1
|
Fernandes-da-Silva A, Santana-Oliveira DA, Oliveira ASD, Ferreira TAM, Monteiro NC, Silva-Veiga FM, Martins FF, Cummins CL, Romeiro LAS, Souza-Mello V. LDT409 (pan-PPAR partial agonist) mitigates metabolic dysfunction-associated steatotic liver disease in high-fructose-fed mice. Mol Cell Endocrinol 2024; 594:112380. [PMID: 39332468 DOI: 10.1016/j.mce.2024.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
AIM This study sought to evaluate the effects of LDT409, a pan-PPAR partial agonist obtained from the main industrial waste from cashew nut processing, on hepatic remodeling, highlighting energy metabolism and endoplasmic reticulum (ER) stress in high-fructose-fed mice. METHODS Male C57BL/6 mice received a control diet (C) or a high-fructose diet (HFRU) for ten weeks. Then, a five-week treatment started: C, C-LDT409, HFRU, and HFRU-LDT409. The LDT409 (40 mg/kg of body weight) was mixed with the diets. RESULTS The HFRU diet caused insulin resistance and endoplasmic reticulum (ER) stress. High Pparg and decreased Ppara expression increased steatosis and pro-fibrogenic gene expression in livers of HFRU-fed mice. Suppressed lipogenic factors, orchestrated by PPAR-gamma, and mitigated ER stress concomitant with the increase in beta-oxidation driven by PPAR-alpha mediated the LDT409 beneficial effects. CONCLUSIONS LDT409 may represent a potential low-cost approach to treat metabolic dysfunction-associated steatotic liver disease, which does not currently have a specific treatment.
Collapse
Affiliation(s)
- Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa S de Oliveira
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Thaís A M Ferreira
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Natália Cipriano Monteiro
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Luiz Antonio Soares Romeiro
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Health Sciences Faculty, University of Brasília, Brasília, DF, Brazil; Laboratory of Development of Therapeutic Innovations (LDT), Center for Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Wang P, Xiao H, Wu T, Fu Q, Song X, Zhao Y, Li Y, Huang J, Song Z. Activation of skeletal carbohydrate-response element binding protein (ChREBP)-mediated de novo lipogenesis increases intramuscular fat content in chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:107-118. [PMID: 39091296 PMCID: PMC11292260 DOI: 10.1016/j.aninu.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 08/04/2024]
Abstract
The intracellular lipids in muscle cells of farm animals play a crucial role in determining the overall intramuscular fat (IMF) content, which has a positive impact on meat quality. However, the mechanisms underlying the deposition of lipids in muscle cells of farm animals are not yet fully understood. The purpose of this study was to determine the roles of carbohydrate-response element binding protein (ChREBP) and fructose in IMF deposition of chickens. For virus-mediated ChREBP overexpression in tibialis anterior (TA) muscle of chickens, seven 5-d-old male yellow-feather chickens were used. At 10 d after virus injection, the chickens were slaughtered to obtain TA muscles for analysis. For fructose administration trial, sixty 9-wk-old male yellow-feather chickens were randomly divided into 2 groups, with 6 replicates per group and 5 chickens per replicate. The chickens were fed either a basal diet or a basal diet supplemented with 10% fructose (purity ≥ 99%). At 4 wk later, the chickens were slaughtered, and breast and thigh muscles were collected for analysis. The results showed that the skeletal ChREBP mRNA levels were positively associated with IMF content in multiple species, including the chickens, pigs, and mice (P < 0.05). ChREBP overexpression increased lipid accumulation in both muscle cells in vitro and the TA muscles of mice and chickens in vivo (P < 0.05), by activation of the de novo lipogenesis (DNL) pathway. Moreover, activation of ChREBP by dietary fructose administration also resulted in increased IMF content in mice and notably chickens (P < 0.05). Furthermore, the lipidomics analysis revealed that ChREBP activation altered the lipid composition of chicken IMF and tented to improve the flavor profile of the meat. In conclusion, this study found that ChREBP plays a pivotal role in mediating the deposition of fat in chicken muscles in response to fructose-rich diets, which provides a novel strategy for improving meat quality in the livestock industry.
Collapse
Affiliation(s)
- Peng Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Haihan Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Tian Wu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qinghua Fu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xudong Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yameng Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jieping Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
3
|
Jiang J, Meng X, Wang Y, Zhuang Z, Du T, Yan J. Effect of aberrant fructose metabolism following SARS-CoV-2 infection on colorectal cancer patients' poor prognosis. PLoS Comput Biol 2024; 20:e1012412. [PMID: 39331675 PMCID: PMC11463760 DOI: 10.1371/journal.pcbi.1012412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024] Open
Abstract
Most COVID-19 patients have a positive prognosis, but patients with additional underlying diseases are more likely to have severe illness and increased fatality rates. Numerous studies indicate that cancer patients are more prone to contract SARS-CoV-2 and develop severe COVID-19 or even dying. In the recent transcriptome investigations, it is demonstrated that the fructose metabolism is altered in patients with SARS-CoV-2 infection. However, cancer cells can use fructose as an extra source of energy for growth and metastasis. Furthermore, enhanced living conditions have resulted in a notable rise in fructose consumption in individuals' daily dietary habits. We therefore hypothesize that the poor prognosis of cancer patients caused by SARS-CoV-2 may therefore be mediated through fructose metabolism. Using CRC cases from four distinct cohorts, we built and validated a predictive model based on SARS-CoV-2 producing fructose metabolic anomalies by coupling Cox univariate regression and lasso regression feature selection algorithms to identify hallmark genes in colorectal cancer. We also developed a composite prognostic nomogram to improve clinical practice by integrating the characteristics of aberrant fructose metabolism produced by this novel coronavirus with age and tumor stage. To obtain the genes with the greatest potential prognostic values, LASSO regression analysis was performed, In the TCGA training cohort, patients were randomly separated into training and validation sets in the ratio of 4: 1, and the best risk score value for each sample was acquired by lasso regression analysis for further analysis, and the fifteen genes CLEC4A, FDFT1, CTNNB1, GPI, PMM2, PTPRD, IL7, ALDH3B1, AASS, AOC3, SEPINE1, PFKFB1, FTCD, TIMP1 and GATM were finally selected. In order to validate the model's accuracy, ROC curve analysis was performed on an external dataset, and the results indicated that the model had a high predictive power for the prognosis prediction of patients. Our study provides a theoretical foundation for the future targeted regulation of fructose metabolism in colorectal cancer patients, while simultaneously optimizing dietary guidance and therapeutic care for colorectal cancer patients in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jiaxin Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Yibo Wang
- Department of Bioinformatics, China Medical University, Shenyang, China
| | - Ziqian Zhuang
- Department of Bioinformatics, China Medical University, Shenyang, China
| | - Ting Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Lundsgaard AM, Bojsen-Møller KN, Kiens B. Dietary Regulation of Hepatic Triacylglycerol Content-the Role of Eucaloric Carbohydrate Restriction with Fat or Protein Replacement. Adv Nutr 2023; 14:1359-1373. [PMID: 37591342 PMCID: PMC10721463 DOI: 10.1016/j.advnut.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Accumulation of hepatic triacylglycerol (TG) is highly associated with impaired whole-body insulin-glucose homeostasis and dyslipidemia. The summarized findings from human intervention studies investigating the effect of reduced dietary carbohydrate and increased fat intake (and in studies also increased protein) while maintaining energy intake at eucaloric requirements reveal a beneficial effect of carbohydrate reduction on hepatic TG content in obese individuals with steatosis and indices of insulin resistance. Evidence suggests that the reduction of hepatic TG content after reduced intake of carbohydrates and increased fat/protein intake in humans, results from regulation of fatty acid (FA) metabolism within the liver, with an increase in hepatic FA oxidation and ketogenesis, together with a concomitant downregulation of FA synthesis from de novo lipogenesis. The adaptations in hepatic metabolism may result from reduced intrahepatic monosaccharide and insulin availability, reduced glycolysis and increased FA availability when carbohydrate intake is reduced.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Régnier M, Carbinatti T, Parlati L, Benhamed F, Postic C. The role of ChREBP in carbohydrate sensing and NAFLD development. Nat Rev Endocrinol 2023; 19:336-349. [PMID: 37055547 DOI: 10.1038/s41574-023-00809-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 04/15/2023]
Abstract
Excessive sugar consumption and defective glucose sensing by hepatocytes contribute to the development of metabolic diseases including type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). Hepatic metabolism of carbohydrates into lipids is largely dependent on the carbohydrate-responsive element binding protein (ChREBP), a transcription factor that senses intracellular carbohydrates and activates many different target genes, through the activation of de novo lipogenesis (DNL). This process is crucial for the storage of energy as triglycerides in hepatocytes. Furthermore, ChREBP and its downstream targets represent promising targets for the development of therapies for the treatment of NAFLD and T2DM. Although lipogenic inhibitors (for example, inhibitors of fatty acid synthase, acetyl-CoA carboxylase or ATP citrate lyase) are currently under investigation, targeting lipogenesis remains a topic of discussion for NAFLD treatment. In this Review, we discuss mechanisms that regulate ChREBP activity in a tissue-specific manner and their respective roles in controlling DNL and beyond. We also provide in-depth discussion of the roles of ChREBP in the onset and progression of NAFLD and consider emerging targets for NAFLD therapeutics.
Collapse
Affiliation(s)
- Marion Régnier
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| | - Thaïs Carbinatti
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Lucia Parlati
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Fadila Benhamed
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| |
Collapse
|
6
|
Iizuka K. Recent Progress on Fructose Metabolism-Chrebp, Fructolysis, and Polyol Pathway. Nutrients 2023; 15:nu15071778. [PMID: 37049617 PMCID: PMC10096667 DOI: 10.3390/nu15071778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Excess fructose intake is associated with obesity, fatty liver, tooth decay, cancer, and cardiovascular diseases. Even after the ingestion of fructose, fructose concentration in the portal blood is never high; fructose is further metabolized in the liver, and the blood fructose concentration is 1/100th of the glucose concentration. It was previously thought that fructose was metabolized in the liver and not in the small intestine, but it has been reported that metabolism in the small intestine also plays an important role in fructose metabolism. Glut5 knockout mice exhibit poor fructose absorption. In addition, endogenous fructose production via the polyol pathway has also received attention; gene deletion of aldose reductase (Ar), ketohexokinase (Khk), and triokinase (Tkfc) has been found to prevent the development of fructose-induced liver lipidosis. Carbohydrate response element-binding protein (Chrebp) regulates the expression of Glut5, Khk, aldolase b, and Tkfc. We review fructose metabolism with a focus on the roles of the glucose-activating transcription factor Chrebp, fructolysis, and the polyol pathway.
Collapse
Affiliation(s)
- Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan
- Food and Nutrition Service Department, Fujita Health University Hospital, Toyoake 470-1192, Japan
| |
Collapse
|
7
|
Inci MK, Park SH, Helsley RN, Attia SL, Softic S. Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD. J Nutr Biochem 2023; 114:109224. [PMID: 36403701 PMCID: PMC11042502 DOI: 10.1016/j.jnutbio.2022.109224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Increased fructose intake from sugar-sweetened beverages and highly processed sweets is a well-recognized risk factor for the development of obesity and its complications. Fructose strongly supports lipogenesis on a normal chow diet by providing both, a substrate for lipid synthesis and activation of lipogenic transcription factors. However, the negative health consequences of dietary sugar are best observed with the concomitant intake of a HFD. Indeed, the most commonly used obesogenic research diets, such as "Western diet", contain both fructose and a high amount of fat. In spite of its common use, how the combined intake of fructose and fat synergistically supports development of metabolic complications is not fully elucidated. Here we present the preponderance of evidence that fructose consumption decreases oxidation of dietary fat in human and animal studies. We provide a detailed review of the mitochondrial β-oxidation pathway. Fructose affects hepatic activation of fatty acyl-CoAs, decreases acylcarnitine production and impairs the carnitine shuttle. Mechanistically, fructose suppresses transcriptional activity of PPARα and its target CPT1α, the rate limiting enzyme of acylcarnitine production. These effects of fructose may be, in part, mediated by protein acetylation. Acetylation of PGC1α, a co-activator of PPARα and acetylation of CPT1α, in part, account for fructose-impaired acylcarnitine production. Interestingly, metabolic effects of fructose in the liver can be largely overcome by carnitine supplementation. In summary, fructose decreases oxidation of dietary fat in the liver, in part, by impairing acylcarnitine production, offering one explanation for the synergistic effects of these nutrients on the development of metabolic complications, such as NAFLD.
Collapse
Affiliation(s)
| | - Se-Hyung Park
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Suzanna L Attia
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Samir Softic
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Carbinatti T, Régnier M, Parlati L, Benhamed F, Postic C. New insights into the inter-organ crosstalk mediated by ChREBP. Front Endocrinol (Lausanne) 2023; 14:1095440. [PMID: 36923222 PMCID: PMC10008936 DOI: 10.3389/fendo.2023.1095440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023] Open
Abstract
Carbohydrate response element binding protein (ChREBP) is a glucose responsive transcription factor recognized by its critical role in the transcriptional control of glycolysis and de novo lipogenesis. Substantial advances in the field have revealed novel ChREBP functions. Indeed, due to its actions in different tissues, ChREBP modulates the inter-organ communication through secretion of peptides and lipid factors, ensuring metabolic homeostasis. Dysregulation of these orchestrated interactions is associated with development of metabolic diseases such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Here, we recapitulate the current knowledge about ChREBP-mediated inter-organ crosstalk through secreted factors and its physiological implications. As the liver is considered a crucial endocrine organ, we will focus in this review on the role of ChREBP-regulated hepatokines. Lastly, we will discuss the involvement of ChREBP in the progression of metabolic pathologies, as well as how the impairment of ChREBP-dependent signaling factors contributes to the onset of such diseases.
Collapse
|
9
|
Shimada M, Shirouchi B, Kobayashi Y, Higuchi M, Okumura M, Nakagawa T, Hayakawa T. Treatment with Interleukin-25 Suppresses Short-Term High-Fructose Diet-Induced Hepatic Gene Expression and Activities of Fatty Acid Synthesis Enzymes in Rats. J Oleo Sci 2023; 72:99-104. [PMID: 36624060 DOI: 10.5650/jos.ess22266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study aimed to investigate the effects of interleukin-25, which belongs to the interleukin-17 family, on short-term high-fructose diet-induced hepatic triacylglycerol accumulation. Rats were fed a high-starch (control) or high-fructose diet for 7 d, with or without intraperitoneal administration of recombinant interleukin-25 from days 3-7. Treatment with interleukin-25 significantly reduced the mRNA levels and activity of fatty acid synthesis enzymes and caused a nominal reduction in hepatic triacylglycerol levels in rats fed a high-fructose diet but not in those fed a control diet. Interleukin-25 treatment did not affect the mRNA levels of β-oxidation enzymes in either the control or fructose-fed rats. These results suggest that treatment with interleukin-25 suppresses short-term high-fructose diet-induced fatty acid synthesis and leads to the alleviation of triacylglycerol accumulation in the liver.
Collapse
Affiliation(s)
- Masaya Shimada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University.,Division of Life Science for Food, Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University
| | - Bungo Shirouchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki
| | - Yota Kobayashi
- Division of Life Science for Food, Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University
| | - Mina Higuchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki
| | - Mai Okumura
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki
| | - Tomoyuki Nakagawa
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University.,Division of Life Science for Food, Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University
| | - Takashi Hayakawa
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University.,Department of Applied Life Studies, College of Nagoya Women's University
| |
Collapse
|
10
|
Allegrini S, Garcia-Gil M, Pesi R, Camici M, Tozzi MG. The Good, the Bad and the New about Uric Acid in Cancer. Cancers (Basel) 2022; 14:cancers14194959. [PMID: 36230882 PMCID: PMC9561999 DOI: 10.3390/cancers14194959] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The concentration of uric acid in blood is sex-, age- and diet-dependent and is maintained close to its maximal solubility, indicating that it plays some important role. Indeed, it has been demonstrated that, at physiological concentrations, uric acid is a powerful antioxidant and is a scavenger of singlet oxygen and radicals. At high intracellular concentration, uric acid has been demonstrated to act as a pro-oxidant molecule. Recently, uric acid has been reported to affect the properties of several proteins involved in metabolic regulation and signaling, and the relationship between uric acid and cancer has been extensively investigated. In this review, we present the most recent results on the positive and negative effects played by uric acid in cancer and some new findings and hypotheses about the implication of this metabolite in the pathogenesis of several diseases such as metabolic syndrome, diabetes, and inflammation, thus favoring the development of cancer. Abstract Uric acid is the final product of purine catabolism in man and apes. The serum concentration of uric acid is sex-, age- and diet-dependent and is maintained close to its maximal solubility, indicating that it plays some important role. Indeed, it has been demonstrated that, at physiological concentrations, uric acid is a powerful antioxidant, while at high intracellular concentrations, it is a pro-oxidant molecule. In this review, we describe the possible causes of uric acid accumulation or depletion and some of the metabolic and regulatory pathways it may impact. Particular attention has been given to fructose, which, because of the complex correlation between carbohydrate and nucleotide metabolism, causes uric acid accumulation. We also present recent results on the positive and negative effects played by uric acid in cancer and some new findings and hypotheses about the implication of this metabolite in a variety of signaling pathways, which can play a role in the pathogenesis of diseases such as metabolic syndrome, diabetes, and inflammation, thus favoring the development of cancer. The loss of uricase in Homo sapiens and great apes, although exposing these species to the potentially adverse effects of uric acid, appears to be associated with evolutionary advantages.
Collapse
Affiliation(s)
- Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy
- CISUP, Centro per L’Integrazione della Strumentazione dell’Università di Pisa, 56127 Pisa, Italy
- Correspondence:
| | - Mercedes Garcia-Gil
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy
- CISUP, Centro per L’Integrazione della Strumentazione dell’Università di Pisa, 56127 Pisa, Italy
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
11
|
Wu Y, Wong CW, Chiles EN, Mellinger AL, Bae H, Jung S, Peterson T, Wang J, Negrete M, Huang Q, Wang L, Jang C, Muddiman DC, Su X, Williamson I, Shen X. Glycerate from intestinal fructose metabolism induces islet cell damage and glucose intolerance. Cell Metab 2022; 34:1042-1053.e6. [PMID: 35688154 PMCID: PMC9897509 DOI: 10.1016/j.cmet.2022.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/21/2021] [Accepted: 05/18/2022] [Indexed: 02/06/2023]
Abstract
Dietary fructose, especially in the context of a high-fat western diet, has been linked to type 2 diabetes. Although the effect of fructose on liver metabolism has been extensively studied, a significant portion of the fructose is first metabolized in the small intestine. Here, we report that dietary fat enhances intestinal fructose metabolism, which releases glycerate into the blood. Chronic high systemic glycerate levels induce glucose intolerance by slowly damaging pancreatic islet cells and reducing islet sizes. Our findings provide a link between dietary fructose and diabetes that is modulated by dietary fat.
Collapse
Affiliation(s)
- Yanru Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Chi Wut Wong
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric N Chiles
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Allyson L Mellinger
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ted Peterson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Jamie Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, China
| | - Lihua Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA; Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA; Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ian Williamson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Gastroenterology Division, Department of Medicine, Duke University, Durham, NC 27710, USA.
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
12
|
Mendoza-Pérez S, García-Gómez RS, Durán-Domínguez-de-Bazúa MDC. Chronic intake of nutritive sweeteners and saccharin increases levels of glycolytic and lipogenic enzymes in rat liver. Int J Food Sci Nutr 2022; 73:927-939. [PMID: 35708269 DOI: 10.1080/09637486.2022.2088705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There are doubts about the impact of non-nutritive sweeteners consumption on lipogenic and glycolytic metabolism. Therefore, the objective was to determine the effects of chronic consumption of sweeteners on the activity levels of the enzymes glucokinase (GK), phosphofructokinase-1 (PFK-1), pyruvate kinase (PKL), acetyl coenzyme A carboxylase (ACC), and fatty acid synthase (FAS) in livers' extracts. Groups of male and female Wistar rats drank solutions of sweeteners for 480 days: Sucrose 10%, glucose 14%, fructose 7%, acesulfame K 0.05%, aspartame:acesulfame mixture 1.55%, sucralose 0.017%, saccharin 0.033%, and a control group. The enzymatic activity in livers' extracts was determined. Likewise, the levels of glucose, triglycerides, insulin, glucagon, and leptin were determined. In both genders, there were significant differences in the levels of enzymatic activity, hormonal, and biochemical parameters due to sweeteners consumption. The highest glycolytic and lipogenic enzyme activity levels were observed in the groups that ingested nutritive sweeteners and saccharin.
Collapse
Affiliation(s)
- Samuel Mendoza-Pérez
- Laboratories of Environmental Chemical Engineering and Chemistry, Department of Chemical Engineering, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Rolando Salvador García-Gómez
- Laboratories of Environmental Chemical Engineering and Chemistry, Department of Chemical Engineering, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - María-Del-Carmen Durán-Domínguez-de-Bazúa
- Laboratories of Environmental Chemical Engineering and Chemistry, Department of Chemical Engineering, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
13
|
Sano H, Nakamura A, Yamane M, Niwa H, Nishimura T, Araki K, Takemoto K, Ishiguro KI, Aoki H, Kato Y, Kojima M. The polyol pathway is an evolutionarily conserved system for sensing glucose uptake. PLoS Biol 2022; 20:e3001678. [PMID: 35687590 PMCID: PMC9223304 DOI: 10.1371/journal.pbio.3001678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/23/2022] [Accepted: 05/17/2022] [Indexed: 01/20/2023] Open
Abstract
Cells must adjust the expression levels of metabolic enzymes in response to fluctuating nutrient supply. For glucose, such metabolic remodeling is highly dependent on a master transcription factor ChREBP/MondoA. However, it remains elusive how glucose fluctuations are sensed by ChREBP/MondoA despite the stability of major glycolytic pathways. Here, we show that in both flies and mice, ChREBP/MondoA activation in response to glucose ingestion involves an evolutionarily conserved glucose-metabolizing pathway: the polyol pathway. The polyol pathway converts glucose to fructose via sorbitol. It has been believed that this pathway is almost silent, and its activation in hyperglycemic conditions has deleterious effects on human health. We show that the polyol pathway regulates the glucose-responsive nuclear translocation of Mondo, a Drosophila homologue of ChREBP/MondoA, which directs gene expression for organismal growth and metabolism. Likewise, inhibition of the polyol pathway in mice impairs ChREBP’s nuclear localization and reduces glucose tolerance. We propose that the polyol pathway is an evolutionarily conserved sensing system for glucose uptake that allows metabolic remodeling. The polyol pathway, which converts glucose to fructose via sorbitol, was thought to be largely silent, and only the negative effects of its activation were known. This study reveals that the polyol pathway is involved in glucose-responsive activation of Mondo/ChREBP-mediated metabolic remodeling in both mice and flies.
Collapse
Affiliation(s)
- Hiroko Sano
- Department of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
- * E-mail:
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Mariko Yamane
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Takashi Nishimura
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Kazumasa Takemoto
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto, Japan
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Kei-ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Yuzuru Kato
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Masayasu Kojima
- Department of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| |
Collapse
|
14
|
van Laar A, Grootaert C, Van Nieuwerburgh F, Deforce D, Desmet T, Beerens K, Van Camp J. Metabolism and Health Effects of Rare Sugars in a CACO-2/HepG2 Coculture Model. Nutrients 2022; 14:nu14030611. [PMID: 35276968 PMCID: PMC8839664 DOI: 10.3390/nu14030611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide and is impacted by an unhealthy diet with excessive calories, although the role of sugars in NAFLD etiology remains largely unexplored. Rare sugars are natural sugars with alternative monomers and glycosidic bonds, which have attracted attention as sugar replacers due to developments in enzyme engineering and hence an increased availability. We studied the impact of (rare) sugars on energy production, liver cell physiology and gene expression in human intestinal colorectal adenocarcinoma (Caco-2) cells, hepatoma G2 (HepG2) liver cells and a coculture model with these cells. Fat accumulation was investigated in the presence of an oleic/palmitic acid mixture. Glucose, fructose and galactose, but not mannose, l-arabinose, xylose and ribose enhanced hepatic fat accumulation in a HepG2 monoculture. In the coculture model, there was a non-significant trend (p = 0.08) towards higher (20–55% increased) median fat accumulation with maltose, kojibiose and nigerose. In this coculture model, cellular energy production was increased by glucose, maltose, kojibiose and nigerose, but not by trehalose. Furthermore, glucose, fructose and l-arabinose affected gene expression in a sugar-specific way in coculture HepG2 cells. These findings indicate that sugars provide structure-specific effects on cellular energy production, hepatic fat accumulation and gene expression, suggesting a health potential for trehalose and l-arabinose, as well as a differential impact of sugars beyond the distinction of conventional and rare sugars.
Collapse
Affiliation(s)
- Amar van Laar
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
| | - Charlotte Grootaert
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
| | - Filip Van Nieuwerburgh
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Dieter Deforce
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.D.); (K.B.)
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.D.); (K.B.)
| | - John Van Camp
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
- Correspondence:
| |
Collapse
|
15
|
SREBP-1c and lipogenesis in the liver: an update1. Biochem J 2021; 478:3723-3739. [PMID: 34673919 DOI: 10.1042/bcj20210071] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Sterol Regulatory Element Binding Protein-1c is a transcription factor that controls the synthesis of lipids from glucose in the liver, a process which is of utmost importance for the storage of energy. Discovered in the early nineties by B. Spiegelman and by M. Brown and J. Goldstein, it has generated more than 5000 studies in order to elucidate its mechanism of activation and its role in physiology and pathology. Synthetized as a precursor found in the membranes of the endoplasmic reticulum, it has to be exported to the Golgi and cleaved by a mechanism called regulated intramembrane proteolysis. We reviewed in 2002 its main characteristics, its activation process and its role in the regulation of hepatic glycolytic and lipogenic genes. We particularly emphasized that Sterol Regulatory Element Binding Protein-1c is the mediator of insulin effects on these genes. In the present review, we would like to update these informations and focus on the response to insulin and to another actor in Sterol Regulatory Element Binding Protein-1c activation, the endoplasmic reticulum stress.
Collapse
|
16
|
Shi YN, Liu YJ, Xie Z, Zhang WJ. Fructose and metabolic diseases: too much to be good. Chin Med J (Engl) 2021; 134:1276-1285. [PMID: 34010200 PMCID: PMC8183764 DOI: 10.1097/cm9.0000000000001545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT Excessive consumption of fructose, the sweetest of all naturally occurring carbohydrates, has been linked to worldwide epidemics of metabolic diseases in humans, and it is considered an independent risk factor for cardiovascular diseases. We provide an overview about the features of fructose metabolism, as well as potential mechanisms by which excessive fructose intake is associated with the pathogenesis of metabolic diseases both in humans and rodents. To accomplish this aim, we focus on illuminating the cellular and molecular mechanisms of fructose metabolism as well as its signaling effects on metabolic and cardiovascular homeostasis in health and disease, highlighting the role of carbohydrate-responsive element-binding protein in regulating fructose metabolism.
Collapse
Affiliation(s)
- Ya-Nan Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Ya-Jin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Weiping J. Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
17
|
Park G, Jung S, Wellen KE, Jang C. The interaction between the gut microbiota and dietary carbohydrates in nonalcoholic fatty liver disease. Exp Mol Med 2021; 53:809-822. [PMID: 34017059 PMCID: PMC8178320 DOI: 10.1038/s12276-021-00614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023] Open
Abstract
Imbalance between fat production and consumption causes various metabolic disorders. Nonalcoholic fatty liver disease (NAFLD), one such pathology, is characterized by abnormally increased fat synthesis and subsequent fat accumulation in hepatocytes1,2. While often comorbid with obesity and insulin resistance, this disease can also be found in lean individuals, suggesting specific metabolic dysfunction2. NAFLD has become one of the most prevalent liver diseases in adults worldwide, but its incidence in both children and adolescents has also markedly increased in developed nations3,4. Progression of this disease into nonalcoholic steatohepatitis (NASH), cirrhosis, liver failure, and hepatocellular carcinoma in combination with its widespread incidence thus makes NAFLD and its related pathologies a significant public health concern. Here, we review our understanding of the roles of dietary carbohydrates (glucose, fructose, and fibers) and the gut microbiota, which provides essential carbon sources for hepatic fat synthesis during the development of NAFLD.
Collapse
Affiliation(s)
- Grace Park
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
18
|
Walnut Supplementation Restores the SIRT1-FoxO3a-MnSOD/Catalase Axis in the Heart, Promotes an Anti-Inflammatory Fatty Acid Profile in Plasma, and Lowers Blood Pressure on Fructose-Rich Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5543025. [PMID: 33976753 PMCID: PMC8086433 DOI: 10.1155/2021/5543025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
The benefits of walnut (Juglans regia) consumption for metabolic health are known, but the molecular background underlying their putative antioxidant and anti-inflammatory/immunomodulatory effects is underexplored. We assessed that walnut supplementation (6 weeks) reverted unfavorable changes of the SIRT1/FoxO3a/MnSOD/catalase axis in the heart induced by fructose-rich diet (FRD). Intriguingly, Nox4 was increased by both FRD and walnut supplementation. FRD increased the cytosolic fraction and decreased the nuclear fraction of the uniquely elucidated ChREBP in the heart. The ChREBP nuclear fraction was decreased in control rats subjected to walnuts. In addition, walnut consumption was associated with a reduction in systolic BP in FRD and a decrease in fatty acid AA/EPA and AA/DHA ratios in plasma. In summary, the protective effect of walnut supplementation was detected in male rats following the fructose-induced decrease in antioxidative/anti-inflammatory capacity of cardiac tissue and increase in plasma predictors of low-grade inflammation. The current results provide a novel insight into the relationship between nutrients, cellular energy homeostasis, and the modulators of inflammatory/immune response in metabolic syndrome, emphasizing the heart and highlighting a track for translation into nutrition and dietary therapeutic approaches against metabolic disease.
Collapse
|
19
|
Federico A, Rosato V, Masarone M, Torre P, Dallio M, Romeo M, Persico M. The Role of Fructose in Non-Alcoholic Steatohepatitis: Old Relationship and New Insights. Nutrients 2021; 13:1314. [PMID: 33923525 PMCID: PMC8074203 DOI: 10.3390/nu13041314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the result of hepatic fat overload not due to alcohol consumption and potentially evolving to advanced fibrosis, cirrhosis, and hepatocellular carcinoma. Fructose is a naturally occurring simple sugar widely used in food industry linked to glucose to form sucrose, largely contained in hypercaloric food and beverages. An increasing amount of evidence in scientific literature highlighted a detrimental effect of dietary fructose consumption on metabolic disorders such as insulin resistance, obesity, hepatic steatosis, and NAFLD-related fibrosis as well. An excessive fructose consumption has been associated with NAFLD development and progression to more clinically severe phenotypes by exerting various toxic effects, including increased fatty acid production, oxidative stress, and worsening insulin resistance. Furthermore, some studies in this context demonstrated even a crucial role in liver cancer progression. Despite this compelling evidence, the molecular mechanisms by which fructose elicits those effects on liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. This review aimed to summarize the current understanding of fructose metabolism on NAFLD pathogenesis and progression.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Valerio Rosato
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| | - Pietro Torre
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Mario Romeo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Marcello Persico
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| |
Collapse
|
20
|
Adaptive and maladaptive roles for ChREBP in the liver and pancreatic islets. J Biol Chem 2021; 296:100623. [PMID: 33812993 PMCID: PMC8102921 DOI: 10.1016/j.jbc.2021.100623] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive sugar consumption is a contributor to the worldwide epidemic of cardiometabolic disease. Understanding mechanisms by which sugar is sensed and regulates metabolic processes may provide new opportunities to prevent and treat these epidemics. Carbohydrate Responsive-Element Binding Protein (ChREBP) is a sugar-sensing transcription factor that mediates genomic responses to changes in carbohydrate abundance in key metabolic tissues. Carbohydrate metabolites activate the canonical form of ChREBP, ChREBP-alpha, which stimulates production of a potent, constitutively active ChREBP isoform called ChREBP-beta. Carbohydrate metabolites and other metabolic signals may also regulate ChREBP activity via posttranslational modifications including phosphorylation, acetylation, and O-GlcNAcylation that can affect ChREBP’s cellular localization, stability, binding to cofactors, and transcriptional activity. In this review, we discuss mechanisms regulating ChREBP activity and highlight phenotypes and controversies in ChREBP gain- and loss-of-function genetic rodent models focused on the liver and pancreatic islets.
Collapse
|
21
|
Simons N, Veeraiah P, Simons PIHG, Schaper NC, Kooi ME, Schrauwen-Hinderling VB, Feskens EJM, van der Ploeg EMC(L, Van den Eynde MDG, Schalkwijk CG, Stehouwer CDA, Brouwers MCGJ. Effects of fructose restriction on liver steatosis (FRUITLESS); a double-blind randomized controlled trial. Am J Clin Nutr 2020; 113:391-400. [PMID: 33381794 PMCID: PMC7851818 DOI: 10.1093/ajcn/nqaa332] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is an ongoing debate on whether fructose plays a role in the development of nonalcoholic fatty liver disease. OBJECTIVES The aim of this study was to investigate the effects of fructose restriction on intrahepatic lipid (IHL) content in a double-blind randomized controlled trial using an isocaloric comparator. METHODS Between March 2017 and October 2019, 44 adult overweight individuals with a fatty liver index ≥ 60 consumed a 6-wk fructose-restricted diet (<7.5 g/meal and <10 g/d) and were randomly assigned to supplementation with sachets of glucose (= intervention group) or fructose (= control group) 3 times daily. Participants and assessors were blinded to the allocation. IHL content, assessed by proton magnetic resonance spectroscopy, was the primary outcome and glucose tolerance and serum lipids were the secondary outcomes. All measurements were conducted in Maastricht University Medical Center. RESULTS Thirty-seven participants completed the study protocol. After 6 wk of fructose restriction, dietary fructose intake and urinary fructose excretion were significantly lower in the intervention group (difference: -57.0 g/d; 95% CI: -77.9, -39.5 g/d; and -38.8 μmol/d; 95% CI: -91.2, -10.7 μmol/d, respectively). Although IHL content decreased in both the intervention and control groups (P < 0.001 and P = 0.003, respectively), the change in IHL content was more pronounced in the intervention group (difference: -0.7% point, 95% CI: -2.0, -0.03% point). The changes in glucose tolerance and serum lipids were not significantly different between groups. CONCLUSIONS Six weeks of fructose restriction per se led to a small, but statistically significant, decrease in IHL content in comparison with an isocaloric control group.This trial was registered at clinicaltrials.gov as NCT03067428.
Collapse
Affiliation(s)
- Nynke Simons
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - Pandichelvam Veeraiah
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Pomme I H G Simons
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - Nicolaas C Schaper
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands,CAPHRI School for Public Health and Primary Care, Maastricht, The Netherlands
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands,Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | | | - Mathias D G Van den Eynde
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands,Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | | |
Collapse
|
22
|
Abstract
The interest in fructose metabolism is based on the observation that an increased dietary fructose consumption leads to an increased risk of obesity and metabolic syndrome. In particular, obesity is a known risk factor to develop many types of cancer and there is clinical and experimental evidence that an increased fructose intake promotes cancer growth. The precise mechanism, however, in which fructose induces tumor growth is still not fully understood. In this article, we present an overview of the metabolic pathways that utilize fructose and how fructose metabolism can sustain cancer cell proliferation. Although the degradation of fructose shares many of the enzymes and metabolic intermediates with glucose metabolism through glycolysis, glucose and fructose are metabolized differently. We describe the different metabolic fates of fructose carbons and how they are connected to lipogenesis and nucleotide synthesis. In addition, we discuss how the endogenous production of fructose from glucose via the polyol pathway can be beneficial for cancer cells.
Collapse
|
23
|
Hieronimus B, Medici V, Bremer AA, Lee V, Nunez MV, Sigala DM, Keim NL, Havel PJ, Stanhope KL. Synergistic effects of fructose and glucose on lipoprotein risk factors for cardiovascular disease in young adults. Metabolism 2020; 112:154356. [PMID: 32916151 PMCID: PMC8744004 DOI: 10.1016/j.metabol.2020.154356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/23/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fructose consumption increases risk factors for cardiometabolic disease. It is assumed that the effects of free sugars on risk factors are less potent because they contain less fructose. We compared the effects of consuming fructose, glucose or their combination, high fructose corn syrup (HFCS), on cardiometabolic risk factors. METHODS Adults (18-40 years; BMI 18-35 kg/m2) participated in a parallel, double-blinded dietary intervention during which beverages sweetened with aspartame, glucose (25% of energy requirements (ereq)), fructose or HFCS (25% and 17.5% ereq) were consumed for two weeks. Groups were matched for sex, baseline BMI and plasma lipid/lipoprotein concentrations. 24-h serial blood samples were collected at baseline and at the end of intervention. Primary outcomes were 24-h triglyceride AUC, LDL-cholesterol (C), and apolipoprotein (apo)B. Interactions between fructose and glucose were assessed post hoc. FINDINGS 145 subjects (26.0 ± 5.8 years; body mass index 25.0 ± 3.7 kg/m2) completed the study. As expected, the increase of 24-h triglycerides compared with aspartame was highest during fructose consumption (25%: 6.66 mmol/Lx24h 95% CI [1.90 to 11.63], P = 0.0013 versus aspartame), intermediate during HFCS consumption (25%: 4.68 mmol/Lx24h 95% CI [-0.18 to 9.55], P = 0.066 versus aspartame) and lowest during glucose consumption. In contrast, the increase of LDL-C was highest during HFCS consumption (25%: 0.46 mmol/L 95% CI [0.16 to 0.77], P = 0.0002 versus aspartame) and intermediate during fructose consumption (25%: 0.33 mmol/L 95% CI [0.03 to 0.63], P = 0.023 versus aspartame), as was the increase of apoB (HFCS-25%: 0.108 g/L 95%CI [0.032 to 0.184], P = 0.001; fructose 25%: 0.072 g/L 95%CI [-0.004 to 0.148], P = 0.074 versus aspartame). The post hoc analyses showed significant interactive effects of fructose*glucose on LDL-C and apoB (both P < 0.01), but not on 24-h triglyceride (P = 0.340). CONCLUSION A significant interaction between fructose and glucose contributed to increases of lipoprotein risk factors when the two monosaccharides were co-ingested as HFCS. Thus, the effects of HFCS on lipoprotein risks factors are not solely mediated by the fructose content and it cannot be assumed that glucose is a benign component of HFCS. Our findings suggest that HFCS may be as harmful as isocaloric amounts of pure fructose and provide further support for the urgency to implement strategies to limit free sugar consumption.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Max Rubner-Institut, Institute of Child Nutrition, Karlsruhe, Germany; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America.
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, University of California, Davis, CA, United States of America
| | - Andrew A Bremer
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, United States of America; Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Vivien Lee
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Marinelle V Nunez
- Department of Nutrition, University of California, Davis, CA, United States of America
| | - Desiree M Sigala
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America; Department of Nutrition, University of California, Davis, CA, United States of America
| | - Nancy L Keim
- Department of Nutrition, University of California, Davis, CA, United States of America; United States Department of Agriculture, Western Human Nutrition Research Center, Davis, CA, United States of America
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America; Department of Nutrition, University of California, Davis, CA, United States of America
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| |
Collapse
|
24
|
Triose Kinase Controls the Lipogenic Potential of Fructose and Dietary Tolerance. Cell Metab 2020; 32:605-618.e7. [PMID: 32818435 DOI: 10.1016/j.cmet.2020.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 04/16/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
The surge in fructose consumption is a major factor behind the rapid rise of nonalcoholic fatty liver disease in modern society. Through flux and genetic analyses, we demonstrate that fructose is catabolized at a much higher rate than glucose, and triose kinase (TK) couples fructolysis with lipogenesis metabolically and transcriptionally. In the absence of TK, fructose oxidation is accelerated through the activation of aldehyde dehydrogenase (ALDH) and serine biosynthesis, accompanied by increased oxidative stress and fructose aversion. TK is also required by the endogenous fructolysis pathway to drive lipogenesis and hepatic triglyceride accumulation under high-fat diet and leptin-deficient conditions. Intriguingly, a nonsynonymous TK allele (rs2260655_A) segregated during human migration out of Africa behaves as TK null for its inability to rescue fructose toxicity and increase hepatic triglyceride accumulation. Therefore, we posit TK as a metabolic switch controlling the lipogenic potential of fructose and its dietary tolerance.
Collapse
|
25
|
Al-Jawadi A, Patel CR, Shiarella RJ, Romelus E, Auvinen M, Guardia J, Pearce SC, Kishida K, Yu S, Gao N, Ferraris RP. Cell-Type-Specific, Ketohexokinase-Dependent Induction by Fructose of Lipogenic Gene Expression in Mouse Small Intestine. J Nutr 2020; 150:1722-1730. [PMID: 32386219 PMCID: PMC7330472 DOI: 10.1093/jn/nxaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High intakes of fructose are associated with metabolic diseases, including hypertriglyceridemia and intestinal tumor growth. Although small intestinal epithelia consist of many different cell types, express lipogenic genes, and convert dietary fructose to fatty acids, there is no information on the identity of the cell type(s) mediating this conversion and on the effects of fructose on lipogenic gene expression. OBJECTIVES We hypothesized that fructose regulates the intestinal expression of genes involved in lipid and apolipoprotein synthesis, that regulation depends on the fructose transporter solute carrier family 2 member a5 [Slc2a5 (glucose transporter 5)] and on ketohexokinase (Khk), and that regulation occurs only in enterocytes. METHODS We compared lipogenic gene expression among different organs from wild-type adult male C57BL mice consuming a standard vivarium nonpurified diet. We then gavaged twice daily for 2.5 d fructose or glucose solutions (15%, 0.3 mL per mouse) into wild-type, Slc2a5-knockout (KO), and Khk-KO mice with free access to the nonpurified diet and determined expression of representative lipogenic genes. Finally, from mice fed the nonpurified diet, we made organoids highly enriched in enterocyte, goblet, Paneth, or stem cells and then incubated them overnight in 10 mM fructose or glucose. RESULTS Most lipogenic genes were significantly expressed in the intestine relative to the kidney, liver, lung, and skeletal muscle. In vivo expression of Srebf1, Acaca, Fasn, Scd1, Dgat1, Gk, Apoa4, and Apob mRNA and of Scd1 protein increased (P < 0.05) by 3- to 20-fold in wild-type, but not in Slc2a5-KO and Khk-KO, mice gavaged with fructose. In vitro, Slc2a5- and Khk-dependent, fructose-induced increases, which ranged from 1.5- to 4-fold (P < 0.05), in mRNA concentrations of all these genes were observed only in organoids enriched in enterocytes. CONCLUSIONS Fructose specifically stimulates expression of mouse small intestinal genes for lipid and apolipoprotein synthesis. Secretory and stem cells seem incapable of transport- and metabolism-dependent lipogenesis, occurring only in absorptive enterocytes.
Collapse
Affiliation(s)
- Arwa Al-Jawadi
- Present address for AA-J: Thermo Fisher Scientific, 5823 Newton Drive, Carlsbad, CA 92008 USA
| | - Chirag R Patel
- Present address for CRP: Independent Drug Safety Consultant, 1801 Augustine Cut-off, Wilmington, DE 19803
| | - Reilly J Shiarella
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Emmanuellie Romelus
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Madelyn Auvinen
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Joshua Guardia
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Sarah C Pearce
- Present address for SCP: Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development, and Engineering Center (NSRDEC), 15 General Greene Avenue, Natick, MA 01760-5018
| | - Kunihiro Kishida
- Present address for KK: Department of Science and Technology on Food Safety, Kindai University, Wakayama 649-6493, Japan
| | - Shiyan Yu
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, USA
| | - Nan Gao
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
26
|
Dewdney B, Roberts A, Qiao L, George J, Hebbard L. A Sweet Connection? Fructose's Role in Hepatocellular Carcinoma. Biomolecules 2020; 10:E496. [PMID: 32218179 PMCID: PMC7226025 DOI: 10.3390/biom10040496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is one of few cancer types that continues to grow in incidence and mortality worldwide. With the alarming increase in diabetes and obesity rates, the higher rates of hepatocellular carcinoma are a result of underlying non-alcoholic fatty liver disease. Many have attributed disease progression to an excess consumption of fructose sugar. Fructose has known toxic effects on the liver, including increased fatty acid production, increased oxidative stress, and insulin resistance. These effects have been linked to non-alcoholic fatty liver (NAFLD) disease and a progression to non-alcoholic steatohepatitis (NASH). While the literature suggests fructose may enhance liver cancer progression, the precise mechanisms in which fructose induces tumor formation remains largely unclear. In this review, we summarize the current understanding of fructose metabolism in liver disease and liver tumor development. Furthermore, we consider the latest knowledge of cancer cell metabolism and speculate on additional mechanisms of fructose metabolism in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Brittany Dewdney
- Molecular and Cell Biology, and The Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia; (B.D.); (A.R.)
| | - Alexandra Roberts
- Molecular and Cell Biology, and The Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia; (B.D.); (A.R.)
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney NSW 2145, Australia; (L.Q.); (J.G.)
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney NSW 2145, Australia; (L.Q.); (J.G.)
| | - Lionel Hebbard
- Molecular and Cell Biology, and The Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia; (B.D.); (A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney NSW 2145, Australia; (L.Q.); (J.G.)
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Chronic consumption of fructose and fructose-containing sugars leads to dyslipidemia. Apolipoprotein (apo) CIII is strongly associated with elevated levels of triglycerides and cardiovascular disease risk. We reviewed the effects of fructose consumption on apoCIII levels and the role of apoCIII in fructose-induced dyslipidemia. RECENT FINDINGS Consumption of fructose increases circulating apoCIII levels compared with glucose. The more marked effects of fructose compared with glucose on apoCIII concentrations may involve the failure of fructose consumption to stimulate insulin secretion. The increase in apoCIII levels after fructose consumption correlates with increased postprandial serum triglyceride. Further, RNA interference of apoCIII prevents fructose-induced dyslipidemia in nonhuman primates. Increases in postprandial apoCIII after fructose, but not glucose consumption, are positively associated with elevated triglycerides in large triglyceride-rich lipoproteins and increased small dense LDL levels. SUMMARY ApoCIII might be causal in the lipid dysregulation observed after consumption of fructose and fructose-containing sugars. Decreased consumption of fructose and fructose-containing sugars could be an effective strategy for reducing circulating apoCIII and subsequently lowering triglyceride levels.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | | |
Collapse
|
28
|
Zhao C, Liu L, Liu Q, Li F, Zhang L, Zhu F, Shao T, Barve S, Chen Y, Li X, McClain CJ, Feng W. Fibroblast growth factor 21 is required for the therapeutic effects of Lactobacillus rhamnosus GG against fructose-induced fatty liver in mice. Mol Metab 2019; 29:145-157. [PMID: 31668386 PMCID: PMC6812038 DOI: 10.1016/j.molmet.2019.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives High fructose feeding changes fibroblast growth factor 21 (FGF21) regulation. Lactobacillus rhamnosus GG (LGG) supplementation reduces fructose-induced non-alcoholic fatty liver disease (NAFLD). The aim of this study was to determine the role of FGF21 and underlying mechanisms in the protective effects of LGG. Methods FGF21 knockout (KO) mice and C57BL/6 wild type (WT) mice were fed 30% fructose for 12 weeks. LGG was administered to the mice in the last 4 weeks during fructose feeding. FGF21-adiponectin (ADPN)-mediated hepatic lipogenesis and inflammation were investigated. Results FGF21 expression was robustly increased after 5-weeks of feeding and significantly decreased after 12-weeks of feeding in fructose-induced NAFLD mice. LGG administration reversed the depressed FGF21 expression, increased adipose production of ADPN, and reduced hepatic fat accumulation and inflammation in the WT mice but not in the KO mice. Hepatic nuclear carbohydrate responsive-element binding protein (ChREBP) was increased by fructose and reduced by LGG, resulting in a reduction in the expression of lipogenic genes. The methylated form of protein phosphatase 2A (PP2A) C, which dephosphorylates and activates ChREBP, was upregulated by fructose and normalized by LGG. Leucine carboxyl methyltransferase-1, which methylates PP2AC, was also increased by fructose and decreased by LGG. However, those beneficial effects of LGG were blunted in the KO mice. Hepatic dihydrosphingosine-1-phosphate, which inhibits PP2A, was markedly increased by LGG in the WT mice but attenuated in the KO mice. LGG decreased adipose hypertrophy and increased serum levels of ADPN, which regulates sphingosine metabolism. This beneficial effect was decreased in the KO mice. Conclusion LGG administration increases hepatic FGF21 expression and serum ADPN concentration, resulting in a reduced ChREBP activation through dihydrosphingosine-1-phosphate-mediated PP2A deactivation, and subsequently reversed fructose-induced NAFLD. Thus, our data suggest that FGF21 is required for the beneficial effects of LGG in reversal of fructose-induced NAFLD. Lactobacillus rhamnosus GG (LGG) attenuates fructose-induced NAFLD. LGG increases FGF21 and adiponectin expression. LGG inhibits fructose-activated ChREBP and reduces hepatic lipogenesis. FGF21 is required for the therapeutic effects of LGG against fructose-induced NAFLD.
Collapse
Affiliation(s)
- Cuiqing Zhao
- College of Animal Science and Technology, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China; Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Liming Liu
- College of Animal Science and Technology, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China; Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Qi Liu
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fengyuan Li
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Fenxia Zhu
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Tuo Shao
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Shirish Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Yiping Chen
- Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Robley Rex VA Medical Center, Louisville, KY 40206, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
29
|
Treatment with myo-inositol attenuates binding of the carbohydrate-responsive element-binding protein to the ChREBP-β and FASN genes in rat nonalcoholic fatty liver induced by high-fructose diet. Nutr Res 2019; 64:49-55. [DOI: 10.1016/j.nutres.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
|
30
|
Marinho TDS, Ornellas F, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition 2019; 65:103-112. [PMID: 31079017 DOI: 10.1016/j.nut.2019.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/29/2019] [Accepted: 02/23/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intermittent fasting (IF) is a nutritional intervention with significant metabolic effects on the liver that are not yet fully understood. The aim of this study was to investigate the effects of IF on body mass, lipid profile, glucose metabolism, liver lipogenesis, β-oxidation, and inflammation. METHODS We used cellular and molecular techniques to investigate the effects of IF on 3-mo-old male C57 BL/6 mice that were fed control (10% kcal fat), high-fat (HF; 50% kcal fat), or high-fructose (HFr; 50% kcal fructose) diets for 8 wk. Half of the animals were submitted to IF (1 d fed, 1 d fast) for an additional 4 wk. RESULTS Although food intake on the fed day did not differ between the groups, mice in the HF and HFr groups showed diminished body mass, total cholesterol, and triacylglycerol levels. Also, plasma adiponectin increased in the HFr group and leptin decreased in the HF mice. Oral glucose tolerance test and insulin were ameliorated by IF, regardless of the diet consumed (HF or HFr), and decreased hepatic lipogenesis and increased β-oxidation markers, resulting in a reduction of the hepatic steatosis and inflammation. CONCLUSIONS There were beneficial effects of IF even with the continuity of the obesogenic diet and proinflammatory diet in mice. It is recommended that based on the beneficial effects of IF on glucose and liver metabolism and inflammation that IF be a coadjutant factor in the treatment of hepatic metabolic issues and steatosis.
Collapse
Affiliation(s)
- Thatiany de Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Sangüesa G, Roglans N, Baena M, Velázquez AM, Laguna JC, Alegret M. mTOR is a Key Protein Involved in the Metabolic Effects of Simple Sugars. Int J Mol Sci 2019; 20:ijms20051117. [PMID: 30841536 PMCID: PMC6429387 DOI: 10.3390/ijms20051117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
One of the most important threats to global human health is the increasing incidences of metabolic pathologies (including obesity, type 2 diabetes and non-alcoholic fatty liver disease), which is paralleled by increasing consumptions of hypercaloric diets enriched in simple sugars. The challenge is to identify the metabolic pathways affected by the excessive consumption of these dietary components when they are consumed in excess, to unravel the molecular mechanisms leading to metabolic pathologies and identify novel therapeutic targets to manage them. Mechanistic (mammalian) target of rapamycin (mTOR) has emerged as one of the key molecular nodes that integrate extracellular signals, such as energy status and nutrient availability, to trigger cell responses that could lead to the above-mentioned diseases through the regulation of lipid and glucose metabolism. By activating mTOR signalling, excessive consumption of simple sugars (such as fructose and glucose), could modulate hepatic gluconeogenesis, lipogenesis and fatty acid uptake and catabolism and thus lipid deposition in the liver. In the present review we will discuss some of the most recent studies showing the central role of mTOR in the metabolic effects of excessive simple sugar consumption.
Collapse
Affiliation(s)
- Gemma Sangüesa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), 28029 Madrid, Spain.
| | - Miguel Baena
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
| | - Ana Magdalena Velázquez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), 28029 Madrid, Spain.
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), 28029 Madrid, Spain.
| |
Collapse
|
32
|
Boskovic M, Bundalo M, Zivkovic M, Stanisic J, Kostic M, Koricanac G, Stankovic A. Estradiol ameliorates antioxidant axis SIRT1-FoxO3a-MnSOD/catalase in the heart of fructose-fed ovariectomized rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
33
|
Abstract
Fructose in the form of sucrose and high fructose corn syrup is absorbed by the intestinal transporter and mainly metabolized in the small intestine. However, excess intake of fructose overwhelms the absorptive capacity of the small intestine, leading to fructose malabsorption. Carbohydrate response element-binding protein (ChREBP) is a basic helix-loop-helix leucine zipper transcription factor that plays a key role in glycolytic and lipogenic gene expression in response to carbohydrate consumption. While ChREBP was initially identified as a glucose-responsive factor in the liver, recent evidence suggests that ChREBP is essential for fructoseinduced lipogenesis and gluconeogenesis in the small intestine as well as in the liver. We recently identified that the loss of ChREBP leads to fructose intolerance via insufficient induction of genes involved in fructose transport and metabolism in the intestine. As fructose consumption is increasing and closely associated with metabolic and gastrointestinal diseases, a comprehensive understanding of cellular fructose sensing and metabolism via ChREBP may uncover new therapeutic opportunities. In this mini review, we briefly summarize recent progress in intestinal fructose metabolism, regulation and function of ChREBP by fructose, and delineate the potential mechanisms by which excessive fructose consumption may lead to irritable bowel syndrome.
Collapse
Affiliation(s)
- Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999; Gachon Medical Institute, Gil Medical Center, Incheon 21565, Korea
| |
Collapse
|
34
|
Hori S, Hara H, Ishizuka S. Marginal iron deficiency enhances liver triglyceride accumulation in rats fed a high-sucrose diet. Biosci Biotechnol Biochem 2018; 82:2140-2148. [PMID: 30185127 DOI: 10.1080/09168451.2018.1515616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigated whether marginal iron-deficiency (MID) without anemia influences liver lipid accumulation in rats. Ingestion of a MID diet in which the iron concentration was half of AIN-93 formulation (iron-adequate, IA) for 3 weeks decreased liver iron concentration without anemia. We then evaluated the influence of the MID diet on liver lipid accumulation in combination with a high-sucrose (HS) diet and confirmed that the HS-MID diet successfully decreased liver iron concentration without anemia. Additionally, a significant increase in liver triglyceride concentration was found, accompanied by upregulation of hepatic fatty acid synthase expression in the rats fed the HS-MID diet compared to those in the rats fed an HS-IA diet, although no difference was observed in plasma transaminase activity and hepatic interleukin-1β expression. These results suggest that MID enhances de novo lipid synthesis via upregulation of lipogenic gene expression in combination with sucrose in the diet. Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; HS, high sucrose; IA, iron adequate; ID, iron deficiency; MID, marginal irondeficiency; NAFLD, non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Shota Hori
- a Division of Fundamental Agriscience Research, Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Hiroshi Hara
- a Division of Fundamental Agriscience Research, Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Satoshi Ishizuka
- a Division of Fundamental Agriscience Research, Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
35
|
Oh AR, Sohn S, Lee J, Park JM, Nam KT, Hahm KB, Kim YB, Lee HJ, Cha JY. ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism 2018; 85:286-297. [PMID: 29669261 PMCID: PMC7400734 DOI: 10.1016/j.metabol.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Fructose malabsorption is a common digestive disorder in which absorption of fructose in the small intestine is impaired. An abnormality of the main intestinal fructose transporter proteins has been proposed as a cause for fructose malabsorption. However the underlying molecular mechanism for this remains unclear. In this study, we investigated whether carbohydrate response element-binding protein (ChREBP) plays a role in intestinal fructose absorption through the regulation of genes involved in fructose transport and metabolism and ion transport. METHODS Wild type (WT) and Chrebp knockout (KO) mice (6 or 8 weeks old) were fed a control diet (55% starch, 15% maltodextrin 10) or high-fructose diet (HFrD, 60% fructose, 10% starch) for 3-12 days. Body weight and food intake were measured, signs of fructose malabsorption were monitored, and the expression of genes involved in fructose transport/metabolism and ion transport was evaluated. Furthermore, transient transfection and chromatin immunoprecipitation were performed to show the direct interaction between ChREBP and carbohydrate response elements in the promoter of Slc2A5, which encodes the fructose transporter GLUT5. RESULTS Chrebp KO mice fed the control diet maintained a constant body weight, whereas those fed a HFrD showed significant weight loss within 3-5 days. In addition, Chrebp KO mice fed the HFrD exhibited a markedly distended cecum and proximal colon containing both fluid and gas, suggesting incomplete fructose absorption. Fructose-induced increases of genes involved in fructose transport (GLUT5), fructose metabolism (fructokinase, aldolase B, triokinase, and lactate dehydrogenase), and gluconeogenesis (glucose-6-phosphatase and fructose-1,6-bisphosphatase) were observed in the intestine of WT but not of Chrebp KO mice. Moreover the Na+/H+ exchanger NHE3, which is involved in Na+ and water absorption in the intestine, was significantly decreased in HFrD-fed Chrebp KO mice. Consistent with this finding, the high-fructose diet-fed Chrebp KO mice developed severe diarrhea. Results of chromatin immunoprecipitation assays showed a direct interaction of ChREBP with the Glut5 promoter, but not the Nhe3 promoter, in the small intestine. Ectopic co-expression of ChREBP and its heterodimer partner Max-like protein X activated the Glut5 promoter in Caco-2BBE cells. CONCLUSIONS ChREBP plays a key role in the dietary fructose transport as well as conversion into lactate and glucose through direct transcriptional control of genes involved in fructose transport, fructolysis, and gluconeogenesis. Moreover, ablation of Chrebp results in a severe diarrhea in mice fed a high-fructose diet, which is associated with the insufficient induction of GLUT5 in the intestine.
Collapse
Affiliation(s)
- Ah-Reum Oh
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Seonyong Sohn
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Junghoon Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University, Seongnam 13488, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ki-Baik Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University, Seongnam 13488, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Gachon Medical Research Institute, Gil Medical Center, Incheon 21565, Republic of Korea.
| |
Collapse
|
36
|
Rodrigues AH, Moreira CCL, Neves MJ, Botion LM, Chaves VE. Replacement of soybean oil by fish oil increases cytosolic lipases activities in liver and adipose tissue from rats fed a high-carbohydrate diets. J Nutr Biochem 2018; 56:74-80. [DOI: 10.1016/j.jnutbio.2018.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022]
|
37
|
Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress. Eur J Nutr 2018; 58:1829-1845. [PMID: 29845385 DOI: 10.1007/s00394-018-1730-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE High-fructose consumption and chronic stress are both associated with metabolic inflammation and insulin resistance. Recently, disturbed activity of energy sensor AMP-activated protein kinase (AMPK) was recognized as mediator between nutrient-induced stress and inflammation. Thus, we analyzed the effects of high-fructose diet, alone or in combination with chronic stress, on glucose homeostasis, inflammation and expression of energy sensing proteins in the rat liver. METHODS In male Wistar rats exposed to 9-week 20% fructose diet and/or 4-week chronic unpredictable stress we measured plasma and hepatic corticosterone level, indicators of glucose homeostasis and lipid metabolism, hepatic inflammation (pro- and anti-inflammatory cytokine levels, Toll-like receptor 4, NLRP3, activation of NFκB, JNK and ERK pathways) and levels of energy-sensing proteins AMPK, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). RESULTS High-fructose diet led to glucose intolerance, activation of NFκB and JNK pathways and increased intrahepatic IL-1β, TNFα and inhibitory phosphorylation of insulin receptor substrate 1 on Ser307. It also decreased phospho-AMPK/AMPK ratio and increased SIRT1 expression. Stress alone increased plasma and hepatic corticosterone but did not influence glucose tolerance, nor hepatic inflammatory or energy-sensing proteins. After the combined treatment, hepatic corticosterone was increased, glucose tolerance remained preserved, while hepatic inflammation was partially prevented despite decreased AMPK activity. CONCLUSION High-fructose diet resulted in glucose intolerance, hepatic inflammation, decreased AMPK activity and reduced insulin sensitivity. Chronic stress alone did not exert such effects, but when applied together with high-fructose diet it could partially prevent fructose-induced inflammation, presumably due to increased hepatic glucocorticoids.
Collapse
|
38
|
Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol 2018; 68:1063-1075. [PMID: 29408694 PMCID: PMC5893377 DOI: 10.1016/j.jhep.2018.01.019] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome; its rising prevalence parallels the rise in obesity and diabetes. Historically thought to result from overnutrition and a sedentary lifestyle, recent evidence suggests that diets high in sugar (from sucrose and/or high-fructose corn syrup [HFCS]) not only increase the risk of NAFLD, but also non-alcoholic steatohepatitis (NASH). Herein, we review the experimental and clinical evidence that fructose precipitates fat accumulation in the liver, due to both increased lipogenesis and impaired fat oxidation. Recent evidence suggests that the predisposition to fatty liver is linked to the metabolism of fructose by fructokinase C, which results in ATP consumption, nucleotide turnover and uric acid generation that mediate fat accumulation. Alterations to gut permeability, the microbiome, and associated endotoxemia contribute to the risk of NAFLD and NASH. Early clinical studies suggest that reducing sugary beverages and total fructose intake, especially from added sugars, may have a significant benefit on reducing hepatic fat accumulation. We suggest larger, more definitive trials to determine if lowering sugar/HFCS intake, and/or blocking uric acid generation, may help reduce NAFLD and its downstream complications of cirrhosis and chronic liver disease.
Collapse
Affiliation(s)
- Thomas Jensen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | | | - Shelby Sullivan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kristen J Nadeau
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melanie Green
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Carlos Roncal
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Takahiko Nakagawa
- Division of Future Basic Medicine, Nara Medical University, Nara, Japan
| | - Masanari Kuwabara
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Yuka Sato
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Dean R Tolan
- Dept of Biology, Boston University, Boston, MA, United States
| | | | - Hugo R Rosen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
39
|
Chan JKW, Bittner S, Bittner A, Atwal S, Shen WJ, Inayathullah M, Rajada J, Nicolls MR, Kraemer FB, Azhar S. Nordihydroguaiaretic Acid, a Lignan from Larrea tridentata (Creosote Bush), Protects Against American Lifestyle-Induced Obesity Syndrome Diet-Induced Metabolic Dysfunction in Mice. J Pharmacol Exp Ther 2018; 365:281-290. [PMID: 29472517 PMCID: PMC5878670 DOI: 10.1124/jpet.117.243733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/16/2018] [Indexed: 12/30/2022] Open
Abstract
To determine the effects of nordihydroguaiaretic acid (NDGA) on metabolic and molecular changes in response to feeding a typical American fast food or Western diet, mice were fed an American lifestyle-induced obesity syndrome (ALIOS) diet and subjected to metabolic analysis. Male C57BL/6J mice were randomly assigned to the ALIOS diet, the ALIOS diet supplemented with NDGA (NDGA+ALIOS), or a control diet and were maintained on the specific diet for 8 weeks. Mice fed the ALIOS diet showed increased body, liver, and epididymal fat pad weight as well as increased plasma alanine transaminase (ALT) and aspartate aminotransferase (AST) levels (a measure of liver injury) and liver triglyceride content. Coadministration of NDGA normalized body and epididymal fat pad weight, ALT and AST levels, and liver triglycerides. NDGA treatment also improved insulin sensitivity but not glucose intolerance in mice fed the ALIOS diet. In mice fed the NDGA+ALIOS diet, NDGA supplementation induced peroxisome proliferator-activated receptor α (PPARα; the master regulator of fatty acid oxidation) and mRNA levels of carnitine palmitoyltransferases Cpt1c and Cpt2, key genes involved in fatty acid oxidation, compared with the ALIOS diet. NDGA significantly reduced liver endoplasmic reticulum (ER) stress response C/EBP homologous protein, compared with chow or the ALIOS diet, and also ameliorated ALIOS diet-induced elevation of apoptosis signaling protein, caspase 3. Likewise, NDGA downregulated the ALIOS diet-induced mRNA levels of Pparg, fatty acid synthase Fasn, and diacylglycerol acyltransferase Dgat2 NDGA treatment of ALIOS-fed mice upregulated the hepatic expression of antioxidant enzymes, glutathione peroxidase 4, and peroxiredoxin 3 proteins. In conclusion, we provide evidence that NDGA improves metabolic dysregulation by simultaneously modulating the PPARα transcription factor and key genes involved in fatty acid oxidation, key antioxidant and lipogenic enzymes, and apoptosis and ER stress signaling pathways.
Collapse
Affiliation(s)
- Jackie K W Chan
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Stefanie Bittner
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Alex Bittner
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Suman Atwal
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Wen-Jun Shen
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Mohammed Inayathullah
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Jayakumar Rajada
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Mark R Nicolls
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Fredric B Kraemer
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Salman Azhar
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| |
Collapse
|
40
|
Liver metabolism in adult male mice offspring: consequences of a maternal, paternal or both maternal and paternal high-fructose diet. J Dev Orig Health Dis 2018; 9:450-459. [DOI: 10.1017/s2040174418000235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe study aimed to evaluate the consequences of the consumption of a high-fructose diet (HFR; fructose was responsible for 45% of the energy from carbohydrates) by the mother, the father, or both on C57BL/6 adult male offspring. Non-consanguineous parents received the diet (HFR or control, C) from 8 weeks before mating until weaning (n=10 fathers and n=10 mothers on each diet). After weaning, only the C diet was offered to offspring. The groups were formed by one male randomly taken from each litter. The offspring groups were identified according to the mother’s diet (the first letter), then the father’s diet (the second letter), that is, C/C, C/HFR, HFR/C, HFR/HFR (n=10 per group). The parents exhibited the following characteristics: compared with those of the C group, the HFR parents had higher blood pressure (BP), enlarged liver, increased hepatic triacylglycerol content, hypercholesterolemia, hypertriglyceridemia, high plasma leptin and low adiponectin. The offspring exhibited the following characteristics: compared with the C/C group, the HFR/HFR group had high BP. The C/HFR, HFR/C and HFR/HFR showed elevated uric acid and leptin levels and diminished adiponectin. The HFR/HFR group showed liver inflammation (increased NFκB, SOCS3, JNK, TNF-α, IL1-β and IL6 levels). Likewise, SREBP-1c and FAS were upregulated. In conclusion, the consumption of a HFR by the mother and/or father is associated with adverse effects on liver metabolism in adult male offspring. When both mother and father are fed a HFR, the adverse effects on the offspring are more severe.
Collapse
|
41
|
Mastrocola R, Ferrocino I, Liberto E, Chiazza F, Cento AS, Collotta D, Querio G, Nigro D, Bitonto V, Cutrin JC, Rantsiou K, Durante M, Masini E, Aragno M, Cordero C, Cocolin L, Collino M. Fructose liquid and solid formulations differently affect gut integrity, microbiota composition and related liver toxicity: a comparative in vivo study. J Nutr Biochem 2018. [PMID: 29539590 DOI: 10.1016/j.jnutbio.2018.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite clinical findings suggesting that the form (liquid versus solid) of the sugars may significantly affect the development of metabolic diseases, no experimental data are available on the impact of their formulations on gut microbiota, integrity and hepatic outcomes. In the present sudy, C57Bl/6j mice were fed a standard diet plus water (SD), a standard diet plus 60% fructose syrup (L-Fr) or a 60% fructose solid diet plus water (S-Fr) for 12 weeks. Gut microbiota was characterized through 16S rRNA phylogenetic profiling and shotgun sequencing of microbial genes in ileum content and related volatilome profiling. Fructose feeding led to alterations of the gut microbiota depending on the fructose formulation, with increased colonization by Clostridium, Oscillospira and Clostridiales phyla in the S-Fr group and Bacteroides, Lactobacillus, Lachnospiraceae and Dorea in the L-Fr. S-Fr evoked the highest accumulation of advanced glycation end products and barrier injury in the ileum intestinal mucosa. These effects were associated to a stronger activation of the lipopolysaccharide-dependent proinflammatory TLR4/NLRP3 inflammasome pathway in the liver of S-Fr mice than of L-Fr mice. In contrast, L-Fr intake induced higher levels of hepatosteatosis and markers of fibrosis than S-Fr. Fructose-induced ex novo lipogenesis with production of SCFA and MCFA was confirmed by metagenomic analysis. These results suggest that consumption of fructose under different forms, liquid or solid, may differently affect gut microbiota, thus leading to impairment in intestinal mucosa integrity and liver homeostasis.
Collapse
Affiliation(s)
- Raffaella Mastrocola
- Dept. of Clinical and Biological Sciences, University of Turin, Italy; Dept. Internal Medicine, University of Maastricht, The Netherlands
| | - Ilario Ferrocino
- Dept. of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Erica Liberto
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Fausto Chiazza
- Dept. of Drug Science and Technology, University of Turin, Italy
| | | | - Debora Collotta
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Giulia Querio
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Debora Nigro
- Dept. of Clinical and Biological Sciences, University of Turin, Italy
| | - Valeria Bitonto
- Dept. of Molecular Biotechnology and Sciences for the Health, University of Turin, Italy
| | - Juan Carlos Cutrin
- Dept. of Molecular Biotechnology and Sciences for the Health, University of Turin, Italy
| | - Kalliopi Rantsiou
- Dept. of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Mariaconcetta Durante
- Dept. of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy
| | - Emanuela Masini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy
| | - Manuela Aragno
- Dept. of Clinical and Biological Sciences, University of Turin, Italy
| | - Chiara Cordero
- Dept. of Drug Science and Technology, University of Turin, Italy
| | - Luca Cocolin
- Dept. of Agricultural, Forest and Food Sciences, University of Turin, Italy.
| | - Massimo Collino
- Dept. of Drug Science and Technology, University of Turin, Italy.
| |
Collapse
|
42
|
Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest 2018; 128:545-555. [PMID: 29388924 DOI: 10.1172/jci96702] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increased sugar consumption is increasingly considered to be a contributor to the worldwide epidemics of obesity and diabetes and their associated cardiometabolic risks. As a result of its unique metabolic properties, the fructose component of sugar may be particularly harmful. Diets high in fructose can rapidly produce all of the key features of the metabolic syndrome. Here we review the biology of fructose metabolism as well as potential mechanisms by which excessive fructose consumption may contribute to cardiometabolic disease.
Collapse
Affiliation(s)
- Sarah A Hannou
- Division of Endocrinology and Metabolism and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Danielle E Haslam
- Nutritional Epidemiology Program, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Nicola M McKeown
- Nutritional Epidemiology Program, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Mark A Herman
- Division of Endocrinology and Metabolism and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
43
|
McKeown NM, Dashti HS, Ma J, Haslam DE, Kiefte-de Jong JC, Smith CE, Tanaka T, Graff M, Lemaitre RN, Rybin D, Sonestedt E, Frazier-Wood AC, Mook-Kanamori DO, Li Y, Wang CA, Leermakers ETM, Mikkilä V, Young KL, Mukamal KJ, Cupples LA, Schulz CA, Chen TA, Li-Gao R, Huang T, Oddy WH, Raitakari O, Rice K, Meigs JB, Ericson U, Steffen LM, Rosendaal FR, Hofman A, Kähönen M, Psaty BM, Brunkwall L, Uitterlinden AG, Viikari J, Siscovick DS, Seppälä I, North KE, Mozaffarian D, Dupuis J, Orho-Melander M, Rich SS, de Mutsert R, Qi L, Pennell CE, Franco OH, Lehtimäki T, Herman MA. Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: a meta-analysis. Diabetologia 2018; 61:317-330. [PMID: 29098321 PMCID: PMC5826559 DOI: 10.1007/s00125-017-4475-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 08/29/2017] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Sugar-sweetened beverages (SSBs) are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive element-binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and, thereby, contribute to fructose-induced metabolic disease. We hypothesise that common variants in 11 genes involved in fructose metabolism and the ChREBP-FGF21 pathway may interact with SSB intake to exacerbate positive associations between higher SSB intake and glycaemic traits. METHODS Data from 11 cohorts (six discovery and five replication) in the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided association and interaction results from 34,748 adults of European descent. SSB intake (soft drinks, fruit punches, lemonades or other fruit drinks) was derived from food-frequency questionnaires and food diaries. In fixed-effects meta-analyses, we quantified: (1) the associations between SSBs and glycaemic traits (fasting glucose and fasting insulin); and (2) the interactions between SSBs and 18 independent SNPs related to the ChREBP-FGF21 pathway. RESULTS In our combined meta-analyses of discovery and replication cohorts, after adjustment for age, sex, energy intake, BMI and other dietary covariates, each additional serving of SSB intake was associated with higher fasting glucose (β ± SE 0.014 ± 0.004 [mmol/l], p = 1.5 × 10-3) and higher fasting insulin (0.030 ± 0.005 [log e pmol/l], p = 2.0 × 10-10). No significant interactions on glycaemic traits were observed between SSB intake and selected SNPs. While a suggestive interaction was observed in the discovery cohorts with a SNP (rs1542423) in the β-Klotho (KLB) locus on fasting insulin (0.030 ± 0.011 log e pmol/l, uncorrected p = 0.006), results in the replication cohorts and combined meta-analyses were non-significant. CONCLUSIONS/INTERPRETATION In this large meta-analysis, we observed that SSB intake was associated with higher fasting glucose and insulin. Although a suggestive interaction with a genetic variant in the ChREBP-FGF21 pathway was observed in the discovery cohorts, this observation was not confirmed in the replication analysis. TRIAL REGISTRATION Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005121 (Framingham Offspring Study), NCT00005487 (Multi-Ethnic Study of Atherosclerosis) and NCT00005152 (Nurses' Health Study).
Collapse
Affiliation(s)
- Nicola M McKeown
- Nutritional Epidemiology Program, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA.
| | - Hassan S Dashti
- Nutrition & Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| | - Jiantao Ma
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Population Sciences Branch, Framingham, MA, USA
| | - Danielle E Haslam
- Nutritional Epidemiology Program, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Jessica C Kiefte-de Jong
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Global Public Health, Leiden University College, The Hague, the Netherlands
| | - Caren E Smith
- Nutrition & Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Denis Rybin
- Boston University Data Coordinating Center, Boston University, Boston, MA, USA
| | - Emily Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Alexis C Frazier-Wood
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Yanping Li
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Carol A Wang
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | | | - Vera Mikkilä
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kenneth J Mukamal
- Division of General Medicine and Primary Care, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - L Adrienne Cupples
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Population Sciences Branch, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | - Tzu-An Chen
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tao Huang
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Wendy H Oddy
- Telethon Kids Institute, Subiaco, WA, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ulrika Ericson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Louise Brunkwall
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | | | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Josée Dupuis
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Population Sciences Branch, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lu Qi
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Craig E Pennell
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Terho Lehtimäki
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mark A Herman
- Division Of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
44
|
Prisingkorn W, Prathomya P, Jakovlić I, Liu H, Zhao YH, Wang WM. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics 2017; 18:856. [PMID: 29121861 PMCID: PMC5680769 DOI: 10.1186/s12864-017-4246-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Background Global trend of the introduction of high levels of relatively cheap carbohydrates to reduce the amount of costly protein in the aquatic animal feed production has affected the aquaculture of an economically important cyprinid fish, blunt snout bream (Megalobrama amblycephala). This dietary shift has resulted in increased prevalence of metabolic disorders, often causing economic losses. High dietary intake of carbohydrates, associated with obesity, is one of the major causes of non-alcoholic fatty liver disease (NAFLD) in humans. Results We have conducted an eight-week feeding trial to better understand how a high-carbohydrate diet (HCBD) affects the liver health in this fish. Hepatosomatic index and lipid content were significantly (P < 0.05) higher in the HCBD group. Histology results also suggested pathological changes in the livers of HCBD group, with excessive lipid accumulation and indication of liver damage. Metabolomics and serum biochemistry analyses showed that a number of metabolites indicative of liver damage were increased in the HCBD group. This group also exhibited low levels of betaine, which is a metabolite crucial for maintaining the healthy liver functions. Transcriptomic and qPCR analyses indicated that HCBD had a strong impact on the expression of a large number of genes associated with the NAFLD and insulin signalling pathways, which may lead to the development of insulin resistance in hepatocytes, pathological liver changes, and eventually the NAFLD. Conclusions Transcriptomics, metabolomics and histology results all indicate early symptoms of liver damage. However whether these would actually lead to the development of NAFLD after a longer period of time, remains inconclusive. Additionally, a very high number of upregulated genes in the HCBD group associated with several neurodegenerative diseases is a strong indication of neurodegenerative changes caused by the high-carbohydrate diet in blunt snout bream. This suggests that fish might present a good model to study neurodegenerative changes associated with high-carbohydrate diet in humans. Electronic supplementary material The online version of this article (10.1186/s12864-017-4246-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Panita Prathomya
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075, People's Republic of China
| | - Han Liu
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
45
|
Ter Horst KW, Serlie MJ. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients 2017; 9:E981. [PMID: 28878197 PMCID: PMC5622741 DOI: 10.3390/nu9090981] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Increased fructose consumption has been suggested to contribute to non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and insulin resistance, but a causal role of fructose in these metabolic diseases remains debated. Mechanistically, hepatic fructose metabolism yields precursors that can be used for gluconeogenesis and de novo lipogenesis (DNL). Fructose-derived precursors also act as nutritional regulators of the transcription factors, including ChREBP and SREBP1c, that regulate the expression of hepatic gluconeogenesis and DNL genes. In support of these mechanisms, fructose intake increases hepatic gluconeogenesis and DNL and raises plasma glucose and triglyceride levels in humans. However, epidemiological and fructose-intervention studies have had inconclusive results with respect to liver fat, and there is currently no good human evidence that fructose, when consumed in isocaloric amounts, causes more liver fat accumulation than other energy-dense nutrients. In this review, we aim to provide an overview of the seemingly contradicting literature on fructose and NAFLD. We outline fructose physiology, the mechanisms that link fructose to NAFLD, and the available evidence from human studies. From this framework, we conclude that the cellular mechanisms underlying hepatic fructose metabolism will likely reveal novel targets for the treatment of NAFLD, dyslipidemia, and hepatic insulin resistance. Finally, fructose-containing sugars are a major source of excess calories, suggesting that a reduction of their intake has potential for the prevention of NAFLD and other obesity-related diseases.
Collapse
Affiliation(s)
- Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol 2017; 234:R1-R21. [PMID: 28428362 DOI: 10.1530/joe-16-0513] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Fatty liver can be diet, endocrine, drug, virus or genetically induced. Independent of cause, hepatic lipid accumulation promotes systemic metabolic dysfunction. By acting as peroxisome proliferator-activated receptor (PPAR) ligands, hepatic non-esterified fatty acids upregulate expression of gluconeogenic, beta-oxidative, lipogenic and ketogenic genes, promoting hyperglycemia, hyperlipidemia and ketosis. The typical hormonal environment in fatty liver disease consists of hyperinsulinemia, hyperglucagonemia, hypercortisolemia, growth hormone deficiency and elevated sympathetic tone. These endocrine and metabolic changes further encourage hepatic steatosis by regulating adipose tissue lipolysis, liver lipid uptake, de novo lipogenesis (DNL), beta-oxidation, ketogenesis and lipid export. Hepatic lipid accumulation may be induced by 4 separate mechanisms: (1) increased hepatic uptake of circulating fatty acids, (2) increased hepatic de novo fatty acid synthesis, (3) decreased hepatic beta-oxidation and (4) decreased hepatic lipid export. This review will discuss the hormonal regulation of each mechanism comparing multiple physiological models of hepatic lipid accumulation. Nonalcoholic fatty liver disease (NAFLD) is typified by increased hepatic lipid uptake, synthesis, oxidation and export. Chronic hepatic lipid signaling through PPARgamma results in gene expression changes that allow concurrent activity of DNL and beta-oxidation. The importance of hepatic steatosis in driving systemic metabolic dysfunction is highlighted by the common endocrine and metabolic disturbances across many conditions that result in fatty liver. Understanding the mechanisms underlying the metabolic dysfunction that develops as a consequence of hepatic lipid accumulation is critical to identifying points of intervention in this increasingly prevalent disease state.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
47
|
LXRα Regulates Hepatic ChREBPα Activity and Lipogenesis upon Glucose, but Not Fructose Feeding in Mice. Nutrients 2017; 9:nu9070678. [PMID: 28661453 PMCID: PMC5537793 DOI: 10.3390/nu9070678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
Liver X receptors (LXRα/β) and carbohydrate response element-binding proteins (ChREBPα/β) are key players in the transcriptional control of hepatic de novo lipogenesis. LXRα/β double knockout (LXRα−/−/β−/−) mice have reduced feeding-induced nuclear O-linked N-acetylglucosamine (O-GlcNAc) signaling, ChREBPα activity, and lipogenic gene expression in livers, suggesting important roles for LXRs in linking hepatic glucose utilization to lipid synthesis. However, the role of LXRs in fructose-induced ChREBP activation and lipogenesis is currently unknown. In this study, we studied the effects of high fructose or high glucose feeding on hepatic carbohydrate metabolism and lipogenic gene expression in livers from fasted (24 h) and fasted-refed (12 h) wild type and LXRα knockout (LXRα−/−) mice. Hepatic lipogenic gene expression was reduced in glucose fed, but not fructose fed LXRα−/− mice. This was associated with lower expression of liver pyruvate-kinase (L-pk) and Chrebpβ, indicating reduced ChREBPα activity in glucose fed, but not fructose fed mice. Interestingly, ChREBP binding to the L-pk promoter was increased in fructose fed LXRα−/− mice, concomitant with increased glucose-6-phosphatase (G6pc) expression and O-GlcNAc modified LXRβ, suggesting a role for LXRβ in regulating ChREBPα activity upon fructose feeding. In conclusion, we propose that LXRα is an important regulator of hepatic lipogenesis and ChREBPα activity upon glucose, but not fructose feeding in mice.
Collapse
|
48
|
Momtazi AA, Banach M, Pirro M, Stein EA, Sahebkar A. PCSK9 and diabetes: is there a link? Drug Discov Today 2017; 22:883-895. [DOI: 10.1016/j.drudis.2017.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
|
49
|
Similarities and interactions between the ageing process and high chronic intake of added sugars. Nutr Res Rev 2017; 30:191-207. [DOI: 10.1017/s0954422417000051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractIn our societies, the proportions of elderly people and of obese individuals are increasing. Both factors are associated with high health-related costs. During obesity, many authors suggest that it is a high chronic intake of added sugars (HCIAS) that triggers the shift towards pathology. However, the majority of studies were performed in young subjects and only a few were interested in the interaction with the ageing process. Our purpose was to discuss the metabolic effects of HCIAS, compare with the effects of ageing, and evaluate how deleterious the combined action of HCIAS and ageing could be. This effect of HCIAS seems mediated by fructose, targeting the liver first, which may lead to all subsequent metabolic alterations. The first basic alterations induced by fructose are increased oxidative stress, protein glycation, inflammation, dyslipidaemia and insulin resistance. These alterations are also present during the ageing process, and are closely related to each other, one leading to the other. These basic alterations are also involved in more complex syndromes, which are also favoured by HCIAS, and present during ageing. These include non-alcoholic fatty liver disease, hypertension, neurodegenerative diseases, sarcopenia and osteoporosis. Cumulative effects of ageing and HCIAS have been seldom tested and may not always be strictly additive. Data also suggest that some of the metabolic alterations that are more prevalent during ageing could be related more with nutritional habits than to intrinsic ageing. In conclusion, it is clear that HCIAS interacts with the ageing process, accelerates the accumulation of metabolic alterations, and that it should be avoided.
Collapse
|
50
|
Janssens S, Ciapaite J, Wolters JC, van Riel NA, Nicolay K, Prompers JJ. An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats. Nutrients 2017; 9:nu9050476. [PMID: 28489050 PMCID: PMC5452206 DOI: 10.3390/nu9050476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
We aimed to elucidate the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats using in vivo magnetic resonance spectroscopy (MRS) and to determine their roles in the development of liver steatosis. Wistar rats received normal chow and either normal drinking water, or solutions containing 13% (w/v) glucose, 13% fructose, or 0.4% aspartame. After 7 weeks, in vivo hepatic dietary lipid uptake and de novo lipogenesis were assessed with proton-observed, carbon-13-edited MRS combined with 13C-labeled lipids and 13C-labeled glucose, respectively. The molecular basis of alterations in hepatic liver metabolism was analyzed in detail ex vivo using immunoblotting and targeted quantitative proteomics. Both glucose and fructose feeding increased adiposity, but only fructose induced hepatic lipid accumulation. In vivo MRS showed that this was not caused by increased hepatic uptake of dietary lipids, but could be attributed to an increase in de novo lipogenesis. Stimulation of lipogenesis by fructose was confirmed by a strong upregulation of lipogenic enzymes, which was more potent than with glucose. The non-caloric sweetener aspartame did not significantly affect liver lipid content or metabolism. In conclusion, liquid fructose more severely affected liver lipid metabolism in rats than glucose, while aspartame had no effect.
Collapse
Affiliation(s)
- Sharon Janssens
- Biomedical Nuclear Magnetic Resonance (NMR), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Jolita Ciapaite
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Justina C Wolters
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, Antonius Deusinglaan, 9713 AV Groningen, The Netherlands.
| | - Natal A van Riel
- Computational Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Klaas Nicolay
- Biomedical Nuclear Magnetic Resonance (NMR), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Jeanine J Prompers
- Biomedical Nuclear Magnetic Resonance (NMR), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|