1
|
Xie T, Xu J, Hu W, Shan S, Gao H, Shen J, Chen X, Jia Y, Gao X, Huang J, Zhang H, Cheng J. OsAAH confers salt tolerance in rice seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1954-1968. [PMID: 39436860 DOI: 10.1111/tpj.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Soil salinization is becoming a great threat that reduces crop productivity worldwide. In this study, we found that rice allantoate amidohydrolase (OsAAH) expression was significantly upregulated by salt stress, and its overexpression conferred salt tolerance at the seedling stage. Compared to wild type (WT), the contents of ureides (allantoin and allantoate) were significantly increased in Osaah mutants and reduced in OsAAH overexpression lines both before and after salt treatments. Exogenous allantoin significantly promoted salt tolerance in OsAAH overexpression, but not in Osaah mutants. Subcellular localization showed that OsAAH was also localized to the peroxisomes in addition to the previously reported endoplasmic reticulum (ER). The differential expression of peroxisome-related genes was identified between Osaah mutants and WT. Furthermore, the contents of H2O2 and malondialdehyde (MDA) were significantly accumulated in Osaah mutants and reduced in OsAAH overexpression lines. The activities of antioxidant enzymes were significantly reduced in Osaah mutants and enhanced in OsAAH overexpression under NaCl treatment. The transcription factor OsABI5 could directly bind to OsAAH promoter and activate OsAAH expression. Our findings reveal that OsAAH could be induced by salt stress through the activation of OsABI5 and then confer salt tolerance by enhancing the scavenging capacity of reactive oxygen species (ROS), which contributes to rice breeding in salt tolerance.
Collapse
Affiliation(s)
- Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangyu Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenling Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Silvtu Shan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoming Gao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaxin Shen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanxiao Jia
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuying Gao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Basu S, Kumar G. Regulation of nitro-oxidative homeostasis: an effective approach to enhance salinity tolerance in plants. PLANT CELL REPORTS 2024; 43:193. [PMID: 39008125 DOI: 10.1007/s00299-024-03275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India.
| |
Collapse
|
3
|
Giannelli G, Mattarozzi M, Gentili S, Fragni R, Maccari C, Andreoli R, Visioli G. A novel PGPR strain homologous to Beijerinckia fluminensis induces biochemical and molecular changes involved in Arabidopsis thaliana salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108187. [PMID: 38100889 DOI: 10.1016/j.plaphy.2023.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
The use of PGPR is widely accepted as a promising tool for a more sustainable agricultural production and improved plant abiotic stress resistance. This study tested the ability of PVr_9, a novel bacterial strain, homologous to Beijerinckia fluminensis, to increase salt stress tolerance in A. thaliana. In vitro plantlets inoculated with PVr_9 and treated with 150 mM NaCl showed a reduction in primary root growth inhibition compared to uninoculated ones, and a leaf area significantly less affected by salt. Furthermore, salt-stressed PVr_9-inoculated plants had low ROS and 8-oxo-dG, osmolytes, and ABA content along with a modulation in antioxidant enzymatic activities. A significant decrease in Na+ in the leaves and a corresponding increase in the roots were also observed in salt-stressed inoculated plants. SOS1, NHX1 genes involved in plant salt tolerance, were up-regulated in PVr_9-inoculated plants, while different MYB genes involved in salt stress signal response were down-regulated in both roots and shoots. Thus, PVr_9 was able to increase salt tolerance in A. thaliana, thereby suggesting a role in ion homeostasis by reducing salt stress rather than inhibiting total Na+ uptake. These results showed a possible molecular mechanism of crosstalk between PVr_9 and plant roots to enhance salt tolerance, and highlighted this bacterium as a promising PGPR for field applications on agronomical crops.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Silvia Gentili
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosaria Fragni
- SSICA, Experimental Station for the Food Preserving Industry, Parma, Italy
| | - Chiara Maccari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Andreoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
4
|
Singh A, Rajput VD, Sharma R, Ghazaryan K, Minkina T. Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. ENVIRONMENTAL RESEARCH 2023; 235:116585. [PMID: 37437867 DOI: 10.1016/j.envres.2023.116585] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Salinized land is slowly spreading across the world. Reduced crop yields and quality due to salt stress threaten the ability to feed a growing population. We discussed the mechanisms behind nano-enabled antioxidant enzyme-mediated plant tolerance, such as maintaining reactive oxygen species (ROS) homeostasis, enhancing the capacity of plants to retain K+ and eliminate Na+, increasing the production of nitric oxide, involving signaling pathways, and lowering lipoxygenase activities to lessen oxidative damage to membranes. Frequently used techniques were highlighted like protecting cells from oxidative stress and keeping balance in ionic state. Salt tolerance in plants enabled by nanotechnology is also discussed, along with the potential role of physiobiochemical and molecular mechanisms. As a whole, the goal of this review is meant to aid researchers in fields as diverse as plant science and nanoscience in better-comprehending potential with novel solutions to addressing salinity issues for sustainable agriculture.
Collapse
Affiliation(s)
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | | | | | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
5
|
Mishra N, Jiang C, Chen L, Paul A, Chatterjee A, Shen G. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1110622. [PMID: 37332720 PMCID: PMC10272748 DOI: 10.3389/fpls.2023.1110622] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Climate change has increased the overall impact of abiotic stress conditions such as drought, salinity, and extreme temperatures on plants. Abiotic stress adversely affects the growth, development, crop yield, and productivity of plants. When plants are subjected to various environmental stress conditions, the balance between the production of reactive oxygen species and its detoxification through antioxidant mechanisms is disturbed. The extent of disturbance depends on the severity, intensity, and duration of abiotic stress. The equilibrium between the production and elimination of reactive oxygen species is maintained due to both enzymatic and non-enzymatic antioxidative defense mechanisms. Non-enzymatic antioxidants include both lipid-soluble (α-tocopherol and β-carotene) and water-soluble (glutathione, ascorbate, etc.) antioxidants. Ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) are major enzymatic antioxidants that are essential for ROS homeostasis. In this review, we intend to discuss various antioxidative defense approaches used to improve abiotic stress tolerance in plants and the mechanism of action of the genes or enzymes involved.
Collapse
Affiliation(s)
- Neelam Mishra
- Department of Botany, St. Joseph’s University, Bangalore, KA, India
| | - Chenkai Jiang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lin Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | | | | | - Guoxin Shen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Usman B, Derakhshani B, Jung KH. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2019. [PMID: 37653936 PMCID: PMC10221523 DOI: 10.3390/plants12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Rice is an important staple food crop for over half of the world's population. However, abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe, healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of rice plants in response to different stresses can provide an important theoretical basis for breeding rice varieties with higher stress resistance. This review presents the molecular mechanisms and the effects of various abiotic stresses on rice growth and development and explains the signal perception mode and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors in regulating gene expression and important downstream factors in coordinating stress tolerance are outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules and sustainable rice production.
Collapse
Affiliation(s)
- Babar Usman
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Behnam Derakhshani
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Ki-Hong Jung
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
- Research Center for Plant Plasticity, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
7
|
Functional Characterization of Sugar Beet M14 Antioxidant Enzymes in Plant Salt Stress Tolerance. Antioxidants (Basel) 2022; 12:antiox12010057. [PMID: 36670918 PMCID: PMC9854869 DOI: 10.3390/antiox12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Salt stress can cause cellular dehydration, which induces oxidative stress by increasing the production of reactive oxygen species (ROS) in plants. They may play signaling roles and cause structural damages to the cells. To overcome the negative impacts, the plant ROS scavenging system plays a vital role in maintaining the cellular redox homeostasis. The special sugar beet apomictic monosomic additional M14 line (BvM14) showed strong salt stress tolerance. Comparative proteomics revealed that six antioxidant enzymes (glycolate oxidase (GOX), peroxiredoxin (PrxR), thioredoxin (Trx), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase3 (DHAR3)) in BvM14 were responsive to salt stress. In this work, the full-length cDNAs of genes encoding these enzymes in the redox system were cloned from the BvM14. Ectopic expression of the six genes reduced the oxidative damage of transgenic plants by regulating the contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), ascorbic acid (AsA), and glutathione (GSH), and thus enhanced the tolerance of transgenic plants to salt stress. This work has charecterized the roles that the antioxidant enzymes play in the BvM14 response to salt stress and provided useful genetic resources for engineering and marker-based breeding of crops that are sensitive to salt stress.
Collapse
|
8
|
Wang Z, Sun J, Zu X, Gong J, Deng H, Hang R, Zhang X, Liu C, Deng X, Luo L, Wei X, Song X, Cao X. Pseudouridylation of chloroplast ribosomal RNA contributes to low temperature acclimation in rice. THE NEW PHYTOLOGIST 2022; 236:1708-1720. [PMID: 36093745 DOI: 10.1111/nph.18479] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ribosomal RNAs (rRNAs) undergo many modifications during transcription and maturation; homeostasis of rRNA modifications is essential for chloroplast biogenesis in plants. The chloroplast acts as a hub to sense environmental signals, such as cold temperature. However, how RNA modifications contribute to low temperature responses remains unknown. Here we reveal that pseudouridine (Ψ) modification of rice chloroplast rRNAs mediated by the pseudouridine synthase (OsPUS1) contributes to cold tolerance at seedling stage. Loss-function of OsPUS1 leads to abnormal chloroplast development and albino seedling phenotype at low temperature. We find that OsPUS1 is accumulated upon cold and binds to chloroplast precursor rRNAs (pre-rRNAs) to catalyse the pseudouridylation on rRNA. These modifications on chloroplast rRNAs could be required for their processing, as the reduction of mature chloroplast rRNAs and accumulation of pre-rRNAs are observed in ospus1-1 at low temperature. Therefore, the ribosome activity and translation in chloroplasts is disturbed in ospus1-1. Furthermore, transcriptome and translatome analysis reveals that OsPUS1 balances growth and stress-responsive state, preventing excess reactive oxygen species accumulation. Taken together, our findings unveil a crucial function of Ψ in chloroplast ribosome biogenesis and cold tolerance in rice, with potential applications in crop improvement.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Zu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Gong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hongjing Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
9
|
Li S, Liu S, Zhang Q, Cui M, Zhao M, Li N, Wang S, Wu R, Zhang L, Cao Y, Wang L. The interaction of ABA and ROS in plant growth and stress resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:1050132. [PMID: 36507454 PMCID: PMC9729957 DOI: 10.3389/fpls.2022.1050132] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
The plant hormone ABA (abscisic acid) plays an extremely important role in plant growth and adaptive stress, including but are not limited to seed germination, stomatal closure, pathogen infection, drought and cold stresses. Reactive oxygen species (ROS) are response molecules widely produced by plant cells under biotic and abiotic stress conditions. The production of apoplast ROS is induced and regulated by ABA, and participates in the ABA signaling pathway and its regulated plant immune system. In this review, we summarize ABA and ROS in apoplast ROS production, plant response to biotic and abiotic stresses, plant growth regulation, ABA signal transduction, and the regulatory relationship between ABA and other plant hormones. In addition, we also discuss the effects of protein post-translational modifications on ABA and ROS related factors.
Collapse
Affiliation(s)
- Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Qiong Zhang
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Meixiang Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Nanyang Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Suna Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunpeng Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
10
|
Wu Y, Liu H, Bing J, Zhang G. Integrative transcriptomic and TMT-based proteomic analysis reveals the mechanism by which AtENO2 affects seed germination under salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1035750. [PMID: 36340336 PMCID: PMC9634073 DOI: 10.3389/fpls.2022.1035750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Seed germination is critical for plant survival and agricultural production and is affected by many cues, including internal factors and external environmental conditions. As a key enzyme in glycolysis, enolase 2 (ENO2) also plays a vital role in plant growth and abiotic stress responses. In our research, we found that the seed germination rate was lower in the AtENO2 mutation (eno2- ) than in the wild type (WT) under salt stress in Arabidopsis thaliana, while there was no significant difference under normal conditions. However, the mechanisms by which AtENO2 regulates seed germination under salt stress remain limited. In the current study, transcriptome and proteome analyses were used to compare eno2- and the WT under normal and salt stress conditions at the germination stage. There were 417 and 4442 differentially expressed genes (DEGs) identified by transcriptome, and 302 and 1929 differentially expressed proteins (DEPs) qualified by proteome under normal and salt stress conditions, respectively. The combined analysis found abundant DEGs and DEPs related to stresses and hydrogen peroxide removal were highly down-regulated in eno2- . In addition, several DEGs and DEPs encoding phytohormone transduction pathways were identified, and the DEGs and DEPs related to ABA signaling were relatively greatly up-regulated in eno2- . Moreover, we constructed an interactive network and further identified GAPA1 and GAPB that could interact with AtENO2, which may explain the function of AtENO2 under salt stress during seed germination. Together, our results reveal that under salt stress, AtENO2 mainly affects the expression of genes and proteins related to the phytohormone signal transduction pathways, stress response factors, and reactive oxygen species (ROS), and then affects seed germination. Our study lays the foundation for further exploration of the molecular function of AtENO2 under salt stress at the seed germination stage in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | | | - Jie Bing
- *Correspondence: Genfa Zhang, ; Jie Bing,
| | | |
Collapse
|
11
|
Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol Genet Eng Rev 2022:1-37. [PMID: 36254096 DOI: 10.1080/02648725.2022.2131958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. RamManohar Lohia Avadh University, Ayodhya, India
| | - Rajesh Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Deeksha Krishna
- College of agriculture, Fisheries and Forestry, Fiji National University, Fiji
| | - Sushil K Singh
- Department of Agri-Business, V.B.S. Purvanchal University, Jaunpur, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Khan MS, Hemalatha S. Autophagy and Programmed Cell Death Are Critical Pathways in Jasmonic Acid Mediated Saline Stress Tolerance in Oryza sativa. Appl Biochem Biotechnol 2022; 194:5353-5366. [PMID: 35771304 DOI: 10.1007/s12010-022-04032-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Saline stress is the most limiting condition impacting the plant growth, development, and productivity. In this present study, jasmonic acid (JA) was used as a foliar spray on the rice seedlings grown under saline stress. Increase in photosynthetic pigments, anthocyanin, and total protein content was observed with JA treatment while NaCl showed reduction in biochemical constituents and enhanced antioxidant enzyme activity. The leaf cells of NaCl-treated seedlings accumulated more ROS and had more fragmented nuclei, whereas JA decreased the accumulation and fragmentation during saline stress. In NaCl treatment, gene expression analysis showed many fold upregulation in comparison with other treatments. The results suggest that JA acts as a promoter for growth, physiological, biochemical, and cellular contents, as well as ameliorate the effects of saline stress. The expression of genes demonstrated that saline stress may promote autophagy, which leads to autophagic cell death, and improve tolerance to saline stress in rice seedlings via the jasmonic acid signaling pathway. However, the mechanism by which jasmonate signaling induces autophagy and cell death is unknown and requires further exploration.
Collapse
Affiliation(s)
- Mohd Shahanbaj Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, TN, India
| | - S Hemalatha
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, TN, India.
| |
Collapse
|
13
|
Song C, Zhang Y, Chen R, Zhu F, Wei P, Pan H, Chen C, Dai J. Label-Free Quantitative Proteomics Unravel the Impacts of Salt Stress on Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:874579. [PMID: 35646023 PMCID: PMC9134114 DOI: 10.3389/fpls.2022.874579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/27/2022] [Indexed: 05/12/2023]
Abstract
Salt stress is a constraint on crop growth and productivity. When exposed to high salt stress, metabolic abnormalities that disrupt reactive oxygen species (ROS) homeostasis result in massive oxygen radical deposition. Dendrobium huoshanense is a perennial orchid herb that thrives in semi-shade conditions. Although lots of studies have been undertaken on abiotic stresses (high temperature, chilling, drought, etc.) of model plants, few studies were reported on the mechanism of salt stress in D. huoshanense. Using a label-free protein quantification method, a total of 2,002 differential expressed proteins were identified in D. huoshanense. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that proteins involved in vitamin B6 metabolism, photosynthesis, spliceosome, arginine biosynthesis, oxidative phosphorylation, and MAPK signaling were considerably enriched. Remarkably, six malate dehydrogenases (MDHs) were identified from deferentially expressed proteins. (NAD+)-dependent MDH may directly participate in the biosynthesis of malate in the nocturnal crassulacean acid metabolism (CAM) pathway. Additionally, peroxidases such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as antioxidant enzymes involved in glutathione biosynthesis and some vitamins biosynthesis were also identified. Taken together, these results provide a solid foundation for the investigation of the mechanism of salt stress in Dendrobium spp.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Yunpeng Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Peipei Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Jun Dai
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| |
Collapse
|
14
|
Zhou J, Qiao J, Wang J, Quan R, Huang R, Qin H. OsQHB Improves Salt Tolerance by Scavenging Reactive Oxygen Species in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:848891. [PMID: 35599895 PMCID: PMC9115556 DOI: 10.3389/fpls.2022.848891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a major environmental stress that restricts the growth and yield of crops. Mining the key genes involved in the balance of rice salt tolerance and yield will be extremely important for us to cultivate salt-tolerance rice varieties. In this study, we report a WUSCHEL-related homeobox (WOX) gene, quiescent-center-specific homeobox (OsQHB), positively regulates yield-related traits and negatively regulates salt tolerance in rice. Mutation in OsQHB led to a decrease in plant height, tiller number, panicle length, grain length and grain width, and an increase in salt tolerance. Transcriptome and qPCR analysis showed that reactive oxygen species (ROS) scavenging-related genes were regulated by OsQHB. Moreover, the osqhb mutants have higher ROS-scavenging enzymes activities and lower accumulation of ROS and malondialdehyde (MDA) under salt stress. Thus, our findings provide new insights into the role of rice WOX gene family in rice development and salt tolerance, and suggest that OsQHB is a valuable target for improving rice production in environments characterized by salt stress.
Collapse
Affiliation(s)
- Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinzhu Qiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| |
Collapse
|
15
|
Nefissi Ouertani R, Arasappan D, Ruhlman TA, Ben Chikha M, Abid G, Mejri S, Ghorbel A, Jansen RK. Effects of Salt Stress on Transcriptional and Physiological Responses in Barley Leaves with Contrasting Salt Tolerance. Int J Mol Sci 2022; 23:5006. [PMID: 35563398 PMCID: PMC9103072 DOI: 10.3390/ijms23095006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Salt stress negatively impacts crop production worldwide. Genetic diversity among barley (Hordeum vulgare) landraces adapted to adverse conditions should provide a valuable reservoir of tolerance genes for breeding programs. To identify molecular and biochemical differences between barley genotypes, transcriptomic and antioxidant enzyme profiles along with several morpho-physiological features were compared between salt-tolerant (Boulifa) and salt-sensitive (Testour) genotypes subjected to salt stress. Decreases in biomass, photosynthetic parameters, and relative water content were low in Boulifa compared to Testour. Boulifa had better antioxidant protection against salt stress than Testour, with greater antioxidant enzymes activities including catalase, superoxide dismutase, and guaiacol peroxidase. Transcriptome assembly for both genotypes revealed greater accumulation of differentially expressed transcripts in Testour compared to Boulifa, emphasizing the elevated transcriptional response in Testour following salt exposure. Various salt-responsive genes, including the antioxidant catalase 3, the osmoprotectant betaine aldehyde dehydrogenase 2, and the transcription factors MYB20 and MYB41, were induced only in Boulifa. By contrast, several genes associated with photosystems I and II, and light receptor chlorophylls A and B, were more repressed in Testour. Co-expression network analysis identified specific gene modules correlating with differences in genotypes and morpho-physiological traits. Overall, salinity-induced differential transcript accumulation underlies the differential morpho-physiological response in both genotypes and could be important for breeding salt tolerance in barley.
Collapse
Affiliation(s)
- Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX 78712, USA;
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
| | - Mariem Ben Chikha
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia;
| | - Samiha Mejri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Verma D, Upadhyay SK, Singh K. Characterization of APX and APX-R gene family in Brassica juncea and B. rapa for tolerance against abiotic stresses. PLANT CELL REPORTS 2022; 41:571-592. [PMID: 34115169 DOI: 10.1007/s00299-021-02726-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
APX and APX-R gene families were identified and characterized in two important oilseed species of Brassica. Gene expression under abiotic stress conditions, recombinant protein expression, and analysis further divulged their drought, heat, and salt-responsive behavior. Ascorbate peroxidases (APX) are heme-dependent enzymes that rid the cells of H2O2 and regulate diverse biological processes. In the present study, we performed APX gene family characterization in two Brassica sp. (B. juncea and B. rapa) as these are commercially important oilseed crops and affected severely by abiotic stresses. We identified 16 BjuAPX and 9 BraAPX genes and 2 APX-R genes each in B. juncea and B. rapa genomes, respectively. Phylogenetic analysis divided the APX genes into five distinct clades, which exhibited conservation in the gene structure, motif organization, and sub-cellular location within the clade. Structural analysis of APX and APX-R proteins revealed the amino acid substitutions in conserved domains of APX-R proteins. The expression profiling of BjuAPX and BraAPX genes showed that 3 BjuAPX, 7BraAPX, and 2 BraAPX-R genes were drought and heat responsive. Notably, BjuAAPX1a, BjuAPX1d, BjuAAPX6, BraAAPX1a, BraAAPX2, and BraAAPX3b showed high expression levels in RT-qPCR. Cis-regulatory elements in APX and APX-R gene promoters supported the differential behavior of these genes. Further, two stress-responsive genes BjuAPX1d and BraAAPX2 were cloned, characterized, and their roles were validated under heat, drought, salt, and cold stress in bacterial expression system. This study for the first time reports the presence of APX activity in dimeric and LMW form of purified BraAAPX2 protein. The study may help pave way for developing abiotic stress-tolerant Brassica crops.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | | | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Shah FA, Ni J, Tang C, Chen X, Kan W, Wu L. Karrikinolide alleviates salt stress in wheat by regulating the redox and K +/Na + homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:921-933. [PMID: 34555666 DOI: 10.1016/j.plaphy.2021.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Karrikinolide (KAR1), identified in biochars, has gained research attention because of its significant role in seed germination, seedling development, root development, and abiotic stresses. However, KAR1 regulation of salt stress in wheat is elusive. This study investigated the physiological mechanism involved in KAR1 alleviation of salt stress in wheat. The results showed KAR1 boosted seed germination percentage under salinity stress via stimulating the relative expression of genes regulating gibberellins biosynthesis and decreasing the expression levels of abscisic acid biosynthesis and signaling genes. As seen in seed germination, exogenous supplementation of KAR1 dramatically mitigated the salt stress also in wheat seedling, resulting in increased root and shoot growth as measured in biomass as compared to salt stress alone. Salt stress significantly induced the endogenous hydrogen peroxide and malondialdehyde levels, whereas KAR1 strictly counterbalanced them. Under salt stress, KAR1 supplementation showed significant induction in reduced glutathione (GSH) and reduction in oxidized glutathione (GSSG) content, which improved GSH/GSSG ratio in wheat seedlings. Exogenous supplementation of KAR1 significantly promoted the activities of enzymatic antioxidants in wheat seedlings exposed to salt stress. KAR1 induced the relative expression of genes regulating the biosynthesis of antioxidants in wheat seedlings under salinity. Moreover, KAR1 induced the expression level of K+/Na+ homeostasis genes, reduced Na+ concentration, and induced K+ concentration in wheat seedling under salt stress. The results suggest that KAR1 supplementation maintained the redox and K+/Na+ homeostasis in wheat seedling under salinity, which might be a crucial part of physiological mechanisms in KAR1 induced tolerance to salt stress. In conclusion, we exposed the protective role of KAR1 against salt stress in wheat.
Collapse
Affiliation(s)
- Faheem Afzal Shah
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Jun Ni
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Caiguo Tang
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Xue Chen
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Wenjie Kan
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Lifang Wu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China; Zhongke Hefei Intelligent Agricultural Valley Co., Ltd, Hefei, PR China.
| |
Collapse
|
18
|
Dubey AK, Khatri K, Jha B, Rathore MS. The novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata maintains photosynthesis and enhances abiotic stress tolerance in transgenic tobacco. Gene 2021; 786:145597. [PMID: 33766708 DOI: 10.1016/j.gene.2021.145597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022]
Abstract
We hereby report in planta function characterization of a novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata for enhanced abiotic stress tolerance. The SbGalT gene had an open reading frame of 1563 bp. The ectopic expression of SbGalT gene in tobacco improved the seed germination, seedling growth, biomass accumulation and potassium/sodium ratio under salt and osmotic stress. The SbGalT over-expression delayed stress-induced senescence, pigment break-down and ion induced cytotoxicity in tobacco. Higher contents of organic solutes and potassium under stress maintained the osmotic homeostasis and relative water content in tobacco. Higher activity of antioxidant enzymes under stress in transgenic tobacco curtailed the accumulation of reactive oxygen species (ROS) and maintained the membrane integrity. The chlorophyll a fluorescence transient indicated no effects of the imposed strengths of stress on basal state of photosystem (PS) I in transgenic tobacco over-expressing the SbGalT gene. Due to improved membrane integrity, the transgenic tobacco exhibited improved photosynthesis, stomatal conductance, intercellular CO2, transpiration, maximum quantum yield and operating efficiency of PSII, electron transport, photochemical and non-photochemical quenching. In agreement with photosynthesis, physiological health, tolerance index and growth parameters, transgenic tobacco accumulated higher contents of sugar, starch, amino acid, polyphenol and proline under stress conditions. The multivariate data analysis exhibited significant statistical distinctions among osmotic adjustment, physiological health and growth, and photosynthetic responses in control and SbGalT transgenic tobacco under stress conditions. The results strongly indicated novel SbGalT gene as a potential candidate for developing the smart agriculture.
Collapse
Affiliation(s)
- Ashish K Dubey
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Kusum Khatri
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Bhavanath Jha
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Mangal S Rathore
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India.
| |
Collapse
|
19
|
Engineering cereal crops for enhanced abiotic stress tolerance. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. Regulation of Plant Responses to Salt Stress. Int J Mol Sci 2021; 22:ijms22094609. [PMID: 33924753 PMCID: PMC8125386 DOI: 10.3390/ijms22094609] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Salt stress is a major environmental stress that affects plant growth and development. Plants are sessile and thus have to develop suitable mechanisms to adapt to high-salt environments. Salt stress increases the intracellular osmotic pressure and can cause the accumulation of sodium to toxic levels. Thus, in response to salt stress signals, plants adapt via various mechanisms, including regulating ion homeostasis, activating the osmotic stress pathway, mediating plant hormone signaling, and regulating cytoskeleton dynamics and the cell wall composition. Unraveling the mechanisms underlying these physiological and biochemical responses to salt stress could provide valuable strategies to improve agricultural crop yields. In this review, we summarize recent developments in our understanding of the regulation of plant salt stress.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
- Correspondence: (S.Z.); (P.W.); Tel.: +86-531-8618-0792 (S.Z.); Fax: +86-531-8618-0792 (P.W.)
| | - Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
| | - Mingyue Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
| | - Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China;
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
| | - Pingping Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (Q.Z.); (M.L.); (C.M.)
- Correspondence: (S.Z.); (P.W.); Tel.: +86-531-8618-0792 (S.Z.); Fax: +86-531-8618-0792 (P.W.)
| |
Collapse
|
21
|
Identification and Characterization of the APX Gene Family and Its Expression Pattern under Phytohormone Treatment and Abiotic Stress in Populus trichocarpa. Genes (Basel) 2021; 12:genes12030334. [PMID: 33668872 PMCID: PMC7996185 DOI: 10.3390/genes12030334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ascorbate peroxidase (APX) is a member of class I of the heme-containing peroxidase family. The enzyme plays important roles in scavenging reactive oxygen species for protection against oxidative damage and maintaining normal plant growth and development, as well as in biotic stress responses. In this study, we identified 11 APX genes in the Populus trichocarpa genome using bioinformatic methods. Phylogenetic analysis revealed that the PtrAPX proteins were classifiable into three clades and the members of each clade shared similar gene structures and motifs. The PtrAPX genes were distributed on six chromosomes and four segmental-duplicated gene pairs were identified. Promoter cis-elements analysis showed that the majority of PtrAPX genes contained a variety of phytohormone- and abiotic stress-related cis-elements. Tissue-specific expression profiles indicated that the PtrAPX genes primarily function in roots and leaves. Real-time quantitative PCR (RT-qPCR) analysis indicated that PtrAPX transcription was induced in response to drought, salinity, high ammonium concentration, and exogenous abscisic acid treatment. These results provide important information on the phylogenetic relationships and functions of the APX gene family in P. trichocarpa.
Collapse
|
22
|
Ponce KS, Guo L, Leng Y, Meng L, Ye G. Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22052254. [PMID: 33668247 PMCID: PMC7956267 DOI: 10.3390/ijms22052254] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/06/2023] Open
Abstract
Soil salinity is a serious menace in rice production threatening global food security. Rice responses to salt stress involve a series of biological processes, including antioxidation, osmoregulation or osmoprotection, and ion homeostasis, which are regulated by different genes. Understanding these adaptive mechanisms and the key genes involved are crucial in developing highly salt-tolerant cultivars. In this review, we discuss the molecular mechanisms of salt tolerance in rice—from sensing to transcriptional regulation of key genes—based on the current knowledge. Furthermore, we highlight the functionally validated salt-responsive genes in rice.
Collapse
Affiliation(s)
- Kimberly S. Ponce
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
- Strategic Innovation Platform, International Rice Research Institute, DAPO BOX 7777, Metro Manila 1301, Philippines
| |
Collapse
|
23
|
Kaur S, Prakash P, Bak DH, Hong SH, Cho C, Chung MS, Kim JH, Lee S, Bai HW, Lee SY, Chung BY, Lee SS. Regulation of Dual Activity of Ascorbate Peroxidase 1 From Arabidopsis thaliana by Conformational Changes and Posttranslational Modifications. FRONTIERS IN PLANT SCIENCE 2021; 12:678111. [PMID: 34194454 PMCID: PMC8236860 DOI: 10.3389/fpls.2021.678111] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/21/2021] [Indexed: 05/20/2023]
Abstract
Ascorbate peroxidase (APX) is an important reactive oxygen species (ROS)-scavenging enzyme, which catalyzes the removal of hydrogen peroxide (H2O2) to prevent oxidative damage. The peroxidase activity of APX is regulated by posttranslational modifications (PTMs), such as S-nitrosylation, tyrosine nitration, and S-sulfhydration. In addition, it has been recently reported that APX functions as a molecular chaperone, protecting rice against heat stress. In this study, we attempted to identify the various functions of APX in Arabidopsis and the effects of PTMs on these functions. Cytosol type APX1 from Arabidopsis thaliana (AtAPX1) exists in multimeric forms ranging from dimeric to high-molecular-weight (HMW) complexes. Similar to the rice APX2, AtAPX1 plays a dual role behaving both as a regular peroxidase and a chaperone molecule. The dual activity of AtAPX1 was strongly related to its structural status. The main dimeric form of the AtAPX1 protein showed the highest peroxidase activity, whereas the HMW form exhibited the highest chaperone activity. Moreover, in vivo studies indicated that the structure of AtAPX1 was regulated by heat and salt stresses, with both involved in the association and dissociation of complexes, respectively. Additionally, we investigated the effects of S-nitrosylation, S-sulfhydration, and tyrosine nitration on the protein structure and functions using gel analysis and enzymatic activity assays. S-nitrosylation and S-sulfhydration positively regulated the peroxidase activity, whereas tyrosine nitration had a negative impact. However, no effects were observed on the chaperone function and the oligomeric status of AtAPX1. Our results will facilitate the understanding of the role and regulation of APX under abiotic stress and posttranslational modifications.
Collapse
Affiliation(s)
- Shubhpreet Kaur
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Prapti Prakash
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Dong-Ho Bak
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Sung Hyun Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Chuloh Cho
- Crop Foundation Research Division, National Institute of Crop Science, RDA, Wanju, South Korea
| | - Moon-Soo Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Sungbeom Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Hyoung-Woo Bai
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Seung Sik Lee,
| |
Collapse
|
24
|
Mirdar Mansuri R, Shobbar ZS, Babaeian Jelodar N, Ghaffari M, Mohammadi SM, Daryani P. Salt tolerance involved candidate genes in rice: an integrative meta-analysis approach. BMC PLANT BIOLOGY 2020; 20:452. [PMID: 33004003 PMCID: PMC7528482 DOI: 10.1186/s12870-020-02679-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 09/24/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Salinity, as one of the main abiotic stresses, critically threatens growth and fertility of main food crops including rice in the world. To get insight into the molecular mechanisms by which tolerant genotypes responds to the salinity stress, we propose an integrative meta-analysis approach to find the key genes involved in salinity tolerance. Herein, a genome-wide meta-analysis, using microarray and RNA-seq data was conducted which resulted in the identification of differentially expressed genes (DEGs) under salinity stress at tolerant rice genotypes. DEGs were then confirmed by meta-QTL analysis and literature review. RESULTS A total of 3449 DEGs were detected in 46 meta-QTL positions, among which 1286, 86, 1729 and 348 DEGs were observed in root, shoot, seedling, and leaves tissues, respectively. Moreover, functional annotation of DEGs located in the meta-QTLs suggested some involved biological processes (e.g., ion transport, regulation of transcription, cell wall organization and modification as well as response to stress) and molecular function terms (e.g., transporter activity, transcription factor activity and oxidoreductase activity). Remarkably, 23 potential candidate genes were detected in Saltol and hotspot-regions overlying original QTLs for both yield components and ion homeostasis traits; among which, there were many unreported salinity-responsive genes. Some promising candidate genes were detected such as pectinesterase, peroxidase, transcription regulator, high-affinity potassium transporter, cell wall organization, protein serine/threonine phosphatase, and CBS domain cotaining protein. CONCLUSIONS The obtained results indicated that, the salt tolerant genotypes use qualified mechanisms particularly in sensing and signalling of the salt stress, regulation of transcription, ionic homeostasis, and Reactive Oxygen Species (ROS) scavenging in response to the salt stress.
Collapse
Affiliation(s)
- Raheleh Mirdar Mansuri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
- Faculty of Crop Science, Department of Plant breeding and Biotechnology, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| | - Nadali Babaeian Jelodar
- Faculty of Crop Science, Department of Plant breeding and Biotechnology, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Mohammadreza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| | - Seyed Mahdi Mohammadi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| | - Parisa Daryani
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| |
Collapse
|
25
|
Guo K, Li Z, Tian H, Du X, Liu Z, Huang H, Wang P, Ye Z, Zhang X, Tu L. Cytosolic Ascorbate Peroxidases Plays a Critical Role in Photosynthesis by Modulating Reactive Oxygen Species Level in Stomatal Guard Cell. FRONTIERS IN PLANT SCIENCE 2020; 11:446. [PMID: 32457767 PMCID: PMC7221183 DOI: 10.3389/fpls.2020.00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/25/2020] [Indexed: 05/25/2023]
Abstract
Photosynthetic rate is one of the key factors limiting yield of cotton. Reactive oxygen species (ROS) generated by abiotic stress imposes numerous detrimental effects and causes tremendous loss of yield. It is worth to study whether ROS scavenging enzymes could affect yield through regulating photosynthetic rate in cotton. In this study, we created transgenic cotton with changes of endogenous ROS by overexpressing or suppressing the expression of cytosolic ascorbate peroxidases (APXs), which are hydrogen peroxide (H2O2) scavenging enzymes in plants. The suppression of cytosolic APXs by RNAi brings about a great influence on plant growth and development. Plant height and leaf size declined, and yield-related traits including single boll weight, seed weight, seed size, and lint weight dropped significantly, in IAO lines (cytosolic APX-suppressed lines). The stunted plant growth was due to the decrease of plant photosynthetic rate. The evidences showed that increased ROS level in guard cells inhibited stomatal opening and suppressed the absorption of CO2 and H2O in IAO line. The decrease of water content and the increase of water loss rate in leaf exacerbated the decline of photosynthetic rate in cytosolic APX-suppressed lines. Based on these results, it implies that cytosolic APXs as a whole play an important role in maintaining REDOX balance to regulate photosynthetic rate and yield in cotton.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hanxue Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhen Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hui Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Wu B, Wang B. Comparative analysis of ascorbate peroxidases (APXs) from selected plants with a special focus on Oryza sativa employing public databases. PLoS One 2019; 14:e0226543. [PMID: 31856232 PMCID: PMC6922425 DOI: 10.1371/journal.pone.0226543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) are produced by plants. Hydrogen peroxide (H2O2) is one important component of ROS and able to modulate plant growth and development at low level and damage plant cells at high concentrations. Ascorbate peroxidase (APX) shows high affinity towards H2O2 and plays vital roles in H2O2-scavenging. In order to explore the differences of APXs from selected plant species, bioinformatics methods and public databases were used to evaluate the physicochemical properties, conserved motifs, potential modifications and cis-elements in all the APXs, and protein-protein network and expression profiles of rice APXs. The results suggested that APXs in the selected plant species showed high evolutionary conservation and were able to divide into seven groups, group I to VII. Members in the groups contained abundant phosphorylation sites. Interestingly, group I and VII had only PKC site. Additionally, promoters of the APXs contained abundant stress-related cis-elements. APXs in rice plant were able to interact with dehydroascorbate reductase 2. The eight APXs expressed differently in root, leaf, panicle, anther, pistil and seed. Drought, Pi-free, Cd and Xanthomonas oryzae pv. oryzicola B8-12 treatments were able to significantly alter the expression profiles of rice APXs. This study increases our knowledge to further explore functions and mechanisms of APXs and also guides their applications.
Collapse
Affiliation(s)
- Baomei Wu
- International Center for Plant Molecular Genetics, School of Life Science, Shanxi Normal University, Linfen, PR China
- * E-mail:
| | - Binbin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
27
|
Divya K, Kavi Kishor PB, Bhatnagar-Mathur P, Singam P, Sharma KK, Vadez V, Reddy PS. Isolation and functional characterization of three abiotic stress-inducible (Apx, Dhn and Hsc70) promoters from pearl millet (Pennisetum glaucum L.). Mol Biol Rep 2019; 46:6039-6052. [PMID: 31468258 DOI: 10.1007/s11033-019-05039-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
Pearl millet is a C4 cereal crop that grows in arid and semi-arid climatic conditions with the remarkable abiotic stress tolerance. It contributed to the understanding of stress tolerance not only at the physiological level but also at the genetic level. In the present study, we functionally cloned and characterized three abiotic stress-inducible promoters namely cytoplasmic Apx1 (Ascorbate peroxidase), Dhn (Dehydrin), and Hsc70 (Heat shock cognate) from pearl millet. Sequence analysis revealed that all three promoters have several cis-acting elements specific for temporal and spatial expression. PgApx pro, PgDhn pro and PgHsc70 pro were fused with uidA gene in Gateway-based plant transformation pMDC164 vector and transferred into tobacco through leaf-disc method. While PgApx pro and PgDhn pro were active in seedling stages, PgHsc70 pro was active in stem and root tissues of the T2 transgenic tobacco plants under control conditions. Higher activity was observed under high temperature and drought, and less in salt and cold stress conditions. Further, all three promoters displayed higher GUS gene expression in the stem, moderate expression in roots, and less expression in leaves under similar conditions. While RT-qPCR data showed that PgApx pro and PgDhn pro were expressed highly in high temperature, salt and drought, PgHsc70 pro was fairly expressed during high temperature stress only. Histochemical and RT-qPCR assays showed that all three promoters are inducible under abiotic stress conditions. Thus, these promoters appear to be immediate candidates for developing abiotic stress tolerant crops as these promoter-driven transgenics confer high degree of tolerance in comparison with the wild-type (WT) plants.
Collapse
Affiliation(s)
- Kummari Divya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
- Department of Genetics, Osmania University, Hyderabad, 500 007, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad, 500 007, India
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Prashanth Singam
- Department of Genetics, Osmania University, Hyderabad, 500 007, India
| | - Kiran K Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India.
| |
Collapse
|
28
|
Ermakov A, Bobrovskikh A, Zubairova U, Konstantinov D, Doroshkov A. Stress-induced changes in the expression of antioxidant system genes for rice ( Oryza sativa L.) and bread wheat ( Triticum aestivum L.). PeerJ 2019; 7:e7791. [PMID: 31803533 PMCID: PMC6886489 DOI: 10.7717/peerj.7791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Plant cell metabolism inevitably forms reactive oxygen species (ROS), which can damage cells or lead to their death. The antioxidant system (AOS) evolved to eliminate a high concentration of ROS. For plants, this system consists of the seven classes of antioxidant enzymes and antioxidant compounds. Each enzymatic class contains a various number of genes which may vary from species to species. In such a multi-copy genetic system, the integration of evolutionary characteristics and expression data makes it possible to effectively predict promising breeding targets for the design of highly-yielding cultivars. In the plant cells, ROS production can increase as a result of abiotic stresses. Accordingly, AOS responds to stress by altering the expression of the genes of its components. Expression profiles of AOS enzymes, including their changes under stress, remains incomplete. A comprehensive study of the system behavior in response to stress for different species gives the key to identify the general mechanisms of AOS regulation. In this article, we studied stress-induced changes in the expression of AOS genes in photosynthetic tissues for rice and bread wheat. METHODS A meta-analysis of genome-wide transcriptome data on stress-induced changes in expression profiles of antioxidant genes using microarray and next generation sequencing (NGS) experiments from the GEO NCBI database for rice and bread wheat was carried out. Experimental study of expression changes in short (6 h) and prolonged (24 h) cold stress responses for selected AOS genes of bread wheat cultivars Saratovskaya29 and Yanetzkis Probat was conducted using qPCR. RESULTS The large-scale meta-transcriptome and complementary experimental analysis revealed a summary of fold changes in the AOS gene expression in response to cold and water deficiency for rice and bread wheat.
Collapse
Affiliation(s)
- Anton Ermakov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
| | - Aleksandr Bobrovskikh
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Ulyana Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Dmitrii Konstantinov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Alexey Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
29
|
Campos FV, Oliveira JA, Pereira MG, Farnese FS. Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. PLANTA 2019; 250:1475-1489. [PMID: 31327043 DOI: 10.1007/s00425-019-03236-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/06/2019] [Indexed: 05/26/2023]
Abstract
MAIN CONCLUSION Nitric oxide increased lettuce's tolerance to salinity by restoring its hormonal balance, consequently reducing Na + accumulation and activating defense mechanisms that allowed the attenuation of ionic, oxidative, and osmotic stresses. Agricultural crops are continually threatened by soil salinity. The plant's ability to tolerate soil salinity can be increased by treatment with the signaling molecule nitric oxide (NO). Involvement of NO in plant metabolism and its interactions with phytohormones have not been fully described, so knowledge about the role of this radical in signaling pathways remains fragmented. In this work, Lactuca sativa (lettuce) plants were subjected to four treatments: (1) control (nutrient solution); (2) SNP [nutrient solution containing 70 μM sodium nitroprusside (SNP), an NO donor]; (3) NaCl (nutrient solution containing 80 mM NaCl); or (4) SNP + NaCl (nutrient solution containing SNP and NaCl). The plants were exposed to these conditions for 24 h, and then, the roots and leaves were collected and used to evaluate biochemical parameters (reactive oxygen species (ROS) production, cell membrane damage, cell death, antioxidant enzymes activities, and proline concentration), physiological parameters (pigments' concentration and gas-exchange measurements), and phytohormone content. To evaluate growth, tolerance index, and nutrient concentration, the plants were exposed to the treatments for 3 days. L sativa exposure to NaCl triggered ionic, osmotic, and oxidative stress, which resulted in hormone imbalance, cell death, and decreased growth. These deleterious changes were correlated with Na+ content in the vegetative tissues. Adding NO decreased Na+ accumulation and stabilized the mineral nutrient concentration, which maintained the photosynthetic rate and re-established growth. NO-signaling action also re-established the phytohormones balance and resulted in antioxidant system activation and osmotic regulation, with consequent increase in plants tolerance to the salt.
Collapse
Affiliation(s)
- Fernanda V Campos
- Instituto Federal Fluminense/Campus Avançado São João da Barra, São João da Barra, RJ, 28200-00, Brazil
| | - Juraci A Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| | - Mayara G Pereira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Fernanda S Farnese
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| |
Collapse
|
30
|
Shekhar S, Rustagi A, Kumar D, Yusuf MA, Sarin NB, Lawrence K. Groundnut AhcAPX conferred abiotic stress tolerance in transgenic banana through modulation of the ascorbate-glutathione pathway. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1349-1366. [PMID: 31736539 PMCID: PMC6825100 DOI: 10.1007/s12298-019-00704-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/06/2019] [Accepted: 08/19/2019] [Indexed: 05/08/2023]
Abstract
A stress inducible cytosolic ascorbate peroxidase gene (AhcAPX) was ectopically expressed in banana (cv. Grand naine) plants to strengthen their antioxidant capacity. High level of AhcAPX gene transcripts and enzyme suggested constitutive and functional expression of candidate gene in transgenic (TR) plants. The tolerance level of in vitro and in vivo grown TR banana plantlets were assessed against salt and drought stress. The TR banana plants conferred tolerance against the abiotic stresses by maintaining a high redox state of ascorbate and glutathione, which correlated with lower accumulation of H2O2, O2 ⋅- and higher level of antioxidant enzyme (SOD, APX, CAT, GR, DHAR and MDHAR) activities. The efficacy of AhcAPX over-expression was also investigated in terms of different physiochemical attributes of TR and untransformed control plants, such as, proline content, membrane stability, electrolyte leakage and chlorophyll retention. The TR plants showed higher photochemical efficiency of PSII (Fv/Fm), and stomatal attributes under photosynthesis generated reactive oxygen species (ROS) stress. The outcome of present investigation suggest that ectopic expression of AhcAPX gene in banana enhances the tolerance to drought and salt stress by annulling the damage caused by ROS.
Collapse
Affiliation(s)
- Shashi Shekhar
- Department of Biochemistry and Biochemical Engineering, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, 211007 India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049 India
| | - Deepak Kumar
- Department of Botany, Central University of Jammu, Jammu, 180011 India
| | - Mohd. Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026 India
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kapil Lawrence
- Department of Biochemistry and Biochemical Engineering, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, 211007 India
| |
Collapse
|
31
|
Wang Z, Xu J, Liu Y, Chen J, Lin H, Huang Y, Bian X, Zhao Y. Selection and validation of appropriate reference genes for real-time quantitative PCR analysis in Momordica charantia. PHYTOCHEMISTRY 2019; 164:1-11. [PMID: 31054374 DOI: 10.1016/j.phytochem.2019.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/21/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Real time quantitative reverse transcription PCR (RT-qPCR) has been attracting more attention for its high sensitivity in gene expression analysis. Given the widely use of RT-qPCR in normalization, it is playing a pivotal role for seeking suitable reference genes in different species. In current work, 12 candidate reference genes including Actin 2 (ACT2), Cyclophilin 2 (CYP2), Glyceraldehyde-3-phosphate dehydrogenase C2 (GAPC2), Elongation factor 1-α (EF1-α), Nuclear cap binding protein 20 (NCBP20), Serine/threonine-protein phosphatase PP2A (PP2A), Polypyrimidine tract-binding protein 1 (PTBP1), SAND family protein (SNAD), TIP41-like protein (TIP41), Tubulin beta-6 (TUB6), Ubiquitin-conjugating enzyme 9 (UBC9) and Glyceraldehyde-3-phosphatedehydrogenase (GAPDH) were screened from the transcriptome datasets of M. charantia. Afterwards, GeNorm, NormFinder and BestKeeper algorithms were applied to assess the expression stability of these 12 genes under different abiotic stresses including drought, cold, high-salt, hormone, UV, oxidative and metal stress. The results indicated that 12 selected genes exhibited various stability across the samples under different external stress conditions, but TIP41, PTBP1 and PP2A presented high stability among all the reference genes. To validate the suitability of the identified reference genes, the results of hormone subset were compared with RNA sequencing (RNA-seq) data, and the relative abundance of Ascorbate peroxidase 1(APX1)was used to confirm the reliability of the results. This work assesses the stability of reference genes in M. charantia under different abiotic stress conditions, which will be beneficent for accurate normalization of target genes in M. charantia.
Collapse
Affiliation(s)
- Zhenglong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiyang Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yihan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hanfeng Lin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yanli Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiaohong Bian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
32
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
33
|
Xu N, Chu Y, Chen H, Li X, Wu Q, Jin L, Wang G, Huang J. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging. PLoS Genet 2018; 14:e1007662. [PMID: 30303953 PMCID: PMC6197697 DOI: 10.1371/journal.pgen.1007662] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 10/22/2018] [Accepted: 08/27/2018] [Indexed: 01/24/2023] Open
Abstract
Plant roots are constantly exposed to a variety of abiotic stresses, and high salinity is one of the major limiting conditions that impose constraints on plant growth. In this study, we describe that OsMADS25 is required for the root growth as well as salinity tolerance, via maintaining ROS homeostasis in rice (Oryza sativa). Overexpression of OsMADS25 remarkably enhanced the primary root (PR) length and lateral root (LR) density, whereas RNAi silence of this gene reduced PR elongation significantly, with altered ROS accumulation in the root tip. Transcriptional activation assays indicated that OsMADS25 activates OsGST4 (glutathione S–transferase) expression directly by binding to its promoter. Meanwhile, osgst4 mutant exhibited repressed growth and high sensitivity to salinity and oxidative stress, and recombinant OsGST4 protein was found to have ROS–scavenging activity in vitro. Expectedly, overexpression of OsMADS25 significantly enhanced the tolerance to salinity and oxidative stress in rice plants, with the elevated activity of antioxidant enzymes, increased accumulation of osmoprotective solute proline and reduced frequency of open stoma. Furthermore, OsMADS25 specifically activated the transcription of OsP5CR, a key component of proline biosynthesis, by binding to its promoter. Interestingly, overexpression of OsMADS25 raised the root sensitivity to exogenous ABA, and the expression of ABA–dependent stress–responsive genes was elevated greatly in overexpression plants under salinity stress. In addition, OsMADS25 seemed to promote auxin signaling by activating OsYUC4 transcription. Taken together, our findings reveal that OsMADS25 might be an important transcriptional regulator that regulates the root growth and confers salinity tolerance in rice via the ABA–mediated regulatory pathway and ROS scavenging. Plant roots are constantly exposed to a variety of abiotic stresses, and high salinity is one of major limiting conditions that impose constraints on plant growth. Here, we show that transcription factor OsMADS25 positively regulates the root system development and tolerance to salinity and oxidative stress in rice plants. We also provide strong evidence that OsMADS25 increases the ROS-scavenging capacity and proline accumulation by activating the expression of OsGST4 and OsP5CR directly. Moreover, OsMADS25 promotes ABA–dependent abiotic stress–responsive regulatory pathway. In addition, OsMADS25 seems to promote auxin signaling by activating OsYUC4 transcription. Overall, enhanced antioxidant responses and proline accumulation via the ABA–mediated regulatory pathway, have been proposed to be crucial for OsMADS25 to regulate the salinity tolerance in rice plants.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Hongli Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
- * E-mail: ,
| |
Collapse
|
34
|
Huang L, Hu C, Cai W, Zhu Q, Gao B, Zhang X, Ren C. Fumarylacetoacetate hydrolase is involved in salt stress response in Arabidopsis. PLANTA 2018; 248:499-511. [PMID: 29785518 DOI: 10.1007/s00425-018-2907-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/26/2018] [Indexed: 05/10/2023]
Abstract
Fumarylacetoacetate hydrolase participates in positive regulation of salt stress in Arabidopsis. Fumarylacetoacetate hydrolase (FAH) catalyzes the hydrolysis of fumarylacetoacetate into fumarate and acetoacetate, the final step in the Tyr degradation pathway that is essential to animals. However, the Tyr degradation pathway is not well understood in plants. Previously, we found that mutation of the SHORT-DAY SENSITIVE CELL DEATH 1 (SSCD1) gene encoding FAH in Arabidopsis causes spontaneous cell death under short day, which first indicated that the Tyr degradation pathway also plays an important role in plants. In this study, we found that the SSCD1 gene was up-regulated by salt stress, and the sscd1 mutant was hypersensitive to salt stress. However, the double mutant of SSCD1 and HOMOGENTISATE DIOXYGENASE, in which intermediates of the Tyr degradation pathway could not be produced, displayed a normal response to salt stress. Furthermore, the sscd1 mutant showed more accumulation of reactive oxygen species (ROS) and less up-regulation of some ROS-scavenging genes such as ASCORBATE PEROXIDASE 2 and COPPER/ZINC SUPEROXIDE DISMUTASE 1 compared with wild type under salt stress. In addition, SSCD1 expression was also up-regulated by H2O2, and the sscd1 mutant exhibited hypersensitivity to oxidative stress compared with wild type. Taken together, we concluded that loss of FAH in sscd1 leads to the accumulation of Tyr degradation intermediates, which impairs the up-regulation of some ROS-scavenging genes under salt stress, causing more accumulation of ROS, resulting in the hypersensitivity of sscd1 to salt stress.
Collapse
Affiliation(s)
- Lihua Huang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Cai
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Zhu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Bida Gao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Xuewen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chunmei Ren
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China.
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
35
|
Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone. Sci Rep 2018; 8:9171. [PMID: 29907832 PMCID: PMC6003922 DOI: 10.1038/s41598-018-27459-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/15/2018] [Indexed: 12/25/2022] Open
Abstract
Ascorbate peroxidase (APX) is a class I haem-containing peroxidase, which catalyses the conversion of H2O2 to H2O and O2 using ascorbate as the specific electron donor. APX plays a central role in the elimination of intracellular reactive oxygen species (ROS) and protects plants from the oxidative damage that can occur as a result of biotic and abiotic stresses. At present, the only known function of APX is as a peroxidase. However, in this study, we demonstrate that Oryza sativa APX2 also operates as a molecular chaperone in rice. The different functions of OsAPX2 correlate strongly with its structural conformation. The high-molecular-weight (HMW) complexes had chaperone activity, whereas the low-molecular-weight (LMW) forms displayed predominantly APX activity. The APX activity was effectively inhibited by sodium azide, which is an inhibitor of haem-containing enzymes, but this did not affect the protein’s activity as a chaperone. Additionally, the OsAPX2 conformational changes could be regulated by salt and heat stresses and these stimulated OsAPX2 dissociation and association, respectively. Our results provide new insight into the roles of APXs.
Collapse
|
36
|
Wu B, Li L, Qiu T, Zhang X, Cui S. Cytosolic APX2 is a pleiotropic protein involved in H 2O 2 homeostasis, chloroplast protection, plant architecture and fertility maintenance. PLANT CELL REPORTS 2018; 37:833-848. [PMID: 29549445 DOI: 10.1007/s00299-018-2272-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/05/2018] [Indexed: 05/28/2023]
Abstract
Rice cytoplasmic APX2 is a pleiotropic protein, densely distributed around chloroplasts. It plays key roles in H2O2 homeostasis and chloroplast protection, and is related to plant architecture and fertility regulation. Ascorbate peroxidases (APXs) catalyze the conversion of H2O2 into H2O. In this report, we systematically investigated the function of cytosolic APX2 using a T-DNA knockout mutant. Loss of OsAPX2 altered rice architecture including shoot height and leaf inclination, resulting in shoot dwarfing, leaf dispersion and fertility decline. Sixty-five differentially expressed proteins were identified in flag leaves of the milk-ripe stage, mainly involved in photosynthesis, glycolysis and TCA cycle, redox homeostasis, and defense. The absence of APX2 severely impacted the stability of chloroplast proteins, and dramatically reduced their expression levels. Subcellular localization showed that APX2 was enriched around each chloroplast to form a high concentration sphere, highlighting chloroplasts as key targets protected by the protein. Accumulation of H2O2 was suppressed in the KO-APX2 mutant, which may benefit from increased CAT activity and functional complementation of APX family members. Unexpectedly, the accumulation of soluble sugar, especially sucrose increased significantly, suggesting that APX2 was involved in regulation of sugar metabolism. Obviously, roles of the cytosolic APX2 are very profound and complex in rice. It can be concluded that the cytosolic APX2 is a pleiotropic protein and an important regulator in ROS homeostasis, chloroplast protection, carbohydrate metabolism as well as plant architecture and fertility maintenance.
Collapse
Affiliation(s)
- Baomei Wu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Tianhang Qiu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xi Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
37
|
Kanojia A, Dijkwel PP. Abiotic Stress Responses are Governed by Reactive Oxygen Species and Age. ANNUAL PLANT REVIEWS ONLINE 2018:295-326. [PMID: 0 DOI: 10.1002/9781119312994.apr0611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
38
|
Feng D, Wang Y, Wu J, Lu T, Zhang Z. Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Mishra A, Tanna B. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters. FRONTIERS IN PLANT SCIENCE 2017; 8:829. [PMID: 28572812 PMCID: PMC5435751 DOI: 10.3389/fpls.2017.00829] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/02/2017] [Indexed: 05/17/2023]
Abstract
Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase), ion channels (Cl-, Ca2+, aquaporins), antioxidant encoding genes (APX, CAT, GST, BADH, SOD) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.
Collapse
Affiliation(s)
- Avinash Mishra
- Marine Biotechnology and Ecology Division, Central Salt and Marine Chemicals Research Institute (CSIR)Bhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Bhakti Tanna
- Marine Biotechnology and Ecology Division, Central Salt and Marine Chemicals Research Institute (CSIR)Bhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| |
Collapse
|
40
|
Wang J, Wu B, Yin H, Fan Z, Li X, Ni S, He L, Li J. Overexpression of CaAPX Induces Orchestrated Reactive Oxygen Scavenging and Enhances Cold and Heat Tolerances in Tobacco. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4049534. [PMID: 28386551 PMCID: PMC5366785 DOI: 10.1155/2017/4049534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Ascorbate peroxidase (APX) acts indispensably in synthesizing L-ascorbate (AsA) which is pivotal to plant stress tolerance by detoxifying reactive oxygen species (ROS). Enhanced activity of APX has been shown to be a key step for genetic engineering of improving plant tolerance. However it needs a deeper understanding on the maintenance of cellular ROS homeostasis in response to stress. In this study, we identified and characterized an APX (CaAPX) gene from Camellia azalea. Quantitative real-time PCR (qRT-PCR) analysis showed that CaAPX was expressed in all tissues and peaked in immature green fruits; the expression levels were significantly upregulated upon cold and hot stresses. Transgenic plants displayed marked enhancements of tolerance under both cold and heat treatments, and plant growth was correlated with CaAPX expression levels. Furthermore, we monitored the activities of several ROS-scavenging enzymes including Cu/Zn-SOD, CAT, DHAR, and MDHAR, and we showed that stress tolerance was synchronized with elevated activities of ROS-scavenging. Moreover, gene expression analysis of ROS-scavenging enzymes revealed a role of CaAPX to orchestrate ROS signaling in response to temperature stresses. Overall, this study presents a comprehensive characterization of cellular response related to CaAPX expression and provides insights to breed crops with high temperature tolerances.
Collapse
Affiliation(s)
- Jiangying Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
- Lianyungang Academy of Agricultural Sciences, Flower Research Center, Lianyungang, Jiangsu 222000, China
| | - Bin Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Zhengqi Fan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Xinlei Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Sui Ni
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Libo He
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiyuan Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
41
|
Zhang X, Li K, Liu S, Zou P, Xing R, Yu H, Chen X, Qin Y, Li P. Relationship between the Degree of Polymerization of Chitooligomers and Their Activity Affecting the Growth of Wheat Seedlings under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:501-509. [PMID: 28005356 DOI: 10.1021/acs.jafc.6b03665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Seven chitooligomers (COSs) with determined degrees of polymerization (DPs) (chitotetraose to chitooctaose, DP 8-10, DP 10-12) and a heterogeneous COS with various DPs were first applied to explore the relationship between the DP of COSs and their effect on the growth of wheat seedlings under salt stress. The results showed that COS could promote the growth of wheat seedlings under salt stress. Moreover, chitohexaose, chitoheptaose, and chitooctaose exhibited stronger activity compared with other COS samples, which suggested that their activity had a close relationship with the DP. After 10 days of treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were obviously improved. The soluble sugar and proline contents were improved by 26.7-53.3 and 43.6-70.2%, respectively, whereas the concentration of malondialdehyde (MDA) was reduced by 36.8-49.6%. In addition, the antioxidant enzyme activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kecheng Li
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
- Nantong Marine Science and Technology R&D Center, IOCAS , Jiangsu 226006, China
| | - Song Liu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Ping Zou
- Institute of Tobacco Research of CAAS , Qingdao 266101, China
| | - Ronge Xing
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Huahua Yu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Xiaolin Chen
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Yukun Qin
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Pengcheng Li
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| |
Collapse
|
42
|
Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase. FRONTIERS IN PLANT SCIENCE 2017; 8:581. [PMID: 28473838 PMCID: PMC5397514 DOI: 10.3389/fpls.2017.00581] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/30/2017] [Indexed: 05/19/2023]
Abstract
One of the most significant manifestations of environmental stress in plants is the increased production of Reactive Oxygen Species (ROS). These ROS, if allowed to accumulate unchecked, can lead to cellular toxicity. A battery of antioxidant molecules is present in plants for keeping ROS levels under check and to maintain the cellular homeostasis under stress. Ascorbate peroxidase (APX) is a key antioxidant enzyme of such scavenging systems. It catalyses the conversion of H2O2 into H2O, employing ascorbate as an electron donor. The expression of APX is differentially regulated in response to environmental stresses and during normal plant growth and development as well. Different isoforms of APX show differential response to environmental stresses, depending upon their sub-cellular localization, and the presence of specific regulatory elements in the upstream regions of the respective genes. The present review delineates role of APX isoforms with respect to different types of abiotic stresses and its importance as a key antioxidant enzyme in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Saurabh Pandey
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- Department of Biotechnology, Uttarakhand Technical UniversityDehradun, India
- *Correspondence: Saurabh Pandey
| | - Dhirendra Fartyal
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Aakrati Agarwal
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- Plant Molecular Biology Lab, Department of Botany, University of DelhiNew Delhi, India
| | - Tushita Shukla
- Division of Plant Physiology, Indian Agricultural Research InstituteNew Delhi, India
| | - Donald James
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Tanushri Kaul
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Yogesh K. Negi
- Department of Basic Sciences, College of Forestry, VCSG Uttarakhand University of Horticulture and Forestry (UUHF)Ranichauri, India
| | - Sandeep Arora
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Malireddy K. Reddy
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| |
Collapse
|
43
|
Zhang S, Gan Y, Xu B. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression. FRONTIERS IN PLANT SCIENCE 2016; 7:1405. [PMID: 27695475 PMCID: PMC5023664 DOI: 10.3389/fpls.2016.01405] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/02/2016] [Indexed: 05/17/2023]
Abstract
Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here, we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings' growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29, 39, and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD, and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants.
Collapse
Affiliation(s)
- Shuwu Zhang
- College of Grassland Science, Gansu Agricultural UniversityLanzhou, China
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of ChinaLanzhou, China
- Sino-U.S. Centers for Grazingland Ecosystems SustainabilityLanzhou, China
| | - Yantai Gan
- Gansu Provincial Key Laboratory of Aridland Crop Sciences, Gansu Agricultural UniversityLanzhou, China
| | - Bingliang Xu
- College of Grassland Science, Gansu Agricultural UniversityLanzhou, China
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of ChinaLanzhou, China
- Sino-U.S. Centers for Grazingland Ecosystems SustainabilityLanzhou, China
| |
Collapse
|
44
|
Jiang G, Yin D, Zhao J, Chen H, Guo L, Zhu L, Zhai W. The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight. Sci Rep 2016; 6:26104. [PMID: 27185545 PMCID: PMC4868969 DOI: 10.1038/srep26104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/26/2016] [Indexed: 11/08/2022] Open
Abstract
Thylakoid membrane-bound ascorbate peroxidase (tAPX) is a major H2O2-scavenging enzyme. To clarify its functions in tolerance to rice bacterial blight, we produced rice lines overexpressing and suppressing tAPX (OsAPX8). The overexpressing lines exhibited increased tolerance to bacterial pathogen. The RNA interference (RNAi) lines were considerably more sensitive than the control plant. Further analysis of the H2O2 content in these transgenic plants indicated that the H2O2 accumulation of OsAPX8-overexpressing plants was considerably less than that of wild-type and RNAi plants upon challenge with bacterial pathogen. Interestingly, H2O2 was the most important factor for the serious leaf dehydration and withering of rice without major resistance genes and was not the cause of hypersensitivity. It addition, wall tightening or loosening can occur according to the level of H2O2. In addition, OsAPX8 interacted with the susceptibility protein Os8N3/Xa13, and their binding repressed the reaction of OsAPX8 in tolerance to bacterial blight.
Collapse
Affiliation(s)
- Guanghuai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dedong Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiying Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Honglin Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lequn Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihuang Zhu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
45
|
Hossain MS, Dietz KJ. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:548. [PMID: 27242807 PMCID: PMC4861717 DOI: 10.3389/fpls.2016.00548] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/08/2016] [Indexed: 05/17/2023]
Abstract
Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.
Collapse
Affiliation(s)
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of BielefeldBielefeld, Germany
| |
Collapse
|
46
|
Ahmad P, Abdel Latef AA, Hashem A, Abd_Allah EF, Gucel S, Tran LSP. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea. FRONTIERS IN PLANT SCIENCE 2016; 7:347. [PMID: 27066020 PMCID: PMC4814448 DOI: 10.3389/fpls.2016.00347] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/07/2016] [Indexed: 05/19/2023]
Abstract
This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, Sri Pratap CollegeSrinagar, India
| | - Arafat A. Abdel Latef
- Botany Department, Faculty of Science, South Valley UniversityQena, Egypt
- Biology Department, College of Applied Medical Sciences, Taif UniversityTurabah, Saudi Arabia
| | - Abeer Hashem
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research CenterGiza, Egypt
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| | - Lam-Son P. Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
47
|
Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y, Wang H, Tsai SN, Ngai S, Du L. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars. Mol Cell Proteomics 2016; 15:266-88. [PMID: 26407991 PMCID: PMC4762511 DOI: 10.1074/mcp.m115.051961] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Understanding molecular mechanisms underlying plant salinity tolerance provides valuable knowledgebase for effective crop improvement through genetic engineering. Current proteomic technologies, which support reliable and high-throughput analyses, have been broadly used for exploring sophisticated molecular networks in plants. In the current study, we compared phosphoproteomic and proteomic changes in roots of different soybean seedlings of a salt-tolerant cultivar (Wenfeng07) and a salt-sensitive cultivar (Union85140) induced by salt stress. The root samples of Wenfeng07 and Union85140 at three-trifoliate stage were collected at 0 h, 0.5 h, 1 h, 4 h, 12 h, 24 h, and 48 h after been treated with 150 mm NaCl. LC-MS/MS based phosphoproteomic analysis of these samples identified a total of 2692 phosphoproteins and 5509 phosphorylation sites. Of these, 2344 phosphoproteins containing 3744 phosphorylation sites were quantitatively analyzed. Our results showed that 1163 phosphorylation sites were differentially phosphorylated in the two compared cultivars. Among them, 10 MYB/MYB transcription factor like proteins were identified with fluctuating phosphorylation modifications at different time points, indicating that their crucial roles in regulating flavonol accumulation might be mediated by phosphorylated modifications. In addition, the protein expression profiles of these two cultivars were compared using LC MS/MS based shotgun proteomic analysis, and expression pattern of all the 89 differentially expressed proteins were independently confirmed by qRT-PCR. Interestingly, the enzymes involved in chalcone metabolic pathway exhibited positive correlations with salt tolerance. We confirmed the functional relevance of chalcone synthase, chalcone isomerase, and cytochrome P450 monooxygenase genes using soybean composites and Arabidopsis thaliana mutants, and found that their salt tolerance were positively regulated by chalcone synthase, but was negatively regulated by chalcone isomerase and cytochrome P450 monooxygenase. A novel salt tolerance pathway involving chalcone metabolism, mostly mediated by phosphorylated MYB transcription factors, was proposed based on our findings. (The mass spectrometry raw data are available via ProteomeXchange with identifier PXD002856).
Collapse
Affiliation(s)
- Erxu Pi
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China;
| | - Liqun Qu
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Jianwen Hu
- §Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, PR China
| | - Yingying Huang
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Lijuan Qiu
- ¶The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongfei Lu
- ‖College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bo Jiang
- **College of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Cong Liu
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Tingting Peng
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Ying Zhao
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Huizhong Wang
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Sau-Na Tsai
- ‡‡Centre for Soybean Research of Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Saiming Ngai
- ‡‡Centre for Soybean Research of Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Liqun Du
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China;
| |
Collapse
|
48
|
Shiraya T, Mori T, Maruyama T, Sasaki M, Takamatsu T, Oikawa K, Itoh K, Kaneko K, Ichikawa H, Mitsui T. Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1251-63. [PMID: 25586098 PMCID: PMC6680209 DOI: 10.1111/pbi.12314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/19/2014] [Indexed: 05/20/2023]
Abstract
Superoxide dismutase (SOD) is widely assumed to play a role in the detoxification of reactive oxygen species caused by environmental stresses. We found a characteristic expression of manganese SOD 1 (MSD1) in a heat-stress-tolerant cultivar of rice (Oryza sativa). The deduced amino acid sequence contains a signal sequence and an N-glycosylation site. Confocal imaging analysis of rice and onion cells transiently expressing MSD1-YFP showed MSD1-YFP in the Golgi apparatus and plastids, indicating that MSD1 is a unique Golgi/plastid-type SOD. To evaluate the involvement of MSD1 in heat-stress tolerance, we generated transgenic rice plants with either constitutive high expression or suppression of MSD1. The grain quality of rice with constitutive high expression of MSD1 grown at 33/28 °C, 12/12 h, was significantly better than that of the wild type. In contrast, MSD1-knock-down rice was markedly susceptible to heat stress. Quantitative shotgun proteomic analysis indicated that the overexpression of MSD1 up-regulated reactive oxygen scavenging, chaperone and quality control systems in rice grains under heat stress. We propose that the Golgi/plastid MSD1 plays an important role in adaptation to heat stress.
Collapse
Affiliation(s)
- Takeshi Shiraya
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Taiki Mori
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Tatsuya Maruyama
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Maiko Sasaki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takeshi Takamatsu
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazusato Oikawa
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Kimiko Itoh
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kentaro Kaneko
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
| | - Hiroaki Ichikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Toshiaki Mitsui
- Department of Applied Biological Chemistry, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
49
|
Chao J, Zhang S, Chen Y, Tian WM. Cloning, heterologous expression and characterization of ascorbate peroxidase (APX) gene in laticifer cells of rubber tree (Hevea brasiliensis Muell. Arg.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:331-8. [PMID: 26519821 DOI: 10.1016/j.plaphy.2015.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 05/01/2023]
Abstract
Ascorbate peroxidases (APXs) are a kind of crucial enzymes for removing reactive oxygen species (ROS) in plant cell. In the present study, a full-length cDNA encoding an APX, designated HbAPX, was isolated from Hevea brasiliensis by the rapid amplification of cDNA ends (RACE) method. HbAPX was 1174-bp in length and contained a 912-bp open reading frame (ORF) encoding a putative protein of 304 amino acids. The predicted molecular mass of HbAPX was 27.6 kDa (kDa) with an isoelectric point (pI) of 6.73. The phylogenetic analysis showed that HbAPX belonged to the cytosolic subgroup and was more relative to PtAPX and MdAPX2. By using PlantCare online analysis, such cis-acting elements as W-box and MRE were detected in the promoter region of HbAPX. Overproduction of recombinant HbAPX protein either in Escherichia coli or yeast enhanced their tolerance to such abiotic stresses as Cu(2+), Zn(2+), Na(2+) and hydrogen peroxide (H2O2). Ethrel application significantly down-regulated the expression of HbAPX and inhibited the activity of HbAPX in vivo. The ethrel-caused down-regulation of HbAPX may disturb the redox homeostasis in laticifer cells of rubber tree.
Collapse
Affiliation(s)
- Jinquan Chao
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, PR China.
| | - Shixin Zhang
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, PR China.
| | - Yueyi Chen
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, PR China.
| | - Wei-Min Tian
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, PR China.
| |
Collapse
|
50
|
Zhang Y, Li Z, Peng Y, Wang X, Peng D, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y. Clones of FeSOD, MDHAR, DHAR Genes from White Clover and Gene Expression Analysis of ROS-Scavenging Enzymes during Abiotic Stress and Hormone Treatments. Molecules 2015; 20:20939-54. [PMID: 26610459 PMCID: PMC6332117 DOI: 10.3390/molecules201119741] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022] Open
Abstract
Increased transcriptional levels of genes encoding antioxidant enzymes play important protective roles in coping with excessive accumulation of reactive oxygen species (ROS) in plants exposed to various abiotic stresses. To fully elucidate different evolutions and functions of ROS-scavenging enzymatic genes, we isolated iron superoxide dismutase (FeSOD), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) from white clover for the first time and subsequently tested dynamic expression profiles of these genes together with previously identified other antioxidant enzyme genes including copper zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), glutathione reductase (GR), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in response to cold, drought, salinity, cadmium stress and exogenous abscisic acid (ABA) or spermidine (Spd) treatment. The cloned fragments of FeSOD, DHAR and MDHAR genes were 630, 471 and 669 bp nucleotide sequences encoding 210, 157 and 223 amino acids, respectively. Phylogenetic analysis indicated that both amino acid and nucleotide sequences of these three genes are highly conservative. In addition, the analysis of genes expression showed the transcription of GR, POD, MDHAR, DHAR and Cu/ZnSOD were rapidly activated with relatively high abundance during cold stress. Differently, CAT, APX, FeSOD, Cu/ZnSOD and MnSOD exhibited more abundant transcripts compared to others under drought stress. Under salt stress, CAT was induced preferentially (3-12 h) compared to GR which was induced later (12-72 h). Cadmium stress mainly up-regulated Cu/ZnSOD, DHAR and MDHAR. Interestingly, most of genes expression induced by ABA or Spd happened prior to various abiotic stresses. The particular expression patterns and different response time of these genes indicated that white clover differentially activates genes encoding antioxidant enzymes to mitigate the damage of ROS during various environmental stresses.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Peng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaojuan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Dandan Peng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yaping Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaoshuang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linkai Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yanhong Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|