1
|
Choudhury S, Dasmahapatra AK. Destabilisation of Alzheimer's amyloid-β protofibrils by Baicalein: mechanistic insights from all-atom molecular dynamics simulations. Mol Divers 2025; 29:2445-2461. [PMID: 39379662 DOI: 10.1007/s11030-024-11001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the fifth leading cause of death globally. Aggregation and deposition of neurotoxic Aβ fibrils in the neural tissues of the brain is a key hallmark in AD pathogenesis. Destabilisation studies of the amyloid-peptide by various natural molecules are highly relevant due to their neuroprotective and therapeutic potential for AD. We performed molecular dynamics (MD) simulation to investigate the destabilisation mechanism of amyloidogenic protofilament intermediate by Baicalein (BCL), a naturally occurring flavonoid. We found that the BCL molecule formed strong hydrophobic contacts with non-polar residues, specifically F19, A21, V24, and I32 of Chain A and B of the pentameric protofibril. Upon binding, it competed with the native hydrophobic contacts of the Aβ protein. BCL loosened the tight packing of the hydrophobic core by disrupting the hydrogen bonds and the prominent D23-K28 inter-chain salt bridges of the protofibril. The decrease in the structural stability of Aβ protofibrils was confirmed by the increased RMSD, radius of gyration, solvent accessible surface area (SASA), and reduced β-sheet content. PCA indicated that the presence of the BCL molecule intensified protofibril motions, particularly affecting residues in Chain A and B regions. Our findings propose that BCL would be a potent destabiliser of Aβ protofilament, and may be considered as a therapeutic agent in treating AD.
Collapse
Affiliation(s)
- Sadika Choudhury
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Deng G, Guo R, Wu H, Ren Z, Wu J, Zhang Y. Facile synthesis of nitrogen self-doped carbon dots from rapeseed meal for highly sensitive fluorescence detection of baicalein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125672. [PMID: 39742625 DOI: 10.1016/j.saa.2024.125672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/03/2025]
Abstract
The rapeseed meal, a type of residual by-product of rapeseed oil production was used as the precursor to prepare nitrogen self-doping carbon dots RM-CDs through an easy hydrothermal process. Thanks to the introduction of nitrogen element and oxygen-containing functional groups, RM-CDs had a fluorescence quantum yield of 18.6 %. The RM-CDs demonstrated highly stable to the ionic strength, pH, and ultraviolet radiation. However, their bright blue fluorescence was significantly weakened by baicalein owing to the inner-filter effect and static quenching effect. As a result, RM-CDs could be used as the fluorescent sensing materials for baicalein detection with a wide range of linear response (0.5-170 μM) as well as low limit of detection (0.046 μM). Moreover, the as-developed sensing platform was also applicable to detect baicalein in actual samples. The developed RM-CDs was sustainably prepared from the biomass by-product of rapeseed meal, this approach expanded the application scopes of CDs.
Collapse
Affiliation(s)
- Guoqing Deng
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China
| | - Ruizhen Guo
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China
| | - Hui Wu
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China
| | - Zhilin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China
| | - Jun Wu
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China
| | - Yi Zhang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, PR China; Hubei Longzhong Laboratory, Xiangyang 441000, Hubei, PR China.
| |
Collapse
|
3
|
Zhytniakivska O, Chaturvedi T, Thomsen MH. Plant-Based Inhibitors of Protein Aggregation. Biomolecules 2025; 15:481. [PMID: 40305223 PMCID: PMC12025044 DOI: 10.3390/biom15040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The assembly of amyloidogenic proteins and peptides into toxic oligomeric and fibrillar aggregates is closely connected to the onset and progression of more than 50 protein diseases, such as Alzheimer's disease, Parkinson's disease, prion disease, and type 2 diabetes, to name only a few. Considerable research efforts at identifying the therapeutic strategies against these maladies are currently focused on preventing and inhibiting pathogenic protein aggregation by various agents. Plant-based extracts and compounds have emerged as promising sources of potential inhibitors due to their dual role as nutraceuticals as part of healthy diets and as specific pharmaceuticals when administered at higher concentrations. In recent decades, several plant extracts and plant-extracted compounds have shown potential to modulate protein aggregation. An ever-growing body of research on plant-based amyloid inhibitors requires a detail analysis of existing data to identify potential knowledge gaps. This review summarizes the recent progress in amyloid inhibition using 17 flavonoids, 11 polyphenolic non-flavonoid compounds, 23 non-phenolic inhibitors, and 59 plant extracts, with the main emphasis on directly modulating the fibrillation of four amyloid proteins, namely amyloid-β peptide, microtubule-associated protein tau, α-synuclein, and human islet amyloid polypeptide.
Collapse
Affiliation(s)
- Olha Zhytniakivska
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine
| | - Tanmay Chaturvedi
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | |
Collapse
|
4
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Palachai N, Buranrat B, Noisa P, Mairuae N. Oroxylum indicum (L.) Leaf Extract Attenuates β-Amyloid-Induced Neurotoxicity in SH-SY5Y Cells. Int J Mol Sci 2025; 26:2917. [PMID: 40243521 PMCID: PMC11988460 DOI: 10.3390/ijms26072917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid-beta (Aβ) plaques, which trigger oxidative stress and neuronal cell death. The present study investigated the neuroprotective effects of Oroxylum indicum (L.) leaf (OIL) extract against Aβ-induced oxidative stress and cellular damage in SH-SY5Y cells. The cells were treated with OIL extract with and without Aβ25-35, and their viability was investigated. Moreover, the mechanism of action of OIL was assessed by determining caspase-3 levels, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, enzymatic activity of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), phosphorylation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), extracellular signal-regulated kinase 1 and 2 (ERK1/2), and cAMP-responsive element-binding protein (CREB), and expression of B-cell lymphoma-2 (Bcl-2) proteins. The results indicated that OIL reduced Aβ-induced neurotoxicity in a concentration-dependent manner, improving cell viability, reducing ROS levels and MDA production, increasing antioxidant enzyme activity of CAT, SOD, and GSH-Px, and decreasing caspase-3 expression. In addition, OIL enhanced phosphorylation of Akt, ERK1/2, and CREB and upregulated Bcl-2 protein expression. High-performance liquid chromatography (HPLC) analysis identified oroxylin A, baicalein, and chrysin as the major phenolic constituents of the OIL extract. The findings suggest that the extract holds promise as a therapeutic intervention against Aβ-induced neurotoxicity, offering potential implications for the treatment of AD. Further studies are needed to investigate the activity of OIL in primary neurons or in vivo.
Collapse
Affiliation(s)
- Nut Palachai
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; (N.P.); (B.B.)
| | - Benjaporn Buranrat
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; (N.P.); (B.B.)
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Nootchanat Mairuae
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; (N.P.); (B.B.)
| |
Collapse
|
6
|
Sun M, Qiu X, Yuan Z, Xu C, Chen Z. New advances in Traditional Chinese Medicine interventions for epilepsy: where are we and what do we know? Chin Med 2025; 20:37. [PMID: 40098198 PMCID: PMC11917061 DOI: 10.1186/s13020-025-01088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Epilepsy, one of the most common neurological diseases, affects more than 70 million people worldwide. Anti-seizure drugs targeting membrane ion channels or GABAergic neurotransmission are the first choices for controlling seizures, whereas the high incidence of pharmacoresistance and adverse effects largely restrict the availability of current anti-seizure drugs (ASDs). Traditional Chinese Medicine (TCM) has shown historical evidence-based therapeutic effects for neurological diseases including epilepsy. But until the late 1990s, great efforts in both clinical and experimental fields advanced TCM interventions for epilepsy from evidence-based practices to more systematic neuropharmacological significance, and show new lights on preferable management of epilepsy in the last decade. This review summarized the advances of applying TCM interventions (ranging from herbal medicines and their active ingredients to other strategies such as acupuncture) for epilepsy, followed by associated mechanism theories. The therapeutic potential of TCM interventions for epilepsy as well as its comorbidities turns from somehow debatable to hopeful. Finally, some prospects and directions were proposed to drive further clinical translational research. The future directions of TCM should aim at not only deriving specific anti-epileptic molecules but also illustrating more precise mechanisms with the assistance of advanced multifaceted experimental tools.
Collapse
Affiliation(s)
- Minjuan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhijian Yuan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Reddi Sree R, Kalyan M, Anand N, Mani S, Gorantla VR, Sakharkar MK, Song BJ, Chidambaram SB. Newer Therapeutic Approaches in Treating Alzheimer's Disease: A Comprehensive Review. ACS OMEGA 2025; 10:5148-5171. [PMID: 39989768 PMCID: PMC11840625 DOI: 10.1021/acsomega.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an aging-related irreversible neurodegenerative disease affecting mostly the elderly population. The main pathological features of AD are the extracellular Aβ plaques generated by APP cleavage through the amyloidogenic pathway, the intracellular neurofibrillary tangles (NFT) resulting from the hyperphosphorylated tau proteins, and cholinergic neurodegeneration. However, the actual causes of AD are unknown, but several studies suggest hereditary mutations in PSEN1 and -2, APOE4, APP, and the TAU genes are the major perpetrators. In order to understand the etiology and pathogenesis of AD, various hypotheses are proposed. These include the following hypotheses: amyloid accumulation, tauopathy, inflammation, oxidative stress, mitochondrial dysfunction, glutamate/excitotoxicity, cholinergic deficiency, and gut dysbiosis. Currently approved therapeutic interventions are donepezil, galantamine, and rivastigmine, which are cholinesterase inhibitors (ChEIs), and memantine, which is an N-methyl-d-aspartate (NMDA) antagonist. These treatment strategies focus on only symptomatic management of AD by attenuating symptoms but not regeneration of neurons or clearance of Aβ plaques and hyperphosphorylated Tau. This review focuses on the pathophysiology, novel therapeutic targets, and disease-altering treatments such as α-secretase modulators, active immunotherapy, passive immunotherapy, natural antioxidant products, nanomaterials, antiamyloid therapy, tau aggregation inhibitors, transplantation of fecal microbiota or stem cells, and microtubule stabilizers that are in clinical trials or still under investigation.
Collapse
Affiliation(s)
- Radhakrishna Reddi Sree
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Manjunath Kalyan
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department
of Pharmacology, American University of
Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, Antigua, Barbuda
| | - Sangeetha Mani
- Department
of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and
Research, Porur, Chennai 600116, India
| | - Vasavi Rakesh Gorantla
- Department
of Anatomical Sciences, St. George’s University School of Medicine, St. George’s University, Saint George, Grenada
| | - Meena Kishore Sakharkar
- College
of
Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Byoung-Joon Song
- Section
of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry
and Biophysics, National Institute on Alcohol
Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
8
|
Jalouli M, Rahman MA, Biswas P, Rahman H, Harrath AH, Lee IS, Kang S, Choi J, Park MN, Kim B. Targeting natural antioxidant polyphenols to protect neuroinflammation and neurodegenerative diseases: a comprehensive review. Front Pharmacol 2025; 16:1492517. [PMID: 39981183 PMCID: PMC11840759 DOI: 10.3389/fphar.2025.1492517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025] Open
Abstract
Polyphenols, naturally occurring phytonutrients found in plant-based foods, have attracted significant attention for their potential therapeutic effects in neurological diseases and neuroinflammation. These compounds possess diverse neuroprotective capabilities, including antioxidant, anti-inflammatory, and anti-amyloid properties, which contribute to mitigating the progression of neurodegenerative conditions such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Dementia, Multiple Sclerosis (MS), Stroke, and Huntington's Disease (HD). Polyphenols have been extensively studied for their ability to regulate inflammatory responses by modulating the activity of pro-inflammatory genes and influencing signal transduction pathways, thereby reducing neuroinflammation and neuronal death. Additionally, polyphenols have shown promise in modulating various cellular signaling pathways associated with neuronal viability, synaptic plasticity, and cognitive function. Epidemiological and clinical studies highlight the potential of polyphenol-rich diets to decrease the risk and alleviate symptoms of neurodegenerative disorders and neuroinflammation. Furthermore, polyphenols have demonstrated their therapeutic potential through the regulation of key signaling pathways such as Akt, Nrf2, STAT, and MAPK, which play critical roles in neuroprotection and the body's immune response. This review emphasizes the growing body of evidence supporting the therapeutic potential of polyphenols in combating neurodegeneration and neuroinflammation, as well as enhancing brain health. Despite the substantial evidence and promising hypotheses, further research and clinical investigations are necessary to fully understand the role of polyphenols and establish them as advanced therapeutic targets for age-related neurodegenerative diseases and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Durgawale TP, Arjun UVNV, Shanmugarajan TS, Kannan SP, Prasad PD, Usman MRM, Reddy KTK, Sultana R, Alshehri MA, Rab SO, Suliman M, Emran TB. Cellular stress response and neuroprotection of flavonoids in neurodegenerative diseases: Clinical insights into targeted therapy and molecular signaling pathways. Brain Res 2025; 1847:149310. [PMID: 39537124 DOI: 10.1016/j.brainres.2024.149310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases (NDs) are caused by the gradual decline of neuronal structure and function, which presents significant challenges in treatment. Cellular stress responses significantly impact the pathophysiology of these disorders, often exacerbating neuronal damage. Plant-derived flavonoids have demonstrated potential as neuroprotective agents due to their potent anti-inflammatory, anti-apoptotic, and antioxidant properties. This review provides an in-depth analysis of the molecular processes and clinical insights that cause the neuroprotective properties of flavonoids in NDs. By controlling essential signaling pathways such as Nrf2/ARE, MAPK, and PI3K/Akt, flavonoids can lower cellular stress and improve neuronal survival. The study discusses the challenges of implementing these discoveries in clinical practice and emphasizes the therapeutic potential of specific flavonoids and their derivatives. Flavonoids are identified as potential therapeutic agents for NDs, potentially slowing progression by regulating cellular stress and improving neuroprotection despite their potential medicinal uses and clinical challenges. The study designed a strategy to identify literature published in prestigious journals, utilizing search results from PubMed, Scopus, and WOS. We selected and investigated original studies, review articles, and research reports published until 2024. It suggests future research and therapeutic approaches to effectively utilize the neuroprotective properties of flavonoids.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, KVV's Krishna Institute of Pharmacy, Karad, Maharashtra, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Shruthi Paramasivam Kannan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - P Dharani Prasad
- Department of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, Andhra Pradesh 517102, India
| | - Md Rageeb Md Usman
- Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Maharashtra, India
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Amberpet, Hyderabad, Telangana 500007, India
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College and Research Centre, Yenepoya (deemed to be University), Mangalore, Karnataka, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
10
|
Summat R, Waiwut P, Daodee S, Nualkaew N, Phemphunananchai K, Arsito PN, Chulikhit Y, Montakantirat O, Khamphukdee C, Boonyarat C. Phytomedicine Potential of Oroxylum indicum Root and Its Constituents: Targeting Alzheimer's Disease. PLANTS (BASEL, SWITZERLAND) 2025; 14:223. [PMID: 39861577 PMCID: PMC11769049 DOI: 10.3390/plants14020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of Oroxylum indicum root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay. They inhibited β-amyloid aggregation as measured by the thioflavin T assay and acetylcholinesterase activity using the Ellman method. In cell culture models, O. indicum extract showed an ability to protect neurons from the toxic effects of H2O2. Western blot analysis revealed the extract and its major active component, baicalein, downregulated pro-apoptotic markers (cleaved caspase-3, and BAX) upon H2O2 exposure. Furthermore, they reduced the expression of amyloidogenic proteins (BACE1) and phosphorylated tau. These findings suggest that O. indicum root extract, particularly baicalein, possesses multifaceted neuroprotective properties, targeting various aspects of AD pathogenesis, including oxidative stress, cholinergic dysfunction, β-amyloid formation, aggregation, and apoptosis. O. indicum root thus warrants further investigation as a promising source of therapeutic agents for AD.
Collapse
Affiliation(s)
- Rattana Summat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Khemjira Phemphunananchai
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Puguh Novi Arsito
- School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta 55183, Indonesia;
| | - Yaowared Chulikhit
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Orawan Montakantirat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Charinya Khamphukdee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| |
Collapse
|
11
|
An J, Chen B, Zhang R, Tian D, Shi K, Zhang L, Zhang G, Wang J, Yang H. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury. Mol Neurobiol 2025; 62:1291-1315. [PMID: 39312070 DOI: 10.1007/s12035-024-04490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/10/2024] [Indexed: 01/04/2025]
Abstract
Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, with a high rate of disability and mortality. Due to the complicated pathological process of SCI, there is no effective clinical treatment strategy at present. Although mesenchymal stem cells (MSCs) are effective in the treatment of SCI, their application is limited by factors such as low survival rate, cell dedifferentiation, tumorigenesis, blood-brain barrier, and immune rejection. Fortunately, there is growing evidence that most of the biological and therapeutic effects of MSCs may be mediated by the release of paracrine factors, which are extracellular vesicles called exosomes. Exosomes are small endosomal vesicles with bilaminar membranes that have recently been recognized as key mediators for communication between cells and tissues through the transfer of proteins, lipids, nucleic acids, cytokines, and growth factors. Mesenchymal stem cell-derived exosomes (MSC-exos) play a critical role in SCI repair by promoting angiogenesis and axonal growth, regulating inflammation and immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be used to transport genetic material or drugs to target cells, and their relatively small size allows them to permeate the blood-brain barrier. Studies have demonstrated that some exosomal miRNAs derived from MSCs play a significant role in the treatment of SCI. In this review, we summarize recent research advances in MSC-exos and exosomal miRNAs in SCI therapy to better understand this emerging cell-free therapeutic strategy and discuss the advantages and challenges of MSC-exos in future clinical applications.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| | - Rui Zhang
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, 550081, Guizhou, China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Kuohao Shi
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Gaorong Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Jingchao Wang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
12
|
Luo L, Pan Y, Chen F, Zhang Z. Exploring the potential mechanism of Polygonatum sibiricum for Alzheimer's disease based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e40726. [PMID: 39969345 PMCID: PMC11688029 DOI: 10.1097/md.0000000000040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/08/2024] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, and there have been no systematic studies of Polygonatum against Alzheimer's disease. Therefore, our study will elucidate the mechanism of Polygonatum against AD based on network pharmacology and molecular docking. The active ingredients and corresponding targets of Polygonatum were identified using the traditional Chinese medicine systematic pharmacology database and analysis platform. Disease targets of AD were retrieved from the therapeutic target database, Online Mendelian Inheritance in Man, GeneCards, and Disgenet databases. Using the STRING database, we constructed protein interaction networks and performed gene ontology functional enrichment analysis as well as Kyoto encyclopedia of genes and genomes pathway enrichment analysis on common targets. We then drew drug-component-target-pathway-disease network maps using Cytoscape 3.10.1 software and validated the molecular docking using AutoDock4. A total of 10 active ingredients and 108 common targets were screened from Polygonatum, 29 genes (including AKT1 and STAT3) were identified as core genes. According to gene ontology analysis, the core targets were found to be mainly involved in signal transduction, positive regulation of gene expression, negative regulation of the apoptotic process, and so on. The Kyoto encyclopedia of genes and genomes analysis revealed that the signaling pathways comprised pathways in cancer, pathways of neurodegeneration - multiple diseases, and PI3K-Akt signaling pathway. The molecular docking results indicated that 10 of active ingredients from Polygonatum exhibited strong binding affinity with the 6 core targets that were screened before. The activity of Polygonatum against AD could be attributed to the regulation of multiple biological effects via multi-pathways (pathways in cancer, pathways of neurodegeneration - multiple diseases, and PI3K-Akt signaling pathway). The binding activities were estimated as good level by molecular docking. These discoveries disclosed the multi-component, multi-target, and multi-pathway characteristics of Polygonatum against AD, providing a new strategy for such medical problem.
Collapse
Affiliation(s)
- Liangliang Luo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Pan
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Fang Chen
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Zhihong Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Wen Y, Yi F, Zhang J, Wang Y, Zhao C, Zhao B, Wang J. Uncovering the protective mechanism of baicalin in treatment of fatty liver based on network pharmacology and cell model of NAFLD. Int Immunopharmacol 2024; 141:112954. [PMID: 39153306 DOI: 10.1016/j.intimp.2024.112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Excessive nonesterified fatty acids (NEFA) impair cellular metabolism and will induce fatty liver formation in dairy cows during the periparturient. Baicalin, an active flavonoid, has great potential efficacy in alleviating lipid accumulation and ameliorating the development of fatty liver disease. Nevertheless, its mechanism remains unclear. Here, the potential mechanism of baicalin on system levels was explored using network pharmacology and in vitro experiments. Firstly, the target of baicalin and fatty liver disease was predicted, and then the protein-protein interaction (PPI) network was constructed. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) (q-value) pathway enrichment is performed through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server. Finally, the results of the network analysis of the in vitro treatment of bovine hepatocytes by NEFA were confirmed. The results showed that 33 relevant targets of baicalin in the treatment of liver fatty were predicted by network pharmacology, and the top 20 relevant pathways were extracted by KEGG database. Baicalin treatment can reduce triglyceride (TAG) content and lipid droplet accumulation in NEFA-treated bovine hepatocytes, and the mechanism is related to inhibiting lipid synthesis and promoting lipid oxidation. The alleviating effect of baicalin on fatty liver may be related to the up-regulation of solute vector family member 4 (SLC2A4), Down-regulated AKT serine/threonine kinase 1 (AKT1), Peroxisome proliferator-activated receptor gamma (PPARG), Epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF), Interleukin 6 (IL-6) were associated. These results suggested that baicalin may modulate key inflammatory markers, and lipogenesis processes to prevent fatty liver development in dairy cows.
Collapse
Affiliation(s)
- Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fanxuan Yi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Xiang Q, Xiang Y, Liu Y, Chen Y, He Q, Chen T, Tang L, He B, Li J. Revealing the potential therapeutic mechanism of Lonicerae Japonicae Flos in Alzheimer's disease: a computational biology approach. Front Med (Lausanne) 2024; 11:1468561. [PMID: 39606633 PMCID: PMC11598349 DOI: 10.3389/fmed.2024.1468561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background Alzheimer's disease (AD) is a degenerative brain disease without a cure. Lonicerae Japonicae Flos (LJF), a traditional Chinese herbal medicine, possesses a neuroprotective effect, but its mechanisms for AD are not well understood. This study aimed to investigate potential targets and constituents of LJF against AD. Methods Network pharmacology and bioinformatics analyses were performed to screen potential compounds and targets. Gene Expression Omnibus (GEO) datasets related to AD patients were used to screen core targets of differential expression. Gene expression profiling interactive analysis (GEPIA) was used to validate the correlation between core target genes and major causative genes of AD. The receiver operating characteristic (ROC) analysis was used to evaluate the predictive efficacy of core targets based on GEO datasets. Molecular docking and dynamics simulation were conducted to analyze the binding affinities of effective compounds with core targets. Results Network pharmacology analysis showed that 112 intersection targets were identified. Bioinformatics analysis displayed that 32 putative core targets were identified from 112 intersection targets. Only eight core targets were differentially expressed based on GEO datasets. Finally, six core targets of MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and NFE2L2 were related to AD progression and had good predictive ability based on correlation and ROC analyses. Molecular docking and dynamics simulation analyses elucidated that the component of lignan interacted with EGFR, the component of β-carotene interacted with CTNNB1 and BCL2, the component of β-sitosterol interacted with BCL2, the component of hederagenin interacted with NFKB1, the component of berberine interacted with EGFR and BCL2, and the component of baicalein interacted with NFKB1, EGFR and BCL2. Conclusion Through a comprehensive analysis, this study revealed that six core targets (MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and NFE2L2) and six practical components (lignan, β-carotene, β-sitosterol, hederagenin, berberine, and baicalein) were involved in the mechanism of action of LJF against AD. Our work demonstrated that LJF effectively treats AD through its multi-component and multi-target properties. The findings of this study will establish a theoretical basis for the expanded application of LJF in AD treatment and, hopefully, can guide more advanced experimental research in the future.
Collapse
Affiliation(s)
- Qin Xiang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, China
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Yu Xiang
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Yao Liu
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Yongjun Chen
- Department of Neurology, Nanhua Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Qi He
- Ziyang District Brain Hospital, Yiyang, China
| | - Taolin Chen
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Liang Tang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, China
- College of Basic Medicine, Changsha Medical University, Changsha, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Jianming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, China
| |
Collapse
|
15
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
16
|
Szulc A, Wiśniewska K, Żabińska M, Gaffke L, Szota M, Olendzka Z, Węgrzyn G, Pierzynowska K. Effectiveness of Flavonoid-Rich Diet in Alleviating Symptoms of Neurodegenerative Diseases. Foods 2024; 13:1931. [PMID: 38928874 PMCID: PMC11202533 DOI: 10.3390/foods13121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge. Currently, most neurodegenerative diseases are considered incurable. An important aspect in the fight against and prevention of neurodegenerative diseases may be broadly understood lifestyle choices, and more specifically, what we will focus on in this review, a diet. One proposal that may help in the fight against the spread of neurodegenerative diseases is a diet rich in flavonoids. Flavonoids are compounds widely found in products considered healthy, such as fruits, vegetables, and herbs. Many studies indicated not only the neuroprotective effects of these compounds but also their ability to reverse changes occurring during the progression of diseases such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis. Here, we present the main groups of flavonoids, discussing their characteristics and mechanisms of action. The most widely described mechanisms point to neuroprotective functions due to strong antioxidant and anti-inflammatory effects, accompanied with their ability to penetrate the blood-brain barrier, as well as the ability to inhibit the formation of protein aggregates. The latter feature, together with promoting removal of the aggregates is especially important in neurodegenerative diseases. We discuss a therapeutic potential of selected flavonoids in the fight against neurodegenerative diseases, based on in vitro studies, and their impact when included in the diet of animals (laboratory research) and humans (population studies). Thus, this review summarizes flavonoids' actions and impacts on neurodegenerative diseases. Therapeutic use of these compounds in the future is potentially possible but depends on overcoming key challenges such as low bioavailability, determining the therapeutic dose, and defining what a flavonoid-rich diet is and determining its potential negative effects. This review also suggests further research directions to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.S.); (K.W.); (M.Ż.); (L.G.); (M.S.); (Z.O.); (K.P.)
| | | |
Collapse
|
17
|
Zhang M, Li Y, Han C, Chu S, Yu P, Cheng W. Biosynthesis of Nanoparticles with Green Tea for Inhibition of β-Amyloid Fibrillation Coupled with Ligands Analysis. Int J Nanomedicine 2024; 19:4299-4317. [PMID: 38766654 PMCID: PMC11102095 DOI: 10.2147/ijn.s451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Background Inhibition of amyloid β protein fragment (Aβ) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods The interaction between EGCG and Aβ42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aβ42 aggregation. Results EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aβ42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aβ42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Mai Zhang
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Yan Li
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| | - Chunli Han
- Mass Spectrometry Application Center, Shandong CAS Intelligent Manufacturing Medical Device Technology Co., Ltd, Zaozhuang, People’s Republic of China
| | - Shiying Chu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Peng Yu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Wenbo Cheng
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| |
Collapse
|
18
|
Islam F, Roy S, Zehravi M, Paul S, Sutradhar H, Yaidikar L, Kumar BR, Dogiparthi LK, Prema S, Nainu F, Rab SO, Doukani K, Emran TB. Polyphenols Targeting MAP Kinase Signaling Pathway in Neurological Diseases: Understanding Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 2024; 61:2686-2706. [PMID: 37922063 DOI: 10.1007/s12035-023-03706-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
Polyphenols are a class of secondary metabolic products found in plants that have been extensively studied for how well they regulate biological processes, such as the proliferation of cells, autophagy, and apoptosis. The mitogen-activated protein kinase (MAPK)-mediated signaling cascade is currently identified as a crucial pro-inflammatory pathway that plays a significant role in the development of neuroinflammation. This process has been shown to contribute to the pathogenesis of several neurological conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), CNS damage, and cerebral ischemia. Getting enough polyphenols through eating habits has resulted in mitigating the effects of oxidative stress (OS) and lowering the susceptibility to associated neurodegenerative disorders, including but not limited to multiple sclerosis (MS), AD, stroke, and PD. Polyphenols possess significant promise in dealing with the root cause of neurological conditions by modulating multiple therapeutic targets simultaneously, thereby attenuating their complicated physiology. Several polyphenolic substances have demonstrated beneficial results in various studies and are presently undergoing clinical investigation to treat neurological diseases (NDs). The objective of this review is to provide a comprehensive summary of the different aspects of the MAPK pathway involved in neurological conditions, along with an appraisal of the progress made in using polyphenols to regulate the MAPK signaling system to facilitate the management of NDs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sumon Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Kingdom of Saudi Arabia.
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Lavanya Yaidikar
- Department of Pharmacology, Seven Hills College of Pharmacy, Tirupati, India
| | - B Raj Kumar
- Department of Pharmaceutical Analysis, Moonray Institute of Pharmaceutical Sciences, Raikal (V), Farooq Nagar (Tlq), Shadnagar (M), R.R Dist., Telangana, 501512, India
| | - Lakshman Kumar Dogiparthi
- Department of Pharmacognosy, MB School of Pharmaceutical Sciences, MBU, Tirupati, Andhra Pradesh, India
| | - S Prema
- Crescent School of Pharmacy, BS Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Faculty of Nature and Life Sciences, University of Ibn Khaldoun-Tiaret, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
19
|
Kong DW, Du LD, Liu RZ, Yuan TY, Wang SB, Wang YH, Lu Y, Fang LH, Du GH. Baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating ATP-sensitive potassium channels. Acta Pharmacol Sin 2024; 45:480-489. [PMID: 37993535 PMCID: PMC10834402 DOI: 10.1038/s41401-023-01187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson's disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 μM and 6.159 μM, respectively. K-ATP channel blockers glibenclamide (50 μM) or 5-hydroxydecanoate (5-HD, 250 μM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg-1·d-1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 μM) than glibenclamide (KD = 24.32 μM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.
Collapse
Affiliation(s)
- De-Wen Kong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li-da Du
- Shandong Soteria Pharmaceutical Co Ltd., Jinan, 250022, China
| | - Run-Zhe Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shou-Bao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lian-Hua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
20
|
Bae SJ, Lee WY, Bak SB, Lee SJ, Hwang SJ, Kim GW, Koo BS, Park SD, Yoo HH, Kim CO, Kang HW, Oh TW, Kim YW. Antioxidant Efficacy of Hwangryunhaedok-tang through Nrf2 and AMPK Signaling Pathway against Neurological Disorders In Vivo and In Vitro. Int J Mol Sci 2024; 25:2313. [PMID: 38396988 PMCID: PMC10889506 DOI: 10.3390/ijms25042313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aβ), and Aβ-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aβ, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.
Collapse
Affiliation(s)
- Su-Jin Bae
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Won-Yung Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Seon Been Bak
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Seung Jin Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Su-Jin Hwang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
| | - Geun-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Byung-Soo Koo
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Sun-Dong Park
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Hye-Hyun Yoo
- College of Pharmacy, Hanyang University, Ansan 1558, Republic of Korea;
| | - Choon-Ok Kim
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul 03722, Republic of Korea;
| | - Hyung Won Kang
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Tae-Woo Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
- Department of Korean Convergence Medical Science, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| |
Collapse
|
21
|
Chen M, Wang F, Lei H, Yang Z, Li C. In Silico Insights into Micro-Mechanism Understanding of Extracts of Taxus Chinensis Fruits Against Alzheimer's Disease. J Alzheimers Dis 2024; 97:727-740. [PMID: 38217605 DOI: 10.3233/jad-231066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND The taxus chinensis fruit (TCF) shows promises in treatment of aging-related diseases such as Alzheimer's disease (AD). However, its related constituents and targets against AD have not been deciphered. OBJECTIVE This study was to uncover constituents and targets of TCF extracts against AD. METHODS An integrated approach including ultrasound extractions and constituent identification of TCF by UPLC-QE-MS/MS, target identification of constituents and AD by R data-mining from Pubchem, Drugbank and GEO databases, network construction, molecular docking and the ROC curve analysis was carried out. RESULTS We identified 250 compounds in TCF extracts, and obtained 3,231 known constituent targets and 5,326 differential expression genes of AD, and 988 intersection genes. Through the network construction and KEGG pathway analysis, 19 chemicals, 31 targets, and 11 biological pathways were obtained as core compounds, targets and pathways of TCF extracts against AD. Among these constituents, luteolin, oleic acid, gallic acid, baicalein, naringenin, lovastatin and rutin had obvious anti-AD effect. Molecular docking results further confirmed above results. The ROC AUC values of about 87% of these core targets of TCF extracts was greater than 0.5 in the two GEO chips of AD, especially 10 targets with ROC AUC values greater than 0.7, such as BCL2, CASP7, NFKBIA, HMOX1, CDK2, LDLR, RELA, and CCL2, which mainly referred to neuron apoptosis, response to oxidative stress and inflammation, fibroblast proliferation, etc.Conclusions:The TCF extracts have diverse active compounds that can act on the diagnostic genes of AD, which deserve further in-depth study.
Collapse
Affiliation(s)
- Meimei Chen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Fengzhen Wang
- Certification Center for Chinese Physicians, State Administration of Traditional Chinese Medicine, Beijing, Beijing, China
| | - Huangwei Lei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhaoyang Yang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Candong Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Sen D, Rathee S, Pandey V, Jain SK, Patil UK. Comprehensive Insights into Pathophysiology of Alzheimer's Disease: Herbal Approaches for Mitigating Neurodegeneration. Curr Alzheimer Res 2024; 21:625-648. [PMID: 38623983 DOI: 10.2174/0115672050309057240404075003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and functional impairment. Despite extensive research, the exact etiology remains elusive. This review explores the multifaceted pathophysiology of AD, focusing on key hypotheses such as the cholinergic hypothesis, hyperphosphorylated Tau Protein and Amyloid β hypothesis, oxidative stress hypothesis, and the metal ion hypothesis. Understanding these mechanisms is crucial for developing effective therapeutic strategies. Current treatment options for AD have limitations, prompting the exploration of alternative approaches, including herbal interventions. Cholinesterase inhibitors, targeting the cholinergic hypothesis, have shown modest efficacy in managing symptoms. Blocking Amyloid β (Aβ) and targeting hyperphosphorylated tau protein are under investigation, with limited success in clinical trials. Oxidative stress, implicated in AD pathology, has led to the investigation of antioxidants. Natural products, such as Punica granatum Linn, Radix Scutellariae, and Curcuma longa have demonstrated antioxidant properties, along with anti-inflammatory effects, offering potential neuroprotective benefits. Several herbal extracts, including Ginkgo biloba, Bacopa monnieri, and Withania somnifera, have shown promise in preclinical studies. Compounds like Huperzine A, Melatonin, and Bryostatin exhibit neuroprotective effects through various mechanisms, including cholinergic modulation and anti-inflammatory properties. However, the use of herbal drugs for AD management faces limitations, including standardization issues, variable bioavailability, and potential interactions with conventional medications. Additionally, the efficacy and safety of many herbal products remain to be established through rigorous clinical trials. This review also highlights promising natural products currently in clinical trials, such as Resveratrol and Homotaurine, and their potential impact on AD progression. DHA, an omega-3 fatty acid, has shown cognitive benefits, while Nicotine is being explored for its neuroprotective effects. In conclusion, a comprehensive understanding of the complex pathophysiology of AD and the exploration of herbal interventions offer a holistic approach for managing this devastating disease. Future research should address the limitations associated with herbal drugs and further evaluate the efficacy of promising natural products in clinical settings.
Collapse
Affiliation(s)
- Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
23
|
Ji-hong Y, Yu M, Ling-hong Y, Jing-jing G, Ling-li X, Lv W, Yong-mei J. Baicalein attenuates bleomycin-induced lung fibroblast senescence and lung fibrosis through restoration of Sirt3 expression. PHARMACEUTICAL BIOLOGY 2023; 61:288-297. [PMID: 36815239 PMCID: PMC9970214 DOI: 10.1080/13880209.2022.2160767] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
CONTEXT Fibroblast senescence was reported to contribute to the pathological development of idiopathic pulmonary fibrosis (IPF), and baicalein is reported to attenuate IPF. OBJECTIVE This study explores whether baicalein attenuates lung fibrosis by regulating lung fibroblast senescence. MATERIALS AND METHODS Institute of Cancer Research (ICR) mice were randomly assigned to control, bleomycin (BLM), baicalein and BLM + baicalein groups. Lung fibrosis was established by a single intratracheal dose of BLM (3 mg/kg). The baicalein group received baicalein orally (100 mg/kg/day). Sirtuin 3 (Sirt3) siRNA (50 μg) was injected through the tail vein once a week for 2 weeks to explore its effect on the anti-pulmonary fibrosis of baicalein. RESULTS BLM-treated mice exhibited obvious lung fibrosis and fibroblast senescence by showing increased levels of collagen deposition (27.29% vs. 4.14%), hydroxyproline (208.05 vs. 40.16 ng/mg), collagen I (25.18 vs. 9.15 μg/mg), p53, p21, p16, MCP-1, PAI-1, TNF-α, MMP-10 and MMP-12 in lung tissues, which were attenuated by baicalein. Baicalein also mitigated BLM-mediated activation of TGF-β1/Smad signalling pathway. Baicalein restored the BLM-induced downregulation of Sirt3 expression in lung tissues and silencing of Sirt3 abolished the inhibitory role of baicalein against BLM-induced lung fibrosis, fibroblast senescence and activation of TGF-β1/Smad signalling pathway. CONCLUSIONS Baicalein preserved the BLM-induced downregulation of lung Sirt3 expression, and thus the suppression of TGF-β1/Smad signalling pathway and lung fibrosis, which might provide an experimental basis for treatment of IPF.
Collapse
Affiliation(s)
- Yuan Ji-hong
- Department of Acute and Critical Care, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ma Yu
- Department of Anesthesiology, Shanghai Baoshan Traditional Chinese Medicine-integrated Hospital, Shanghai, China
| | - Yuan Ling-hong
- Department of Acute and Critical Care, Changxing Branch of Xinhua Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Gong Jing-jing
- Department of Nephrology, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Ling-li
- Department of Acute and Critical Care, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lv
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Yong-mei
- Department of Nursing, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Tang J, Yan B, Tang Y, Zhou X, Ji Z, Xu F. Baicalein ameliorates oxidative stress and brain injury after intracerebral hemorrhage by activating the Nrf2/ARE pathway via miR-106a-5p/PHLPP2 axis. Int J Neurosci 2023; 133:1380-1393. [PMID: 35612366 DOI: 10.1080/00207454.2022.2080676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke subtype. Baicalein (BAI) has been reported to be effective in ischemic stroke. The aim of the present study was to investigate the mechanism of BAI on brain injury after ICH. Firstly, ICH mouse models were established by injecting collagenase into the right of basal ganglia, followed by detection of neurobehavioral scores, brain edema, oxidative stress (OS) level, neuronal apoptosis and pathological changes. Average neurologic scores, brain water content, and blood-brain barrier permeability and MDA level in ICH mice were reduced after BAI treatment, while serum SOD and GSH-Px levels were increased and neuronal apoptosis and pathological injury of the brain tissues were mitigated. miR-106a-5p downregulation averted the effect of BAI on ICH mice. miR-106a-5p targeted PHLPP2 and PHLPP2 overexpression reversed the effect of BAI on ICH mice. BAI activated the Nrf2/ARE pathway by inhibiting PHLPP2 expression. In conclusion, BAI inhibited OS and protected against brain injury after ICH by activating the Nrf2/ARE pathway through the miR-106a-5p/PHLPP2 axis.
Collapse
Affiliation(s)
- Jilei Tang
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Bingchao Yan
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Yangyang Tang
- Department of Nursing Basic Medicine Teaching and Research Section, Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu, China
| | - Xin Zhou
- Xuzhou College of Industrial Technolog, Xuzhou, Jiangsu, China
| | - Ziteng Ji
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Feng Xu
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Kumari N, Anand S, Shah K, Chauhan NS, Sethiya NK, Singhal M. Emerging Role of Plant-Based Bioactive Compounds as Therapeutics in Parkinson's Disease. Molecules 2023; 28:7588. [PMID: 38005310 PMCID: PMC10673433 DOI: 10.3390/molecules28227588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological ailments, including stroke, Alzheimer's disease (AD), epilepsy, Parkinson's disease (PD), and other related diseases, have affected around 1 billion people globally to date. PD stands second among the common neurodegenerative diseases caused as a result of dopaminergic neuron loss in the midbrain's substantia nigra regions. It affects cognitive and motor activities, resulting in tremors during rest, slow movement, and muscle stiffness. There are various traditional approaches for the management of PD, but they provide only symptomatic relief. Thus, a survey for finding new biomolecules or substances exhibiting the therapeutic potential to patients with PD is the main focus of present-day research. Medicinal plants, herbal formulations, and natural bioactive molecules have been gaining much more attention in recent years as synthetic molecules orchestrate a number of undesired effects. Several in vitro, in vivo, and in silico studies in the recent past have demonstrated the therapeutic potential of medicinal plants, herbal formulations, and plant-based bioactives. Among the plant-based bioactives, polyphenols, terpenes, and alkaloids are of particular interest due to their potent anti-inflammatory, antioxidant, and brain-health-promoting properties. Further, there are no concise, elaborated articles comprising updated mechanism-of-action-based reviews of the published literature on potent, recently investigated (2019-2023) medicinal plants, herbal formulations, and plant based-bioactive molecules, including polyphenols, terpenes, and alkaloids, as a method for the management of PD. Therefore, we designed the current review to provide an illustration of the efficacious role of various medicinal plants, herbal formulations, and bioactives (polyphenols, terpenes, and alkaloids) that can become potential therapeutics against PD with greater specificity, target approachability, bioavailability, and safety to the host. This information can be further utilized in the future to develop several value-added formulations and nutraceutical products to achieve the desired safety and efficacy for the management of PD.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | | | - Neeraj K. Sethiya
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Manmohan Singhal
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| |
Collapse
|
26
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
27
|
Gong Q, Wang Y, Wang X, Pan H, Yan C. Baicalein promotes the microglia M2 polarization and suppresses apoptosis by targeting HMOX1/PDE4D to alleviate Alzheimer's disease. Immunobiology 2023; 228:152761. [PMID: 38006681 DOI: 10.1016/j.imbio.2023.152761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that has quickly becoming one of the most expensive, lethal, and burdening diseases of this century. In the past twenty years, hundreds of drugs have been tested while only several have been authorized by FDA for AD treatment, hence, searching for candidate agent with therapeutic potential for AD is imminent. Controlling polarization direction of microglia is crucial in AD therapy. Recent research suggests that baicalein has potential to reduce neuroinflammation and prevent neurodegenerative diseases by affecting microglia, while the specific molecular mechanism of baicalein in regulating microglia in the treatment of AD is still unclear. In this study, we investigated how baicalein affected microglial polarization in AD and potential biological mechanisms. In cell experiments, it was verified that baicalein significantly shifted the BV-2 microglia phenotype from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype, inhibited the microglial apoptosis and pro-inflammatory factors, promoted the microglial Aβ uptake and anti-inflammatory factors after LPS stimulated. In APP/PS1 mice, it was found that baicalein decreased the Aβ plaque deposition in brain, attenuated NLRP3 inflammasome activation and neuronal apoptosis in APP/PS1 mice. Furthermore, bioinformatics analysis and experiment validated that HMOX1 is a target of baicalein, and we elucidated that baicalein modulated the microglial polarization to inhibit neuroinflammation and neural injury through targeting on the HMOX1/PDE4D axis in AD. In conclusion, our findings indicate the therapeutic effect of baicalein for AD, and baicalein might serve a potential agent for AD treatment.
Collapse
Affiliation(s)
- Qingmei Gong
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province 310000, China
| | - Yanbo Wang
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province 310000, China
| | - Xiaowei Wang
- Department of Respiratory, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province 310000, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province 310000, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310000, China.
| |
Collapse
|
28
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Conjugation, Prodrug, and Co-Administration Strategies in Support of Nanotechnologies to Improve the Therapeutic Efficacy of Phytochemicals in the Central Nervous System. Pharmaceutics 2023; 15:1578. [PMID: 37376027 DOI: 10.3390/pharmaceutics15061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals, produced as secondary plant metabolites, have shown interesting potential therapeutic activities against neurodegenerative diseases and cancer. Unfortunately, poor bioavailability and rapid metabolic processes compromise their therapeutic use, and several strategies are currently proposed for overcoming these issues. The present review summarises strategies for enhancing the central nervous system's phytochemical efficacy. Particular attention has been paid to the use of phytochemicals in combination with other drugs (co-administrations) or administration of phytochemicals as prodrugs or conjugates, particularly when these approaches are supported by nanotechnologies exploiting conjugation strategies with appropriate targeting molecules. These aspects are described for polyphenols and essential oil components, which can improve their loading as prodrugs in nanocarriers, or be part of nanocarriers designed for targeted co-delivery to achieve synergistic anti-glioma or anti-neurodegenerative effects. The use of in vitro models, able to simulate the blood-brain barrier, neurodegeneration or glioma, and useful for optimizing innovative formulations before their in vivo administration via intravenous, oral, or nasal routes, is also summarised. Among the described compounds, quercetin, curcumin, resveratrol, ferulic acid, geraniol, and cinnamaldehyde can be efficaciously formulated to attain brain-targeting characteristics, and may therefore be therapeutically useful against glioma or neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation-Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | | | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| |
Collapse
|
29
|
Fang DN, Zheng CW, Ma YL. Effectiveness of Scutellaria baicalensis Georgi root in pregnancy-related diseases: A review. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:17-25. [PMID: 36216728 DOI: 10.1016/j.joim.2022.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/04/2022] [Indexed: 01/12/2023]
Abstract
The root of Scutellaria baicalensis Georgi, also called Huangqin, is frequently used in traditional Chinese medicine. In ancient China, S. baicalensis root was used to clear heat, protect the fetus, and avoid a miscarriage for thousands of years. In modern times, pregnancy-related diseases can seriously affect maternal and fetal health, but few systematic studies have explored the mechanisms and potential targets of S. baicalensis root in the treatment of pregnancy-related diseases. Flavonoids (baicalein, wogonin and oroxylin A) and flavonoid glycosides (baicalin and wogonoside) are the main chemical components in the root of S. baicalensis. This study presents the current understanding of the major chemical components in the root of S. baicalensis, focusing on their traditional uses, potential therapeutic effects and ethnopharmacological relevance to pregnancy-related disorders. The mechanisms, potential targets and experimental models of S. baicalensis root for ameliorating pregnancy-related diseases, such as recurrent spontaneous abortion, preeclampsia, preterm birth, fetal growth restriction and gestational diabetes mellitus, are highlighted.
Collapse
Affiliation(s)
- Dan-Na Fang
- Medical College, Shaoxing University, Shaoxing 312000, Zhejiang Province, China
| | - Chang-Wu Zheng
- Medical College, Shaoxing University, Shaoxing 312000, Zhejiang Province, China
| | - Ye-Ling Ma
- Medical College, Shaoxing University, Shaoxing 312000, Zhejiang Province, China.
| |
Collapse
|
30
|
Li X, Deng Q, Kuang Y, Mao H, Yao M, Lin C, Luo X, Xu P. Identifying NFKB1, STAT3, and CDKN1A as Baicalein's Potential Hub Targets in Parkinson's Disease-related α-synuclein-mediated Pathways by Integrated Bioinformatics Strategies. Curr Pharm Des 2023; 29:2426-2437. [PMID: 37859325 DOI: 10.2174/0113816128259065231011114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The overexpression, accumulation, and cell-to-cell transmission of α-synuclein leads to the deterioration of Parkinson's disease (PD). Previous studies suggest that Baicalein (BAI) can bind to α-synuclein and inhibit α-synuclein aggregation and secretion. However, it is still unclear whether BAI can intervene with the pathogenic molecules in α-synuclein-mediated PD pathways beyond directly targeting α-synuclein per se. METHODS This study aimed to systematically investigate BAI's potential targets in PD-related A53T mutant α-synuclein-mediated pathways by integrating data mining, network pharmacological analysis, and molecular docking simulation techniques. RESULTS The results suggest that BAI may target genes that are dysregulated in synaptic transmission, vesicle trafficking, gene transcription, protein binding, extracellular matrix formation, and kinase activity in α-synucleinmediated pathways. NFKB1, STAT3, and CDKN1A are BAI's potential hub targets in these pathways. CONCLUSION Our findings highlight BAI's potentiality to modulate α-synuclein-mediated pathways beyond directly targeting α-synuclein per se.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiyin Deng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoyun Kuang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiling Yao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changsong Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaodong Luo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Mani R, Sha Sulthana A, Muthusamy G, Elangovan N. Progress in the development of naturally derived active metabolites-based drugs: Potential therapeutics for Alzheimer's disease. Biotechnol Appl Biochem 2022; 69:2713-2732. [PMID: 35067971 DOI: 10.1002/bab.2317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an extensive age-associated neurodegenerative disorder. In spite of wide-ranging progress in understanding the AD pathology for the past 50 years, clinical trials based on the hypothesis of amyloid-beta (Aβ) have reserved worsening particularly at late-stage human trials. Consequently, very few old drugs are presently used for AD with inadequate clinical consequences and various side effects. We focus on widespread pharmacological and beneficial principles for existing as well as future drugs. Multitargeting approaches by means of general antioxidant and anti-inflammatory mechanisms allied with particular receptor and/or enzyme-mediated actions in neuroprotection and neurodegeneration. The plant kingdom comprises a vast range of species with an incredible diversity of bioactive metabolites with diverse chemical scaffolds. In recent times, an increasing body of facts recommended the use of phytochemicals to decelerate AD's onset and progression. The definitive goal of AD investigation is to avert the onset of neurodegeneration, thereby allowing successful aging devoid of cognitive decline. At this point, we discussed the neurological protective role of natural products and naturally derived therapeutic agents for AD from various natural polyphenolic compounds and medicinal plants. In conclusion, medicinal plants act as a chief source of different bioactive constituents.
Collapse
Affiliation(s)
- Renuka Mani
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ahmed Sha Sulthana
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ganesan Muthusamy
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
32
|
Zhao Z, Nian M, Qiao H, Yang X, Wu S, Zheng X. Review of bioactivity and structure-activity relationship on baicalein (5,6,7-trihydroxyflavone) and scutellarin (5,7-dihydroxy-8-methoxyflavone) derivatives: Structural modifications inspired from flavonoids in Scutellaria baicalensis. Eur J Med Chem 2022; 243:114733. [DOI: 10.1016/j.ejmech.2022.114733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/28/2022] [Indexed: 12/13/2022]
|
33
|
Effects of Origanum vulgare and Scutellaria baicalensis on the Physiological Activity and Biochemical Parameters of the Blood in Rats on a High-Fat Diet. Sci Pharm 2022. [DOI: 10.3390/scipharm90030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pharmacological effects of medicinal plants play a primary role in the mild correction of body weight in humans and animals, reducing the accumulation of fat in their bodies during a state of obesity. Origanum vulgare L. and Scutellaria baicalensis Georgi are widely used as food additives and medicinal plants, but their comprehensive physiological evaluation in model animals in a state of obesity has not been carried out. In a 30-day laboratory experiment on male rats which had developed obesity through a hypercaloric diet, the effects of adding the dry crushed grass O. vulgare or dry crushed roots of S. baicalensis to their feed was evaluated. During the experiment, the rats fed with O. vulgare increased in body weight to only 105.5% of their initial weight, while the body weight of the control group increased to 111.5%, and that of animals fed on S. baicalensis increased to 124.0% of their initial body weight. The average daily increase in the rats’ body weight when O. vulgare was added to their diet decreased to 205 mg/day, and when S. baicalensis was added, on the contrary, it increased to 1417 mg/day, compared to 700 mg/day among the control group. Under the influence of O. vulgare, the lipid metabolism of the rats normalized: the atherogenic index decreased to 33.7%, compared with the values of the control group, due to an increase in the concentration of high-density lipoproteins from cholesterol. The concentration of triglycerides decreased, and the concentration of glucose decreased. The roots of S. baicalensis being added into the diet of rats increased the activity of alkaline phosphatase and decreased the concentration of urea. The atherogenic index also decreased (by up to 35.5% in the control group) and the concentration of high-density lipoprotein cholesterol increased, while the concentrations of triglycerides and glucose decreased. The physical activity of the rats showed a slight tendency to decrease when both O. vulgare and S. baicalensis were added to their diet. Both plant species contributed to a decrease in the emotional status of animals, which was most pronounced when the O. vulgare grass was added to the feed. The results of the study demonstrate the potential of the use of O. vulgare and S. baicalensis as herbal supplementations for the correction of hyperlipidemia and type-2 diabetes mellitus in overweight patients.
Collapse
|
34
|
Yang L, Wang B, Ma L, Fu P. Traditional Chinese herbs and natural products in hyperuricemia-induced chronic kidney disease. Front Pharmacol 2022; 13:971032. [PMID: 36016570 PMCID: PMC9395578 DOI: 10.3389/fphar.2022.971032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Hyperuricemia is a common biochemical disorder, which resulted from both excessive uric acid (UA) production and/or absolute or relative impairment of urinary UA excretion. Growing evidence has indicated that hyperuricemia is an independent risk factor for the development and progression of chronic kidney disease (CKD), causing hyperuricemia-induced CKD (hyperuricemic nephropathy, HN). The therapeutic strategy of HN is managing hyperuricemia and protecting kidney function. Adverse effects of commercial drugs make persistent treatment of HN challenging. Traditional Chinese medicine (TCM) has exact efficacy in lowering serum UA without serious adverse effects. In addition, TCM is widely applied for the treatment of CKD. This review aimed to provide an overview of efficacy and mechanisms of traditional Chinese herbs and natural products in hyperuricemia-induced CKD.
Collapse
Affiliation(s)
| | | | - Liang Ma
- *Correspondence: Liang Ma, ; Ping Fu,
| | - Ping Fu
- *Correspondence: Liang Ma, ; Ping Fu,
| |
Collapse
|
35
|
James JP, Sasidharan P, Mandal SP, Dixit SR. Virtual Screening of Alkaloids and Flavonoids as Acetylcholinesterase and MAO-B Inhibitors by Molecular Docking and Dynamic Simulation Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Jainey P. James
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), NITTE (Deemed to Be University), Mangaluru, India
| | - Pradija Sasidharan
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), NITTE (Deemed to Be University), Mangaluru, India
| | - Subhankar P. Mandal
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education and Research, JSS College of Pharmacy, Mysuru, India
| | - Sheshagiri R. Dixit
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education and Research, JSS College of Pharmacy, Mysuru, India
| |
Collapse
|
36
|
Protective and therapeutic effects of Scutellaria baicalensis and its main active ingredients baicalin and baicalein against natural toxicities and physical hazards: a review of mechanisms. Daru 2022; 30:351-366. [PMID: 35870110 PMCID: PMC9715893 DOI: 10.1007/s40199-022-00443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/10/2022] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVES Scutellaria baicalensis (SB) has been traditionally used to combat a variety of conditions ranging from ischemic heart disease to cancer. The protective effects of SB are due to the action of two main flavonoids baicalin (BA) and baicalein (BE). This paper aimed to provide a narrative review of the protective and antidotal effects of SB and its main constituents against natural toxicities and physical hazards. EVIDENCE ACQUISITION Scientific databases Medline, Scopus, and Web of Science were thoroughly searched, based on different keywords for in vivo, in vitro and clinical studies which reported protective or therapeutic effects of SB or its constituents in natural and physical toxicities. RESULTS Numerous studies have reported that treatment with BE, BA, or total SB extract prevents or counteracts the detrimental toxic effects of various natural compounds and physical hazards. The toxic agents include mycotoxins, lipopolysaccharide, multiple plants and animal-derived substances as well as physical factors which negatively affected vital organs such as CNS, liver, kidneys, lung and heart. Increasing the expression of radical scavenging enzymes and glutathione content as well as inhibition of pro-inflammatory cytokines and pro-apoptotic mediators were important mechanisms of action. CONCLUSION Different studies on the Chinese skullcap have exhibited that its total root extract, BA or BE can act as potential antidotes or protective agents against the damage induced by natural toxins and physical factors by alleviating oxidative stress and inflammation. However, the scarcity of high-quality clinical evidence means that further clinical studies are required to reach a more definitive conclusion.
Collapse
|
37
|
Nikolaeva NS, Yandulova EY, Aleksandrova YR, Starikov AS, Neganova ME. The Role of a Pathological Interaction between β-amyloid and Mitochondria in the Occurrence and Development of Alzheimer's Disease. Acta Naturae 2022; 14:19-34. [PMID: 36348714 PMCID: PMC9611857 DOI: 10.32607/actanaturae.11723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in existence. It is characterized by an impaired cognitive function that is due to a progressive loss of neurons in the brain. Extracellular β-amyloid (Aβ) plaques are the main pathological features of the disease. In addition to abnormal protein aggregation, increased mitochondrial fragmentation, altered expression of the genes involved in mitochondrial biogenesis, disruptions in the ER-mitochondria interaction, and mitophagy are observed. Reactive oxygen species are known to affect Aβ expression and aggregation. In turn, oligomeric and aggregated Aβ cause mitochondrial disorders. In this review, we summarize available knowledge about the pathological effects of Aβ on mitochondria and the potential molecular targets associated with proteinopathy and mitochondrial dysfunction for the pharmacological treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- N. S. Nikolaeva
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - E. Yu. Yandulova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - Yu. R. Aleksandrova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - A. S. Starikov
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| | - M. E. Neganova
- Federal State Budgetary Institution of Science Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, 142432 Russia
| |
Collapse
|
38
|
Scutellaria baicalensis and its constituents baicalin and baicalein as antidotes or protective agents against chemical toxicities: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1297-1329. [PMID: 35676380 DOI: 10.1007/s00210-022-02258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Scutellaria baicalensis (SB), also known as the Chinese skullcap, has a long history of being used in Chinese medicine to treat a variety of conditions ranging from microbial infections to metabolic syndrome and malignancies. Numerous studies have reported that treatment with total SB extract or two main flavonoids found in its root and leaves, baicalin (BA) and baicalein (BE), can prevent or alleviate the detrimental toxic effects of exposure to various chemical compounds. It has been shown that BA and BE are generally behind the protective effects of SB against toxicants. This paper aimed to review the protective and therapeutic effects of SB and its main components BA and BE against chemical compounds that can cause intoxication after acute or chronic exposure and seriously affect different vital organs including the brain, heart, liver, and kidneys. In this review paper, we had a look into a total of 221 in vitro and in vivo studies from 1995 to 2021 from the scientific databases PubMed, Scopus, and Web of Science which reported protective or therapeutic effects of BA, BE, or SB against drugs and chemicals that one might be exposed to on a professional or accidental basis and compounds that are primarily used to simulate disease models. In conclusion, the protective effects of SB and its flavonoids can be mainly attributed to increase in antioxidants enzymes, inhibition of lipid peroxidation, reduction of inflammatory cytokines, and suppression of apoptosis pathway.
Collapse
|
39
|
Chen P, Zhang J, Wang C, Chai YH, Wu AG, Huang NY, Wang L. The pathogenesis and treatment mechanism of Parkinson's disease from the perspective of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154044. [PMID: 35338993 DOI: 10.1016/j.phymed.2022.154044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with no treatment currently available to modify its progression. Traditional Chinese medicine (TCM) has gained attention for its unique theoretical basis and clinical effects. Many studies have reported on the clinical effects and pharmacological mechanisms of Chinese herbs in PD. However, few studies have focused on the treatment mechanisms of anti-PD TCM drugs from the perspective of TCM itself. PURPOSE To elaborate the treatment mechanisms of anti-PD TCM drugs in the perspective of TCM. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others up to July 2021. RESULTS TCM theory states that PD is caused by a dysfunction of the zang-fu organs (liver, spleen, kidney, and lung) and subsequent pathogenic factors (wind, fire, phlegm, and blood stasis). Based on the pathogenesis, removing pathogenic factors and restoring visceral function are two primary treatment principles for PD in TCM. The former includes dispelling wind, clearing heat, resolving phlegm, and promoting blood circulation, while the latter involves nourishing the liver and kidney and strengthening the spleen. The anti-PD mechanisms of the active ingredients of TCM compounds and herbs at different levels include anti-apoptosis, anti-inflammation, and anti-oxidative stress, as well as the restoration of mitochondrial function and the regulation of autophagy and neurotransmitters. CONCLUSION Chinese herbs and prescriptions can be used to treat PD by targeting multiple pharmacological mechanisms.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Jie Zhang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Hui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ning-Yu Huang
- Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
40
|
Zhang Z, Xu J, Ma S, Lin N, Hou M, Wei M, Li T, Shi J. Integration of Network Pharmacology and Molecular Docking Technology Reveals the Mechanism of the Therapeutic Effect of Xixin Decoction on Alzheimer's Disease. Comb Chem High Throughput Screen 2022; 25:1785-1804. [PMID: 35616676 DOI: 10.2174/1386207325666220523151119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND So far, only a few researchers have systematically analyzed the constituents of the traditional Chinese medicine prescription Xixin Decoction (XXD) and its potential mechanism of action in treating Alzheimer's disease (AD). This study aimed to explore the potential mechanism of XXD in the treatment of AD using network pharmacology and molecular docking. METHODS The compounds of XXD were searched within the Traditional Chinese Medicine System Pharmacology Database (TCMSP) and the Traditional Chinese Medicine Integrated Database (TCMID) databases. Overlapping AD-related targets obtained from the two databases and the predicted targets of XXD obtained from SwissTargetPrediction platform were imported into the STRING database to build PPI networks including hub targets; Cytoscape software was used to construct the herb-compound-target network while its plug-in CytoNCA was used to screen the main active compounds of XXD. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses explored the core biological mechanism and pathways via the Metascape platform. In addition, we used AutoDock Vina and PyMOL software to investigate the molecular docking of main compounds to hub targets. RESULTS We determined 114 active compounds, 973 drug targets, and 973 disease targets. However, intersection analysis screened out 208 shared targets.Protein-protein interaction (PPI) network identified 9 hub targets. The hub targets were found to be majorly enriched in several biological processes (positive regulation of kinase activity, positive regulation of cell death, regulation of MAPK cascade, trans-synaptic signaling, synaptic signaling, etc.) and the relevant pathways of Alzheimer's disease, including neuroactive ligand-receptor interaction, dopaminergic synapse, serotonergic synapse, and the MAPK signaling pathway, etc. The pathway-target-compound network of XXD for treating AD was then constructed. 8 hub targets exhibited good binding activity with 9 main active compounds of XXD in molecular docking. CONCLUSION In this study, we found multi-compound-multi-target-multi-pathway regulation to reveal the mechanism of XXD for treating AD based on network pharmacology and molecular docking. XXD may play a therapeutic role through regulating the Alzheimer's disease pathway, its downstream PI3K/Akt signaling pathway or the MAPK signaling pathway, thereby treating AD. This provides new insights for further experiments on the pharmacological effects of XXD.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Jianglin Xu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, Dongcheng District 100700, P.R. China
| | - Suya Ma
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, Xicheng District 100053, P.R. China
| | - Nan Lin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Minzhe Hou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Mingqing Wei
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Ting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| | - Jing Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng District, Beijing 100700, P.R. China
| |
Collapse
|
41
|
Baicalein: promising therapeutic applications with special reference to published patents. Pharm Pat Anal 2022; 11:23-32. [PMID: 35345898 DOI: 10.4155/ppa-2021-0027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Baicalein is a medicinally important flavonoid present in Scutellaria baicalensis, which has numerous biological benefits like anti-oxidant, anti-inflammatory, antihepatotoxicity, anticancer properties, etc. Recent studies have revealed that baicalein is an efficient antihepatoma agent and has the strongest antiproliferative effect toward cancerous bladder cell lines, and suppression of cell cycle progression in prostate cancer cells. This natural substance has a high commercial value because it strengthens the heart and cerebral vessels and protects the nervous system and also reduces diabetes and diabetic complications. In addition, baicalein is known to decrease inflammatory markers such as IL-1β, IL-6 and TNF-α. In this review, we have attempted to compile the list of recent therapeutic patents of baicalein used for treating different disorders.
Collapse
|
42
|
Chen M, Peng L, Gong P, Zheng X, Sun T, Zhang X, Huo J. Baicalein Induces Mitochondrial Autophagy to Prevent Parkinson's Disease in Rats via miR-30b and the SIRT1/AMPK/mTOR Pathway. Front Neurol 2022; 12:646817. [PMID: 35237220 PMCID: PMC8883053 DOI: 10.3389/fneur.2021.646817] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a prevailing neurodegenerative disorder. Baicalein has neuroprotective effects on PD animals, but its mechanism is not clarified. We explored baicalein effects on PD rats. PD rat models were established by injecting 6-hydroxydopamine into the striatum of substantia nigra on the left side of the rat brain and treated with baicalein. Dopamine (DA) content, neuronal apoptosis, neuronal injury, neuronal mitochondria, and autophagy were assessed. Baicalein-treated PD rats were treated with autophagy inhibitor 3-methyladenine to identify the role of autophagy in PD. PD rats were injected with AgomiR-30b-5p or sh-SIRT1 plasmids and treated with baicalein. PD rats elicited decreased neurological score and DA secretion of the striatum, increased neuronal apoptosis, and injury, and reduced number of mitochondria and autophagy, whereas baicalein alleviated neuronal injury and partly recovered mitochondrial dysfunction, 3-methyladenine inhibited the protection of baicalein. miR-30b-5p was elevated and SIRT1 was diminished in PD rats and inhibited by baicalein. miR-30b-5p targeted SIRT1. miR-30b-5p overexpression or SIRT1 silencing annulled the protection of baicalein. The phosphorylation level of AMPK in the substantia nigra of PD rats was decreased and mTOR was increased, whereas baicalein annulled these trends. Briefly, baicalein activated mitochondrial autophagy via miR-30b-5p and the SIRT1/AMPK/mTOR pathway, thus protecting PD rats.
Collapse
Affiliation(s)
- Min Chen
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Li Peng
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ping Gong
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xiaoli Zheng
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Tao Sun
- Department of Surgery, Traditional Chinese Medicine Hospital, Guizhou, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Jiangtao Huo
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
- *Correspondence: Jiangtao Huo
| |
Collapse
|
43
|
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson's Disease: Is there a Role for Dietary and Herbal Supplements? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:343-365. [PMID: 33602107 DOI: 10.2174/1871527320666210218082954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterised by degeneration of the neurons of the nigrostriatal dopaminergic pathway of the brain. The pharmacological cornerstone of PD management is mainly the use of dopamine precursors, dopamine receptor agonists, and agents that inhibit the biochemical degradation of dopamine. While these drugs initially provide relief to the symptoms and improve the quality of life of the patients, progression of the underlying pathological processes, such as oxidative stress and neuroinflammation (which have been strongly associated with PD and other neurodegenerative disorders), eventually reduce their benefits, making further benefits achievable, only at high doses due to which the magnitude and frequency of side-effects are amplified. Also, while it is becoming obvious that mainstream pharmacological agents may not always provide the much-needed answer, the question remains what succour can nature provide through dietary supplements, nutraceuticals and herbal remedies? This narrative review examines current literature for evidence of the possible roles (if any) of nutraceuticals, dietary supplements and herbal remedies in the prevention or management of PD by examining how these compounds could modulate key factors and pathways that are crucial to the pathogenesis and/or progression of PD. The likely limitations of this approach and its possible future roles in PD prevention and management are also considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Ademola O Odeniyi
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
44
|
Liao Y, Hu X, Pan J, Zhang G. Inhibitory Mechanism of Baicalein on Acetylcholinesterase: Inhibitory Interaction, Conformational Change, and Computational Simulation. Foods 2022; 11:foods11020168. [PMID: 35053900 PMCID: PMC8774682 DOI: 10.3390/foods11020168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent chronic neurodegenerative disease in elderly individuals, causing dementia. Acetylcholinesterase (AChE) is regarded as one of the most popular drug targets for AD. Herbal secondary metabolites are frequently cited as a major source of AChE inhibitors. In the current study, baicalein, a typical bioactive flavonoid, was found to inhibit AChE competitively, with an associated IC50 value of 6.42 ± 0.07 µM, through a monophasic kinetic process. The AChE fluorescence quenching by baicalein was a static process. The binding constant between baicalein and AChE was an order of magnitude of 104 L mol−1, and hydrogen bonding and hydrophobic interaction were the major forces for forming the baicalein−AChE complex. Circular dichroism analysis revealed that baicalein caused the AChE structure to shrink and increased its surface hydrophobicity by increasing the α-helix and β-turn contents and decreasing the β-sheet and random coil structure content. Molecular docking revealed that baicalein predominated at the active site of AChE, likely tightening the gorge entrance and preventing the substrate from entering and binding with the enzyme, resulting in AChE inhibition. The preceding findings were confirmed by molecular dynamics simulation. The current study provides an insight into the molecular-level mechanism of baicalein interaction with AChE, which may offer new ideas for the research and development of anti-AD functional foods and drugs.
Collapse
Affiliation(s)
- Yijing Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.L.); (X.H.); (J.P.)
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.L.); (X.H.); (J.P.)
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.L.); (X.H.); (J.P.)
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.L.); (X.H.); (J.P.)
- Correspondence:
| |
Collapse
|
45
|
Liu H, Zhong L, Dai Q, Yang J, Zhang Y, Zhang B, Jiang Y. Zuoguiwan Ameliorates Cognitive Deficits and Neuro-Inflammation in Streptozotocin-Induced Alzheimer's Disease Rats. Neuroimmunomodulation 2022; 29:63-69. [PMID: 34320500 DOI: 10.1159/000516396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Alzheimer's disease is the most popular neurodegenerative disorder with no effective drugs to stop the progression. Zuoguiwan (ZGW), a traditional Chinese herbal medicine, has been applied in many diseases. Our study aimed to detect the function and mechanisms of ZGW in Alzheimer's disease (AD). METHODS The rat models of AD were established by streptozotocin (STZ), and the function of ZGW on cognitive dysfunction was measured with the Morris water maze test. The concentration of pro-inflammatory mediators was accessed by enzyme-linked immunosorbent assay. The relative mRNA expression of ERβ was detected by real-time quantitative PCR. RESULTS The treatment with ZGW could suppress the cognitive impairment by the findings of escape latency and time spent in the target quadrant and the increased concentration of IL-1β, IL-6, and TNF-α induced by STZ. STZ might repress the mRNA levels of ERβ, and ZGW management weakened the declined mRNA expression of ERβ. ZGW might play a protective role in AD rats against the injury of STZ on cognition and neuro-inflammation by improving the mRNA expression of ERβ. CONCLUSION The results indicated that ZGW might be a novel therapeutic strategy to slow the process of AD by modulating ERβ.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Postdoctoral Program, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Zhong
- Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiaomei Dai
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuwei Zhang
- Department of Physiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bo Zhang
- Department of Neurobiology, Research Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Jiang
- Department of Biochemistry, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
46
|
Fumia A, Cicero N, Gitto M, Nicosia N, Alesci A. Role of nutraceuticals on neurodegenerative diseases: neuroprotective and immunomodulant activity. Nat Prod Res 2021; 36:5916-5933. [PMID: 34963389 DOI: 10.1080/14786419.2021.2020265] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is a degenerative process characterized by the progressive loss of the structure and function of neurons that involves several immune cells. It is the primary cause of dementia and other several syndromes, known as neurodegenerative diseases. These disorders are age-related and it is estimated that by 2040 there will be approximately 81.1 million people suffering from these diseases. In addition to the traditional pharmacological therapy, in recent years nutraceuticals, naturally based compounds with a broad spectrum of biological effects: anti-aging, antioxidants, hypoglycaemic, hypocholesterolemic, anticancer, anxiolytic, antidepressant, etc., assumed an important role in counteracting these pathologies. In particular, several compounds such as astaxanthin, baicalein, glycyrrhizin, St. John's wort, and Ginkgo biloba L. extracts show particular neuroprotective and immunomodulatory abilities, involving several immune cells and some neurotransmitters that play a critical role in neurodegeneration, making them particularly useful in improving the symptoms and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico 'G. Martino', Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Gitto
- Department of Clinical and Community Sciences, Fondazione IRCCS Ca' Granada, Ospedale Maggiore Policlinico, U.O.S. di Audiologia, Milano, Italy
| | - Noemi Nicosia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation 'Prof. Antonio Imbesi', University of Messina, Messina, Italy.,Department of Pharmacological Screening, Jagiellonian University, Medical College, Cracow, PL, Poland
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
47
|
Yun Y, Miao Y, Sun X, Sun J, Wang X. Synthesis and biological evaluation of 2-arylbenzofuran derivatives as potential anti-Alzheimer's disease agents. J Enzyme Inhib Med Chem 2021; 36:1346-1356. [PMID: 34134572 PMCID: PMC8765280 DOI: 10.1080/14756366.2021.1940993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is a type of progressive dementia caused by degeneration of the nervous system. A single target drug usually does not work well. Therefore, multi-target drugs are designed and developed so that one drug can specifically bind to multiple targets to ensure clinical effectiveness and reduce toxicity. We synthesised a series of 2-arylbenzofuran derivatives and evaluated their in vitro activities. 2-Arylbenzofuran compounds have good dual cholinesterase inhibitory activity and β-secretase inhibitory activity. The IC50 value of compound 20 against acetylcholinesterase inhibition (0.086 ± 0.01 µmol·L-1) is similar to donepezil (0.085 ± 0.01 µmol·L-1) and is better than baicalein (0.404 ± 0.04 µmol·L-1). And most of the compounds have good BACE1 inhibitory activity, of which 3 compounds (8, 19 and 20) show better activity than baicalein (0.087 ± 0.03 µmol·L-1). According to experimental results, 2-arylbenzofuran compounds provide an idea for drug design to develop prevention and treatment for AD.
Collapse
Affiliation(s)
- Yinling Yun
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoya Sun
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
48
|
Targeting Mitochondria by Plant Secondary Metabolites: A Promising Strategy in Combating Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222212570. [PMID: 34830453 PMCID: PMC8619002 DOI: 10.3390/ijms222212570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most prevalent and debilitating neurodegenerative conditions, and is currently on the rise. Several dysregulated pathways are behind the pathogenesis of PD; however, the critical targets remain unclear. Accordingly, there is an urgent need to reveal the key dysregulated pathways in PD. Prevailing reports have highlighted the importance of mitochondrial and cross-talked mediators in neurological disorders, genetic changes, and related complications of PD. Multiple pathophysiological mechanisms of PD, as well as the low efficacy and side effects of conventional neuroprotective therapies, drive the need for finding novel alternative agents. Recently, much attention has been paid to using plant secondary metabolites (e.g., flavonoids/phenolic compounds, alkaloids, and terpenoids) in the modulation of PD-associated manifestations by targeting mitochondria. In this line, plant secondary metabolites have shown promising potential for the simultaneous modulation of mitochondrial apoptosis and reactive oxygen species. This review aimed to address mitochondria and multiple dysregulated pathways in PD by plant-derived secondary metabolites.
Collapse
|
49
|
Varshney M, Kumar B, Rana VS, Sethiya NK. An overview on therapeutic and medicinal potential of poly-hydroxy flavone viz. Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone for management of Alzheimer's and Parkinson's diseases: a critical analysis on mechanistic insight. Crit Rev Food Sci Nutr 2021; 63:2749-2772. [PMID: 34590507 DOI: 10.1080/10408398.2021.1980761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | | |
Collapse
|
50
|
Baicalein Mediates Mitochondrial Autophagy via miR-30b and the NIX/BNIP3 Signaling Pathway in Parkinson's Disease. Biochem Res Int 2021; 2021:2319412. [PMID: 34457363 PMCID: PMC8390153 DOI: 10.1155/2021/2319412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is regarded as a severe neurodegenerative disorder. Baicalein is involved in the treatment of PD. This study explored the mechanism of baicalein in PD. The PD rat model was established using 6-hydroxydopamine. The neurologic score, dopamine (DA) content, apoptotic cells, and neuronal damage were evaluated after rats were treated with baicalein. Autophagy in PD rats was inhibited using 3-methyladenine (3-MA). The mitochondrial membrane potential (MMP) and autophagy-related proteins (LC3, P62) were detected. Next, agomiR-30b was transfected into PD rats. The targeting relation between miR-30b and NIX was predicted and verified. Then, sh-NIX was transfected into PD rats, and the effects of miR-30b and NIX on MMP, LC3, and P62 were assessed. When miR-30b was overexpressed using agomiR-30b, the NIX and BNIP3 levels were detected. Baicalein increased the neurological score and restored DA content, neurons, MMP, and mitochondrial autophagy protein levels. Baicalein inhibited miR-30b expression and miR-30b targeted NIX. miR-30b upregulation or NIX silencing reversed the effect of baicalein on MMP and mitochondrial autophagy. Baicalein upregulated NIX and BNIP3 expressions, while miR-30b overexpression inhibited NIX and BNIP3 expressions. In summary, baicalein mediated mitochondrial autophagy and restored neuronal activity by downregulating miR-30b and activating the NIX/BNIP3 pathway, thus protecting against PD.
Collapse
|