1
|
Benmouna M, Benammar C, Khan AS, Djeziri FZ, Hichami A, Khan NA. Celastrol Improves Preference for a Fatty Acid, and Taste Bud and Systemic Inflammation in Diet-Induced Obese Mice. Nutrients 2025; 17:1308. [PMID: 40284173 PMCID: PMC12030286 DOI: 10.3390/nu17081308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Obesity is associated with the altered gustatory perception of dietary fatty acids. Celastrol, a triterpene, has been demonstrated to exert anti-obesity effects in rodents. We assessed the role of Celastrol in the modulation of the oro-sensory perception of lipids in control and high-fat diet (HFD)-induced obese mice. METHODS Male mice of the C57B/6J strain were fed a HFD for 11 weeks and then were administered or not with Celastrol further for 4 weeks. The body weight was recorded weekly. Before the sacrifice, the animals were subjected to oro-sensory detection of a dietary long-chain fatty acid in a two-bottle choice paradigm. After the sacrifice, the fungiform taste buds were isolated and analyzed for mRNA expression, encoding fat sensors (CD36 and GPR120) and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α). Circulating concentrations of IL-6 and TNF-α were also determined, and liver was used to analyze the mRNA expression of lipogenic genes. RESULTS Celastrol administration in obese mice decreased body weight and also re-established the loss of oro-sensory perception for a dietary fatty acid, and this phenomenon was, in part, due to the upregulation of mRNA, encoding fat taste receptors (CD36 and GPR120) in tongue taste bud cells. Furthermore, Celastrol decreased inflammation both in taste buds and blood circulation. CONCLUSIONS Our findings suggest that Celastrol decreases body weight gain, ameliorates the gustatory perception of lipids, and downregulates inflammation in obese mice.
Collapse
Affiliation(s)
- Manal Benmouna
- Physiologie de Nutrition & Toxicology (NUTox), UMR UB/INSERM 1231 Center for Cellular & Translational Molecular Medicine (CTM), Université Bourgogne Europe, & FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France; (M.B.); (C.B.); (F.Z.D.)
- Laboratoire des Produits Naturels (LAPRONA), Université Abou Bekr Belkaid, Tlemcen 13000, Algeria; (A.S.K.); (A.H.)
| | - Chahid Benammar
- Physiologie de Nutrition & Toxicology (NUTox), UMR UB/INSERM 1231 Center for Cellular & Translational Molecular Medicine (CTM), Université Bourgogne Europe, & FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France; (M.B.); (C.B.); (F.Z.D.)
| | - Amira Sayed Khan
- Laboratoire des Produits Naturels (LAPRONA), Université Abou Bekr Belkaid, Tlemcen 13000, Algeria; (A.S.K.); (A.H.)
| | - Fatima Zohra Djeziri
- Physiologie de Nutrition & Toxicology (NUTox), UMR UB/INSERM 1231 Center for Cellular & Translational Molecular Medicine (CTM), Université Bourgogne Europe, & FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France; (M.B.); (C.B.); (F.Z.D.)
| | - Aziz Hichami
- Laboratoire des Produits Naturels (LAPRONA), Université Abou Bekr Belkaid, Tlemcen 13000, Algeria; (A.S.K.); (A.H.)
| | - Naim A. Khan
- Laboratoire des Produits Naturels (LAPRONA), Université Abou Bekr Belkaid, Tlemcen 13000, Algeria; (A.S.K.); (A.H.)
| |
Collapse
|
2
|
Hernandez-Baixauli J, Chomiciute G, Alcaide-Hidalgo JM, Crescenti A, Baselga-Escudero L, Palacios-Jordan H, Foguet-Romero E, Pedret A, Valls RM, Solà R, Mulero M, Del Bas JM. Developing a model to predict the early risk of hypertriglyceridemia based on inhibiting lipoprotein lipase (LPL): a translational study. Sci Rep 2023; 13:22646. [PMID: 38114521 PMCID: PMC10730820 DOI: 10.1038/s41598-023-49277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in LPL activity might result in an identifiable metabolomic signature. The aim of the present study was to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, which led to a predictive model developed using machine learning techniques. The predictive model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. The application of predictive metabolomic models based on mechanistic preclinical research may be considered as a strategy to stratify subjects with HTG of different origins. This approach may be of interest for precision medicine and nutritional approaches.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain
| | | | - Anna Crescenti
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204, Reus, Spain
| | | | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204, Reus, Spain
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204, Reus, Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira I Virgili, C/Sant Llorenç, 21, 43201, Reus, Spain
| | - Rosa M Valls
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira I Virgili, C/Sant Llorenç, 21, 43201, Reus, Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira I Virgili, C/Sant Llorenç, 21, 43201, Reus, Spain
- Internal Medicine Service, Hospital Universitari Sant Joan de Reus, Av/del Doctor Josep Laporte, 2, 43204, Reus, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Àrea Biotecnologia, Reus, Spain.
| |
Collapse
|
3
|
Quesada-Vázquez S, Castells-Nobau A, Latorre J, Oliveras-Cañellas N, Puig-Parnau I, Tejera N, Tobajas Y, Baudin J, Hildebrand F, Beraza N, Burcelin R, Martinez-Gili L, Chilloux J, Dumas ME, Federici M, Hoyles L, Caimari A, Del Bas JM, Escoté X, Fernández-Real JM, Mayneris-Perxachs J. Potential therapeutic implications of histidine catabolism by the gut microbiota in NAFLD patients with morbid obesity. Cell Rep Med 2023; 4:101341. [PMID: 38118419 PMCID: PMC10772641 DOI: 10.1016/j.xcrm.2023.101341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/18/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.
Collapse
Affiliation(s)
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Puig-Parnau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemi Tejera
- Microbes in the Food Chain, Institute Strategic Program, Microbes and Gut Health, Institute Strategic Program - Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yaiza Tobajas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Falk Hildebrand
- Microbes in the Food Chain, Institute Strategic Program, Microbes and Gut Health, Institute Strategic Program - Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
| | - Naiara Beraza
- Microbes in the Food Chain, Institute Strategic Program, Microbes and Gut Health, Institute Strategic Program - Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR), Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Laura Martinez-Gili
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Julien Chilloux
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK; Section of Genomic and Environmental Medicine, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK; European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital, University of Lille, 59045 Lille, France; McGill Genome Centre, McGill University, 740 Doctor Penfield Avenue, Montréal, QC H3A 0G1, Canada
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Saintila J, Baquedano-Santana LE, Calizaya-Milla YE, Ramos-Vera C, Barrientos AS, Carranza-Esteban RF. Association between frequency of breakfast consumption and cardiometabolic risk in Peruvian university teachers, 2019-2020. Front Nutr 2023; 10:1238223. [PMID: 37575324 PMCID: PMC10419266 DOI: 10.3389/fnut.2023.1238223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background Although the relationship between health status and dietary intake has been extensively studied in the general population, there is a lack of research that has specifically examined the association between frequency of breakfast consumption and cardiometabolic risk in university teachers. Objective To determine the association between the frequency of breakfast consumption and cardiometabolic risk in university teachers. Methods A cross-sectional study was conducted in 176 teachers from a private university located in the eastern region of Lima, Peru (Mage: 37.0 years; SD: 0.8, range: 24-59 years). The study was conducted during the period from December 2019 to February 2020. Information was collected on anthropometric and biochemical parameters and frequency of breakfast consumption. Multinomial logistic regression models were used to explore the association between frequency of breakfast with sociodemographic, anthropometric, and biochemical variables. Results The highest prevalence of excess body weight (44.4%) was observed in those who consumed breakfast 0 to 2 days/week, but without statistical differences. Those who reported Low-density lipoprotein cholesterol (LDL-C) < 160 mg/dL were 77% less likely to fall into the 3-5 day/week breakfast frequency category than those who reported a regular frequency of breakfast (6 to 7 days/week) (Adjusted OR = 0.23, 95% CI 0.08 to 0.73; p < 0.05). In addition, teachers who reported a breakfast frequency of 3 to 5 days/week were 83% more likely to have a glucose concentration < 110 mg/dL compared to those who consumed breakfast of 6 to 7 days/week (Adjusted OR = 0.17, 95% CI 0.04 to 0.75; p < 0.05). Conclusion Skipping breakfast for an extended period of time can have detrimental effects on cardiometabolic health. Promoting the benefits of breakfast could be a health message of great public health interest.
Collapse
Affiliation(s)
| | - Laura E. Baquedano-Santana
- Research and Development Laboratories, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Renzo F. Carranza-Esteban
- Grupo de Investigación Avances en Investigación Psicológica, Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
5
|
Mariné-Casadó R, Domenech-Coca C, Crescenti A, Rodríguez Gómez MÁ, Del Bas JM, Arola L, Boqué N, Caimari A. Maternal Supplementation with a Cocoa Extract during Lactation Deeply Modulates Dams' Metabolism, Increases Adiponectin Circulating Levels and Improves the Inflammatory Profile in Obese Rat Offspring. Nutrients 2022; 14:nu14235134. [PMID: 36501173 PMCID: PMC9738144 DOI: 10.3390/nu14235134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
High-flavonoid cocoa consumption has been associated with beneficial properties. However, there are scarce data concerning the effects of maternal cocoa intake on dams and in their progeny. Here, we evaluated in rats whether maternal supplementation with a high-flavan-3-ol cocoa extract (CCX) during lactation (200 mg.kg-1.day-1) produced beneficial effects on dams and in their normoweight (STD-CCX group) and cafeteria-fed obese (CAF-CCX group) adult male offspring. Maternal intake of CCX significantly increased the circulating levels of adiponectin and decreased the mammary gland lipid content of dams. These effects were accompanied by increased energy expenditure and circulating free fatty acids, as well as by a higher expression of lipogenic and adiponectin-related genes in their mammary glands, which could be related to a compensatory mechanism to ensure enough lipid supply to the pups. CCX consumption programmed both offspring groups towards increased plasma total adiponectin levels, and decreased liver weight and lean/fat ratio. Furthermore, CAF-CCX progeny showed an improvement of the inflammatory profile, evidenced by the significant decrease of the monocyte chemoattractant protein-1 (MCP-1) circulating levels and the mRNA levels of the gene encoding the major histocompatibility complex, class II invariant chain (Cd74), a marker of M1 macrophage phenotype, in the epididymal white adipose tissue. Although further studies are needed, these findings can pave the way for using CCX as a nutraceutical supplement during lactation.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Anna Crescenti
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Miguel Ángel Rodríguez Gómez
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain
| | - Josep Maria Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
- Correspondence: (N.B.); (A.C.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
- Correspondence: (N.B.); (A.C.)
| |
Collapse
|
6
|
García-Carrizo F, Galmés S, Picó C, Palou A, Rodríguez AM. Supplementation with the Prebiotic High-Esterified Pectin Improves Blood Pressure and Cardiovascular Risk Biomarker Profile, Counteracting Metabolic Malprogramming. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13200-13211. [PMID: 36214580 PMCID: PMC9585587 DOI: 10.1021/acs.jafc.2c03143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/01/2023]
Abstract
Supplementation with the prebiotic pectin is associated with beneficial health effects. We aimed to characterize the cardioprotective actions of chronic high-esterified pectin (HEP) supplementation (10%) in a model of metabolic malprogramming in rats, prone to obesity and associated disorders: the progeny of mild calorie-restricted dams during the first half of pregnancy. Results show that pectin supplementation reverses metabolic malprogramming associated with gestational undernutrition. In this sense, HEP supplementation improved blood pressure, reduced heart lipid content, and regulated cardiac gene expression of atrial natriuretic peptide and lipid metabolism-related genes. Moreover, it caused an elevation in circulating levels of fibroblast growth factor 21 and a higher expression of its co-receptor β-klotho in the heart. Most effects are correlated with the gut levels of beneficial bacteria promoted by HEP. Therefore, chronic HEP supplementation shows cardioprotective actions, and hence, it is worth considering as a strategy to prevent programmed cardiometabolic alterations.
Collapse
Affiliation(s)
- Francisco García-Carrizo
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Department
of Adipocyte Development and Nutrition (ADE), German Institute of Human Nutrition (DIfE), 14558 Potsdam-Rehbrücke, Germany
| | - Sebastià Galmés
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro
de Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición, Instituto
de Salud Carlos III, 28029 Madrid, Spain
| | - Catalina Picó
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro
de Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición, Instituto
de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro
de Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición, Instituto
de Salud Carlos III, 28029 Madrid, Spain
| | - Ana María Rodríguez
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro
de Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición, Instituto
de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Hernandez-Baixauli J, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Caimari A, Baselga-Escudero L, Del Bas JM, Mulero M. Imbalances in TCA, Short Fatty Acids and One-Carbon Metabolisms as Important Features of Homeostatic Disruption Evidenced by a Multi-Omics Integrative Approach of LPS-Induced Chronic Inflammation in Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23052563. [PMID: 35269702 PMCID: PMC8910732 DOI: 10.3390/ijms23052563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic inflammation is an important risk factor in a broad variety of physical and mental disorders leading to highly prevalent non-communicable diseases (NCDs). However, there is a need for a deeper understanding of this condition and its progression to the disease state. For this reason, it is important to define metabolic pathways and complementary biomarkers associated with homeostatic disruption in chronic inflammation. To achieve that, male Wistar rats were subjected to intraperitoneal and intermittent injections with saline solution or increasing lipopolysaccharide (LPS) concentrations (0.5, 5 and 7.5 mg/kg) thrice a week for 31 days. Biochemical and inflammatory parameters were measured at the end of the study. To assess the omics profile, GC-qTOF and UHPLC-qTOF were performed to evaluate plasma metabolome; 1H-NMR was used to evaluate urine metabolome; additionally, shotgun metagenomics sequencing was carried out to characterize the cecum microbiome. The chronicity of inflammation in the study was evaluated by the monitoring of monocyte chemoattractant protein-1 (MCP-1) during the different weeks of the experimental process. At the end of the study, together with the increased levels of MCP-1, levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2) along with 8-isoprostanes (an indicative of oxidative stress) were significantly increased (p-value < 0.05). The leading features implicated in the current model were tricarboxylic acid (TCA) cycle intermediates (i.e., alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid); lipids such as specific cholesterol esters (ChoEs), lysophospholipids (LPCs) and phosphatidylcholines (PCs); and glycine, as well as N, N-dimethylglycine, which are related to one-carbon (1C) metabolism. These metabolites point towards mitochondrial metabolism through TCA cycle, β-oxidation of fatty acids and 1C metabolism as interconnected pathways that could reveal the metabolic effects of chronic inflammation induced by LPS administration. These results provide deeper knowledge concerning the impact of chronic inflammation on the disruption of metabolic homeostasis.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (A.C.); (L.B.-E.)
- Correspondence: (J.M.D.B.); (M.M.)
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (J.M.D.B.); (M.M.)
| |
Collapse
|
8
|
Yang H, Mayneris-Perxachs J, Boqué N, del Bas JM, Arola L, Yuan M, Türkez H, Uhlén M, Borén J, Zhang C, Mardinoglu A, Caimari A. Combined Metabolic Activators Decrease Liver Steatosis by Activating Mitochondrial Metabolism in Hamsters Fed with a High-Fat Diet. Biomedicines 2021; 9:1440. [PMID: 34680557 PMCID: PMC8533474 DOI: 10.3390/biomedicines9101440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023] Open
Abstract
Although the prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase, there is no effective treatment approved for this condition. We previously showed, in high-fat diet (HFD)-fed mice, that the supplementation of combined metabolic activators (CMA), including nicotinamide riboside (NAD+ precursor) and the potent glutathione precursors serine and N-acetyl-l-cysteine (NAC), significantly decreased fatty liver by promoting fat oxidation in mitochondria. Afterwards, in a one-day proof-of-concept human supplementation study, we observed that this CMA, including also L-carnitine tartrate (LCT), resulted in increased fatty acid oxidation and de novo glutathione synthesis. However, the underlying molecular mechanisms associated with supplementation of CMA have not been fully elucidated. Here, we demonstrated in hamsters that the chronic supplementation of this CMA (changing serine for betaine) at two doses significantly decreased hepatic steatosis. We further generated liver transcriptomics data and integrated these data using a liver-specific genome-scale metabolic model of liver tissue. We systemically determined the molecular changes after the supplementation of CMA and found that it activates mitochondria in the liver tissue by modulating global lipid, amino acid, antioxidant and folate metabolism. Our findings provide extra evidence about the beneficial effects of a treatment based on this CMA against NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Doctor Josep Trueta, 17190 Girona, Spain;
- Center for Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| | - Josep M. del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Meng Yuan
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25030, Turkey;
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, SE-40233 Gothenburg, Sweden;
| | - Cheng Zhang
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-17165 Stockholm, Sweden; (H.Y.); (M.Y.); (M.U.); (C.Z.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (J.M.d.B.); (L.A.)
| |
Collapse
|
9
|
Quesada-Vázquez S, Colom-Pellicer M, Navarro-Masip È, Aragonès G, Del Bas JM, Caimari A, Escoté X. Supplementation with a Specific Combination of Metabolic Cofactors Ameliorates Non-Alcoholic Fatty Liver Disease, Hepatic Fibrosis, and Insulin Resistance in Mice. Nutrients 2021; 13:3532. [PMID: 34684533 PMCID: PMC8541294 DOI: 10.3390/nu13103532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease in the world. Obesity, insulin resistance, and dyslipidemia are multifactorial risk factors strongly associated with NAFLD/NASH. Here, a specific combination of metabolic cofactors (a multi-ingredient; MI) containing precursors of glutathione (GSH) and nicotinamide adenine dinucleotide (NAD+) (betaine, N-acetyl-cysteine, L-carnitine and nicotinamide riboside) was evaluated as effective treatment for the NAFLD/NASH pathophysiology. Six-week-old male mice were randomly divided into control diet animals and animals exposed to a high fat and high fructose/sucrose diet to induce NAFLD. After 16 weeks, diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (HFHFr group) or with a combination of metabolic cofactors (MI group) for 4 additional weeks, and blood and liver were obtained from all animals for biochemical, histological, and molecular analysis. The MI treatment reduced liver steatosis, decreasing liver weight and hepatic lipid content, and liver injury, as evidenced by a pronounced decrease in serum levels of liver transaminases. Moreover, animals supplemented with the MI cocktail showed a reduction in the gene expression of some proinflammatory cytokines when compared with their HFHFr counterparts. In addition, MI supplementation was effective in decreasing hepatic fibrosis and improving insulin sensitivity, as observed by histological analysis, as well as a reduction in fibrotic gene expression (Col1α1) and improved Akt activation, respectively. Taken together, supplementation with this specific combination of metabolic cofactors ameliorates several features of NAFLD, highlighting this treatment as a potential efficient therapy against this disease in humans.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Marina Colom-Pellicer
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Josep M. Del Bas
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain;
| | - Xavier Escoté
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| |
Collapse
|
10
|
Hernandez-Baixauli J, Puigbò P, Torrell H, Palacios-Jordan H, Ripoll VJR, Caimari A, Del Bas JM, Baselga-Escudero L, Mulero M. A Pilot Study for Metabolic Profiling of Obesity-Associated Microbial Gut Dysbiosis in Male Wistar Rats. Biomolecules 2021; 11:303. [PMID: 33670496 PMCID: PMC7922951 DOI: 10.3390/biom11020303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is one of the most incident and concerning disease worldwide. Definite strategies to prevent obesity and related complications remain elusive. Among the risk factors of the onset of obesity, gut microbiota might play an important role in the pathogenesis of the disease, and it has received extensive attention because it affects the host metabolism. In this study, we aimed to define a metabolic profile of the segregated obesity-associated gut dysbiosis risk factor. The study of the metabolome, in an obesity-associated gut dysbiosis model, provides a relevant way for the discrimination on the different biomarkers in the obesity onset. Thus, we developed a model of this obesity risk factors through the transference of gut microbiota from obese to non-obese male Wistar rats and performed a subsequent metabolic analysis in the receptor rats. Our results showed alterations in the lipid metabolism in plasma and in the phenylalanine metabolism in urine. In consequence, we have identified metabolic changes characterized by: (1) an increase in DG:34:2 in plasma, a decrease in hippurate, (2) an increase in 3-HPPA, and (3) an increase in o-coumaric acid. Hereby, we propose these metabolites as a metabolic profile associated to a segregated dysbiosis state related to obesity disease.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Pere Puigbò
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Helena Torrell
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili−EURECAT, 43204 Reus, Spain; (H.T.); (H.P.-J.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili−EURECAT, 43204 Reus, Spain; (H.T.); (H.P.-J.)
| | | | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
11
|
Olaniyi KS, Sabinari IW, Olatunji LA. Oral L-glutamine rescues fructose-induced poor fetal outcome by preventing placental triglyceride and uric acid accumulation in Wistar rats. Heliyon 2020; 6:e05863. [PMID: 33426346 PMCID: PMC7777114 DOI: 10.1016/j.heliyon.2020.e05863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/08/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Metabolic adaptation of pregnant mothers is crucial for placental development and fetal growth/survival. However, evidence exists that indiscriminate consumption of fructose-enriched drink (FED) during pregnancy disrupts maternal-fetal metabolic tolerance with attendant adverse fetal outcomes. Glutamine supplementation (GLN) has been shown to exert a modulatory effect in metabolic disorders. Nevertheless, the effects of GLN on FED-induced poor fetal outcome, and in particular the impacts on placental uric acid/lipid accumulation are unknown. The present study was conducted to test the hypothesis that oral GLN improves fetal outcome by attenuating placental lipid accumulation and uric acid synthesis in pregnant rats exposed to FED. MATERIALS AND METHODS Pregnant Wistar rats (160-180 g) were randomly allotted to control, GLN, FED and FED + GLN groups (6 rats/group). The groups received vehicle by oral gavage, glutamine (1 g/kg) by oral gavage, fructose (10%; w/v) and fructose + glutamine, respectively, through gestation. RESULTS Data showed that FED during pregnancy caused placental inefficiency, reduced fetal growth, and caused insulin resistance with correspondent increase in fasting blood glucose and plasma insulin. FED also resulted in an increased placental triglyceride, total cholesterol and de novo uric acid synthesis by activating adenosine deaminase and xanthine oxidase activities. Moreover, FED during pregnancy led to increased lipid peroxidation, lactate production with correspondent decreased adenosine and glucose-6-phosphate dehydrogenase-dependent antioxidant defense. These alterations were abrogated by GLN supplementation. CONCLUSION These findings implicate that high FED intake during pregnancy causes poor fetal outcome via defective placental uric acid/triglyceride-dependent mechanism. The findings also suggest that oral GLN improves fetal outcome by ameliorating placental defects through suppression of uric acid/triglyceride accumulation.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaiah Woru Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
12
|
Sharma L, Lone NA, Knott RM, Hassan A, Abdullah T. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. Food Chem Toxicol 2018; 121:283-296. [PMID: 30208301 DOI: 10.1016/j.fct.2018.09.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often linked with impaired hepatic autophagy. Here, we studied the alterations in hepatocellular autophagy by high cholesterol and high-fat diet (HC-HF) diet in C57BL/6J mice, and by palmitic acid (PA), in AML-12 and HepG2 cells. Further, we analysed role of Trigonelline (TG), a plant alkaloid, in preventing NAFLD, by modulating autophagy. For this, C57BL/6J mice were fed with Standard Chow (SC) or HC-HF diet, with and without TG for 16 weeks. In-vitro; AML-12 cells and HepG2 cells, were exposed to PA with and without TG, for 24 h. Cellular events related to autophagy, lipogenesis, and lipo-toxicity were studied. The HC-HF diet fed mice showed hepatic autophagy blockade, increased triglycerides and steatosis. PA exposure to AML-12 cells and HepG2 cells induced impaired autophagy, ER stress, resulting in lipotoxicity. TG treatment in HC-HF fed mice, restored hepatic autophagy, and prevented steatosis. TG treated AML-12, and HepG2 cells exposed to PA showed autophagy restoration, and reduced lipotoxicity, however, these effects were diminished in Atg7-/- HepG2 cells, and in the presence of chloroquine. This study shows that HC-HF diet-induced impaired autophagy, and steatosis is prevented by TG, which attributes to its novel mechanism in treating NAFLD.
Collapse
Affiliation(s)
- Love Sharma
- Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India; PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
| | - Nazir A Lone
- Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India; PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
| | - Rachel M Knott
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Adil Hassan
- Department of Pathology, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Tasduq Abdullah
- Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India; PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India.
| |
Collapse
|
13
|
Mariné-Casadó R, Domenech-Coca C, Del Bas JM, Bladé C, Arola L, Caimari A. The Exposure to Different Photoperiods Strongly Modulates the Glucose and Lipid Metabolisms of Normoweight Fischer 344 Rats. Front Physiol 2018; 9:416. [PMID: 29725308 PMCID: PMC5917113 DOI: 10.3389/fphys.2018.00416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023] Open
Abstract
Seasonal variations in day length trigger clear changes in the behavior, growth, food intake, and reproductive status of photoperiod-sensitive animals, such as Fischer 344 rats. However, there is little information about the effects of seasonal fluctuations in day length on glucose and lipid metabolisms and their underlying mechanisms in this model. To gain knowledge on these issues, three groups of male Fischer 344 rats were fed with a standard diet and exposed to different photoperiods for 14 weeks: normal photoperiod (L12, 12 h light/day), long photoperiod (L18, 18 h light/day), and short photoperiod (L6, 6 h light/day). A multivariate analysis carried out with 239 biometric, serum, hepatic and skeletal muscle parameters revealed a clear separation among the three groups. Compared with L12 rats, L6 animals displayed a marked alteration of glucose homeostasis and fatty acid uptake and oxidation, which were evidenced by the following observations: (1) increased circulating levels of glucose and non-esterified fatty acids; (2) a sharp down-regulation of the phosphorylated Akt2 levels, a downstream post-receptor target of insulin, in both the soleus and gastrocnemius muscles; (3) decreased expression in the soleus muscle of the glucose metabolism-related microRNA-194 and lower mRNA levels of the genes involved in glucose metabolism (Irs1, soleus, and Glut2, liver), β-oxidation (Had and Cpt1β, soleus) and fatty acid transport (Cd36, soleus, and liver). L18 animals also displayed higher blood glucose levels than L12 rats and profound changes in other glucose and lipid metabolism-related parameters in the blood, liver, and skeletal muscles. However, the mechanisms that account for the observed effects were less evident than those reported in L6 animals. In conclusion, exposure to different photoperiods strongly modulated glucose and lipid metabolisms in normoweight rats. These findings emphasize the relevance of circannual rhythms in metabolic homeostasis regulation and suggest that Fischer 344 rats are a promising animal model with which to study glucose- and lipid-related pathologies that are influenced by seasonal variations, such as obesity, cardiovascular disease and seasonal affective disorder.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain
| | - Cristina Domenech-Coca
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep M Del Bas
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluís Arola
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Antoni Caimari
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain
| |
Collapse
|
14
|
Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. Int J Obes (Lond) 2017; 42:746-754. [PMID: 29167556 DOI: 10.1038/ijo.2017.284] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Gut microbiota have been described as key factors in the pathophysiology of obesity and different components of metabolic syndrome (MetS). The cafeteria diet (CAF)-fed rat is a preclinical model that reproduces most of the alterations found in human MetS by simulating a palatable human unbalanced diet. Our objective was to assess the effects of CAF on gut microbiota and their associations with different components of MetS in Wistar rats. METHODS Animals were fed a standard diet or CAF for 12 weeks. A partial least square-based methodology was used to reveal associations between gut microbiota, characterized by 16S ribosomal DNA gene sequencing, and biochemical, nutritional and physiological parameters. RESULTS CAF feeding resulted in obesity, dyslipidemia, insulin resistance and hepatic steatosis. These changes were accompanied by a significant decrease in gut bacterial diversity, decreased Firmicutes and an increase in Actinobacteria and Proteobacteria abundances, which were concomitant with increased endotoxemia. Associations of different genera with the intake of lipids and carbohydrates were opposed from those associated with the intake of fiber. Changes in gut microbiota were also associated with the different physiological effects of CAF, mainly increased adiposity and altered levels of plasma leptin and glycerol, consistent with altered adipose tissue metabolism. Also hepatic lipid accretion was associated with changes in microbiota, highlighting the relevance of gut microbiota homeostasis in the adipose-liver axis. CONCLUSIONS Overall, our results suggest that CAF feeding has a profound impact on the gut microbiome and, in turn, that these changes may be associated with important features of MetS.
Collapse
|
15
|
Heat-killed Bifidobacterium animalis subsp. Lactis CECT 8145 increases lean mass and ameliorates metabolic syndrome in cafeteria-fed obese rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Naour S, Espinoza BM, Aedo JE, Zuloaga R, Maldonado J, Bastias-Molina M, Silva H, Meneses C, Gallardo-Escarate C, Molina A, Valdés JA. Transcriptomic analysis of the hepatic response to stress in the red cusk-eel (Genypterus chilensis): Insights into lipid metabolism, oxidative stress and liver steatosis. PLoS One 2017; 12:e0176447. [PMID: 28448552 PMCID: PMC5407771 DOI: 10.1371/journal.pone.0176447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/10/2017] [Indexed: 01/04/2023] Open
Abstract
Teleosts exhibit a broad divergence in their adaptive response to stress, depending on the magnitude, duration, and frequency of stressors and the species receiving the stimulus. We have previously reported that the red cusk-eel (Genypterus chilensis), an important marine farmed fish, shows a physiological response to stress that results in increased skeletal muscle atrophy mediated by over-expression of components of the ubiquitin proteasome and autophagy-lysosomal systems. To better understand the systemic effects of stress on the red cusk-eel metabolism, the present study assessed the transcriptomic hepatic response to repetitive handling-stress. Using high-throughput RNA-seq, 259 up-regulated transcripts were found, mostly associated with angiogenesis, gluconeogenesis, and triacylglyceride catabolism. Conversely, 293 transcripts were down-regulated, associated to cholesterol biosynthesis, PPARα signaling, fatty acid biosynthesis, and glycolysis. This gene signature was concordant with hepatic metabolite levels and hepatic oxidative damage. Moreover, the increased plasmatic levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase) and AP (alkaline phosphatase), as well as liver histology suggest stress-induced liver steatosis. This study offers an integrative molecular and biochemical analysis of the hepatic response to handling-stress, and reveals unknown aspects of lipid metabolism in a non-model teleost.
Collapse
Affiliation(s)
- Sebastian Naour
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Brisa M. Espinoza
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Jorge E. Aedo
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rodrigo Zuloaga
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Jonathan Maldonado
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Av. Santa Rosa, La Pintana, Santiago, Chile
| | - Macarena Bastias-Molina
- Universidad Andres Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Herman Silva
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Av. Santa Rosa, La Pintana, Santiago, Chile
| | - Claudio Meneses
- Universidad Andres Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad de Concepción, Laboratory of Biotechnology and Aquatic Genomics, Concepción, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, Valparaíso, Chile
- * E-mail: (AM); (JAV)
| | - Juan Antonio Valdés
- Universidad Andres Bello, Laboratorio de Biotecnología Molecular, Facultad Ciencias Biológicas, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, Valparaíso, Chile
- * E-mail: (AM); (JAV)
| |
Collapse
|
17
|
Love S, Mudasir MA, Bhardwaj SC, Singh G, Tasduq SA. Long-term administration of tacrolimus and everolimus prevents high cholesterol-high fructose-induced steatosis in C57BL/6J mice by inhibiting de-novo lipogenesis. Oncotarget 2017; 8:113403-113417. [PMID: 29371918 PMCID: PMC5768335 DOI: 10.18632/oncotarget.15194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Aim To investigate the effects of tacrolimus (TC) and everolimus (EV) on non-alcoholic steatohepatitis (NASH) induced by high fat, high cholesterol and fructose (fast food) diet in C57BL/6J mice. Materials and Methods C57BL/6J mice were divided into four groups (n=8). 1) Standard Chow (SC); 2) Fast food (FF) diet; 3) FF + Tacrolimus (TC, 1mg/kg) and; 4) FF + Everolimus (EV, 1mg/kg) and treated for 16 weeks. Serum and tissue samples were analyzed for evidence of inflammation, fibrosis, lipogenesis, and apoptosis. Results TC and EV treatments significantly reduced the hepatic lipid accumulation, improved liver-body weight ratio, blood biochemistry, and insulin resistance in mice fed with FF diet. However, inflammation, enlarged portal tracts, and fibrosis were pronounced in EV treated group. The lipogenic parameters, Peroxisome proliferator-activated receptor gamma (PPAR-γ), Sterol regulatory element-binding protein 1(SREBP-1), mammalian target of rapamycin (m-TOR), Stearoyl-CoA desaturase-1 (SCD-1) and fatty acid translocase (CD36) were significantly down-regulated in livers of TC and EV treated groups as compared to FF group. TC improved Bcl2/Bax ratio, decreased apoptosis, CYP2E1 protein expression and liver fibrosis levels, however, EV offered no such protection. Further, in an In-vitro model of lipotoxicity using the mouse hepatocyte (AML-12) cell line, treatment with TC and EV significantly reduced lipid accumulation and lipogenic and apoptotic markers induced with palmitic acid. Conclusion In FF diet induced model of NASH, both TC and EV inhibited hepatic lipid accumulation and improved metabolic parameters such as insulin resistance and dyslipidemia. However, mice administered with EV exhibited inflammatory and fibrotic responses despite reduced hepatic steatosis.
Collapse
Affiliation(s)
- Sharma Love
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Malik A Mudasir
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India
| | - Subhash C Bhardwaj
- Department of Pathology, Government Medical College, Jammu, Jammu and Kashmir, India
| | - Gurdarshan Singh
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Sheikh A Tasduq
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| |
Collapse
|
18
|
Reynés B, Serrano A, Petrov PD, Ribot J, Chetrit C, Martínez-Puig D, Bonet ML, Palou A. Anti-obesity and insulin-sensitising effects of a glycosaminoglycan mix. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
19
|
Lam T, Harmancey R, Vasquez H, Gilbert B, Patel N, Hariharan V, Lee A, Covey M, Taegtmeyer H. Reversal of intramyocellular lipid accumulation by lipophagy and a p62-mediated pathway. Cell Death Discov 2016; 2:16061. [PMID: 27625792 PMCID: PMC4993124 DOI: 10.1038/cddiscovery.2016.61] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/19/2016] [Indexed: 12/16/2022] Open
Abstract
We have previously observed the reversal of lipid droplet deposition in skeletal muscle of morbidly obese patients following bariatric surgery. We now investigated whether activation of autophagy is the mechanism underlying this observation. For this purpose, we incubated rat L6 myocytes over a period of 6 days with long-chain fatty acids (an equimolar, 1.0 mM, mixture of oleate and palmitate in the incubation medium). At day 6, the autophagic inhibitor (bafilomycin A1, 200 nM) and the autophagic activator (rapamycin, 1 μM) were added separately or in combination for 48 h. Intracellular triglyceride (TG) accumulation was visualized and quantified colorimetrically. Protein markers of autophagic flux (LC3 and p62) and cell death (caspase-3 cleavage) were measured by immunoblotting. Inhibition of autophagy by bafilomycin increased TG accumulation and also increased lipid-mediated cell death. Conversely, activation of autophagy by rapamycin reduced both intracellular lipid accumulation and cell death. Unexpectedly, treatment with both drugs added simultaneously resulted in decreased lipid accumulation. In this treatment group, immunoblotting revealed p62 degradation (autophagic flux), immunofluorescence revealed the colocalization of p62 with lipid droplets, and co-immunoprecipitation confirmed the interaction of p62 with ADRP (adipose differentiation-related protein), a lipid droplet membrane protein. Thus the association of p62 with lipid droplet turnover suggests a novel pathway for the breakdown of lipid droplets in muscle cells. In addition, treatment with rapamycin and bafilomycin together also suggested the export of TG into the extracellular space. We conclude that lipophagy promotes the clearance of lipids from myocytes and switches to an alternative, p62-mediated, lysosomal-independent pathway in the context of chronic lipid overload (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).
Collapse
Affiliation(s)
- T Lam
- Internal Medicine/Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX, USA
| | - R Harmancey
- University of Mississippi School of Medicine, Jackson, MS, USA
| | - H Vasquez
- Internal Medicine/Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX, USA
| | - B Gilbert
- Internal Medicine/Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX, USA
| | - N Patel
- Internal Medicine/Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX, USA
| | | | - A Lee
- Keck School of Medicine of USC, Los Angeles, CA, USA
| | - M Covey
- Internal Medicine/Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX, USA
| | - H Taegtmeyer
- Internal Medicine/Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
20
|
Pardina E, Ferrer R, Rossell J, Baena-Fustegueras JA, Lecube A, Fort JM, Caubet E, González Ó, Vilallonga R, Vargas V, Balibrea JM, Peinado-Onsurbe J. Diabetic and dyslipidaemic morbidly obese exhibit more liver alterations compared with healthy morbidly obese. BBA CLINICAL 2016; 5:54-65. [PMID: 27051590 PMCID: PMC4802404 DOI: 10.1016/j.bbacli.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Background & aims To study the origin of fat excess in the livers of morbidly obese (MO) individuals, we analysed lipids and lipases in both plasma and liver and genes involved in lipid transport, or related with, in that organ. Methods Thirty-two MO patients were grouped according to the absence (healthy: DM − DL −) or presence of comorbidities (dyslipidemic: DM − DL +; or dyslipidemic with type 2 diabetes: DM + DL +) before and one year after gastric bypass. Results The livers of healthy, DL and DM patients contained more lipids (9.8, 9.5 and 13.7 times, respectively) than those of control subjects. The genes implicated in liver lipid uptake, including HL, LPL, VLDLr, and FAT/CD36, showed increased expression compared with the controls. The expression of genes involved in lipid-related processes outside of the liver, such as apoB, PPARα and PGC1α, CYP7a1 and HMGCR, was reduced in these patients compared with the controls. PAI1 and TNFα gene expression in the diabetic livers was increased compared with the other obese groups and control group. Increased steatosis and fibrosis were also noted in the MO individuals. Conclusions Hepatic lipid parameters in MO patients change based on their comorbidities. The gene expression and lipid levels after bariatric surgery were less prominent in the diabetic patients. Lipid receptor overexpression could enable the liver to capture circulating lipids, thus favouring the steatosis typically observed in diabetic and dyslipidaemic MO individuals. The criteria used to define the “metabolically healthy” obese is not applicable to morbidly obese patients. Virtually no studies of how bariatric surgery affects depending on comorbidities and less how affect to the liver. Anthropometrics, fat, lipid profile and inflammation parameters are different depending of comorbidities, not only in plasma but also in liver. The extent of lipases and lipids in the liver biopsies could help not only the diagnosis but also to follow the course of recovery after surgery. The morbidly obese individuals with diabetes and dyslipidemia have more altered metabolic profiles than the other two groups.
Collapse
Key Words
- ALT, Alanine transaminase
- AST, Aspartate transaminase
- ATGL, Adipose Tissue Glycerol Lipase
- ApoA1, Apolipoprotein A1
- BMI, Body Mass Index
- CPT1a, Carnitine Palmitoyltransferase 1a
- CRP, C-reactive protein
- CYP7a1, Cholesterol 7 Alpha-Hydroxylase
- DL, Dyslipidaemia
- DM, Type 2 diabetes mellitus
- DM + DL +, Obese patients with type 2 diabetes and dyslipidaemia
- DM − DL +, Dyslipidemic obese patients
- DM − DL −, “Healthy” obese patients, or patients without type 2 diabetes or dyslipidaemia
- Diabetes
- FAT/CD36, Fatty Acid Translocase or Cluster of Differentiation 36
- GGT, gamma-glutaryl transferase
- HL, Hepatic lipase
- HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase
- HOMA-IR, Homeostasis Model Assessment of Insulin Resistance
- HSL, Hormone-sensitive lipase
- HTA, Hypertension
- IL6, Interleukin-6
- IR, Insulin resistance
- KBs, Ketone bodies
- LDLr, Low-Density Lipoprotein receptor
- Lipases
- Lipids
- Liver
- MO, Morbidly obese
- NAFLD
- NAFLD, Non-alcoholic fatty liver disease
- NASH, Non-alcoholic liver steatohepatitis
- NEFA, Non-esterified fatty acid
- PAI1, Plasminogen Activator Inhibitor of Type 1
- PLs, Phospholipids
- PPARα, Peroxisome Proliferator-Activated Receptor alpha
- PPARα, Peroxisome Proliferator-Activated Receptor gamma Coactivator 1-alpha
- QMs, Chylomicrons
- RYGBP, Roux-en-Y gastric bypass
- SAT, Subcutaneous adipose tissue
- SCARB1, Scavenger Receptor Class B, Member 1
- Steatosis
- TAGs, Triacylglycerides
- TC, Total cholesterol
- TNFα, Tumour Necrosis Factor-alpha
- UCP2, Uncoupling Protein 2
- VAT, Visceral adipose tissue
- VLDLr, Very-Low-Density Lipoprotein receptor
- apoB, Apolipoprotein B
- cHDL, High-Density Lipoprotein Cholesterol
- cLDL, Low-Density Lipoprotein Cholesterol
- eNOS3, Endothelial Nitric Oxide Synthase 3
- iNOS2, Inducible Nitric Oxide Synthase 2
Collapse
Affiliation(s)
- Eva Pardina
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| | - Roser Ferrer
- Biochemistry Department, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Joana Rossell
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| | | | - Albert Lecube
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital (UdL), Diabetes and Metabolism Research Unit (VHIR, UAB), CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM) del Instituto de Salud Carlos III, Spain
| | - Jose Manuel Fort
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Enric Caubet
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Óscar González
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Ramón Vilallonga
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Víctor Vargas
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD) del Instituto de Salud Carlos III (ISCIII), Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - José María Balibrea
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Julia Peinado-Onsurbe
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| |
Collapse
|
21
|
Shihabudeen MS, Roy D, James J, Thirumurugan K. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance. Mol Cell Endocrinol 2015; 414:19-28. [PMID: 26188168 DOI: 10.1016/j.mce.2015.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/05/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022]
Abstract
Adipose tissue secretes adipokines that regulate insulin sensitivity in adipocytes and other peripheral tissues critical to glucose metabolism. Insulin resistance is associated with severe alterations in adipokines characterized by release of increased pro-inflammatory cytokines and decreased anti-inflammatory cytokines from adipose tissue. The role of Farnesoid X receptor (FXR) activation on adipokines in relation to adipose tissue inflammation and insulin resistance is not completely explored. For the first time, we have evaluated the ability of Chenodeoxycholic acid (CDCA), an endogenous FXR ligand, in restoring the disturbance in adipokine secretion and insulin resistance in palmitate treated 3T3-L1 cells and adipose tissues of High fat diet (HFD) rats. CDCA suppressed several of the tested pro-inflammatory adipokines (TNF-α, MCP-1, IL-6, Chemerin, PAI, RBP4, resistin, vaspin), and enhanced the major anti-inflammatory and insulin sensitizing adipokines (adiponectin, leptin). CDCA suppressed the activation of critical inflammatory regulators such as NF-κB and IKKβ which are activated by palmitate treatment in differentiated cells and HFD in rats. We show the altered adipokines in insulin resistance, its association with inflammatory regulators, and the role of CDCA in amelioration of insulin resistance by modulation of adipokines.
Collapse
Affiliation(s)
- Mohamed Sham Shihabudeen
- Structural Biology Lab, Centre for Biomedical Research, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | - Debasish Roy
- Structural Biology Lab, Centre for Biomedical Research, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | - Joel James
- Structural Biology Lab, Centre for Biomedical Research, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Centre for Biomedical Research, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
22
|
Differential effects of habitual chow-based and semi-purified diets on lipid metabolism in lactating rats and their offspring. Br J Nutr 2015; 113:758-69. [DOI: 10.1017/s0007114514004358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diet during pregnancy and lactation is a critical factor in relation to the health of dams and their offspring. Currently, control diets used in metabolic imprinting studies differ in composition and type, i.e. semi-purified diets (SD) or chow-based diets (ND). The aim of the present study was to determine whether two widely used control diets, a SD and a ND, that mainly differ in fat content (5·08 and 3·26 %, respectively) and its sources (soyabean oil for the SD and cereals and fish for the ND), fibre (6 and 15 %, respectively), and cholesterol (26 and 69 mg/kg diet, respectively) can influence the lipid metabolism of dams and their offspring. Wistar rats were fed either the SD or the ND during pregnancy and lactation. At weaning, SD-fed dams presented severe hepatic steatosis and increased levels of circulating TAG, NEFA and insulin. Importantly, the offspring presented an altered plasma lipid profile. In contrast, the ND allowed for a normal gestation and lactation process, and did not affect the metabolism of offspring. In parallel, virgin rats fed the SD showed no metabolic alterations. A higher intake of SFA and MUFA and a lower consumption of PUFA observed in SD-fed dams during the lactation period could contribute to explaining the observed effects. In conclusion, two different control diets produced very different outcomes in the lipid metabolism of lactating rats and their offspring. The present results highlight the importance of the assessment of the metabolic state of dams when interpreting the results of metabolic programming studies.
Collapse
|
23
|
Petrov PD, Ribot J, Palou A, Bonet ML. Improved metabolic regulation is associated with retinoblastoma protein gene haploinsufficiency in mice. Am J Physiol Endocrinol Metab 2015; 308:E172-83. [PMID: 25406261 DOI: 10.1152/ajpendo.00308.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoblastoma protein (pRb) is involved in the control of energy metabolism, and its inactivation protects mice against high-fat diet-induced diabesity. Here, we tested the hypothesis that partial deficiency in the Rb gene could confer metabolic advantages in front of acute challenges to metabolism and as mice age on a regular diet. Rb haploinsufficient (Rb(+/-)) mice and wild-type (WT) littermates were studied from weaning and characterized at 1.5-2.5 mo of age (young adults) and 6-7.5 mo of age (mature adults). Whereas no differences in body weight or composition were observed at young age, mature adult Rb(+/-) mice were leaner than WT littermates, displaying 36% reduced body fat content. At both ages studied, Rb(+/-) mice displayed improved blood lipids, enhanced sensitivity to the blood glucose-lowering effect of insulin and to the anorectic effect of leptin, and a reduced respiratory exchange ratio, indicative of an increased use of fatty acids as a fuel. Insulin sensitivity and oral fat tolerance were better maintained with age in the Rb(+/-) than the WT mice. Mature adult Rb(+/-) mice displayed gene expression changes consistent with increased fatty acid oxidation in white adipose tissue and skeletal muscle and paramount signs of browning in the inguinal white adipose tissue. In conclusion, Rb haploinsufficiency provides metabolic advantages in front of acute metabolic stressors and ameliorates body fat gain and metabolic impairments that normally accompany transition from young to mature adult age.
Collapse
Affiliation(s)
- Petar D Petrov
- Laboratory of Molecular Biology, Nutrition, and Biotechnology-Nutrigenomics, University of the Balearic Islands, Palma de Mallorca, Spain; and CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology-Nutrigenomics, University of the Balearic Islands, Palma de Mallorca, Spain; and CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition, and Biotechnology-Nutrigenomics, University of the Balearic Islands, Palma de Mallorca, Spain; and CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology-Nutrigenomics, University of the Balearic Islands, Palma de Mallorca, Spain; and CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| |
Collapse
|
24
|
Ferrer R, Pardina E, Rossell J, Baena-Fustegueras JA, Lecube A, Balibrea JM, Caubet E, González O, Vilallonga R, Fort JM, Peinado-Onsurbe J. Decreased lipases and fatty acid and glycerol transporter could explain reduced fat in diabetic morbidly obese. Obesity (Silver Spring) 2014; 22:2379-87. [PMID: 25132069 DOI: 10.1002/oby.20861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/16/2014] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The possible differences were investigated in 32 morbidly obese patients depending on whether they were "healthy" or had dyslipidemia and/or type 2 diabetes. METHODS Lipid metabolism and insulin resistance were analyzed in subcutaneous (SAT) and visceral adipose tissue (VAT) before and during 6 and 12 months after Roux-en-Y gastric bypass. RESULTS Significant differences have been found in lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) activities in SAT from the different obese group versus normal weight (control) but not between them. The reduced lipase activities in VAT were 43 and 19% smaller (22 and 4% smaller, respectively, vs. control) than the "healthy" obese group for LPL and HSL, respectively, and were accompanied with a reduced expression of these lipases, as well as decreased expression of FAT/CD36, FABP4, and AQ7 in that tissue. In addition, the expression of the other genes measured showed a downregulation not only versus the "healthy" obese but also versus the normal weight group. CONCLUSIONS Being obese is not "healthy," but it is even less so if morbidly obese patients with diabetes and dyslipidemia were considered. The reduced fat accumulation in these patients may be attributed to the decrease of the expression and activity of the lipases of their adipose tissue.
Collapse
Affiliation(s)
- Roser Ferrer
- Biochemistry Department, Hospital Universitari Vall D'Hebron, Universitat Autònoma De Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu J, Xu A, Lam KSL, Wong NS, Chen J, Shepherd PR, Wang Y. Cholesterol-induced mammary tumorigenesis is enhanced by adiponectin deficiency: role of LDL receptor upregulation. Oncotarget 2014; 4:1804-18. [PMID: 24113220 PMCID: PMC3858565 DOI: 10.18632/oncotarget.1364] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adiponectin is an adipokine that can suppress the proliferation of various human carcinoma cells. Although its anti-tumor activities have been suggested by many clinical investigations and animal studies, the underlying mechanisms are not fully characterized. In MMTV-polyomavirus middle T antigen (MMTV-PyVT) transgenic mice models, reduced- or complete loss-of-adiponectin expression promotes mammary tumor development. The present study demonstrated that while tumor development in control MMTV-PyVT mice is associated with a progressively decreased circulating cholesterol concentration, adiponectin deficient MMTV-PyVT mice showed significantly elevated total- and low density lipoprotein (LDL)-cholesterol levels. Cholesterol contents in tumors derived from adiponectin deficient mice were dramatically augmented. High fat high cholesterol diet further accelerated the tumor development in adiponectin deficient PyVT mice. The protein levels of LDL receptor (LDLR) were found to be upregulated in adiponectin-deficient tumor cells. In human breast carcinoma cells, treatment with LDL-cholesterol or overexpressing LDLR elevates nuclear beta-catenin activity and facilitates tumor cell proliferation. On the other hand, adiponectin decreased LDLR protein expression in breast cancer cells and inhibited LDL-cholesterol-induced tumor cell proliferation. Both in vivo and in vitro evidence demonstrated a stimulatory effect of adiponectin on autophagy process, which mediated the down-regulation of LDLR. Adiponectin-induced reduction of LDLR was blocked by treatment with a specific inhibitor of autophagy, 3-methyladenine. In conclusion, the study demonstrates that adiponectin elicits tumor suppressive effects by modulating cholesterol homeostasis and LDLR expression in breast cancer cells, which is at least in part attributed to its role in promoting autophagic flux.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Donato AJ, Henson GD, Hart CR, Layec G, Trinity JD, Bramwell RC, Enz RA, Morgan RG, Reihl KD, Hazra S, Walker AE, Richardson RS, Lesniewski LA. The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. J Physiol 2014; 592:4083-96. [PMID: 25038241 DOI: 10.1113/jphysiol.2014.274175] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The critical influence of the white adipose tissue (WAT) on metabolism is well-appreciated in obesity, but adipose tissue dysfunction as a mechanism underlying age-associated metabolic dysfunction requires elucidation. To explore this possibility, we assessed metabolism and measures of epididymal (e)WAT mitochondria and artery function in young (6.1 ± 0.4 months) and old (29.6 ± 0.2 months) B6D2F1 mice. There were no group differences in average daily oxygen consumption, fasted blood glucose or plasma free fatty acids, but fasted plasma insulin and the homeostatic model assessment of insulin resistance (HOMA-IR%) were higher in the old (∼50-85%, P < 0.05). Tissue mass (P < 0.05) and adipocyte area were lower (∼60%) (P < 0.01) and fibrosis was greater (sevenfold, P < 0.01) in eWAT with older age. The old also exhibited greater liver triglycerides (∼60%, P < 0.05). The mitochondrial respiratory oxygen flux after the addition of glutamate and malate (GM), adenosine diphosphate (d), succinate (S) and octanoyl carnitine (O) were one- to twofold higher in eWAT of old mice (P < 0.05). Despite no change in the respiratory control ratio, substrate control ratios of GMOd/GMd and GMOSd/GMd were ∼30-40% lower in old mice (P < 0.05) and were concomitant with increased nitrotyrosine (P < 0.05) and reduced expression of brown adipose markers (P < 0.05). Ageing reduced vascularity (∼50%, P < 0.01), angiogenic capacity (twofold, P < 0.05) and expression of vascular endothelial growth factor (∼50%, P < 0.05) in eWAT. Finally, endothelium-dependent dilation was lower (P < 0.01) in isolated arteries from eWAT arteries of the old mice. Thus, metabolic dysfunction with advancing age occurs in concert with dysfunction in the adipose tissue characterized by both mitochondrial and arterial dysfunction.
Collapse
Affiliation(s)
- Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| | - Grant D Henson
- Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| | - Corey R Hart
- Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| | - Gwenael Layec
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joel D Trinity
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - R Colton Bramwell
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ryley A Enz
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - R Garrett Morgan
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kelly D Reihl
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sugata Hazra
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ashley E Walker
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
27
|
The Influence of an Obesogenic Diet on Oxysterol Metabolism in C57BL/6J Mice. CHOLESTEROL 2014; 2014:843468. [PMID: 24672716 PMCID: PMC3941159 DOI: 10.1155/2014/843468] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 11/18/2022]
Abstract
Our current understanding of oxysterol metabolism during different disease states such as obesity and dyslipidemia is limited. Therefore, the aim of this study was to determine the effect of diet-induced obesity on the tissue distribution of various oxysterols and the mRNA expression of key enzymes involved in oxysterol metabolism. To induce obesity, male C57BL/6J mice were fed a high fat-cholesterol diet for 24 weeks. Following diet-induced obesity, plasma levels of 4β-hydroxycholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 27-hydroxycholesterol were significantly (P < 0.05) increased. In the liver and adipose tissue of the obese mice, 4β-hydroxycholesterol was significantly (P < 0.05) increased, whereas 27-hydroxycholesterol was increased only in the adipose tissue. No significant changes in either hepatic or adipose tissue mRNA expression were observed for oxysterol synthesizing enzymes 4β-hydroxylase, 27-hydroxylase, or 7α-hydroxylase. Hepatic mRNA expression of SULT2B1b, a key enzyme involved in oxysterol detoxification, was significantly (P < 0.05) elevated in the obese mice. Interestingly, the appearance of the large HDL1 lipoprotein was observed with increased oxysterol synthesis during obesity. In diet-induced obese mice, dietary intake and endogenous enzymatic synthesis of oxysterols could not account for the increased oxysterol levels, suggesting that nonenzymatic cholesterol oxidation pathways may be responsible for the changes in oxysterol metabolism.
Collapse
|
28
|
Helmschrodt C, Becker S, Schröter J, Hecht M, Aust G, Thiery J, Ceglarek U. Fast LC–MS/MS analysis of free oxysterols derived from reactive oxygen species in human plasma and carotid plaque. Clin Chim Acta 2013; 425:3-8. [DOI: 10.1016/j.cca.2013.06.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023]
|
29
|
Hambruch E, Miyazaki-Anzai S, Hahn U, Matysik S, Boettcher A, Perović-Ottstadt S, Schlüter T, Kinzel O, Krol HD, Deuschle U, Burnet M, Levi M, Schmitz G, Miyazaki M, Kremoser C. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (-/-) mice. J Pharmacol Exp Ther 2012; 343:556-67. [PMID: 22918042 PMCID: PMC11047796 DOI: 10.1124/jpet.112.196519] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/22/2012] [Indexed: 01/03/2023] Open
Abstract
Farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor, plays an important role in the regulation of cholesterol and more specifically high-density lipoprotein (HDL) homeostasis. Activation of FXR is reported to lead to both pro- and anti-atherosclerotic effects. In the present study we analyzed the impact of different FXR agonists on cholesterol homeostasis, plasma lipoprotein profiles, and transhepatic cholesterol efflux in C57BL/6J mice and cynomolgus monkeys and atherosclerosis development in cholesteryl ester transfer protein transgenic (CETPtg) low-density lipoprotein receptor (LDLR) (-/-) mice. In C57BL/6J mice on a high-fat diet the synthetic FXR agonists isopropyl 3-(3,4-difluorobenzoyl)-1,1-dimethyl-1,2,3,6-tetrahydroazepino[4,5-b]indole-5-carboxylate (FXR-450) and 4-[2-[2-chloro-4-[[5-cyclopropyl-3-(2,6-dichlorophenyl)-4-isoxazolyl]methoxy]phenyl]cyclopropyl]benzoic acid (PX20606) demonstrated potent plasma cholesterol-lowering activity that affected all lipoprotein species, whereas 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]benzoic acid (GW4064) and 6-ethyl chenodeoxycholic acid (6-ECDCA) showed only limited effects. In FXR wild-type mice, but not FXR(-/-) mice, the more efficacious FXR agonists increased fecal cholesterol excretion and reduced intestinal cholesterol (re)uptake. In CETPtg-LDLR(-/-) mice PX20606 potently lowered total cholesterol and, despite the observed HDL cholesterol (HDLc) reduction, caused a highly significant decrease in atherosclerotic plaque size. In normolipidemic cynomolgus monkeys PX20606 and 6-ECDCA both reduced total cholesterol, and PX20606 specifically lowered HDL(2c) but not HDL(3c) or apolipoprotein A1. That pharmacological FXR activation specifically affects this cholesterol-rich HDL(2) subclass is a new and highly interesting finding and sheds new light on FXR-dependent HDLc lowering, which has been perceived as a major limitation for the clinical development of FXR agonists.
Collapse
|
30
|
Donato AJ, Henson GD, Morgan RG, Enz RA, Walker AE, Lesniewski LA. TNF-α impairs endothelial function in adipose tissue resistance arteries of mice with diet-induced obesity. Am J Physiol Heart Circ Physiol 2012; 303:H672-9. [PMID: 22821989 DOI: 10.1152/ajpheart.00271.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We tested the hypothesis that high fat (HF) feeding results in endothelial dysfunction in resistance arteries of epididymal white adipose tissue (eWAT) and is mediated by adipose tissue inflammation. When compared with normal chow (NC)-fed mice (n = 17), HF-fed male B6D2F1 mice were glucose intolerant and insulin resistant as assessed by glucose tolerance test (area under the curve; HF, 18,174 ± 1,889 vs. NC, 15,814 ± 666 mg·dl(-1)·min(-1); P < 0.05) and the homeostatic model assessment (HF, 64.1 ± 4.3 vs. NC, 85.7 ± 6.4; P = 0.05). HF diet-induced metabolic dysfunction was concomitant with a proinflammatory eWAT phenotype characterized by greater macrophage infiltration (HF, 3.9 ± 0.8 vs. NC, 0.8 ± 0.4%; P = 0.01) and TNF-α (HF, 22.6 ± 4.3 vs. NC, 11.4 ± 2.5 pg/dl; P < 0.05) and was associated with resistance artery dysfunction, evidenced by impaired endothelium-dependent dilation (EDD) (maximal dilation; HF, 49.2 ± 10.7 vs. NC, 92.4 ± 1.4%; P < 0.01). Inhibition of nitric oxide (NO) synthase by N(ω)-nitro-L-arginine methyl ester (L-NAME) reduced dilation in NC (28.9 ± 6.3%; P < 0.01)- and tended to reduce dilation in HF (29.8 ± 9.9%; P = 0.07)-fed mice, eliminating the differences in eWAT artery EDD between NC- and HF-fed mice, indicative of reduced NO bioavailability in eWAT resistance arteries after HF feeding. In vitro treatment of excised eWAT arteries with recombinant TNF-α (rTNF) impaired EDD (P < 0.01) in NC (59.7 ± 10.9%)- but not HF (59.0 ± 9.3%)-fed mice. L-NAME reduced EDD in rTNF-treated arteries from both NC (21.9 ± 6.4%)- and HF (29.1 ± 9.2%)-fed mice (both P < 0.01). In vitro treatment of arteries with a neutralizing antibody against TNF-α (abTNF) improved EDD in HF (88.2 ± 4.6%; P = 0.05)-fed mice but was without effect on maximal dilation in NC (89.0 ± 5.1%)-fed mice. L-NAME reduced EDD in abTNF-treated arteries from both NC (25.4 ± 7.5%)- and HF (27.1 ± 16.8%)-fed mice (both P < 0.01). These results demonstrate that inflammation in the visceral adipose tissue resulting from diet-induced obesity impairs endothelial function and NO bioavailability in the associated resistance arteries. This dysfunction may have important implications for adipose tissue blood flow and appropriate tissue function.
Collapse
Affiliation(s)
- Anthony J Donato
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, 84148, USA
| | | | | | | | | | | |
Collapse
|
31
|
Harmancey R, Lam TN, Lubrano GM, Guthrie PH, Vela D, Taegtmeyer H. Insulin resistance improves metabolic and contractile efficiency in stressed rat heart. FASEB J 2012; 26:3118-26. [PMID: 22611083 DOI: 10.1096/fj.12-208991] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insulin resistance is a prominent feature in heart failure, while hyperglycemia impairs cardiac contraction. We propose that decreased insulin-mediated glucose uptake by the heart preserves cardiac function in response to metabolic and hemodynamic stress. To test this hypothesis, we fed rats a high-sucrose diet (HSD). Energy substrate metabolism and cardiac work were determined ex vivo in a sequential protocol simulating metabolic and hemodynamic stress. Compared to chow-fed, control rats, HSD impaired myocardial insulin responsiveness and induced profound metabolic changes in the heart, characterized by reduced rates of glucose uptake (7.91 ± 0.30 vs. 10.73 ± 0.67 μmol/min/g dry weight; P<0.001) but increased rates of glucose oxidation (2.38 ± 0.17 vs. 1.50 ± 0.15 μmol/min/g dry weight; P<0.001) and oleate oxidation (2.29 ± 0.11 vs. 1.96 ± 0.12 μmol/min/g dry weight; P<0.05). Tight coupling of glucose uptake and oxidation and improved cardiac efficiency were associated with a reduction in glucose 6-phosphate and oleoyl-CoA levels, as well as a reduction in the content of uncoupling protein 3. Our results suggest that insulin resistance lessens fuel toxicity in the stressed heart. This calls for a new exploration of the mechanisms regulating substrate uptake and oxidation in the insulin-resistant heart.
Collapse
Affiliation(s)
- Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters. Int J Obes (Lond) 2012; 37:576-83. [PMID: 22584454 DOI: 10.1038/ijo.2012.75] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Procyanidins are polyphenolic compounds with beneficial effects on health in relation to cardiovascular disease and metabolic syndrome. In this study, we evaluated the potential beneficial effects of low doses of a grape seed procyanidin extract (GSPE) on body weight and fat deposition. DESIGN Four groups of hamsters were fed either a standard diet (STD) or a high-fat diet (HFD) for 30 days and supplemented with either GSPE at 25 mg per kg of body weight per day (STD-GSPE and HFD-GSPE groups) or vehicle (STD and HFD groups) during the last 15 days of the study. RESULTS A significant decrease in body weight gain was observed in both GSPE-treated animals at the end of the experiment. GSPE treatment significantly reduced the adiposity index and the weight of all the white adipose tissue depots studied (retroperitoneal (RWAT), mesenteric (MWAT), epididymal (EWAT) and inguinal (IWAT)) in both GSPE-treated groups. GSPE administration reversed the increase in plasma phospholipids induced by the HFD feeding. In the RWAT, GSPE treatment increased the mRNA expression of genes related to β-oxidation and the glycerolipid/free fatty acid (GL/FFA) cycle, mainly in HFD-GSPE animals. In the MWAT, the effects of GSPE at the transcriptional level were not as evident as in the RWAT. Moreover, GSPE treatment induced heparin-releasable lipoprotein lipase activity in the RWAT and MWAT depots. The alterations in the lipid metabolic pathways induced by GSPE were accompanied by lower FFA levels in the plasma and decreased lipid and triglyceride accumulation in the MWAT. CONCLUSION The use of GSPE at low doses protects against fat accumulation and improves the plasma lipid profile in hamsters. We suggest that GSPE exerts these effects in part through the activation of both β-oxidation and the GL/FFA cycle, mainly in the RWAT.
Collapse
|
33
|
Williams CM, Thomas RH, MacMillan HA, Marshall KE, Sinclair BJ. Triacylglyceride measurement in small quantities of homogenised insect tissue: comparisons and caveats. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1602-1613. [PMID: 21878339 DOI: 10.1016/j.jinsphys.2011.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 05/31/2023]
Abstract
Triacylglycerides (TAGs) are the most important stored energy reserve in eukaryotes and are regularly measured in insects. Quantitative analysis of TAGs is complicated by their diversity of structure, and there are concerns with the quantitative accuracy of commonly used analytical methods. We used thin layer chromatography coupled to a flame ionisation detector (TLC-FID), an accurate method that is not sensitive to saturation or chain length of fatty acids, to quantify TAG content in small amounts of insect tissue, and used it to validate three high-throughput lipid assays (gravimetric, vanillin, and enzymatic). The performance of gravimetric assays depended on the solvent used. Folch reagent (chloroform: methanol 2:1 v/v) was a good index of TAG content, but overestimated lipid content due to the extraction of structural lipid and non-lipid components. Diethyl ether produced reasonable quantitative measurements but lacked precision and could not produce a repeatable rank-order of samples. The vanillin assay was accurate both as a quantitative method and as an index, preferably with a standard of mixed fatty acid composition. The enzymatic assay did not accurately or precisely quantify TAGs under our assay conditions. We conclude that the vanillin assay is suitable as a high-throughput method for quantifying TAG providing fatty acid composition does not change among treatment groups. However, if samples contain significant quantities of di- or mono-acylglycerides, or the fatty acid composition differs across treatment groups, TLC-FID is recommended.
Collapse
Affiliation(s)
- Caroline M Williams
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
34
|
Caimari A, Oliver P, Palou A. Adipose triglyceride lipase expression and fasting regulation are differently affected by cold exposure in adipose tissues of lean and obese Zucker rats. J Nutr Biochem 2011; 23:1041-50. [PMID: 21944063 DOI: 10.1016/j.jnutbio.2011.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/09/2011] [Accepted: 05/16/2011] [Indexed: 01/04/2023]
Abstract
Adipose triglyceride lipase (ATGL) hydrolyzes triacylglycerols to diacylglycerols in the first step of lipolysis, providing substrates for hormone-sensitive lipase (HSL). Here we studied whether ATGL messenger RNA (mRNA) and protein levels were affected by 24-h cold exposure in different white adipose tissue depots and in interscapular brown adipose tissue of lean and obese Zucker rats submitted to feeding and 14-h fasting conditions. HSL mRNA expression was also studied in selected depots. In both lean and obese rats, as a general trend, cold exposure increased ATGL mRNA and protein levels in the different adipose depots, except in the brown adipose tissue of lean animals, where a decrease was observed. In lean rats, cold exposure strongly improved fasting up-regulation of ATGL expression in all the adipose depots. Moreover, in response to fasting, in cold-exposed lean rats, there was a stronger positive correlation between circulating nonesterified fatty acids (NEFA) and ATGL mRNA levels in the adipose depots and a higher percentage increase of circulating NEFA in comparison with control animals not exposed to cold. In obese rats, fasting-induced up-regulation of ATGL was impaired and was not improved by cold. The effects of obesity and cold exposure on HSL mRNA expression were similar to those observed for ATGL, suggesting common regulatory mechanisms for both proteins. Thus, cold exposure increases ATGL expression and improves its fasting-up-regulation in adipose tissue of lean rats. In obese rats, cold exposure also increases ATGL expression but fails to improve its regulation by fasting, which could contribute to the increased difficulty for mobilizing lipids in these animals.
Collapse
Affiliation(s)
- Antoni Caimari
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | | | | |
Collapse
|
35
|
Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in Caenorhabditis elegans. Biochem J 2011; 437:231-41. [PMID: 21539519 DOI: 10.1042/bj20102099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the β-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.
Collapse
|
36
|
Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ, Cohen A, Noguchi A, Springer D, Bocharov AV, Eggerman TL, Suen DF, Youle RJ, Amar M, Remaley AT, Sack MN. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest 2011; 121:3701-12. [PMID: 21865652 DOI: 10.1172/jci44736] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 07/20/2011] [Indexed: 01/12/2023] Open
Abstract
It has long been hypothesized that abnormalities in lipid biology contribute to degenerative brain diseases. Consistent with this, emerging epidemiologic evidence links lipid alterations with Parkinson disease (PD), and disruption of lipid metabolism has been found to predispose to α-synuclein toxicity. We therefore investigated whether Parkin, an E3 ubiquitin ligase found to be defective in patients with early onset PD, regulates systemic lipid metabolism. We perturbed lipid levels by exposing Parkin+/+ and Parkin-/- mice to a high-fat and -cholesterol diet (HFD). Parkin-/- mice resisted weight gain, steatohepatitis, and insulin resistance. In wild-type mice, the HFD markedly increased hepatic Parkin levels in parallel with lipid transport proteins, including CD36, Sr-B1, and FABP. These lipid transport proteins were not induced in Parkin-/- mice. The role of Parkin in fat uptake was confirmed by increased oleate accumulation in hepatocytes overexpressing Parkin and decreased uptake in Parkin-/- mouse embryonic fibroblasts and patient cells harboring complex heterozygous mutations in the Parkin-encoding gene PARK2. Parkin conferred this effect, in part, via ubiquitin-mediated stabilization of the lipid transporter CD36. Reconstitution of Parkin restored hepatic fat uptake and CD36 levels in Parkin-/- mice, and Parkin augmented fat accumulation during adipocyte differentiation. These results demonstrate that Parkin is regulated in a lipid-dependent manner and modulates systemic fat uptake via ubiquitin ligase-dependent effects. Whether this metabolic regulation contributes to premature Parkinsonism warrants investigation.
Collapse
Affiliation(s)
- Kye-Young Kim
- Center for Molecular Medicine, NHLBI, 10 Center Drive, Bethesda, Maryland, 20892-1454, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li M, Song J, Mirkov S, Xiao SY, Hart J, Liu W. Comparing morphometric, biochemical, and visual measurements of macrovesicular steatosis of liver. Hum Pathol 2011; 42:356-60. [PMID: 21111448 PMCID: PMC3052952 DOI: 10.1016/j.humpath.2010.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 01/05/2023]
Abstract
The degree of macrovesicular steatosis is typically evaluated in liver biopsies by visual estimation, which is subject to intraobserver and interobserver variations. Computer morphometry and biochemical measurement may provide more accurate results. Our aim was to develop a morphometry method and compare its results with visual and biochemical measurements. Twenty-six fresh frozen liver specimens were each divided into 4 aliquots. Three aliquots were processed biochemically to extract fat, and the fat content was defined as the weight percentage of fat. One aliquot was fixed in formalin, from which hematoxylin and eosin slides were made and reviewed by 3 pathologists to estimate fat content. Digital images of slides were analyzed by computer morphometry, which defined fat content as the percentage of area occupied by fat droplets. The results showed that individually, each method produced highly precise and reproducible measurements. Compared with each other, they showed very strong correlations (correlation coefficient r = 0.81-0.95). The range of fat content in all 26 specimens was 2.2% to 15% by biochemical, 0.8% to 82.5% by visual, and 0.3% to 19.6% by morphometry method. Visual estimation appeared to have a systematic bias, giving results nearly 4-fold higher than other methods. This may be because visual estimation denotes the fraction of hepatocytes containing fat droplets, instead of the true fraction of fat. Strong correlations between different methods suggest that all 3 are valid methods for measuring steatosis. Computer morphometry is easy to implement and not affected by the bias seen in visual estimation. It may serve as a potential supplemental or alternative method.
Collapse
Affiliation(s)
- Mei Li
- Department of Pathology, The University of Chicago Medical Center, Chicago, IL, 60637
| | - Jie Song
- Department of Pathology, The University of Chicago Medical Center, Chicago, IL, 60637
| | - Snezana Mirkov
- Department of Medicine, The University of Chicago Medical Center, Chicago, IL, 60637
| | - Shu-Yuan Xiao
- Department of Pathology, The University of Chicago Medical Center, Chicago, IL, 60637
| | - John Hart
- Department of Pathology, The University of Chicago Medical Center, Chicago, IL, 60637
| | - Wanqing Liu
- Department of Medicine, The University of Chicago Medical Center, Chicago, IL, 60637
| |
Collapse
|
38
|
Hasimun P, Sukandar E, Adnyana I, Tjahjono D. A Simple Method for Screening Antihyperlipidemic Agents. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2011.74.78] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Starke A, Haudum A, Busche R, Beyerbach M, Dänicke S, Rehage J. Technical note: Analysis of total lipid and triacylglycerol content in small liver biopsy samples in cattle. J Anim Sci 2010; 88:2741-50. [PMID: 20348378 DOI: 10.2527/jas.2009-2599] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A procedure is described for analyzing total lipid (TL) and triacylglycerol (TAG) in 2 sequential steps using small amounts (<100 mg) of bovine liver tissue. The TL was measured gravimetrically and TAG was measured enzymatically in the TL extract, using an automated analyzer. For gravimetric TL determination in milligrams per gram of liver fresh weight (FW), TL was extracted from homogenized tissue samples with hexane:isopropanol (at 20 degrees C, 24 h, constant agitation). The routine method was modified by adding a second hexane extraction step to optimize lipid extraction. The dry lipid extract was dissolved in hexane and aliquoted according to TL content for TAG analysis. An extra incubation period of 16 h was included for complete hydrolysis of TAG, using microbial lipase and nonaethylene glycol monododecyl ether detergent, before TAG was measured enzymatically using commercial test kits. Triolein was used as an internal standard. Repeated TL analysis (n = 3) of liver specimens from 10 cows (range, 40 to 314 mg/g of FW) yielded a mean CV of 2.2%, whereas repeated TAG analysis (range, 4 to 260 mg/g of FW) yielded a mean intraday CV of 2.5% (n = 5) and a mean interday CV of 3.4% (n = 4). Intraday (n = 5) and interday (n = 4) CV for repeated TAG analysis in triolein standards were <1 and <3%, respectively. Recovery of TAG in triolein standards varied between 99 and 103%. In part 2 of the experiment, hepatic TL and TAG were measured in 150 German Holstein cows to verify the test method in a large sample size. For repeated hepatic TL (n = 3) and TAG (n = 5) determination, mean CV of <2.8 and <1.5%, respectively, were found. The proportion of TAG relative to TL increased linearly to a breakpoint of approximately 100 mg TL/g of FW, at which point it reached a plateau at approximately 68%, indicating an accumulation of other lipid fractions in hepatic tissue with hepatic TL above the breakpoint. Calculation of hepatic TAG from TL was reasonably accurate when a 2-slope linear broken-line model (r(2) = 0.98) was used. Above a TL of approximately 40 mg/g of FW, calculated TAG values deviated by only +/-15% from measured hepatic TAG.
Collapse
Affiliation(s)
- A Starke
- Clinic for Cattle, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Effects of β-carotene supplementation on adipose tissue thermogenic capacity in ferrets ( Mustela putorius furo). Br J Nutr 2009; 102:1686-94. [DOI: 10.1017/s0007114509991024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Mercader J, Ribot J, Murano I, Feddersen S, Cinti S, Madsen L, Kristiansen K, Bonet ML, Palou A. Haploinsufficiency of the retinoblastoma protein gene reduces diet-induced obesity, insulin resistance, and hepatosteatosis in mice. Am J Physiol Endocrinol Metab 2009; 297:E184-E193. [PMID: 19417128 DOI: 10.1152/ajpendo.00163.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brown adipose tissue activity dissipates energy as heat, and there is evidence that lack of the retinoblastoma protein (pRb) may favor the development of the brown adipocyte phenotype in adipose cells. In this work we assessed the impact of germ line haploinsufficiency of the pRb gene (Rb) on the response to high-fat diet feeding in mice. Rb(+/-) mice had body weight and adiposity indistinguishable from that of wild-type (Rb(+/+)) littermates when maintained on a standard diet, yet they gained less body weight and body fat after long-term high-fat diet feeding coupled with reduced feed efficiency and increased rectal temperature. Rb haploinsufficiency ameliorated insulin resistance and hepatosteatosis after high-fat diet in male mice, in which these disturbances were more marked than in females. Compared with wild-type littermates, Rb(+/-) mice fed a high-fat diet displayed higher expression of peroxisome proliferator-activated receptor (PPAR)gamma as well as of genes involved in mitochondrial function, cAMP sensitivity, brown adipocyte determination, and tissue vascularization in white adipose tissue depots. Furthermore, Rb(+/-) mice exhibited signs of enhanced activation of brown adipose tissue and higher expression levels of PPARalpha in liver and of PPARdelta in skeletal muscle, suggestive of an increased capability for fatty acid oxidation in these tissues. These findings support a role for pRb in modulating whole body energy metabolism and the plasticity of the adipose tissues in vivo and constitute first evidence that partial deficiency in the Rb gene protects against the development of obesity and associated metabolic disturbances.
Collapse
Affiliation(s)
- Josep Mercader
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fuster A, Oliver P, Sánchez J, Picó C, Palou A. UCP1 and oxidative capacity of adipose tissue in adult ferrets (Mustela putorius furo). Comp Biochem Physiol A Mol Integr Physiol 2009; 153:106-12. [DOI: 10.1016/j.cbpa.2009.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/03/2009] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
|
43
|
Llagostera E, Carmona MC, Vicente M, Escorihuela RM, Kaliman P. High-fat diet induced adiposity and insulin resistance in mice lacking the myotonic dystrophy protein kinase. FEBS Lett 2009; 583:2121-5. [PMID: 19482024 DOI: 10.1016/j.febslet.2009.05.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 11/18/2022]
Abstract
Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3'-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients.
Collapse
Affiliation(s)
- Esther Llagostera
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
44
|
Lipoprotein lipase but not hormone-sensitive lipase activities achieve normality after surgically induced weight loss in morbidly obese patients. Obes Surg 2009; 19:1150-8. [PMID: 19455372 DOI: 10.1007/s11695-009-9853-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Although bariatric surgery is currently the most common practice for inducing weight loss in morbidly obese patients (BMI>40 kg/m2), its effect on the lipid content of adipose tissue and its lipases (lipoprotein lipase [LPL] and hormone-sensitive lipase [HSL]) are controversial. METHODS We analyzed LPL and HSL activities and lipid content from plasma as well as subcutaneous (SAT) and visceral (VAT) adipose tissue of 34 morbidly obese patients (MO) before and after (6 and 12 months) Roux-en-Y gastric bypass surgery and compare the values with those of normal weight (control) patients. RESULTS LPL activity was significantly higher in MO (SAT=32.9+/-1.0 vs VAT=36.4+/-3.3 mU/g tissue; p<0.001) than in control subjects (SAT=8.2+/-1.4 vs VAT=6.8+/-1.0 mU/g tissue) in both adipose depots. HSL activity had similar values in both types of tissue (SAT=32.8+/-1.6 and VAT=32.9+/-1.6 mU/g) of MO. In the control group, we found similar results but with lower values (SAT=11.9+/-1.4 vs VAT=12.1+/-1.4 mU/g tissue). Twelve months after surgery, SAT LPL activity diminished (9.8+/-1.4 mU/g tissue, p<0.001 vs morbidly obese), while HSL (46.6+/-3.7 mU/g tissue) remained high. All lipids in tissue and plasma diminished after bariatric surgery except plasma nonesterified fatty acids, which maintained higher levels than controls (16+/-3 vs 9+/-0 mg/dL; p<0.001, respectively). CONCLUSIONS When obese patients lose weight, they lose not only part of the lipid content of the cells but also the capacity to store triacylglycerides in SAT depots.
Collapse
|
45
|
Gu X, Xie Z, Wang Q, Liu G, Qu Y, Zhang L, Pan J, Zhao G, Zhang Q. Transcriptome profiling analysis reveals multiple modulatory effects of Ginkgo biloba extract in the liver of rats on a high-fat diet. FEBS J 2009; 276:1450-8. [PMID: 19187224 DOI: 10.1111/j.1742-4658.2009.06886.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leaf extract of Ginkgo biloba (GBE) is increasingly used as a herbal medicine for the treatment of neurodegenerative, cardiovascular and cerebrovascular diseases. Several studies have demonstrated many protective effects of GBE in neurons, the endothelium and liver. In this study, we investigated the molecular mechanisms underlying the effects of GBE in disorders induced by long-term exposure to a high-fat diet (HFD). Rats were fed an HFD with or without the GBE product GBE50 for 19 weeks. We found that GBE50 reduced the development of fatty liver induced by an HFD and inhibited the commonly observed elevation of serum cholesterol and lactate dehydrogenase levels. Transcriptome profiling analysis showed that several genes were modulated by GBE50 in liver, including those involved in lipid metabolism, carbohydrate metabolism, vascular constriction, ion transportation, neuronal systems and drug metabolism. Notably, a number of genes coding for proteins involved in cholesterol metabolism were repressed, and some were upregulated. Fatty acid biosynthesis appeared to be repressed, whereas fatty acid metabolism appeared to be enhanced. In conclusion, using transcriptome profiling analysis, we demonstrated the molecular basis for the pleiotropic effects of GBE50, particularly those involved in lipid metabolism. This study provided new clues for further pharmacological study of GBEs.
Collapse
Affiliation(s)
- Xiaomei Gu
- National Engineering Center for Biochip at Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pardina E, Baena-Fustegueras JA, Llamas R, Catalán R, Galard R, Lecube A, Fort JM, Llobera M, Allende H, Vargas V, Peinado-Onsurbe J. Lipoprotein lipase expression in livers of morbidly obese patients could be responsible for liver steatosis. Obes Surg 2009; 19:608-16. [PMID: 19301078 DOI: 10.1007/s11695-009-9827-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/10/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND Most patients with morbid obesity develop non-alcoholic fatty liver disease (NAFLD). The origins of lipid deposition in the liver and the effects of bariatric surgery in the obese with NAFLD are controversial. METHODS We analyzed lipids and lipoprotein lipase (LPL) in both plasma and liver biopsies performed before and 12-18 months after Roux-en-Y gastric bypass surgery in 26 patients. RESULTS In the livers of morbidly obese patients, the levels of LPL messenger RNA (mRNA) were higher (4.5-fold) before surgery than afterwards than control livers. In these patients, LPL activity was also significantly higher (91 +/- 7 mU/g) than in controls (51 +/- 3 mU/g, p = 0.0026) and correlated with the severity of the liver damage. All hepatic lipids were significantly increased in obese patients; however, after bariatric surgery, these lipids, with the exception of NEFA, tended to recover to normal levels. CONCLUSIONS The liver of obese patients presented higher LPL activity than controls, and unlike the controls, this enzyme could be synthesized in the liver because it also present LPL mRNA. The presence of the LPL activity could enable the liver to capture circulating triacylglycerides, thus favoring the typical steatosis observed in these patients.
Collapse
Affiliation(s)
- Eva Pardina
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Diagonal 645, 08028, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pardina E, Baena-Fustegueras JA, Catalán R, Galard R, Lecube A, Fort JM, Allende H, Vargas V, Peinado-Onsurbe J. Increased expression and activity of hepatic lipase in the liver of morbidly obese adult patients in relation to lipid content. Obes Surg 2008; 19:894-904. [PMID: 18972174 DOI: 10.1007/s11695-008-9739-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/23/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND The types and sources of lipid deposition in the liver of most patients with morbid obesity, as well as the effects of bariatric surgery, are discussed. METHODS In 26 patients with morbid obesity who underwent bariatric surgery, we analyzed different kinds of lipids and hepatic lipase (HL) from both plasma and liver biopsies performed 12-18 months after surgery. RESULTS The HL activity and HL-mRNA in morbidly obese (MO) livers were high (258 +/- 17 mU/g, and 4.5-fold, respectively); after surgery, the activity decreased (137 +/- 15 mU/g, p < 0.001) but not the levels of HL-mRNA (4.3-fold). Plasma HL activity was also high (4.31 +/- 0.94 mU/mL plasma), and it decreased during weight loss (2.01 +/- 0.29 mU/mL, p < 0.01); moreover, it correlated (r = 0.3694, p < 0.05) with decreased liver HL activity. Adrenocorticotropic hormone in MO was higher (27 +/- 3 pg/mL) than after surgery (13 +/- 1 pg/mL, p < 0.001). All hepatic and plasma lipids were significantly increased in MO patients, but, after bariatric surgery, most of those parameters recovered or normalized. Liver HL activity correlated with total and esterified cholesterol (r = 0.4399, p < 0.001 and r = 0.4395, p < 0.01, respectively). CONCLUSION High HL in MO patients could allow for liver intake of cholesterol that could be re-exported to steroidogenic organs to synthesize steroidal hormones. A decrease of plasma HL during weight loss could be a good index for improvement of liver disease.
Collapse
Affiliation(s)
- Eva Pardina
- Department of Biochemistry and Molecular Biology, University of Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Parada C, Escolà-Gil JC, Bueno D. Low-density lipoproteins from embryonic cerebrospinal fluid are required for neural differentiation. J Neurosci Res 2008; 86:2674-84. [DOI: 10.1002/jnr.21724] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Rodríguez-Sureda V, López-Tejero MD, Llobera M, Peinado-Onsurbe J. Social stress profoundly affects lipid metabolism: Over-expression of SR-BI in liver and changes in lipids and lipases in plasma and tissues of stressed mice. Atherosclerosis 2007; 195:57-65. [PMID: 17222414 DOI: 10.1016/j.atherosclerosis.2006.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/27/2006] [Accepted: 11/29/2006] [Indexed: 12/21/2022]
Abstract
We examined the effect of chronic social stress, similar to that endured by humans, on lipid metabolism of mice. The activity of the lipoprotein lipase (LPL) enzyme increased in adrenals, while in plasma it diminished significantly. Hepatic lipase (HL) was strongly affected in liver and adrenal glands, increasing four-fold and three-fold, respectively. At the same time, scavenger receptor class-B type-I (SR-BI), which are considered the high-density lipoprotein (HDL) receptor in the liver, increased significantly. Although the adrenals do not synthesise HL, the increase in HL may facilitate the uptake of HDL cholesterol for the synthesis of corticoids, which increase significantly following chronic stress. The volume of adrenal glands in control animals was significantly higher than in stressed animals (1.23+/-0.12 mm3 versus 0.29+/-0.06 mm3, p<0.001), corresponding with the weight difference of these organs. Medulla volume was also different in the two groups (0.27+/-0.10 mm3 versus 0.04+/-0.02 mm3, p<0.05). Despite this, corticosterone in plasma was significantly higher in stressed animals. Our results shows, for the first time, the effect of chronic social stress on lipid metabolism in general, and in particular on the SR-BI receptor and HL, which is directly involved in cholesterol reverse transport.
Collapse
Affiliation(s)
- Víctor Rodríguez-Sureda
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Mercader J, Ribot J, Murano I, Felipe F, Cinti S, Bonet ML, Palou A. Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology 2006; 147:5325-5332. [PMID: 16840543 DOI: 10.1210/en.2006-0760] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A reduced brown adipose phenotype in white adipose tissue (WAT) may contribute to obesity and type 2 diabetes in humans. Retinoic acid, the carboxylic form of vitamin A, triggers in rodents a reduction of body weight and adiposity and an increased expression of uncoupling proteins in brown adipose tissue and skeletal muscle. In this study, we investigated possible remodeling effects of all-trans retinoic acid (ATRA) in WAT depots. Changes in the expression of genes related to thermogenesis and fatty acid oxidation and levels of phosphorylated retinoblastoma protein were analyzed in WAT depots of adult NMRI male mice acutely injected with ATRA or vehicle, together with biometric and blood parameters. Body fat loss after ATRA treatment was unaccompanied by any increase in circulating nonesterified fatty acids or ketone bodies and accompanied by increased rectal temperature. The treatment triggered an up-regulation of the mRNA levels of uncoupling proteins 1 and 2, peroxisome proliferator-activated receptor gamma coactivator-1alpha, peroxisome proliferator-activated receptor alpha, muscle- and liver-type carnitine palmitoyltransferase 1, and subunit II of cytochrome oxidase in different WAT depots. Levels of phosphorylated retinoblastoma protein in WAT depots were increased after ATRA treatment. Adipocyte size was reduced, and the number of multilocular adipocytes was increased in inguinal WAT of ATRA-treated mice. The results indicate that ATRA favors the acquisition of brown adipose tissue-like properties in WAT. Understanding the mechanisms and effectors involved in the remodeling of WAT can contribute to new avenues of prevention and treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Josep Mercader
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | | | | | | | | | | | | |
Collapse
|