1
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
2
|
Feng Y, Zhu Z, Xu J, Sun L, Zhang H, Xu H, Zhang F, Wang W, Han G, Jiang J, Liu Y, Zhou S, Zhang Y, Ji Y, Mao N, Xu W. Molecular Evolution of Human Parainfluenza Virus Type 2 Based on Hemagglutinin-Neuraminidase Gene. Microbiol Spectr 2023; 11:e0453722. [PMID: 37039701 PMCID: PMC10269610 DOI: 10.1128/spectrum.04537-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
To understand the molecular evolution of human parainfluenza virus type 2 (HPIV2), 21 Hemagglutinin-Neuraminidase (HN) gene sequences covering seven Chinese provinces in 2011 and 2017 to 2021 were combined with 90 published HN sequences worldwide for phylogenetic analysis. The result showed that global HPIV2 could be classified into two distinct clusters (I and II), five lineages (IA to IIE), and four sublineages (IB1 and 2, and IIE1 and 2). The minimum genetic distances between different clusters and lineages were 0.049 and 0.014, respectively. In the last decade, one lineage (IID) and three sublineages (IB1, IB2, and IIE1) have been cocirculating in China, with the sublineages IB2 and IIE1 dominating, while sublineages IB1 and IIE1 are dominant globally. In addition, the spread of HPIV2 had relative spatial clustering, and sublineage IB2 has only been detected in China thus far. The overall evolution rate of HPIV2 was relatively low, on the order of 10-4 substitutions/site/year, except for sublineage IB2 at 10-3 substitutions/site/year. Furthermore, human-animal transmission was observed, suggesting that the HPIV2 might have jumped out of animal reservoirs in approximately 1922, the predicted time of a common ancestor. The entire HN protein was under purifying/negative selection, and the specific amino acid changes and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 were mostly located in the globular head region of the HN protein. In this study, preliminary evolutionary characteristics of HPIV2 based on the HN gene were obtained, increasing the recognition of the evolution and adaptation of HPIV2. IMPORTANCE The phylogenetic analysis showed that global HPIV2 could be classified into two distinct clusters (I and II) and five lineages (IA to IIE) with at least 0.049 and 0.014 genetic distances between clusters and lineages, respectively. Furthermore, lineages IB and IIE could be further divided into two sublineages (IB1-2 and IIE1-2). All China sequences belong to one lineage and three sublineages (IB1, IB2, IID, and IIE1), among which sublineages IB2 and IIE1 are predominant and cocirculating in China, while sublineages IB1 and IIE1 are dominant globally. The overall evolution rate of HPIV2 is on the order of 10-4 substitutions/site/year, with the highest rate of 2.18 × 10-3 for sublineage IB2. The entire HN protein is under purifying/negative selection, and the specific amino acid substitutions and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 are mostly located in the globular head region of the HN protein.
Collapse
Affiliation(s)
- Yi Feng
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Xu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Liwei Sun
- Changchun Children's Hospital, Changchun, China
| | - Hui Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Hongmei Xu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Zhang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Wenyang Wang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Guangyue Han
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Jie Jiang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shanshan Zhou
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yixin Ji
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Naiying Mao
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Hillary LS, Adriaenssens EM, Jones DL, McDonald JE. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME COMMUNICATIONS 2022; 2:34. [PMID: 36373138 PMCID: PMC8992426 DOI: 10.1038/s43705-022-00110-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
The distribution and diversity of RNA viruses in soil ecosystems are largely unknown, despite their significant impact on public health, ecosystem functions, and food security. Here, we characterise soil RNA viral communities along an altitudinal productivity gradient of peat, managed grassland and coastal soils. We identified 3462 viral contigs in RNA viromes from purified virus-like-particles in five soil-types and assessed their spatial distribution, phylogenetic diversity and potential host ranges. Soil types exhibited minimal similarity in viral community composition, but with >10-fold more viral contigs shared between managed grassland soils when compared with peat or coastal soils. Phylogenetic analyses predicted soil RNA viral communities are formed from viruses of bacteria, plants, fungi, vertebrates and invertebrates, with only 12% of viral contigs belonging to the bacteria-infecting Leviviricetes class. 11% of viral contigs were found to be most closely related to members of the Ourmiavirus genus, suggesting that members of this clade of plant viruses may be far more widely distributed and diverse than previously thought. These results contrast with soil DNA viromes which are typically dominated by bacteriophages. RNA viral communities, therefore, have the potential to exert influence on inter-kingdom interactions across terrestrial biomes.
Collapse
Affiliation(s)
- Luke S. Hillary
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW UK
| | | | - David L. Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW UK
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105 Australia
| | - James E. McDonald
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW UK
| |
Collapse
|
4
|
Kurebayashi Y, Bajimaya S, Watanabe M, Lim N, Lutz M, Dunagan M, Takimoto T. Human parainfluenza virus type 1 regulates cholesterol biosynthesis and establishes quiescent infection in human airway cells. PLoS Pathog 2021; 17:e1009908. [PMID: 34529742 PMCID: PMC8445407 DOI: 10.1371/journal.ppat.1009908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022] Open
Abstract
Human parainfluenza virus type 1 (hPIV1) and 3 (hPIV3) cause seasonal epidemics, but little is known about their interaction with human airway cells. In this study, we determined cytopathology, replication, and progeny virion release from human airway cells during long-term infection in vitro. Both viruses readily established persistent infection without causing significant cytopathic effects. However, assembly and release of hPIV1 rapidly declined in sharp contrast to hPIV3 due to impaired viral ribonucleocapsid (vRNP) trafficking and virus assembly. Transcriptomic analysis revealed that both viruses induced similar levels of type I and III IFNs. However, hPIV1 induced specific ISGs stronger than hPIV3, such as MX2, which bound to hPIV1 vRNPs in infected cells. In addition, hPIV1 but not hPIV3 suppressed genes involved in lipid biogenesis and hPIV1 infection resulted in ubiquitination and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate limiting enzyme in cholesterol biosynthesis. Consequently, formation of cholesterol-rich lipid rafts was impaired in hPIV1 infected cells. These results indicate that hPIV1 is capable of regulating cholesterol biogenesis, which likely together with ISGs contributes to establishment of a quiescent infection. Seasonal epidemics caused by parainfluenza viruses result in a significant burden of disease in children. These viruses infect airway epithelial cells and cause acute respiratory infection. Humans are the only known hosts for these viruses, but how these viruses are maintained within the population is not known. In this study, we analyzed human airway cells infected with type 1 and 3 parainfluenza viruses. Both viruses readily established persistent infection without causing major cytopathic effects. However, assembly and release of hPIV1 rapidly declined over time in sharp contrast to hPIV3. HPIV1 infected cells formed large aggregates of viral nucleocapsid at late time points, suggesting impaired nucleocapsid trafficking and virus assembly. Transcriptomic analysis of infected cells showed no major difference in IFN induction between the viruses, while hPIV1 induced elevated levels of interferon stimulated genes (ISGs) compared to hPIV3. Interestingly, hPIV1 infection specifically downregulated genes involved in cholesterol biogenesis. We also found that hPIV1 infection induced ubiquitination and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate limiting enzyme in cholesterol biosynthesis. These results suggest that induction of IFN-independent ISGs and suppression of cholesterol by hPIV1 likely play a role in establishing quiescent infection in human respiratory epithelial cells.
Collapse
Affiliation(s)
- Yuki Kurebayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shringkhala Bajimaya
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Masahiro Watanabe
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nicholas Lim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Megan Dunagan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
A Novel Mechanism Underlying Antiviral Activity of an Influenza Virus M2-Specific Antibody. J Virol 2020; 95:JVI.01277-20. [PMID: 33055251 DOI: 10.1128/jvi.01277-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022] Open
Abstract
Protective immunity against influenza A viruses (IAVs) generally depends on antibodies to the major envelope glycoprotein, hemagglutinin (HA), whose antigenicity is distinctive among IAV subtypes. On the other hand, the matrix 2 (M2) protein is antigenically highly conserved and has been studied as an attractive vaccine antigen to confer cross-protective immunity against multiple subtypes of IAVs. However, antiviral mechanisms of M2-specific antibodies are not fully understood. Here, we report the molecular basis of antiviral activity of an M2-specific monoclonal antibody (MAb), rM2ss23. We first found that rM2ss23 inhibited A/Aichi/2/1968 (H3N2) (Aichi) but not A/PR/8/1934 (H1N1) (PR8) replication. rM2ss23 altered the cell surface distribution of M2, likely by cross-linking the molecules, and interfered with the colocalization of HA and M2, resulting in reduced budding of progeny viruses. However, these effects were not observed for another strain, PR8, despite the binding capacity of rM2ss23 to PR8 M2. Interestingly, HA was also involved in the resistance of PR8 to rM2ss23. We also found that two amino acid residues at positions 54 and 57 in the M2 cytoplasmic tail were critical for the insensitivity of PR8 to rM2ss2. These findings suggest that the disruption of the M2-HA colocalization on infected cells and subsequent reduction of virus budding is one of the principal mechanisms of antiviral activity of M2-specific antibodies and that anti-M2 antibody-sensitive and -resistant IAVs have different properties in the interaction between M2 and HA.IMPORTANCE Although the IAV HA is the major target of neutralizing antibodies, most of the antibodies are HA subtype specific, restricting the potential of HA-based vaccines. On the contrary, the IAV M2 protein has been studied as a vaccine antigen to confer cross-protective immunity against IAVs with multiple HA subtypes, since M2 is antigenically conserved. Although a number of studies highlight the protective role of anti-HA neutralizing and nonneutralizing antibodies, precise information on the molecular mechanism of action of M2-specific antibodies is still obscure. In this study, we found that an anti-M2 antibody interfered with the HA-M2 association, which is important for efficient budding of progeny virus particles from infected cells. The antiviral activity was IAV strain dependent despite the similar binding capacity of the antibody to M2, and, interestingly, HA was involved in susceptibility to the antibody. Our data provide a novel mechanism underlying antiviral activity of M2-specific antibodies.
Collapse
|
6
|
Guo K, Zhang X, Hou Y, Liu J, Feng Q, Wang K, Xu L, Zhang Y. A novel PCV2 ORF5-interacting host factor YWHAB inhibits virus replication and alleviates PCV2-induced cellular response. Vet Microbiol 2020; 251:108893. [PMID: 33096469 PMCID: PMC7568206 DOI: 10.1016/j.vetmic.2020.108893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022]
Abstract
YWHAB is a PCV2 ORF5-interacting host factor. YWHAB expression is activated by PCV2 infection and ORF5 transfection. YWHAB inhibits PCV2 replication. YWHAB alleviates PCV2 infection induced ERS, autophagy, ROS production and apoptosis.
Porcine circovirus type 2 (PCV2) infection causes porcine circovirus associated diseases (PCVAD) worldwide. Identification of host factors that interact with viral proteins is a fundamental step to understand the pathogenesis of PCV2. Our previous study reported that ORF5, a newly identified PCV2 viral protein supports PCV2 replication and interacts with multiple host factors. Here, we showed that a host factor YWHAB is an ORF5-interacting protein and plays essential roles during PCV2 infection. By using protein-protein interaction assays, we confirmed that YWHAB directly interacts with PCV2-ORF5 protein. We further showed that YWHAB expression was potently induced upon ORF5 overexpression and PCV2 infection. Remarkably, we found that the YWHAB strongly inhibited PCV2 replication, suggesting its role in defending PCV2 infection. By using the ectopic overexpression and gene knockdown approaches, we revealed that YWHAB inhibits PCV2-induced endoplasmic reticulum stress (ERS), autophagy, reactive oxygen species (ROS) production and apoptosis, suggesting its vital role in alleviating PCV2-induced cellular damage. Together, this study demonstrated that an ORF5-interacting host factor YWHAB affects PCV2 infection and PCV2-induced cellular response, which expands the current understanding of YWHAB biological function and might serves as a new therapeutic target to manage PCV2 infection-associated diseases.
Collapse
Affiliation(s)
- Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quanwen Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Nathan KG, Lal SK. The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses 2020; 12:E436. [PMID: 32294919 PMCID: PMC7232403 DOI: 10.3390/v12040436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The 14-3-3 proteins are a family of ubiquitous and exclusively eukaryotic proteins with an astoundingly significant number of binding partners. Their binding alters the activity, stability, localization, and phosphorylation state of a target protein. The association of 14-3-3 proteins with the regulation of a wide range of general and specific signaling pathways suggests their crucial role in health and disease. Recent studies have linked 14-3-3 to several RNA and DNA viruses that may contribute to the pathogenesis and progression of infections. Therefore, comprehensive knowledge of host-virus interactions is vital for understanding the viral life cycle and developing effective therapeutic strategies. Moreover, pharmaceutical research is already moving towards targeting host proteins in the control of virus pathogenesis. As such, targeting the right host protein to interrupt host-virus interactions could be an effective therapeutic strategy. In this review, we generated a 14-3-3 protein interactions roadmap in viruses, using the freely available Virusmentha network, an online virus-virus or virus-host interaction tool. Furthermore, we summarize the role of the 14-3-3 family in RNA and DNA viruses. The participation of 14-3-3 in viral infections underlines its significance as a key regulator for the expression of host and viral proteins.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
| | - Sunil K. Lal
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
- Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
8
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Gubala A, Walsh S, McAllister J, Weir R, Davis S, Melville L, Mitchell I, Bulach D, Gauci P, Skvortsov A, Boyle D. Identification of very small open reading frames in the genomes of Holmes Jungle virus, Ord River virus, and Wongabel virus of the genus Hapavirus, family Rhabdoviridae. Evol Bioinform Online 2017; 13:1176934317713484. [PMID: 28747815 PMCID: PMC5510769 DOI: 10.1177/1176934317713484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
Viruses of the family Rhabdoviridae infect a broad range of hosts from a variety of ecological and geographical niches, including vertebrates, arthropods, and plants. The arthropod-transmitted members of this family display considerable genetic diversity and remarkable genomic flexibility that enable coding for various accessory proteins in different locations of the genome. Here, we describe the genome of Holmes Jungle virus, isolated from Culex annulirostris mosquitoes collected in northern Australia, and make detailed comparisons with the closely related Ord River and Wongabel viruses, with a focus on identifying very small open reading frames (smORFs) in their genomes. This is the first systematic prediction of smORFs in rhabdoviruses, emphasising the intricacy of the rhabdovirus genome and the knowledge gaps. We speculate that these smORFs may be of importance to the life cycle of the virus in the arthropod vector.
Collapse
Affiliation(s)
- Aneta Gubala
- Land Division, Defence Science and Technology Group, Fishermans Bend, VIC, Australia
| | - Susan Walsh
- Berrimah Veterinary Laboratories, Department of Primary Industry and Fisheries, Northern Territory Government, Berrimah, NT, Australia
| | - Jane McAllister
- Land Division, Defence Science and Technology Group, Fishermans Bend, VIC, Australia
| | - Richard Weir
- Berrimah Veterinary Laboratories, Department of Primary Industry and Fisheries, Northern Territory Government, Berrimah, NT, Australia
| | - Steven Davis
- Berrimah Veterinary Laboratories, Department of Primary Industry and Fisheries, Northern Territory Government, Berrimah, NT, Australia
| | - Lorna Melville
- Berrimah Veterinary Laboratories, Department of Primary Industry and Fisheries, Northern Territory Government, Berrimah, NT, Australia
| | - Ian Mitchell
- Land Division, Defence Science and Technology Group, Fishermans Bend, VIC, Australia
| | - Dieter Bulach
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Penny Gauci
- Land Division, Defence Science and Technology Group, Fishermans Bend, VIC, Australia
| | - Alex Skvortsov
- Land Division, Defence Science and Technology Group, Fishermans Bend, VIC, Australia
| | - David Boyle
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| |
Collapse
|
10
|
Khalil H, El Malah T, El Maksoud AIA, El Halfawy I, El Rashedy AA, El Hefnawy M. Identification of Novel and Efficacious Chemical Compounds that Disturb Influenza A Virus Entry in vitro. Front Cell Infect Microbiol 2017; 7:304. [PMID: 28713784 PMCID: PMC5491913 DOI: 10.3389/fcimb.2017.00304] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
Influenza A virus is a negative RNA stranded virus of the family Orthomyxoviridae, and represents a major public health threat, compounding existing disease conditions. Influenza A virus replicates rapidly within its host and the segmented nature of its genome facilitates re-assortment, whereby whole genes are exchanged between influenza virus subtypes during replication. Antiviral medications are important pharmacological tools in influenza virus prophylaxis and therapy. However, the use of currently available antiviral is impeded by sometimes high levels of resistance in circulating virus strains. Here, we identified novel anti-influenza compounds through screening of chemical compounds synthesized de novo on human lung epithelial cells. Computational and experimental screening of extensive and water soluble compounds identified novel influenza virus inhibitors that can reduce influenza virus infection without detectable toxic effects on host cells. Interestingly, the indicated active compounds inhibit viral replication most likely via interaction with cell receptors and disturb influenza virus entry into host cells. Collectively, screening of new synthesis chemical compounds on influenza A virus replication provides a novel and efficacious anti-influenza compounds that can inhibit viral replication via disturbing virus entry and indicates that these compounds are attractive candidates for evaluation as potential anti-influenza drugs.
Collapse
Affiliation(s)
- Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat CitySadat, Egypt
| | - Tamer El Malah
- Photochemistry Department, National Research CentreGiza, Egypt
| | - Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat CitySadat, Egypt
| | - Ibrahim El Halfawy
- Department of Molecular Diagnostics, Genetic Engineering and Biotechnology Research Institute, University of Sadat CitySadat City, Egypt
| | | | | |
Collapse
|
11
|
Liang J, Sagum CA, Bedford MT, Sidhu SS, Sudol M, Han Z, Harty RN. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress. PLoS Pathog 2017; 13:e1006132. [PMID: 28076420 PMCID: PMC5226679 DOI: 10.1371/journal.ppat.1006132] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas Smithville, Smithville, TX, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas Smithville, Smithville, TX, United States of America
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Mechanobiology Institute and Institute for Molecular and Cell Biology (IMCB, A*STAR), Republic of Singapore
| | - Ziying Han
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Meshram CD, Baviskar PS, Ognibene CM, Oomens AGP. The Respiratory Syncytial Virus Phosphoprotein, Matrix Protein, and Fusion Protein Carboxy-Terminal Domain Drive Efficient Filamentous Virus-Like Particle Formation. J Virol 2016; 90:10612-10628. [PMID: 27654298 PMCID: PMC5110176 DOI: 10.1128/jvi.01193-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022] Open
Abstract
Virus-like particles (VLPs) are attractive as a vaccine concept. For human respiratory syncytial virus (hRSV), VLP assembly is poorly understood and appears inefficient. Hence, hRSV antigens are often incorporated into foreign VLP systems to generate anti-RSV vaccine candidates. To better understand the assembly, and ultimately to enable efficient production, of authentic hRSV VLPs, we examined the associated requirements and mechanisms. In a previous analysis in HEp-2 cells, the nucleoprotein (N), phosphoprotein (P), matrix protein (M), and fusion protein (F) were required for formation of filamentous VLPs, which, similar to those of wild-type virus, were associated with the cell surface. Using fluorescence and electron microscopy combined with immunogold labeling, we examined the surfaces of transfected HEp-2 cells and further dissected the process of filamentous VLP formation. Our results show that N is not required. Coexpression of P plus M plus F, but not P plus M, M plus F, or P plus F, induced both viral protein coalescence and formation of filamentous VLPs that resembled wild-type virions. Despite suboptimal coalescence in the absence of P, the M and F proteins, when coexpressed, formed cell surface-associated filaments with abnormal morphology, appearing longer and thinner than wild-type virions. For F, only the carboxy terminus (Fstem) was required, and addition of foreign protein sequences to Fstem allowed incorporation into VLPs. Together, the data show that P, M, and the F carboxy terminus are sufficient for robust viral protein coalescence and filamentous VLP formation and suggest that M-F interaction drives viral filament formation, with P acting as a type of cofactor facilitating the process and exerting control over particle morphology. IMPORTANCE hRSV is responsible for >100,000 deaths in children worldwide, and a vaccine is not available. Among the potential anti-hRSV approaches are virus-like particle (VLP) vaccines, which, based on resemblance to virus or viral components, can induce protective immunity. For hRSV, few reports are available concerning authentic VLP production or testing, in large part because VLP production is inefficient and the mechanisms underlying particle assembly are poorly understood. Here, we took advantage of the cell-associated nature of RSV particles and used high-resolution microscopy analyses to examine the viral proteins required for formation of wild-type-virus-resembling VLPs, the contributions of these proteins to morphology, and the domains involved in incorporation of the antigenically important viral F protein. The results provide new insights that will facilitate future production of hRSV VLPs with defined shapes and compositions and may translate into improved manufacture of live-attenuated hRSV vaccines.
Collapse
MESH Headings
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Cell Line
- Humans
- Microscopy, Electron, Scanning
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Protein Domains
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Respiratory Syncytial Virus Vaccines/chemistry
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/physiology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/ultrastructure
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Assembly
Collapse
Affiliation(s)
- Chetan D Meshram
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | - Cherie M Ognibene
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Antonius G P Oomens
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
13
|
Watkinson RE, Lee B. Nipah virus matrix protein: expert hacker of cellular machines. FEBS Lett 2016; 590:2494-511. [PMID: 27350027 DOI: 10.1002/1873-3468.12272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly.
Collapse
Affiliation(s)
- Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Abstract
Influenza A viruses (IAVs) harbor a segmented RNA genome that is organized into eight distinct viral ribonucleoprotein (vRNP) complexes. Although a segmented genome may be a major advantage to adapt to new host environments, it comes at the cost of a highly sophisticated genome packaging mechanism. Newly synthesized vRNPs conquer the cellular endosomal recycling machinery to access the viral budding site at the plasma membrane. Genome packaging sequences unique to each RNA genome segment are thought to be key determinants ensuring the assembly and incorporation of eight distinct vRNPs into progeny viral particles. Recent studies using advanced fluorescence microscopy techniques suggest the formation of vRNP sub-bundles (comprising less than eight vRNPs) during their transport on recycling endosomes. The formation of such sub-bundles might be required for efficient packaging of a bundle of eight different genomes segments at the budding site, further highlighting the complexity of IAV genome packaging.
Collapse
|
15
|
Bracken MK, Hayes BC, Kandel SR, Scott-Shemon D, Ackerson L, Hoffman MA. Viral protein requirements for assembly and release of human parainfluenza virus type 3 virus-like particles. J Gen Virol 2016; 97:1305-1310. [PMID: 26960133 DOI: 10.1099/jgv.0.000449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand the roles of human parainfluenza virus 3 (HPIV3) proteins in assembly and release, viral proteins were expressed individually and in combination in 293T cells. Expression of the matrix (M) protein triggered release of enveloped, matrix-containing virus-like particles (VLPs) from cells. When M was co-expressed with the nucleocapsid (N), fusion (F) or haemagglutinin-neuraminidase (HN) proteins, VLPs that contained M+N, M+F and M+HN, respectively, were generated, suggesting that M can independently interact with each protein to facilitate assembly and release. Additionally, expression of N protein enabled incorporation of the phosphoprotein (P) into VLPs, likely due to known N-P interactions. Finally, the HPIV3 C protein did not enhance VLP release, in contrast to observations with the related Sendai virus. These findings reinforce the central importance of the M protein in virus assembly and release, but also illustrate the variable roles of other paramyxovirus proteins during these processes.
Collapse
Affiliation(s)
- Megan K Bracken
- Department of Microbiology, University of Wisconsin - La Crosse, 1725 State St, La Crosse, WI 54601, USA
| | - Brandon C Hayes
- Department of Microbiology, University of Wisconsin - La Crosse, 1725 State St, La Crosse, WI 54601, USA
| | - Suresh R Kandel
- Department of Microbiology, University of Wisconsin - La Crosse, 1725 State St, La Crosse, WI 54601, USA
| | - Deja Scott-Shemon
- Department of Microbiology, University of Wisconsin - La Crosse, 1725 State St, La Crosse, WI 54601, USA
| | - Larissa Ackerson
- Department of Microbiology, University of Wisconsin - La Crosse, 1725 State St, La Crosse, WI 54601, USA
| | - Michael A Hoffman
- Department of Microbiology, University of Wisconsin - La Crosse, 1725 State St, La Crosse, WI 54601, USA
| |
Collapse
|
16
|
Ray G, Schmitt PT, Schmitt AP. C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles. J Virol 2016; 90:3650-60. [PMID: 26792745 PMCID: PMC4794684 DOI: 10.1128/jvi.02673-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein interactions which enable efficient packaging of encapsidated viral RNA genomes into budding virions. In this study, we have defined regions near the C-terminal ends of paramyxovirus nucleocapsid proteins that are important for matrix protein interaction and that are sufficient to direct a foreign protein into budding particles. These results advance our basic understanding of paramyxovirus genome packaging interactions and also have implications for the potential use of virus-like particles as protein delivery tools.
Collapse
Affiliation(s)
- Greeshma Ray
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Phuong Tieu Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anthony P Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Interaction of Human Parainfluenza Virus Type 3 Nucleoprotein with Matrix Protein Mediates Internal Viral Protein Assembly. J Virol 2015; 90:2306-15. [PMID: 26656716 DOI: 10.1128/jvi.02324-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/04/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human parainfluenza virus type 3 (HPIV3) belongs to the Paramyxoviridae family. Its three internal viral proteins, the nucleoprotein (N), the phosphoprotein (P), and the polymerase (L), form the ribonucleoprotein (RNP) complex, which encapsidates the viral genome and associates with the matrix protein (M) for virion assembly. We previously showed that the M protein expressed alone is sufficient to assemble and release virus-like particles (VLPs) and a mutant with the L305A point mutation in the M protein (ML305A) has a VLP formation ability similar to that of wild-type M protein. In addition, recombinant HPIV3 (rHPIV3) containing the ML305A mutation (rHPIV3-ML305A) could be successfully recovered. In the present study, we found that the titer of rHPIV3-ML305A was at least 10-fold lower than the titer of rHPIV3. Using VLP incorporation and coimmunoprecipitation assays, we found that VLPs expressing the M protein (M-VLPs) can efficiently incorporate N and P via an N-M or P-M interaction and ML305A-VLPs had an ability to incorporate P via a P-M interaction similar to that of M-VLPs but were unable to incorporate N and no longer interacted with N. Furthermore, we found that the incorporation of P into ML305A-VLPs but not M-VLPs was inhibited in the presence of N. In addition, we provide evidence that the C-terminal region of P is involved in its interaction with both N and M and N binding to the C-terminal region of P inhibits the incorporation of P into ML305A-VLPs. Our findings provide new molecular details to support the idea that the N-M interaction and not the P-M interaction is critical for packaging N and P into infectious viral particles. IMPORTANCE Human parainfluenza virus type 3 (HPIV3) is a nonsegmented, negative-sense, single-stranded RNA virus that belongs to the Paramyxoviridae family and can cause lower respiratory tract infections in infants and young children as well as elderly or immunocompromised individuals. However, no effective vaccine has been developed or licensed. We used virus-like particle (VLP) incorporation and coimmunoprecipitation assays to determine how the M protein assembles internal viral proteins. We demonstrate that both nucleoprotein (N) and phosphoprotein (P) can incorporate into M-VLPs and N inhibits the M-P interaction via the binding of N to the C terminus of P. We also provide additional evidence that the N-M interaction but not the P-M interaction is critical for the regulation of HPIV3 assembly. Our studies provide a more complete characterization of HPIV3 virion assembly and substantiation that N interaction with M regulates internal viral organization.
Collapse
|
18
|
Kenney SP, Wentworth JL, Heffron CL, Meng XJ. Replacement of the hepatitis E virus ORF3 protein PxxP motif with heterologous late domain motifs affects virus release via interaction with TSG101. Virology 2015; 486:198-208. [PMID: 26457367 DOI: 10.1016/j.virol.2015.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
The ORF3 protein of hepatitis E virus (HEV) contains a "PSAP" amino acid late domain motif, which allows for interaction with the endosomal sorting complexes required for transport (ESCRT) pathway aiding virion release. Late domain motifs are interchangeable with other viral late domain motifs in several enveloped viruses, however, it remains unknown whether HEV shares this functional interchangeability and what implications this might have on viral replication. In this study, by substituting heterologous late domain motifs (PPPY, YPDL, and PSAA) for the HEV ORF3 late domain (PSAP), we demonstrated that deviation from the PSAP motif reduces virus release as measured by viral RNA in culture media. Virus release could not be restored by insertion of a heterologous late domain motif or by supplying wild-type ORF3 in trans, suggesting that the HEV PSAP motif is required for viral exit which cannot be bypassed by the use of alternative heterologous late domains.
Collapse
Affiliation(s)
- Scott P Kenney
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | | | - Connie L Heffron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.
| |
Collapse
|
19
|
Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis. PLoS Pathog 2015; 11:e1005223. [PMID: 26484673 PMCID: PMC4616665 DOI: 10.1371/journal.ppat.1005223] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/22/2015] [Indexed: 01/21/2023] Open
Abstract
Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses. Reverse genetics is a powerful tool for fundamental studies of virus biology, pathology and biotechnology applications. Although plant negative-strand RNA (NSR) viruses consist of members in the Rhabdoviridae, Bunyaviridae, Ophioviridae families and several unassigned genera that collectively account for many economically important crop diseases, unfortunately, several technical difficulties have hindered application of genetic engineering to these groups of viruses. This study describes the first reverse genetics system developed for plant NSR viruses. We report an efficient procedure for production of infectious virus from cloned cDNAs of sonchus yellow net virus (SYNV) RNAs, a model plant rhabdovirus. We have also engineered a recombinant SYNV vector for stable expression of a fluorescent reporter gene. Using this system, we have generated targeted SYNV mutants whose analyses provide key insights into enveloped plant virus movement and morphogenesis processes. Moreover, our findings provide a template for reverse genetics studies with other plant rhabdoviruses, and a strategy to circumvent technical difficulties that have hampered these applications to plant NSR viruses.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. RECENT FINDINGS A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. SUMMARY Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, Melbourne, 3004, Australia
- Address correspondence to: Dmitri Sviridov, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia; Phone: +61385321363,
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
21
|
Radzimanowski J, Effantin G, Weissenhorn W. Conformational plasticity of the Ebola virus matrix protein. Protein Sci 2014; 23:1519-27. [PMID: 25159197 DOI: 10.1002/pro.2541] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022]
Abstract
Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40.
Collapse
Affiliation(s)
- Jens Radzimanowski
- University Grenoble Alpes, UVHCI, F-38000, Grenoble, France; CNRS, UVHCI, F-38000, Grenoble, France
| | | | | |
Collapse
|
22
|
A leucine residue in the C terminus of human parainfluenza virus type 3 matrix protein is essential for efficient virus-like particle and virion release. J Virol 2014; 88:13173-88. [PMID: 25187547 DOI: 10.1128/jvi.01485-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Paramyxovirus particles, like other enveloped virus particles, are formed by budding from membranes of infected cells, and matrix (M) proteins are critical for this process. To identify the M protein important for this process, we have characterized the budding of the human parainfluenza virus type 3 (HPIV3) M protein. Our results showed that expression of the HPIV3 M protein alone is sufficient to initiate the release of virus-like particles (VLPs). Electron microscopy analysis confirmed that VLPs are morphologically similar to HPIV3 virions. We identified a leucine (L302) residue within the C terminus of the HPIV3 M protein that is critical for M protein-mediated VLP production by regulating the ubiquitination of the M protein. When L302 was mutated into A302, ubiquitination of M protein was defective, the release of VLPs was abolished, and the membrane binding and budding abilities of M protein were greatly weakened, but the ML302A mutant retained oligomerization activity and had a dominant negative effect on M protein-mediated VLP production. Furthermore, treatment with a proteasome inhibitor also inhibited M protein-mediated VLP production and viral budding. Finally, recombinant HPIV3 containing the M(L302A) mutant could not be rescued. These results suggest that L302 acts as a critical regulating signal for the ubiquitination of the HPIV3 M protein and virion release. IMPORTANCE Human parainfluenza virus type 3 (HPIV3) is an enveloped virus with a nonsegmented negative-strand RNA genome. It can cause severe respiratory tract diseases, such as bronchiolitis, pneumonia, and croup in infants and young children. However, no valid antiviral therapy or vaccine is currently available. Thus, further elucidation of its assembly and budding will be helpful in the development of novel therapeutic approaches. Here, we show that a leucine residue (L302) located at the C terminus of the HPIV3 M protein is essential for efficient production of virus-like particles (VLPs). Furthermore, we found L302 regulated M protein-mediated VLP production via regulation of M protein ubiquitination. Recombinant HPIV3 containing the M(L302A) mutant is growth defective. These findings provide new insight into the critical role of M protein-mediated VLP production and virion release of a residue that does not belong to L domain and may advance our understanding of HPIV3 viral assembly and budding.
Collapse
|
23
|
The respiratory syncytial virus fusion protein targets to the perimeter of inclusion bodies and facilitates filament formation by a cytoplasmic tail-dependent mechanism. J Virol 2013; 87:10730-41. [PMID: 23903836 DOI: 10.1128/jvi.03086-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) fusion (F) protein cytoplasmic tail (CT) and matrix (M) protein are key mediators of viral assembly, but the underlying mechanisms are poorly understood. A complementation assay was developed to systematically examine the role of the F protein CT in infectious virus production. The ability of F mutants with alanine substitutions in the CT to complement an F-null virus in generating infectious progeny was quantitated by flow cytometry. Two CT regions with impact on infectious progeny production were identified: residues 557 to 566 (CT-R1) and 569 to 572 (CT-R2). Substitutions in CT-R1 decreased infectivity by 40 to 85% and increased the level of F-induced cell-cell fusion but had little impact on assembly of viral surface filaments, which are believed to be virions. Substitutions in CT-R2, as well as deletion of the entire CT, abrogated infectious progeny production and impaired viral filament formation. However, CT-R2 mutations did not block but rather delayed the formation of viral filaments, which continued to form at a low rate and contained the viral M protein and nucleoprotein (N). Microscopy analysis revealed that substitutions in CT-R2 but not CT-R1 led to accumulation of M and F proteins within and at the perimeter of viral inclusion bodies (IBs), respectively. The accumulation of M and F at IBs and coincident strong decrease in filament formation and infectivity upon CT-R2 mutations suggest that F interaction with IBs is an important step in the virion assembly process and that CT residues 569 to 572 act to facilitate release of M-ribonucleoprotein complexes from IBs.
Collapse
|
24
|
Shedding light on filovirus infection with high-content imaging. Viruses 2012; 4:1354-71. [PMID: 23012631 PMCID: PMC3446768 DOI: 10.3390/v4081354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 12/14/2022] Open
Abstract
Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI) has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.
Collapse
|
25
|
Silva LP, Vanzile M, Bavari S, Aman JMJ, Schriemer DC. Assembly of Ebola virus matrix protein VP40 is regulated by latch-like properties of N and C terminal tails. PLoS One 2012; 7:e39978. [PMID: 22792204 PMCID: PMC3390324 DOI: 10.1371/journal.pone.0039978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/30/2012] [Indexed: 11/18/2022] Open
Abstract
The matrix protein VP40 coordinates numerous functions in the viral life cycle of the Ebola virus. These range from the regulation of viral transcription to morphogenesis, packaging and budding of mature virions. Similar to the matrix proteins of other nonsegmented, negative-strand RNA viruses, VP40 proceeds through intermediate states of assembly (e.g. octamers) but it remains unclear how these intermediates are coordinated with the various stages of the life cycle. In this study, we investigate the molecular basis of synchronization as governed by VP40. Hydrogen/deuterium exchange mass spectrometry was used to follow induced structural and conformational changes in VP40. Together with computational modeling, we demonstrate that both extreme N and C terminal tail regions stabilize the monomeric state through a direct association. The tails appear to function as a latch, released upon a specific molecular trigger such as RNA ligation. We propose that triggered release of the tails permits the coordination of late-stage events in the viral life cycle, at the inner membrane of the host cell. Specifically, N-tail release exposes the L-domain motifs PTAP/PPEY to the transport and budding complexes, whereas triggered C-tail release could improve association with the site of budding.
Collapse
Affiliation(s)
- Leslie P. Silva
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Michael Vanzile
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - J. M. Javad Aman
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - David C. Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
26
|
Popa A, Carter JR, Smith SE, Hellman L, Fried MG, Dutch RE. Residues in the hendra virus fusion protein transmembrane domain are critical for endocytic recycling. J Virol 2012; 86:3014-26. [PMID: 22238299 PMCID: PMC3302302 DOI: 10.1128/jvi.05826-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/23/2011] [Indexed: 12/17/2022] Open
Abstract
Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of Hendra virus F following internalization and the recycling signals involved are poorly understood. We examined the intracellular distribution of Hendra virus F following endocytosis and showed that it is primarily present in Rab5- and Rab4-positive endosomal compartments, suggesting that cathepsin L cleavage occurs in early endosomes. Hendra virus F transmembrane domain (TMD) residues S490 and Y498 were found to be important for correct Hendra virus F recycling, with the hydroxyl group of S490 and the aromatic ring of Y498 important for this process. In addition, changes in association of isolated Hendra virus F TMDs correlated with alterations to Hendra virus F recycling, suggesting that appropriate TMD interactions play an important role in endocytic trafficking.
Collapse
Affiliation(s)
- Andreea Popa
- Department of Molecular and Cellular Biochemistry
| | | | | | | | - Michael G. Fried
- Department of Molecular and Cellular Biochemistry
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
27
|
The human respiratory syncytial virus matrix protein is required for maturation of viral filaments. J Virol 2012; 86:4432-43. [PMID: 22318136 DOI: 10.1128/jvi.06744-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An experimental system was developed to generate infectious human respiratory syncytial virus (HRSV) lacking matrix (M) protein expression (M-null virus) from cDNA. The role of the M protein in virus assembly was then examined by infecting HEp-2 and Vero cells with the M-null virus and assessing the impact on infectious virus production and viral protein trafficking. In the absence of M, the production of infectious progeny was strongly impaired. Immunofluorescence (IF) microscopy analysis using antibodies against the nucleoprotein (N), attachment protein (G), and fusion protein (F) failed to detect the characteristic virus-induced cell surface filaments, which are believed to represent infectious virions. In addition, a large proportion of the N protein was detected in viral replication factories termed inclusion bodies (IBs). High-resolution analysis of the surface of M-null virus-infected cells by field emission scanning electron microscopy (SEM) revealed the presence of large areas with densely packed, uniformly short filaments. Although unusually short, these filaments were otherwise similar to those induced by an M-containing control virus, including the presence of the viral G and F proteins. The abundance of the short, stunted filaments in the absence of M indicates that M is not required for the initial stages of filament formation but plays an important role in the maturation or elongation of these structures. In addition, the absence of mature viral filaments and the simultaneous increase in the level of the N protein within IBs suggest that the M protein is involved in the transport of viral ribonucleoprotein (RNP) complexes from cytoplasmic IBs to sites of budding.
Collapse
|
28
|
Abstract
Ubiquitin is important for the budding of many retroviruses and other enveloped viruses, but the precise role of ubiquitin in virus budding remains unclear. Here, we characterized the ubiquitination of the matrix (M) protein of a paramyxovirus, parainfluenza virus 5 (PIV5). The PIV5 M protein (but not the PIV5 nucleocapsid protein) was found to be targeted for monoubiquitination in transfected mammalian cells. Major sites of ubiquitin attachment identified by mass spectrometry analysis were lysine residues at amino acid positions 79/80, 130, and 247. The cumulative mutation of lysine residues 79, 80, and 130 to arginines led to an altered pattern of M protein ubiquitination and impaired viruslike particle (VLP) production. However, the cumulative mutation of lysine residues 79, 80, 130, and 247 to arginines restored M protein ubiquitination and VLP production, suggesting that ubiquitin is attached to alternative sites on the M protein when the primary ones have been removed. Additional lysine residues were targeted for mutagenesis based on the UbiPred algorithm. An M protein with seven lysine residues changed to arginines exhibited altered ubiquitination and poor VLP production. A recombinant virus encoding an M protein with seven lysines mutated was generated, and this virus exhibited a 6-fold-reduced maximum titer, with the defect being attributed mainly to the budding of noninfectious particles. The recombinant virus was assembly deficient, as judged by the redistribution of viral M and hemagglutinin-neuraminidase proteins in infected cells. Similar assembly defects were observed for the wild-type (wt) virus after treatment with a proteasome inhibitor. Collectively, these findings suggest that the monoubiquitination of the PIV5 M protein is important for proper virus assembly and for the budding of infectious particles.
Collapse
|
29
|
The C-terminal region of lymphocytic choriomeningitis virus nucleoprotein contains distinct and segregable functional domains involved in NP-Z interaction and counteraction of the type I interferon response. J Virol 2011; 85:13038-48. [PMID: 21976642 DOI: 10.1128/jvi.05834-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several arenaviruses cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. Arenavirus nucleoprotein (NP), the most abundant viral protein in infected cells and virions, encapsidates the viral genome RNA, and this NP-RNA complex, together with the viral L polymerase, forms the viral ribonucleoprotein (vRNP) that directs viral RNA replication and gene transcription. Formation of infectious arenavirus progeny requires packaging of vRNPs into budding particles, a process in which arenavirus matrix-like protein (Z) plays a central role. In the present study, we have characterized the NP-Z interaction for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). The LCMV NP domain that interacted with Z overlapped with a previously documented C-terminal domain that counteracts the host type I interferon (IFN) response. However, we found that single amino acid mutations that affect the anti-IFN function of LCMV NP did not disrupt the NP-Z interaction, suggesting that within the C-terminal region of NP different amino acid residues critically contribute to these two distinct and segregable NP functions. A similar NP-Z interaction was confirmed for the HF arenavirus Lassa virus (LASV). Notably, LCMV NP interacted similarly with both LCMV Z and LASV Z, while LASV NP interacted only with LASV Z. Our results also suggest the presence of a conserved protein domain within NP but with specific amino acid residues playing key roles in determining the specificity of NP-Z interaction that may influence the viability of reassortant arenaviruses. In addition, this NP-Z interaction represents a potential target for the development of antiviral drugs to combat human-pathogenic arenaviruses.
Collapse
|
30
|
Association of influenza virus proteins with membrane rafts. Adv Virol 2011; 2011:370606. [PMID: 22312341 PMCID: PMC3265303 DOI: 10.1155/2011/370606] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022] Open
Abstract
Assembly and budding of influenza virus proceeds in the viral budozone, a domain in the plasma membrane with characteristics of cholesterol/sphingolipid-rich membrane rafts. The viral transmembrane glycoproteins hemagglutinin (HA) and neuraminidase (NA) are intrinsically targeted to these domains, while M2 is seemingly targeted to the edge of the budozone. Virus assembly is orchestrated by the matrix protein M1, binding to all viral components and the membrane. Budding progresses by protein- and lipid-mediated membrane bending and particle scission probably mediated by M2. Here, we summarize the experimental evidence for this model with emphasis on the raft-targeting features of HA, NA, and M2 and review the functional importance of raft domains for viral protein transport, assembly and budding, environmental stability, and membrane fusion.
Collapse
|
31
|
Sauder CJ, Zhang CX, Ngo L, Werner K, Lemon K, Duprex WP, Malik T, Carbone K, Rubin SA. Gene-specific contributions to mumps virus neurovirulence and neuroattenuation. J Virol 2011; 85:7059-69. [PMID: 21543475 PMCID: PMC3126569 DOI: 10.1128/jvi.00245-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/28/2011] [Indexed: 01/21/2023] Open
Abstract
Mumps virus (MuV) is highly neurotropic and was the leading cause of aseptic meningitis in the Western Hemisphere prior to widespread use of live attenuated MuV vaccines. Due to the absence of markers of virus neuroattenuation and neurovirulence, ensuring mumps vaccine safety has proven problematic, as demonstrated by the occurrence of aseptic meningitis in recipients of certain vaccine strains. Here we examined the genetic basis of MuV neuroattenuation and neurovirulence by generating a series of recombinant viruses consisting of combinations of genes derived from a cDNA clone of the neurovirulent wild-type 88-1961 strain (r88) and from a cDNA clone of the highly attenuated Jeryl Lynn vaccine strain (rJL). Testing of these viruses in rats demonstrated the ability of several individual rJL genes and gene combinations to significantly neuroattenuate r88, with the greatest effect imparted by the rJL nucleoprotein/matrix protein combination. Interestingly, no tested combination of r88 genes, including the nucleoprotein/matrix protein combination, was able to convert rJL into a highly neurovirulent virus, highlighting mechanistic differences between processes involved in neuroattenuation and neurovirulence.
Collapse
Affiliation(s)
- Christian J Sauder
- United States Food and Drug Administration, CBER, OVRR, DVP, 8800 Rockville Pike, Building 29A, HFM 460, Room 2C20, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The conserved YAGL motif in human metapneumovirus is required for higher-order cellular assemblies of the matrix protein and for virion production. J Virol 2011; 85:6594-609. [PMID: 21525358 DOI: 10.1128/jvi.02694-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YXXL motifs in cellular and viral proteins have a variety of functions. The matrix (M) protein of the respiratory pathogen human metapneumovirus (hMPV) contains two such conserved motifs--YSKL and YAGL. We mutated these sequences to analyze their contributions to hMPV infectivity. The mutant clones were capable of intracellular replication; however, the YAGL but not YSKL mutants were defective at spreading in infected cultures. We improved the reverse genetics system for hMPV and generated cell lines that stably expressed selectable, replicating full-length genomes for both the wild type and the mutant clones, allowing microscopic and biochemical analyses of these viruses. YAGL mutants produced normal cellular levels of M protein but failed to release virions, while ectopic coexpression of wild-type M generated particles that were restricted to a single cycle of infection. The YAGL motif did not act as a late (L) domain, however, since hMPV budding was independent of the cellular endosomal sorting complex required for transport (ESCRT) machinery and because replacement of the YAGL motif with classical L domains generated defective viruses. Instead, the YAGL mutants had defective M assemblies lacking a normal filamentous appearance and showed poor extractability from the cell compared to the wild-type protein. The mutant proteins were not grossly misfolded, however, as they interacted with cellular membranes and coassembled with wild-type M proteins. Thus, the YAGL motif is an important determinant of hMPV assembly. Furthermore, the selectable hMPV genomes described here should extend the use of reverse genetics systems in the analysis of spreading-defective viruses.
Collapse
|
33
|
Walpita P, Barr J, Sherman M, Basler CF, Wang L. Vaccine potential of Nipah virus-like particles. PLoS One 2011; 6:e18437. [PMID: 21494680 PMCID: PMC3071823 DOI: 10.1371/journal.pone.0018437] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Nipah virus (NiV) was first recognized in 1998 in a zoonotic disease outbreak associated with highly lethal febrile encephalitis in humans and a predominantly respiratory disease in pigs. Periodic deadly outbreaks, documentation of person-to-person transmission, and the potential of this virus as an agent of agroterror reinforce the need for effective means of therapy and prevention. In this report, we describe the vaccine potential of NiV virus-like particles (NiV VLPs) composed of three NiV proteins G, F and M. Co-expression of these proteins under optimized conditions resulted in quantifiable amounts of VLPs with many virus-like/vaccine desirable properties including some not previously described for VLPs of any paramyxovirus: The particles were fusogenic, inducing syncytia formation; PCR array analysis showed NiV VLP-induced activation of innate immune defense pathways; the surface structure of NiV VLPs imaged by cryoelectron microscopy was dense, ordered, and repetitive, and consistent with similarly derived structure of paramyxovirus measles virus. The VLPs were composed of all the three viral proteins as designed, and their intracellular processing also appeared similar to NiV virions. The size, morphology and surface composition of the VLPs were consistent with the parental virus, and importantly, they retained their antigenic potential. Finally, these particles, formulated without adjuvant, were able to induce neutralizing antibody response in Balb/c mice. These findings indicate vaccine potential of these particles and will be the basis for undertaking future protective efficacy studies in animal models of NiV disease.
Collapse
Affiliation(s)
- Pramila Walpita
- Department of Microbiology, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, Texas, United States of America.
| | | | | | | | | |
Collapse
|
34
|
Parainfluenza virus 5 m protein interaction with host protein 14-3-3 negatively affects virus particle formation. J Virol 2010; 85:2050-9. [PMID: 21147917 DOI: 10.1128/jvi.02111-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Paramyxovirus matrix (M) proteins organize virus assembly, linking viral glycoproteins and viral ribonucleoproteins together at virus assembly sites on cellular membranes. Using a yeast two-hybrid screening approach, we identified 14-3-3 as a binding partner for the M protein of parainfluenza virus 5 (PIV5). Binding in both transfected and PIV5-infected cells was confirmed by coimmunoprecipitation and was mapped to a C-terminal region within the M protein, namely, 366-KTKSLP-371. This sequence resembles known 14-3-3 binding sites, in which the key residue for binding is a phosphorylated serine residue. Mutation of S369 within the PIV5 M protein disrupted 14-3-3 binding and improved the budding of both virus-like particles (VLPs) and recombinant viruses, suggesting that 14-3-3 binding impairs virus budding. 14-3-3 protein overexpression reduced the budding of VLPs. Using (33)P labeling, phosphorylated M protein was detected in PIV5-infected cells, and this phosphorylation was nearly absent in cells infected with a recombinant virus harboring an S369A mutation within the M protein. Assembly of the M protein into clusters and filaments at infected cell surfaces was enhanced in cells infected with a recombinant virus defective in 14-3-3 binding. These findings support a model in which a portion of M protein within PIV5-infected cells is phosphorylated at residue S369, binds the 14-3-3 protein, and is held away from sites of virus budding.
Collapse
|
35
|
Testa JS, Apcher GS, Comber JD, Eisenlohr LC. Exosome-driven antigen transfer for MHC class II presentation facilitated by the receptor binding activity of influenza hemagglutinin. THE JOURNAL OF IMMUNOLOGY 2010; 185:6608-16. [PMID: 21048109 DOI: 10.4049/jimmunol.1001768] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying MHC class I-restricted cross-presentation, the transfer of Ag from an infected cell to a professional APC, have been studied in great detail. Much less is known about the equivalent process for MHC class II-restricted presentation. After infection or transfection of class II-negative donor cells, we observed minimal transfer of a proteasome-dependent "class I-like" epitope within the influenza neuraminidase glycoprotein but potent transfer of a classical, H-2M-dependent epitope within the hemagglutinin (HA) glycoprotein. Additional experiments determined transfer to be exosome-mediated and substantially enhanced by the receptor binding activity of incorporated HA. Furthermore, a carrier effect was observed in that incorporated HA improved exosome-mediated transfer of a second membrane protein. This route of Ag presentation should be relevant to other enveloped viruses, may skew CD4(+) responses toward exosome-incorporated glycoproteins, and points toward novel vaccine strategies.
Collapse
Affiliation(s)
- James S Testa
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
36
|
The C-terminal end of parainfluenza virus 5 NP protein is important for virus-like particle production and M-NP protein interaction. J Virol 2010; 84:12810-23. [PMID: 20943976 DOI: 10.1128/jvi.01885-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enveloped virus particles are formed by budding from infected-cell membranes. For paramyxoviruses, viral matrix (M) proteins are key drivers of virus assembly and budding. However, other paramyxovirus proteins, including glycoproteins, nucleocapsid (NP or N) proteins, and C proteins, are also important for particle formation in some cases. To investigate the role of NP protein in parainfluenza virus 5 (PIV5) particle formation, NP protein truncation and substitution mutants were analyzed. Alterations near the C-terminal end of NP protein completely disrupted its virus-like particle (VLP) production function and significantly impaired M-NP protein interaction. Recombinant viruses with altered NP proteins were generated, and these viruses acquired second-site mutations. Recombinant viruses propagated in Vero cells acquired mutations that mainly affected components of the viral polymerase, while recombinant viruses propagated in MDBK cells acquired mutations that mainly affected the viral M protein. Two of the Vero-propagated viruses acquired the same mutation, V/P(S157F), found previously to be responsible for elevated viral gene expression induced by a well-characterized variant of PIV5, P/V-CPI(-). Vero-propagated viruses caused elevated viral protein synthesis and spread rapidly through infected monolayers by direct cell-cell fusion, bypassing the need to bud infectious virions. Both Vero- and MDBK-propagated viruses exhibited infectivity defects and altered polypeptide composition, consistent with poor incorporation of viral ribonucleoprotein complexes (RNPs) into budding virions. Second-site mutations affecting M protein restored interaction with altered NP proteins in some cases and improved VLP production. These results suggest that multiple avenues are available to paramyxoviruses for overcoming defects in M-NP protein interaction.
Collapse
|
37
|
A role for caveolin 1 in assembly and budding of the paramyxovirus parainfluenza virus 5. J Virol 2010; 84:9749-59. [PMID: 20631121 DOI: 10.1128/jvi.01079-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Caveolin 1 (Cav-1) is an integral membrane protein that forms the coat structure of plasma membrane caveolae and regulates caveola-dependent functions. Caveolae are enriched in cholesterol and sphingolipids and are related to lipid rafts. Many studies implicate rafts as sites of assembly and budding of enveloped virus. We show that Cav-1 colocalizes with the paramyxovirus parainfluenza virus 5 (PIV-5) nucleocapsid (NP), matrix (M), and hemagglutinin-neuraminidase (HN) proteins. Moreover, electron microscopy shows that Cav-1 is clustered at sites of viral budding. HN, M, and F(1)/F(2) are associated with detergent-resistant membranes, and these proteins float on sucrose gradients with Cav-1-rich fractions. A complex containing Cav-1 with M, NP, and HN from virus-infected cells and a complex containing Cav-1 and M from M-transfected cells were found on coimmunoprecipitation. A role of Cav-1 in the PIV-5 life cycle was investigated by utilizing MCF-7 human breast cancer cells that stably express Cav-1 (MCF-7/Cav-1). PIV-5 entry into MCF-7 and MCF-7/Cav-1 was found to be Cav-1 independent. However, the interaction between HN and M proteins was dramatically reduced in the Cav-1 null MCF-7 cells, and PIV-5 grown in MCF-7 cells had a reduced infectivity. Similarly, when PIV-5 was grown in MDCK cells that stably expressed dominant negative Cav-1 (MDCK/P132LCav-1), the virus showed a reduced infectivity. Virions lacking Cav-1 were defective and contained high levels of host cellular proteins and reduced levels of HN and M. These data suggest that Cav-1 affects assembly and/or budding, and this is supported by the finding that Cav-1 is incorporated into mature viral particles.
Collapse
|
38
|
Harrison MS, Sakaguchi T, Schmitt AP. Paramyxovirus assembly and budding: building particles that transmit infections. Int J Biochem Cell Biol 2010; 42:1416-29. [PMID: 20398786 DOI: 10.1016/j.biocel.2010.04.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 01/16/2023]
Abstract
The paramyxoviruses define a diverse group of enveloped RNA viruses that includes a number of important human and animal pathogens. Examples include human respiratory syncytial virus and the human parainfluenza viruses, which cause respiratory illnesses in young children and the elderly; measles and mumps viruses, which have caused recent resurgences of disease in developed countries; the zoonotic Hendra and Nipah viruses, which have caused several outbreaks of fatal disease in Australia and Asia; and Newcastle disease virus, which infects chickens and other avian species. Like other enveloped viruses, paramyxoviruses form particles that assemble and bud from cellular membranes, allowing the transmission of infections to new cells and hosts. Here, we review recent advances that have improved our understanding of events involved in paramyxovirus particle formation. Contributions of viral matrix proteins, glycoproteins, nucleocapsid proteins, and accessory proteins to particle formation are discussed, as well as the importance of host factor recruitment for efficient virus budding. Trafficking of viral structural components within infected cells is described, together with mechanisms that allow for the selection of specific sites on cellular membranes for the coalescence of viral proteins in preparation of bud formation and virion release.
Collapse
Affiliation(s)
- Megan S Harrison
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | |
Collapse
|
39
|
Salditt A, Koethe S, Pohl C, Harms H, Kolesnikova L, Becker S, Schneider-Schaulies S. Measles virus M protein-driven particle production does not involve the endosomal sorting complex required for transport (ESCRT) system. J Gen Virol 2010; 91:1464-72. [PMID: 20130136 DOI: 10.1099/vir.0.018523-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Assembly and budding of enveloped RNA viruses rely on viral matrix (M) proteins and host proteins involved in sorting and vesiculation of cellular cargoes, such as the endosomal sorting complex required for transport (ESCRT). The measles virus (MV) M protein promotes virus-like particle (VLP) production, and we now show that it shares association with detergent-resistant or tetraspanin-enriched membrane microdomains with ebolavirus VP40 protein, yet accumulates less efficiently at the plasma membrane. Unlike VP40, which recruits ESCRT components via its N-terminal late (L) domain and exploits them for particle production, the M protein does this independently of this pathway, as (i) ablation of motifs bearing similarity to canonical L domains did not affect VLP production, (ii) it did not redistribute Tsg101, AIP-1 or Vps4A to the plasma membrane, and (iii) neither VLP nor infectious virus production was sensitive to inhibition by dominant-negative Vps4A. Importantly, transfer of the VP40 L domain into the MV M protein did not cause recruitment of ESCRT proteins or confer sensitivity of VLP release to Vps4A, indicating that MV particle production occurs independently of and cannot be routed into an ESCRT-dependent pathway.
Collapse
Affiliation(s)
- Andreas Salditt
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, D-97078 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Thaa B, Hofmann KP, Veit M. Viruses as vesicular carriers of the viral genome: a functional module perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:507-19. [PMID: 20100522 PMCID: PMC7114299 DOI: 10.1016/j.bbamcr.2010.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 12/30/2022]
Abstract
Enveloped viruses and cellular transport vesicles share obvious morphological and functional properties. Both are composed of a closed membrane, which is lined with coat proteins and encases cargo. Transmembrane proteins inserted into the membrane define the target membrane area with which the vesicle or virus is destined to fuse. Here we discuss recent insight into the functioning of enveloped viruses in the framework of the “functional module” concept. Vesicular transport is an exemplary case of a functional module, as defined as a part of the proteome that assembles to perform a specific autonomous function in a living cell. Cellular vesicles serve to transport cargo between membranous organelles inside the cell, while enveloped viruses can be seen as carriers of the viral genome delivering their cargo from an infected to an uninfected cell. The turnover of both vesicles and viruses involves an analogous series of submodular events. This comprises assembly of elements, budding from the donor compartment, uncoating and/or maturation, docking to and finally fusion with the target membrane to release the cargo. This modular perception enables us to define submodular building blocks so that mechanisms and elements can be directly compared. It will be analyzed where viruses have developed their own specific strategy, where they share functional schemes with vesicles, and also where they even have “hijacked” complete submodular schemes from the cell. Such a perspective may also include new and more specific approaches to pharmacological interference with virus function, which could avoid some of the most severe side effects.
Collapse
Affiliation(s)
- Bastian Thaa
- Department of Immunology and Molecular Biology, Veterinary Faculty, Free University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | | | | |
Collapse
|
41
|
PIV5 M protein interaction with host protein angiomotin-like 1. Virology 2009; 397:155-66. [PMID: 19932912 DOI: 10.1016/j.virol.2009.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 09/29/2009] [Accepted: 11/02/2009] [Indexed: 12/14/2022]
Abstract
Paramyxovirus matrix (M) proteins organize virus assembly, functioning as adapters that link together viral ribonucleoprotein complexes and viral glycoproteins at infected cell plasma membranes. M proteins may also function to recruit and manipulate host factors to assist virus budding, similar to retroviral Gag proteins. By yeast two-hybrid screening, angiomotin-like 1 (AmotL1) was identified as a host factor that interacts with the M protein of parainfluenza virus 5 (PIV5). AmotL1-M protein interaction was observed in yeast, in transfected mammalian cells, and in virus-infected cells. Binding was mapped to a 83-amino acid region derived from the C-terminal portion of AmotL1. Overexpression of M-binding AmotL1-derived polypeptides potently inhibited production of PIV5 VLPs and impaired virus budding. Expression of these polypeptides moderately inhibited production of mumps VLPs, but had no effect on production of Nipah VLPs. siRNA-mediated depletion of AmotL1 protein reduced PIV5 budding, suggesting that this interaction is beneficial to paramyxovirus infection.
Collapse
|
42
|
Residues in the heptad repeat a region of the fusion protein modulate the virulence of Sendai virus in mice. J Virol 2009; 84:810-21. [PMID: 19906935 DOI: 10.1128/jvi.01990-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the molecular basis of fusion (F) protein refolding during membrane fusion has been studied extensively in vitro, little is known about the biological significance of membrane fusion activity in parainfluenza virus replication and pathogenesis in vivo. Two recombinant Sendai viruses, F-L179V and F-K180Q, were generated that contain F protein mutations in the heptad repeat A region of the ectodomain, a region of the protein known to regulate F protein activation. In vitro, the F-L179V virus caused increased syncytium formation (cell-cell membrane fusion) yet had a rate of replication and levels of F protein expression and cleavage similar to wild-type virus. The F-K180Q virus had a reduced replication rate along with reduced levels of F protein expression, cleavage, and fusogenicity. In DBA/2 mice, the hyperfusogenic F-L179V virus induced greater morbidity and mortality than wild-type virus, while the attenuated F-K180Q virus was much less pathogenic. During the first week of infection, virus replication and inflammation in the lungs were similar for wild-type and F-L179V viruses. After approximately 1 week of infection, the clearance of F-L179V virus was delayed, and more extensive interstitial inflammation and necrosis were observed in the lungs, affecting entire lobes of the lungs and having significantly greater numbers of syncytial cell masses in alveolar spaces on day 10. On the other hand, the slower-growing F-K180Q virus caused much less extensive inflammation than wild-type virus, presumably due to its reduced replication rate, and did not cause observable syncytium formation in the lungs. Overall, the results show that residues in the heptad repeat A region of the F protein modulate the virulence of Sendai virus in mice by influencing both the spread and clearance of the virus and the extent and severity of inflammation. An understanding of how the F protein contributes to infection and inflammation in vivo may assist in the development of antiviral therapies against respiratory paramyxoviruses.
Collapse
|
43
|
Quan PL, Junglen S, Tashmukhamedova A, Conlan S, Hutchison SK, Kurth A, Ellerbrok H, Egholm M, Briese T, Leendertz FH, Lipkin WI. Moussa virus: a new member of the Rhabdoviridae family isolated from Culex decens mosquitoes in Côte d'Ivoire. Virus Res 2009; 147:17-24. [PMID: 19804801 DOI: 10.1016/j.virusres.2009.09.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/24/2009] [Accepted: 09/27/2009] [Indexed: 01/01/2023]
Abstract
Characterization of arboviruses at the interface of pristine habitats and anthropogenic landscapes is crucial to comprehensive emergent disease surveillance and forecasting efforts. In context of a surveillance campaign in and around a West African rainforest, particles morphologically consistent with rhabdoviruses were identified in cell cultures infected with homogenates of trapped mosquitoes. RNA recovered from these cultures was used to derive the first complete genome sequence of a rhabdovirus isolated from Culex decens mosquitoes in Côte d'Ivoire, tentatively named Moussa virus (MOUV). MOUV shows the classical genome organization of rhabdoviruses, with five open reading frames (ORF) in a linear order. However, sequences show only limited conservation (12-33% identity at amino acid level), and ORF2 and ORF3 have no significant similarity to sequences deposited in GenBank. Phylogenetic analysis indicates a potential new species with distant relationship to Tupaia and Tibrogargan virus.
Collapse
Affiliation(s)
- Phenix-Lan Quan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. J Virol 2009; 83:10374-83. [PMID: 19656884 DOI: 10.1128/jvi.01056-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of measles virus (MV) is encapsidated by the nucleocapsid (N) protein and associates with RNA-dependent RNA polymerase to form the ribonucleoprotein complex. The matrix (M) protein is believed to play an important role in MV assembly by linking the ribonucleoprotein complex with envelope glycoproteins. Analyses using a yeast two-hybrid system and coimmunoprecipitation in mammalian cells revealed that the M protein interacts with the N protein and that two leucine residues at the carboxyl terminus of the N protein (L523 and L524) are critical for the interaction. In MV minigenome reporter gene assays, the M protein inhibited viral RNA synthesis only when it was able to interact with the N protein. The N protein colocalized with the M protein at the plasma membrane when the proteins were coexpressed in plasmid-transfected or MV-infected cells. In contrast, the N protein formed small dots in the perinuclear area when it was expressed without the M protein, or it was incapable of interacting with the M protein. Furthermore, a recombinant MV possessing a mutant N protein incapable of interacting with the M protein grew much less efficiently than the parental virus. Since the M protein has an intrinsic ability to associate with the plasma membrane, it may retain the ribonucleoprotein complex at the plasma membrane by binding to the N protein, thereby stopping viral RNA synthesis and promoting viral particle production. Consequently, our results indicate that the M protein regulates MV RNA synthesis and assembly via its interaction with the N protein.
Collapse
|
45
|
Nayak DP, Balogun RA, Yamada H, Zhou ZH, Barman S. Influenza virus morphogenesis and budding. Virus Res 2009; 143:147-61. [PMID: 19481124 PMCID: PMC2730999 DOI: 10.1016/j.virusres.2009.05.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 12/11/2022]
Abstract
Influenza viruses are enveloped, negative stranded, segmented RNA viruses belonging to Orthomyxoviridae family. Each virion consists of three major sub-viral components, namely (i) a viral envelope decorated with three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and M2, (ii) an intermediate layer of matrix protein (M1), and (iii) an innermost helical viral ribonucleocapsid [vRNP] core formed by nucleoprotein (NP) and negative strand viral RNA (vRNA). Since complete virus particles are not found inside the cell, the processes of assembly, morphogenesis, budding and release of progeny virus particles at the plasma membrane of the infected cells are critically important for the production of infectious virions and pathogenesis of influenza viruses as well. Morphogenesis and budding require that all virus components must be brought to the budding site which is the apical plasma membrane in polarized epithelial cells whether in vitro cultured cells or in vivo infected animals. HA and NA forming the outer spikes on the viral envelope possess apical sorting signals and use exocytic pathways and lipid rafts for cell surface transport and apical sorting. NP also has apical determinant(s) and is probably transported to the apical budding site similarly via lipid rafts and/or through cortical actin microfilaments. M1 binds the NP and the exposed RNAs of vRNPs, as well as to the cytoplasmic tails (CT) and transmembrane (TM) domains of HA, NA and M2, and is likely brought to the budding site on the piggy-back of vRNP and transmembrane proteins. Budding processes involve bud initiation, bud growth and bud release. The presence of lipid rafts and assembly of viral components at the budding site can cause asymmetry of lipid bilayers and outward membrane bending leading to bud initiation and bud growth. Bud release requires fusion of the apposing viral and cellular membranes and scission of the virus buds from the infected cellular membrane. The processes involved in bud initiation, bud growth and bud scission/release require involvement both viral and host components and can affect bud closing and virus release in both positive and negative ways. Among the viral components, M1, M2 and NA play important roles in bud release and M1, M2 and NA mutations all affect the morphology of buds and released viruses. Disassembly of host cortical actin microfilaments at the pinching-off site appears to facilitate bud fission and release. Bud scission is energy dependent and only a small fraction of virus buds present on the cell surface is released. Discontinuity of M1 layer underneath the lipid bilayer, absence of outer membrane spikes, absence of lipid rafts in the lipid bilayer, as well as possible presence of M2 and disassembly of cortical actin microfilaments at the pinching-off site appear to facilitate bud fission and bud release. We provide our current understanding of these important processes leading to the production of infectious influenza virus particles.
Collapse
Affiliation(s)
- Debi P Nayak
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
46
|
Wolf MC, Wang Y, Freiberg AN, Aguilar HC, Holbrook MR, Lee B. A catalytically and genetically optimized beta-lactamase-matrix based assay for sensitive, specific, and higher throughput analysis of native henipavirus entry characteristics. Virol J 2009; 6:119. [PMID: 19646266 PMCID: PMC2727953 DOI: 10.1186/1743-422x-6-119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 07/31/2009] [Indexed: 11/30/2024] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are the only paramyxoviruses requiring Biosafety Level 4 (BSL-4) containment. Thus, study of henipavirus entry at less than BSL-4 conditions necessitates the use of cell-cell fusion or pseudotyped reporter virus assays. Yet, these surrogate assays may not fully emulate the biological properties unique to the virus being studied. Thus, we developed a henipaviral entry assay based on a β-lactamase-Nipah Matrix (βla-M) fusion protein. We first codon-optimized the bacterial βla and the NiV-M genes to ensure efficient expression in mammalian cells. The βla-M construct was able to bud and form virus-like particles (VLPs) that morphologically resembled paramyxoviruses. βla-M efficiently incorporated both NiV and HeV fusion and attachment glycoproteins. Entry of these VLPs was detected by cytosolic delivery of βla-M, resulting in enzymatic and fluorescent conversion of the pre-loaded CCF2-AM substrate. Soluble henipavirus receptors (ephrinB2) or antibodies against the F and/or G proteins blocked VLP entry. Additionally, a Y105W mutation engineered into the catalytic site of βla increased the sensitivity of our βla-M based infection assays by 2-fold. In toto, these methods will provide a more biologically relevant assay for studying henipavirus entry at less than BSL-4 conditions.
Collapse
Affiliation(s)
- Mike C Wolf
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA 90095.
| | | | | | | | | | | |
Collapse
|
47
|
Assembly of arenavirus envelope glycoprotein GPC in detergent-soluble membrane microdomains. J Virol 2009; 83:9890-900. [PMID: 19625404 DOI: 10.1128/jvi.00837-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The family Arenaviridae includes a number of highly pathogenic viruses that are responsible for acute hemorrhagic fevers in humans. Genetic diversity among arenavirus species in their respective rodent hosts supports the continued emergence of new pathogens. In the absence of available vaccines or therapeutic agents, the hemorrhagic fever arenaviruses remain a serious public health and biodefense concern. Arenaviruses are enveloped virions that assemble and bud from the plasma membrane. In this study, we have characterized the microdomain organization of the virus envelope glycoprotein (GPC) on the cell surface by using immunogold electron microscopy. We find that Junín virus (JUNV) GPC clusters into discrete microdomains of 120 to 160 nm in diameter and that this property of GPC is independent of its myristoylation and of coexpression with the virus matrix protein Z. In cells infected with the Candid#1 strain of JUNV, and in purified Candid#1 virions, these GPC microdomains are soluble in cold Triton X-100 detergent and are thus distinct from conventional lipid rafts, which are utilized by numerous other viruses for assembly. Virion morphogenesis ultimately requires colocalization of viral components, yet our dual-label immunogold staining studies failed to reveal a spatial association of Z with GPC microdomains. This observation may reflect either rapid Z-dependent budding of virus-like particles upon coassociation or a requirement for additional viral components in the assembly process. Together, these results provide new insight into the molecular basis for arenavirus morphogenesis.
Collapse
|
48
|
Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. J Virol 2009; 83:7261-72. [PMID: 19439476 DOI: 10.1128/jvi.00421-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Paramyxovirus particles, like other enveloped virus particles, are formed by budding from membranes of infected cells. To define mumps virus (MuV) proteins important for this process, viral proteins were expressed either singly or in combination in mammalian cells to produce virus-like particles (VLPs). Only the MuV matrix (M) protein when expressed by itself was capable of inducing particle release, but the quantity of these M-alone particles was very small. Efficient production of mumps VLPs occurred only when the M protein was coexpressed together with other viral proteins, with maximum production achieved upon coexpression of the viral M, nucleocapsid (NP), and fusion (F) proteins together. Electron microscopy analysis confirmed that VLPs were morphologically similar to MuV virions. The two MuV glycoproteins were not equal contributors to particle formation. The F protein was a major contributor to VLP production, while the hemagglutinin-neuraminidase protein made a smaller contribution. Evidence for the involvement of class E protein machinery in VLP budding was obtained, with mumps VLP production inhibited upon expression of dominant-negative versions of the class E proteins Vps4A and Chmp4b. Disruption of the sequence 24-FPVI-27 within the MuV M protein led to poor VLP production, consistent with findings of earlier studies of a related sequence, FPIV, important for the budding of parainfluenza virus 5. Together, these results demonstrate that different MuV structural proteins cooperate together for efficient particle production and that particle budding likely involves host class E protein machinery.
Collapse
|
49
|
The RING domain and the L79 residue of Z protein are involved in both the rescue of nucleocapsids and the incorporation of glycoproteins into infectious chimeric arenavirus-like particles. J Virol 2009; 83:7029-39. [PMID: 19420075 DOI: 10.1128/jvi.00329-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arenaviruses, such as Tacaribe virus (TacV) and its closely related pathogenic Junin virus (JunV), are enveloped viruses with a bipartite negative-sense RNA genome that encodes the nucleocapsid protein (N), the precursor of the envelope glycoprotein complex (GP), the polymerase (L), and a RING finger protein (Z), which is the driving force of arenavirus budding. We have established a plasmid-based system which allowed the successful packaging of TacV-like nucleocapsids along with Z and GP of JunV into infectious virus-like particles (VLPs). By coexpressing different combinations of the system components, followed by biochemical analysis of the VLPs, the requirements for the assembly of both N and GP into particles were defined. We found that coexpression of N with Z protein in the absence of minigenome and other viral proteins was sufficient to recruit N within lipid-enveloped Z-containing VLPs. In addition, whereas GP was not required for the incorporation of N, coexpression of N substantially enhanced the ratio of GP to Z into VLPs. Disruption of the RING structure or mutation of residue L79 to alanine within Z protein, although it had no effect on Z self-budding, severely impaired VLP infectivity. These mutations drastically altered intracellular Z-N interactions and the incorporation of both N and GP into VLPs. Our results support the conclusion that the interaction between Z and N is required for assembly of both the nucleocapsids and the glycoproteins into infectious arenavirus budding particles.
Collapse
|
50
|
Harty RN. No exit: targeting the budding process to inhibit filovirus replication. Antiviral Res 2008; 81:189-97. [PMID: 19114059 DOI: 10.1016/j.antiviral.2008.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 11/25/2008] [Accepted: 12/01/2008] [Indexed: 01/15/2023]
Abstract
The filoviruses, Ebola and Marburg, cause severe hemorrhagic fever in humans and nonhuman primates, with high mortality rates. Although the filovirus replication pathway is now understood in considerable detail, no antiviral drugs have yet been developed that directly inhibit steps in the replication cycle. One potential target is the filovirus VP40 matrix protein, the key viral protein that drives the budding process, in part by mediating specific virus-host interactions to facilitate the efficient release of virions from the infected cell. This review will summarize current knowledge of key structural and functional domains of VP40 believed to be necessary for efficient budding of virions and virus-like particles. A better understanding of the structure and function of these key regions of VP40 will be crucial, as they may represent novel and rational targets for inhibitors of filovirus egress.
Collapse
Affiliation(s)
- Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|