1
|
Jiang S, Ding Y, Zhao G, Ye S, Liu S, Yin Y, Li Z, Zou X, Xie D, You C, Guo X. Species-specific RNA barcoding technology for rapid and accurate identification of four types of influenza virus. BMC Genomics 2025; 26:409. [PMID: 40295995 PMCID: PMC12036255 DOI: 10.1186/s12864-025-11602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The influenza virus (IV) is responsible for seasonal flu epidemics. Constant mutation of the virus results in new strains and widespread reinfections across the globe, bringing great challenges to disease prevention and control. Research has demonstrated that barcoding technology efficiently and cost-effectively differentiates closely related species on a large scale. We screened and validated species-specific RNA barcode segments based on the genetic relationships of four types of IVs, facilitating their precise identification in high-throughput sequencing viral samples. RESULTS Through the analysis of single nucleotide polymorphism, population genetic characteristics, and phylogenetic relationships in the training set, 7 IVA type, 29 IVB type, 40 IVC type, and 5 IVD type barcode segments were selected. In the testing set, the nucleotide-level recall rate for all barcode segments reached 96.86%, the average nucleotide-level specificity was approximately 55.27%, the precision rate was 100%, and the false omission rate was 0%, demonstrating high accuracy, specificity, and generalization capabilities for species identification. Ultimately, all four types of IVs were visualized in a combination of one-dimensional and two-dimensional codes and stored in an online database named Influenza Virus Barcode Database (FluBarDB, http://virusbarcodedatabase.top/database/index.html ). CONCLUSION This study validates the effective application of RNA barcoding technology in the detection of IVs and establishes criteria and procedures for selecting species-specific molecular markers. These advancements enhance the understanding of the genetic and epidemiological characteristics of IVs and enable rapid responses to viral genetic mutations.
Collapse
Affiliation(s)
- Shuai Jiang
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Yunyun Ding
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Gaili Zhao
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Shunxing Ye
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Shucan Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Yan Yin
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zeqi Li
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Daolong Xie
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Changqiao You
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
2
|
Beukenhorst AL, Rice KL, Frallicciardi J, Koldijk MH, Boudreau CM, Crawford J, Cornelissen LAHM, da Costa KAS, de Jong BA, Fischinger S, Julg B, Klap JM, Koch CM, Magyarics Z, Mohamed FAN, Okonkwo V, Adams L, McCarthy CM, Ronsard L, Temperton N, Vietsch H, Wichapong K, Ziere B, Lingwood D, Goudsmit J. Intranasal administration of a panreactive influenza antibody reveals Fc-independent mode of protection. Sci Rep 2025; 15:10309. [PMID: 40199998 PMCID: PMC11978755 DOI: 10.1038/s41598-025-94314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Monoclonal antibodies have two core mechanisms of protection: an antibody's antigen-binding fragment (Fab) can bind and neutralize viral pathogens and its fragment crystallizable domain (Fc) catalyzes effector functions. We investigated the relative contribution of Fab- versus Fc-mediated mechanisms of protection through passive administration of distinct forms of the pan-reactive anti-influenza antibody CR9114. We demonstrated that the contribution of Fc-independent (Fab-dependent) versus Fc-dependent mechanisms of protection is defined by the route of administration. We used CR9114 variants (wild-type, two Fc-silenced variants, or the bivalent antigen-binding fragment F(ab')2), administered either intravenously or intranasally. We found that intravenously-administered CR9114 requires the Fc domain to provide potent, pre-exposure protection against influenza A and B viral challenge. In contrast, when CR9114 was administered locally to the nasal mucosa, the main mode of protection was provided by F(ab')2, and was largely Fc-independent. Importantly, this mode of protection following intranasal administration also applied to non-neutralized influenza B strains. Moreover, intranasal administration resulted in an increase in potency against influenza A/H1N1, A/H5N1, A/H3N2, B/Yam and B/Vic compared to intravenous administration up to 50-fold. These results shed new light on the application of monoclonal antibodies such as CR9114 to combat viral infection locally, and will help inform clinical strategies of pre-exposure prophylaxis. More fundamentally, this study uncovers distinct modes of protection for systemic versus intranasally-administered prophylactic antibodies.
Collapse
Affiliation(s)
- Anna L Beukenhorst
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Leyden Laboratories, Leiden, The Netherlands.
| | | | | | | | | | | | | | - Kelly A S da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham, UK
| | | | | | - Boris Julg
- Leyden Laboratories, Leiden, The Netherlands
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Jaco M Klap
- Leyden Laboratories, Leiden, The Netherlands
| | | | | | | | - Vintus Okonkwo
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Lindsey Adams
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Caitlin M McCarthy
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Larance Ronsard
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham, UK
| | | | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Hillmark B.V., Maastricht, The Netherlands
| | | | - Daniel Lingwood
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Jaap Goudsmit
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Barros de Lima G, Nencioni E, Thimoteo F, Perea C, Pinto RFA, Sasaki SD. TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses. Biomolecules 2025; 15:75. [PMID: 39858469 PMCID: PMC11764435 DOI: 10.3390/biom15010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
TMPRSS2, a human transmembrane protease enzyme, plays a crucial role in the spread of certain viruses, including influenza and coronaviruses. This enzyme promotes viral infection by cleaving viral glycoproteins, which helps viruses like SARS-CoV-2 and influenza A enter cells more effectively. Genetic differences in TMPRSS2 may affect people's susceptibility to COVID-19, underscoring the need for studies that consider diverse populations. Beyond infectious diseases, TMPRSS2 has also been linked to some cancers, suggesting it could be a valuable target for drug development. This review provides a summary of TMPRSS2 inhibitors currently under study, with some already in clinical trials to test their effectiveness against viral infections. As we uncover more about TMPRSS2's role in pathogenesis, it could open new doors for therapies to combat future outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio Daishi Sasaki
- Graduate Program of Biosystems, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-045, Brazil; (G.B.d.L.); (E.N.); (F.T.); (C.P.); (R.F.A.P.)
| |
Collapse
|
4
|
Hutchinson EC, Amorim MJ, Yamauchi Y. Understanding Influenza. Methods Mol Biol 2025; 2890:1-26. [PMID: 39890719 DOI: 10.1007/978-1-0716-4326-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease, and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This chapter briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we currently understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Maria João Amorim
- Católica Biomedical Research Centre (CBR), Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
5
|
Acocal-Juárez E, Márquez-Domínguez L, Vallejo-Ruíz V, Cedillo L, Santos-López G. Baloxavir Resistance Markers in Influenza A and B Viruses in the Americas. Drug Healthc Patient Saf 2024; 16:105-113. [PMID: 39296541 PMCID: PMC11410037 DOI: 10.2147/dhps.s470868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/20/2024] [Indexed: 09/21/2024] Open
Abstract
Aim Influenza control demands multifaceted strategies, including antiviral drugs. Baloxavir, a recent addition to influenza treatment, acts as an inhibitor of the Polymerase acid (PA) component of the viral polymerase. However, mutations associated with resistance have been identified. Purpose This study analyzed PA gene sequences of influenza A and B viruses (IAV and IBV, respectively) reported in the Americas, retrieved from databases published until May 2023, to identify primary markers of resistance to baloxavir. Patients and Methods PA gene sequences were obtained from the GISAID and NCBI databases, focusing on countries in the Americas with 500 or more sequences for IAV, and 50 or more sequences for IBV. Results Of the 58,816 PA sequences analyzed for IAV, only 55 (0.1%) harbored resistance markers, representing approximately 1 in 1000 occurrence. The most frequent markers were I38V (21 cases) and I38M (7 cases) at position 38 of PA, followed by E199G (9 cases) at position 199. For IBV, 14,684 sequences were analyzed, of which only eight presented a resistance marker (0.05%). Five sequences had the M34I marker, while the remaining three had the I38V marker. While frequency of resistance markers in PA is comparable to other regions, these results highlight the need for enhanced sequencing efforts, particularly in Latin America. Such efforts would serve to intensify influenza surveillance and inform public health interventions. Conclusion While baloxavir demonstrates efficacy against influenza, resistance markers have been identified, including pre-existing ones. Our study adds eight (IAV: six and IBV: two) new spontaneously occurring substitutions to the existing literature, highlighting the need for continued surveillance. Among these, I38M stands out due to its significant tenfold reduction in drug susceptibility. Therefore, vigilant monitoring of these resistance markers in IAV and IBV remains crucial for maintaining baloxavir's effectiveness and informing future public health interventions.
Collapse
Affiliation(s)
- Erick Acocal-Juárez
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla Pue, Mexico
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla México, Puebla Pue, Mexico
| | - Luis Márquez-Domínguez
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Verónica Vallejo-Ruíz
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla México, Puebla Pue, Mexico
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
6
|
Kumar G, Sakharam KA. Tackling Influenza A virus by M2 ion channel blockers: Latest progress and limitations. Eur J Med Chem 2024; 267:116172. [PMID: 38330869 DOI: 10.1016/j.ejmech.2024.116172] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Influenza outbreaks cause pandemics in millions of people. The treatment of influenza remains a challenge due to significant genetic polymorphism in the influenza virus. Also, developing vaccines to protect against seasonal and pandemic influenza infections is constantly impeded. Thus, antibiotics are the only first line of defense against antigenically distinct strains or new subtypes of influenza viruses. Among several anti-influenza targets, the M2 protein of the influenza virus performs several activities. M2 protein is an ion channel that permits proton conductance through the virion envelope and the deacidification of the Golgi apparatus. Both these functions are critical for viral replication. Thus, targeting the M2 protein of the influenza virus is an essential target. Rimantadine and amantadine are two well-known drugs that act on the M2 protein. However, these drugs acquired resistance to influenza and thus are not recommended to treat influenza infections. This review discusses an overview of anti-influenza therapy, M2 ion channel functions, and its working principle. It also discusses the M2 structure and its role, and the change in the structure leads to mutant variants of influenza A virus. We also shed light on the recently identified compounds acting against wild-type and mutated M2 proteins of influenza virus A. These scaffolds could be an alternative to M2 inhibitors and be developed as antibiotics for treating influenza infections.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kakade Aditi Sakharam
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
7
|
Meng X, Veit M. Palmitoylation of the hemagglutinin of influenza B virus by ER-localized DHHC enzymes 1, 2, 4, and 6 is required for efficient virus replication. J Virol 2023; 97:e0124523. [PMID: 37792001 PMCID: PMC10617437 DOI: 10.1128/jvi.01245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Influenza viruses are a public health concern since they cause seasonal outbreaks and occasionally pandemics. Our study investigates the importance of a protein modification called "palmitoylation" in the replication of influenza B virus. Palmitoylation involves attaching fatty acids to the viral protein hemagglutinin and has previously been studied for influenza A virus. We found that this modification is important for the influenza B virus to replicate, as mutating the sites where palmitate is attached prevented the virus from generating viable particles. Our experiments also showed that this modification occurs in the endoplasmic reticulum. We identified the specific enzymes responsible for this modification, which are different from those involved in palmitoylation of HA of influenza A virus. Overall, our research illuminates the similarities and differences in fatty acid attachment to HA of influenza A and B viruses and identifies the responsible enzymes, which might be promising targets for anti-viral therapy.
Collapse
Affiliation(s)
- Xiaorong Meng
- Veterinary Faculty, Institute for Virology, Freie Universität Berlin , Berlin, Germany
| | - Michael Veit
- Veterinary Faculty, Institute for Virology, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
8
|
Pekarek MJ, Weaver EA. Existing Evidence for Influenza B Virus Adaptations to Drive Replication in Humans as the Primary Host. Viruses 2023; 15:2032. [PMID: 37896807 PMCID: PMC10612074 DOI: 10.3390/v15102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza B virus (IBV) is one of the two major types of influenza viruses that circulate each year. Unlike influenza A viruses, IBV does not harbor pandemic potential due to its lack of historical circulation in non-human hosts. Many studies and reviews have highlighted important factors for host determination of influenza A viruses. However, much less is known about the factors driving IBV replication in humans. We hypothesize that similar factors influence the host restriction of IBV. Here, we compile and review the current understanding of host factors crucial for the various stages of the IBV viral replication cycle. While we discovered the research in this area of IBV is limited, we review known host factors that may indicate possible host restriction of IBV to humans. These factors include the IBV hemagglutinin (HA) protein, host nuclear factors, and viral immune evasion proteins. Our review frames the current understanding of IBV adaptations to replication in humans. However, this review is limited by the amount of research previously completed on IBV host determinants and would benefit from additional future research in this area.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
9
|
Sreenivasan CC, Liu R, Gao R, Guo Y, Hause BM, Thomas M, Naveed A, Clement T, Rausch D, Christopher-Hennings J, Nelson E, Druce J, Zhao M, Kaushik RS, Li Q, Sheng Z, Wang D, Li F. Influenza C and D Viruses Demonstrated a Differential Respiratory Tissue Tropism in a Comparative Pathogenesis Study in Guinea Pigs. J Virol 2023; 97:e0035623. [PMID: 37199648 PMCID: PMC10308911 DOI: 10.1128/jvi.00356-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Yicheng Guo
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Ahsan Naveed
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Travis Clement
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Dana Rausch
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Julian Druce
- Virology Section, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Miaoyun Zhao
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Radhey S. Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Dan Wang
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Feng Li
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Ghafoori SM, Petersen GF, Conrady DG, Calhoun BM, Stigliano MZZ, Baydo RO, Grice R, Abendroth J, Lorimer DD, Edwards TE, Forwood JK. Structural characterisation of hemagglutinin from seven Influenza A H1N1 strains reveal diversity in the C05 antibody recognition site. Sci Rep 2023; 13:6940. [PMID: 37117205 PMCID: PMC10140725 DOI: 10.1038/s41598-023-33529-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Influenza virus (IV) causes several outbreaks of the flu each year resulting in an economic burden to the healthcare system in the billions of dollars. Several influenza pandemics have occurred during the last century and estimated to have caused 100 million deaths. There are four genera of IV, A (IVA), B (IVB), C (IVC), and D (IVD), with IVA being the most virulent to the human population. Hemagglutinin (HA) is an IVA surface protein that allows the virus to attach to host cell receptors and enter the cell. Here we have characterised the high-resolution structures of seven IVA HAs, with one in complex with the anti-influenza head-binding antibody C05. Our analysis revealed conserved receptor binding residues in all structures, as seen in previously characterised IV HAs. Amino acid conservation is more prevalent on the stalk than the receptor binding domain (RBD; also called the head domain), allowing the virus to escape from antibodies targeting the RBD. The equivalent site of C05 antibody binding to A/Denver/57 HA appears hypervariable in the other H1N1 IV HAs. Modifications within this region appear to disrupt binding of the C05 antibody, as these HAs no longer bind the C05 antibody by analytical SEC. Our study brings new insights into the structural and functional recognition of IV HA proteins and can contribute to further development of anti-influenza vaccines.
Collapse
Affiliation(s)
- Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Gayle F Petersen
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Deborah G Conrady
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Brandy M Calhoun
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Matthew Z Z Stigliano
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Ruth O Baydo
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Rena Grice
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Donald D Lorimer
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Thomas E Edwards
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
11
|
Pushan SS, Samantaray M, Rajagopalan M, Ramaswamy A. Evolution of Indian Influenza A (H1N1) Hemagglutinin Strains: A Comparative Analysis of the Pandemic Californian HA Strain. Front Mol Biosci 2023; 10:1111869. [PMID: 37006623 PMCID: PMC10061220 DOI: 10.3389/fmolb.2023.1111869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
The need for a vaccine/inhibitor design has become inevitable concerning the emerging epidemic and pandemic viral infections, and the recent outbreak of the influenza A (H1N1) virus is one such example. From 2009 to 2018, India faced severe fatalities due to the outbreak of the influenza A (H1N1) virus. In this study, the potential features of reported Indian H1N1 strains are analyzed in comparison with their evolutionarily closest pandemic strain, A/California/04/2009. The focus is laid on one of its surface proteins, hemagglutinin (HA), which imparts a significant role in attacking the host cell surface and its entry. The extensive analysis performed, in comparison with the A/California/04/2009 strain, revealed significant point mutations in all Indian strains reported from 2009 to 2018. Due to these mutations, all Indian strains disclosed altered features at the sequence and structural levels, which are further presumed to be associated with their functional diversity as well. The mutations observed with the 2018 HA sequence such as S91R, S181T, S200P, I312V, K319T, I419M, and E523D might improve the fitness of the virus in a new host and environment. The higher fitness and decreased sequence similarity of mutated strains may compromise therapeutic efficacy. In particular, the mutations observed commonly, such as serine-to-threonine, alanine-to-threonine, and lysine-to-glutamine at various regions, alter the physico-chemical features of receptor-binding domains, N-glycosylation, and epitope-binding sites when compared with the reference strain. Such mutations render diversity among all Indian strains, and the structural and functional characterization of these strains becomes inevitable. In this study, we observed that mutational drift results in the alteration of the receptor-binding domain, the generation of new variant N-glycosylation along with novel epitope-binding sites, and modifications at the structural level. Eventually, the pressing need to develop potentially distinct next-generation therapeutic inhibitors against the HA strains of the Indian influenza A (H1N1) virus is also highlighted here.
Collapse
Affiliation(s)
- Shilpa Sri Pushan
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Mahesh Samantaray
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Muthukumaran Rajagopalan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Amutha Ramaswamy
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
12
|
Sun J, Wang N, Jiang Z, Li D, Zhao J, Li X, Gong L, Zhang C, He H, Su S, Zhang G, Veit M. Are companion animals overlooked intermediate hosts for the cross-species transmission of influenza viruses? J Infect 2023; 86:154-225. [PMID: 36521563 DOI: 10.1016/j.jinf.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Jiumeng Sun
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Ningning Wang
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Zhiwen Jiang
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Dongyan Li
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Jin Zhao
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Xinxin Li
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Chang Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Haijian He
- Agricultural College, Jinhua Polytechnic, Jinhua 320017, China
| | - Shuo Su
- Sanya Institute of Nanjing Agricultural University, Sanya, China.
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Germany.
| |
Collapse
|
13
|
Doostkam A, Malekmakan L, Hosseinpour A, Janfeshan S, Roozbeh J, Masjedi F. Sialic acid: an attractive biomarker with promising biomedical applications. ASIAN BIOMED 2022; 16:153-167. [PMID: 37551166 PMCID: PMC10321195 DOI: 10.2478/abm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Alireza Hosseinpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz7134853185, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| |
Collapse
|
14
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
15
|
Zhao Y, Zhao L, Li Y, Liu Q, Deng L, Lu Y, Zhang X, Li S, Ge J, Bu Z, Ping J. An influenza virus vector candidate vaccine stably expressing SARS-CoV-2 receptor-binding domain produces high and long-lasting neutralizing antibodies in mice. Vet Microbiol 2022; 271:109491. [PMID: 35714529 PMCID: PMC9181763 DOI: 10.1016/j.vetmic.2022.109491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Viral infectious pathogens, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, can cause extremely high infection rates and mortality in humans. Therefore, it is urgent to develop an effective vaccine against coronavirus and influenza virus infection. Herein, we used the influenza virus as a vector to express the SARS-CoV-2 spike receptor-binding domain (RBD) and hemagglutinin-esterase-fusion (HEF) protein of the influenza C virus. We then evaluated the feasibility and effectiveness of this design strategy through experiments in vitro and in vivo. The results showed that the chimeric viruses could stably express the HEF protein and the SARS-CoV-2 spike RBD at a high level. BALB/c mice, infected with the chimeric virus, exhibited mild clinical symptoms, yet produced high specific antibody levels against RBD and HEF, including neutralizing antibodies. Importantly, high neutralizing antibodies could be retained in the sera of mice for at least 20 weeks. Altogether, our data provided a new strategy for developing safe and effective COVID-19 and influenza virus vaccines.
Collapse
Affiliation(s)
- Yongzhen Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoting Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shengmin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Ruiz PAS, Ziebert F, Kulić IM. Physics of self-rolling viruses. Phys Rev E 2022; 105:054411. [PMID: 35706307 DOI: 10.1103/physreve.105.054411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Viruses are right at the interface of inanimate matter and life. However, recent experiments [Sakai et al., J. Virol. 92, e01522-17 (2018)0022-538X10.1128/JVI.01522-17] have shown that some influenza strains can actively roll on glycan-covered surfaces. In a previous letter [Ziebert and Kulić, Phys. Rev. Lett. 126, 218101 (2021)0031-900710.1103/PhysRevLett.126.218101] we suggested this to be a form of viral surface metabolism: a collection of spike proteins that attach to and cut the glycans act as a self-organized mechano-chemical motor. Here we study in more depth the physics of the emergent self-rolling states. We give scaling arguments how the motion arises, substantiated by a detailed analytical theory that yields the full torque-angular velocity relation of the self-organized motor. Stochastic Gillespie simulations are used to validate the theory and to quantify stochastic effects like virus detachment and reversals of its direction. Finally, we also cross-check several approximations made previously and show that the proposed mechanism is very robust. All these results point together to the statistical inevitability of viral rolling in the presence of enzymatic activity.
Collapse
Affiliation(s)
- Pedro A Soria Ruiz
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
- BioQuant, Heidelberg University, D-69120 Heidelberg, Germany
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, F-67034 Strasbourg, France
- Institute Theory of Polymers, Leibniz-Institute of Polymer Research, D-01069 Dresden, Germany
| |
Collapse
|
17
|
Schrottmaier WC, Schmuckenschlager A, Pirabe A, Assinger A. Platelets in Viral Infections - Brave Soldiers or Trojan Horses. Front Immunol 2022; 13:856713. [PMID: 35419008 PMCID: PMC9001014 DOI: 10.3389/fimmu.2022.856713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are often associated with platelet activation and haemostatic complications. In line, low platelet counts represent a hallmark for poor prognosis in many infectious diseases. The underlying cause of platelet dysfunction in viral infections is multifaceted and complex. While some viruses directly interact with platelets and/or megakaryocytes to modulate their function, also immune and inflammatory responses directly and indirectly favour platelet activation. Platelet activation results in increased platelet consumption and degradation, which contributes to thrombocytopenia in these patients. The role of platelets is often bi-phasic. Initial platelet hyper-activation is followed by a state of platelet exhaustion and/or hypo-responsiveness, which together with low platelet counts promotes bleeding events. Thereby infectious diseases not only increase the thrombotic but also the bleeding risk or both, which represents a most dreaded clinical complication. Treatment options in these patients are limited and new therapeutic strategies are urgently needed to prevent adverse outcome. This review summarizes the current literature on platelet-virus interactions and their impact on viral pathologies and discusses potential intervention strategies. As pandemics and concomitant haemostatic dysregulations will remain a recurrent threat, understanding the role of platelets in viral infections represents a timely and pivotal challenge.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Hassan M, Iqbal MS, Naqvi S, Alashwal H, Moustafa AA, Kloczkowski A. Prediction of Site Directed miRNAs as Key Players of Transcriptional Regulators Against Influenza C Virus Infection Through Computational Approaches. Front Mol Biosci 2022; 9:866072. [PMID: 35463952 PMCID: PMC9023806 DOI: 10.3389/fmolb.2022.866072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in gene expression, cell differentiation, and immunity against viral infections. In this study, we have used the computational tools, RNA22, RNAhybrid, and miRanda, to predict the microRNA-mRNA binding sites to find the putative microRNAs playing role in the host response to influenza C virus infection. This computational research screened the following four miRNAs: hsa-mir-3155a, hsa-mir-6796-5p, hsa-mir-3194-3p and hsa-mir-4673, which were further investigated for binding site prediction to the influenza C genome. Moreover, multiple sites in protein-coding region (HEF, CM2, M1-M2, NP, NS1- NS2, NSF, P3, PB1 and PB2) were predicted by RNA22, RNAhybrid and miRanda. Furthermore, 3D structures of all miRNAs and HEF were predicted and checked for their binding potential through molecular docking analysis. The comparative results showed that among all proteins, HEF is higher in prevalence throughout the analysis as a potential (human-derived) microRNAs target. The target-site conservation results showed that core nucleotide sequence in three different strains is responsible for potential miRNA binding to different viral strains. Further steps to use these microRNAs may lead to new therapeutic insights on fighting influenza virus infection.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH, United States
- *Correspondence: Mubashir Hassan, ; Hany Alashwal, ; Andrzej Kloczkowski,
| | - Muhammad Shahzad Iqbal
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sawaira Naqvi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Hany Alashwal
- College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Mubashir Hassan, ; Hany Alashwal, ; Andrzej Kloczkowski,
| | - Ahmed A. Moustafa
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, QLD, Australia
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- *Correspondence: Mubashir Hassan, ; Hany Alashwal, ; Andrzej Kloczkowski,
| |
Collapse
|
19
|
Zhang X, Abel T, Su S, Herrmann A, Ludwig K, Veit M. Structural and functional analysis of the roles of influenza C virus membrane proteins in assembly and budding. J Biol Chem 2022; 298:101727. [PMID: 35157850 PMCID: PMC8914389 DOI: 10.1016/j.jbc.2022.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Assembly and budding of the influenza C virus is mediated by three membrane proteins: the hemagglutinin-esterase-fusion glycoprotein (HEF), the matrix protein (CM1), and the ion channel (CM2). Here we investigated whether the formation of the hexagonal HEF arrangement, a distinctive feature of influenza C virions is important for virus budding. We used super resolution microscopy and found 250-nm sized HEF clusters at the plasma membrane of transfected cells, which were insensitive to cholesterol extraction and cytochalasin treatment. Overexpression of either CM1, CM2, or HEF caused the release of membrane-enveloped particles. Cryo-electron microscopy of the latter revealed spherical vesicles exhibiting the hexagonal HEF clusters. We subsequently used reverse genetics to identify elements in HEF required for this clustering. We found that deletion of the short cytoplasmic tail of HEF reduced virus titer and hexagonal HEF arrays, suggesting that an interaction with CM1 stabilizes the HEF clusters. In addition, we substituted amino acids at the surface of the closed HEF conformation and identified specific mutations that prevented virus rescue, others reduced virus titers and the number of HEF clusters in virions. Finally, mutation of two regions that mediate contacts between trimers in the in-situ structure of HEF was shown to prevent rescue of infectious virus particles. Mutations at residues thought to mediate lateral interactions were revealed to promote intracellular trafficking defects. Taken together, we propose that lateral interactions between the ectodomains of HEF trimers are a driving force for virus budding, although CM2 and CM1 also play important roles in this process.
Collapse
Affiliation(s)
- Xu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Tim Abel
- Institut für Biologie/Molekulare Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Andreas Herrmann
- Institut für Biologie/Molekulare Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany; Biophysikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Kai Ludwig
- Department of Chemistry and Biochemistry and Core Facility BioSupraMol, Research Center of Electron Microscopy, Free University Berlin, Berlin, Germany
| | - Michael Veit
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Daniels RS, Galiano M, Ermetal B, Kwong J, Lau CS, Xiang Z, McCauley JW, Lo J. Temporal and Gene Reassortment Analysis of Influenza C Virus Outbreaks in Hong Kong, SAR, China. J Virol 2022; 96:e0192821. [PMID: 34787455 PMCID: PMC8826914 DOI: 10.1128/jvi.01928-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.
Collapse
Affiliation(s)
- Rodney S. Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Monica Galiano
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Burcu Ermetal
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Jasmine Kwong
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Chi S. Lau
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Zheng Xiang
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - John W. McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
21
|
Serrão VHB, Lee JE. Detecting in-solution conformational changes in viral fusogens using tryptophan-induced fluorescence quenching. STAR Protoc 2021; 2:100994. [PMID: 34934961 PMCID: PMC8654978 DOI: 10.1016/j.xpro.2021.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dynamic monitoring of protein conformational changes is necessary to fully understand many biological processes. For example, viral entry and membrane fusion require rearrangement of its viral glycoprotein. We present a step-by-step protocol for site-specific bimane labeling of the influenza-C fusogen to map proximity and conformational movements using tryptophan-induced fluorescence quenching. This protocol is adaptable for other proteins and for protein-protein interaction detection. For complete details on the use and execution of this protocol, please refer to Serrão et al., 2021.
Collapse
Affiliation(s)
- Vitor Hugo B. Serrão
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
22
|
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses-A Comparative Review on Influenza C and D. Pathogens 2021; 10:1583. [PMID: 34959538 PMCID: PMC8704295 DOI: 10.3390/pathogens10121583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Other than genome structure, influenza C (ICV), and D (IDV) viruses with seven-segmented genomes are biologically different from the eight-segmented influenza A (IAV), and B (IBV) viruses concerning the presence of hemagglutinin-esterase fusion protein, which combines the function of hemagglutinin and neuraminidase responsible for receptor-binding, fusion, and receptor-destroying enzymatic activities, respectively. Whereas ICV with humans as primary hosts emerged nearly 74 years ago, IDV, a distant relative of ICV, was isolated in 2011, with bovines as the primary host. Despite its initial emergence in swine, IDV has turned out to be a transboundary bovine pathogen and a broader host range, similar to influenza A viruses (IAV). The receptor specificities of ICV and IDV determine the host range and the species specificity. The recent findings of the presence of the IDV genome in the human respiratory sample, and high traffic human environments indicate its public health significance. Conversely, the presence of ICV in pigs and cattle also raises the possibility of gene segment interactions/virus reassortment between ICV and IDV where these viruses co-exist. This review is a holistic approach to discuss the ecology of seven-segmented influenza viruses by focusing on what is known so far on the host range, seroepidemiology, biology, receptor, phylodynamics, species specificity, and cross-species transmission of the ICV and IDV.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| |
Collapse
|
23
|
Sato K, Hayashi H, Shimotai Y, Yamaya M, Hongo S, Kawakami K, Matsuzaki Y, Nishimura H. TMPRSS2 Activates Hemagglutinin-Esterase Glycoprotein of Influenza C Virus. J Virol 2021; 95:e0129621. [PMID: 34406864 PMCID: PMC8513465 DOI: 10.1128/jvi.01296-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Influenza C virus (ICV) has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein. HE functions similarly to hemagglutinin (HA) and neuraminidase of the influenza A and B viruses (IAV and IBV, respectively). It has a monobasic site, which is cleaved by some host enzymes. The cleavage is essential to activating the virus, but the enzyme or enzymes in the respiratory tract have not been identified. This study investigated whether the host serine proteases, transmembrane protease serine S1 member 2 (TMPRSS2) and human airway trypsin-like protease (HAT), which reportedly cleave HA of IAV/IBV, are involved in HE cleavage. We established TMPRSS2- and HAT-expressing MDCK cells (MDCK-TMPRSS2 and MDCK-HAT). ICV showed multicycle replication with HE cleavage without trypsin in MDCK-TMPRSS2 cells as well as IAV did. The HE cleavage and multicycle replication did not appear in MDCK-HAT cells infected with ICV without trypsin, while HA cleavage and multistep growth of IAV appeared in the cells. Amino acid sequences of the HE cleavage site in 352 ICV strains were completely preserved. Camostat and nafamostat suppressed the growth of ICV and IAV in human nasal surface epithelial (HNE) cells. Therefore, this study revealed that, at least, TMPRSS2 is involved in HE cleavage and suggested that nafamostat could be a candidate for therapeutic drugs for ICV infection. IMPORTANCE Influenza C virus (ICV) is a pathogen that causes acute respiratory illness, mostly in children, but there are no anti-ICV drugs. ICV has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein on the virion surface, which possesses receptor-binding, receptor-destroying, and membrane fusion activities. The HE cleavage is essential for the virus to be activated, but the enzyme or enzymes in the respiratory tract have not been identified. This study revealed that transmembrane protease serine S1 member 2 (TMPRSS2), and not human airway trypsin-like protease (HAT), is involved in HE cleavage. This is a novel study on the host enzymes involved in HE cleavage, and the result suggests that the host enzymes, such as TMPRSS2, may be a target for therapeutic drugs of ICV infection.
Collapse
Affiliation(s)
- Ko Sato
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Sakamoto, Nagasaki, Japan
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate school of Medicine, Sendai, Miyagi, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| |
Collapse
|
24
|
Zandi M, Behboudi E, Soltani S. Letter to the Editor: Can the seasonal influenza vaccine for 2019/2020 have cross reactivity with some of the SARS-CoV-2 proteins? Int J Infect Dis 2021; 110:235-236. [PMID: 34325045 PMCID: PMC8312046 DOI: 10.1016/j.ijid.2021.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Identification of One Critical Amino Acid Residue of the Nucleoprotein as a Determinant for In Vitro Replication Fitness of Influenza D Virus. J Virol 2021; 95:e0097121. [PMID: 34190601 DOI: 10.1128/jvi.00971-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The newly identified influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range with a broad geographical distribution. Despite the first appearance in U.S. pig herds in 2011, subsequent studies demonstrated that IDV is widespread in global cattle populations, supporting a theory that IDV utilizes bovines as a primary reservoir. Our investigation of the two reference influenza D viruses, D/swine/Oklahoma/1334/2011 (OK/11), isolated from swine, and D/Bovine/Oklahoma/660/2013 (660/13), isolated from cattle, revealed that 660/13 replicated to titers approximately 100-fold higher than those for OK/11 in multiple cell lines. By using a recently developed IDV reverse-genetics system derived from low-titer OK/11, we generated recombinant chimeric OK/11 viruses in which one of the seven genome segments was replaced with its counterpart from high-titer 660/13 virus. Further characterization demonstrated that the replication level of the chimeric OK/11 virus was significantly increased only when harboring the 660/13 nucleoprotein (NP) segment. Finally, through both gain-of-function and loss-of-function experiments, we identified that one amino acid residue at position 381, located in the body domain of NP protein, was a key determinant for the replication difference between the low-titer OK/11 virus and the high-titer 660/13 virus. Taken together, our findings provide important insight into IDV replication fitness mediated by the NP protein, which should facilitate future study of the infectious virus particle production mechanism of IDV. IMPORTANCE Little is known about the virus infection and production mechanism for newly discovered influenza D virus (IDV), which utilizes bovines as a primary reservoir, with frequent spillover to new hosts, including swine. In this study, we showed that of two well-characterized IDVs, 660/13 replicated more efficiently (approximately 100-fold higher) than OK/11. Using a recently developed IDV reverse-genetics system, we identified viral nucleoprotein (NP) as a primary determinant of the different replication capacities observed between these two nearly identical viruses. Mechanistic investigation further revealed that a mutation at NP position 381 evidently modulated virus fitness. Taken together, these observations indicate that IDV NP protein performs a critical role in infectious virus particle production. Our study thus illustrates an NP-based mechanism for efficient IDV infection and production in vitro.
Collapse
|
26
|
Zhao MZ, Guo X, Sun B, Sun XF, Pang GF, Yang LY, Zhao X, Sun LX, Zhang Q. HA of H1N1 enhanced the expression of ICAM-1 and IL-6 in HUVECs and pathological injury in the lungs in mice. Gene 2021; 801:145854. [PMID: 34274468 PMCID: PMC8302257 DOI: 10.1016/j.gene.2021.145854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 01/18/2023]
Abstract
Objective Both COVID-19 and influenza are viral respiratory tract infections and the epidemics of viral respiratory tract infections remain highly prevalent with lethal consequences in susceptible individuals. Expression of ICAM-1 on vascular endothelium recruits leukocytes which initiates inflammation. IL-6 induces ICAM-1. Both ICAM-1 and IL-6 can be enhanced in influenza virus infection and COVID-19 patients. Besides initiation of virus entry host cells, whether HA alone, instead of whole virus, of influenza has the effects on expression of ICAM-1 and IL-6 in vascular endothelium with injury in the lungs, remains to be demonstrated. Methods RT-qPCR and Western blot as well as histopathologic examination were used to examine mRNA and protein of ICAM-1 and IL-6 as well as pathological injury in the lung tissues, respectively. Results After incubation of the Human Umbilical Vein Endothelial Cells (HUVECs) with HA of H1N1 for 24 h, the mRNA and protein of ICAM-1 and IL-6 in HUVECs were increased in group of 5 μg/ml concentration with statistical significance (p < 0.05). Pathological injury in lung tissues of the mice was shown 12 h after tail intravenous injection with 100 μl of HA (50 μg/ml and 100 μg/ml in normal saline), including widened alveolar spaces with angiotelectasis in alveolar wall, alveolar luminal and interstitial inflammatory infiltrates, alveolar luminal erythrocyte effusion. Conclusions HA alone, instead of whole H1N1 virus, induced more expression of ICAM-1 and IL-6, two molecules involving in pathological and inflammatory responses, in HUVECs and pathological injury in lung tissues of the mice. This knowledge provides a new HA-targeted potential direction for prevention and treatment of disease related to H1N1 infection.
Collapse
Affiliation(s)
- Ming-Zhen Zhao
- Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Xiang Guo
- Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Bo Sun
- Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Xiao-Fang Sun
- Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Gui-Fen Pang
- Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Lin-Ying Yang
- Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Xing Zhao
- Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Li-Xin Sun
- Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Qing Zhang
- Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China.
| |
Collapse
|
27
|
Burzyńska P, Sobala ŁF, Mikołajczyk K, Jodłowska M, Jaśkiewicz E. Sialic Acids as Receptors for Pathogens. Biomolecules 2021; 11:831. [PMID: 34199560 PMCID: PMC8227644 DOI: 10.3390/biom11060831] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrates have long been known to mediate intracellular interactions, whether within one organism or between different organisms. Sialic acids (Sias) are carbohydrates that usually occupy the terminal positions in longer carbohydrate chains, which makes them common recognition targets mediating these interactions. In this review, we summarize the knowledge about animal disease-causing agents such as viruses, bacteria and protozoa (including the malaria parasite Plasmodium falciparum) in which Sias play a role in infection biology. While Sias may promote binding of, e.g., influenza viruses and SV40, they act as decoys for betacoronaviruses. The presence of two common forms of Sias, Neu5Ac and Neu5Gc, is species-specific, and in humans, the enzyme converting Neu5Ac to Neu5Gc (CMAH, CMP-Neu5Ac hydroxylase) is lost, most likely due to adaptation to pathogen regimes; we discuss the research about the influence of malaria on this trait. In addition, we present data suggesting the CMAH gene was probably present in the ancestor of animals, shedding light on its glycobiology. We predict that a better understanding of the role of Sias in disease vectors would lead to more effective clinical interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Jaśkiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (P.B.); (Ł.F.S.); (K.M.); (M.J.)
| |
Collapse
|
28
|
Ziebert F, Kulić IM. How Influenza's Spike Motor Works. PHYSICAL REVIEW LETTERS 2021; 126:218101. [PMID: 34114881 DOI: 10.1103/physrevlett.126.218101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
While often believed to be a passive agent that merely exploits its host's metabolism, the influenza virus has recently been shown to actively move across glycan-coated surfaces. This form of enzymatically driven surface motility is currently not well understood and has been loosely linked to burnt-bridge Brownian ratchet mechanisms. Starting from known properties of influenza's spike proteins, we develop a physical model that quantitatively describes the observed motility. It predicts a collectively emerging dynamics of spike proteins and surface-bound ligands that combined with the virus' geometry give rise to a self-organized rolling propulsion. We show that in contrast to a Brownian ratchet, the rotary spike drive is not fluctuation driven but operates optimally as a macroscopic engine in the deterministic regime. The mechanism also applies to relatives of influenza and to man-made analogs like DNA monowheels and should give guidelines for their optimization.
Collapse
Affiliation(s)
- Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany and BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France and Institute Theory of Polymers, Leibniz-Institute of Polymer Research, D-01069 Dresden, Germany
| |
Collapse
|
29
|
Serrão VHB, Cook JD, Lee JE. Snapshot of an influenza virus glycoprotein fusion intermediate. Cell Rep 2021; 35:109152. [PMID: 34010634 DOI: 10.1016/j.celrep.2021.109152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Enveloped virus entry requires the fusion of cellular and viral membranes, a process directed by their viral fusion glycoproteins. Our current knowledge of this process has been shaped by structural studies of the pre- and post-fusion conformations of these viral fusogens. These structural snapshots have revealed the start and end states necessary for fusion, but the dynamics of the intermediate conformations have remained unclear. Using the influenza C virus hemagglutinin-esterase-fusion glycoprotein as a model, we report the structural and biophysical characterization of a trapped intermediate. Crystallographic studies revealed a structural reorganization of the C terminus to create a second chain reversal region, resulting in the N and C termini being positioned in opposing directions. Intrinsic tryptophan fluorescence and bimane-induced quenching measurements suggest intermediate formation is mediated by conserved hydrophobic residues. Our study reveals a late-stage extended intermediate structural event. This work adds to our understanding of virus cell fusion.
Collapse
Affiliation(s)
- Vitor Hugo B Serrão
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
30
|
Tissue Microarrays to Visualize Influenza D Attachment to Host Receptors in the Respiratory Tract of Farm Animals. Viruses 2021; 13:v13040586. [PMID: 33807137 PMCID: PMC8067312 DOI: 10.3390/v13040586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
The trimeric hemagglutinin-esterase fusion protein (HEF) of influenza D virus (IDV) binds 9-O-acetylated sialic acid receptors, which are expressed in various host species. While cattle are the main reservoir for IDV, the viral genome has also been detected in domestic pigs. In addition, antibodies against IDV have been detected in other farm animals such as sheep, goats, and horses, and even in farmers working with IDV positive animals. Viruses belonging to various IDV clades circulate, but little is known about their differences in host and tissue tropism. Here we used recombinantly produced HEF proteins (HEF S57A) from the major clades D/Oklahoma (D/OK) and D/Oklahoma/660 (D/660) to study their host and tissue tropism and receptor interactions. To this end, we developed tissue microarrays (TMA) composed of respiratory tissues from various farm animals including cattle, domestic pigs, sheep, goats, and horses. Protein histochemical staining of farm animal respiratory tissue-microarrays with HEF proteins showed that cattle have receptors present over the entire respiratory tract while receptors are only present in the nasal and pharyngeal epithelium of pigs, sheep, goats, and horses. No differences in tropism for tissues and animals were observed between clades, while hemagglutination assays showed that D/OK has a 2-fold higher binding affinity than D/660 for receptors on red blood cells. The removal of O-acetylation from receptors via saponification treatment confirmed that receptor-binding of both clades was dependent on O-acetylated sialic acids.
Collapse
|
31
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
32
|
Abstract
From its initial isolation in the USA in 2011 to the present, influenza D virus (IDV) has been detected in cattle and swine populations worldwide. IDV has exceptional thermal and acid stability and a broad host range. The virus utilizes cattle as its natural reservoir and amplification host with periodic spillover to other mammalian species, including swine. IDV infection can cause mild to moderate respiratory illnesses in cattle and has been implicated as a contributor to bovine respiratory disease (BRD) complex, which is the most common and costly disease affecting the cattle industry. Bovine and swine IDV outbreaks continue to increase globally, and there is increasing evidence indicating that IDV may have the potential to infect humans. This review discusses recent advances in IDV biology and epidemiology, and summarizes our current understanding of IDV pathogenesis and zoonotic potential.
Collapse
Affiliation(s)
- Jieshi Yu
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
33
|
Daniels RS, Tse H, Ermetal B, Xiang Z, Jackson DJ, Guntoro J, Nicod J, Stewart A, Cross KJ, Hussain S, McCauley JW, Lo J. Molecular Characterization of Influenza C Viruses from Outbreaks in Hong Kong SAR, China. J Virol 2020; 94:e01051-20. [PMID: 32817211 PMCID: PMC7565627 DOI: 10.1128/jvi.01051-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Substitution
- Child
- Child, Preschool
- Disease Outbreaks
- Epidemiological Monitoring
- Female
- Gene Expression
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- High-Throughput Nucleotide Sequencing
- Hong Kong/epidemiology
- Humans
- Infant
- Influenza, Human/epidemiology
- Influenza, Human/pathology
- Influenza, Human/virology
- Gammainfluenzavirus/enzymology
- Gammainfluenzavirus/genetics
- Male
- Middle Aged
- Models, Molecular
- Molecular Epidemiology
- Mutation
- Phylogeny
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Retrospective Studies
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rodney S Daniels
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Herman Tse
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Burcu Ermetal
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Zheng Xiang
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Deborah J Jackson
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jeremy Guntoro
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jérôme Nicod
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics & Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Karen J Cross
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Saira Hussain
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - John W McCauley
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
34
|
Sriwilaijaroen N, Suzuki Y. Host Receptors of Influenza Viruses and Coronaviruses-Molecular Mechanisms of Recognition. Vaccines (Basel) 2020; 8:E587. [PMID: 33036202 PMCID: PMC7712180 DOI: 10.3390/vaccines8040587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Among the four genera of influenza viruses (IVs) and the four genera of coronaviruses (CoVs), zoonotic αIV and βCoV have occasionally caused airborne epidemic outbreaks in humans, who are immunologically naïve, and the outbreaks have resulted in high fatality rates as well as social and economic disruption and losses. The most devasting influenza A virus (IAV) in αIV, pandemic H1N1 in 1918, which caused at least 40 million deaths from about 500 million cases of infection, was the first recorded emergence of IAVs in humans. Usually, a novel human-adapted virus replaces the preexisting human-adapted virus. Interestingly, two IAV subtypes, A/H3N2/1968 and A/H1N1/2009 variants, and two lineages of influenza B viruses (IBV) in βIV, B/Yamagata and B/Victoria lineage-like viruses, remain seasonally detectable in humans. Both influenza C viruses (ICVs) in γIV and four human CoVs, HCoV-229E and HCoV-NL63 in αCoV and HCoV-OC43 and HCoV-HKU1 in βCoV, usually cause mild respiratory infections. Much attention has been given to CoVs since the global epidemic outbreaks of βSARS-CoV in 2002-2004 and βMERS-CoV from 2012 to present. βSARS-CoV-2, which is causing the ongoing COVID-19 pandemic that has resulted in 890,392 deaths from about 27 million cases of infection as of 8 September 2020, has provoked worldwide investigations of CoVs. With the aim of developing efficient strategies for controlling virus outbreaks and recurrences of seasonal virus variants, here we overview the structures, diversities, host ranges and host receptors of all IVs and CoVs and critically review current knowledge of receptor binding specificity of spike glycoproteins, which mediates infection, of IVs and of zoonotic, pandemic and seasonal CoVs.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Yasuo Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
35
|
Zhao L, Xia H, Huang J, Zheng Y, Liu C, Su J, Ping J. Features of Nuclear Export Signals of NS2 Protein of Influenza D Virus. Viruses 2020; 12:v12101100. [PMID: 33003329 PMCID: PMC7600798 DOI: 10.3390/v12101100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
Emerging influenza D viruses (IDVs), the newest member in the genus Orthomyxovirus family, which can infect and transmit in multiple mammalian species as its relatives the influenza A viruses (IAVs). Additional studies of biological characteristics of IDVs are needed; here, we studied the characteristics of IDV nonstructural protein 2 (NS2), which shares the lowest homology to known influenza proteins. First, we generated reassortant viruses via reverse genetics to analyze the segment compatibility and gene interchangeability between IAVs and IDVs. Next, we investigated the locations and exact sequences of nuclear export signals (NESs) of the IDV NS2 protein. Surprisingly, three separate NES regions were found to contribute to the nuclear export of an eGFP fusion protein. Alanine scanning mutagenesis identified critical amino acid residues within each NES, and co-immunoprecipitation experiments demonstrated that their nuclear export activities depend on the CRM1-mediated pathway, particularly for the third NES (136-146aa) of IDV NS2. Interestingly, the third NES was important for the interaction of NS2 protein with CRM1. The findings in this study contribute to the understanding of IDV NS2 protein’s role during nucleocytoplasmic transport of influenza viral ribonucleoprotein complexes (vRNPs) and will also facilitate the development of novel anti-influenza drugs targeting nuclear export signals of IDV NS2 protein.
Collapse
|
36
|
Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Viruses 2020; 12:v12091053. [PMID: 32971825 PMCID: PMC7551194 DOI: 10.3390/v12091053] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Hemagglutinin (HA) glycoprotein is an important focus of influenza research due to its role in antigenic drift and shift, as well as its receptor binding and membrane fusion functions, which are indispensable for viral entry. Over the past four decades, X-ray crystallography has greatly facilitated our understanding of HA receptor binding, membrane fusion, and antigenicity. The recent advances in cryo-EM have further deepened our comprehension of HA biology. Since influenza HA constantly evolves in natural circulating strains, there are always new questions to be answered. The incessant accumulation of knowledge on the structural biology of HA over several decades has also facilitated the design and development of novel therapeutics and vaccines. This review describes the current status of the field of HA structural biology, how we got here, and what the next steps might be.
Collapse
|
37
|
Hayakawa J, Masuko T, Takehana T, Suzuki T. Genetic and Antigenic Characterization and Retrospective Surveillance of Bovine Influenza D Viruses Identified in Hokkaido, Japan from 2018 to 2020. Viruses 2020; 12:v12080877. [PMID: 32796617 PMCID: PMC7472347 DOI: 10.3390/v12080877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza D virus (IDV), which is a new member of the Orthomyxoviridae family, is potentially involved in bovine respiratory diseases (BRDs). Bovine IDVs (BIDVs) from Japan have been distributed nationwide since 2010 and are genetically distinct from foreign IDVs. We isolated BIDVs from three BRD outbreaks, in Hokkaido during 2018–2020, to understand their genetic and antigenic characteristics. Retrospective surveillance was performed using sera collected throughout the last decade in Hokkaido to investigate BIDV existence. Three BIDVs were isolated using cell culture. Comparative and phylogenetic analyses using sequence data of the three BIDVs and IDVs from Japan and other countries available in GenBank demonstrated that Japanese BIDVs, including the three BIDV isolates, were genetically distinct from other IDVs. Genotype classifications based on the rotavirus genotype classification revealed multiple genotypes of RNA segments 1–7. Two BIDVs were of a new genotype, different from those of other Japanese BIDVs. Neutralization assays against two BIDVs with different genotypes using sera collected in acute and recovery phases of BRD revealed differences in cross-reactivity to heterogenous BIDVs. Retrospective surveillance suggested that BIDV existed in Hokkaido, in 2009. Our findings suggest that BIDVs of different genotypes and antigenicity are distributed and maintained in Hokkaido and provide new insights into molecular characteristics and the evolution of IDVs.
Collapse
Affiliation(s)
- Jun Hayakawa
- Hokkaido Abashiri Livestock Hygiene Service Centre, Kitami, Hokkaido 090-0008, Japan; (J.H.); (T.M.); (T.T.)
| | - Tomomi Masuko
- Hokkaido Abashiri Livestock Hygiene Service Centre, Kitami, Hokkaido 090-0008, Japan; (J.H.); (T.M.); (T.T.)
| | - Tae Takehana
- Hokkaido Abashiri Livestock Hygiene Service Centre, Kitami, Hokkaido 090-0008, Japan; (J.H.); (T.M.); (T.T.)
| | - Tohru Suzuki
- Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
- Correspondence: ; Tel.: +81-11-851-2132; Fax: +81-11-853-0767
| |
Collapse
|
38
|
Chauhan RP, Gordon ML. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020; 9:pathogens9050355. [PMID: 32397138 PMCID: PMC7281378 DOI: 10.3390/pathogens9050355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
The global anxiety and a significant threat to public health due to the current COVID-19 pandemic reiterate the need for active surveillance for the zoonotic virus diseases of pandemic potential. Influenza virus due to its wide host range and zoonotic potential poses such a significant threat to public health. Swine serve as a “mixing vessel” for influenza virus reassortment and evolution which as a result may facilitate the emergence of new strains or subtypes of zoonotic potential. In this context, the currently available scientific data hold a high significance to unravel influenza virus epidemiology and evolution. With this objective, the current systematic review summarizes the original research articles and case reports of all the four types of influenza viruses reported in swine populations worldwide. A total of 281 articles were found eligible through screening of PubMed and Google Scholar databases and hence were included in this systematic review. The highest number of research articles (n = 107) were reported from Asia, followed by Americas (n = 97), Europe (n = 55), Africa (n = 18), and Australia (n = 4). The H1N1, H1N2, H3N2, and A(H1N1)pdm09 viruses were the most common influenza A virus subtypes reported in swine in most countries across the globe, however, few strains of influenza B, C, and D viruses were also reported in certain countries. Multiple reports of the avian influenza virus strains documented in the last two decades in swine in China, the United States, Canada, South Korea, Nigeria, and Egypt provided the evidence of interspecies transmission of influenza viruses from birds to swine. Inter-species transmission of equine influenza virus H3N8 from horse to swine in China expanded the genetic diversity of swine influenza viruses. Additionally, numerous reports of the double and triple-reassortant strains which emerged due to reassortments among avian, human, and swine strains within swine further increased the genetic diversity of swine influenza viruses. These findings are alarming hence active surveillance should be in place to prevent future influenza pandemics.
Collapse
|
39
|
Direct visualization of avian influenza H5N1 hemagglutinin precursor and its conformational change by high-speed atomic force microscopy. Biochim Biophys Acta Gen Subj 2020; 1864:129313. [DOI: 10.1016/j.bbagen.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/06/2023]
|
40
|
Gadalla MR, Abrami L, van der Goot FG, Veit M. Hemagglutinin of Influenza A, but not of Influenza B and C viruses is acylated by ZDHHC2, 8, 15 and 20. Biochem J 2020; 477:285-303. [PMID: 31872235 DOI: 10.1042/bcj20190752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023]
Abstract
Hemagglutinin (HA), a glycoprotein of Influenza A viruses and its proton channel M2 are site-specifically modified with fatty acids. Whereas two cysteines in the short cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to one cysteine located at the cytoplasmic border of the transmembrane region (TMR). M2 is palmitoylated at a cysteine positioned in an amphiphilic helix near the TMR. The enzymes catalyzing acylation of HA and M2 have not been identified, but zinc finger DHHC domain-containing (ZDHHC) palmitoyltransferases are candidates. We used a siRNA library to knockdown expression of each of the 23 human ZDHHCs in HA-expressing HeLa cells. siRNAs against ZDHHC2 and 8 had the strongest effect on acylation of HA as demonstrated by Acyl-RAC and confirmed by 3H-palmitate labeling. CRISPR/Cas9 knockout of ZDHHC2 and 8 in HAP1 cells, but also of the phylogenetically related ZDHHCs 15 and 20 strongly reduced acylation of group 1 and group 2 HAs and of M2, but individual ZDHHCs exhibit slightly different substrate preferences. These ZDHHCs co-localize with HA at membranes of the exocytic pathway in a human lung cell line. ZDHHC2, 8, 15 and 20 are not required for acylation of the HA-esterase-fusion protein of Influenza C virus that contains only stearate at one transmembrane cysteine. Knockout of these ZDHHCs also did not compromise acylation of HA of Influenza B virus that contains two palmitoylated cysteines in its cytoplasmic tail. Results are discussed with respect to the acyl preferences and possible substrate recognition features of the identified ZDHHCs.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Laurence Abrami
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Veit
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
41
|
Barnard KN, Wasik BR, LaClair JR, Buchholz DW, Weichert WS, Alford-Lawrence BK, Aguilar HC, Parrish CR. Expression of 9- O- and 7,9- O-Acetyl Modified Sialic Acid in Cells and Their Effects on Influenza Viruses. mBio 2019; 10:e02490-19. [PMID: 31796537 PMCID: PMC6890989 DOI: 10.1128/mbio.02490-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Sialic acids (Sia) are widely displayed on the surfaces of cells and tissues. Sia come in a variety of chemically modified forms, including those with acetyl modifications at the C-7, C-8, and C-9 positions. Here, we analyzed the distribution and amounts of these acetyl modifications in different human and canine cells. Since Sia or their variant forms are receptors for influenza A, B, C, and D viruses, we examined the effects of these modifications on virus infections. We confirmed that 9-O-acetyl and 7,9-O-acetyl modified Sia are widely but variably expressed across cell lines from both humans and canines. Although they were expressed on the cell surfaces of canine MDCK cell lines, they were located primarily within the Golgi compartment of human HEK-293 and A549 cells. The O-acetyl modified Sia were expressed at low levels of 1 to 2% of total Sia in these cell lines. We knocked out and overexpressed the sialate O-acetyltransferase gene (CasD1) and knocked out the sialate O-acetylesterase gene (SIAE) using CRISPR/Cas9 editing. Knocking out CasD1 removed 7,9-O- and 9-O-acetyl Sia expression, confirming previous reports. However, overexpression of CasD1 and knockout of SIAE gave only modest increases in 9-O-acetyl levels in cells and no change in 7,9-O-acetyl levels, indicating that there are complex regulations of these modifications. These modifications were essential for influenza C and D infection but had no obvious effect on influenza A and B infection.IMPORTANCE Sialic acids are key glycans that are involved in many different normal cellular functions, as well as being receptors for many pathogens. However, Sia come in diverse chemically modified forms. Here, we examined and manipulated the expression of 7,9-O- and 9-O-acetyl modified Sia on cells commonly used in influenza virus and other research by engineering the enzymes that produce or remove the acetyl groups.
Collapse
Affiliation(s)
- Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Justin R LaClair
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
42
|
Development and Characterization of a Reverse-Genetics System for Influenza D Virus. J Virol 2019; 93:JVI.01186-19. [PMID: 31413133 DOI: 10.1128/jvi.01186-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023] Open
Abstract
Influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range and a broad geographical distribution. Recent IDV outbreaks in swine along with serological and genetic evidence of IDV infection in humans have raised concerns regarding the zoonotic potential of this virus. To better study IDV at the molecular level, a reverse-genetics system (RGS) is urgently needed, but to date, no RGS had been described for IDV. In this study, we rescued the recombinant influenza D/swine/Oklahoma/1314/2011 (D/OK) virus by using a bidirectional seven-plasmid-based system and further characterized rescued viruses in terms of growth kinetics, replication stability, and receptor-binding capacity. Our results collectively demonstrated that RGS-derived viruses resembled the parental viruses for these properties, thereby supporting the utility of this RGS to study IDV infection biology. In addition, we developed an IDV minigenome replication assay and identified the E697K mutation in PB1 and the L462F mutation in PB2 that directly affected the activity of the IDV ribonucleoprotein (RNP) complex, resulting in either attenuated or replication-incompetent viruses. Finally, by using the minigenome replication assay, we demonstrated that a single nucleotide polymorphism at position 5 of the 3' conserved noncoding region in IDV and influenza C virus (ICV) resulted in the inefficient cross-recognition of the heterotypic promoter by the viral RNP complex. In conclusion, we successfully developed a minigenome replication assay and a robust reverse-genetics system that can be used to further study replication, tropism, and pathogenesis of IDV.IMPORTANCE Influenza D virus (IDV) is a new type of influenza virus that uses cattle as the primary reservoir and infects multiple agricultural animals. Increased outbreaks in pigs and serological and genetic evidence of human infection have raised concerns about potential IDV adaptation in humans. Here, we have developed a plasmid-based IDV reverse-genetics system that can generate infectious viruses with replication kinetics similar to those of wild-type viruses following transfection of cultured cells. Further characterization demonstrated that viruses rescued from the described RGS resembled the parental viruses in biological and receptor-binding properties. We also developed and validated an IDV minireplicon reporter system that specifically measures viral RNA polymerase activity. In summary, the reverse-genetics system and minireplicon reporter assay described in this study should be of value in identifying viral determinants of cross-species transmission and pathogenicity of novel influenza D viruses.
Collapse
|
43
|
Dawson WK, Lazniewski M, Plewczynski D. RNA structure interactions and ribonucleoprotein processes of the influenza A virus. Brief Funct Genomics 2019; 17:402-414. [PMID: 29040388 PMCID: PMC6252904 DOI: 10.1093/bfgp/elx028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In one more years, we will ‘celebrate’ an exact centenary of the Spanish flu pandemic. With the rapid evolution of the influenza virus, the possibility of novel pandemic remains ever a concern. This review covers our current knowledge of the influenza A virus: on the role of RNA in translation, replication, what is known of the expressed proteins and the protein products generated from alternative splicing, and on the role of base pairing in RNA structure. We highlight the main events associated with viral entry into the cell, the transcription and replication process, an export of the viral genetic material from the nucleus and the final release of the virus. We discuss the observed potential roles of RNA secondary structure (the RNA base-pairing arrangement) and RNA/RNA interactions in this scheme.
Collapse
Affiliation(s)
- Wayne K Dawson
- Bio-information Lab, University of Tokyo.,University of Warsaw, Center of New Technologies (CeNT), Warsaw, Poland
| | - Michal Lazniewski
- University of Warsaw, Center of New Technologies (CeNT), Warsaw, Poland
| | | |
Collapse
|
44
|
Njouom R, Monamele GC, Ermetal B, Tchatchouang S, Moyo-Tetang S, McCauley JW, Daniels RS. Detection of Influenza C Virus Infection among Hospitalized Patients, Cameroon. Emerg Infect Dis 2019; 25:607-609. [PMID: 30789339 PMCID: PMC6390756 DOI: 10.3201/eid2503.181213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report 3 cases of influenza C virus in children hospitalized with severe acute respiratory infection in Cameroon. Two of these case-patients had grave clinical manifestations, but all 3 recovered. The lack of specific antiviral drugs for influenza C virus highlights the need to identify and describe cases involving this virus.
Collapse
|
45
|
Fritsch A, Schweiger B, Biere B. Influenza C virus in pre-school children with respiratory infections: retrospective analysis of data from the national influenza surveillance system in Germany, 2012 to 2014. Euro Surveill 2019; 24:1800174. [PMID: 30862333 PMCID: PMC6415498 DOI: 10.2807/1560-7917.es.2019.24.10.1800174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/31/2018] [Indexed: 11/23/2022] Open
Abstract
IntroductionRecent data on influenza C virus indicate a possible higher clinical impact in specified patient populations than previously thought.AimWe aimed to investigate influenza C virus circulation in Germany.MethodsA total of 1,588 samples from 0 to 4 year-old children presenting as outpatients with influenza-like illness (ILI) or acute respiratory infection were analysed retrospectively. The samples represented a subset of all samples from the German national surveillance system for influenza in this age group in 2012-14. The presence of influenza C virus was investigated by real-time PCR. For positive samples, information on symptoms as well as other respiratory virus co-infections was considered. Retrieved influenza C viral sequences were phylogenetically characterised.ResultsInfluenza C viral RNA was detected in 20 (1.3% of) samples, including 16 during the 2012/13 season. The majority (18/20) of influenza C-positive patients had ILI according to the European Union definition, one patient had pneumonia. Viruses belonged to the C/Sao Paulo and C/Kanagawa lineages. Most (11/20) samples were co-infected with other respiratory viruses.ConclusionOur data are the first on influenza C virus circulation in Germany and notably from a European national surveillance system. The low detection frequency and the identified virus variants confirm earlier observations outside a surveillance system. More virus detections during the 2012/13 season indicate a variable circulation intensity in the different years studied. Influenza C virus can be considered for ILI patients. Future studies addressing its clinical impact, especially in patients with severe disease are needed.
Collapse
Affiliation(s)
- Annemarie Fritsch
- Robert Koch Institute, National Reference Center for Influenza, FG 17 Influenza and Other Respiratory Viruses, Berlin, Germany
| | - Brunhilde Schweiger
- Robert Koch Institute, National Reference Center for Influenza, FG 17 Influenza and Other Respiratory Viruses, Berlin, Germany
| | - Barbara Biere
- Robert Koch Institute, National Reference Center for Influenza, FG 17 Influenza and Other Respiratory Viruses, Berlin, Germany
| |
Collapse
|
46
|
Zhang X, Nie H, Whited J, Wang D, Li Y, Sun XL. Recent approaches for directly profiling cell surface sialoform. Glycobiology 2019; 28:910-924. [PMID: 29800278 DOI: 10.1093/glycob/cwy046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Sialic acids (SAs) are nine-carbon monosaccharides existing at the terminal location of glycan structures on the cell surface and secreted glycoconjugates. The expression levels and linkages of SAs on cells and tissues, collectively known as sialoform, present the hallmark of the cells and tissues of different systems and conditions. Accordingly, detecting or profiling cell surface sialoforms is very critical for understanding the function of cell surface glycans and glycoconjugates and even the molecular mechanisms of their underlying biological processes. Further, it may provide therapeutic and diagnostic applications for different diseases. In the past decades, several kinds of SA-specific binding molecules have been developed for detecting and profiling specific sialoforms of cells and tissues; the experimental materials have expanded from frozen tissue to living cells; and the analytical technologies have advanced from histochemistry to fluorescent imaging, flow cytometry and microarrays. This review summarizes the recent bioaffinity approaches for directly detecting and profiling specific SAs or sialylglycans, and their modifications of different cells and tissues.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang, China
| | - Joshua Whited
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, USA
| | - Dan Wang
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, USA
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang, China
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, USA
| |
Collapse
|
47
|
Zhang W, Zhang L, He W, Zhang X, Wen B, Wang C, Xu Q, Li G, Zhou J, Veit M, Su S. Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus. Viruses 2019; 11:E167. [PMID: 30791465 PMCID: PMC6409753 DOI: 10.3390/v11020167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 11/26/2022] Open
Abstract
Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies.
Collapse
Affiliation(s)
- Wenyan Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Letian Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Baiqing Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Congcong Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qiuhua Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiyong Zhou
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany.
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
48
|
Sreenivasan CC, Thomas M, Antony L, Wormstadt T, Hildreth MB, Wang D, Hause B, Francis DH, Li F, Kaushik RS. Development and characterization of swine primary respiratory epithelial cells and their susceptibility to infection by four influenza virus types. Virology 2019; 528:152-163. [PMID: 30616205 DOI: 10.1016/j.virol.2018.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
Influenza viruses are a group of respiratory pathogens that have evolved into four different types: A, B, C, and D. A common feature is that all four types are capable of replicating and transmitting among pigs. Here, we describe the development of isogenous cell culture system from the swine respiratory tract to study influenza viruses. Phenotypic characterization of swine primary nasal turbinate, trachea and lung cells revealed high expression of cytokeratin and demonstrated tissue site dependent expression of tight junction proteins. Furthermore, lectin binding assay on these cells demonstrated higher levels of Sia2-6Gal than Sia2-3Gal receptors and supported the replication of influenza A, B, C, and D viruses to appreciable levels at both 33 and 37 °C, but replication competence was dependent on virus type or temperature used. Overall, these swine primary respiratory cells showed epithelial phenotype, which is suitable for studying the comparative biology and pathobiology of influenza viruses.
Collapse
Affiliation(s)
- Chithra C Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Milton Thomas
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Linto Antony
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Tristen Wormstadt
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Michael B Hildreth
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; BioSNTR, Brookings, SD 57007, USA
| | - Ben Hause
- Cambridge Technologies, Oxford Street, Worthington, MN 56187, USA
| | - David H Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; BioSNTR, Brookings, SD 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
49
|
Lazniewski M, Dawson WK, Szczepińska T, Plewczynski D. The structural variability of the influenza A hemagglutinin receptor-binding site. Brief Funct Genomics 2018; 17:415-427. [PMID: 29253080 PMCID: PMC6252403 DOI: 10.1093/bfgp/elx042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hemagglutinin (HA) is a transmembrane protein of the influenza A virus and a key component in its life cycle. The protein allows the virus to enter a host cell by recognizing specific glycans attached to transmembrane proteins of the host, which leads to viral endocytosis. In recent years, significant progress has been made in understanding the structural relationship between changes in the HA receptor-binding site (RBS) and the sialylated glycans that bind them. Several mutations were identified in the HA RBS that allows the virus to change host tropism. Their impact on binding the analogs of human and avian receptors was determined with X-ray crystallography. In this article, we provide a short overview of the HA protein structure and briefly discuss the adaptive mutations introduced to different HA subtypes.
Collapse
Affiliation(s)
- Michal Lazniewski
- University of Warsaw, Center of New Technologies (CeNT), Warsaw, Poland
- Department of Physical Chemistry in the Faculty of Pharmacy at the Medical University of Warsaw, Poland
| | - Wayne K Dawson
- University of Warsaw, Center of New Technologies (CeNT), Warsaw, Poland
- Bio-information Lab in Yayoi campus at the University of Tokyo
| | - Teresa Szczepińska
- Professor Dariusz Plewczyński Laboratory at Center of New Technologies, Warsaw, Poland
| | | |
Collapse
|
50
|
A DNA Vaccine Expressing Consensus Hemagglutinin-Esterase Fusion Protein Protected Guinea Pigs from Infection by Two Lineages of Influenza D Virus. J Virol 2018. [PMID: 29514906 DOI: 10.1128/jvi.00110-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two lineages of influenza D virus (IDV) have been found to infect cattle and promote bovine respiratory disease complex, one of the most commonly diagnosed causes of morbidity and mortality within the cattle industry. Furthermore, IDV can infect other economically important domestic livestock, including pigs, and has the potential to infect humans, which necessitates the need for an efficacious vaccine. In this study, we designed a DNA vaccine expressing consensus hemagglutinin-esterase fusion (HEF) protein (FluD-Vax) and tested its protective efficacy against two lineages of IDV (D/OK and D/660) in guinea pigs. Animals that received FluD-Vax (n = 12) developed appreciable titers of neutralizing antibodies against IDV lineage representatives, D/OK and D/660. Importantly, vaccinated animals were protected against intranasal challenge with IDV [3 × 105 50% tissue culture infective dose(s) (TCID50)] D/OK (n = 6) or D/600 (n = 6), based on the absence of viral RNA in necropsied tissues (5 and 7 days postchallenge) using quantitative reverse transcription-PCR and in situ hybridization. In contrast, animals that received a sham DNA vaccine (n = 12) had no detectable neutralizing antibodies against IDV, and viral RNA was readily detectable in respiratory tract tissues after intranasal challenge (3 × 105 TCID50) with IDV D/OK (n = 6) or D/660 (n = 6). Using a TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay, we found that IDV D/OK and D/600 infections induced apoptosis in epithelial cells lining alveoli and bronchioles, as well as nonepithelial cells in lung tissues. Our results demonstrate for the first time that the consensus IDV HEF DNA vaccine can elicit complete protection against infection from two lineages of IDV in the guinea pig model.IMPORTANCE Influenza D virus (IDV) infection has been associated with bovine respiratory disease complex, one of the most devastating diseases of the cattle population. Moreover, with broad host range and high environmental stability, IDV has the potential to further gain virulence or even infect humans. An efficacious vaccine is needed to prevent infection and stop potential cross-species transmission. In this study, we designed a DNA vaccine encoding the consensus hemagglutinin-esterase fusion (HEF) protein of two lineages of IDV (D/OK and D/660) and tested its efficacy in a guinea pig model. Our results showed that the consensus DNA vaccine elicited high-titer neutralizing antibodies and achieved sterilizing protection against two lineage-representative IDV intranasal infections. To our knowledge, this is the first study showing that a DNA vaccine expressing consensus HEF is efficacious in preventing different lineages of IDV infections.
Collapse
|