1
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
2
|
Wang K, Hu Z, Fan M, Shao Z, Yu Q, Li X. Development of an indirect ELISA to detect PEDV specific IgA antibody based on a PEDV epidemic strain. BMC Vet Res 2022; 18:319. [PMID: 35982455 PMCID: PMC9386190 DOI: 10.1186/s12917-022-03419-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background Porcine epidemic diarrhea (PED), a swine epidemic disease caused by porcine epidemic diarrhea virus (PEDV), is characterized by severe watery diarrhea, vomiting, dehydration and high mortality in piglets, and has caused serious economic losses to the global porcine industry. The level of PEDV IgA antibody is a key marker to assess the extent of passive immunity of the resistance against PEDV infection. However, current commercial structure proteins-based kits for detection of PEDV antibody are not affordable, and those kits require complicated antigen preparation procedures, which cannot meet the scope of economic benefits of many large-scale pig companies in China. Therefore, there is an urgent need to develop an accurate, simple, and economical method for IgA detection in clinical samples. In this study, an indirect ELISA (i-ELISA) method was developed based on a purified PEDV epidemic strain (NH-TA2020). Results The results show that optimal working dilution ratios of PEDV antigen and HRP anti-swine IgA are at 1: 1000 and 1:15000 respectively. The sensitivity of this method is high with the maximum dilution of samples up to 1:160, and coefficients of variation (CV) of both the intra assays and inter assays were no more than 15%. In addition, the relative sensitivities of the i-ELISA were above 90% compared with values from commercial kits in both serum and oral fluid samples. Conclusions Our results suggested that the i-ELISA developed in this study was an accurate, simple, and economical method for PEDV-IgA detection in clinical samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03419-w.
Collapse
Affiliation(s)
- Kun Wang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Zhiqiang Hu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Mingyu Fan
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Zhenwen Shao
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Qiannan Yu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Xiaowen Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China. .,Shandong Swine Health Data and Intelligent Monitoring Project Laboratory, Dezhou University, Dezhou, China. .,Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan Province, New Hope Liuhe Co., Ltd, Chengdu, China.
| |
Collapse
|
3
|
Molecular Characterization of Porcine Epidemic Diarrhea Virus and Its New Genetic Classification Based on the Nucleocapsid Gene. Viruses 2020; 12:v12080790. [PMID: 32717934 PMCID: PMC7472284 DOI: 10.3390/v12080790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes continuous, significant damage to the swine industry worldwide. By RT-PCR-based methods, this study demonstrated the ongoing presence of PEDV in pigs of all ages in Korea at the average detection rate of 9.92%. By the application of Bayesian phylogenetic analysis, it was found that the nucleocapsid (N) gene of PEDV could evolve at similar rates to the spike (S) gene at the order of 10-4 substitutions/site/year. Based on branching patterns of PEDV strains, three main N gene-base genogroups (N1, N2, and N3) and two sub-genogroups (N3a, N3b) were proposed in this study. By analyzing the antigenic index, possible antigenic differences also emerged in both the spike and nucleocapsid proteins between the three genogroups. The antigenic indexes of genogroup N3 strains were significantly lower compared with those of genogroups N1 and N2 strains in the B-cell epitope of the nucleocapsid protein. Similarly, significantly lower antigenic indexes in some parts of the B-cell epitope sequences of the spike protein (COE, S1D, and 2C10) were also identified. PEDV mutants derived from genetic mutations of the S and N genes may cause severe damage to swine farms by evading established host immunities.
Collapse
|
4
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
5
|
Chang CY, Peng JY, Cheng YH, Chang YC, Wu YT, Tsai PS, Chiou HY, Jeng CR, Chang HW. Development and comparison of enzyme-linked immunosorbent assays based on recombinant trimeric full-length and truncated spike proteins for detecting antibodies against porcine epidemic diarrhea virus. BMC Vet Res 2019; 15:421. [PMID: 31775769 PMCID: PMC6880432 DOI: 10.1186/s12917-019-2171-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2010, outbreaks of genotype 2 (G2) porcine epidemic diarrhea virus (PEDV) have caused high mortality in neonatal piglets and have had devastating impacts on the swine industry in many countries. A reliable serological assay for evaluating the PEDV-specific humoral and mucosal immune response is important for disease survey, monitoring the efficacy of immunization, and designing strategies for the prevention and control of PED. Two PEDV spike (S) glycoprotein-based indirect enzyme-linked immunosorbent assays (ELISAs) were developed using G2b PEDV-Pintung 52 (PEDV-PT) trimeric full-length S and truncated S1-501 proteins derived from the human embryonic kidney (HEK)-293 cell expression system. The truncated S1-501 protein was selected from a superior expressed stable cell line. The sensitivity and specificity of these two ELISAs were compared to immunostaining of G2b PEDV-PT infected cells and to a commercial nucleocapsid (N)-based indirect ELISA kit using a panel of PEDV negative and hyperimmune sera. RESULTS The commercial N-based ELISA exhibited a sensitivity of 37%, a specificity of 100%, and a fair agreement (kappa = 0.37) with the immunostaining result. In comparison, the full-length S-based ELISA showed a sensitivity of 97.8%, a specificity of 94%, and an almost perfect agreement (kappa = 0.90) with the immunostaining result. Interestingly, the S1-501-based ELISA had even higher sensitivity of 98.9% and specificity of 99.1%, and an almost perfect agreement (kappa = 0.97) with the immunostaining result. A fair agreement (kappa< 0.4) was seen between the commercial N-based ELISA and either of our S-based ELISAs. However, the results of the full-length S-based ELISA shared an almost perfect agreement (kappa = 0.92) with that of S1-501-based ELISA. CONCLUSIONS Both full-length S-based and S1-501-based ELISAs exhibit high sensitivity and high specificity for detecting antibodies against PEDVs. Considering the high protein yield and cost-effectiveness, the S1-501-based ELISA could be used as a reliable, sensitive, specific, and economic serological test for PEDV.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Ju-Yi Peng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Yun-Han Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Tse Wu
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Shiue Tsai
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hue-Ying Chiou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
6
|
Liang JQ, Fang S, Yuan Q, Huang M, Chen RA, Fung TS, Liu DX. N-Linked glycosylation of the membrane protein ectodomain regulates infectious bronchitis virus-induced ER stress response, apoptosis and pathogenesis. Virology 2019; 531:48-56. [PMID: 30852271 PMCID: PMC7112112 DOI: 10.1016/j.virol.2019.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Abstract
Coronavirus membrane (M) protein is the most abundant structural protein playing a critical role in virion assembly. Previous studies show that the N-terminal ectodomain of M protein is modified by glycosylation, but its precise functions are yet to be thoroughly investigated. In this study, we confirm that N-linked glycosylation occurs at two predicted sites in the M protein ectodomain of infectious bronchitis coronavirus (IBV). Dual mutations at the two sites (N3D/N6D) did not affect particle assembly, virus-like particle formation and viral replication in culture cells. However, activation of the ER stress response was significantly reduced in cells infected with rN3D/N6D, correlated with a lower level of apoptosis and reduced production of pro-inflammatory cytokines. Taken together, this study demonstrates that although not essential for replication, glycosylation in the IBV M protein ectodomain plays important roles in activating ER stress, apoptosis and proinflammatory response, and may contribute to the pathogenesis of IBV.
Collapse
Affiliation(s)
- Jia Qi Liang
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China
| | - Shouguo Fang
- Agricultural School, Yangtze University, 266 Jingmilu, Jingzhou City, Hubei Province 434025, People's Republic of China
| | - Quan Yuan
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, Guangdong, People's Republic of China
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zhaoqing DaHuaNong Biology Medicine Co., Ltd., Zhaoqing 526238, Guangdong, People's Republic of China
| | - To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China.
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Yang S, Li L, Yin S, Shang Y, Khan MUZ, He X, Yuan L, Gao X, Liu X, Cai J. Single-domain antibodies as promising experimental tools in imaging and isolation of porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2018; 102:8931-8942. [PMID: 30143837 PMCID: PMC7080177 DOI: 10.1007/s00253-018-9324-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Single-domain antibody (sdAb) or nanobody possesses specific features non-accessible for conventional antibodies that make them suitable for research and biotechnological applications. Porcine epidemic diarrhea virus (PEDV) causes lethal diarrhea in piglets, resulting in great economic losses all over the world. To detect and isolate PEDV rapidly and accurately is important for the control and further research of the clinical PEDV strains. In this study, four sdAb fragments (sdAb-Mc19/29/30/37) targeting the membrane (M) protein of PEDV were selected from sdAb library that was constructed through M protein-immunized Camelus bactrianus. The selected sdAb-Mcs were solubly expressed in Escherichia coli. The functional characteristics analysis revealed that the recombinant sdAb-Mcs have excellent binding activity and specificity to M protein but have no neutralizing activity to PEDV. For further application, sdAb-Mc37 was conjugated with quantum dots to synthesize a nanoprobe for imaging PEDV in vero cells. The observed fluorescence in vero cells clearly reflects that PEDV virions can be reliably recognized and labeled by the nanoprobe. Furthermore, the sdAb-Mc29 was conjugated with superparamagnetic nanobeads to construct immunomagnetic nanobeads (IMNBs) used to isolate PEDV. One PEDV strain was successfully isolated from clinical fecal sample, suggesting IMNBs as a novel and efficient tool suitable for PEDV isolation from clinical samples. This study provided a novel application and substantiated the suitability of sdAb as a specific binder for the isolation of viruses.
Collapse
Affiliation(s)
- Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Shuanghui Yin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China.
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Muhammad Umar Zafar Khan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Xueyang He
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Li Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Xue Gao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
8
|
Xiao W, Huang C, Xu F, Yan J, Bian H, Fu Q, Xie K, Wang L, Tang Y. A simple and compact smartphone-based device for the quantitative readout of colloidal gold lateral flow immunoassay strips. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 266:63-70. [PMID: 32288251 PMCID: PMC7127147 DOI: 10.1016/j.snb.2018.03.110] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 05/17/2023]
Abstract
Colloidal gold lateral flow immunoassay strips (AuNPs-LFIS) have been widely applied as qualitative diagnostic tools for point-of-care tests (POCT). If strip readers were incorporated, their use could be extended to quantitative analysis. However, their cost and non-portability render commercial strip readers unavailable for use in either home testing, community or rural hospital diagnosis. This is particularly true for on-site testing. Here, a smartphone-based reader was designed and 3D-printed for quantitatively assess AuNPs-LFIS. The basic principle of the devise was relying on a smartphone's ambient light sensor (SPALS). This sensor was harnessed to measure the transmitted light intensities originating from the T-lines on the strips, the transmitted light intensities vary with concentration of AuNP on the T-lines. To validate this approach, our newly developed smartphone's ambient light sensor-based reader (SPALS-reader) was used to readout AuNPs-LFIS of three analytical targets: cadmium ion (Cd2+; limit of detection (LOD) was 0.16 ng/mL), clenbuterol (CL; LOD was 0.046 ng/mL), and porcine epidemic diarrhea virus (PEDV; LOD was 0.055 μg/mL). The result showed good consistency with the results of conventional image analysis approaches, indicating that the smartphone-based device is appropriate for use in AuNPs-LFIS readouts. Compared with the traditional analysis method, the developed AuNPs-LFIS reader is easier operated, lower cost and more portable, which provided an on-site quantitative analysis tool for AuNPs-LFIS and enhances the applied range of AuNPs-LFIS.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Caihong Huang
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Fei Xu
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Junjie Yan
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Hongfen Bian
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Qiangqiang Fu
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Kaixin Xie
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Lei Wang
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
| | - Yong Tang
- Department of Bioengineering, Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Jinan University, Guangzhou 510632, China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Corresponding author at: Department of Bioengineering, Guangdong Province Engineering Research Center for antibody drug and immunoassay, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Yang DK, Kim HH, Lee SH, Yoon SS, Park JW, Cho IS. Isolation and characterization of a new porcine epidemic diarrhea virus variant that occurred in Korea in 2014. J Vet Sci 2018; 19:71-78. [PMID: 28693308 PMCID: PMC5799402 DOI: 10.4142/jvs.2018.19.1.71] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/24/2017] [Accepted: 06/29/2017] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of porcine epidemic diarrhea (PED) have resulted in significant economic losses in the swine industry, and another PED outbreak occurred in 2014 in Korea. Isolating and culturing PED virus (PEDV) allow investigations into its pathogenesis and the development of vaccines and diagnostic assays. In this study, we successfully isolated two PEDV isolates (QIAP1401 and QIAP1402) from naturally infected piglets at Jeju-do, Korea. Viral propagation was confirmed in Vero cells based on cytopathic effect, immunofluorescence assay, reverse transcription-polymerase chain reaction, and electron microscopic analyses. The QIAP401 isolate propagated well in Vero cells for 70 passages, with titers of 106.5 to 107.0 50% tissue culture infectious dose/mL, which increased gradually with passaging. The nucleotide and amino acid sequences of the QIAP1401 isolate were determined and compared with those of other PEDV isolates. The QIAP1401 isolate was determined to be closely related to the USA/Minnesota271/2014 strain (> 99.9% nucleotide similarity) that was isolated in the USA in 2014. Phylogenetic analysis based on several PEDV genes suggested that a new PEDV variant is circulating in the Korean swine industry, with 93.08% similarity to the SM98 strain isolated in 1998. In addition, the QIAP1401 strain showed strong virulence in 3-day-old piglets and 11-week-old growing pigs.
Collapse
Affiliation(s)
- Dong-Kun Yang
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Korea
| | - Ha-Hyun Kim
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Korea
| | - Seung-Heon Lee
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Korea
| | - Soon-Seek Yoon
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Korea
| | - Jung-Won Park
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Korea
| | - In-Soo Cho
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Korea
| |
Collapse
|
10
|
Fung TS, Liu DX. Post-translational modifications of coronavirus proteins: roles and function. Future Virol 2018; 13:405-430. [PMID: 32201497 PMCID: PMC7080180 DOI: 10.2217/fvl-2018-0008] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) refer to the covalent modifications of polypeptides after they are synthesized, adding temporal and spatial regulation to modulate protein functions. Being obligate intracellular parasites, viruses rely on the protein synthesis machinery of host cells to support replication, and not surprisingly, many viral proteins are subjected to PTMs. Coronavirus (CoV) is a group of enveloped RNA viruses causing diseases in both human and animals. Many CoV proteins are modified by PTMs, including glycosylation and palmitoylation of the spike and envelope protein, N- or O-linked glycosylation of the membrane protein, phosphorylation and ADP-ribosylation of the nucleocapsid protein, and other PTMs on nonstructural and accessory proteins. In this review, we summarize the current knowledge on PTMs of CoV proteins, with an emphasis on their impact on viral replication and pathogenesis. The ability of some CoV proteins to interfere with PTMs of host proteins will also be discussed.
Collapse
Affiliation(s)
- To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
11
|
MacDonald J. Porcine Epidemic Diarrhea Virus. PROSPECTS OF PLANT-BASED VACCINES IN VETERINARY MEDICINE 2018. [PMCID: PMC7120993 DOI: 10.1007/978-3-319-90137-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Porcine epidemic diarrhea virus (PEDv) causes disease and mortality to piglets worldwide. Most vaccines used to combat the disease have been ineffective live attenuated virus vaccines. Research has emerged showing both the spike (S) and membrane (M) proteins of the virus have potential for use as subunit vaccines. This research has been largely undertaken using plants as expression platforms, with some promising candidates having emerged.
Collapse
|
12
|
Bertolini F, Harding JCS, Mote B, Ladinig A, Plastow GS, Rothschild MF. Genomic investigation of piglet resilience following porcine epidemic diarrhea outbreaks. Anim Genet 2016; 48:228-232. [PMID: 27943331 PMCID: PMC7159462 DOI: 10.1111/age.12522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 12/01/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) belongs to the Coronaviridae family and causes malabsorptive watery diarrhea, vomiting, dehydration and imbalanced blood electrolytes in pigs. Since the 1970s, PED outbreaks have become a source of problems in pig producing countries all over the world, causing large economic losses for pig producers. Although the infection in adults is not fatal, in naïve suckling piglets mortality is close to 100%. In this study, we investigated genome-wide differences between dead and recovered suckling piglets from commercial farms after PED outbreaks. Samples from 262 animals (156 dead and 106 recovered) belonging to several commercial lines were collected from five different farms in three different countries (USA, Canada and Germany) and genotyped with the porcine 80K SNP chip. Mean Fst value was calculated in 1-Mb non-overlapping windows between dead and recovered individuals, and the results were normalized to find differences within the comparison. Seven windows with high divergence between dead and recovered were detected-five on chromosome 2, one on chromosome 4 and one on chromosome 15-in total encompassing 152 genes. Several of these genes are either under- or overexpressed in many virus infections, including Coronaviridae (such as SARS-CoV). A total of 32 genes are included in one or more Gene Ontology terms that can be related to PED development, such as Golgi apparatus, as well as mechanisms generally linked to resilience or diarrhea development (cell proliferation, ion transport, ATPase activity). Taken together this information provides a first genomic picture of PEDV resilience in suckling piglets.
Collapse
Affiliation(s)
- F Bertolini
- Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA
| | - J C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - B Mote
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| | - A Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Wien, 1210, Austria
| | - G S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - M F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA
| |
Collapse
|
13
|
St. John SE, Anson BJ, Mesecar AD. X-Ray Structure and Inhibition of 3C-like Protease from Porcine Epidemic Diarrhea Virus. Sci Rep 2016; 6:25961. [PMID: 27173881 PMCID: PMC4865815 DOI: 10.1038/srep25961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/26/2016] [Indexed: 11/09/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that infects pigs and can have mortality rates approaching 100% in piglets, causing serious economic impact. The 3C-like protease (3CL(pro)) is essential for the coronaviral life cycle and is an appealing target for the development of therapeutics. We report the expression, purification, crystallization and 2.10 Å X-ray structure of 3CL(pro) from PEDV. Analysis of the PEDV 3CL(pro) structure and comparison to other coronaviral 3CL(pro)'s from the same alpha-coronavirus phylogeny shows that the overall structures and active site architectures across 3CL(pro)'s are conserved, with the exception of a loop that comprises the protease S2 pocket. We found a known inhibitor of severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL(pro), (R)-16, to have inhibitor activity against PEDV 3CL(pro), despite that SARS-3CL(pro) and PEDV 3CL(pro) share only 45.4% sequence identity. Structural comparison reveals that the majority of residues involved in (R)-16 binding to SARS-3CL(pro) are conserved in PEDV-3CL(pro); however, the sequence variation and positional difference in the loop forming the S2 pocket may account for large observed difference in IC50 values. This work advances our understanding of the subtle, but important, differences in coronaviral 3CL(pro) architecture and contributes to the broader structural knowledge of coronaviral 3CL(pro)'s.
Collapse
Affiliation(s)
- Sarah E. St. John
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Centers for Cancer Research & Drug Discovery, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Brandon J. Anson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Andrew D. Mesecar
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Centers for Cancer Research & Drug Discovery, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
14
|
Kim YK, Lim SI, Cho IS, Cheong KM, Lee EJ, Lee SO, Kim JB, Kim JH, Jeong DS, An BH, An DJ. A novel diagnostic approach to detecting porcine epidemic diarrhea virus: The lateral immunochromatography assay. J Virol Methods 2015; 225:4-8. [PMID: 26342906 PMCID: PMC7119843 DOI: 10.1016/j.jviromet.2015.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/03/2022]
Abstract
A novel lateral immunochromatography (IC) assay was developed to detect PEDV antigen. The IC assay has 96.0% sensitivity and 98.5% specificity compared with real-time reverse transcriptase PCR. The detection limit for PEDV was 1 × 103 copies. The IC assay could be stored at 4 °C or room temperature for 15 months without affecting its efficacy.
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea and dehydration in sucking piglets and has a high mortality rate. An immunochromatography (IC) assay, known as a lateral flow test, is a simple device intended to detect the presence of target pathogens. Here, we developed an IC assay that detected PEDV antigens with 96.0% (218/227) sensitivity and 98.5% (262/266) specificity when compared with real-time reverse transcriptase (RT)-PCR using FAM-labeled probes based on sequences from nucleocapsid genes. The detection limits of the real-time RT-PCR and IC assays were 1 × 102 and 1 × 103 copies, respectively. The IC assay developed herein did not detect non-specific reactions with other viral or bacterial pathogens, and the assay could be stored at 4 °C or room temperature for 15 months without affecting its efficacy. Thus, the IC assay may result in improved PED detection and control on farms, and is a viable alternative to current diagnostic tools for PEDV.
Collapse
Affiliation(s)
- Yong Kwan Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 430-757, Republic of Korea
| | - Seong-In Lim
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 430-757, Republic of Korea
| | - In-Soo Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 430-757, Republic of Korea
| | - Kwang-Myun Cheong
- Median Diagnostics Inc., Chuncheon, Gangwon-do 200-883, Republic of Korea
| | - Eun-Jeong Lee
- Median Diagnostics Inc., Chuncheon, Gangwon-do 200-883, Republic of Korea
| | - Sang-Oh Lee
- Median Diagnostics Inc., Chuncheon, Gangwon-do 200-883, Republic of Korea
| | - Joon-Bae Kim
- Median Diagnostics Inc., Chuncheon, Gangwon-do 200-883, Republic of Korea
| | - Jung-Hwa Kim
- Median Diagnostics Inc., Chuncheon, Gangwon-do 200-883, Republic of Korea
| | - Dong-Soo Jeong
- Gangwon-do Veterinary Service Laboratory, Chuncheon, Gangwon-do 200-822, Republic of Korea
| | - Byung-Hyun An
- Applied Chemistry and Biological Engineering, Ajou University, Suwon 443-749, Republic of Korea
| | - Dong-Jun An
- Viral Disease Division, Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 430-757, Republic of Korea.
| |
Collapse
|
15
|
Fan JH, Zuo YZ, Shen XQ, Gu WY, Di JM. Development of an enzyme-linked immunosorbent assay for the monitoring and surveillance of antibodies to porcine epidemic diarrhea virus based on a recombinant membrane protein. J Virol Methods 2015; 225:90-4. [PMID: 26253335 PMCID: PMC7119585 DOI: 10.1016/j.jviromet.2015.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 12/05/2022]
Abstract
Expressed membrane protein of porcine epidemic diarrhea virus in Escherichia coli. An indirect ELISA was developed using purified recombinant M protein as detection antigen. Assessing fit for immunologic surveillance and sero-diagnosis of PEDV. The developed iELISA is specific, sensitive and does not require PEDV cultivation. This iELISA could be used for large-scale serological testing.
The recent dramatic increase in reported cases of porcine epidemic diarrhea (PED) in pig farms is a potential threat to the global swine industry. Therefore, the accurate diagnosis, serological monitoring, and surveillance of specific antibodies in pigs resulting from porcine epidemic diarrhea virus (PEDV) infection or vaccination would be essential in helping to control the spread of PED. We developed and validated an indirect enzyme-linked immunosorbent assay (ELISA) based on the recombinant membrane (M) protein of PEDV. To detect PEDV antibodies in eight herds, 382 serum samples were collected from sows that had been immunized with a PED vaccine, and screened using the developed ELISA in parallel with a serum neutralization (SN) assay. Of the tested samples, 276 were positive for the presence of PEDV antibodies according to both assays, while 98 were negative. An excellent agreement between the ELISA and the SN assay was observed (kappa = 0.947; 95% confidence interval = 0.910–0.984; McNemar's test, P = 0.727). No cross-reaction was detected for the developed ELISA with other coronaviruses or other common pig pathogens. The developed ELISA could be used for serological evaluation and indirect diagnosis of PED infection.
Collapse
Affiliation(s)
- Jing-Hui Fan
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - Yu-Zhu Zuo
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, People's Republic of China.
| | - Xiao-Qiang Shen
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - Wen-Yuan Gu
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - Jing-Mei Di
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| |
Collapse
|
16
|
Wang Y, Li JR, Sun MX, Ni B, Huan C, Huang L, Li C, Fan HJ, Ren XF, Mao X. Triggering unfolded protein response by 2-Deoxy-D-glucose inhibits porcine epidemic diarrhea virus propagation. Antiviral Res 2014; 106:33-41. [PMID: 24681123 PMCID: PMC7113873 DOI: 10.1016/j.antiviral.2014.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/05/2014] [Accepted: 03/16/2014] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is cyto-protective machinery elicited towards an influx of large amount of protein synthesis in the endoplasmic reticulum (ER). Extensive studies suggest that the UPR can also be activated during virus infection. In the present studies, we first evaluated if porcine epidemic diarrhea virus (PEDV) infection activated the UPR pathways. Electron microscopy analysis demonstrated the morphology changes of ER post-PEDV infection. Western blot and real-time PCR identified the differences of UPR genes in response to PEDV infection. The results suggested that PEDV infection induced UPR in Vero cells. Meanwhile, we silenced the expression of PKR-like ER kinase (PERK) by shRNA, we found that the knockdown of PERK increased virus loads in the cells, which was consistent with the result on 4-phenylbutyrate (4-PBA) treatment. We next determined whether 2-Deoxy-d-glucose (2-DG), an ER stress inducer, possessed antiviral activity against PEDV infection. Plaque formation assay, RT-PCR and Western blot analysis suggested that 2-DG might inhibit virus infection by affecting viral protein translation during the early stage of virus infection. Interestingly, we also found that 2-DG treatment could affect virus assembly, which is similar to previous studies on influenza virus. All these results support the therapeutic potential of using 2-DG or glucose/mannose analogs to induce the UPR to block virus replication.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Jia-rong Li
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Ming-xia Sun
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Bo Ni
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Changchao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Li Huang
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Chen Li
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China
| | - Hong-jie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiao-feng Ren
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, Xiangfang District, 150030, China.
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
17
|
Genetic variability and phylogeny of current Chinese porcine epidemic diarrhea virus strains based on spike, ORF3, and membrane genes. ScientificWorldJournal 2014; 2014:208439. [PMID: 24578626 PMCID: PMC3919097 DOI: 10.1155/2014/208439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/07/2013] [Indexed: 11/17/2022] Open
Abstract
Since late 2010, the outbreak of porcine epidemic diarrhea (PED) in China has resulted in the deaths of millions of suckling piglets. The main cause of the disease outbreak was unknown. In this study, partial spike (S), ORF3, and membrane (M) genes amplified from these variants were sequenced and analyzed. The results showed that the variants could be clustered into one to three subgroups and suggested that S genes were variable, while M genes were relatively conserved. Moreover, in comparison with the vaccine strain CV777, sequence alignment analyses revealed that the S genes of the newly isolated strains contained several mutations at the aa level. It is possible that these mutations have changed the hydrophobicity of the S protein and influenced the viral antigenicity and virulence. Interestingly, homology analyses based on ORF3 demonstrated that the isolates had an intact opening reading frame (ORF), which were different from the attenuated DR13 strain. In conclusion, the widespread PED virus (PEDV) isolates had virulent characteristics. Additionally, the high degree of variation in the genes, particularly S genes, might provide an explanation for the poor immunity and rapid spread of the disease.
Collapse
|
18
|
Sequence and phylogenetic analysis of nucleocapsid genes of porcine epidemic diarrhea virus (PEDV) strains in China. Arch Virol 2013; 158:1267-73. [PMID: 23389550 PMCID: PMC3668129 DOI: 10.1007/s00705-012-1592-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 11/29/2012] [Indexed: 11/23/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea and dehydration with high mortality rates in swine. It has become increasingly problematic in China. Since the nucleocapsid (N) protein is highly conserved, it is a candidate protein for early diagnosis and vaccine development. In this study, the N genes of 15 PEDV strains were amplified by RT-PCR and cloned into the pMT-19T vector, sequenced, and compared to each other as well as to PEDV reference strains. The nucleotide sequences of the N gene of the Chinese PEDV strains consist of 1326 nucleotides and encode a 441-aa-long peptide. The nucleotide sequences of the fifteen PEDV strains in our study were 96.1-100 % identical to each other, and the deduced amino acid sequences were 94.8-100 % identical. Sequence comparison with other PEDV strains selected from GenBank revealed that their nucleotide sequences were 94.2-99.7 % identical to those of the Chinese PEDV strains, and their deduced amino acid sequences were 94.1-99.5 % identical. In addition, the fifteen strains showed a high degree of nucleotide sequence identity to the early domestic strains (98.4-99.7 %) except the LZC strain, but less sequence identity to the vaccine strain (CV777) used in China (94.7-97.7 %). Phylogenetic analysis showed that the Chinese PEDV strains are composed of a separate cluster including three early domestic strains (JS-2004-02, LJB/03 and DX) but differ genetically from the vaccine strain (CV777) and the early Korean strains (Chinju99 and SM98).
Collapse
|
19
|
Gao Y, Kou Q, Ge X, Zhou L, Guo X, Yang H. Phylogenetic analysis of porcine epidemic diarrhea virus field strains prevailing recently in China. Arch Virol 2012; 158:711-5. [PMID: 23151819 DOI: 10.1007/s00705-012-1541-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 10/05/2012] [Indexed: 11/26/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea (PED), which is characterized by severe diarrhea, dehydration and high mortality in the affected pigs. Recently, clinical outbreaks of diarrhea in suckling piglets emerged in pig-producing areas of China. In this study, molecular detection of PEDV was conducted using RT-PCR (targeting the M gene) on samples collected from piglets with watery diarrhea from 15 pig farms, and phylogenetic analysis of PEDV field strains was carried out based on their M and S genes. In addition, the complete genome sequence of a PEDV field strain was determined. PEDV was detected in 92.7 % of the samples (267/288). The 15 M genes that were amplified shared 99.6-100 % nucleotide identity and 99.1-100 % amino acid similarity with each other. The 15 S genes exhibited 98.6-99.9 % homology, both at the nucleotide level and at the deduced amino acid level. Phylogenetic analysis showed that all of the amplified M genes grouped in cluster 3, together with some Chinese, Korean and Thai strains, while all of the amplified S genes were in cluster 3 and were closely related to Korean strains. Compared with previous PEDV strains, all of the S genes have common characteristics, namely, a 4-aa (GENQ) insertion between positions 55 and 56, a 1-aa (N) insertion between positions 135 and 136, and a 2-aa (DG) deletion between positions 155 and 156, similar or identical to Korean KNU-serial strains reported in recent years. The genome of the sequenced PEDV field strain is 28,038 nucleotides in length, excluding the poly (A) tail. Our findings suggest that a novel PEDV with a characteristic variant S gene is responsible for recent outbreaks of clinical diarrhea in piglets in China.
Collapse
Affiliation(s)
- Yueyi Gao
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Sun RQ, Cai RJ, Chen YQ, Liang PS, Chen DK, Song CX. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis 2012; 18:161-3. [PMID: 22261231 PMCID: PMC3381683 DOI: 10.3201/eid1801.111259] [Citation(s) in RCA: 431] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
21
|
Ren X, Suo S, Jang YS. Development of a porcine epidemic diarrhea virus M protein-based ELISA for virus detection. Biotechnol Lett 2010; 33:215-20. [PMID: 20882317 PMCID: PMC7088053 DOI: 10.1007/s10529-010-0420-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/16/2010] [Indexed: 11/28/2022]
Abstract
A membrane (M), protein-based ELISA was developed to detect porcine epidemic diarrhea virus (PEDV). The M gene of PEDV was expressed in Escherichia coli. The purified recombinant M protein was used to immunize rabbits to generate a polyclonal antibody. Immunofluorescence analysis indicated that the anti-PEDV-M antibody reacted with PEDV-infected cells. The antibody was utilized to develop an indirect ELISA to detect PEDV. Other viruses, porcine transmissible gastroenteritis coronavirus, avian infectious bronchitis coronavirus, porcine reproductive and respiratory syndrome virus, classic swine fever virus and porcine pseudorabies virus, were unreactive.
Collapse
Affiliation(s)
- Xiaofeng Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, China.
| | | | | |
Collapse
|
22
|
Shenyang G, Enhui Z, Baoxian L, Xinyuan Q, Lijie T, Junwei G, Yijing L. High-level prokaryotic expression of envelope exterior of membrane protein of porcine epidemic diarrhea virus. Vet Microbiol 2007; 123:187-93. [PMID: 17475420 PMCID: PMC7127142 DOI: 10.1016/j.vetmic.2007.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 03/06/2007] [Accepted: 03/22/2007] [Indexed: 12/20/2022]
Abstract
The truncated fragment M′ gene, encoding the exterior of the viral envelope protein of PEDV, was subcloned into prokaryotic expression vector pGEX-6p-1. The recombinant plasmid pGEX-6p-M′ was constructed and transformed into E. coli BL21(DE3)pLysS for expression. SDS-PAGE analysis showed recombinant truncated M′ protein was highly expressed by pGEX-6p-M′ and the product fusion protein GST-M′ reached 45% in the total bacteria proteins with the analysis of software AlphaImager2200. The preliminary purified recombinant protein was evaluated for its antigenicity and reactivity through Western blotting and indirect enzyme-linked immunosorbent assay (ELISA) with monoclonal antibody against M protein of PEDV and porcine polyclonal anti-PEDV antiserum as the primary antibody. The results indicated the recombinant truncated M′ protein should be candidate as a feasible recombinant diagnostic reagent.
Collapse
Affiliation(s)
- Gao Shenyang
- Veterinary Department, Northeast Agricultural University, Harbin 150030, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Schindler A, Vögtlin A, Hilbe M, Puorger M, Zlinszky K, Ackermann M, Ehrensperger F. Reverse transcription real-time PCR assays for detection and quantification of Borna disease virus in diseased hosts. Mol Cell Probes 2007; 21:47-55. [PMID: 17014984 PMCID: PMC7127217 DOI: 10.1016/j.mcp.2006.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 07/25/2006] [Accepted: 08/03/2006] [Indexed: 10/28/2022]
Abstract
Borna disease is a severe, immunopathological disorder of the central nervous system caused by the infection with the Borna disease virus (BDV). The detection of BDV in diseased animals, mainly sheep and horses, is achieved by histological, immunohistochemical and serological approaches and/or PCR-based technologies. In the present study, reverse transcription, real-time PCR assays were established for the detection of BDV in the brain tissue from sheep and horses, using loci for the p40 (nucleoprotein) and the p24 (phosphoprotein) genes. The PCRs were equally specific and sensitive, detecting 10 target molecules per reaction and one BDV-infected cell among 10(6) non-infected cells. In tissues from BDV-diseased sheep and horses, the p24 target was detected at higher abundance than for p40. Therefore, the p24 test is suggested to be of higher value in the diagnostic laboratory. However, both assays should be useful for addressing questions in pathogenesis and for detecting BDV reservoirs in endemic areas.
Collapse
Affiliation(s)
- A.R. Schindler
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - A. Vögtlin
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - M. Hilbe
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - M. Puorger
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - K. Zlinszky
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - M. Ackermann
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - F. Ehrensperger
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|
24
|
Lee HK, Yeo SG. Cloning and sequence analysis of the nucleocapsid gene of porcine epidemic diarrhea virus Chinju99. Virus Genes 2003; 26:207-12. [PMID: 12803473 PMCID: PMC7089008 DOI: 10.1023/a:1023447732567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleocapsid (N) gene of the porcine epidemic diarrhea virus (PEDV) Chinju99 which was previously isolated in Chinju, Korea was cloned and sequenced to establish the information for the development of genetically engineered diagnostic reagents. Also, sequences of the nucleotides and deduced amino acids of the Chinju99 N gene were analyzed by alignment with those of CV777 and Brl/87. The nucleotide sequence encoding the entire N gene open reading frame (ORF) of Chinju99 was 1326 bases long and encoded a protein of 441 amino acids with predicted M(r) of 49 kDa. It consisted of 405 adenine (30.5%), 293 cytosine (22.1%), 334 guanines (25.2%) and 294 thymines (22.2%) residues. The Chinju99 N ORF nucleotide sequence was 96.5% and 96.4% homologous with that of the CV777 and Brl/87, respectively. The Chinju99 N protein revealed 96.8% amino acid identity with that of Brl/87 and CV777, respectively. The amino acid sequence contained seven potential sites for threonine (T)- or serine (S)-linked phosphorylation by each protein kinase C and casein kinase II.
Collapse
Affiliation(s)
- Hee-Kyung Lee
- College of Veterinary Medicine, Institute of Animal Medicine, Gyeongsang National University, Chinju, 660-701 Republic of Korea
| | - Sang-Geon Yeo
- College of Veterinary Medicine, Institute of Animal Medicine, Gyeongsang National University, Chinju, 660-701 Republic of Korea
| |
Collapse
|
25
|
Kocherhans R, Bridgen A, Ackermann M, Tobler K. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes 2001; 23:137-44. [PMID: 11724265 PMCID: PMC7089135 DOI: 10.1023/a:1011831902219] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The sequence of the replicase gene of porcine epidemic diarrhoea virus (PEDV) has been determined. This completes the sequence of the entire genome of strain CV777, which was found to be 28,033 nucleotides (nt) in length (excluding the poly A-tail). A cloning strategy, which involves primers based on conserved regions in the predicted ORF1 products from other coronaviruses whose genome sequence has been determined, was used to amplify the equivalent, but as yet unknown, sequence of PEDV. Primary sequences derived from these products were used to design additional primers resulting in the amplification and sequencing of the entire ORF1 of PEDV. Analysis of the nucleotide sequences revealed a small open reading frame (ORF) located near the 5' end (no 99-137), and two large, slightly overlapping ORFs, ORF1a (nt 297-12650) and ORF1b (nt 12605-20641). The ORF1a and ORF1b sequences overlapped at a potential ribosomal frame shift site. The amino acid sequence analysis suggested the presence of several functional motifs within the putative ORF1 protein. By analogy to other coronavirus replicase gene products, three protease and one growth factor-like motif were seen in ORF1a, and one polymerase domain, one metal ion-binding domain, and one helicase motif could be assigned within ORF1b. Comparative amino acid sequence alignments revealed that PEDV is most closely related to human coronavirus (HCoV)-229E and transmissible gastroenteritis virus (TGEV) and less related to murine hepatitis virus (MHV) and infectious bronchitis virus (IBV). These results thus confirm and extend the findings from sequence analysis of the structural genes of PEDV.
Collapse
Affiliation(s)
- Rolf Kocherhans
- Virologisches Institut der Veterinär-Medizinischen Fakultät, Universität Zürich Winterthurerstrasse 266a, CH-8057 Zürich
| | - Anne Bridgen
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G11 5JR
| | - Mathias Ackermann
- Virologisches Institut der Veterinär-Medizinischen Fakultät, Universität Zürich Winterthurerstrasse 266a, CH-8057 Zürich
| | - Kurt Tobler
- Virologisches Institut der Veterinär-Medizinischen Fakultät, Universität Zürich Winterthurerstrasse 266a, CH-8057 Zürich
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G11 5JR
| |
Collapse
|
26
|
Singh M. A novel internal open reading frame product expressed from a polycistronic mRNA of porcine epidemic diarrhoea virus may not contribute to virus attenuation. J Gen Virol 1999; 80 ( Pt 8):1959-1963. [PMID: 10466791 DOI: 10.1099/0022-1317-80-8-1959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-culture-adapted (ca) porcine epidemic diarrhoea virus (PEDV) contains three internal open reading frames (I ORF) within the nucleocapsid protein gene and lacks the downstream counterpart of porcine transmissible gastroenteritis virus ORF7 or feline infectious peritonitis virus ORF6a. To confirm whether such features also exist in wild-type (wt) PEDV, the 3' 1800 nucleotides of its genome were sequenced and were found to be identical to those of ca virus. The coding potential of I-1 ORF was ascertained by transient expression in Vero cells followed by immunofluorescence using antipeptide sera. The I-1 protein was synthesized as a 12 kDa non-phosphorylated PEDV-specific protein that was not present in detectable amounts in virions. However, a low copy number of I-1 in the virion would suggest it is a structural component. Nevertheless, identical nucleotide sequences and gene expression strategies of attenuated ca virus and its virulent parent, wt PEDV, demonstrate that the 3' 1800 nucleotides or the genes and gene products encoded therein may not contribute to virus attenuation.
Collapse
Affiliation(s)
- Mahender Singh
- Institute of Virology, Faculty of Veterinary Medicine, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland1
| |
Collapse
|