the highest co-cited journal, and Goldenring Jr. was the most prolific author with the largest centrality. Conclusion SPEM could serve as an initial step in diagnosing gastric precancerous lesions. Current hotspots and frontiers of research include SPEM cell lineage differentiation, interaction with H. pylori, disturbances of the mucosal microenvironment, biomarkers, clinical diagnosis and outcomes of SPEM, as well as the development of proliferative SPEM animal models. However, further research and collaboration are still required. The findings presented in this study can be used as reference for the research status of SPEM-GC and determine new directions for future studies.
Collapse
Affiliation(s)
- Lin Liu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Pathology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiong Liu
- Department of Pathology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Xudong Tang,
| |
Collapse
|
29
|
Rugge M, Bricca L, Guzzinati S, Sacchi D, Pizzi M, Savarino E, Farinati F, Zorzi M, Fassan M, Dei Tos AP, Malfertheiner P, Genta RM, Graham DY. Autoimmune gastritis: long-term natural history in naïve Helicobacter pylori-negative patients. Gut 2023; 72:30-38. [PMID: 35772926 DOI: 10.1136/gutjnl-2022-327827] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Autoimmune gastritis (AIG) is an immunomediated disease targeting parietal cells, eventually resulting in oxyntic-restricted atrophy. This long-term follow-up study aimed at elucidating the natural history, histological phenotype(s), and associated cancer risk of patients with AIG consistently tested H. pylori-negative (naïve H. pylori-negative subjects). DESIGN Two-hundred eleven naïve H. pylori-negative patients (tested by serology, histology, molecular biology) with AIG (F:M=3.15:1; p<0.001) were prospectively followed up with paired biopsies (T1 vs T2; mean follow-up years:7.5 (SD:4.4); median:7). Histology distinguished non-atrophic versus atrophic AIG. Atrophy was further subtyped/scored as non-metaplastic versus metaplastic (pseudopyloric (PPM) and intestinal (IM)). Enterochromaffin-like-cell (ECL) status was categorised as diffuse versus adenomatoid hyperplasia/dysplasia, and type 1 neuroendocrine tumours (Type1-NETs). RESULTS Over the long-term histological follow-up, AIG consistently featured oxyntic-predominant-mononuclear inflammation. At T1, PPM-score was greater than IM (200/211 vs 160/211, respectively); IM scores increased from T1 to T2 (160/211 to 179/211), with no changes in the PPM prevalence (T1=200/211; T2=201/211). At both T1/T2, the prevalence of OLGA-III-stage was <5%; no Operative Link on Gastritis Assessment (OLGA)-IV-stage occurred. ECL-cell-status progressed from diffuse to adenomatoid hyperplasia/dysplasia (T1=167/14 vs T2=151/25). Type1-NETs (T1=10; T2=11) always coexisted with extensive oxyntic-atrophy, and ECL adenomatoid-hyperplasia/dysplasia. No excess risk of gastric or other malignancies was found over a cumulative follow-up time of 10 541 person years, except for (marginally significant) thyroid cancer (SIR=3.09; 95% CI 1.001 to 7.20). CONCLUSIONS Oxyntic-restricted inflammation, PPM (more than IM), and ECL-cell hyperplasia/neoplasia are the histological AIG hallmarks. Compared with the general population, corpus-restricted inflammation/atrophy does not increase the GC risk. The excess of GC risk reported in patients with AIG could plausibly result from unrecognised previous/current H. pylori comorbidity.
Collapse
Affiliation(s)
- Massimo Rugge
- Department of Medicine - DIMED, Ringgold ID 9308, Padova, Veneto, Italy
- Veneto Tumor Registry, Azienda Zero, Padova, Veneto, Italy
| | - Ludovica Bricca
- Department of Medicine - DIMED, Ringgold ID 9308, Padova, Veneto, Italy
| | | | - Diana Sacchi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Ringgold ID 9308, Padova, Italy
| | - Marco Pizzi
- Department of Medicine - DIMED, Ringgold ID 9308, Padova, Veneto, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Ringgold ID 9308, Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Ringgold ID 9308, Padova, Italy
| | - Manuel Zorzi
- Veneto Tumor Registry, Azienda Zero, Padova, Veneto, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, Ringgold ID 9308, Padova, Veneto, Italy
- Veneto Institute of Oncology - IOV - IRCCS, Padova, Italy
| | | | | | - Robert M Genta
- Department of Pathology, Baylor College of Medicine Houston, Texas, USA, Houston, Texas, USA
- Department of Medicine, Michael E. De Bakey VA Medical Center, Baylor College of Medicine Houston, Houston, Texas, USA
| | - David Y Graham
- Department of Medicine, Michael E. De Bakey VA Medical Center, Baylor College of Medicine Houston, Houston, Texas, USA
| |
Collapse
|
30
|
Kummerlowe C, Mwakamui S, Hughes TK, Mulugeta N, Mudenda V, Besa E, Zyambo K, Shay JES, Fleming I, Vukovic M, Doran BA, Aicher TP, Wadsworth MH, Bramante JT, Uchida AM, Fardoos R, Asowata OE, Herbert N, Yilmaz ÖH, Kløverpris HN, Garber JJ, Ordovas-Montanes J, Gartner Z, Wallach T, Shalek AK, Kelly P. Single-cell profiling of environmental enteropathy reveals signatures of epithelial remodeling and immune activation. Sci Transl Med 2022; 14:eabi8633. [PMID: 36044598 PMCID: PMC9594855 DOI: 10.1126/scitranslmed.abi8633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Environmental enteropathy (EE) is a subclinical condition of the small intestine that is highly prevalent in low- and middle-income countries. It is thought to be a key contributing factor to childhood malnutrition, growth stunting, and diminished oral vaccine responses. Although EE has been shown to be the by-product of a recurrent enteric infection, its full pathophysiology remains unclear. Here, we mapped the cellular and molecular correlates of EE by performing high-throughput, single-cell RNA-sequencing on 33 small intestinal biopsies from 11 adults with EE in Lusaka, Zambia (eight HIV-negative and three HIV-positive), six adults without EE in Boston, United States, and two adults in Durban, South Africa, which we complemented with published data from three additional individuals from the same clinical site. We analyzed previously defined bulk-transcriptomic signatures of reduced villus height and decreased microbial translocation in EE and showed that these signatures may be driven by an increased abundance of surface mucosal cells-a gastric-like subset previously implicated in epithelial repair in the gastrointestinal tract. In addition, we determined cell subsets whose fractional abundances associate with EE severity, small intestinal region, and HIV infection. Furthermore, by comparing duodenal EE samples with those from three control cohorts, we identified dysregulated WNT and MAPK signaling in the EE epithelium and increased proinflammatory cytokine gene expression in a T cell subset highly expressing a transcriptional signature of tissue-resident memory cells in the EE cohort. Together, our work elucidates epithelial and immune correlates of EE and nominates cellular and molecular targets for intervention.
Collapse
Affiliation(s)
- Conner Kummerlowe
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Simutanyi Mwakamui
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Travis K. Hughes
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Nolawit Mulugeta
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Victor Mudenda
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Ellen Besa
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Kanekwa Zyambo
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Jessica E. S. Shay
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Ira Fleming
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marko Vukovic
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ben A. Doran
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
| | - Toby P. Aicher
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marc H. Wadsworth
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Amiko M. Uchida
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
- Cancer Immunology and Virology, Dana Farber Cancer Institute; Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School; Boston MA, 02115, USA
| | - Rabiah Fardoos
- Africa Health Research Institute, Durban, 4001, South Africa
| | | | | | - Ömer H. Yilmaz
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Pathology, MGH, Harvard Medical School, Boston, MA, 02115, USA
| | | | - John J. Garber
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School; Boston MA, 02115, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
- Program in Immunology, Harvard Medical School; Boston, MA, 02115, USA
- Harvard Stem Cell Institute; Cambridge, MA, 02138, USA
| | - Zev Gartner
- University of California San Francisco; San Francisco, CA, 94185 USA
| | - Thomas Wallach
- SUNY Downstate Health Sciences University; Department of Pediatrics, Brooklyn, NY, 11203, USA
| | - Alex K. Shalek
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Pathology, MGH, Harvard Medical School, Boston, MA, 02115, USA
- Program in Immunology, Harvard Medical School; Boston, MA, 02115, USA
| | - Paul Kelly
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114, USA
- Blizard Institute, Queen Mary University of London; London E1 2AT, United Kingdom
| |
Collapse
|
31
|
Malfertheiner P, Megraud F, Rokkas T, Gisbert JP, Liou JM, Schulz C, Gasbarrini A, Hunt RH, Leja M, O'Morain C, Rugge M, Suerbaum S, Tilg H, Sugano K, El-Omar EM. Management of Helicobacter pylori infection: the Maastricht VI/Florence consensus report. Gut 2022; 71:gutjnl-2022-327745. [PMID: 35944925 DOI: 10.1136/gutjnl-2022-327745] [Citation(s) in RCA: 603] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023]
Abstract
Helicobacter pyloriInfection is formally recognised as an infectious disease, an entity that is now included in the International Classification of Diseases 11th Revision. This in principle leads to the recommendation that all infected patients should receive treatment. In the context of the wide clinical spectrum associated with Helicobacter pylori gastritis, specific issues persist and require regular updates for optimised management.The identification of distinct clinical scenarios, proper testing and adoption of effective strategies for prevention of gastric cancer and other complications are addressed. H. pylori treatment is challenged by the continuously rising antibiotic resistance and demands for susceptibility testing with consideration of novel molecular technologies and careful selection of first line and rescue therapies. The role of H. pylori and antibiotic therapies and their impact on the gut microbiota are also considered.Progress made in the management of H. pylori infection is covered in the present sixth edition of the Maastricht/Florence 2021 Consensus Report, key aspects related to the clinical role of H. pylori infection were re-evaluated and updated. Forty-one experts from 29 countries representing a global community, examined the new data related to H. pylori infection in five working groups: (1) indications/associations, (2) diagnosis, (3) treatment, (4) prevention/gastric cancer and (5) H. pylori and the gut microbiota. The results of the individual working groups were presented for a final consensus voting that included all participants. Recommendations are provided on the basis of the best available evidence and relevance to the management of H. pylori infection in various clinical fields.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Medical Department 2, LMU, Munchen, Germany
- Department of Radiology, LMU, Munchen, Germany
| | - Francis Megraud
- INSERM U853 UMR BaRITOn, University of Bordeaux, Bordeaux, France
| | - Theodore Rokkas
- Gastroenterology, Henry Dunant Hospital Center, Athens, Greece
- Medical School, European University, Nicosia, Cyprus
| | - Javier P Gisbert
- Gastroenterology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jyh-Ming Liou
- Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Christian Schulz
- Medical Department 2, LMU, Munchen, Germany
- Partner Site Munich, DZIF, Braunschweig, Germany
| | - Antonio Gasbarrini
- Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Richard H Hunt
- Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| | - Marcis Leja
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Colm O'Morain
- Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
- Veneto Tumor Registry (RTV), Padova, Italy
| | - Sebastian Suerbaum
- Partner Site Munich, DZIF, Braunschweig, Germany
- Max von Pettenkofer Institute, LMU, Munchen, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Kentaro Sugano
- Department of Medicine, Jichi Medical School, Tochigi, Japan
| | - Emad M El-Omar
- Department of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
32
|
Yang H, Zhou X, Hu B. The 'reversibility' of chronic atrophic gastritis after the eradication of Helicobacter pylori. Postgrad Med 2022; 134:474-479. [PMID: 35382697 DOI: 10.1080/00325481.2022.2063604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Gram-negative bacterium Helicobacter pylori (H. pylori) infection is lifelong and usually acquired in childhood, which is etiologically linked to gastric cancer (GC). H. pylori gastritis is defined as an infectious disease with varying severity in virtually all infected subjects. Chronic atrophic gastritis (CAG) is the precancerous condition with the decrease or the loss of gastric glands, which can further be replaced by metaplasia or fibrosis. Patients with advanced stages of CAG are at higher risk of GC and should be followed up with a high-quality endoscopy every 3 years. H. pylori infection is the most common cause and its eradication is recommended, which may contribute to the regression of CAG. However, it is controversial whether CAG is reversible after eradication therapy. In the review, we discuss recent studies which provide important insights into whether CAG is 'reversibility' and when it may progress into GC after eradicating H. pylori.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyue Zhou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Hsieh H, Yang HB, Sheu BS, Yang YJ. Atrophic gastritis in Helicobacter pylori-infected children. Helicobacter 2022; 27:e12885. [PMID: 35306717 DOI: 10.1111/hel.12885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Helicobacter pylori infection is the leading cause of peptic ulcer and chronic gastritis and may initiate gastric carcinogenesis following the Correa cascade. Another lineage of metaplasia, spasmolytic peptide-expressing metaplasia (SPEM) has recently been found to be an alternative precursor to gastric cancer. To date, few reports have investigated gastric precancerous lesions among children with H. pylori infection. This study aimed to evaluate the histopathological pattern of H. pylori atrophic gastritis in children and the extent of precancerous lesions. MATERIALS AND METHODS This study enrolled pediatric patients with H. pylori infection from 1998 to 2019. During esophagogastroduodenoscopy examinations, biopsy fragments were collected from the gastric antrum and corpus for rapid urease test, culture, and histology evaluation. The presence and degree of chronic inflammation, activity of gastritis, H. pylori density, atrophy, and intestinal metaplasia (IM) were assessed according to the modified Updated Sydney System. Trefoil factor 2 (TFF2) immunohistochemistry was also performed to assess SPEM in the gastric tissues collected from each case using rabbit anti-human TFF2 antibodies. RESULTS A total of 92 children with H. pylori infection and adequate gastric mucosa biopsies were enrolled. Esophagogastroduodenoscopy showed that 39 (42.4%) had duodenal ulcers, 11 (12.0%) had gastric ulcers, 41 (44.6%) had gastritis, and 1 (1.1%) had negative findings. Mild-to-moderate IM was identified in 4 patients (4.3%). SPEM was found in 8 patients (8.7%) with a significantly higher incidence among female patients (15.8% vs. 8.7%, p = .031). Gastric glandular atrophy presented in 28 patients (30.4%), and high-grade atrophy was more common in female patients (3.2% vs. 1.9%, p = .031). CONCLUSIONS The prevalence rates of atrophic gastritis in the children with H. pylori infection were 30.4% for gastric glandular atrophy, 4.3% for IM and 8.7% for SPEM. SPEM and high-grade atrophy were more common in female patients.
Collapse
Affiliation(s)
- Hsuan Hsieh
- Departments of Pediatrics, Medical College, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Bai Yang
- Departments of Pathology, Medical College, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, Ton-Yen General Hospital, Zhubei, Taiwan
| | - Bor-Shyang Sheu
- Departments of Internal Medicine, Medical College, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.,Institutes of Clinical Medicine, Medical College, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Jong Yang
- Departments of Pediatrics, Medical College, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.,Institutes of Clinical Medicine, Medical College, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
Tobe Y, Uehara T, Nakajima T, Iwaya M, Kobayashi Y, Kinugawa Y, Kuraishi Y, Ota H. LGR5-Expressing Cells in the Healing Process of Post-ESD Ulcers in Gastric Corpus. Dig Dis Sci 2022; 67:2134-2142. [PMID: 34081250 DOI: 10.1007/s10620-021-07059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/11/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND LGR5 is a promising stem cell marker in gastric pylorus, but there are few reports on its expression in human gastric corpus. AIMS To investigate the involvement of LGR5 expression in gastric corpus ulcer regeneration in humans. METHODS LGR5 expression was analyzed in five post-ESD ulcers during the healing process of regenerating epithelial cells of the gastric corpus. LGR5 expression was detected by mRNA in situ hybridization using an RNA scope kit. Immunohistochemistry of MUC6, HIK1083, and pepsinogen 1 (PG1) was performed to identify cell differentiation. RESULTS We defined MUC6+/HIK1083-/PG1-, MUC6+/HIK1083+/PG1-, MUC6+/HIK1083+/PG1+, MUC6+/HIK1083-/PG1+, and MUC6-/HIK1083-/PG1+cells as pseudopyloric mucosa (PPM) phase 1 (PPM1), PPM phase 2 (PPM2), PPM phase 3 (PPM3), immature chief cells (ICC), and mature chief cells (MCC) in order from the ulcer center, respectively. In the regenerated mucosa around post-ESD ulcers, LGR5 expression was observed throughout the gland in PPM1-PPM3, but it was limited to the bottom of the gland in ICC and MCC. Furthermore, LGR5 expression was not identified in the normal gastric corpus. The H-score of PPM2 was significantly higher than that of PPM3 (P = 0.0313). The H-score of PPM3 was significantly higher than that of ICC (P = 0.0313). The LGR5 H-score was higher at the immature stage, which decreased gradually with progression of the differentiation stage. CONCLUSIONS LGR5 expression appears to contribute to mucosal regeneration in the human gastric corpus. The application of LGR5 expression analysis to mucosal regeneration and fundic gland-type gastric tumors is expected.
Collapse
Affiliation(s)
- Yosuke Tobe
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yukihiro Kobayashi
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuhiro Kinugawa
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuhiro Kuraishi
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.,Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
35
|
Caldwell B, Meyer AR, Weis JA, Engevik AC, Choi E. Chief cell plasticity is the origin of metaplasia following acute injury in the stomach mucosa. Gut 2022; 71:1068-1077. [PMID: 34497145 PMCID: PMC8901801 DOI: 10.1136/gutjnl-2021-325310] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Metaplasia arises from differentiated cell types in response to injury and is considered a precursor in many cancers. Heterogeneous cell lineages are present in the reparative metaplastic mucosa with response to injury, including foveolar cells, proliferating cells and spasmolytic polypeptide-expressing metaplasia (SPEM) cells, a key metaplastic cell population. Zymogen-secreting chief cells are long-lived cells in the stomach mucosa and have been considered the origin of SPEM cells; however, a conflicting paradigm has proposed isthmal progenitor cells as an origin for SPEM. DESIGN Gastric intrinsic factor (GIF) is a stomach tissue-specific gene and exhibits protein expression unique to mature mouse chief cells. We generated a novel chief cell-specific driver mouse allele, GIF-rtTA. GIF-GFP reporter mice were used to validate specificity of GIF-rtTA driver in chief cells. GIF-Cre-RnTnG mice were used to perform lineage tracing during homoeostasis and acute metaplasia development. L635 treatment was used to induce acute mucosal injury and coimmunofluorescence staining was performed for various gastric lineage markers. RESULTS We demonstrated that mature chief cells, rather than isthmal progenitor cells, serve as the predominant origin of SPEM cells during the metaplastic process after acute mucosal injury. Furthermore, we observed long-term label-retaining chief cells at 1 year after the GFP labelling in chief cells. However, only a very small subset of the long-term label-retaining chief cells displayed the reprogramming ability in homoeostasis. In contrast, we identified chief cell-originating SPEM cells as contributing to lineages within foveolar cell hyperplasia in response to the acute mucosal injury. CONCLUSION Our study provides pivotal evidence for cell plasticity and lineage contributions from differentiated gastric chief cells during acute metaplasia development.
Collapse
Affiliation(s)
- Brianna Caldwell
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne R Meyer
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jared A Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Amy C Engevik
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eunyoung Choi
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Dilaghi E, Esposito G, Pivetta G, Galli G, Pilozzi E, Annibale B, Lahner E. Endoscopic diagnosis of gastric intestinal metaplasia in patients with autoimmune gastritis using narrow-band imaging: does pseudopyloric metaplasia muddy the waters? Endosc Int Open 2022; 10:E434-E440. [PMID: 35433221 PMCID: PMC9010077 DOI: 10.1055/a-1776-7628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022] Open
Abstract
Background and study aims In autoimmune atrophic gastritis (AAG), associated with intestinal (IM) and/or pseudopyloric metaplasia (PPM), endoscopic surveillance is recommended for gastric cancer risk mainly linked to IM. Endoscopic Grading of Gastric Intestinal Metaplasia (EGGIM) reliably identifies IM, but has not been assessed in AAG. We aimed to assess the performance of EGGIM (index test) versus histology (reference test) of corpus IM in AAG. Patients and methods This was a cross-sectional study of 210 AAG patients undergoing surveillance gastroscopy with narrow-band imaging (NBI): corpus IM scored according to EGGIM, histology according to updated Sydney system, and morphological criteria. Results NBI identified corpus IM in 88.6 % of AAG patients: EGGIM were 0, 1, 2, 3, 4 in 11.4 %, 0.5 %, 33.3 %, 1.9 %, and 52.9 %, respectively. Histology identified corpus IM in 78.1 % and PPM in 79.5 % of patients. PPM was present with IM in 57.6 % and without IM in 21.9 % patients, 20.5 % had IM without PPM. EGGIM, compared to histology, correctly classified 76.2 % of patients, showing high sensitivity (91.5 %, 95 %CI 86.1-95.3). EGGIM correctly classified 93 % of patients with IM without PPM, 90.9 % with both metaplasias, and 21.7 % with PPM without IM yielding low specificity (21.7 %, 95 %CI 10.9-36.4). Conclusions In AAG, EGGIM showed high accuracy and sensitivity identifying > 90 % of patients with histological corpus IM. EGGIM overestimated IM when PPM without IM was present, yielding low specificity. These findings raise the question of whether in AAG, PPM and IM may display similar endoscopic features on NBI.
Collapse
Affiliation(s)
- Emanuele Dilaghi
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Gianluca Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giulia Pivetta
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Gloria Galli
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University Sapienza, Rome, Italy
| | - Bruno Annibale
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Edith Lahner
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
37
|
Sato Y, Ban S, Katayama Y, Mitsui T. Unique membranous gastrin receptor expression of parietal cells, and its distribution pattern in the gastric oxyntic mucosa and fundic gland polyps. Hum Pathol 2022; 125:23-34. [DOI: 10.1016/j.humpath.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
38
|
Mead BE, Hattori K, Levy L, Imada S, Goto N, Vukovic M, Sze D, Kummerlowe C, Matute JD, Duan J, Langer R, Blumberg RS, Ordovas-Montanes J, Yilmaz ÖH, Karp JM, Shalek AK. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nat Biomed Eng 2022; 6:476-494. [PMID: 35314801 PMCID: PMC9046079 DOI: 10.1038/s41551-022-00863-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
The cellular composition of barrier epithelia is essential to organismal homoeostasis. In particular, within the small intestine, adult stem cells establish tissue cellularity, and may provide a means to control the abundance and quality of specialized epithelial cells. Yet, methods for the identification of biological targets regulating epithelial composition and function, and of small molecules modulating them, are lacking. Here we show that druggable biological targets and small-molecule regulators of intestinal stem cell differentiation can be identified via multiplexed phenotypic screening using thousands of miniaturized organoid models of intestinal stem cell differentiation into Paneth cells, and validated via longitudinal single-cell RNA-sequencing. We found that inhibitors of the nuclear exporter Exportin 1 modulate the fate of intestinal stem cells, independently of known differentiation cues, significantly increasing the abundance of Paneth cells in the organoids and in wild-type mice. Physiological organoid models of the differentiation of intestinal stem cells could find broader utility for the screening of biological targets and small molecules that can modulate the composition and function of other barrier epithelia.
Collapse
Grants
- R01 DK088199 NIDDK NIH HHS
- Howard Hughes Medical Institute
- P30 CA014051 NCI NIH HHS
- DP2 GM119419 NIGMS NIH HHS
- R01 DE013023 NIDCR NIH HHS
- U54 CA217377 NCI NIH HHS
- P30 DK034854 NIDDK NIH HHS
- R01 HL095722 NHLBI NIH HHS
- T32 GM087237 NIGMS NIH HHS
- R01 CA034992 NCI NIH HHS
- R01 CA211184 NCI NIH HHS
- The National Science Foundation graduate research fellowship program and the Massachusetts Institute of Technology – GlaxoSmithKline (MIT-GSK) Gertrude B. Elion Postdoctoral fellowship.
- Fellowships from The Japanese Biochemical Society (The Osamu Hayaishi Memorial Scholarship for Study Abroad), Mochida Memorial Foundation for Medical and Pharmaceutical Research, and The Uehara Memorial Foundation.
- NIH (DE013023)
- NIH (DK088199)
- New York Stem Cell Foundation – Robertson Investigator, the Richard and Susan Smith Family Foundation, the HHMI Damon Runyon Cancer Research Foundation Fellowship (DRG-2274-16), the AGA Research Foundation’s AGA-Takeda Pharmaceuticals Research Scholar Award in IBD – AGA2020-13-01, the HDDC Pilot and Feasibility P30 DK034854, the Food Allergy Science Initiative, and The New York Stem Cell Foundation.
- NIH (R01CA211184, R01CA034992); Pew-Stewart Trust scholar award; the Kathy and Curt Marble Cancer Research Award; a Bridge grant; and the MIT Stem Cell Initiative through Fondation MIT.
- the Kenneth Rainin Foundation Innovator and Breakthrough awards, the Crohn’s and Colitis Foundation (#624458),the NIH (HL095722), and the Harvard Digestive Disease Center and NIH grant P30DK034854.
- the Beckman Young Investigator Program, the Pew-Stewart Scholars Program for Cancer Research, a Sloan Fellowship in Chemistry, the NIH (1DP2GM119419, 1U54CA217377), the Koch Institute Support (core) Grant P30-CA14051 from the National Cancer Institute, and the MIT Stem Cell Initiative through Fondation MIT.
Collapse
Affiliation(s)
- Benjamin E Mead
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Kazuki Hattori
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren Levy
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shinya Imada
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Norihiro Goto
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Marko Vukovic
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology Boston Children's Hospital, Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Daphne Sze
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Conner Kummerlowe
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Juan D Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, MGH Harvard Medical School, Boston, MA, USA
| | - Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Langer
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose Ordovas-Montanes
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology Boston Children's Hospital, Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Pathology, MGH, Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Karp
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Alex K Shalek
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.
- Department of Chemistry, MIT, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
39
|
Higa T, Okita Y, Matsumoto A, Nakayama S, Oka T, Sugahara O, Koga D, Takeishi S, Nakatsumi H, Hosen N, Robine S, Taketo MM, Sato T, Nakayama KI. Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia in the intestinal epithelium. Nat Commun 2022; 13:1500. [PMID: 35314700 PMCID: PMC8938507 DOI: 10.1038/s41467-022-29165-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/19/2022] [Indexed: 12/22/2022] Open
Abstract
Although the mammalian intestinal epithelium manifests robust regenerative capacity after various cytotoxic injuries, the underlying mechanism has remained unclear. Here we identify the cyclin-dependent kinase inhibitor p57 as a specific marker for a quiescent cell population located around the +4 position of intestinal crypts. Lineage tracing reveals that the p57+ cells serve as enteroendocrine/tuft cell precursors under normal conditions but dedifferentiate and act as facultative stem cells to support regeneration after injury. Single-cell transcriptomics analysis shows that the p57+ cells undergo a dynamic reprogramming process after injury that is characterized by fetal-like conversion and metaplasia-like transformation. Population-level analysis also detects such spatiotemporal reprogramming widely in other differentiated cell types. In intestinal adenoma, p57+ cells manifest homeostatic stem cell activity, in the context of constitutively activated spatiotemporal reprogramming. Our results highlight a pronounced plasticity of the intestinal epithelium that supports maintenance of tissue integrity in normal and neoplastic contexts. Rapid turnover and regeneration of intestinal epithelium requires distinct intestinal stem cell (ISC) populations. Here the authors show p57 marks quiescent ISCs, and that differentiated cells revert to stem cell state after injury, through dynamic reprogramming characterized by fetal- and metaplastic-like changes.
Collapse
|
40
|
Yang H, Yang WJ, Hu B. Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol 2022; 14:396-412. [PMID: 35317321 PMCID: PMC8919001 DOI: 10.4251/wjgo.v14.i2.396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The most common histological type of gastric cancer (GC) is gastric adenocarcinoma arising from the gastric epithelium. Less common variants include mesenchymal, lymphoproliferative and neuroendocrine neoplasms. The Lauren scheme classifies GC into intestinal type, diffuse type and mixed type. The WHO classification includes papillary, tubular, mucinous, poorly cohesive and mixed GC. Chronic atrophic gastritis (CAG) and intestinal metaplasia are recommended as common precancerous conditions. No definite precancerous condition of diffuse/poorly/undifferentiated type is recommended. Chronic superficial inflammation and hyperplasia of foveolar cells may be the focus. Presently, the management of early GC and precancerous conditions mainly relies on endoscopy including diagnosis, treatment and surveillance. Management of precancerous conditions promotes the early detection and treatment of early GC, and even prevent the occurrence of GC. In the review, precancerous conditions including CAG, metaplasia, foveolar hyperplasia and gastric hyperplastic polyps derived from the gastric epithelium have been concluded, based on the overview of gastric epithelial histological organization and its renewal.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
41
|
Abstract
Complex multicellular organisms have evolved specific mechanisms to replenish cells in homeostasis and during repair. Here, we discuss how emerging technologies (e.g., single-cell RNA sequencing) challenge the concept that tissue renewal is fueled by unidirectional differentiation from a resident stem cell. We now understand that cell plasticity, i.e., cells adaptively changing differentiation state or identity, is a central tissue renewal mechanism. For example, mature cells can access an evolutionarily conserved program (paligenosis) to reenter the cell cycle and regenerate damaged tissue. Most tissues lack dedicated stem cells and rely on plasticity to regenerate lost cells. Plasticity benefits multicellular organisms, yet it also carries risks. For one, when long-lived cells undergo paligenotic, cyclical proliferation and redif-ferentiation, they can accumulate and propagate acquired mutations that activate oncogenes and increase the potential for developing cancer. Lastly, we propose a new framework for classifying patterns of cell proliferation in homeostasis and regeneration, with stem cells representing just one of the diverse methods that adult tissues employ.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charles J. Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA,Departments of Pathology and Immunology and Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Departments of Medicine, Pathology and Immunology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
42
|
Sáenz JB, Vargas N, Cho CJ, Mills JC. Regulation of the double-stranded RNA response through ADAR1 licenses metaplastic reprogramming in gastric epithelium. JCI Insight 2022; 7:153511. [PMID: 35132959 PMCID: PMC8855806 DOI: 10.1172/jci.insight.153511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023] Open
Abstract
Cells recognize both foreign and host-derived double-stranded RNA (dsRNA) via a signaling pathway that is usually studied in the context of viral infection. It has become increasingly clear that the sensing and handling of endogenous dsRNA is also critical for cellular differentiation and development. The adenosine RNA deaminase, ADAR1, has been implicated as a central regulator of the dsRNA response, but how regulation of the dsRNA response might mediate cell fate during injury and whether such signaling is cell intrinsic remain unclear. Here, we show that the ADAR1-mediated response to dsRNA was dramatically induced in 2 distinct injury models of gastric metaplasia. Mouse organoid and in vivo genetic models showed that ADAR1 coordinated a cell-intrinsic, epithelium-autonomous, and interferon signaling–independent dsRNA response. In addition, dsRNA accumulated within a differentiated epithelial population (chief cells) in mouse and human stomachs as these cells reprogrammed to a proliferative, reparative (metaplastic) state. Finally, chief cells required ADAR1 to reenter the cell cycle during metaplasia. Thus, cell-intrinsic ADAR1 signaling is critical for the induction of metaplasia. Because metaplasia increases cancer risk, these findings support roles for ADAR1 and the response to dsRNA in oncogenesis.
Collapse
Affiliation(s)
- José B Sáenz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nancy Vargas
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine.,Department of Pathology and Immunology; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
43
|
Goldenring JR, Mills JC. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology 2022; 162:415-430. [PMID: 34728185 PMCID: PMC8792220 DOI: 10.1053/j.gastro.2021.10.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 02/03/2023]
Abstract
The mucosa of the body of the stomach (ie, the gastric corpus) uses 2 overlapping, depth-dependent mechanisms to respond to injury. Superficial injury heals via surface cells with histopathologic changes like foveolar hyperplasia. Deeper, usually chronic, injury/inflammation, most frequently induced by the carcinogenic bacteria Helicobacter pylori, elicits glandular histopathologic alterations, initially manifesting as pyloric (also known as pseudopyloric) metaplasia. In this pyloric metaplasia, corpus glands become antrum (pylorus)-like with loss of acid-secreting parietal cells (atrophic gastritis), expansion of foveolar cells, and reprogramming of digestive enzyme-secreting chief cells into deep antral gland-like mucous cells. After acute parietal cell loss, chief cells can reprogram through an orderly stepwise progression (paligenosis) initiated by interleukin-13-secreting innate lymphoid cells (ILC2s). First, massive lysosomal activation helps mitigate reactive oxygen species and remove damaged organelles. Second, mucus and wound-healing proteins (eg, TFF2) and other transcriptional alterations are induced, at which point the reprogrammed chief cells are recognized as mucus-secreting spasmolytic polypeptide-expressing metaplasia cells. In chronic severe injury, glands with pyloric metaplasia can harbor both actively proliferating spasmolytic polypeptide-expressing metaplasia cells and eventually intestine-like cells. Gastric glands with such lineage confusion (mixed incomplete intestinal metaplasia and proliferative spasmolytic polypeptide-expressing metaplasia) may be at particular risk for progression to dysplasia and cancer. A pyloric-like pattern of metaplasia after injury also occurs in other gastrointestinal organs including esophagus, pancreas, and intestines, and the paligenosis program itself seems broadly conserved across tissues and species. Here we discuss aspects of metaplasia in stomach, incorporating data derived from animal models and work on human cells and tissues in correlation with diagnostic and clinical implications.
Collapse
Affiliation(s)
- James R Goldenring
- Nashville Veterans Affairs Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Medicine, Baylor College of Medicine, Houston, Texas; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
44
|
Ma Z, Lytle NK, Chen B, Jyotsana N, Novak SW, Cho CJ, Caplan L, Ben-Levy O, Neininger AC, Burnette DT, Trinh VQ, Tan MCB, Patterson EA, Arrojo E Drigo R, Giraddi RR, Ramos C, Means AL, Matsumoto I, Manor U, Mills JC, Goldenring JR, Lau KS, Wahl GM, DelGiorno KE. Single-Cell Transcriptomics Reveals a Conserved Metaplasia Program in Pancreatic Injury. Gastroenterology 2022; 162:604-620.e20. [PMID: 34695382 PMCID: PMC8792222 DOI: 10.1053/j.gastro.2021.10.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acinar to ductal metaplasia (ADM) occurs in the pancreas in response to tissue injury and is a potential precursor for adenocarcinoma. The goal of these studies was to define the populations arising from ADM, the associated transcriptional changes, and markers of disease progression. METHODS Acinar cells were lineage-traced with enhanced yellow fluorescent protein (EYFP) to follow their fate post-injury. Transcripts of more than 13,000 EYFP+ cells were determined using single-cell RNA sequencing (scRNA-seq). Developmental trajectories were generated. Data were compared with gastric metaplasia, KrasG12D-induced neoplasia, and human pancreatitis. Results were confirmed by immunostaining and electron microscopy. KrasG12D was expressed in injury-induced ADM using several inducible Cre drivers. Surgical specimens of chronic pancreatitis from 15 patients were evaluated by immunostaining. RESULTS scRNA-seq of ADM revealed emergence of a mucin/ductal population resembling gastric pyloric metaplasia. Lineage trajectories suggest that some pyloric metaplasia cells can generate tuft and enteroendocrine cells (EECs). Comparison with KrasG12D-induced ADM identifies populations associated with disease progression. Activation of KrasG12D expression in HNF1B+ or POU2F3+ ADM populations leads to neoplastic transformation and formation of MUC5AC+ gastric-pit-like cells. Human pancreatitis samples also harbor pyloric metaplasia with a similar transcriptional phenotype. CONCLUSIONS Under conditions of chronic injury, acinar cells undergo a pyloric-type metaplasia to mucinous progenitor-like populations, which seed disparate tuft cell and EEC lineages. ADM-derived EEC subtypes are diverse. KrasG12D expression is sufficient to drive neoplasia when targeted to injury-induced ADM populations and offers an alternative origin for tumorigenesis. This program is conserved in human pancreatitis, providing insight into early events in pancreas diseases.
Collapse
Affiliation(s)
- Zhibo Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Nikki K Lytle
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nidhi Jyotsana
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Insitute for Biological Studies, La Jolla, California
| | - Charles J Cho
- Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Leah Caplan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Olivia Ben-Levy
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Dylan T Burnette
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Vincent Q Trinh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcus C B Tan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emilee A Patterson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Rafael Arrojo E Drigo
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Rajshekhar R Giraddi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Cynthia Ramos
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Anna L Means
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee; Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Insitute for Biological Studies, La Jolla, California
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Nashville, Tennessee; Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Nashville, Tennessee; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Kathleen E DelGiorno
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Nashville, Tennessee; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
45
|
Chen B, Scurrah CR, McKinley ET, Simmons AJ, Ramirez-Solano MA, Zhu X, Markham NO, Heiser CN, Vega PN, Rolong A, Kim H, Sheng Q, Drewes JL, Zhou Y, Southard-Smith AN, Xu Y, Ro J, Jones AL, Revetta F, Berry LD, Niitsu H, Islam M, Pelka K, Hofree M, Chen JH, Sarkizova S, Ng K, Giannakis M, Boland GM, Aguirre AJ, Anderson AC, Rozenblatt-Rosen O, Regev A, Hacohen N, Kawasaki K, Sato T, Goettel JA, Grady WM, Zheng W, Washington MK, Cai Q, Sears CL, Goldenring JR, Franklin JL, Su T, Huh WJ, Vandekar S, Roland JT, Liu Q, Coffey RJ, Shrubsole MJ, Lau KS. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 2021; 184:6262-6280.e26. [PMID: 34910928 PMCID: PMC8941949 DOI: 10.1016/j.cell.2021.11.031] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.
Collapse
Affiliation(s)
- Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cherie' R Scurrah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiangzhu Zhu
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cody N Heiser
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hyeyon Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuan Zhou
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Austin N Southard-Smith
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James Ro
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynne D Berry
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hiroaki Niitsu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mirazul Islam
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Karin Pelka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan H Chen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Siranush Sarkizova
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Genevieve M Boland
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew J Aguirre
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Aviv Regev
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kenta Kawasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jeremy A Goettel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Gastroenterology Division, University of Washington School of Medicine, Seattle, WA, USA
| | - Wei Zheng
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cynthia L Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Franklin
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy Su
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Won Jae Huh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Martha J Shrubsole
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
46
|
Hodges P, Tembo M, Kelly P. Intestinal Biopsies for the Evaluation of Environmental Enteropathy and Environmental Enteric Dysfunction. J Infect Dis 2021; 224:S856-S863. [PMID: 34273148 PMCID: PMC8687084 DOI: 10.1093/infdis/jiab372] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Environmental enteric dysfunction (EED) is a syndrome characterized by impairments of digestion and absorption and intestinal barrier failure in people living in insanitary or tropical environments. There is substantial evidence that it contributes to impaired linear growth of millions of children in low- and middle-income countries, to slowed neurocognitive development, and to diminished responses to oral vaccines. It represents the functional consequences of environmental enteropathy, an asymptomatic inflammatory disorder of the mucosa, and there is considerable overlap with the enteropathy observed in severe clinical malnutrition. The majority of studies of EED have employed functional tests based on lactulose permeation to define the presence of abnormal leak in the gut. However, where intestinal biopsies can safely be collected the opportunity then arises to study the underlying enteropathy in cellular and molecular detail, as well as to measure important functional elements such as enzyme expression. The purpose of this narrative review is to summarize the current understanding of environmental enteropathy obtained from small intestinal biopsies, and prospects for future work. We review histology, electron microscopy, transcription and protein expression, physiological measures, and the microbiome. We conclude that while noninvasive biomarkers of enteropathy and intestinal dysfunction permit large-scale studies of unquestionable value, intestinal biopsies are still required to investigate pathophysiology in depth.
Collapse
Affiliation(s)
- Phoebe Hodges
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Queen Mary University of London, London, United Kingdom
| | - Mizinga Tembo
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Queen Mary University of London, London, United Kingdom
| |
Collapse
|
47
|
Brown JW, Das KK, Kalas V, Das KM, Mills JC. mAb Das-1 recognizes 3'-Sulfated Lewis A/C, which is aberrantly expressed during metaplastic and oncogenic transformation of several gastrointestinal Epithelia. PLoS One 2021; 16:e0261082. [PMID: 34910746 PMCID: PMC8673611 DOI: 10.1371/journal.pone.0261082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Multiple previous studies have shown the monoclonal antibody Das-1 (formerly called 7E12H12) is specifically reactive towards metaplastic and carcinomatous lesions in multiple organs of the gastrointestinal system (e.g. Barrett's esophagus, intestinal-type metaplasia of the stomach, gastric adenocarcinoma, high-grade pancreatic intraepithelial neoplasm, and pancreatic ductal adenocarcinoma) as well as in other organs (bladder and lung carcinomas). Beyond being a useful biomarker in tissue, mAb Das-1 has recently proven to be more accurate than current paradigms for identifying cysts harboring advanced neoplasia. Though this antibody has been used extensively for clinical, basic science, and translational applications for decades, its epitope has remained elusive. METHODS In this study, we chemically deglycosylated a standard source of antigen, which resulted in near complete loss of the signal as measured by western blot analysis. The epitope recognized by mAb Das-1 was determined by affinity to a comprehensive glycan array and validated by inhibition of a direct ELISA. RESULTS The epitope recognized by mAb Das-1 is 3'-Sulfo-Lewis A/C (3'-Sulfo-LeA/C). 3'-Sulfo-LeA/C is broadly reexpressed across numerous GI epithelia and elsewhere during metaplastic and carcinomatous transformation. DISCUSSION 3'-Sulfo-LeA/C is a clinically important antigen that can be detected both intracellularly in tissue using immunohistochemistry and extracellularly in cyst fluid and serum by ELISA. The results open new avenues for tumorigenic risk stratification of various gastrointestinal lesions.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Koushik K. Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Vasilios Kalas
- Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
- Physician Scientist Training Program, Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, Illinois, United States of America
| | - Kiron M. Das
- Division of Gastroenterology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
48
|
Sáenz JB. Follow the Metaplasia: Characteristics and Oncogenic Implications of Metaplasia's Pattern of Spread Throughout the Stomach. Front Cell Dev Biol 2021; 9:741574. [PMID: 34869328 PMCID: PMC8633114 DOI: 10.3389/fcell.2021.741574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human stomach functions as both a digestive and innate immune organ. Its main product, acid, rapidly breaks down ingested products and equally serves as a highly effective microbial filter. The gastric epithelium has evolved mechanisms to appropriately handle the myriad of injurious substances, both exogenous and endogenous, to maintain the epithelial barrier and restore homeostasis. The most significant chronic insult that the stomach must face is Helicobacter pylori (Hp), a stomach-adapted bacterium that can colonize the stomach and induce chronic inflammatory and pre-neoplastic changes. The progression from chronic inflammation to dysplasia relies on the decades-long interplay between this oncobacterium and its gastric host. This review summarizes the functional and molecular regionalization of the stomach at homeostasis and details how chronic inflammation can lead to characteristic alterations in these developmental demarcations, both at the topographic and glandular levels. More importantly, this review illustrates our current understanding of the epithelial mechanisms that underlie the pre-malignant gastric landscape, how Hp adapts to and exploits these changes, and the clinical implications of identifying these changes in order to stratify patients at risk of developing gastric cancer, a leading cause of cancer-related deaths worldwide.
Collapse
Affiliation(s)
- José B Sáenz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
49
|
Zhang Y, Zhang PS, Rong ZY, Huang C. One stomach, two subtypes of carcinoma-the differences between distal and proximal gastric cancer. Gastroenterol Rep (Oxf) 2021; 9:489-504. [PMID: 34925847 PMCID: PMC8677565 DOI: 10.1093/gastro/goab050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract, posing a significant risk to human health. Over the past 10 years, the pathological characteristics and the prognosis of GC have been determined based on the locations of the tumors that were then classified into two types-proximal and distal GC. This review focuses on the differences in epidemiology, etiology, cell source, pathological characteristics, gene expression, molecular markers, manifestations, treatment, prognosis, and prevention between proximal and distal GC to provide guidance and a basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Peng-Shan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ze-Yin Rong
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
50
|
Gastritis: The clinico-pathological spectrum. Dig Liver Dis 2021; 53:1237-1246. [PMID: 33785282 DOI: 10.1016/j.dld.2021.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
The inflammatory spectrum of gastric diseases includes different clinico-pathological entities, the etiology of which was recently established in the international Kyoto classification. A diagnosis of gastritis combines the information resulting form the gross examination (endoscopy) and histology (microscopy). It is important to consider the anatomical/functional heterogeneity of the gastric mucosa when obtaining representative mucosal biopsy samples. Gastritis includes self-limiting and non-self-limiting (long-standing) inflammatory diseases, and the latter are epidemiologically, biologically and clinically linked to the onset of gastric cancer (i.e. "inflammation-associated cancer"). Different biological models of inflammation-associated gastric oncogenesis have been proposed. Helicobacter pylori (H. pylori) gastritis is the most prevalent worldwide, and H. pylori is classified as a first-class carcinogen. On these bases, eradicating H. pylori is mandatory for the primary prevention of gastric cancer. Non-self-limiting gastritis may also be triggered by the immune-mediated destruction of gastric parietal cells, resulting in autoimmune gastritis. In both H. pylori-related and autoimmune gastritis, the non-self-limiting inflammation results in atrophy of the gastric mucosa, which is the main factor promoting gastric cancer. Long-term follow-up studies consistently demonstrate the prognostic impact of the histological staging of gastritis in gastric cancer secondary prevention strategies.
Collapse
|