1
|
Cornejo-Granados F, Gallardo-Becerra L, Romero-Hidalgo S, Lopez-Zavala AA, Cota-Huízar A, Cervantes-Echeverría M, Sotelo-Mundo RR, Ochoa-Leyva A. Host genome drives the microbiota enrichment of beneficial microbes in shrimp: exploring the hologenome perspective. Anim Microbiome 2025; 7:50. [PMID: 40405248 PMCID: PMC12100935 DOI: 10.1186/s42523-025-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/18/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Pacific Whiteleg shrimp (Litopenaeus vannamei) is an important model for breeding programs to improve global aquaculture productivity. However, the interaction between host genetics and microbiota in enhancing productivity remains poorly understood. We investigated the effect of two shrimp genetic lines, Fast-Growth (Gen1) and Disease-Resistant (Gen2), on the microbiota of L. vannamei. RESULTS Using genome-wide SNP microarray analysis, we confirmed that Gen1 and Gen2 represented distinct genetic populations. After confirming that the rearing pond did not significantly influence the microbiota composition, we determined that genetic differences explained 15.8% of the microbiota variability, with a stronger selective pressure in the hepatopancreas than in the intestine. Gen1, which exhibited better farm productivity, fostered a microbiota with greater richness, diversity, and resilience than Gen2, along with a higher abundance of beneficial microbes. Further, we demonstrated that a higher abundance of beneficial microbes was associated with healthier shrimp vs. diseased specimens, suggesting that Gen1 could improve shrimp's health and productivity by promoting beneficial microbes. Finally, we determined that the microbiota of both genetic lines was significantly different from their wild-type counterparts, suggesting farm environments and selective breeding programs strongly alter the natural microbiome. CONCLUSIONS This study highlights the importance of exploring the hologenome perspective, where integrating host genetics and microbiome composition can enhance breeding programs and farming practices.
Collapse
Affiliation(s)
- Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Secretaría de Salud (INMEGEN), Periférico Sur No. 4809, 14610, México, DF, México
| | - Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora (UNISON), Blvd., Rosales y Luis Encinas, 83000, Hermosillo, Sonora, México
| | - Andrés Cota-Huízar
- Camarones El Renacimiento SPR de RI, Justino Rubio No. 26, Col Ejidal, 81330, Higuera de Zaragoza, Sinaloa, México
| | - Melany Cervantes-Echeverría
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas Num. 46. Col. La Victoria, 83304, Hermosillo, Sonora, México
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
Emmanuel A, Wei Y, Ramzan MN, Yang W, Zheng Z. Dynamics of Bacterial Communities and Their Relationship with Nutrients in a Full-Scale Shrimp Recirculating Aquaculture System in Brackish Water. Animals (Basel) 2025; 15:1400. [PMID: 40427277 PMCID: PMC12108446 DOI: 10.3390/ani15101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Microbial communities in RASs play a critical role in maintaining water quality and supporting shrimp growth, development, and health. However, their dynamics, particularly in commercial systems, remain poorly understood. This study aimed to improve the understanding of bacterial community dynamics during shrimp culture in RASs. High-throughput amplicon sequencing of the 16S rRNA, PERMANOVA, PCoA, and other statistical analyses were used to investigate the bacterial dynamics. The entire succession process was categorized into three distinct phases, the initial, middle, and final phases, during the shrimp rearing in RASs to elucidate the spatial-temporal dynamics of the bacterial communities. Alpha diversity indicates the evenness of the bacterial community increased in the initial phase, while richness peaked in the middle phase. Notable taxonomic and functional groups within the bacterial community contributed to significant variations in the relative abundance of community composition across these phases. The dominant bacterial phyla in both water and biofilm included Proteobacteria, Actinobacteriota, Bacteroidota, and Patescibacteria. The dominant orders in both environments were Corynebacteriales, Burkholderiales, Rhodobacterales, Flavobacteriales, Saccharimonadales, and Micrococcales. Key bacterial taxa such as Pseudomonas, Mycobacterium, and Hydrogenophaga were critical for microbial community assembly, nutrient cycling, biodegradation, and water quality monitoring. Nitrite, ammonium, and nitrate were positively correlated with Mycobacterium, Rheinheimera, Taeseokela, and Thermomonas, while negatively correlated with the Cloacibacterium community composition. These findings expand our understanding of the underlying mechanisms of bacterial community succession in RASs with intensive rearing of shrimp and suggest that stabilizing environmental variables could be a useful management tool for promoting and maintaining healthy aquaculture environments.
Collapse
Affiliation(s)
| | | | | | | | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (A.E.)
| |
Collapse
|
3
|
Xia X, Wang L, Pei H, Dong C, Zhang Y, Ding J. Nanoplastics exposure simplifies the network structure of sea cucumber (Apostichopus japonicus) gut microbiota and improves cluster randomness. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124663. [PMID: 39097257 DOI: 10.1016/j.envpol.2024.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Nanoplastics (NPs) are abundant in ocean environments, leading to environmental pollution and notable disruptions to the physiological functions of marine animals. To investigate the toxic effects of NPs on echinoderms, specifically sea cucumbers (Apostichopus japonicus), they were exposed to varying concentrations of NPs (0, 102, 104 particles/L) for 14 d. Subsequently, the 102 particles/L exposure group was purified for 35 d to elucidate the impact of both NPs exposure and purification on the intestinal bacteria structure and function. The results showed that the richness and variety of intestinal bacteria in sea cucumbers significantly reduced under NPs exposure, and then they could be restored to the pre-exposure treatment state after 35 d of purification. With the increase of NPs exposure concentration in the environment, the intestinal core bacteria gradually changed from Firmicutes and Proteobacteria to Pseudoalteromonas and Vibrio. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database annotated that the gut microbiota of sea cucumbers was significantly downregulated in the glycosylation, carbohydratic and amino acid metabolic pathways (P < 0. 05), exogenous substance biodegradation and metabolism, DNA replication and repair pathways were significantly up-regulated (P < 0.05) under the exposure of NPs. In addition, nanoplastics exposure simplified the symbiotic network relationships of the gut bacteria, reduced the selective effect of host on the intestinal bacteria, and increased stochasticity. In conclusion, waterborne NPs can adversely affect the structure and function of sea cucumber intestinal bacteria, with these effects persisting for a duration. However, as the purification time lengthens, these adverse effects gradually diminish. This study aims to provide some theoretical basis for the biotoxic effects of NPs.
Collapse
Affiliation(s)
- Xinglong Xia
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China
| | - Luo Wang
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| | - Honglin Pei
- Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Changkun Dong
- Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yanmin Zhang
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
Wei Q, Song Z, Chen Y, Yang H, Chen Y, Liu Z, Yu Y, Tu Q, Du J, Li H. Metagenomic Sequencing Elucidated the Microbial Diversity of Rearing Water Environments for Sichuan Taimen ( Hucho bleekeri). Genes (Basel) 2024; 15:1314. [PMID: 39457438 PMCID: PMC11507828 DOI: 10.3390/genes15101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sichuan taimen (Hucho bleekeri) is a fish species endemic to China's upper Yangtze River drainage and has significant value as an aquatic resource. It was listed as a first-class state-protected wild animal by the Chinese government due to its very limited distribution and wild population at present. METHODS To elucidate the diversity of microorganisms in rearing water environments for H. bleekeri, metagenomic sequencing was applied to water samples from the Maerkang and Jiguanshan fish farms, where H. bleekeri were reared. RESULTS The results revealed that Pseudomonadota was the dominant phylum in the microbial communities of the water samples. Among the shared bacterial groups, Cyanobacteriota, Actinomycetota, Planctomycetota, Nitrospirota, and Verrucomicrobiota were significantly enriched in the water environment of Jiguanshan (p < 0.01), while Bacteroidota was more enriched in that of Maerkang (p < 0.01). Additionally, the Shannon diversity and Simpson index of the microbial community in the water environment of Maerkang were lower than in that of Jiguanshan. CONCLUSIONS The present study demonstrated the similarities and differences in the microbial compositions of rearing water environments for H. bleekeri, which are expected to benefit the artificial breeding of H. bleekeri in the future.
Collapse
Affiliation(s)
- Qinyao Wei
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Yeyu Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Huanchao Yang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Yanling Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Zhao Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Yi Yu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Quanyu Tu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Jun Du
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Hua Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| |
Collapse
|
5
|
Bhassu S, Shama M, Tiruvayipati S, Soo TCC, Ahmed N, Yusoff K. Microbes and pathogens associated with shrimps - implications and review of possible control strategies. FRONTIERS IN MARINE SCIENCE 2024; 11:1397708. [PMID: 39498300 PMCID: PMC11534305 DOI: 10.3389/fmars.2024.1397708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Shrimp aquaculture has been growing rapidly over the last three decades. However, high-density aquaculture together with environmental degradation has led to increased incidence of shrimp infections. Thus, devising and implementing effective strategies to predict, diagnose and control the spread of infections of shrimps are crucial, also to ensure biosecurity and sustainability of the food industry. With the recent advancements in biotechnology, more attention has been given to develop novel promising therapeutic tools with potential to prevent disease occurrence and better manage shrimp health. Furthermore, owing to the advent of the next-generation sequencing (NGS) platforms, it has become possible to analyze the genetic basis of susceptibility or resistance of different stocks of shrimps to infections and how sustainable aquaculture could be made free of shrimp diseases.
Collapse
Affiliation(s)
- Subha Bhassu
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| | - Maryam Shama
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Suma Tiruvayipati
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Chiew Christie Soo
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Khatijah Yusoff
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Bao C, Yang Y, Ye H. Effect of Dietary Restriction on Gut Microbiota and Brain-Gut Short Neuropeptide F in Mud Crab, Scylla paramamosain. Animals (Basel) 2024; 14:2415. [PMID: 39199949 PMCID: PMC11350653 DOI: 10.3390/ani14162415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Aquatic animals frequently undergo feed deprivation and starvation stress. It is well-known that the gut microbiota and the gut-brain short neuropeptide F (sNPF) play essential roles in diet restriction. Therefore, investigating the responses of the gut microbiota and sNPF can enhance our understanding of physiological adaptations to feed deprivation and starvation stress. In this study, we examined the alterations in the gut microbiota of juvenile mud crabs under feed deprivation and starvation conditions. The results reveal differences in the richness and diversity of gut microbiota among the satisfied, half food, and starvation groups. Moreover, the microbial composition was affected by starvation stress, and more than 30 bacterial taxa exhibited significantly different abundances among the three feeding conditions. These results indicate that the diversity and composition of the gut microbiota are influenced by diet restriction, potentially involving interactions with the gut-brain sNPF. Subsequently, we detected the location of sNPF in the brains and guts of mud crabs through immunofluorescence and investigated the expression profile of sNPF under different feeding conditions. The results suggest that sNPF is located in both the brains and guts of mud crabs and shows increased expression levels among different degrees of diet restriction during a 96 h period. This study suggested a potential role for sNPF in regulating digestive activities and immunity through interactions with the gut microbiota. In conclusion, these findings significantly contribute to our understanding of the dynamic changes in gut microbiota and sNPF, highlighting their interplay in response to diet restriction.
Collapse
Affiliation(s)
- Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315832, China;
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315832, China;
| | - Haihui Ye
- School of Fisheries, Jimei University, Xiamen 361021, China;
| |
Collapse
|
7
|
Huang Y, Tan D, Chen X, Xia B, Zhao Y, Chen X, Zhang Y, Zheng Z. Function of hemocyanin-mediated succinate dehydrogenase in glucose metabolism and immunity of Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109689. [PMID: 38866349 DOI: 10.1016/j.fsi.2024.109689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Succinate dehydrogenase (SDH) is a crucial enzyme in the tricarboxylic acid cycle (TCA) and has established roles in immune function. However, the understanding of SDH in Penaeus vannamei, particularly its involvement in immune responses, is currently limited. Through affinity proteomics, a potential interaction between hemocyanin (HMC) and SDH in shrimp has been identified. The successful cloning of PvSDH in this study has revealed a high degree of evolutionary conservation. Additionally, it has been found that hemocyanin regulates SDH not only at the transcriptional and enzymatic levels but also through confirmed protein-protein interactions observed via Co-immunoprecipitation (CoIP) assay. Moreover, by combining PvHMC knockdown and Vibrio parahaemolyticus challenge, it was demonstrated that fumaric acid, a product of SDH, enhances the host's immune resistance to pathogen infection by modulating the expression of antimicrobial peptides. This research provides new insights into HMC as a crucial regulator of SDH, potentially impacting glycometabolism and the dynamics of immune responses.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Diqian Tan
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiyu Chen
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Bohou Xia
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
8
|
Luo K, Guo Z, Liu Y, Li C, Ma Z, Tian X. Responses of growth performance, immunity, disease resistance of shrimp and microbiota in Penaeus vannamei culture system to Bacillus subtilis BSXE-1601 administration: Dietary supplementation versus water addition. Microbiol Res 2024; 283:127693. [PMID: 38490029 DOI: 10.1016/j.micres.2024.127693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
This study evaluated the effects of Bacillus subtilis BSXE-1601, applied either as dietary supplementation or water addition, on growth performance, immune responses, disease resistance of Penaeus vannamei, and microbiota in shrimp gut and rearing water. During the 42-day feeding experiment, shrimp were fed with basal diet (CO and BW group), basal diet supplemented with live strain BSXE-1601 at the dose of 1 × 109 CFU kg-1 feed (BD group) and 15 mg kg-1 florfenicol (FL group), and basal diet with strain BSXE-1601 added to water at the concentration of 1 × 107 CFU L-1 every five days (BW group). Results showed that dietary supplementation of strain BSXE-1601 significantly promoted growth performance of shrimp, both in the diet and water, enhanced disease resistance against Vibrio parahaemolyticus (P < 0.05). The BD and BW groups exhibited significant increases in acid phosphatase, alkaline phosphatase, lysozyme, peroxidase, superoxide dismutase activities, phenonoloxidase content in the serum of shrimp compared to the control (P < 0.05). Meanwhile, the expression of immune-related genes proPO, LZM, SOD, LGBP, HSP70, Imd, Toll, Relish, TOR, 4E-BP, eIF4E1α, eIF4E2 were significantly up-regulated compared to the control (P < 0.05). When added in rearing water, strain BSXE-1601 induced greater immune responses in shrimp than the dietary supplement (P < 0.05). Chao1 and Shannon indices of microbiota in rearing water were significantly lower in BD group than in the control. The microbiota in rearing water were significantly altered in BD, BW and FL groups compared to the control, while no significant impacts were observed on the microbiota of shrimp gut. When supplemented into the feed, strain BSXE-1601 obviously reduced the number of nodes, edges, modules in the ecological network of rearing water. The results suggested that dietary supplementation of BSXE-1601 could be more suitable than water addition in the practice of shrimp rearing when growth performance, non-specific immunity, disease resistance against V. parahaemolyticus in shrimp were collectively considered.
Collapse
Affiliation(s)
- Kai Luo
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Zeyang Guo
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China; Tropical Fisheries Research Institute of Sanya, Sanya 572018, PR China
| | - Yang Liu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Changlin Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Zhenhua Ma
- Tropical Fisheries Research Institute of Sanya, Sanya 572018, PR China.
| | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China.
| |
Collapse
|
9
|
Chunyi K, Wei S, Mingken W, Chunyu X, Changxiu L. Diversity, community structure, and abundance of nirS-type denitrifying bacteria on suspended particulate matter in coastal high-altitude aquaculture pond water. Sci Rep 2024; 14:5594. [PMID: 38454013 PMCID: PMC10920899 DOI: 10.1038/s41598-024-56196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Denitrifying bacteria harboring the nitrate reductase S (nirS) gene convert active nitrogen into molecular nitrogen, and alleviate eutrophication in aquaculture water. Suspended particulate matter (SPM) is an important component of aquaculture water and a carrier for denitrification. SPM with different particle sizes were collected from a coastal high-altitude aquaculture pond in Maoming City, China. Diversity, community structure, abundance of nirS-type denitrifying bacteria on SPM and environmental influencing factors were studied using high-throughput sequencing, fluorescence quantitative PCR, and statistical analysis. Pseudomonas, Halomonas, and Wenzhouxiangella were the dominant genera of nirS-type denitrifying bacteria on SPM from the ponds. Network analysis revealed Pseudomonas and Halomonas as the key genera involved in the interaction of nirS-type denitrifying bacteria on SPM in the ponds. qPCR indicated a trend toward greater nirS gene abundance in progressively larger SPM. Dissolved oxygen, pH, temperature, and SPM particle size were the main environmental factors influencing changes in the nirS-type denitrifying bacterial community on SPM in coastal high-altitude aquaculture pond water. These findings increase our understanding of the microbiology of nitrogen cycle processes in aquaculture ecosystem, and will help optimize aquatic tailwater treatment strategies.
Collapse
Affiliation(s)
- Kuang Chunyi
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
- College of Life and Geographic Sciences, Kashi University, Kashi, 844000, People's Republic of China
| | - Sun Wei
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China.
| | - Wei Mingken
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Xia Chunyu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Li Changxiu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| |
Collapse
|
10
|
Wang C, Song Z, Zhang H, Sun Y, Hu X. Deciphering variations in the surficial bacterial compositions and functional profiles in the intersection between North and South Yellow Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106355. [PMID: 38244366 DOI: 10.1016/j.marenvres.2024.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The coastal ocean systems play paramount role in the nutrient biogeochemistry because of its interconnected environment. To gain a novel insight into coupling relationships between bacterial community, functioning properties and nutrient metabolism, we conducted analysis on the patterns and driving factors of planktonic bacterial functional community across subsurface water of marine ranching near the Yellow Sea in both summer and winter. Illumina HiSeq Sequencing and a corresponding set of biogeochemical data were used to assess distribution patterns of taxa, adaptive mechanism and metabolic function. Results demonstrated that Proteobacteria, Cyanobacteria, Actinobacteriota and Bacteroidota were dominant phyla both in summer and winter. Taxonomic profiles related to nutrient variation were found to be highly correlated with Dissolved Oxygen (DO) and Chlorophyll fluorescence (FLUO), and distinct diversity differences were also found between summer and winter samples. Functional activity in summer associated with the relative abundance of phototrophy and photoautotrophy were the highest in the subsurface water, while in winter the dominant functional properties were mainly include chemoheterotrophy and aerobic_ chemoheterotrophy. A significant difference related to functional activity between summer and winter, mainly representing ligninolysis and iron_respiration. In general, our study provides a framework for understanding the relative importance of environmental factors, temperature variation and nutrient availability in shaping the metabolic processes of aquatic microorganisms, particularly in ocean mariculture systems.
Collapse
Affiliation(s)
- Caixia Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zenglei Song
- Yantai Vocational College, Yantai, 264003, China
| | - Haikun Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Yanyu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266237, China.
| |
Collapse
|
11
|
Li M, Ghonimy A, Chen DQ, Li JT, He YY, López Greco LS, Dyzenchauz F, Chang ZQ. Profile of the gut microbiota of Pacific white shrimp under industrial indoor farming system. Appl Microbiol Biotechnol 2024; 108:225. [PMID: 38376561 PMCID: PMC10879296 DOI: 10.1007/s00253-024-13046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
The gut microbial communities interact with the host immunity and physiological functions. In this study, we investigated the bacterial composition in Litopenaeus vannamei shrimp's gut and rearing water under different host (developmental stage: juvenile and adult; health status: healthy and diseased) and environmental factors (temperature 25 °C and 28 °C; and light intensity: low and high). The PCoA analysis showed that all water samples were clustered together in a quarter, whereas the gut samples spread among three quarters. In terms of functional bacteria, gut samples of adult shrimp, healthy adult shrimp, adult shrimp raised at 28 °C, and juvenile shrimp under high light intensity exhibited a higher abundance of Vibrionaceae compared to each other opposite group. Gut samples of juvenile shrimp, infected adult shrimp, juvenile shrimp with low light intensity, and adult shrimp with a water temperature of 25 °C showed a higher abundance of Pseudoaltromonadaceae bacteria compared to each other opposite group. Gut samples of juvenile shrimp, healthy adult shrimp, adult shrimp raised at a water temperature of 28 °C, and juvenile shrimp with high light intensity showed the higher abundance of Firmicutes/Bacteroidota ratio compared to each other opposite group. Our results showed that L. vannamei juveniles are more sensitive to bacterial infections; besides, water temperature of 28 °C and high light intensity groups were both important conditions improving the shrimp gut bacterial composition under industrial indoor farming systems. KEY POINTS: • Bacteria diversity was higher among shrimp intestinal microbiota compared to the rearing water. • Shrimp juveniles are more sensitive to bacterial infection compared to adults. • Water temperature of 28 °C and high light intensity are recommended conditions for white shrimp aquaculture.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Abdallah Ghonimy
- Key Laboratory of Sustainable Development of Marine Fisheries, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Dai-Qiang Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Ji-Tao Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266071, People's Republic of China
| | - Yu-Ying He
- Key Laboratory of Sustainable Development of Marine Fisheries, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266071, People's Republic of China
| | - Laura Susana López Greco
- Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Universidad de Buenos Aires, CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, UBA-CONICET), Facultad de Ciencias Exactas y Naturales, 1428EGA, Buenos Aires, Argentina
| | - Fernando Dyzenchauz
- Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Universidad de Buenos Aires, CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, UBA-CONICET), Facultad de Ciencias Exactas y Naturales, 1428EGA, Buenos Aires, Argentina
| | - Zhi-Qiang Chang
- Key Laboratory of Sustainable Development of Marine Fisheries, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
12
|
Du Y, Hu X, Chen J, Xu W, Li H, Chen J. Investigation of the effects of cup plant (Silphium perfoliatum L.) on the growth, immunity, gut microbiota and disease resistance of Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108631. [PMID: 36907480 DOI: 10.1016/j.fsi.2023.108631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
To investigate the effects of adding different concentrations of cup plant (Silphium perfoliatum L.) to the feed on the growth performance, hepatopancreas and intestinal microstructure, gene expression, enzyme activity, as well as intestinal microorganisms and resistance to Vibrio parahaemolyticus E1 and White spot syndrome virus (WSSV) infection of the shrimp, cup plant was added to the basal feed at 1%, 3%, 5% and 7% respectively, and fed the shrimp for 6 weeks. It was found that the addition of different concentrations of cup plant could significantly improve the specific growth rate and survival rate of shrimp, reduce the feed conversion rate, and improve the resistance to V. parahaemolyticus E1 and WSSV in shrimp, with the best effect of 5% addition. The tissue sections observations showed that the addition of cup plant significantly improved the hepatopancreas and intestinal tissues of shrimp, especially in alleviating the tissue damage caused by V. parahaemolyticus E1 and WSSV infection, but too high an addition (7%) could also cause side effects on the shrimp intestinal tract. Meantime, the addition of cup plant can also increase the activity of immunodigestive-related enzymes in the hepatopancreas and intestinal tissues of shrimp, and can significantly induce the up-regulation of immune-related genes expression, and it is positively correlated with the amount of addition in a certain range. In addition, it was found that the addition of cup plant has a significant regulating effect on the intestinal flora of shrimp, which can significantly promote the growth of beneficial bacteria such as Haloferula sp., Algoriphagus sp. and Coccinimonas sp., and inhibit pathogenic bacteria Vibrio sp., such as the number of Vibrionaceae_Vibrio and Pseudoalteromonadaceae_Vibrio in the experimental group were significantly reduced, and the lowest level in the 5% addition group. In summary, the study shows that cup plant can promote the growth of shrimp, improve the resistance of shrimp to disease, and is a potential green environmental feed additive that can replace antibiotics.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Xiaoman Hu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Jifeng Chen
- Nanjing Silphium Biotechnology Company Limited, Nanjing, 211899, China
| | - Wenlong Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Hao Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
13
|
Wang C, Yao Z, Zhan P, Yi X, Chen J, Xiong J. Significant tipping points of sediment microeukaryotes forewarn increasing antibiotic pollution. J Environ Sci (China) 2023; 124:429-439. [PMID: 36182151 DOI: 10.1016/j.jes.2021.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution imposes urgent threats to public health and microbial-mediated ecological processes. Existing studies have primarily focused on bacterial responses to antibiotic pollution, but they ignored the microeukaryotic counterpart, though microeukaryotes are functionally important (e.g., predators and saprophytes) in microbial ecology. Herein, we explored how the assembly of sediment microeukaryotes was affected by increasing antibiotic pollution at the inlet (control) and across the outlet sites along a shrimp wastewater discharge channel. The structures of sediment microeukaryotic community were substantially altered by the increasing nutrient and antibiotic pollutions, which were primarily controlled by the direct effects of phosphate and ammonium (-0.645 and 0.507, respectively). In addition, tetracyclines exerted a large effect (0.209), including direct effect (0.326) and indirect effect (-0.117), on the microeukaryotic assembly. On the contrary, the fungal subcommunity was relatively resistant to antibiotic pollution. Segmented analysis depicted nonlinear responses of microeukaryotic genera to the antibiotic pollution gradient, as supported by the significant tipping points. We screened 30 antibiotic concentration-discriminatory taxa of microeukaryotes, which can quantitatively and accurately predict (98.7% accuracy) the in-situ antibiotic concentration. Sediment microeukaryotic (except fungal) community is sensitive to antibiotic pollution, and the identified bioindicators could be used for antibiotic pollution diagnosis.
Collapse
Affiliation(s)
- Chaohua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Yao
- Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Pingping Zhan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xianghua Yi
- Lanshion Marine Science and Technology Co., Ltd., Ningbo 315715, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
14
|
Chen Z, Jing F, Lu M, Su C, Tong R, Pan L. Effects of dietary trans-cinnamaldehyde on growth performance, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 131:908-917. [PMID: 36356856 DOI: 10.1016/j.fsi.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to evaluate the effects of dietary trans-cinnamaldehyde (TC) on growth performance, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei. Shrimp were randomly divided into 4 groups, with 3 replicants in each group and 70 shrimp in each replicant. The contents of TC in the four groups were 0, 0.4, 0.8 and 1.2 g kg-1, respectively. Samples were taken after 56 days, followed by a 7-day vibrio harveyi challenge experiment. The results showed that TC significantly improved the growth performance by enhancing the activity of digestive enzymes in shrimp (P < 0.05). TC also reduced the content of crude fat (P < 0.05). The addition of TC to the diet attenuated lipid deposition, as evidenced by a reduction in the content of crude fat and a decrease in plasma levels of cholesterol and triglycerides (P < 0.05). The expression of key genes for fatty acid and triglycerides synthesis were significantly down-regulated and key genes for fatty acid β-oxidation were significantly up-regulated (P < 0.05). In addition, the immune response and antioxidant capability of shrimp were significantly enhanced by the addition of TC to the diet (P < 0.05). Meanwhile, TC could improve intestinal health by increasing the abundance of beneficial bacteria and decreasing the abundance of pathogenic bacteria, but had no significant effect on alpha diversity and beta diversity (P > 0.05). In addition, the results of histopathological sections and plasma transaminase studies showed that TC could improve the health status of hepatopancreas and was a safe nutritional supplement. After the 7-day Vibrio harveyi challenge, the cumulative mortality of shrimp decreased with increasing levels of dietary TC compared with control group (P < 0.05). These results suggested that TC could be used as a nutritional supplement for shrimp to enhance disease resistance and reduce lipid accumulation.
Collapse
Affiliation(s)
- Zhifei Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Futao Jing
- Shandong Fisheries Development and Resources Conservation Center, Jinan, 50000, China
| | - Mingxiang Lu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chen Su
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
15
|
Sha H, Li L, Lu J, Xiong J. High nutrient induces virulence in the AHPND-causing Vibrio parahaemolyticus, interpretation from the ecological assembly of shrimp gut microbiota. FISH & SHELLFISH IMMUNOLOGY 2022; 127:758-765. [PMID: 35835385 DOI: 10.1016/j.fsi.2022.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Shrimp diseases frequently occur during the later farming stages, when the rearing water is eutrophic. This observation provides clue that the virulence of pathogens could be induced by elevated nutrient, whereas the underlying ecological mechanism remains limited. To address this pressing knowledge, we explored how gut microbiota responded to the infection of oligotrophic (OVp) or eutrophic (EVp) pre-cultured Vibrio parahaemolyticus, a causing pathogen of shrimp acute hepatopancreatic necrosis disease (AHPND). Resulted revealed that OVp and EVp infections caused dysbiosis in the gut microbiota and compromised shrimp immunity, while the later infection led to earlier and higher mortality. Significant associations were detected between the gut microbiota and each of the measured immune activities. Neutral community model showed that the assembly of gut microbiota was more strongly governed by deterministic processes in EVp infection, followed by EVp infected and control shrimp. Additionally, there were significantly lower temporal turnover rate and average variation degree in the gut microbiota in EVp infected shrimp compared with control individuals. Notably, we identified 22 infection-discriminatory taxa after ruling out the ontogenic effect. Using profiles of the 22 indicators as independent variables, the diagnosis model accurately distinguished (an overall 85.9% accuracy) the infected status (control, OVp or EVp infected shrimp), with 81.3% accuracy at the initial infection stage. The convergent and deterministic gut microbiota in EVp infected shrimp could partially explain why it is challenge to cure APHND from an ecological viewpoint. In addition, we provided a sensitive approach for diagnosing the onset of infection, when disease symptom is unobservable.
Collapse
Affiliation(s)
- Haonan Sha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Luyue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
16
|
Sha H, Lu J, Chen J, Xiong J. A meta-analysis study of the robustness and universality of gut microbiota-shrimp diseases relationship. Environ Microbiol 2022; 24:3924-3938. [PMID: 35466526 DOI: 10.1111/1462-2920.16024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022]
Abstract
Intensive case study has shown dysbiosis in the gut microbiota-shrimp disease relationship, however, variability in experimental design and the diversity of diseases arise the question whether some gut indicators are robust and universal in response to shrimp health status, irrespective of causal agents. Through an unbiased subject-level meta-analysis framework, we re-analyzed 10 studies including 261 samples, 4 lifestages, 6 different diseases (the causal agents are virus, bacterial, eukaryotic pathogens, or unknown). Results showed that shrimp diseases reproducibly altered the structure of gut bacterial community, but not diversity. After ruling out the lifestage- and disease specific- discriminatory taxa (different diseases dependent indicators), we identify 18 common disease-discriminatory taxa (indicative of health status, irrespective of causal agents) that accurately diagnosed (90.0% accuracy) shrimp health status, regardless of different diseases. These optimizations substantially improved the performance (62.6% vs. 90.0%) diagnosing model. The robustness and universality of model was validated for effectiveness via leave-one-dataset-out validation and independent cohorts. Interspecies interaction and stability of the gut microbiotas were consistently compromised in diseased shrimp compared with corresponding healthy cohorts, while stochasticity and beta-dispersion exhibited the opposite trend. Collectively, our findings exemplify the utility of microbiome meta-analyses in identifying robust and reproducible features for quantitatively diagnosing disease incidence, and the downstream consequences for shrimp pathogenesis from an ecological prospective. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Haonan Sha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
17
|
Rasmussen JA, Villumsen KR, von Gersdorff Jørgensen L, Forberg T, Zuo S, Kania PW, Buchmann K, Kristiansen K, Bojesen AM, Limborg MT. Integrative analyses of probiotics, pathogenic infections, and host immune response highlight the importance of gut microbiota in understanding disease recovery in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 2022; 132:3201-3216. [PMID: 35032344 DOI: 10.1111/jam.15433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
AIMS Given the pivotal role played by the gut microbiota in regulating the host immune system, interest has arisen in the possibility of controlling fish health by modulating the gut microbiota. Hence, the need for a better understanding of the host-microbiota interactions after disease responses to optimise the use of probiotics to strengthen disease resilience and recovery. METHODS AND RESULTS We tested the effects of a probiotic feed additive in rainbow trout and challenged the fish with the causative agent for enteric redmouth disease, Yersinia ruckeri. We evaluated the survival, host immune gene expression and on the gut microbiota composition. Results revealed that provision of probiotics and exposure to Y. ruckeri induced immune gene expression in the host associated with changes in the gut microbiota. Subsequently, infection with Y. ruckeri had very little effect on microbiota composition when probiotics were applied, indicating that probiotics increased stabilisation of the microbiota. Our analysis revealed potential biomarkers for monitoring infection status and fish health. Finally, we used modelling approaches to decipher interactions between gut bacteria and the host immune gene responses, indicating removal of endogenous bacteria elicited by non-specific immune responses. CONCLUSIONS We discuss the relevance of these results emphasising the importance of host-microbiota interactions, including the protective potential of the gut microbiota in disease responses. SIGNIFICANCE AND IMPACT OF THE STUDY Our results highlight the functional consequences of probiotic-induced changes in the gut microbiota and the resulting host immune response.
Collapse
Affiliation(s)
- Jacob Agerbo Rasmussen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Denmark
| | | | | | - Shaozhi Zuo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Denmark
| | - Per Walter Kania
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Metagenomics, BGI- Shenzhen, Shenzhen, China
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
18
|
Quiroz-Guzmán E, Cabrera-Stevens M, Sánchez-Paz A, Mendoza-Cano F, Encinas-García T, Barajas-Sandoval D, Gómez-Gil B, Peña-Rodríguez A. Effect of functional diets on intestinal microbiota and resistance to Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (AHPND) of Pacific white shrimp (Penaeus vannamei). J Appl Microbiol 2022; 132:2649-2660. [PMID: 35007373 DOI: 10.1111/jam.15448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
AIMS The present study evaluated the effect of four functional diets and a reference diet on the survival and intestinal bacterial community of shrimp Penaeus vannamei infected with AHPND. METHODS AND RESULTS After 42 days of feeding trail, shrimp were inoculated with a Vibrio parahaemolyticus (CIB-0018-3) carrying the plasmid encoding for the PirAB toxins responsible for AHPND. After 120 h post-infection (hpi), shrimp fed with a diet containing 2% of a mix with Curcuma longa and Lepidium meyenii (TuMa) and a diet containing 0.2% of vitamin C (VitC) showed a significantly higher survival (85%) compared to the remaining treatments (50-55%) (p<0.05). Infected shrimp fed with TuMa diet, showed a significant reduction of Vibrionales; and VitC diet promoted an increase of Alteromonadales. CONCLUSIONS Our findings suggest that the TuMa diet conferred protection against AHPND and could be attributed to a combined effect of antibacterial properties against Vibrionales, and promoting a desirable bacterial community in the shrimp intestine, while the VitC diet protection could be attributed to their antioxidant capacity and in a lower proportion to a bacterial modulation in shrimp gut. SIGNIFICANCE AND IMPACT OF THE STUDY Acute Hepatopancreatic Necrosis Disease (AHPND) is a devastating disease that significantly affects aquaculture production of shrimps. Therefore, the use of functional diets that promotes resistance to AHPND, represents a valuable tool to reduce the mortality of farmed shrimp.
Collapse
Affiliation(s)
- Eduardo Quiroz-Guzmán
- CONACYT - CIBNOR, Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, México
| | - Mónica Cabrera-Stevens
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, México
| | - Arturo Sánchez-Paz
- Laboratorio de Virología. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo). Calle Hermosa 101. Fraccionamiento Los Ángeles. Hermosillo, Son. C.P., 83206, México
| | - Fernando Mendoza-Cano
- Laboratorio de Virología. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo). Calle Hermosa 101. Fraccionamiento Los Ángeles. Hermosillo, Son. C.P., 83206, México
| | - Trinidad Encinas-García
- Laboratorio de Virología. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo). Calle Hermosa 101. Fraccionamiento Los Ángeles. Hermosillo, Son. C.P., 83206, México
| | - Diana Barajas-Sandoval
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, México
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental. AP. 711, 82000, Mazatlán, Sinaloa, Mexico
| | - Alberto Peña-Rodríguez
- CONACYT - CIBNOR, Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, México
| |
Collapse
|
19
|
Du S, Chen W, Yao Z, Huang X, Chen C, Guo H, Zhang D. Enterococcus faecium are associated with the modification of gut microbiota and shrimp post-larvae survival. Anim Microbiome 2021; 3:88. [PMID: 34952650 PMCID: PMC8710032 DOI: 10.1186/s42523-021-00152-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Probiotics are widely used to promote host health. Compared to mammals and terrestrial invertebrates, little is known the role of probiotics in aquatic invertebrates. In this study, eighteen tanks with eight hundred of shrimp post-larvae individuals each were randomly grouped into three groups, one is shrimps administered with E. faecium as probiotic (Tre) and others are shrimps without probiotic-treatment (CK1: blank control, CK2: medium control). We investigated the correlations between a kind of commercial Enterococcus faecium (E. faecium) powder and microbiota composition with function potentials in shrimp post-larvae gut. RESULTS We sequenced the 16S rRNA gene (V4) of gut samples to assess diversity and composition of the shrimp gut microbiome and used differential abundance and Tax4Fun2 analyses to identify the differences of taxonomy and predicted function between different treatment groups. The ingested probiotic bacteria (E. faecium) were tracked in gut microbiota of Tre and the shrimps here showed the best growth performance especially in survival ratio (SR). The distribution of SR across samples was similar to that in PCoA plot based on Bray-Curits and two subgroups generated (SL: SR < 70%, SH: SR ≥ 70%). The gut microbiota structure and predicted function were correlated with both treatment and SR, and SR was a far more important factor driving taxonomic and functional differences than treatment. Both Tre and SH showed a low and uneven community species and shorted phylogenetic distance. We detected a shift in composition profile at phylum and genus level and further identified ten OTUs as relevant taxa that both closely associated with treatment and SR. The partial least squares path model further supported the important role of relevant taxa related to shrimp survival ratio. CONCLUSIONS Overall, we found gut microbiota correlated to both shrimp survival and ingested probiotic bacteria (E. faecium). These correlations should not be dismissed without merit and will uncover a promising strategy for developing novel probiotics through certain consortium of gut microbiota.
Collapse
Affiliation(s)
- Shicong Du
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Wei Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhiyuan Yao
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China. .,School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China.
| | - Xiaolin Huang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Zhejiang Mariculture Research Institute, Wenzhou, 325099, China
| | - Chen Chen
- Zhejiang Mariculture Research Institute, Wenzhou, 325099, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China. .,School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
20
|
Zhang W, Zhu Z, Chen J, Qiu Q, Xiong J. Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny. Front Microbiol 2021; 12:752750. [PMID: 34691004 PMCID: PMC8531273 DOI: 10.3389/fmicb.2021.752750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 02/01/2023] Open
Abstract
Intensive studies have evaluated abiotic factors in shaping host gut microbiota. In contrast, little is known on how and to what extent abiotic (geochemical variables) and biotic (i.e., surrounding microbes, younger shrimp, and age) factors assemble the gut microbiota over shrimp ontogeny. Considering the functional importance of gut microbiota in improving host fitness, this knowledge is fundamental to sustain a desirable gut microbiota for a healthy aquaculture. Here, we characterized the successional rules of both the shrimp gut and rearing water bacterial communities over the entire shrimp farming. Both the gut and rearing water bacterial communities exhibited the time decay of similarity relationship, with significantly lower temporal turnover rate for the gut microbiota, which were primarily governed by shrimp age (days postlarval inoculation) and water pH. Gut commensals were primary sourced (averaged 60.3%) from their younger host, rather than surrounding bacterioplankton (19.1%). A structural equation model revealed that water salinity, pH, total phosphorus, and dissolve oxygen directly governed bacterioplankton communities but not for the gut microbiota. In addition, shrimp gut microbiota did not simply mirror the rearing bacterioplankton communities. The gut microbiota tended to be governed by variable selection over shrimp ontogeny, while the rearing bacterioplankton community was shaped by homogeneous selection. However, the determinism of rare and stochasticity of abundant subcommunities were consistent between shrimp gut and rearing water. These findings highlight the importance of independently interpreting host-associated and free-living communities, as well as their rare and abundant subcommunities for a comprehensive understanding of the ecological processes that govern microbial successions.
Collapse
Affiliation(s)
- Wenqian Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zidong Zhu
- School of Biochemical Engineering, Jingzhou Institute of Technology, Jingzhou, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
21
|
Liu B, Song C, Gao Q, Liu B, Zhou Q, Sun C, Zhang H, Liu M, Tadese DA. Maternal and environmental microbes dominate offspring microbial colonization in the giant freshwater prawn Macrobrachium rosenbergii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148062. [PMID: 34091334 DOI: 10.1016/j.scitotenv.2021.148062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Microbial colonization is vital for physiological equilibrium in animals. However, the impact of maternal and environmental microbes on microbial succession in the early developmental stages of Macrobrachium rosenbergii remains elusive. In this study, the effects of maternal and environmental microbes on the embryonic and larval microbiota of M. rosenbergii were evaluated by high-throughput sequencing. The results showed that Proteobacteria and Firmicutes were the dominant phyla in the intestine, gonads, and hepatopancreases of maternal prawn. In addition, Actinobacteria was dominant in the intestine while Actinobacteria, Bacteroidetes, and Acidobacteria were dominant in gonads of maternal prawn. During the embryonic stages, Proteobacteria, Actinobacteria, and Bacteroidetes became the dominant phyla. In post-larval stages, Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes tended to dominate. In the water, Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla at 7, 14, and 21 dph water. Maternal microbes prominently impacted the microbial composition during the embryonic stages. Specifically, microbial colonization during embryonic stages was directly related to the maternal hepatopancreas according to source-tracking models. When the post-larvae developed to 7 days, the high contribution to the larval microbiota mimicked the environment. These results indicated that microbial colonization in embryonic and post-larval stages was attributed to the maternal and environmental microbe community, respectively. This study provides a theoretical basis for microbial community manipulation to promote prawn growth and physiological health in aquaculture.
Collapse
Affiliation(s)
- Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou 313001, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Dawit Adisu Tadese
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
22
|
Diwan AD, Harke SN, Gopalkrishna, Panche AN. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J Anim Physiol Anim Nutr (Berl) 2021; 106:441-469. [PMID: 34355428 DOI: 10.1111/jpn.13619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiome actually deals with micro-organisms that are associated with indigenous body parts and the entire gut system in all animals, including human beings. These microbes are linked with roles involving hereditary traits, defence against diseases and strengthening overall immunity, which determines the health status of an organism. Considerable efforts have been made to find out the microbiome diversity and their taxonomic identification in finfish and shellfish and its importance has been correlated with various physiological functions and activities. In recent past due to the availability of advanced molecular tools, some efforts have also been made on DNA sequencing of these microbes to understand the environmental impact and other stress factors on their genomic structural profile. There are reports on the use of next-generation sequencing (NGS) technology, including amplicon and shot-gun approaches, and associated bioinformatics tools to count and classify commensal microbiome at the species level. The microbiome present in the whole body, particularly in the gut systems of finfish and shellfish, not only contributes to digestion but also has an impact on nutrition, growth, reproduction, immune system and vulnerability of the host fish to diseases. Therefore, the study of such microbial communities is highly relevant for the development of new and innovative bio-products which will be a vital source to build bio and pharmaceutical industries, including aquaculture. In recent years, attempts have been made to discover the chemical ingredients present in these microbes in the form of biomolecules/bioactive compounds with their functions and usefulness for various health benefits, particularly for the treatment of different types of disorders in animals. Therefore, it has been speculated that microbiomes hold great promise not only as a cure for ailments but also as a preventive measure for the number of infectious diseases. This kind of exploration of new breeds of microbes with their miraculous ingredients will definitely help to accelerate the development of the drugs, pharmaceutical and other biological related industries. Probiotic research and bioinformatics skills will further escalate these opportunities in the sector. In the present review, efforts have been made to collect comprehensive information on the finfish and shellfish microbiome, their diversity and functional properties, relationship with diseases, health status, data on species-specific metagenomics, probiotic research and bioinformatics skills. Further, emphasis has also been made to carry out microbiome research on priority basis not only to keep healthy environment of the fish farming sector but also for the sustainable growth of biological related industries, including aquaculture.
Collapse
Affiliation(s)
- Arvind D Diwan
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Sanjay N Harke
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Gopalkrishna
- Central Institute of Fisheries Education (CIFE, Deemed University), ICAR, Mumbai, India
| | - Archana N Panche
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| |
Collapse
|
23
|
Chalifour B, Li J. Characterization of the gut microbiome in wild rocky mountainsnails (Oreohelix strigosa). Anim Microbiome 2021; 3:49. [PMID: 34274024 PMCID: PMC8285866 DOI: 10.1186/s42523-021-00111-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background The Rocky Mountainsnail (Oreohelix strigosa) is a terrestrial gastropod of ecological importance in the Rocky Mountains of western United States and Canada. Across the animal kingdom, including in gastropods, gut microbiomes have profound effects on the health of the host. Current knowledge regarding snail gut microbiomes, particularly throughout various life history stages, is limited. Understanding snail gut microbiome composition and dynamics can provide an initial step toward better conservation and management of this species. Results In this study, we employed 16S rRNA gene amplicon sequencing to examine gut bacteria communities in wild-caught O. strigosa populations from the Front Range of Colorado. These included three treatment groups: (1) adult and (2) fetal snails, as well as (3) sub-populations of adult snails that were starved prior to ethanol fixation. Overall, O. strigosa harbors a high diversity of bacteria. We sequenced the V4 region of the 16S rRNA gene on an Illumina MiSeq and obtained 2,714,330 total reads. We identified a total of 7056 unique operational taxonomic units (OTUs) belonging to 36 phyla. The core gut microbiome of four unique OTUs accounts for roughly half of all sequencing reads returned and may aid the snails’ digestive processes. Significant differences in microbial composition, as well as richness, evenness, and Shannon Indices were found across the three treatment groups. Conclusions Comparisons of gut microbiomes in O. strigosa adult, fetal, and starved samples provide evidence that the host internal environments influence bacterial community compositions, and that bacteria may be transmitted vertically from parent to offspring. This work provides the first comprehensive report on the structure and membership of bacterial populations in the gastropod family Oreohelicidae and reveals similarities and differences across varying life history metrics. Strong differentiation between these life history metrics demonstrates the need for wider sampling for studies of dynamics of the snail gut microbiome. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00111-6.
Collapse
Affiliation(s)
- Bridget Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, 334 UCB, Boulder, CO, 80309, USA.
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, 334 UCB, Boulder, CO, 80309, USA.,Museum of Natural History, University of Colorado Boulder, 265 UCB, Boulder, CO, 80309, USA
| |
Collapse
|
24
|
Wei D, Xing C, Hou D, Zeng S, Zhou R, Yu L, Wang H, Deng Z, Weng S, He J, Huang Z. Distinct bacterial communities in the environmental water, sediment and intestine between two crayfish-plant coculture ecosystems. Appl Microbiol Biotechnol 2021; 105:5087-5101. [PMID: 34086119 DOI: 10.1007/s00253-021-11369-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Microorganisms are an important part of productivity, water quality, and biogeochemical cycles in an aquaculture ecosystems and play a key role in determining the growth and fitness of aquaculture animals. Coculture ecosystems are widely applied with great significance in agricultural production worldwide. The crayfish-rice coculture ecosystem (CRCE) and crayfish-waterweed coculture ecosystem (CWCE) are two high-profile artificial ecosystems for crayfish culture. However, the bacterial communities of the environmental water, sediment, and intestine in the CRCE and CWCE remain elusive. In this study, we investigated the diversity, composition, and function of bacterial communities in water, sediment, and intestine samples from the CRCE to CWCE. The physicochemical factors of water [such as ORP (oxidation-reduction potential), TC (total carbon), TOC (total oxygen carbon), and NO3--N] and sediment [such as TC, TOC, TN (total nitrogen), and TP (total phosphate)] were significantly different in the CRCE and CWCE. The abundances of Proteobacteria, Actinobacteria, Verrucomicrobia, Cyanobacteria, Chlorobi, Chloroflexi, and Firmicutes were significantly different in the water bacterial communities of the CRCE and CWCE. The abundance of Vibrio in the crayfish intestine was higher in the CRCE than in the CWCE. The most abundant phyla in the CRCE and CWCE sediment were Proteobacteria and Bacteroidetes. The abundances of genes involved in transporters and ABC transporters were different in water of CRCE and CWCE. The abundances of genes involved in oxidative phosphorylation were significantly higher in the crayfish intestine of the CRCE than in that of the CWCE. Furthermore, the functional genes associated with carbon metabolism were significantly more abundant in the sediment of the CRCE than in that of the CWCE. Spearman correlation analysis and redundancy analysis (RDA) showed that the bacterial communities of the water and sediment in the CRCE and CWCE were correlated with environmental factors (pH, total carbon (TC), total oxygen carbon (TOC), total nitrogen (TN), and total phosphorus (TP)). Our findings showed that the composition, diversity and function of the bacterial communities were distinct in the environmental water, sediment, and intestine of the CRCE and CWCE crayfish coculture ecosystems due to their different ecological patterns. These results can help guide healthy farming practices and deepen the understanding of bacterial communities in crayfish-plant coculture ecosystems from the perspective of bacterial ecology. KEY POINTS: • The composition of bacterial communities in the environmental water, sediment, and intestine of the CRCE and CWCE were distinct. ̉• The abundances of genes involved in transporters and ABC transporters were different in the water of the CRCE and CWCE. • The bacterial communities of the water and sediment in the CRCE and CWCE were correlated with some environmental factors.
Collapse
Affiliation(s)
- Dongdong Wei
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengguang Xing
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Renjun Zhou
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingfei Yu
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Wang
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixuan Deng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhijian Huang
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
25
|
Developmental, Dietary, and Geographical Impacts on Gut Microbiota of Red Swamp Crayfish ( Procambarus clarkii). Microorganisms 2020; 8:microorganisms8091376. [PMID: 32911609 PMCID: PMC7565139 DOI: 10.3390/microorganisms8091376] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Red swamp crayfish (Procambarus clarkii) breeding is an important economic mainstay in Hubei province, China. However, information on the gut microbiota of the red swamp crayfish is limited. To address this issue, the effect of developmental stage, diet (fermented or non-fermented feed), and geographical location on the gut microbiota composition in the crayfish was studied via high-throughput 16S rRNA gene sequencing. The results revealed that the dominant phyla in the gut of the crayfish were Proteobacteria, Bacteroidetes,Firmicutes, Tenericutes, and RsaHF231. The alpha diversity showed a declining trend during development, and a highly comparable gut microbiota clustering was identified in a development-dependent manner. The results also revealed that development, followed by diet, is a better key driver for crayfish gut microbiota patterns than geographical location. Notably, the relative abundance of Bacteroidetes was significantly higher in the gut of the crayfish fed with fermented feed than those fed with non-fermented feed, suggesting the fermented feed can be important for the functions (e.g., polysaccharide degradation) of the gut microbiota. In summary, our results revealed the factors shaping gut microbiota of the crayfish and the importance of the fermented feed in crayfish breeding.
Collapse
|
26
|
Wei H, Li X, Tang L, Yao H, Ren Z, Wang C, Mu C, Shi C, Wang H. 16S rRNA gene sequencing reveals the relationship between gut microbiota and ovarian development in the swimming crab Portunus trituberculatus. CHEMOSPHERE 2020; 254:126891. [PMID: 32957291 DOI: 10.1016/j.chemosphere.2020.126891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Gut microbiota executes many beneficial functions. In this study, the relationship between gut microbiota and ovarian development in the swimming crab P. trituberculatus was explored for the first time. A total of 28 phyla and 422 genera were identified across all samples. However, 105 differential operational taxonomic units, and four differential phyla (Gemmatimonadetes, Actinobacteria, Firmicutes, Marinimicrobia_(SAR406_clade)) were identified. At the genus level, 42 differential genera were identified and 144 bacterial indicators were identified. A key finding was that the relative abundance of 139 indicator bacteria detected in the anisomycin-2 mg/kg group (AK group) was higher than that of blank group (BK group), control group (CK group), SP600125-15 mg/kg group (SK group). In addition, the relative abundance of three indicator bacteria (OTU_236, OTU_1395, OTU_552) detected in the SK group was higher than that of the BK, CK and AK groups. It was also found that the relative abundance of 20 differential genera (Methyloversatilis, Coprococcus_1, Erysipelotrichaceae_UCG_003, Rikenella, Corynebacterium, Ruminiclostridium, Fusicatenibacter, [Eubacterium]_ruminantium_group, Rikenellaceae_RC9_gut_group, Bifidobacterium, Lachnospiraceae_NK4A136_group, Ruminococcaceae_UCG_014, Christensenellaceae_R_7_group, uncultured_Bacteroidales_bacterium, Coprococcus_2, Desulfovibrio, Aggregatibacter, Ambiguous_taxa, Alloprevotella and Ruminococcaceae_NK4A214_group) in the SK, BK, CK, and AK group samples were increasing. These differential genera may reveal the relationship between gut microbial communities and ovarian development in P. trituberculatus after injection with the JNK pathway inhibitor SP600125 or the activator anisomycin. In summary, this study provides a new understanding into the relationship between gut microbiota and ovarian development in response to stimulation with inhibitor or activator.
Collapse
Affiliation(s)
- Hongling Wei
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Xing Li
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Lei Tang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Hongzhi Yao
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Zhiming Ren
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Ce Shi
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Huan Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
27
|
Lu J, Zhang X, Qiu Q, Chen J, Xiong J. Identifying Potential Polymicrobial Pathogens: Moving Beyond Differential Abundance to Driver Taxa. MICROBIAL ECOLOGY 2020; 80:447-458. [PMID: 32307553 DOI: 10.1007/s00248-020-01511-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
It is now recognized that some diseases of aquatic animals are attributed to polymicrobial pathogens infection. Thus, the traditional view of "one pathogen, one disease" might mislead the identification of multiple pathogens, which in turn impedes the design of probiotics. To address this gap, we explored polymicrobial pathogens based on the origin and timing of increased abundance over shrimp white feces syndrome (WFS) progression. OTU70848 Vibrio fluvialis, OTU35090 V. coralliilyticus, and OTU28721 V. tubiashii were identified as the primary colonizers, whose abundances increased only in individuals that eventually showed disease signs but were stable in healthy subjects over the same timeframe. Notably, the random Forest model revealed that the profiles of the three primary colonizers contributed an overall 91.4% of diagnosing accuracy of shrimp health status. Additionally, NetShift analysis quantified that the three primary colonizers were important "drivers" in the gut microbiotas from healthy to WFS shrimp. For these reasons, the primary colonizers were potential pathogens that contributed to the exacerbation of WFS. By this logic, we further identified a few "drivers" commensals in healthy individuals, such as OUT50531 Demequina sediminicola and OTU_74495 Ruegeria lacuscaerulensis, which directly antagonized the three primary colonizers. The predicted functional pathways involved in energy metabolism, genetic information processing, terpenoids and polyketides metabolism, lipid and amino acid metabolism significantly decreased in diseased shrimp compared with those in healthy cohorts, in concordant with the knowledge that the attenuations of these functional pathways increase shrimp sensitivity to pathogen infection. Collectively, we provide an ecological framework for inferring polymicrobial pathogens and designing antagonized probiotics by quantifying their changed "driver" feature that intimately links shrimp WFS progression. This approach might generalize to the exploring disease etiology for other aquatic animals.
Collapse
Affiliation(s)
- Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xuechen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
28
|
Alfiansah YR, Peters S, Harder J, Hassenrück C, Gärdes A. Structure and co-occurrence patterns of bacterial communities associated with white faeces disease outbreaks in Pacific white-leg shrimp Penaeus vannamei aquaculture. Sci Rep 2020; 10:11980. [PMID: 32686764 PMCID: PMC7371890 DOI: 10.1038/s41598-020-68891-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Bacterial diseases cause production failures in shrimp aquacultures. To understand environmental conditions and bacterial community dynamics contributing to white faeces disease (WFD) events, we analysed water quality and compared bacterial communities in water as well as in intestines and faeces of healthy and diseased shrimps, respectively, via 16S rRNA gene sequencing and qPCR of transmembrane regulatory protein (toxR), thermolabile haemolysin (tlh), and thermostable direct haemolysin genes of pathogenic Vibrio parahaemolyticus as a proxy for virulence. WFD occurred when pH decreased to 7.71–7.84, and Alteromonas, Pseudoalteromonas and Vibrio dominated the aquatic bacterial communities. The disease severity further correlated with increased proportions of Alteromonas, Photobacterium, Pseudoalteromonas and Vibrio in shrimp faeces. These opportunistic pathogenic bacteria constituted up to 60% and 80% of the sequences in samples from the early and advances stages of the disease outbreak, respectively, and exhibited a high degree of co-occurrence. Furthermore, toxR and tlh were detected in water at the disease event only. Notably, bacterial community resilience in water occurred when pH was adjusted to 8. Then WFD ceased without a mortality event. In conclusion, pH was a reliable indicator of the WFD outbreak risk. Dissolved oxygen and compositions of water and intestinal bacteria may also serve as indicators for better prevention of WFD events.
Collapse
Affiliation(s)
- Yustian Rovi Alfiansah
- Leibniz Centre for Tropical Marine Research (ZMT), 28359, Bremen, Germany. .,Research Center for Oceanography (RCO-LIPI), Jakarta, 14430, Indonesia. .,Center for Aquaculture Research (ZAF), Alfred Wegener Institute (AWI), 27570, Bremerhaven, Germany.
| | - Sonja Peters
- Leibniz Centre for Tropical Marine Research (ZMT), 28359, Bremen, Germany
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology (MPI-MM), 28359, Bremen, Germany
| | | | - Astrid Gärdes
- Leibniz Centre for Tropical Marine Research (ZMT), 28359, Bremen, Germany.,Division Biosciences/Polar Biological Oceanography, Alfred Wegener Institute (AWI), 27570, Bremerhaven, Germany.,Hochschule (HS) Bremerhaven, 27568, Bremerhaven, Germany
| |
Collapse
|
29
|
Garibay-Valdez E, Martínez-Córdova LR, López-Torres MA, Almendariz-Tapia FJ, Martínez-Porchas M, Calderón K. The implication of metabolically active Vibrio spp. in the digestive tract of Litopenaeus vannamei for its post-larval development. Sci Rep 2020; 10:11428. [PMID: 32651435 PMCID: PMC7351783 DOI: 10.1038/s41598-020-68222-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022] Open
Abstract
This work aimed to evaluate the link between the occurrence/abundance of Vibrio populations and bacterial composition in shrimp’s intestine (Litopenaeus vannamei) during post-larval ontogenetic development and in its culture water, and the correlation of these with environmental parameters. The total and metabolically active populations of Vibrio in the digestive tract of shrimp during its post-larval development were analysed using quantitative PCR (qPCR) and reverse transcription qPCR targeting the 16S rRNA gene sequence. A lab-scale shrimp bioassay was performed for 80 days in a recirculating aquarium under strictly controlled conditions. The results indicate that the Vibrio population from shrimp’s gut is associated with its developmental stage and the environment. Multivariate analyses revealed that the presence of Vibrio spp. drove the studied system, but their metabolically active performance was related to earlier developmental stages in an aqueous environment. Also, the samples taken from water of culture units to compare the influence of the aquatic environment on the intestinal microbial community during shrimp’s ontogenetic development showed significant differences. Finally, our results revealed that Vibrio is an important member of shrimp’s gut microbiota; however, its metabolic activity seems to be highly regulated, possibly by the host and by the rest of the microbiota.
Collapse
Affiliation(s)
- Estefanía Garibay-Valdez
- Centro de Investigación en Alimentos y Desarrollo A.C (CIAD), Carretera a La Victoria S/N, CP. 83304, Hermosillo, Sonora, Mexico
| | - Luis Rafael Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - Marco A López-Torres
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - F Javier Almendariz-Tapia
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentos y Desarrollo A.C (CIAD), Carretera a La Victoria S/N, CP. 83304, Hermosillo, Sonora, Mexico
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
30
|
Wang Y, Wang K, Huang L, Dong P, Wang S, Chen H, Lu Z, Hou D, Zhang D. Fine-scale succession patterns and assembly mechanisms of bacterial community of Litopenaeus vannamei larvae across the developmental cycle. MICROBIOME 2020; 8:106. [PMID: 32620132 PMCID: PMC7334860 DOI: 10.1186/s40168-020-00879-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Microbiome assembly in early life may have a long-term impact on host health. Larval nursery is a crucial period that determines the success in culture of Litopenaeus vannamei, the most productive shrimp species in world aquaculture industry. However, the succession patterns and assembly mechanisms of larval shrimp bacterial community still lack characterization at a fine temporal scale. Here, using a high-frequency sampling strategy and 16S rRNA gene amplicon sequencing, we investigated dynamics of larval shrimp bacterial community and its relationship with bacterioplankton in the rearing water across the whole developmental cycle in a realistic aquaculture practice. RESULTS Alpha-diversity of larval shrimp bacteria showed a U-shaped pattern across the developmental cycle with the stages zoea and mysis as the valley. Correspondingly, the compositions of dominant bacterial taxa at the stages nauplius and early postlarvae were more complex than other stages. Remarkably, Rhodobacteraceae maintained the overwhelming dominance after the mouth opening of larvae (zoea I~early postlarvae). The taxonomic and phylogenetic compositions of larval bacterial community both showed stage-dependent patterns with higher rate of taxonomic turnover, suggesting that taxonomic turnover was mainly driven by temporal switching among closely related taxa (such as Rhodobacteraceae taxa). The assembly of larval bacteria was overall governed by neutral processes (dispersal among individuals and ecological drift) at all the stages, but bacterioplankton also had certain contribution during three sub-stages of zoea, when larval and water bacterial communities were most associated. Furthermore, the positive host selection for Rhodobacteraceae taxa from the rearing water during the zoea stage and its persistent dominance and large predicted contribution to metabolic potentials of organic matters at post-mouth opening stages suggest a crucial role of this family in larval microbiome and thus a potential source of probiotic candidates for shrimp larval nursery. CONCLUSIONS Our results reveal pronounced succession patterns and dynamic assembly processes of larval shrimp bacterial communities during the developmental cycle, highlighting the importance of the mouth opening stage from the perspective of microbial ecology. We also suggest the possibility and potential timing in microbial management of the rearing water for achieving the beneficial larval microbiota in the nursery practice. Video Abstract.
Collapse
Affiliation(s)
- Yanting Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Kai Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Lei Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Pengsheng Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Sipeng Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Heping Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211 China
| | - Zheng Lu
- Huzhou Southern Taihu Lake Agricultural Biotechnology Institute, Huzhou, 313000 China
| | - Dandi Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211 China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| |
Collapse
|
31
|
Intestinal Microbiota Analyses of Litopenaeus vannamei During a Case of Atypical Massive Mortality in Northwestern Mexico. Curr Microbiol 2020; 77:2312-2321. [PMID: 32524276 DOI: 10.1007/s00284-020-02079-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
This study investigated the intestinal microbial community structure of Litopenaeus vannamei at six different stages during shrimp farming. Our goal was to elucidate the bacterial profile and the changes in the relative abundance of taxa during an atypical massive mortality event in Sonora, Mexico. High-throughput sequencing of the 16S rRNA gene and denaturing gradient gel electrophoresis showed that Vibrionaceae was persistent with high relative abundances in the intestine from cultivated shrimp during all the studied stages. The massive mortality observed at day 63 could be related to an overabundance of different Operational Taxonomic Units (OTUs) of Vibrio, Shewanella and Clostridium. Principal coordinate analysis (PCoA) showed variations in microbial structure at different culture times. These findings suggest that OTUs of different taxa contributed to the community switch from healthy to diseased individuals, questioning the hypothesis that single bacterial species is the cause of disease outbreaks. This study provided data to improve the understanding of disease outbreaks during shrimp farming.
Collapse
|
32
|
Liu S, Zheng SC, Li YL, Li J, Liu HP. Hemocyte-Mediated Phagocytosis in Crustaceans. Front Immunol 2020; 11:268. [PMID: 32194551 PMCID: PMC7062681 DOI: 10.3389/fimmu.2020.00268] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
Phagocytosis is an ancient, highly conserved process in all multicellular organisms, through which the host can protect itself against invading microorganisms and environmental particles, as well as remove self-apoptotic cells/cell debris to maintain tissue homeostasis. In crustacean, phagocytosis by hemocyte has also been well-recognized as a crucial defense mechanism for the host against infectious agents such as bacteria and viruses. In this review, we summarized the current knowledge of hemocyte-mediated phagocytosis, in particular focusing on the related receptors for recognition and internalization of pathogens as well as the downstream signal pathways and intracellular regulators involved in the process of hemocyte phagocytosis. We attempted to gain a deeper understanding of the phagocytic mechanism of different hemocytes and their contribution to the host defense immunity in crustaceans.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Shu-Cheng Zheng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Yan-Lian Li
- Department of Life Science and Engineering, Jining University, Qufu, China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
33
|
He Z, Pan L, Zhang M, Zhang M, Huang F, Gao S. Metagenomic comparison of structure and function of microbial community between water, effluent and shrimp intestine of higher place
Litopenaeus vannamei
ponds. J Appl Microbiol 2020; 129:243-255. [DOI: 10.1111/jam.14610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Z. He
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - L. Pan
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - M. Zhang
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - M. Zhang
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - F. Huang
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - S. Gao
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| |
Collapse
|
34
|
Zhang X, Zhang M, Zheng H, Ye H, Zhang X, Li S. Source of hemolymph microbiota and their roles in the immune system of mud crab. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103470. [PMID: 31430486 DOI: 10.1016/j.dci.2019.103470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 05/28/2023]
Abstract
Special innate immune mechanisms against pathogens are developed in marine invertebrates such as mud crab, which is also an economically important aquaculture species in many coastal countries. Hemolymph is a critical site in host immune response, but its source of microorganisms is less known. In this study, we provided a detailed investigation of the microorganisms inhabiting various body sites of healthy mud crabs, including hemolymph, midgut, gill, subcuticular epidermis and hepatopancreas. By using fluorescence microscopy and high-throughput sequencing of the bacterial 16S rRNA genes, various abundances and kinds of microorganisms were observed in the healthy mud crabs, of which some are potential pathogens to mud crab and human. The SourceTracker analysis and oral injection experiment confirm the hypothesis that hemolymph microorganisms are derived from the digestive systems of invertebrates with open circulatory systems, indicating that these microorganisms play vital roles in crab immune response. Moreover, physiological differences (gut length), behavioral characteristics (foraging behavior), diet preferences (herbivory), and/or sex hormones (testosterone) possibly determine the unique features of the crab-associated microbiota for both sexes. These findings also contribute to the development of appropriate microbial immunoenhancers, which has potential applications for improving quality and yield during crab aquaculture.
Collapse
Affiliation(s)
- Xinxu Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology & Marine Biology Institute, Shantou University, Shantou, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology & Marine Biology Institute, Shantou University, Shantou, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University & Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| | - Xusheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology & Marine Biology Institute, Shantou University, Shantou, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology & Marine Biology Institute, Shantou University, Shantou, China.
| |
Collapse
|
35
|
Zhou L, Chen C, Xie J, Xu C, Zhao Q, Qin JG, Chen L, Li E. Intestinal bacterial signatures of the "cotton shrimp-like" disease explain the change of growth performance and immune responses in Pacific white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2019; 92:629-636. [PMID: 31265910 DOI: 10.1016/j.fsi.2019.06.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Imbalance of intestinal microbiota has been recognized in aquatic animals infected with various diseases. However, the signature of intestinal bacteria of the "cotton shrimp-like" disease in the Pacific white shrimp Litopenaeus vannamei remains unknown. This study investigates the composition, diversity, microbial-mediated function and interspecies interaction of intestinal microbiota on shrimp with different health status using 16S rRNA gene high-throughput sequencing. Meanwhile, the growth performance and the mRNA expression of innate immune gene in hepatopancreas were also investigated. The growth performance and the mRNA expression of innate immune genes (e.g., crustin, toll, and immune deficiency genes) in the hepatopancreas were significantly decreased in diseased shrimp compared with healthy shrimp. Bacteria of the family Rickettsiaceae and genus Tenacibaculum were exclusively enriched and significantly increased in diseased shrimp, respectively, whereas, the Actinobacteria class dramatically deceased. The diseased shrimp exhibited higher ACE and Chao1 indices and lower complexity of intestinal interspecies interaction than healthy shrimp. Microbial-mediated functions predicted by PICRUSt showed that 83% KEGG pathway including nutrient absorption and digestion significantly increased in diseased shrimp. This study provides an overview on the interplay among the "cotton shrimp-like" disease, intestinal microbiota, growth performance and host immune responses from an ecological perspective.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Chengzhuang Chen
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jia Xie
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Chang Xu
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Qun Zhao
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
36
|
Tao M, Zhou H, Luo K, Lu J, Zhang Y, Wang F. Quantitative serum proteomics analyses reveal shrimp responses against WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:89-92. [PMID: 30630002 DOI: 10.1016/j.dci.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
For the past decades, quantitative serum proteomics in mammals have been widely applied in biomarker screening. Various serum protein removal methods have been developed to effectively sequester serum abundant proteins. However, few methods have been found for the removal of arthropod serum abundant proteins. Here, gel filtration chromatography and ultracentrifugation methods were applied to remove hemocyanin from Litopeaneus vannamei serum. When shrimps were challenged with white spot syndrome virus (WSSV), a total of 486 serum proteins were identified using mass spectrometry, and 18 upregulated WSSV responsive proteins were identified with isobaric tags for relative and absolute quantification (iTRAQ). These results provide an effective method to remove hemocyanin from shrimp serum. With this method some previously unidentified WSSV responsive serum proteins were revealed, which would give us a better insight into the response of crustaceans to WSSV infection.
Collapse
Affiliation(s)
- Mengyuan Tao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Haoxian Zhou
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Kaiwen Luo
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Juan Lu
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
37
|
Fan L, Wang Z, Chen M, Qu Y, Li J, Zhou A, Xie S, Zeng F, Zou J. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1194-1204. [PMID: 30677886 DOI: 10.1016/j.scitotenv.2018.12.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Environmental microbiota plays important roles in the intestinal microbiota of aquatic animals. The Pacific white shrimp with high commercial value and euryhaline property has become the most important commercial species of shrimp in the world. However, the association between shrimp intestine and sediment at freshwater and marine cultured environment should be investigated to reveal the microbiota differences. In the present study, Miseq sequencing technology and bioinformatics were used to comprehensively compare the bacterial communities and all samples' V3-V4 regions of 16S rRNA gene were sequenced. Results showed that 55 phyla and 789 genera were identified due to the classifiable sequence. Sequencing data demonstrated statistically significant diverse microbiota compositions in the shrimp intestine and sediment at freshwater and marine cultured environment at the phylum and genus level. At the phylum level, the dominant phyla in all groups were Proteobacteria, Chloroflexi, Actinobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Acidobacteria, Verrucomicrobia, Saccharibacteria. Proteobacteria were the most abundant and largest phylum except in the intestine of marine cultured shrimp and Actinobacteria may be enriched in the shrimp intestine from sediment. At the genus level, nine out of the twelve dominant genera exhibited statistically significant differences among all groups. Moreover, Lactobacillus tend to be enriched in the freshwater cultured shrimp intestine, while Synechococcus and Vibrio extremely abundance in the marine cultured shrimp intestine. These results showed that the bacterial compositions are mostly the same in shrimp intestine and sediment, while with different relative abundances of the bacterial communities. In conclusion, this study may greatly enhance our understanding of the microbiota characteristics between shrimp and sediment. Moreover, it provided guidance for the healthy aquaculture at freshwater and marine cultured environment.
Collapse
Affiliation(s)
- Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, PR China.
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Miaoshan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuexin Qu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Junyi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Fang Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
38
|
Xiong J, Xuan L, Yu W, Zhu J, Qiu Q, Chen J. Spatiotemporal successions of shrimp gut microbial colonization: high consistency despite distinct species pool. Environ Microbiol 2019; 21:1383-1394. [PMID: 30828926 DOI: 10.1111/1462-2920.14578] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
Aquatic animals encounter suites of novel planktonic microbes during their development. Although hosts have been shown to exert strong selection on their gut microbiota from surrounding environment, to what extent and the generality that the gut microbiota and the underlying ecological processes are affected by biotic and abiotic variations are largely unclear. Here, these concerns were explored by coupling spatiotemporal data on gut and rearing water bacterial communities with environmental variables over shrimp life stages at spatially distant locations. Shrimp gut microbiotas significantly changed mirroring their development, as evidenced by gut bacterial signatures of shrimp life stage contributing 95.5% stratification accuracy. Shrimp sourced little (2.6%-15.8%) of their gut microbiota from their rearing water. This microbial resistance was reflected by weak compositional differences between shrimp farming spatially distinct locations where species pools were distinct. Consistently, the assembly of shrimp gut microbiota was not adequately explained by the rearing water variables and bacterial community, but rather by host-age-associated biotic features. The successions of shrimp gut microbiota were droved by replacement (βsim), rather than by nestedness (βnes), while those of bacterioplankton communities were equally governed by replacement and nestedness. Our study highlights how shrimp gut bacterial community assembly is coupled to their development, rearing species pool, and that the successional pattern of host-associated communities is differed from that of free-living bacteria.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Lixia Xuan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Weina Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| |
Collapse
|
39
|
Zhan S, Aweya JJ, Wang F, Yao D, Zhong M, Chen J, Li S, Zhang Y. Litopenaeus vannamei attenuates white spot syndrome virus replication by specific antiviral peptides generated from hemocyanin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:50-61. [PMID: 30339874 DOI: 10.1016/j.dci.2018.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 05/06/2023]
Abstract
Recent studies have shown that hemocyanin plays immune-related functions apart from its canonical respiratory function. While shrimp hemocyanin is found to generate antimicrobial peptides, antiviral related peptides have not been reported. In the present study, the serum of white spot syndrome virus (WSSV) infected Litopenaeus vannamei analyzed by two-dimensional gel electrophoresis, revealed 45 consistently down-regulated protein spots and 10 up-regulated protein spots. Five of the significantly up-regulated spots were identified as hemocyanin derived peptides. One of the five peptides, designated LvHcL48, was further characterized by analyzing its primary sequence via Edman N-terminal sequencing, C-terminal sequencing and amino acid sequence alignment. LvHcL48 was found to be a 79 amino acid fragment (aa584-662) from the C-terminal domain of L. vannamei hemocyanin protein (ADZ15149). Both in vivo and in vitro functional studies revealed that LvHcL48 has immunological activities, as recombinant LvHcL48 protein (rLvHcL48) significantly inhibited the transcription of the WSSV genes wsv069 and wsv421 coupled with a significant reduction in WSSV copy numbers. Further analysis showed that LvHcL48 could interact with the WSSV envelope protein 28 (VP28). Our present data therefore reveals the generation of an antiviral hemocyanin derived peptide LvHcL48 from WSSV infected shrimp, which binds to the envelope protein VP28 of WSSV.
Collapse
Affiliation(s)
- Shixiong Zhan
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Mingqi Zhong
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jiehui Chen
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
40
|
Dynamics of the gut microbiota in developmental stages of Litopenaeus vannamei reveal its association with body weight. Sci Rep 2019; 9:734. [PMID: 30679786 PMCID: PMC6345827 DOI: 10.1038/s41598-018-37042-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing evidences have revealed a close interaction between the intestinal microbes and host growth performance. The shrimp (Litopenaeus vannamei) gut harbors a diverse microbial community, yet its associations with dietary, body weight and weaning age remain a matter of debate. In this study, we analyzed the effects of different dietary (fishmeal group (NC), krill meal group (KM)) and different growth stages (age from 42 day-old to 98 day-old) of the shrimp on the intestinal microbiota. High throughput sequencing of the 16S rRNA genes of shrimp intestinal microbes determined the novelty of bacteria in the shrimp gut microbiota and a core of 58 Operation Taxonomic Units (OTUs) was present among the shrimp gut samples. Analysis results indicated that the development of the shrimp gut microbiota is a dynamic process with three stages across the age according to the gut microbiota compositions. Furthermore, the dietary of KM group did not significantly change the intestinal microbiota of the shrimps compared with NC group. Intriguingly, compared to NC group, we observed in KM group that a fluctuation of the shrimp gut microbiota coincided with the shrimp body weight gain between weeks 6–7. Six OTUs associated with the microbiota change in KM group were identified. This finding strongly suggests that the shrimp gut microbiota may be correlated with the shrimp body weight likely by influencing nutrient uptake in the gut. The results obtained from this study potentially will be guidelines for manipulation to provide novel shrimp feed management approaches.
Collapse
|
41
|
Yang P, Yao D, Aweya JJ, Wang F, Ning P, Li S, Ma H, Zhang Y. c-Jun regulates the promoter of small subunit hemocyanin gene of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 84:639-647. [PMID: 30366093 DOI: 10.1016/j.fsi.2018.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Hemocyanin (HMC) is a respiratory glycoprotein, which also plays multifunctional non-specific innate immune defense functions in shrimp. However, the transcriptional regulatory mechanisms of the hemocyanin gene expression have not been reported. In the present study, we cloned a 4324 bp fragment of small subunit hemocyanin (HMCs) gene of Litopenaeus vannamei including the 5'-flanking region, from upstream 2475 bp to downstream 1849 bp (exon 1-intron 1-exon 2) by genome walking method. Four deletion constructs were then generated and their promoter activity assessed using the luciferase reporter system. Interestingly, we identified an alternative promoter (+1516/+1849 bp) located in exon 2, which has stronger promoter activity than the full-length or the other constructs. Bioinformatics analyses revealed that the alternative promoter region contains two conserved binding sites of the transcription factor c-Jun. Mutational analysis and electrophoretic mobility shift assay showed that Litopenaeus vannamei c-Jun (Lvc-Jun) binds to the region +1582/+1589 bp and +1831/+1837 bp of the alternative promoter. Furthermore, overexpression of Lvc-Jun significantly increased the alternative promoter activity, while co-transfection with dsRNA-Lvc-Jun significantly reduced the alternative promoter activity of HMCs. Taken together, our present data indicate that the transcription factor Lvc-Jun is essential for the transcriptional regulation of the HMCs gene expression.
Collapse
Affiliation(s)
- Peikui Yang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Pei Ning
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
42
|
Alfiansah YR, Hassenrück C, Kunzmann A, Taslihan A, Harder J, Gärdes A. Bacterial Abundance and Community Composition in Pond Water From Shrimp Aquaculture Systems With Different Stocking Densities. Front Microbiol 2018; 9:2457. [PMID: 30405548 PMCID: PMC6200860 DOI: 10.3389/fmicb.2018.02457] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
In shrimp aquaculture, farming systems are carefully managed to avoid rearing failure due to stress, disease, or mass mortality, and to achieve optimum shrimp production. However, little is known about how shrimp farming systems affect biogeochemical parameters and bacterial communities in rearing water, whether high stocking densities (intensive system) will increase the abundance of pathogenic bacteria. In this study, we characterized bacterial communities in shrimp ponds with different population densities. Water quality, such as physical parameters, inorganic nutrient concentrations, and cultivable heterotrophic bacterial abundances, including potential pathogenic Vibrio, were determined in moderate density/semi-intensive (40 post-larvae m-3) and high density/intensive shrimp ponds (90 post-larvae m-3), over the shrimp cultivation time. Free-living and particle-attached bacterial communities were characterized by amplicon sequencing of the 16S rRNA gene. Suspended particulate matter (SPM), salinity, chlorophyll a, pH, and dissolved oxygen differed significantly between semi-intensive and intensive systems. These variations contrasted with the equal abundance of cultivable heterotrophic bacteria and inorganic nutrient concentrations. Bacterial communities were dominated by Gammaproteobacteria, Alphaproteobacteria, Flavobacteriia, Bacilli, and Actinobacteria. Halomonas and Psychrobacter were the most dominant genera in the particle-attached fractions, while Salegentibacter, Sulfitobacter, and Halomonas were found in the free-living fractions of both systems. Redundancy analysis indicated that among the observed environmental parameters, salinity was best suited to explain patterns in the composition of both free-living and particle-attached bacterial communities (R2: 15.32 and 12.81%, respectively), although a large fraction remained unexplained. Based on 16S rRNA gene sequences, aggregated particles from intensive ponds loaded a higher proportion of Vibrio than particles from semi-intensive ponds. In individual ponds, sequence proportions of Vibrio and Halomonas displayed an inverse relationship that coincided with changes in pH. Our observations suggest that high pH-values may suppress Vibrio populations and eventually pathogenic Vibrio. Our study showed that high-density shrimp ponds had a higher prevalence of Vibrio, increased amounts of SPM, and higher phytoplankton abundances. To avoid rearing failure, these parameters have to be managed carefully, for example by providing adequate feed, maintaining pH level, and removing organic matter deposits regularly.
Collapse
Affiliation(s)
- Yustian Rovi Alfiansah
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.,Laboratory of Marine Microbiology, Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia
| | | | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Arief Taslihan
- Balai Besar Pengembangan Budidaya Air Payau, Jepara, Indonesia
| | - Jens Harder
- Department of Microbiology, Max Planck Institute for Marine Microbiology (MPI), Bremen, Germany
| | - Astrid Gärdes
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| |
Collapse
|
43
|
Liu Z, Qiuqian L, Yao Z, Wang X, Huang L, Zheng J, Wang K, Li L, Zhang D. Effects of a Commercial Microbial Agent on the Bacterial Communities in Shrimp Culture System. Front Microbiol 2018; 9:2430. [PMID: 30364349 PMCID: PMC6193131 DOI: 10.3389/fmicb.2018.02430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/21/2018] [Indexed: 02/01/2023] Open
Abstract
Commercial microbial agents (e.g., probiotics, microbial products, microorganism preparation et al.) have been widely applied for disease control in shrimp culture. However, the effect of these microbial agents (MA) on shrimp health is unstable and the underlying mechanism remains unclear. The effect of MA can probably be achieved by influencing the bacterial community of shrimp culture system. To test this hypothesis, we used 16S rRNA gene amplicon sequencing to investigate the dynamics of both planktonic and intestinal bacterial composition in shrimp culture ponds with or without commercial MA applied weekly. The results showed that MA application increased the temporal turnover rate of bacterioplankton community. Within 1 week, MA-treatment significantly drove bacterioplankton community composition to divert from that without MA-treatment at day 2 after MA application, but the deviation tended to vanish at days 4 and 7. At day 21, a significant difference was observed in shrimp intestinal bacterial community between two groups. The relative abundance of Rhodobacteraceae in shrimp intestine was significantly greater in the MA-treated group than that in the control. However, MA-treatment did not significantly improve the growth or survival ratio of shrimp. This study suggest that MA works in terms of accelerating bacterioplankton community turnover and shifting intestinal bacterial community, however, its effect on shrimp growth might vary greatly and might be improved by optimizing the method in activation and application and more investigation on the microbial ecological process of shrimp culture system is needed before we develop and apply probiotics more efficiently.
Collapse
Affiliation(s)
- Zidan Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Linglin Qiuqian
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Zhiyuan Yao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Xin Wang
- Medical School, Ningbo University, Ningbo, China
| | - Lei Huang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Jialai Zheng
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Kai Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Laiguo Li
- Chunlin Aquaculture Company, Ningbo, China
| | - Demin Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
44
|
Yu W, Wu JH, Zhang J, Yang W, Chen J, Xiong J. A meta-analysis reveals universal gut bacterial signatures for diagnosing the incidence of shrimp disease. FEMS Microbiol Ecol 2018; 94:5066164. [PMID: 30124839 DOI: 10.1093/femsec/fiy147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence indicates that dysbiosis in the gut microbiota contributes to disease pathogenesis. However, whether certain taxa are universally indicative of diverse shrimp diseases is unclear thus far. We conducted a meta-analysis to explore the divergences in gut microbiota between healthy and diseased shrimp. The gut bacterial communities of healthy shrimp varied significantly (P < 0.05 in each comparison) over ontogenetic stages, and were distinct from the corresponding diseased cohorts at each life stage. Both phylogenetic-based mean nearest taxon distance analysis and multivariate dispersion testing revealed that shrimp disease weakened the relative importance of deterministic processes in governing the gut microbiota. Partitioning beta diversity analysis indicated that temporal turnover governed the gut microbiota as healthy shrimp aged, whereas this trend was retarded in disease cohorts, concurrent with an increased nestedness. After ruling out the age-discriminatory and disease-specific orders, a high diagnosed accuracy (85.9%) of shrimp health status was achieved by using the profiles of the 11 universal disease-discriminatory orders as independent variables. These findings improve current understanding of how disease alters the ecological processes that govern the shrimp gut microbiota assembly, and exemplifies the potential application of universal bacterial signatures to diagnose the incidence of diverse shrimp diseases, irrespective of causal pathogens.
Collapse
Affiliation(s)
- Weina Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan (ROC)
| | - Jinjie Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
45
|
Dai WF, Zhang JJ, Qiu QF, Chen J, Yang W, Ni S, Xiong JB. Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities. FISH & SHELLFISH IMMUNOLOGY 2018; 80:191-199. [PMID: 29803665 DOI: 10.1016/j.fsi.2018.05.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Aquatic animals are frequently suffered from starvation due to restricted food availability or deprivation. It is currently known that gut microbiota assists host in nutrient acquisition. Thus, exploring the gut microbiota responses would improve our understanding on physiological adaptation to starvation. To achieve this, we investigated how the gut microbiota and shrimp digestion and immune activities were affected under starvation stress. The results showed that the measured digestion activities in starved shrimp were significantly lower than in normal cohorts; while the measured immune activities exhibited an opposite trend. A structural equation modeling (SEM) revealed that changes in the gut bacterial community were directly related to digestive and immune enzyme activities, which in turn markedly affected shrimp growth traits. Notably, several gut bacterial indicators that characterized the shrimp nutrient status were identified, with more abundant opportunistic pathogens in starved shrimp, although there were no statistical differences in the overall diversity and the structures of gut bacterial communities between starved and normal shrimp. Starved shrimp exhibited less connected and cooperative interspecies interaction as compared with normal cohorts. Additionally, the functional pathways involved in carbohydrate and protein digestion, glycan biosynthesis, lipid and enzyme metabolism remarkably decreased in starved shrimp. These attenuations could increase the susceptibility of starved shrimp to pathogens infection. In summary, this study provides novel insights into the interplay among shrimp digestion, immune activities and gut microbiota in response to starvation stress.
Collapse
Affiliation(s)
- Wen-Fang Dai
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Jin-Jie Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qiong-Fen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Sui Ni
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jin-Bo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China.
| |
Collapse
|
46
|
Xiong J, Dai W, Qiu Q, Zhu J, Yang W, Li C. Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Mol Ecol 2018; 27:3686-3699. [PMID: 30070062 DOI: 10.1111/mec.14822] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
Abstract
The host-associated microbiota is increasingly recognized to facilitate host fitness, but the understanding of the underlying ecological processes that govern the host-bacterial colonization over development and, particularly, under disease remains scarce. Here, we tracked the gut microbiota of shrimp over developmental stages and in response to disease. The stage-specific gut microbiotas contributed parallel changes to the predicted functions, while shrimp disease decoupled this intimate association. After ruling out the age-discriminatory taxa, we identified key features indicative of shrimp health status. Structural equation modelling revealed that variations in rearing water led to significant changes in bacterioplankton communities, which subsequently affected the shrimp gut microbiota. However, shrimp gut microbiotas are not directly mirrored by the changes in rearing bacterioplankton communities. A neutral model analysis showed that the stochastic processes that govern gut microbiota tended to become more important as healthy shrimp aged, with 37.5% stochasticity in larvae linearly increasing to 60.4% in adults. However, this defined trend was skewed when disease occurred. This departure was attributed to the uncontrolled growth of two candidate pathogens (over-represented taxa). The co-occurrence patterns provided novel clues on how the gut commensals interact with candidate pathogens in sustaining shrimp health. Collectively, these findings offer updated insight into the ecological processes that govern the host-bacterial colonization in shrimp and provide a pathological understanding of polymicrobial infections.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Wenfang Dai
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| |
Collapse
|
47
|
Pilotto MR, Goncalves ANA, Vieira FN, Seifert WQ, Bachère E, Rosa RD, Perazzolo LM. Exploring the Impact of the Biofloc Rearing System and an Oral WSSV Challenge on the Intestinal Bacteriome of Litopenaeus vannamei. Microorganisms 2018; 6:microorganisms6030083. [PMID: 30096796 PMCID: PMC6164277 DOI: 10.3390/microorganisms6030083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022] Open
Abstract
We provide a global overview of the intestinal bacteriome of Litopenaeus vannamei in two rearing systems and after an oral challenge by the White spot syndrome virus (WSSV). By using a high-throughput 16S rRNA gene sequencing technology, we identified and compared the composition and abundance of bacterial communities from the midgut of shrimp reared in the super-intensive biofloc technology (BFT) and clear seawater system (CWS). The predominant bacterial group belonged to the phylum Proteobacteria, followed by the phyla Bacteroidetes, Actinobacteria, and Firmicutes. Within Proteobacteria, the family Vibrionaceae, which includes opportunistic shrimp pathogens, was more abundant in CWS than in BFT-reared shrimp. Whereas the families Rhodobacteraceae and Enterobacteriaceae accounted for almost 20% of the bacterial communities of shrimp cultured in BFT, they corresponded to less than 3% in CWS-reared animals. Interestingly, the WSSV challenge dramatically changed the bacterial communities in terms of composition and abundance in comparison to its related unchallenged group. Proteobacteria remained the dominant phylum. Vibrionaceae was the most affected in BFT-reared shrimp (from 11.35 to 20.80%). By contrast, in CWS-reared animals the abundance of this family decreased from 68.23 to 23.38%. Our results provide new evidence on the influence of both abiotic and biotic factors on the gut bacteriome of aquatic species of commercial interest.
Collapse
Affiliation(s)
- Mariana R Pilotto
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - André N A Goncalves
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Felipe N Vieira
- Laboratory of Marine Shrimp, Department of Aquaculture, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Walter Q Seifert
- Laboratory of Marine Shrimp, Department of Aquaculture, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interactions-Hosts-Pathogens-Environment, UPVD, CNRS, Université de Montpellier, 34095 Montpellier, France.
| | - Rafael D Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Luciane M Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
48
|
Yang W, Zheng C, Zheng Z, Wei Y, Lu K, Zhu J. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:366-374. [PMID: 29574319 DOI: 10.1016/j.ecoenv.2018.03.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/26/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Intensive shrimp farming is generally accompanied by nutrient enrichment and gradual eutrophication, which impose major threats to shrimp culture ecosystems. However, little is known about how the bacterioplankton community in a rearing environment responds to increased eutrophication during shrimp culture processes. In this study, we used the MiSeq sequencing technique to explore the impacts of nutrient enrichment on the assembly and stability of the bacterioplankton community. Our results showed that magnitudes of the changes in the bacterioplankton community compositions (BCCs) and diversity were closely associated with eutrophication level. Moreover, a phylogenetic-based mean nearest taxon distance (MNTD) analysis revealed that increased eutrophication significantly (P < 0.01) changed the bacterioplankton ecological processes from deterministic to stochastic. A structural equation model showed that eutrophication indicators affected the BCCs either directly by controlling resources or indirectly by modifying other environmental variables of the shrimp ponds in complex pathways. Furthermore, association network comparisons revealed that nutrient enrichment increased the complexity of interspecies interactions and the proportion of cooperative interactions and decreased the proportion of generalists, which suggest that nutrient enrichment destroyed the community stability. These findings suggest that minimizing nutrient pollution, especially at the end of cultivation, could be an important management tool for establishing a microbially mature water system.
Collapse
Affiliation(s)
- Wen Yang
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Cheng Zheng
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Zhongming Zheng
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yiming Wei
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Kaihong Lu
- School of Marine Science, Ningbo University, Ningbo 315211, China; Ningbo Ocean & Fishery Bureau, Ningbo 315010, China
| | - Jinyong Zhu
- School of Marine Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
49
|
Huang F, Pan L, Song M, Tian C, Gao S. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health. Appl Microbiol Biotechnol 2018; 102:8585-8598. [PMID: 30039332 DOI: 10.1007/s00253-018-9229-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Microorganisms play crucial roles in nutrient cycling, water quality maintenance, and farmed animal health. Increasing evidences have revealed a close association between unstable microbial environments and disease occurrences in aquaculture. Thereupon, we used high-throughput sequencing technology to comprehensively compare the bacterial communities of water, sediment, and intestine in mariculture ponds at the middle and late stages of Litopenaeus vannamei farming and analyzed whether changes of their microbiota assemblages were associated with environmental factors and shrimp physiological health. Results showed that bacterial community structures were significantly distinct among water, sediment, and intestine; meanwhile, the relative abundances of intestinal dominant taxa were significantly changed between different rearing stages. Compared with intestine and water, shrimp intestine and sediment had a similar profile of the dominant bacterial genera by cluster analysis, and the observed species, diversity indexes, and shared OTUs of bacterial communities in intestine and sediment were simultaneously increased after shrimp were farmed for 90 days. These results reflected a closer relationship between microbiotas in sediment and intestine, which was further proved by nonmetric multidimensional scaling analysis. However, bacterial communities in water, sediment, and intestine responded differently to environmental variables by redundancy and correlation analysis. More importantly, shrimp physiological parameters were closely associated with bacterial variations in the gut and/or ambient, especially the gut microbiota owning significantly high levels of predicted functional pathways involved in disease emergence. These findings may greatly add to our understanding of the microbiota characteristics of the shrimp pond ecosystem and the complex interactions among shrimp, ambient microflora, and environmental variables.
Collapse
Affiliation(s)
- Fei Huang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, China. .,Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, China.
| | - Mengsi Song
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, China
| | - Changcheng Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, China
| | - Shuo Gao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, China
| |
Collapse
|
50
|
Xiong J. Progress in the gut microbiota in exploring shrimp disease pathogenesis and incidence. Appl Microbiol Biotechnol 2018; 102:7343-7350. [PMID: 29982924 DOI: 10.1007/s00253-018-9199-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
It is now recognized that gut microbiota contributes indispensable roles in safeguarding host health. Shrimp is being threatened by newly emerging diseases globally; thus, understanding the driving factors that govern its gut microbiota would facilitate an initial step to reestablish and maintain a "healthy" gut microbiota. This review summarizes the factors that assemble the shrimp gut microbiota, which focuses on the current progresses of knowledge linking the gut microbiota and shrimp health status. In particular, I propose the exploration of shrimp disease pathogenesis and incidence based on the interplay between dysbiosis in the gut microbiota and disease severity. An updated research on shrimp disease toward an ecological perspective is discussed, including host-bacterial colonization, identification of polymicrobial pathogens and diagnosing disease incidence. Further, a simple conceptual model is offered to summarize the interplay among the gut microbiota, external factors, and shrimp disease. Finally, based on the review, current limitations are raised and future studies directed at solving these concerns are proposed. This review is timely given the increased interest in the role of gut microbiota in disease pathogenesis and the advent of novel diagnosis strategies.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|