1
|
Boulund U, Thorsen J, Trivedi U, Tranæs K, Jiang J, Shah SA, Stokholm J. The role of the early-life gut microbiome in childhood asthma. Gut Microbes 2025; 17:2457489. [PMID: 39882630 PMCID: PMC11784655 DOI: 10.1080/19490976.2025.2457489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Asthma is a chronic disease affecting millions of children worldwide, and in severe cases requires hospitalization. The etiology of asthma is multifactorial, caused by both genetic and environmental factors. In recent years, the role of the early-life gut microbiome in relation to asthma has become apparent, supported by an increasing number of population studies, in vivo research, and intervention trials. Numerous early-life factors, which for decades have been associated with the risk of developing childhood asthma, are now being linked to the disease through alterations of the gut microbiome. These factors include cesarean birth, antibiotic use, breastfeeding, and having siblings or pets, among others. Association studies have highlighted several specific microbes that are altered in children developing asthma, but these can vary between studies and disease phenotype. This demonstrates the importance of the gut microbial ecosystem in asthma, and the necessity of well-designed studies to validate the underlying mechanisms and guide future clinical applications. In this review, we examine the current literature on the role of the gut microbiome in childhood asthma and identify research gaps to allow for future microbial-focused therapeutic applications in asthma.
Collapse
Affiliation(s)
- Ulrika Boulund
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Urvish Trivedi
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Tranæs
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jie Jiang
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Shiraz A. Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Castagnoli R, Pala F, Subramanian P, Oguz C, Schwarz B, Lim AI, Burns AS, Fontana E, Bosticardo M, Corsino C, Angelova A, Delmonte OM, Kenney H, Riley D, Smith G, Ott de Bruin L, Oikonomou V, Dos Santos Dias L, Fink D, Bohrnsen E, Kimzey CD, Marseglia GL, Alva-Lozada G, Bergerson JR, Brett A, Brigatti KW, Dimitrova D, Dutmer CM, Freeman AF, Ale H, Holland SM, Licciardi F, Pasic S, Poskitt LE, Potts DE, Dasso JF, Sharapova SO, Strauss KA, Ward BR, Yilmaz M, Kuhns DB, Lionakis MS, Daley SR, Kong HH, Segre JA, Villa A, Pittaluga S, Walter JE, Vujkovic-Cvijin I, Belkaid Y, Notarangelo LD. Immunopathological and microbial signatures of inflammatory bowel disease in partial RAG deficiency. J Exp Med 2025; 222:e20241993. [PMID: 40314722 PMCID: PMC12047384 DOI: 10.1084/jem.20241993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Partial RAG deficiency (pRD) can manifest with systemic and tissue-specific immune dysregulation, with inflammatory bowel disease (IBD) in 15% of the patients. We aimed at identifying the immunopathological and microbial signatures associated with IBD in patients with pRD and in a mouse model of pRD (Rag1w/w) with spontaneous development of colitis. pRD patients with IBD and Rag1w/w mice showed a systemic and colonic Th1/Th17 inflammatory signature. Restriction of fecal microbial diversity, abundance of pathogenic bacteria, and depletion of microbial species producing short-chain fatty acid were observed, which were associated with impaired induction of lamina propria peripheral Treg cells in Rag1w/w mice. The use of vedolizumab in Rag1w/w mice and of ustekinumab in a pRD patient were ineffective. Antibiotics ameliorated gut inflammation in Rag1w/w mice, but only bone marrow transplantation (BMT) rescued the immunopathological and microbial signatures. Our findings shed new light in the pathophysiology of gut inflammation in pRD and establish a curative role for BMT to resolve the disease phenotype.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angelina Angelova
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Smith
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucas Dos Santos Dias
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Cole D. Kimzey
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Jenna R.E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | | | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Cullen M. Dutmer
- Allergy and Immunology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Memorial Healthcare System, Hollywood, FL, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - David E. Potts
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Svetlana O. Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Brant R. Ward
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen R. Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Immunology, Institut Pasteur, Paris, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2025; 109:784-793. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4 + regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Campbell DE, Mehr S, Moscatelli OG, Anderson RP, Tye-Din JA. Immune therapies in coeliac disease and food allergies: Advances, challenges, and opportunities. Semin Immunol 2025; 78:101960. [PMID: 40273881 DOI: 10.1016/j.smim.2025.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
Coeliac disease and food allergy management primarily relies on the strict avoidance of dietary antigens. This approach is challenging to maintain in real-world settings and in food allergy carries the risk of life-threatening anaphylaxis. Despite their distinct pathogenesis, both disorders are driven by maladaptive responses to dietary proteins, creating opportunities for shared treatment strategies. In food allergy, desensitisation therapies such as oral, sublingual, and epicutaneous immunotherapy are well-established, complemented by biologics like omalizumab and dupilumab. However, the induction of sustained tolerance remains challenging. In contrast, therapeutic advancements for coeliac disease are still in their early stages. Current efforts focus on gluten detoxification or modification, immune blockade or modulation, tolerogenic approaches, and barrier restoration. Emerging therapies, including JAK and BTK inhibitors and microbiome-targeted interventions, support further targeted treatment options for both conditions. Biomarkers tracking gluten-specific T cells have emerged as valuable tools for immunomonitoring and symptom assessment in coeliac disease, although standardisation of patient-reported outcome measures and gluten challenge protocols is still needed. Food allergy trials are reliant on double-blind placebo-controlled food challenges to measure allergen reactivity, but these are time-consuming, carry risks, and underscore the need for surrogate biomarkers. The successful development of immune-targeted therapies will require building an immune toolset to optimally assess systemic responses to antigens in both conditions. Clinically, this could lead to better outcomes for patients who might otherwise remain undiagnosed or untreated due to the absence of significant enteropathy or allergen-specific symptoms.
Collapse
Affiliation(s)
- Dianne E Campbell
- Children's Hospital at Westmead, Sydney, New South Wales, Australia; University of Sydney, Sydney, New South Wales, Australia; National Allergy Centre of Excellence, Murdoch Children's Research Institute, Parkville, Victora, Australia
| | - Sam Mehr
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Olivia G Moscatelli
- Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Robert P Anderson
- Gastroenterology Service, Mackay Base Hospital, West Mackay, Queensland, Australia
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; Department of Gastroenterology, the Royal Melbourne Hospital, Parkville, Victoria, Australia; The Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Ichikawa A, Takayama T, Kojima C, Fujie S, Iemitsu M, Inoue K. Conversion Reaction of Stable-Isotope Oxygen Labeling of Carboxylic Acids for Accurate Screening LC-MS/MS Assay: Application of Behavioral Changes of Short-Chain Fatty Acids in Sports Athletes under Exercise Loading. Anal Chem 2025; 97:7765-7771. [PMID: 40183608 DOI: 10.1021/acs.analchem.4c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Short-chain fatty acids (SCFAs) have attracted considerable interest as potential biomarkers, therapeutic targets, and nutritional factors in athletic training. SCFAs are typically produced by the intestinal microbiome and exhibit various structural forms, including linear- and branched-chain types. In particular, branched-chain SCFAs have been associated with muscle metabolism during exercise loading. Consequently, accurate and efficient analytical methods are essential for identifying these biomarkers. Liquid chromatography-tandem mass spectrometry is a suitable and accurate technique for SCFA analysis; however, stable isotope calibrations are required for all analytes. Because of technological limitations, the available species are restricted to certain types of SCFAs. To address this issue, this study performed a simple conversion reaction involving the incorporation of 18O into the carboxyl group. Specifically, oxygen atoms in the carboxyl groups were substituted with 18O sourced from commercially available H218O. An SCFA mixture standard solution was successfully labeled under optimized conditions, and the SIL purity and amount were sufficient for isotope dilution (95.2-96.9%, 250 assays using 10 μL of H218O). Moreover, no reversion to 16O was observed during storage or analysis. Analytical validation was performed in human serum using the substituted isotopic standard mixture, achieving good accuracy (90-110%) and precision (<10% relative standard deviation) across three concentration levels. Finally, changes in SCFA patterns were examined in athletes during exercise loading.
Collapse
Affiliation(s)
- Aoi Ichikawa
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Takahiro Takayama
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Chihiro Kojima
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
6
|
Liu Y, Zhou Y, Zhang H, Zhao K, Yang D. Gut-lung Axis mediates asthma pathogenesis: Roles of dietary patterns and their impact on the gut microbiota. Exp Mol Pathol 2025; 142:104964. [PMID: 40194490 DOI: 10.1016/j.yexmp.2025.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
The gut-lung axis, a vital signaling network linking the gastrointestinal and pulmonary systems, regulates immune responses and the progression of respiratory diseases. Nutritional components can modulate the gut microbiome and regulate the synthesis of critical intestinal microbial metabolites, which are essential for maintaining immune homeostasis and supporting respiratory health. Conversely, poor dietary habits exacerbate asthma and other respiratory conditions through the modulation of systemic inflammation and immune responses. Dietary interventions, such as the Mediterranean diet, are reported to restore microbial balance and improve respiratory health by increasing the production of anti-inflammatory metabolites, potentiating immune responses, and preserving epithelial barrier integrity. In contrast, Western dietary patterns, which are characterized by high fat and low fiber intake, disrupt microbial diversity, resulting in increased levels of pro-inflammatory metabolites that aggravate airway inflammation and asthma severity. This review aimed to elucidate the mechanisms underlying the regulatory effects of gut microbes and their metabolites on asthma. Additionally, previous findings related to the gut-lung axis have been summarized, providing insights into potential therapeutic strategies for asthma management.
Collapse
Affiliation(s)
- Yanbo Liu
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoyue Zhang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaixuan Zhao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Shi J, Mao W, Song Y, Wang Y, Zhang L, Xu Y, Gu H, Yao S, Yao Y, Liu Z, Raghavan V, Wang J. Butyrate alleviates food allergy by improving intestinal barrier integrity through suppressing oxidative stress‐mediated Notch signaling. IMETA 2025. [DOI: 10.1002/imt2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/14/2025] [Indexed: 05/04/2025]
Abstract
AbstractFood allergy (FA) has received increased attention in recent years. Multiple studies have highlighted the crucial role of short‐chain fatty acids (SCFAs) in the development of IgE‐mediated FA. Here, a case‐control approach was employed to analyze SCFAs profiles in children with FA, while an ovalbumin (OVA)‐sensitized mouse model was utilized to explore the underlying mechanism by which SCFAs mitigate FA. Children with food‐sensitized tolerance (FST) (n = 20) or FA (n = 20), and healthy controls (HC) (n = 20) were recruited to analyze SCFAs profiles. The HC group exhibited higher SCFAs levels in fecal samples than the FST, FA, and FST + FA groups. Data from an OVA‐sensitized mouse model showed that butyrate exhibited a more significant effect on reducing allergic reactions compared to other SCFAs. Compared to the negative control group, OVA‐induced oxidative stress (OS) triggered excessive Notch signaling activation, which subsequently impaired both tight junctions integrity and mucosal barrier function in murine intestinal epithelial cells (IECs). Gut dysbiosis induced mucus layer erosion, thereby elevating IECs exposure to food antigens and OS, which potentiated Notch signaling activation. However, butyrate counteracted this loop by restoring microbiota structure and suppressing reactive oxygen species (ROS)/Notch cascades. Strikingly, low‐dose butyrate (0.25–1 mM) protected rat small intestine crypt epithelial cells (IEC‐6) by inhibiting ROS, whereas high‐dose (2–5 mM) exacerbated oxidative injury and triggered activation of Notch signaling. Our study revealed the potential molecular mechanisms through which butyrate alleviates food allergy, providing a potential therapeutic strategy for its management.
Collapse
Affiliation(s)
- Jialu Shi
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health Southeast University Nanjing China
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing Medical University Wuxi China
| | - Yuqing Song
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health Southeast University Nanjing China
| | - Yuxin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health Southeast University Nanjing China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health Southeast University Nanjing China
| | - Yan Xu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health Southeast University Nanjing China
| | - Huiwen Gu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health Southeast University Nanjing China
| | - Siyu Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health Southeast University Nanjing China
| | - Yuanhang Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health Southeast University Nanjing China
| | - Zhifeng Liu
- Department of gastroenterology Children's Hospital of Nanjing Medical University Nanjing China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences McGill University, Sainte‐Anne‐de‐Bellevue Montreal Quebec Canada
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health Southeast University Nanjing China
| |
Collapse
|
8
|
Saadh MJ, Ahmed HH, Kareem RA, Sanghvi G, Ganesan S, Agarwal M, Kaur P, Taher WM, Alwan M, Jawad MJ, Hamad AK. Short-chain fatty acids in Huntington's disease: Mechanisms of action and their therapeutic implications. Pharmacol Biochem Behav 2025; 249:173972. [PMID: 39983928 DOI: 10.1016/j.pbb.2025.173972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and emotional instability, primarily resulting from the abnormal accumulation of mutant huntingtin protein. Growing research highlights the role of intestinal microbiota and their metabolites, particularly short-chain fatty acids (SCFAs), in modulating HD progression. SCFAs, including acetate, propionate, and butyrate, are produced by gut bacteria through dietary fiber fermentation and are recognized for their neuroprotective properties. Evidence suggests that SCFAs regulate neuroinflammation, neuronal communication, and metabolic functions within the central nervous system (CNS). In HD, these compounds may support neuronal health, reduce oxidative stress, and enhance blood-brain barrier (BBB) integrity. Their mechanisms of action involve binding to G-protein-coupled receptors (GPCRs) and modulating gene expression through epigenetic pathways, underscoring their therapeutic potential. This analysis examines the significance of SCFAs in HD, emphasizing the gut-brain axis and the benefits of dietary interventions aimed at modifying gut microbiota composition and promoting SCFA production. Further research into these pathways may pave the way for novel HD management strategies and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mohit Agarwal
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University, Rajasthan, Jaipur,302131, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
9
|
Goggin KE, Seo SJ, Wu BG, Ivelja S, Kugler MC, Chang M, Darawshy F, Li Y, Chung CJ, Kyeremateng Y, Tsay JCJ, Singh S, Sterman DH, Segal LN, Egilmez NK, Li Q. Differential Effects of High-Fiber and Low-Fiber Diets on Antitumor Immunity and Colon Tumor Progression in a Murine Model. Cancer Prev Res (Phila) 2025; 18:223-234. [PMID: 39911064 PMCID: PMC12053542 DOI: 10.1158/1940-6207.capr-24-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
The role of dietary fiber in colon cancer prevention remains controversial. We investigated its impact on antitumor immunity and the gut microbiota in APCmin/+ mice infected with enterotoxigenic Bacteroides fragilis. Mice were fed high-fiber, low-fiber, or chow diets, and the tumor burden, survival, cytokines, microbiota, and metabolites were analyzed. Contrary to the belief that high fiber inhibits tumor progression, it had no significant impact compared with chow diet. However, the low-fiber diet significantly reduced the tumor burden and improved survival. Mechanistically, high fiber increased proinflammatory cytokines and CD4+Foxp3+RORγt+IL-17A+ regulatory T cells, whereas low fiber enhanced anti-inflammatory cytokines and cytotoxic T cells. High fiber enriched microbial taxa associated with IL-17A+RORγt+ regulatory T cells and altered metabolites, including reduced tryptophan and increased short-chain fatty acids and bile acids. Low fiber produced opposite effects. These findings suggest that dietary fiber's effects on colon cancer depends on microbial infection and immune status, emphasizing the need for personalized dietary interventions in colon cancer management. Prevention Relevance: Dietary fiber's impact on colon cancer progression highlights the need for personalized dietary approaches, considering microbial infection and immune status.
Collapse
Affiliation(s)
- Kevin E Goggin
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - SeonYeong Jamie Seo
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Benjamin G. Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs (VA) New York Harbor Healthcare System, New York, NY 10006
| | - Sinisa Ivelja
- Department of Pathology, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Matthias C Kugler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Miao Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Fares Darawshy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Yonghua Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Cecilia J. Chung
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Yaa Kyeremateng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Jun-Chieh J. Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs (VA) New York Harbor Healthcare System, New York, NY 10006
| | - Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Daniel H Sterman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY 10006
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Qingsheng Li
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY 10006
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| |
Collapse
|
10
|
Yan Q, Wang W, Fan Z, Wei Y, Yu R, Pan T, Wang N, Lu W, Li B, Fang Z. Chickpea-resistant starch exhibits bioactive function for alleviating atopic dermatitis via regulating butyrate production. Int J Biol Macromol 2025; 303:140661. [PMID: 39909254 DOI: 10.1016/j.ijbiomac.2025.140661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/30/2024] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Resistant starch (RS) is one of the bioactive polysaccharides to produce Short-chain fatty acids (SCFAs) in the colon and contributes to allergic diseases including atopic dermatitis (AD). However, the bioactive mechanism of RS relieving AD needs to be elucidated. In this study, RS was prepared using chickpeas. Its microstructure and crystal structure were thoroughly characterized. Chickpea RS significantly improved the clinical symptoms and restored Th1/Th2 immune balance in mice with AD induced by calcipotriol. These benefits were eliminated by antibiotic cocktail treatment, suggesting that gut microbiota mediated the alleviation effects of chickpea RS on AD. Based on metagenomic sequencing and untargeted metabolomic analysis, chickpea RS treatment significantly increased the proportions of Butyricimonas virosa, Bifidobacterium pseudolongum, and Faecalibaculum rodentium, and a total of 206 differential metabolites were altered, especially the increase in propionate and butyrate production. Furthermore, we found that acylated butyrate, but not propionate, improved the pathological characteristics by activating GPR109A, which inhibit the phosphorylation levels of IκB-α, p50, p65, JNK, and p-JNK. Collectively, chickpea RS exhibited the bioactive function for regulating the communication of the gut-skin axis via regulating butyrate production to activate GPR109A.
Collapse
Affiliation(s)
- Qingqing Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Wenjing Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Zhexin Fan
- School of Food Science and Technology, Shihezi University, Shihezi, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yijiang Wei
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi 214002, China
| | - Tong Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ning Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Baokun Li
- School of Food Science and Technology, Shihezi University, Shihezi, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Zhifeng Fang
- School of Food Science and Technology, Shihezi University, Shihezi, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
11
|
Leung AS, Xing Y, Fernández‐Rivas M, Wong GW. The Relationship Between Dietary Patterns and the Epidemiology of Food Allergy. Allergy 2025; 80:690-702. [PMID: 39723599 PMCID: PMC11891427 DOI: 10.1111/all.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Food allergies are increasing globally, particularly in Asia; however, the etiologies of allergic diseases remain poorly understood despite comprehensive studies conducted across a variety of populations. Epidemiological research demonstrates that food allergy is more prevalent in Westernized or urbanized societies than in rural or developing ones. As such, comparing the distribution and patterns of food allergies as well as the environmental exposures between regions may provide insight into potential causal and protective factors of food allergy. Diet is an important exposome that has been shown to modulate the immune system both directly and indirectly via pathways involving the microbiota. Changes in dietary patterns, especially the shift to a Westernized diet with reduced dietary fiber and an abundance of processed foods, impact the gut and skin epithelial barrier and contribute to the development of chronic inflammatory diseases, such as food allergy. Although dietary intervention is believed to have tremendous potential as a strategy to promote immunological health, it is essential to recognize that diet is only one of many factors that have changed in urbanized societies. Other factors, such as pollution, microplastics, the use of medications like antibiotics, and exposure to biodiversity and animals, may also play significant roles, and further research is needed to determine which exposures are most critical for the development of food allergies.
Collapse
Affiliation(s)
- Agnes Sze‐Yin Leung
- Department of Paediatrics, Faculty of Medicine, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
- Hong Kong Hub of Paediatric Excellence (HOPE)The Chinese University of Hong KongHong KongChina
| | - Yuhan Xing
- School of Public Health (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | | | - Gary Wing‐Kin Wong
- Department of Paediatrics, Faculty of Medicine, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
12
|
Jantz-Naeem N, Guvencli N, Böttcher-Loschinski R, Böttcher M, Mougiakakos D, Kahlfuss S. Metabolic T-cell phenotypes: from bioenergetics to function. Am J Physiol Cell Physiol 2025; 328:C1062-C1075. [PMID: 39946684 DOI: 10.1152/ajpcell.00478.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
It is well known that T-cell metabolism and function are intimately linked. Metabolic reprogramming is a dynamic process that provides the necessary energy and biosynthetic precursors while actively regulating the immune response of T cells. As such, aberrations and dysfunctions in metabolic (re)programming, resulting in altered metabolic endotypes, may have an impact on disease pathology in various contexts. With the increasing demand for personalized and highly specialized medicine and immunotherapy, understanding metabolic profiles and T-cell subset dependence on specific metabolites will be crucial to harness the therapeutic potential of immunometabolism and T cell bioenergetics. In this review, we dissect metabolic alterations in different T-cell subsets in autoimmune and viral inflammation, T cell and non-T-cell malignancies, highlighting potential anchor points for future treatment and therapeutic exploitation.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nese Guvencli
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Böttcher
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
13
|
Chen M, Li Y, Zhai Z, Wang H, Lin Y, Chang F, Ge S, Sun X, Wei W, Wang D, Zhang M, Chen R, Yu H, Feng T, Huang X, Cheng D, Liu J, Di W, Hao Y, Yin P, Tang P. Bifidobacterium animalis subsp. lactis A6 ameliorates bone and muscle loss via modulating gut microbiota composition and enhancing butyrate production. Bone Res 2025; 13:28. [PMID: 40000617 PMCID: PMC11862215 DOI: 10.1038/s41413-024-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 02/27/2025] Open
Abstract
Systematic bone and muscle loss is a complex metabolic disease, which is frequently linked to gut dysfunction, yet its etiology and treatment remain elusive. While probiotics show promise in managing diseases through microbiome modulation, their therapeutic impact on gut dysfunction-induced bone and muscle loss remains to be elucidated. Employing dextran sulfate sodium (DSS)-induced gut dysfunction model and wide-spectrum antibiotics (ABX)-treated mice model, our study revealed that gut dysfunction instigates muscle and bone loss, accompanied by microbial imbalances. Importantly, Bifidobacterium animalis subsp. lactis A6 (B. lactis A6) administration significantly ameliorated muscle and bone loss by modulating gut microbiota composition and enhancing butyrate-producing bacteria. This intervention effectively restored depleted butyrate levels in serum, muscle, and bone tissues caused by gut dysfunction. Furthermore, butyrate supplementation mitigated musculoskeletal loss by repairing the damaged intestinal barrier and enriching beneficial butyrate-producing bacteria. Importantly, butyrate inhibited the NF-κB pathway activation, and reduced the secretion of corresponding inflammatory factors in T cells. Our study highlights the critical role of dysbiosis in gut dysfunction-induced musculoskeletal loss and underscores the therapeutic potential of B. lactis A6. These discoveries offer new microbiome directions for translational and clinical research, providing promising strategies for preventing and managing musculoskeletal diseases.
Collapse
Affiliation(s)
- Ming Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Zhengyuan Zhai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Hui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuan Lin
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feifan Chang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Siliang Ge
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xinyu Sun
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Wei Wei
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Duanyang Wang
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingming Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ruijing Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Haikuan Yu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Taojin Feng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Dongliang Cheng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Jiang Liu
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Di
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
14
|
Musallam N, Almog M, Wagner R, Epov L, Dor V, Kessel A. Can exclusive breastfeeding in the first 4 months reduce food allergy?: A retrospective questionnaire study. Ann Allergy Asthma Immunol 2025:S1081-1206(25)00089-4. [PMID: 39993473 DOI: 10.1016/j.anai.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND IgE-mediated food allergy (FA) is a major global health concern. Although the early introduction of allergenic foods and breastfeeding are potential preventive strategies, the role of breast milk in reducing the incidence of FAs remains inconclusive. OBJECTIVE To investigate the impact of exclusive breastfeeding for the first 4 months compared with partial breastfeeding or cow's milk formula (CMF) on the development of IgE-mediated FAs in an Israeli cohort. METHODS A cross-sectional online survey in 3030 mothers with infants aged 6 to 24 months collected data on early feeding practices, allergen introduction, atopic conditions, and family history. It documented suspected allergic reactions, symptoms, and diagnostic procedures. RESULTS Of the 3030 mothers surveyed, 2920 provided complete feeding data for the first 4 months. Among them, 39.0% exclusively breastfed, 12.1% used CMF, and 48.9% partially breastfed. There were 392 infants with FAs, totaling 480 cases involving cow's milk, sesame, egg, or peanut. Of these cases, 122 (25.4%) were in the breastfeeding group, and 358 (74.6%) were in the other groups. Exclusively breastfed infants had lower odds of egg (odds ratio [OR] = 0.53), sesame (OR = 0.58), and peanut (OR = 0.53) allergies than others. The interaction between feeding patterns and atopic dermatitis (AD) related to these FAs was not significant. Exposure to CMF in the nursery, exclusively breastfed, was associated with higher odds of developing a cow's milk allergy. Delayed exposure to sesame in infants with AD has been linked to increased odds of developing a sesame allergy. CONCLUSION Exclusive breastfeeding may reduce the risk of IgE-mediated FA development, regardless of AD status.
Collapse
Affiliation(s)
- Nadira Musallam
- Division of Allergy & Clinical Immunology, Bnai Zion Medical Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meital Almog
- Division of Allergy & Clinical Immunology, Bnai Zion Medical Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Roni Wagner
- Division of Allergy & Clinical Immunology, Bnai Zion Medical Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Larisa Epov
- Division of Allergy & Clinical Immunology, Bnai Zion Medical Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Vika Dor
- Division of Allergy & Clinical Immunology, Bnai Zion Medical Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Aharon Kessel
- Division of Allergy & Clinical Immunology, Bnai Zion Medical Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
15
|
Zhang J, Li G, Guo Q, Yang Y, Yang J, Feng X, Yao Z. Allergens in Atopic Dermatitis. Clin Rev Allergy Immunol 2025; 68:11. [PMID: 39924626 DOI: 10.1007/s12016-025-09024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex relationship to allergens. While AD itself is not an allergic reaction and does not necessarily involve allergen sensitization, AD patients show higher rates of sensitization to food and inhalant allergens compared to the general population. Recent evidence refining the "dual allergen exposure hypothesis" demonstrates that early oral exposure to allergens through an intact gastrointestinal barrier typically promotes tolerance, while exposure through compromised skin or respiratory barriers often leads to sensitization. Therefore, the impaired skin barrier function in AD patients increases the risk of transcutaneous sensitization and may interfere with oral tolerance development. Interestingly, AD patients' sensitivity to contact allergens (such as metals and fragrances) is not necessarily higher than that of the general population, which may be related to the inherent properties of these allergens. Personalized allergen testing can help guide appropriate allergen avoidance and reintroduction strategies in AD management. The insights into optimal allergen exposure conditions have also expanded the potential applications of allergen-specific immunotherapy in preventing AD onset in high-risk populations and halting the atopic march.
Collapse
Affiliation(s)
- Jiayan Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Guofang Li
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qiuyang Guo
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yijun Yang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jinxiang Yang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaobo Feng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
16
|
Crabtree D, Seidler K, Barrow M. Pathophysiological mechanisms of gut dysbiosis and food allergy and an investigation of probiotics as an intervention for atopic disease. Clin Nutr ESPEN 2025; 65:189-204. [PMID: 39571752 DOI: 10.1016/j.clnesp.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND AND AIMS Epidemiological studies have associated reduced bacterial diversity and abundance and food allergy. This mechanistic review investigated the link between gut dysbiosis and food allergy with a focus on the role of short-chain fatty acids (SCFAs) in modulating T-cells. T-cell differentiation poses an opportunity to direct the immune cells towards an anergic regulatory T cell (Treg) or allergic T helper 2 (Th2) response. Probiotic intervention to prevent and/or treat atopic disease symptoms through this mechanistic pathway was explored. METHODOLOGY A narrative review was conducted following a three-stage systematic literature search of EMBASE and Medline databases. Ninety-six of 571 papers were accepted and critically appraised using ARRIVE and SIGN50 forms. Thematic analysis identified key pathophysiological mechanisms within the narrative of included papers. RESULTS Preclinical studies provided compelling evidence for SCFAs' modulation of T-cell differentiation, which may act through G-protein coupled receptors 41, 43 and 109a and histone deacetylase inhibition. Foxp3 transcription factor was implicated in the upregulation of Tregs. Human probiotic intervention studies aimed at increasing SCFAs and Tregs and preventing atopic disease showed inconclusive results. However, evidence for probiotic intervention in children with cow's milk protein allergy (CMPA) was more promising and warrants further investigation. CONCLUSION Preclinical evidence suggests that the mechanism of gut dysbiosis and reduced SCFAs may skew T-cell differentiation towards a Th2 response, thus inducing allergy symptoms. Probiotic trials were inconclusive: probiotics were predominantly unsuccessful in the prevention of allergic disease, however, may be able to modulate food allergy symptoms in infants with CMPA.
Collapse
Affiliation(s)
- Danielle Crabtree
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Karin Seidler
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Michelle Barrow
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| |
Collapse
|
17
|
Hoskinson C, Petersen C, Turvey SE. How the early life microbiome shapes immune programming in childhood asthma and allergies. Mucosal Immunol 2025; 18:26-35. [PMID: 39675725 DOI: 10.1016/j.mucimm.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Despite advances in our understanding of their diagnosis and treatment, pediatric allergies impose substantial burdens on affected children, families, and healthcare systems. Further, the prevalence of allergic diseases has dramatically increased over the past half-century, leading to additional concerns and concerted efforts to identify the origins, potential predictors and preventions, and therapies of allergic diseases. Together with the increase in allergic diseases, changes in lifestyle and early-life environmental influences have corresponded with changes in colonization patterns of the infant gut microbiome. The gut microbiome plays a key role in developing the immune system, thus greatly influencing the development of allergic disease. In this review, we specifically highlight the importance of the proper maturation and composition of the gut microbiome as an essential step in healthy child development or disease progression. By exploring the intertwined development of the immune system and microbiome across pediatric allergic diseases, we provide insights into potential novel strategies for their prevention and management.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Tang Q, Fan G, Peng X, Sun X, Kong X, Zhang L, Zhang C, Liu Y, Yang J, Yu K, Miao C, Yao Z, Li L, Zhang ZS, Wang Q. Gut bacterial L-lysine alters metabolism and histone methylation to drive dendritic cell tolerance. Cell Rep 2025; 44:115125. [PMID: 39932193 DOI: 10.1016/j.celrep.2024.115125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 05/02/2025] Open
Abstract
Dendritic cells (DCs) are responsible for maintaining tolerance to harmless antigens in the gut; however, the mechanism by which bacterial metabolites induce DC tolerance remains to be studied. Here, we observed that gut commensal bacterium-derived L-lysine stimulated the serine, glycine, one-carbon (SGOC) metabolism through the adenosine monophosphate (AMP)-activated protein kinase (AMPK)/acetyl-coenzyme A (AcCoA)-mechanistic target of rapamycin (mTOR) axis in DCs. This activation led to an increase in S-adenosyl methionine (SAM) and disruptor of telomeric silencing 1-like (DOT1L) expression, resulting in enhanced dimethylation on H3 lysine 79 (H3K79me2) enrichment at Tgfb and signal transducers and activator of transcription 3 (Stat3) gene promoters, which promote immune tolerance characteristics in DCs. The lysine-induced DC tolerance in restoring homeostasis was demonstrated using mouse models of immune-inflammatory diseases and phosphoglycerate dehydrogenase (Phgdh) conditional knockout mice. The single-cell RNA sequencing (scRNA-seq) analysis revealed that L-lysine restored homeostasis during inflammatory disorders by switching DCs to a tolerance state in vivo. Moreover, the enzyme by which bacteria effectively produce L-lysine is identified. The study reveals an unknown mechanism for regulating immune homeostasis through the intricate interplay of bacterial L-lysine, SGOC metabolism, histone methylation, and DC tolerance.
Collapse
Affiliation(s)
- Qiang Tang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guangyue Fan
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xianping Peng
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinyu Sun
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xueting Kong
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lisong Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Yandi Liu
- Tianjin Union Medical Center, Tianjin 300121, China
| | - Jianming Yang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kaiyuan Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chunhui Miao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Long Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Quan Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
19
|
Liang M, Dong Q, Wu W, Fan J. Short-Chain Fatty Acids: Promising Therapeutic Targets for Respiratory Syncytial Virus Infection. Clin Rev Allergy Immunol 2025; 68:8. [PMID: 39873814 DOI: 10.1007/s12016-024-09018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/30/2025]
Abstract
The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota's regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host. In addition, changes in SCFA levels and the structure of the intestinal microbiota have been observed after RSV infection. Therefore, there may be a link between SCFAs and RSV infection, and SCFAs are expected to be therapeutic targets for RSV infection.
Collapse
Affiliation(s)
- Mingxin Liang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Qinqin Dong
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Weiyi Wu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Juan Fan
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
20
|
Kadim M, Darma A, Kartjito MS, Dilantika C, Basrowi RW, Sungono V, Jo J. Gastrointestinal Health and Immunity of Milk Formula Supplemented with a Prebiotic Mixture of Short-Chain Galacto-oligosaccharides and Long-Chain Fructo-Oligosaccharides (9:1) in Healthy Infants and Toddlers: A Systematic Review with Meta-Analysis. Pediatr Gastroenterol Hepatol Nutr 2025; 28:1-18. [PMID: 39839466 PMCID: PMC11745571 DOI: 10.5223/pghn.2025.28.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 01/23/2025] Open
Abstract
Prebiotics are substrates selectively utilized by microorganisms to confer health benefits to their hosts. Various prebiotics have been supplemented in standard milk formulas for infants who cannot be exclusively breastfed, aiming to provide benefits similar to those of breast milk. One of the most commonly used prebiotics is a mixture of 90% short-chain galacto-oligosaccharides and 10% long-chain fructo-oligosaccharides (scGOS/lcFOS [9:1]). Systematic review and meta-analysis were conducted to determine the effectiveness of scGOS:lcFOS (9:1) supplementation in standard milk formula for improving gastrointestinal health and immunity among healthy infants and toddlers, using parameters such as stool pH and intestinal colonization with beneficial bacteria. This systematic review was prepared in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. Randomized clinical trials comparing scGOS/lcFOS (9:1)-supplemented formula versus placebo- or non-supplemented formula milk were eligible for inclusion. Related studies on gastrointestinal health and immunity among healthy infants up to five years old were searched from the earliest available date until February 29, 2024. Eighteen publications (number of participants=1,675) were selected for the systematic review, of which 11 were subsequently subjected to a meta-analysis. Results showed that the standard formula supplemented with scGOS/lcFOS (9:1) was well tolerated and conferred various gastrointestinal health and immunity to healthy infants and toddlers. These findings support the supplementation of standard milk formula with scGOS/lcFOS (9:1) for healthy infants and toddlers.
Collapse
Affiliation(s)
- Muzal Kadim
- Cipto Mangunkusumo Hospital, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Andy Darma
- Department of Child Health, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Child Health, Faculty of Medicine, University of Airlangga, Surabaya, Indonesia
| | | | | | | | - Veli Sungono
- Faculty of Medicine, University of Pelita Harapan, Tangerang, Indonesia
| | - Juandy Jo
- Department of Biology, Faculty of Health Sciences, University of Pelita Harapan, Tangerang, Indonesia
- Mochtar Riady Institute for Nanotechnology, Tangerang, Indonesia
| |
Collapse
|
21
|
Wu Y, Chen B, Wu H, Gao J, Meng X, Chen H. How maternal factors shape the immune system of breastfed infants to alleviate food allergy: A systematic and updated review. Immunology 2025; 174:1-16. [PMID: 39344356 DOI: 10.1111/imm.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
What infants eat early in life may shape the immune system and have long-standing consequences on the health of the host during later life. In the early months post-birth, breast milk serves as the exclusive and optimal nourishment for infants, facilitating crucial molecular exchanges between mother and infant. Recent advances have uncovered that some maternal factors influence breastfed infant outcomes, including the risk of food allergy (FA). To date, accumulated data show that breastfed infants have a lower risk of FA. However, the issue remains disputed, some reported preventive allergy effects, while others did not confirm such effects, or if identified, protective effects were limited to early childhood. The disputed outcomes may be attributed to the maternal status, as it determines the compounds of the breast milk that breastfed infants are exposed to. In this review, we first detail the compounds in breast milk and their roles in infant FA. Then, we present maternal factors resulting in alterations in breast milk compounds, such as maternal health status, maternal diet intake, and maternal food allergen intake, which subsequently impact FA in breastfed infants. Finally, we analyze how these compounds in breast milk alleviated the infant FA by mother-to-infant transmission. Altogether, the mechanisms are primarily linked to the synergetic and direct effects of compounds in breast milk, via promoting the colonization of gut microbiota and the development of the immune system in infants.
Collapse
Affiliation(s)
- Yuhong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Bihua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Huan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Li N, Xu T, Wu Z, Zhao Y, Ruan M, Xu H, Chen W, Wang H, Wang S, Wang Y, Liang Q. Arabinogalactan from Cynanchum atratum induces tolerogenic dendritic cells in gut to restrain autoimmune response and alleviate collagen-induced arthritis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156269. [PMID: 39586124 DOI: 10.1016/j.phymed.2024.156269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by multiple joints lesions. Tolerogenic dendritic cells (tolDCs) play crucial roles in maintaining immune homeostasis. The immunomodulatory activity of plant-derived arabinogalactan (AGs) has been well investigated, however, whether AGs could suppress autoimmune responses by inducing tolDCs is remain unclear. DESIGN Collagen-induced arthritis (CIA, a mouse model of RA) mice were utilized to ascertain the role of AGs (obtained from Cynanchum atratum) in autoimmune responses. An antibiotic cocktail was administered to eliminate gut microbiota. Germ-free (GF) and Toll-like receptor 2 (TLR2) knockout mice were used to determine the function of AGs in intestinal immune cells. RESULTS The oral administration of dietary AGs substantially reduced the severity of CIA and rebalanced the ratio of regulatory T cells (Tregs) to T helper 17 (Th17) cells. Although the antibiotic cocktail depleted the mice's gut microbiota, AGs had a therapeutic effect on their CIA. AGs restored Treg/Th17 homeostasis by inducing CD103+ tolDCs, regardless of the gut microbiota of the GF mice. Coculture experiments confirmed that AGs induced tolDCs and transforming growth factor β (TGF-β) secretion, leading to Treg amplification. RNA sequencing and TLR2 knockout experiments revealed that AGs induced tolDCs through a TLR2-mediated mechanism. Preventive interventions with AGs established a tolerogenic intestinal immune microenvironment, which delayed the onset and progression of CIA. AGs functioned synergistically with tofacitinib, a JAK inhibitor, to effectively restore Treg/Th17 balance and alleviate CIA. CONCLUSION This study introduces a novel microbiota-independent mechanism through which soluble dietary AGs inhibit systemic autoimmune responses. Our findings provide insights into the supplementation of dietary AGs in patients with preclinical or progressive RA.
Collapse
Affiliation(s)
- Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Tianhao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Zhaoshun Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Yuchen Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Ming Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, PR China.
| |
Collapse
|
23
|
Li X, Khan I, Han R, Huang G, Xia W, Yin L, Leong WK, Su L, Law BYK, Wong VKW, Wu Q, Guo X, Hsiao WLW. Gynostemma pentaphyllum saponins shield mice from peanut allergy by modulation of gut microbiota: A novel approach for peanut allergy management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156101. [PMID: 39522254 DOI: 10.1016/j.phymed.2024.156101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Food allergies, particularly peanut (PN) allergies, are a growing concern, with fatal anaphylaxis incidents often reported. While palforzia is the sole FDA-approved drug for managing PN allergies, it is not universally effective. PURPOSE This study aimed to investigate the potential of Gynostemma pentaphyllum saponins (GpS) as a novel therapeutic agent for PN allergy through modulation of gut microbiota, addressing the limitations of current treatments. METHODS To elucidate the role of GpS on peanut allergy, we first built a PN-sensitized C57BL/6J model mice. Through comprehensive sequencing analysis, we identified Parabacteroides distasonis as a key bacterium triggering PN sensitization. Employing the same mouse model, GpS was evaluated for its effects on anaphylactic symptoms, serum immunoglobulin levels, and allergy-related biomarkers. 16S rRNA sequencing and transcriptomic analysis were applied to investigate the impact of GpS on the host's gut epithelium and microbiome. RESULTS GpS treatment effectively reduced anaphylactic symptoms in PN-sensitized mice, as shown by decreased IgG1, total IgE, and PN-specific IgE levels. It also modulated the immune response by suppressing proinflammatory cytokines (IL-1β, IFN-γ, IL-21) and chemokines (CCL5, CCL12, CCL17, CCL22), while enhancing anti-inflammatory cytokines (IL-4, IL-10, IL-12, IL-13). Fecal microbial transplant from GpS-treated Model mice to PN-sensitized mice displayed anti-peanut allergy effects. Additionally, the administration of GpS-enhanced bacteria (Clostridium aldenese or Lactobacillus murinus), alleviated anaphylactic symptoms and reduced serum allergy markers in PN-sensitized mice. CONCLUSION To conclude, we revealed the intestinal environment, signaling molecules, mucosal cytokines, and commensal microbial profiles in the peanut-sensitized mouse model. We further presented evidence for the protective effect of GpS against PN allergen sensitization by downregulating a series of food-allergy-associated biomarkers and cytokines via the modulation of gut bacteria. More importantly, supported by both in vitro and in vivo experiments, we demonstrated that the protective effect of GpS against PN-allergy is through the enhancement of two commensal bacteria, Clostridium aldenese, and Lactobacillus murinus.
Collapse
Affiliation(s)
- Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lin Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoling Guo
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, China.
| |
Collapse
|
24
|
Thapa R, Magar AT, Shrestha J, Panth N, Idrees S, Sadaf T, Bashyal S, Elwakil BH, Sugandhi VV, Rojekar S, Nikhate R, Gupta G, Singh SK, Dua K, Hansbro PM, Paudel KR. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm (Beijing) 2024; 5:e70018. [PMID: 39584048 PMCID: PMC11586092 DOI: 10.1002/mco2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut-lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.
Collapse
Affiliation(s)
- Rajan Thapa
- Department of Pharmacy, Universal college of medical sciencesTribhuvan UniversityBhairahawaRupendehiNepal
| | - Anjana Thapa Magar
- Department of MedicineKathmandu Medical College Teaching Hospital, SinamangalKathmanduNepal
| | - Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Nisha Panth
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sobia Idrees
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Tayyaba Sadaf
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Saroj Bashyal
- Department of Pharmacy, Manmohan Memorial Institute of Health SciencesTribhuvan University, SoalteemodeKathmanduNepal
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences TechnologyPharos University in AlexandriaAlexandriaEgypt
| | - Vrashabh V. Sugandhi
- Department of pharmaceutical sciences, College of Pharmacy & Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Satish Rojekar
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ram Nikhate
- Department of PharmaceuticsDattakala Shikshan Sanstha, Dattakala college of pharmacy (Affiliated to Savitribai Phule Pune universityPuneMaharashtraIndia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUAE
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
25
|
Lamminpää I, Niccolai E, Amedei A. Probiotics as adjuvants to mitigate adverse reactions and enhance effectiveness in Food Allergy Immunotherapy. Scand J Immunol 2024; 100:e13405. [PMID: 39407442 DOI: 10.1111/sji.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 11/21/2024]
Abstract
In the past decades, food allergies became increasingly dominant since early childhood, leading to a lower quality of life and to increasing costs addressed by the health care system. Beside standard avoidance of specific allergens and drug treatments following allergen exposure, a great deal of research has lately focused on Food Allergy Allergen Immunotherapy (FA-AIT). SCIT and EPIT (Subcutaneous and Epicutaneous Immunotherapy), OIT (Oral Immunotherapy), and SLIT (Sublingual Immunotherapy) consist in gradual exposure to allergens to desensitize and achieve tolerance once therapy has ended. Although promising, FA-AIT may bring acute local and systemic adverse reactions. To enhance efficacy, safety and convenience of AIT, the quest of potential adjuvants to mitigate the adverse reactions becomes crucial. Immunomodulatory activities, such as that of increasing the regulatory T cells and decreasing the IgE, have been observed in specific probiotics' strains and multiple studies elucidated the role of gut microbiota as a major interplayer among the host and its immune system. In this review, the microbiome modulation is shown as potential AIT adjuvant, nevertheless the need of more clinical studies in the near future is pivotal to assess the efficacy of targeted bacterial therapies and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Florence, Italy
| |
Collapse
|
26
|
Andrusaite A, Lewis J, Frede A, Farthing A, Kästele V, Montgomery J, Mowat A, Mann E, Milling S. Microbiota-derived butyrate inhibits cDC development via HDAC inhibition, diminishing their ability to prime T cells. Mucosal Immunol 2024; 17:1199-1211. [PMID: 39142634 PMCID: PMC11631772 DOI: 10.1016/j.mucimm.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Conventional dendritic cells (cDC) are central to maintaining the balance between protective immune responses and tolerance to harmless antigens, especially in the intestine. Short chain fatty acids (SCFAs) such as butyrate play critical roles in regulating intestinal immunity, but the underlying mechanisms remain unclear. Here we demonstrate that microbiota-derived butyrate alters intestinal cDC populations in vivo resulting in decreased numbers of the cDC2 lineage. By establishing a novel in vitro culture model, we show that butyrate has a direct and selective ability to repress the development of cDC2 from cDC precursors, an effect that is independent of G-protein coupled receptors (GPCRs) and is due to inhibition of histone deacetylase 3. Finally, cDC derived from pre-cDC in the presence of butyrate in vitro express lower levels of costimulatory molecules and have a decreased ability to prime naïve T cells. Together, our data show that butyrate affects the developmental trajectory of cDC, selectively repressing the cDC2 lineage and reducing their ability to stimulate T cells. These properties may help explain the ability of butyrate to maintain homeostasis in the intestine.
Collapse
Affiliation(s)
- Anna Andrusaite
- School of Infection and Immunity, University of Glasgow, UK.
| | - Jennifer Lewis
- School of Infection and Immunity, University of Glasgow, UK
| | - Annika Frede
- School of Infection and Immunity, University of Glasgow, UK
| | | | - Verena Kästele
- School of Infection and Immunity, University of Glasgow, UK
| | | | - Allan Mowat
- School of Infection and Immunity, University of Glasgow, UK
| | - Elizabeth Mann
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, UK
| | - Simon Milling
- School of Infection and Immunity, University of Glasgow, UK.
| |
Collapse
|
27
|
Yang T, Li T, Xing Y, Cao M, Zhang M, Leng Q, Qiu J, Song X, Chen J, Hu G, Qian Y. Dietary nucleic acids promote oral tolerance through innate sensing pathways in mice. Nat Commun 2024; 15:9461. [PMID: 39487135 PMCID: PMC11530426 DOI: 10.1038/s41467-024-53814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Oral tolerance is essential for intestinal homeostasis and systemic immune function. However, our understanding of how oral tolerance is maintained is inadequate. Here we report that food-derived nucleic acids promote oral tolerance through innate sensing pathways. We find that dietary nucleic acids, but not microbiota, expand the natural intraepithelial lymphocyte (IEL) pool, specifically in the small intestine. TGF-β1, produced by natural IELs, then promotes activation of gut CD103+ dendritic cells to support the induction of antigen-specific Treg cells in a mouse model of OVA-induced oral tolerance. Mechanistically, MAVS and STING are redundantly required for sensing dietary RNAs and DNAs to activate downstream TBK1 signalling to induce IL-15 production, which results in the accumulation of natural IELs. Thus, our study demonstrates a key role of food-triggered innate sensing pathways in the maintenance of natural IELs and oral tolerance.
Collapse
Affiliation(s)
- Tao Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tian Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingying Xing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengtao Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingxiang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, 510180, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyang Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
28
|
Fu J, Zhao J, Shang H. Functions and mechanisms of nonstarch polysaccharides in monogastric animal production. Int J Biol Macromol 2024; 281:136488. [PMID: 39393723 DOI: 10.1016/j.ijbiomac.2024.136488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
As natural active ingredients, polysaccharides are a class of biological macromolecules that are ubiquitous in living organisms and have antibacterial, antioxidant, antitumor and intestinal flora-regulating functions. Nonstarch polysaccharides (NSPs) are an important class of polysaccharides that include both soluble and insoluble nonstarch polysaccharides. As green feed additives, NSPs play important roles in promoting immunity and disease resistance in the body, regulating the intestinal microbial balance and improving the quality of animal products. NSPs regulate cell signal transduction mainly via interactions between short-chain fatty acids and G protein-coupled receptors and inhibiting the histone deacetylation pathway to protect the intestinal barrier in animals. In this paper, the composition, physiological functions, and molecular mechanisms of the gut protective effects of NSPs are reviewed to provide a reference for the application of NSPs in monogastric animal production.
Collapse
Affiliation(s)
- Jia Fu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, USA
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
29
|
Dicks LMT. Cardiovascular Disease May Be Triggered by Gut Microbiota, Microbial Metabolites, Gut Wall Reactions, and Inflammation. Int J Mol Sci 2024; 25:10634. [PMID: 39408963 PMCID: PMC11476619 DOI: 10.3390/ijms251910634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease (CVD) may be inherited, as recently shown with the identification of single nucleotide polymorphisms (SNPs or "snips") on a 250 kb DNA fragment that encodes 92 proteins associated with CVD. CVD is also triggered by microbial dysbiosis, microbial metabolites, metabolic disorders, and inflammatory intestinal epithelial cells (IECs). The epithelial cellular adhesion molecule (Ep-CAM) and trefoil factor 3 (TFF3) peptide keeps the gut wall intact and healthy. Variations in Ep-CAM levels are directly linked to changes in the gut microbiome. Leptin, plasminogen activator inhibitor 1 (PAI1), and alpha-1 acid glycoprotein 1 (AGP1) are associated with obesity and may be used as biomarkers. Although contactin 1 (CNTN1) is also associated with obesity and adiposity, it regulates the bacterial metabolism of tryptophan (Trp) and thus appetite. A decrease in CNTN1 may serve as an early warning of CVD. Short-chain fatty acids (SCFAs) produced by gut microbiota inhibit pro-inflammatory cytokines and damage vascular integrity. Trimethylamine N-oxide (TMAO), produced by gut microbiota, activates inflammatory Nod-like receptors (NLRs) such as Nod-like receptor protein 3 (NLRP3), which increase platelet formation. Mutations in the elastin gene (ELN) cause supra valvular aortic stenosis (SVAS), defined as the thickening of the arterial wall. Many of the genes expressed by human cells are regulated by gut microbiota. The identification of new molecular markers is crucial for the prevention of CVD and the development of new therapeutic strategies. This review summarizes the causes of CVD and identifies possible CVD markers.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
30
|
Zhang W, Tekreeti TA, Leung PSC, Tsuneyama K, Dhillon H, Rojas M, Heuer LS, Ridgway WM, Ansari AA, Young HA, Mackay CR, Gershwin ME. Dietary therapy of murine primary biliary cholangitis induces hepatocellular steatosis: A cautionary tale. Liver Int 2024; 44:2834-2846. [PMID: 39101371 PMCID: PMC11464203 DOI: 10.1111/liv.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND AND AIMS There is increased interest in utilizing dietary interventions to alter the progression of autoimmune diseases. These efforts are driven by associations of gut microbiota/metabolites with levels of short-chain fatty acids (SCFAs). Propionate is a key SCFA that is commonly used as a food preservative and is endogenously generated by bacterial fermentation of non-digestible carbohydrates in the gut. A thesis has suggested that a diet rich in propionate and other SCFAs can successfully modulate autoimmunity. Herein, we investigated the effect of long-term administration of propionylated high-amylose resistant starches (HAMSP) on the course of murine primary biliary cholangitis. MATERIALS AND METHODS Groups of female ARE-Del mice were fed an HAMSP diet either before or after disease onset. A detailed immunobiological analysis was performed involving autoantibodies and rigorous T-cell phenotyping, including enumeration of T-cell subsets in the spleen, liver, intestinal intraepithelial lymphocytes and lamina propria by flow cytometry. Histopathological scores were used to assess the frequency and severity of liver inflammation and damage to hepatocytes and bile ducts. RESULTS Our results demonstrate that a long-term propionate-yielding diet re-populated the T-cell pool with decreased naïve and central memory T-cell subsets and an increase in the effector memory T cells in mice. Similarly, long-term HAMSP intake reduced CD4+CD8+ double-positive T cells in intraepithelial lymphocytes and the intestinal lamina propria. Critically, HAMSP consumption led to moderate-to-severe hepatocellular steatosis in ARE-Del mice, independent of the stage of autoimmune cholangitis. CONCLUSIONS Our data suggest that administration of HAMSP induces both regulatory and effector T cells. Furthermore, HAMSP administration resulted in hepatocellular steatosis. Given the interest in dietary modulation of autoimmunity and because propionate is widely used as a food preservative, these data have significant implications. This study also provides new insights into the immunological and pathological effects of chronic propionate exposure.
Collapse
Affiliation(s)
- Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Taha Al Tekreeti
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Patrick SC Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School; Tokushima, Japan
| | - Harleen Dhillon
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Manuel Rojas
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - William M. Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Aftab A. Ansari
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, NCI at Frederick, Frederick, MD 21702
| | - Charles R. Mackay
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| |
Collapse
|
31
|
Ilangovan J, Neves JF, Santos AF. Innate lymphoid cells in immunoglobulin E-mediated food allergy. Curr Opin Allergy Clin Immunol 2024; 24:419-425. [PMID: 39132724 PMCID: PMC11356679 DOI: 10.1097/aci.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW Recognition of the importance of innate lymphoid cells (ILCs) in the immune mechanisms of food allergy has grown in recent years. This review summarizes recent findings of ILCs in immunoglobulin E (IgE)-mediated food allergy. New research on ILCs in the context of the microbiome and other atopic diseases are also considered with respect to how they can inform understanding of the role of ILCs in food allergy. RECENT FINDINGS ILCs can mediate allergic and tolerogenic responses through multiple pathways. A novel subset of interleukin (IL)-10 producing ILC2s are associated with tolerance following immunotherapy to grass pollen, house dust mite allergy and lipid transfer protein allergy. ILC2s can drive food allergen-specific T cell responses in an antigen-specific manner. A memory subset of ILC2s has been identified through studies of other atopic diseases and is associated with effectiveness of response to therapy. SUMMARY The role of ILCs in food allergy and oral tolerance is relatively understudied compared to other diseases. ILCs can modulate immune responses through several mechanisms, and it is likely that these are of importance in the context of food allergy. Better understanding of theses pathways may help to answer fundamental questions regarding the development of food allergy and lead to novel therapeutic targets and treatment.
Collapse
Affiliation(s)
- Janarthanan Ilangovan
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Centre for Host Microbiome Interactions
| | | | - Alexandra F. Santos
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London
- Children's Allergy Service, Guy's and St Thomas’ Hospital, London, UK
| |
Collapse
|
32
|
Yang Y, Azzuolo A, Fodil N, Gros P. Gene: environment interactions in immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Immunol 2024; 90:102459. [PMID: 39243725 DOI: 10.1016/j.coi.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Despite its devastating human cost, the rapid spread and global establishment of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic had the benefit of providing unique insights into the intricate interplay between genetic, environmental, and socioeconomic factors, which collectively impact susceptibility to infection with SARS-CoV-2. Preceding the implementation of broad vaccination programs and assuming the absence of significant acquired immunity, examining the innate vulnerability to the virus becomes essential. There is indeed considerable heterogeneity observed at both the population and individual levels for various SARS-CoV-2 infection phenotypes, including emergence, progression, and survival from the coronavirus disease 2019 (COVID-19) syndrome. Particularly intriguing is the seemingly milder course of COVID-19 disease reported for the African continent early during the pandemic. This was characterized by significantly lower mortality rates in SARS-CoV-2 patients compared with the European and American continents and globally. We will discuss some of the demographic and socioeconomic factors that may have contributed to these observations. We review the mapped COVID-19 genetic architecture, including the remarkable association of type I interferon as a single protective mechanism and a major determinant of susceptibility. Furthermore, we speculate on potential 'environmental' modulators of penetrance and expressivity of intrinsic vulnerability factors, with a focus on the microbiome and associated metabolomes. Additionally, this review explores the potential immunomodulatory contribution of helminth parasites to the human host immune and inflammatory responses to respiratory viral infections.
Collapse
Affiliation(s)
- Yunxiang Yang
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Alessia Azzuolo
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
33
|
Han K, Xie F, Animasahun O, Nenwani M, Kitamoto S, Kim Y, Phoo MT, Xu J, Wuchu F, Omoloja K, Achreja A, Choppara S, Li Z, Gong W, Cho YS, Dobson H, Ahn J, Zhou X, Huang X, An X, Kim A, Xu Y, Wu Q, Lee SH, O'Konek JJ, Xie Y, Lei YL, Kamada N, Nagrath D, Moon JJ. Inulin-gel-based oral immunotherapy remodels the small intestinal microbiome and suppresses food allergy. NATURE MATERIALS 2024; 23:1444-1455. [PMID: 38977883 PMCID: PMC11442122 DOI: 10.1038/s41563-024-01909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
Despite the potential of oral immunotherapy against food allergy, adverse reactions and loss of desensitization hinder its clinical uptake. Dysbiosis of the gut microbiota is implicated in the increasing prevalence of food allergy, which will need to be regulated to enable for an effective oral immunotherapy against food allergy. Here we report an inulin gel formulated with an allergen that normalizes the dysregulated ileal microbiota and metabolites in allergic mice, establishes allergen-specific oral tolerance and achieves robust oral immunotherapy efficacy with sustained unresponsiveness in food allergy models. These positive outcomes are associated with enhanced allergen uptake by antigen-sampling dendritic cells in the small intestine, suppressed pathogenic type 2 immune responses, increased interferon-γ+ and interleukin-10+ regulatory T cell populations, and restored ileal abundances of Eggerthellaceae and Enterorhabdus in allergic mice. Overall, our findings underscore the therapeutic potential of the engineered allergen gel as a suitable microbiome-modulating platform for food allergy and other allergic diseases.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Minal Nenwani
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yeji Kim
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fulei Wuchu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kehinde Omoloja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Srinadh Choppara
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhaoheng Li
- Graduate Program in Biostatistics, University of Washington, Seattle, WA, USA
| | - Wang Gong
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hannah Dobson
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jinsung Ahn
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xuehui Huang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Qi Wu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansang, MI, USA
| | - Yu Leo Lei
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Deepak Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Liu EG, Yin X, Siniscalco ER, Eisenbarth SC. Dendritic cells in food allergy, treatment, and tolerance. J Allergy Clin Immunol 2024; 154:511-522. [PMID: 38971539 PMCID: PMC11414995 DOI: 10.1016/j.jaci.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Food allergy is a growing problem with limited treatment options. It is important to understand the mechanisms of food tolerance and allergy to promote the development of directed therapies. Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that prime adaptive immune responses, such as those involved in the development of oral tolerance and food allergies. The DC subsets in the gut and skin are defined by their surface markers and function. The default response to an ingested innocuous antigen is oral tolerance, which requires either gut DCs or a subset of newly identified RORγt+ APCs to induce the development of gut peripheral regulatory T cells. However, DCs in the skin, gut, and lung can also promote allergic sensitization when they are activated under certain inflammatory conditions, such as with alarmin release or gut dysbiosis. DCs also play a role in the responses to the various modalities of food immunotherapy. Langerhans cells in the skin appear to be necessary for the response to epicutaneous immunotherapy. It will be important to determine which real-world stimuli activate the DCs that prime allergic sensitization and discover methods to selectively initiate a tolerogenic program in APCs.
Collapse
Affiliation(s)
- Elise G Liu
- Section of Rheumatology, Allergy and Immunology, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
37
|
Light SH, Nagler CR. Regulation of immune responses to food by commensal microbes. Immunol Rev 2024; 326:203-218. [PMID: 39285525 PMCID: PMC11472335 DOI: 10.1111/imr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Microbiology, University of Chicago, Chicago IL, 60637
| | - Cathryn R. Nagler
- Department of Pathology, University of Chicago, Chicago IL, 60637
- Department of Biological Sciences Division, Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, 60637
| |
Collapse
|
38
|
Davis EC, Monaco CL, Insel R, Järvinen KM. Gut microbiome in the first 1000 days and risk for childhood food allergy. Ann Allergy Asthma Immunol 2024; 133:252-261. [PMID: 38494114 PMCID: PMC11344696 DOI: 10.1016/j.anai.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVE To summarize recent data on the association between gut microbiome composition and food allergy (FA) in early childhood and highlight potential host-microbiome interactions that reinforce or abrogate oral tolerance. DATA SOURCES PubMed search of English-language articles related to FA, other atopic disease, and the gut microbiome in pregnancy and early childhood. STUDY SELECTIONS Human studies published after 2015 assessing the relationship between the gut bacteriome and virome in the first 2 years of life and FA or food sensitization development in early childhood were prioritized. Additional human studies conducted on the prenatal gut microbiome or other atopic diseases and preclinical studies are also discussed. RESULTS Children who developed FA harbored lower abundances of Bifidobacterium and Clostridia species and had a less mature microbiome during infancy. The early bacterial microbiome protects against FA through production of anti-inflammatory metabolites and induction of T regulatory cells and may also affect FA risk through a role in trained immunity. Infant enteric phage communities are related to childhood asthma development, though no data are available for FA. Maternal gut microbiome during pregnancy is associated with childhood FA risk, potentially through transplacental delivery of maternal bacterial metabolites, though human studies are lacking. CONCLUSION The maternal and infant microbiomes throughout the first 1000 days of life influence FA risk through a number of proposed mechanisms. Further large, longitudinal cohort studies using taxonomic, functional, and metabolomic analysis of the bacterial and viral microbiomes are needed to provide further insight on the host-microbe interactions underlying FA pathogenesis in childhood.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Cynthia L Monaco
- Division of Infectious Disease, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Insel
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
39
|
Leung ASY, Pacharn P, Tangvalelerd S, Sato S, Pitt E, Wong G, Koplin JJ. Food allergy in a changing dietary landscape: A focus on the Asia Pacific region. Pediatr Allergy Immunol 2024; 35:e14211. [PMID: 39127915 DOI: 10.1111/pai.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Recent studies have provided compelling evidence to suggest that various environmental factors play a significant role in the development of food allergies. As our society experiences rapid economic growth, increased urbanization, and a shift towards a more Westernized diet, the incidence of food allergies is also on the rise and the pattern is gradually evolving. This review will delve into the changes in the epidemiology of food allergies within the Asia-Pacific region and the various dietary practices and factors that are postulated to play a role in the rise in food allergies over the years. Although there have been important advancements in the field of food allergies, there are still numerous uncertainties regarding the intricate relationship between diet and food allergies. Specifically, the role of epigenetic factors in influencing the susceptibility to food allergies, as evidenced by studies that assessed the impact of migration and rural-urban dynamics, is not fully understood. Addressing this knowledge gap presents an opportunity to develop more effective prevention and treatment strategies that could greatly benefit individuals living with food allergies.
Collapse
Affiliation(s)
- Agnes Sze-Yin Leung
- Department of Paediatrics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence (HOPE), The Chinese University of Hong Kong, Hong Kong, China
| | - Punchama Pacharn
- Department of Pediatrics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supaluk Tangvalelerd
- Department of Pediatrics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakura Sato
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Erin Pitt
- Child Health Research Centre, University of Queensland, South Brisbane, Queensland, Australia
| | - Gary Wong
- Department of Paediatrics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jennifer J Koplin
- Child Health Research Centre, University of Queensland, South Brisbane, Queensland, Australia
| |
Collapse
|
40
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024; 24:577-595. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
42
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Nagai M, Okawa T, Nakata K, Takahashi D, Miyajima R, Shiratori H, Yamanaka D, Nakamura A, Oyama C, Takahashi SI, Toyama-Sorimachi N, Suzuki K, Ohashi W, Dohi T, Kawamura YI, Hase K. Sugar and arginine facilitate oral tolerance by ensuring the functionality of tolerogenic immune cell subsets in the intestine. Cell Rep 2024; 43:114490. [PMID: 38990720 DOI: 10.1016/j.celrep.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Although oral tolerance is a critical system in regulating allergic disorders, the mechanisms by which dietary factors regulate the induction and maintenance of oral tolerance remain unclear. To address this, we explored the differentiation and function of various immune cells in the intestinal immune system under fasting and ad libitum-fed conditions before oral ovalbumin (OVA) administration. Fasting mitigated OVA-specific Treg expansion, which is essential for oral tolerance induction. This abnormality mainly resulted from functional defects in the CX3CR1+ cells responsible for the uptake of luminal OVA and reduction of tolerogenic CD103+ dendritic cells. Eventually, fasting impaired the preventive effect of oral OVA administration on asthma and allergic rhinitis development. Specific food ingredients, namely carbohydrates and arginine, were indispensable for oral tolerance induction by activating glycolysis and mTOR signaling. Overall, prior food intake and nutritional signals are critical for maintaining immune homeostasis by inducing tolerance to ingested food antigens.
Collapse
Affiliation(s)
- Motoyoshi Nagai
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan.
| | - Takuma Okawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Kazuaki Nakata
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Reina Miyajima
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Hiroaki Shiratori
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Daisuke Yamanaka
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Atsuo Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan; Dairy Science and Technology Institute, Kyodo Milk Industry Co., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Koichiro Suzuki
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Wakana Ohashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Taeko Dohi
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Yuki I Kawamura
- Clinical Research Advancement Section, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan; The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima 960-1296, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan.
| |
Collapse
|
44
|
Kim S, Seo SU, Kweon MN. Gut microbiota-derived metabolites tune host homeostasis fate. Semin Immunopathol 2024; 46:2. [PMID: 38990345 PMCID: PMC11239740 DOI: 10.1007/s00281-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota, housing trillions of microorganisms within the gastrointestinal tract, has emerged as a critical regulator of host health and homeostasis. Through complex metabolic interactions, these microorganisms produce a diverse range of metabolites that substantially impact various physiological processes within the host. This review aims to delve into the intricate relationships of gut microbiota-derived metabolites and their influence on the host homeostasis. We will explore how these metabolites affect crucial aspects of host physiology, including metabolism, mucosal integrity, and communication among gut tissues. Moreover, we will spotlight the potential therapeutic applications of targeting these metabolites to restore and sustain host equilibrium. Understanding the intricate interplay between gut microbiota and their metabolites is crucial for developing innovative strategies to promote wellbeing and improve outcomes of chronic diseases.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Hesser LA, Puente AA, Arnold J, Ionescu E, Mirmira A, Talasani N, Lopez J, Maccio-Maretto L, Mimee M, Nagler CR. A synbiotic of Anaerostipes caccae and lactulose prevents and treats food allergy in mice. Cell Host Microbe 2024; 32:1163-1176.e6. [PMID: 38906158 PMCID: PMC11239278 DOI: 10.1016/j.chom.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Depletion of beneficial microbes by modern lifestyle factors correlates with the rising prevalence of food allergies. Re-introduction of allergy-protective bacteria may be an effective treatment strategy. We characterized the fecal microbiota of healthy and food-allergic infants and found that the anaerobe Anaerostipes caccae (A. caccae) was representative of the protective capacity of the healthy microbiota. We isolated a strain of A. caccae from the feces of a healthy infant and identified lactulose as a prebiotic to optimize butyrate production by A. caccae in vitro. Administration of a synbiotic composed of our isolated A. caccae strain and lactulose increased luminal butyrate in gnotobiotic mice colonized with feces from an allergic infant and in antibiotic-treated specific pathogen-free (SPF) mice, and prevented or treated an anaphylactic response to allergen challenge. The synbiotic's efficacy in two models and microbial contexts suggests that it may be a promising approach for the treatment of food allergy.
Collapse
Affiliation(s)
- Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Armando A Puente
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Anjali Mirmira
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Nidhi Talasani
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Jacqueline Lopez
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Mark Mimee
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Department of Pathology, The University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
46
|
Ma R, Miao N, Li J, Xu Y, Li X, Zhao J, Mu G, Zhu X. Lactic acid bacteria and yeast co-fermented milk alleviate cow milk allergy. J Food Sci 2024; 89:4505-4521. [PMID: 38778560 DOI: 10.1111/1750-3841.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Cow milk allergy is one of the common food allergies. Our previous study showed that the allergenicity of fermented milk is lower than that of unfermented skimmed milk in vitro, and the antigenicity of β-lactoglobulin and α-lactalbumin in fermented milk was decreased by 67.54% and 80.49%, respectively. To confirm its effects in vivo, allergic BALB/C mice model was used to further study the allergenicity of fermented milk. It was found that compared with the skim milk (SM) group, the intragastrically sensitization with fermented milk had no obvious allergic symptoms and the fingers were more stable: lower levels of IgE, IgG, and IgA in serum, lower levels of plasma histamine and mast cell protein-1, and immune balance of Th1/Th2 and Treg/Th17. At the same time, intragastrically sensitization with fermented milk increased the α diversity of intestinal microbiota and changed the microbiota abundance: the relative abundance of norank-f-Muribaculaceae and Staphylococcus significantly decreased, and the abundance of Lachnospiraceae NK4A136 group, Bacteroides, and Turicibacter increased. In addition, fermented milk can also increase the level of short-chain fatty acids in the intestines of mice. It turns out that fermented milk is much less allergenicity than SM. PRACTICAL APPLICATION: Fermentation provides a theoretical foundation for reducing the allergenicity of milk and dairy products, thereby facilitating the production of low-allergenic dairy products suitable for individuals with milk allergies.
Collapse
Affiliation(s)
- Ruida Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Miao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, P. R. China
| | - Jing Li
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihar, China
| | - Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, P. R. China
| | - Xinling Li
- Urumqi dairy industry association, Urumqi, Xinjiang, P. R. China
| | - Jinghong Zhao
- Xinjiang Wangyuan Camel Milk Industrial Co., Ltd, Fuhai, Xinjiang, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, P. R. China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
47
|
Sasaki M, Suaini NHA, Afghani J, Heye KN, O'Mahony L, Venter C, Lauener R, Frei R, Roduit C. Systematic review of the association between short-chain fatty acids and allergic diseases. Allergy 2024; 79:1789-1811. [PMID: 38391245 DOI: 10.1111/all.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
We performed a systematic review to investigate the current evidence on the association between allergic diseases and short chain fatty acids (SCFAs), which are microbially produced and suggested as one mechanism on how gut microbiome affects the risk of allergic diseases. Medline, Embase and Web of Science were searched from data inception until September 2022. We identified 37 papers, of which 17 investigated prenatal or early childhood SCFAs and the development of allergic diseases in childhood, and 20 assessed SCFAs in patients with pre-existing allergic diseases. Study design, study populations, outcome definition, analysis method and reporting of the results varied between papers. Overall, there was some evidence showing that the three main SCFAs (acetate, propionate and butyrate) in the first few years of life had a protective effect against allergic diseases, especially for atopic dermatitis, wheeze or asthma and IgE-mediated food allergy in childhood. The association between each SCFA and allergic disease appeared to be different by disease and the age of assessment. Further research that can determine the potentially timing specific effect of each SCFA will be useful to investigate how SCFAs can be used in treatment or in prevention against allergic diseases.
Collapse
Affiliation(s)
- Mari Sasaki
- University Children's Hospital Zürich, Zürich, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Noor H A Suaini
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jamie Afghani
- Environmental Medicine Faculty of Medicine, University of Augsburg, Augsburg, Germany
- ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
- Institute of Environmental Medicine, Environmental Health Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| | - Kristina N Heye
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Liam O'Mahony
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Carina Venter
- Pediatric Allergy and Immunology, University of Colorado/Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Roger Lauener
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Remo Frei
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Caroline Roduit
- University Children's Hospital Zürich, Zürich, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
48
|
Eom JE, Shin DU, Kim GD, Yoon JH, Shin HS, Lee SY. Pediococcus pentosaceus KF159 alleviates house dust mite-induced atopic dermatitis by promoting IL10 production and regulatory T cell induction. Food Funct 2024; 15:6975-6987. [PMID: 38853660 DOI: 10.1039/d4fo00933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Atopic dermatitis (AD) is a chronic immune disease that requires long-term management owing to its relative ease of recurrence. However, steroid treatment is limited owing to the side effects. Therefore, research on therapeutics with proven safety is required. Here, we evaluated the anti-allergic activity of the probiotic strain Pediococcus pentosaceus KF159 (PPKF159) with an ex vivo mouse model sensitized with ovalbumin (OVA) and a mouse model of AD induced by house dust mites. Changes in pathological symptoms were confirmed based on the clinical status of the AD-induced lesion site and the levels of T helper type 2 (Th2)-derived cytokines and immunoglobulin E (IgE). In addition, cell-mediated responses and related mechanisms were elucidated using various kinds of primary cells including splenocytes, mesenteric lymph nodes, Peyer's patch, and bone marrow-derived dendritic cells (BMDCs) in vitro and ex vivo. Oral administration of PPKF159 alleviated AD-like clinical symptoms such as erythema, edema, hemorrhage, and increased tissue thickness, and suppressed the production of Th2-associated cytokines and serum IgE while increasing T helper type 1 (Th1)-mediated cytokine production. PPKF159 induced tolerogenic dendritic cells (tol-DCs) by increasing the expression of ICOS-L, PD-L1, and IDO which were closely related to Treg induction in PPKF159-treated BMDCs. In addition, BMDCs and naive T cells co-cultured in the presence of PPKF159 had elevated IL10 production and increased proportions of CD4+CD25+Foxp3+ Tregs compared to the absence of PPKF159. This study showed that PPKF159 relieved AD-like clinical symptoms, modulated the Th1/Th2 immune balance, and inhibited IgE production in a mouse AD model. PPKF159 induced the transformation of dendritic cells into tolerogenic versions. These induced tol-DCs directly enhanced the production of IL10 or improved the secretion of IL10 through the induction of CD4+CD25+Foxp3+ Treg cells, thereby improving AD. These results suggest that PPKF159 can be applied as a functional food material for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Ji-Eun Eom
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| | - Dong-Uk Shin
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
49
|
Wu Y, Wang Q, Jia S, Lu Q, Zhao M. Gut-tropic T cells and extra-intestinal autoimmune diseases. Autoimmun Rev 2024; 23:103544. [PMID: 38604462 DOI: 10.1016/j.autrev.2024.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Gut-tropic T cells primarily originate from gut-associated lymphoid tissue (GALT), and gut-tropic integrins mediate the trafficking of the T cells to the gastrointestinal tract, where their interplay with local hormones dictates the residence of the immune cells in both normal and compromised gastrointestinal tissues. Targeting gut-tropic integrins is an effective therapy for inflammatory bowel disease (IBD). Gut-tropic T cells are further capable of entering the peripheral circulatory system and relocating to multiple organs. There is mounting evidence indicating a correlation between gut-tropic T cells and extra-intestinal autoimmune disorders. This review aims to systematically discuss the origin, migration, and residence of gut-tropic T cells and their association with extra-intestinal autoimmune-related diseases. These discoveries are expected to offer new understandings into the development of a range of autoimmune disorders, as well as innovative approaches for preventing and treating the diseases.
Collapse
Affiliation(s)
- Yutong Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011 Changsha, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
50
|
O'Sullivan D, Arora T, Durif C, Uriot O, Brun M, Riu M, Foguet-Romero E, Samarra I, Domingo-Almenara X, Gahan CGM, Etienne-Mesmin L, Blanquet-Diot S. Impact of Western Diet on Enterohemorrhagic Escherichia coli Colonization in the Human In Vitro Mucosal Artificial Colon as Mediated by Gut Microbiota. Nutrients 2024; 16:2046. [PMID: 38999794 PMCID: PMC11243482 DOI: 10.3390/nu16132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.
Collapse
Affiliation(s)
- Deborah O'Sullivan
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Trisha Arora
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Claude Durif
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Ophélie Uriot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Morgane Brun
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Marc Riu
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Elisabet Foguet-Romero
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Iris Samarra
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
| | - Xavier Domingo-Almenara
- Centre for Omics Sciences (COS), Unique Scientific and Technical Infrastructures (ICTS), Eurecat-Technology Centre of Catalonia & Rovira i Virgili University Joint Unit, 43204 Reus, Spain
- Department of Electrical, Electronic and Control Engineering (DEEEA), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Computational Metabolomics for Systems Biology Lab, Eurecat-Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Lucie Etienne-Mesmin
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France
| |
Collapse
|