1
|
Cinnamon E, Stein I, Zino E, Rabinovich S, Shovman Y, Schlesinger Y, Salame TM, Reich-Zeliger S, Albrecht T, Roessler S, Schirmacher P, Lotem M, Ben-Neriah Y, Parnas O, Pikarsky E. RORc-expressing immune cells negatively regulate tertiary lymphoid structure formation and support their pro-tumorigenic functions. J Hepatol 2025; 82:1050-1067. [PMID: 39710149 DOI: 10.1016/j.jhep.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND & AIMS RORc-expressing immune cells play important roles in inflammation, autoimmune disease and cancer. They are required for lymphoid organogenesis and have been implicated in tertiary lymphoid structure (TLS) formation. TLSs are formed in many cancer types and have been correlated with better prognosis and response to immunotherapy. In liver cancer, some TLSs are pro-tumorigenic as they harbor tumor progenitor cells and support their growth. The processes involved in TLS development and acquisition of pro- or anti-tumorigenic roles are largely unknown. This study aims to explore the role of RORc-expressing cells in TLS development in the context of inflammation-associated liver cancer. METHODS IKKβ(EE)Hep mice, exhibiting chronic liver inflammation, TLS formation and liver cancer, were crossed with RORc knockout mice to explore RORc's effect on TLS and tumor formation. TLS phenotypes were analyzed using transcriptional, proteomic, and immunohistochemical techniques. CD4, CD8, and B-cell depletions were used to assess their contribution to liver TLS and tumor formation. RESULTS RORc-expressing cells are detected within TLSs of both human patients and mice developing intrahepatic cholangiocarcinoma. In mice, these cells negatively regulate TLS formation, as excess TLSs form in their absence. CD4 cells are essential for liver TLS formation, while B cells are required for TLS formation specifically in the absence of RORc-expressing cells. Importantly, in chronically inflamed livers lacking RORc-expressing cells, TLSs become anti-tumorigenic, reducing tumor load. Anti-tumorigenic TLSs revealed enrichment of exhausted CD8 cells with effector functions, germinal center B cells and plasma cells. B cells are key in limiting tumor development, possibly via tumor-directed antibodies. CONCLUSIONS RORc-expressing cells negatively regulate B-cell responses and facilitate the pro-tumorigenic functions of hepatic TLSs. IMPACT AND IMPLICATIONS RORc-expressing immune cells play critical roles in immune regulation, yet their specific influence on tertiary lymphoid structures (TLSs) in liver pathology and cancer has not been elucidated. Our study reveals that RORc-expressing cells act as negative regulators of TLS formation and shape the immune microenvironment in a manner that promotes tumor development. In the absence of RORc-expressing cells, TLSs not only increase in number but also acquire anti-tumorigenic properties. These findings suggest that RORc-expressing cells serve as key modulators of liver immune dynamics, with potential implications for the use of RORc as a biomarker to differentiate between pro- and anti-tumorigenic immune environments and as a target for manipulating TLS abundance and phenotype in liver cancer.
Collapse
Affiliation(s)
- Einat Cinnamon
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ilan Stein
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elvira Zino
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Stav Rabinovich
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yehuda Shovman
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yehuda Schlesinger
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Thomas Albrecht
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yinon Ben-Neriah
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Oren Parnas
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Eli Pikarsky
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
2
|
Zhao H, Catarino J, Stack G, Albizu AK, Lara-Tejero M, Horvath TL, Galán JE. Typhoid toxin causes neuropathology by disrupting the blood-brain barrier. Nat Microbiol 2025:10.1038/s41564-025-02000-z. [PMID: 40341334 DOI: 10.1038/s41564-025-02000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
Typhoid fever, primarily caused by Salmonella Typhi, can result in severe life-threatening complications such as encephalopathy. Here we elucidate the mechanisms by which typhoid toxin, a unique virulence factor of S. Typhi, mediates the neuropathology associated with typhoid fever. Utilizing mice engineered to have specific tissues protected from toxin action and an in vitro model of the blood-brain barrier (BBB), we demonstrate that, rather than direct action on neuronal or glial cells, typhoid toxin causes neuropathology by disrupting the BBB. Intravenous tracer studies confirmed significant BBB permeability changes following toxin exposure, an effect we found to be mediated by typhoid toxin's CdtB catalytic subunit. We demonstrate that corticosteroids are effective at mitigating BBB disruption in vivo, supporting their use for managing typhoid fever neurological complications. Our data reveal mechanistic insight into how typhoid toxin causes encephalopathy and suggest targeted therapeutic interventions to alleviate the severe neurological manifestations of typhoid fever.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jonatas Catarino
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Max Plank Institute for Metabolic Research, Cologne, Germany
| | - Gabrielle Stack
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Elly Lilly and Company, Cork, Ireland
| | - Ashley Kristant Albizu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Sup ME, Abraham AC, Kim MKM, Thomopoulos S. Development of a Mouse Model of Enthesis-Specific NF-κB Activation. J Orthop Res 2025; 43:719-727. [PMID: 39789822 PMCID: PMC11903135 DOI: 10.1002/jor.26035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Enthesitis, or inflammation specific to sites in the body where tendon inserts into bone, can arise in isolated joints from overuse or in multiple joints as a complication of an autoimmune condition such as psoriatic arthritis or spondyloarthritis. However, the pathogenesis of enthesitis is not well understood, so treatment strategies are limited. A clinically relevant animal model of enthesitis would allow investigators to determine mechanisms driving the disease and evaluate novel therapies. Therefore, we developed a murine model of inducible enthesis-specific inflammation by constitutively activating the NF-κB pathway in Gli1+ cells. Gli1CreERT mice were crossed with IKKβ-overexpression mice and given tamoxifen injections 5 days postnatally to induce enthesitis. Sixteen weeks of IKKβ overexpression in enthesis cells led to impaired mechanical properties, subtle histologic changes, and changes to expression of extracellular matrix- and inflammation-related genes. Increased loading from treadmill overuse activity did not exacerbate this phenotype. Clinical significance: The new murine model may have utility for studying the pathogenesis of enthesitis and approaches to treat the condition.
Collapse
Affiliation(s)
- McKenzie E. Sup
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Min Kyu M. Kim
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| | - Stavros Thomopoulos
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Department of Orthopaedic Surgery, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Jin W, Deng Y, La Marca JE, Lelliott EJ, Diepstraten ST, König C, Tai L, Snetkova V, Dorighi KM, Hoberecht L, Hedditch MG, Whelan L, Healey G, Fayle D, Lau K, Potts MA, Chen MZ, Johnston APR, Liao Y, Shi W, Kueh AJ, Haley B, Fortin JP, Herold MJ. Advancing the genetic engineering toolbox by combining AsCas12a knock-in mice with ultra-compact screening. Nat Commun 2025; 16:974. [PMID: 39885149 PMCID: PMC11782673 DOI: 10.1038/s41467-025-56282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter. We demonstrate efficient single and multiplexed gene editing in vitro, using primary and transformed cells from enAsCas12a mice. We further demonstrate successful in vivo gene editing, using normal and cancer-prone enAsCas12a stem cells to reconstitute the haematopoietic system of wild-type mice. We also present compact, genome-wide Cas12a knockout libraries, with four crRNAs per gene encoded across one (Scherzo) or two (Menuetto) vectors, and demonstrate the utility of these libraries across methodologies: in vitro enrichment and drop-out screening in lymphoma cells and immortalised fibroblasts, respectively, and in vivo screens to identify lymphoma-driving events. Finally, we demonstrate CRISPR multiplexing via simultaneous gene knockout (via Cas12a) and activation (via dCas9-SAM) using primary T cells and fibroblasts. Our enAsCas12a mouse and accompanying crRNA libraries enhance genome engineering capabilities and complement current CRISPR technologies.
Collapse
Affiliation(s)
- Wei Jin
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Yexuan Deng
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - John E La Marca
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Emily J Lelliott
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Christina König
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Lin Tai
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
| | - Valentina Snetkova
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, USA
| | - Kristel M Dorighi
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, USA
| | - Luke Hoberecht
- Computational Sciences, Genentech, Inc., South San Francisco, California, USA
| | - Millicent G Hedditch
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | - Lauren Whelan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | - Geraldine Healey
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
| | - Dan Fayle
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
| | - Kieran Lau
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Margaret A Potts
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Moore Z Chen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Andrew J Kueh
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, USA
- Université de Montréal, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Rosemont, Canada
| | | | - Marco J Herold
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia.
| |
Collapse
|
5
|
Cormerais Y, Lapp SC, Kalafut KC, Cissé MY, Shin J, Stefadu B, Personnaz J, Schrotter S, D’Amore A, Martin ER, Salussolia CL, Sahin M, Menon S, Byles V, Manning BD. AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614519. [PMID: 39386441 PMCID: PMC11463511 DOI: 10.1101/2024.09.23.614519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse intracellular and extracellular growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling established through biochemical and cell biological studies function under physiological states in specific mammalian tissues are unknown. Here, we characterize a genetic mouse model lacking the 5 phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can active mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as brain and skeletal muscle, associated with cell intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mouse model demonstrates that TSC2 phosphorylation is a primary mechanism of mTORC1 activation in some, but not all, tissues and provides a genetic tool to facilitate studies on the physiological regulation of mTORC1.
Collapse
Affiliation(s)
- Yann Cormerais
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel C. Lapp
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Krystle C. Kalafut
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Madi Y. Cissé
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Jong Shin
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Benjamin Stefadu
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean Personnaz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Sandra Schrotter
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: Cell Signaling Technologies, Inc, Beverly, MA, 01915, USA
| | - Angelica D’Amore
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Emma R. Martin
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Catherine L. Salussolia
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Suchithra Menon
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Vanessa Byles
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Glynn RA, Hayer KE, Bassing CH. ATM-dependent Phosphorylation of Nemo SQ Motifs Is Dispensable for Nemo-mediated Gene Expression Changes in Response to DNA Double-Strand Breaks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:628-640. [PMID: 39007641 PMCID: PMC11348802 DOI: 10.4049/jimmunol.2300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
In response to DNA double-strand breaks (DSBs), the ATM kinase activates NF-κB factors to stimulate gene expression changes that promote survival and allow time for cells to repair damage. In cell lines, ATM can activate NF-κB transcription factors via two independent, convergent mechanisms. One is ATM-mediated phosphorylation of nuclear NF-κB essential modulator (Nemo) protein, which leads to monoubiquitylation and export of Nemo to the cytoplasm where it engages the IκB kinase (IKK) complex to activate NF-κB. Another is DSB-triggered migration of ATM into the cytoplasm, where it promotes monoubiquitylation of Nemo and the resulting IKK-mediated activation of NF-κB. ATM has many other functions in the DSB response beyond activation of NF-κB, and Nemo activates NF-κB downstream of diverse stimuli, including developmental or proinflammatory stimuli such as LPSs. To elucidate the in vivo role of DSB-induced, ATM-dependent changes in expression of NF-κB-responsive genes, we generated mice expressing phosphomutant Nemo protein lacking consensus SQ sites for phosphorylation by ATM or related kinases. We demonstrate that these mice are viable/healthy and fertile and exhibit overall normal B and T lymphocyte development. Moreover, treatment of their B lineage cells with LPS induces normal NF-κB-regulated gene expression changes. Furthermore, in marked contrast to results from a pre-B cell line, primary B lineage cells expressing phosphomutant Nemo treated with the genotoxic drug etoposide induce normal ATM- and Nemo-dependent changes in expression of NF-κB-regulated genes. Our data demonstrate that ATM-dependent phosphorylation of Nemo SQ motifs in vivo is dispensable for DSB-signaled changes in expression of NF-κB-regulated genes.
Collapse
Affiliation(s)
- Rebecca A. Glynn
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, 19104
| | - Craig H. Bassing
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J, Strefford JC. The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:877-901. [PMID: 39280243 PMCID: PMC11390296 DOI: 10.37349/etat.2024.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, predominantly indolent B-cell lymphoma constituting fewer than 2% of lymphoid neoplasms. However, around 30% of patients have a shorter survival despite currently available treatments and the prognosis is especially poor for the 5-15% of cases that transform to a large cell lymphoma. Mounting evidence suggests that the molecular pathogenesis of SMZL is critically shaped by microenvironmental triggering and cell-intrinsic aberrations. Immunogenetic investigations have revealed biases in the immunoglobulin gene repertoire, indicating a role of antigen selection. Furthermore, cytogenetic studies have identified recurrent chromosomal abnormalities such as deletion of the long arm of chromosome 7, though specific disease-associated genes remain elusive. Our knowledge of SMZL's mutational landscape, based on a limited number of cases, has identified recurring mutations in KLF2, NOTCH2, and TP53, as well as genes clustering within vital B-cell differentiation pathways. These mutations can be clustered within patient subgroups with different patterns of chromosomal lesions, immunogenetic features, transcriptional signatures, immune microenvironments, and clinical outcomes. Regarding SMZL epigenetics, initial DNA methylation profiling has unveiled epigenetically distinct patient subgroups, including one characterized by elevated expression of Polycomb repressor complex 2 (PRC2) components. Furthermore, it has also demonstrated that patients with evidence of high historical cell division, inferred from methylation data, exhibit inferior treatment-free survival. This review provides an overview of our current understanding of SMZL's molecular basis and its implications for patient outcomes. Additionally, it addresses existing knowledge gaps, proposes future research directions, and discusses how a comprehensive molecular understanding of the disease will lead to improved management and treatment choices for patients.
Collapse
Affiliation(s)
- Amatta Mirandari
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Margaret Ashton-Key
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, SO16 6YD Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David G Oscier
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
8
|
Jong Huat T, Camats-Perna J, Newcombe EA, Onraet T, Campbell D, Sucic JT, Martini A, Forner S, Mirzaei M, Poon W, LaFerla FM, Medeiros R. The impact of astrocytic NF-κB on healthy and Alzheimer's disease brains. Sci Rep 2024; 14:14305. [PMID: 38906984 PMCID: PMC11192733 DOI: 10.1038/s41598-024-65248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
Astrocytes play a role in healthy cognitive function and Alzheimer's disease (AD). The transcriptional factor nuclear factor-κB (NF-κB) drives astrocyte diversity, but the mechanisms are not fully understood. By combining studies in human brains and animal models and selectively manipulating NF-κB function in astrocytes, we deepened the understanding of the role of astrocytic NF-κB in brain health and AD. In silico analysis of bulk and cell-specific transcriptomic data revealed the association of NF-κB and astrocytes in AD. Confocal studies validated the higher level of p50 NF-κB and phosphorylated-p65 NF-κB in glial fibrillary acidic protein (GFAP)+-astrocytes in AD versus non-AD subjects. In the healthy mouse brain, chronic activation of astrocytic NF-κB disturbed the proteomic milieu, causing a loss of mitochondrial-associated proteins and the rise of inflammatory-related proteins. Sustained NF-κB signaling also led to microglial reactivity, production of pro-inflammatory mediators, and buildup of senescence-related protein p16INK4A in neurons. However, in an AD mouse model, NF-κB inhibition accelerated β-amyloid and tau accumulation. Molecular biology studies revealed that astrocytic NF-κB activation drives the increase in GFAP and inflammatory proteins and aquaporin-4, a glymphatic system protein that assists in mitigating AD. Our investigation uncovered fundamental mechanisms by which NF-κB enables astrocytes' neuroprotective and neurotoxic responses in the brain.
Collapse
Affiliation(s)
- Tee Jong Huat
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Judith Camats-Perna
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Estella A Newcombe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Josiah T Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Alessandra Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Stefânia Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Mehdi Mirzaei
- Clinical Medicine Department, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Wayne Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Rodrigo Medeiros
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA.
| |
Collapse
|
9
|
Burt KG, Kim MKM, Viola DC, Abraham AC, Chahine NO. Nuclear factor κB overactivation in the intervertebral disc leads to macrophage recruitment and severe disc degeneration. SCIENCE ADVANCES 2024; 10:eadj3194. [PMID: 38848366 PMCID: PMC11160472 DOI: 10.1126/sciadv.adj3194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/04/2024] [Indexed: 06/09/2024]
Abstract
Persistent inflammation has been associated with severe disc degeneration (DD). This study investigated the effect of prolonged nuclear factor κB (NF-κB) activation in DD. Using an inducible mouse model, we genetically targeted cells expressing aggrecan, a primary component of the disc extra cellular matrix, for activation of the canonical NF-κB pathway. Prolonged NF-κB activation led to severe structural degeneration accompanied by increases in gene expression of inflammatory molecules (Il1b, Cox2, Il6, and Nos2), chemokines (Mcp1 and Mif), and catabolic enzymes (Mmp3, Mmp9, and Adamts4). Increased recruitment of proinflammatory (F4/80+,CD38+) and inflammatory resolving (F4/80+,CD206+) macrophages was observed within caudal discs. We found that the secretome of inflamed caudal disc cells increased macrophage migration and inflammatory activation. Lumbar discs did not exhibit phenotypic changes, suggestive of regional spinal differences in response to inflammatory genetic overactivation. Results suggest prolonged NF-κB activation can induce severe DD through increases in inflammatory cytokines, chemotactic proteins, catabolic enzymes, and the recruitment and activation of macrophage cell populations.
Collapse
Affiliation(s)
- Kevin G. Burt
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Min Kyu M. Kim
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Dan C. Viola
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Nadeen O. Chahine
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Mussbacher M, Basílio J, Belakova B, Pirabe A, Ableitner E, Campos-Medina M, Schmid JA. Effects of Chronic Inflammatory Activation of Murine and Human Arterial Endothelial Cells at Normal Lipoprotein and Cholesterol Levels In Vivo and In Vitro. Cells 2024; 13:773. [PMID: 38727309 PMCID: PMC11083315 DOI: 10.3390/cells13090773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The activation of endothelial cells is crucial for immune defense mechanisms but also plays a role in the development of atherosclerosis. We have previously shown that inflammatory stimulation of endothelial cells on top of elevated lipoprotein/cholesterol levels accelerates atherogenesis. The aim of the current study was to investigate how chronic endothelial inflammation changes the aortic transcriptome of mice at normal lipoprotein levels and to compare this to the inflammatory response of isolated endothelial cells in vitro. We applied a mouse model expressing constitutive active IκB kinase 2 (caIKK2)-the key activator of the inflammatory NF-κB pathway-specifically in arterial endothelial cells and analyzed transcriptomic changes in whole aortas, followed by pathway and network analyses. We found an upregulation of cell death and mitochondrial beta-oxidation pathways with a predicted increase in endothelial apoptosis and necrosis and a simultaneous reduction in protein synthesis genes. The highest upregulated gene was ACE2, the SARS-CoV-2 receptor, which is also an important regulator of blood pressure. Analysis of isolated human arterial and venous endothelial cells supported these findings and also revealed a reduction in DNA replication, as well as repair mechanisms, in line with the notion that chronic inflammation contributes to endothelial dysfunction.
Collapse
Affiliation(s)
- Marion Mussbacher
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.); (J.B.); (B.B.); (A.P.); (M.C.-M.)
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria;
| | - José Basílio
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.); (J.B.); (B.B.); (A.P.); (M.C.-M.)
- INESC ID, Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisboa, Portugal
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbora Belakova
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.); (J.B.); (B.B.); (A.P.); (M.C.-M.)
| | - Anita Pirabe
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.); (J.B.); (B.B.); (A.P.); (M.C.-M.)
| | - Elisabeth Ableitner
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria;
| | - Manuel Campos-Medina
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.); (J.B.); (B.B.); (A.P.); (M.C.-M.)
| | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.); (J.B.); (B.B.); (A.P.); (M.C.-M.)
| |
Collapse
|
11
|
Saadi S, Nacer NE, Saari N, Mohammed AS, Anwar F. The underlying mechanism of nuclear and mitochondrial DNA damages in triggering cancer incidences: Insights into proteomic and genomic sciences. J Biotechnol 2024; 383:1-12. [PMID: 38309588 DOI: 10.1016/j.jbiotec.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.
Collapse
Affiliation(s)
- Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Université des Frères Mentouri Constantine 1, Route de Ain El Bey, Constantine 25000, Algeria; Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine 1 UFC1, Route de Ain El Bey, Constantine 25000, Algeria.
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, Batna 05000, Algeria
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia
| | | | - Farooq Anwar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; Honorary Research Fellow: Metharath University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani 12160, Thailand
| |
Collapse
|
12
|
Nagai K, Fujii W, Yamagishi J, Sanjoba C, Goto Y. Inflammatory CD11b + Macrophages Produce BAFF in Spleen of Mice Infected with Leishmania donovani. Pathogens 2024; 13:232. [PMID: 38535575 PMCID: PMC10975664 DOI: 10.3390/pathogens13030232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 02/11/2025] Open
Abstract
Visceral leishmaniasis (VL) is an infectious disease caused by parasitic protozoa of the genus Leishmania and manifests clinical symptoms such as splenomegaly, hepatomegaly, anemia, and fever. It has previously been shown that B-cell-activating factor (BAFF) is involved in splenomegaly during VL. Although BAFF is known to be expressed by a variety of cells, the mechanism of elevated BAFF expression in VL is not clear. In this study, we aimed to identify BAFF-producing cells in the spleens of mice infected with Leishmania donovani. Splenocytes of L. donovani-infected mice showed elevated BAFF expression compared to that of naive mice. In the infected spleen, the number of both CD11b+ and F4/80+ cells increased, and the major BAFF-producing cells were CD11b+ cells, which did not serve as host cells of Leishmania. Immunohistochemical/immunofluorescent staining of spleens of infected mice revealed that the increased CD11b+ cells were primarily MRP14+ mononuclear cells. Together, these results suggest the increased BAFF expression in the spleen of L. donovani-infected mice involves a recruitment of inflammatory macrophages distinct from host macrophages for the parasites.
Collapse
Affiliation(s)
- Kazuki Nagai
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (K.N.); (C.S.)
| | - Wataru Fujii
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Junya Yamagishi
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (K.N.); (C.S.)
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (K.N.); (C.S.)
| |
Collapse
|
13
|
Harada M, Su-Harada K, Kimura T, Ono K, Ashida N. Sustained activation of NF-κB through constitutively active IKKβ leads to senescence bypass in murine dermal fibroblasts. Cell Cycle 2024; 23:308-327. [PMID: 38461418 PMCID: PMC11057680 DOI: 10.1080/15384101.2024.2325802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Although the transcription factor nuclear factor κB (NF-κB) plays a central role in the regulation of senescence-associated secretory phenotype (SASP) acquisition, our understanding of the involvement of NF-κB in the induction of cellular senescence is limited. Here, we show that activation of the canonical NF-κB pathway suppresses senescence in murine dermal fibroblasts. IκB kinase β (IKKβ)-depleted dermal fibroblasts showed ineffective NF-κB activation and underwent senescence more rapidly than control cells when cultured under 20% oxygen conditions, as indicated by senescence-associated β-galactosidase (SA-β-gal) staining and p16INK4a mRNA levels. Conversely, the expression of constitutively active IKKβ (IKKβ-CA) was sufficient to drive senescence bypass. Notably, the expression of a degradation-resistant form of inhibitor of κB (IκB), which inhibits NF-κB nuclear translocation, abolished senescence bypass, suggesting that the inhibitory effect of IKKβ-CA on senescence is largely mediated by NF-κB. We also found that IKKβ-CA expression suppressed the derepression of INK4/Arf genes and counteracted the senescence-associated loss of Ezh2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2). Moreover, pharmacological inhibition of Ezh2 abolished IKKβ-CA-induced senescence bypass. We propose that NF-κB plays a suppressive role in the induction of stress-induced senescence through sustaining Ezh2 expression.
Collapse
Affiliation(s)
- Masayuki Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanae Su-Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
15
|
Xiao D, Fang L, Liu Z, He Y, Ying J, Qin H, Lu A, Shi M, Li T, Zhang B, Guan J, Wang C, Abu-Amer Y, Shen J. DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation. J Clin Invest 2023; 134:e168558. [PMID: 38051594 PMCID: PMC10849763 DOI: 10.1172/jci168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Fang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Zhongting Liu
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Haocheng Qin
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Meng Shi
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Shriners Hospital for Children, St. Louis, Missouri, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Fisher DAC, Laranjeira ABA, Kong T, Snyder SC, Shim K, Fulbright MC, Oh ST. Complementary and countervailing actions of Jak2 and Ikk2 in hematopoiesis in mice. Exp Hematol 2023; 128:48-66. [PMID: 37611729 PMCID: PMC11227100 DOI: 10.1016/j.exphem.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Hyperactivation of JAK2 kinase is a unifying feature of human Ph- myeloproliferative neoplasms (MPNs), most commonly due to the JAK2 V617F mutation. Mice harboring a homologous mutation in the Jak2 locus exhibit a phenotype resembling polycythemia vera. NFκB pathway hyperactivation is present in myeloid neoplasms, including MPNs, despite scarcity of mutations in NFκB pathway genes. To determine the impact of NFκB pathway hyperactivation in conjunction with Jak2 V617F, we utilized Ikk2 (Ikk2-CA) mice. Pan-hematopoietic Ikk2-CA alone produced depletion of hematopoietic stem cells and B cells. When combined with the Jak2 V617F mutation, Ikk2-CA rescued the polycythemia vera phenotype of Jak2 V617F. Likewise, Jak2 V617F ameliorated defects in hematopoiesis produced by Ikk2-CA. Single-cell RNA sequencing of hematopoietic stem and progenitor cells revealed multiple genes antagonistically regulated by Jak2 and Ikk2, including subsets whose expression was altered by Jak2 V617F and/or Ikk2-CA but partly or fully rectified in the double mutant. We hypothesize that Jak2 promotes hematopoietic stem cell population self-renewal, whereas Ikk2 promotes myeloid lineage differentiation, and biases cell fates at several branch points in hematopoiesis. Jak2 and Ikk2 both regulate multiple genes affecting myeloid maturation and cell death. Therefore, the presence of dual Jak2 and NFκB hyperactivation may present neomorphic therapeutic vulnerabilities in myeloid neoplasms.
Collapse
Affiliation(s)
- Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Angelo B A Laranjeira
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Steven C Snyder
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Kevin Shim
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Mary C Fulbright
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO.
| |
Collapse
|
17
|
Luk CT, Chan CK, Chiu F, Shi SY, Misra PS, Li YZ, Pollock-Tahiri E, Schroer SA, Desai HR, Sivasubramaniyam T, Cai EP, Krishnamurthy M, Han DJ, Chowdhury A, Aslam R, Yuen DA, Hakem A, Hakem R, Woo M. Dual Role of Caspase 8 in Adipocyte Apoptosis and Metabolic Inflammation. Diabetes 2023; 72:1751-1765. [PMID: 37699387 DOI: 10.2337/db22-1033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.
Collapse
Affiliation(s)
- Cynthia T Luk
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Carmen K Chan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Felix Chiu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sally Yu Shi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paraish S Misra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yu Zhe Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Evan Pollock-Tahiri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Stephanie A Schroer
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Harsh R Desai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tharini Sivasubramaniyam
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Erica P Cai
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | | | - Daniel J Han
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Apu Chowdhury
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Rukhsana Aslam
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Darren A Yuen
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Anne Hakem
- University Health Network, Toronto, Ontario, Canada
| | | | - Minna Woo
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Endocrinology, Department of Medicine, University Health Network/Sinai Health System, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Cheng X, Barakat R, Pavani G, Usha MK, Calderon R, Snella E, Gorden A, Zhang Y, Gadue P, French DL, Dorman KS, Fidanza A, Campbell CA, Espin-Palazon R. Nod1-dependent NF-kB activation initiates hematopoietic stem cell specification in response to small Rho GTPases. Nat Commun 2023; 14:7668. [PMID: 37996457 PMCID: PMC10667254 DOI: 10.1038/s41467-023-43349-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Uncovering the mechanisms regulating hematopoietic specification not only would overcome current limitations related to hematopoietic stem and progenitor cell (HSPC) transplantation, but also advance cellular immunotherapies. However, generating functional human induced pluripotent stem cell (hiPSC)-derived HSPCs and their derivatives has been elusive, necessitating a better understanding of the developmental mechanisms that trigger HSPC specification. Here, we reveal that early activation of the Nod1-Ripk2-NF-kB inflammatory pathway in endothelial cells (ECs) primes them to switch fate towards definitive hemogenic endothelium, a pre-requisite to specify HSPCs. Our genetic and chemical embryonic models show that HSPCs fail to specify in the absence of Nod1 and its downstream kinase Ripk2 due to a failure on hemogenic endothelial (HE) programming, and that small Rho GTPases coordinate the activation of this pathway. Manipulation of NOD1 in a human system of definitive hematopoietic differentiation indicates functional conservation. This work establishes the RAC1-NOD1-RIPK2-NF-kB axis as a critical intrinsic inductor that primes ECs prior to HE fate switch and HSPC specification. Manipulation of this pathway could help derive a competent HE amenable to specify functional patient specific HSPCs and their derivatives for the treatment of blood disorders.
Collapse
Affiliation(s)
- Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Radwa Barakat
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Giulia Pavani
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Masuma Khatun Usha
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Rodolfo Calderon
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Abigail Gorden
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yudi Zhang
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karin S Dorman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Antonella Fidanza
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Raquel Espin-Palazon
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
19
|
Burt KG, Kim MKM, Viola DC, Abraham AC, Chahine NO. Nuclear Factor Kappa B Over-Activation in the Intervertebral Disc Leads to Macrophage Recruitment and Severe Disc Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552274. [PMID: 37609194 PMCID: PMC10441339 DOI: 10.1101/2023.08.07.552274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Objective Low back pain (LBP) is the leading cause of global disability and is thought to be driven primarily by intervertebral disc (IVD) degeneration (DD). Persistent upregulation of catabolic enzymes and inflammatory mediators have been associated with severe cases of DD. Nuclear factor kappa B (NF-κB) is a master transcription regulator of immune responses and is over expressed during inflammatory-driven musculoskeletal diseases, including DD. However, its role in triggering DD is unknown. Therefore, this study investigated the effect of NF-κB pathway over-activation on IVD integrity and DD pathology. Methods Using skeletally mature mouse model, we genetically targeted IVD cells for canonical NF-κB pathway activation via expression of a constitutively active form of inhibitor of κB kinase B (IKKβ), and assessed changes in IVD cellularity, structural integrity including histology, disc height, and extracellular matrix (ECM) biochemistry, biomechanics, expression of inflammatory, catabolic, and neurotropic mediators, and changes in macrophage subsets, longitudinally up to 6-months post activation. Results Prolonged NF-κB activation led to severe structural degeneration, with a loss of glycosaminoglycan (GAG) content and complete loss of nucleus pulposus (NP) cellularity. Structural and compositional changes decreased IVD height and compressive mechanical properties with prolonged NF-κB activation. These alterations were accompanied by increases in gene expression of inflammatory molecules ( Il1b, Il6, Nos2 ), chemokines ( Mcp1 , Mif ), catabolic enzymes ( Mmp3, Mmp9, Adamts4 ), and neurotrophic factors ( Bdnf , Ngf ) within IVD tissue. Increased recruitment of activated F4/80 + macrophages exhibited a greater abundance of pro-inflammatory (CD38 + ) over inflammatory-resolving (CD206 + ) macrophage subsets in the IVD, with temporal changes in the relative abundance of macrophage subsets over time, providing evidence for temporal regulation of macrophage polarization in DD in vivo, where macrophages participate in resolving the inflammatory cascade but promote fibrotic transformation of the IVD matrix. We further show that NF-κB driven secretory factors from IVD cells increase macrophage migration and inflammatory activation, and that the secretome of inflammatory-resolving macrophages mitigates effects of NF-κB overactivation. Conclusion Overall the observed results suggest prolonged NF-κB activation can induce severe DD, acting through increases in inflammatory cytokines, chemotactic proteins, catabolic enzymes, and the recruitment and inflammatory activation of a macrophage cell populations, that can be mitigated with inflammatory-resolving macrophage secretome.
Collapse
|
20
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
21
|
Koizumi H, Fujii W, Sanjoba C, Goto Y. BAFF induces CXCR5 expression during B cell differentiation in bone marrow. Biochem Biophys Rep 2023; 34:101451. [PMID: 36926279 PMCID: PMC10011739 DOI: 10.1016/j.bbrep.2023.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
B cell activating factor (BAFF) plays an important role in antibody production through differentiation and maturation of B cells mainly in secondary lymphoid organs. On the other hand, the role of BAFF in the bone marrow, the primary lymphoid organ of B cell development, has not been well elucidated. Here, effects of BAFF in bone marrow B cell development were examined by using BAFF-deficient mice. When mRNA expression levels of B cell differentiation markers including Cd19, Bcl2, Igμ, Il7r and Cxcr5 were compared between bone marrow of wild-type and BAFF-KO mice, a lower level of Cxcr5 expression was found in the KO mice. Additionally, protein expression of CXCR5 on IgM+ cells in the bone marrow was decreased by BAFF deficiency. In vitro studies also confirmed the effect of BAFF on CXCR5 by IgM+ cells; culturing bone marrow cells from BAFF-KO mice with BAFF in vitro increased the proportion of CXCR5+ cells in IgM+ cells compared with non-treated bone marrow cells. In addition, BAFF synergized with TNF-α and IL-6 to increase the expression of CXCR5+ on IgM+ cells. The BAFF-mediated up-regulation of CXCR5 expression was reproduced by using CD19+ cells purified from BAFF-KO bone marrow cells, suggesting that BAFF directly affects B-lineage cells in bone marrow to promote CXCR5 expression. Together, this study suggests that BAFF has an important role in B cell differentiation in bone marrow by directly inducing CXCR5 expression which affect their migration to secondary lymphoid organs.
Collapse
Affiliation(s)
- Hajime Koizumi
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| |
Collapse
|
22
|
Schlett JS, Mettang M, Skaf A, Schweizer P, Errerd A, Mulugeta EA, Hein TM, Tsesmelis K, Tsesmelis M, Büttner UFG, Wendt H, Abaei A, Rasche V, Prex V, Nespoli E, Alami NO, Tews D, Walther P, Yilmazer-Hanke D, Oswald F, Dimou L, Wirth T, Baumann B. NF-κB is a critical mediator of post-mitotic senescence in oligodendrocytes and subsequent white matter loss. Mol Neurodegener 2023; 18:24. [PMID: 37069623 PMCID: PMC10108549 DOI: 10.1186/s13024-023-00616-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Inflammaging represents an accepted concept where the immune system shifts to a low-grade chronic pro-inflammatory state without overt infection upon aging. In the CNS, inflammaging is mainly driven by glia cells and associated with neurodegenerative processes. White matter degeneration (WMD), a well-known process in the aging brain, manifests in myelin loss finally resulting in motor, sensory and cognitive impairments. Oligodendrocytes (OL) are responsible for homeostasis and maintenance of the myelin sheaths, which is a complex and highly energy demanding process sensitizing these cells to metabolic, oxidative and other forms of stress. Yet, the immediate impact of chronic inflammatory stress like inflammaging on OL homeostasis, myelin maintenance and WMD remains open. METHODS To functionally analyze the role of IKK/NF-κB signaling in the regulation of myelin homeostasis and maintenance in the adult CNS, we established a conditional mouse model allowing NF-κB activation in mature myelinating oligodendrocytes. IKK2-CAPLP-CreERT2 mice were characterized by biochemical, immunohistochemical, ultrastructural and behavioral analyses. Transcriptome data from isolated, primary OLs and microglia cells were explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS Chronic NF-κB activation in mature OLs leads to aggravated neuroinflammatory conditions phenocopying brain inflammaging. As a consequence, IKK2-CAPLP-CreERT2 mice showed specific neurological deficits and impaired motoric learning. Upon aging, persistent NF-κB signaling promotes WMD in these mice as ultrastructural analysis revealed myelination deficits in the corpus callosum accompanied by impaired myelin protein expression. RNA-Seq analysis of primary oligodendrocytes and microglia cells uncovers gene expression signatures associated with activated stress responses and increased post mitotic cellular senescence (PoMiCS) which was confirmed by elevated senescence-associated β-galactosidase activity and SASP gene expression profile. We identified an elevated integrated stress response (ISR) characterized by phosphorylation of eIF2α as a relevant molecular mechanism which is able to affect translation of myelin proteins. CONCLUSIONS Our findings demonstrate an essential role of IKK/NF-κB signaling in mature, post-mitotic OLs in regulating stress-induced senescence in these cells. Moreover, our study identifies PoMICS as an important driving force of age-dependent WMD as well as of traumatic brain injury induced myelin defects.
Collapse
Affiliation(s)
- Judith Stefanie Schlett
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Melanie Mettang
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Aladdin Skaf
- Molecular and Translational Neuroscience, Department of Neurology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Pavel Schweizer
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Alina Errerd
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | | | - Tabea Melissa Hein
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Konstantinos Tsesmelis
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Miltiadis Tsesmelis
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Ulrike F G Büttner
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Heinrich Wendt
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging (CF-SANI), Ulm University, 89081, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Imaging (CF-SANI), Ulm University, 89081, Ulm, Germany
| | - Vivien Prex
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Ester Nespoli
- Molecular and Translational Neuroscience, Department of Neurology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Najwa Ouali Alami
- Institute of Clinical Neuroanatomy, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Daniel Tews
- Core Facility Extracellular Flux Analyzer, Ulm University Medical Center, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Institute of Clinical Neuroanatomy, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, 89081, Ulm, Germany
| | - Leda Dimou
- Molecular and Translational Neuroscience, Department of Neurology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
23
|
Lee YY, Endale M, Wu G, Ruben MD, Francey LJ, Morris AR, Choo NY, Anafi RC, Smith DF, Liu AC, Hogenesch JB. Integration of genome-scale data identifies candidate sleep regulators. Sleep 2023; 46:zsac279. [PMID: 36462188 PMCID: PMC9905783 DOI: 10.1093/sleep/zsac279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
STUDY OBJECTIVES Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep. METHODS We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes. RESULTS Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up studies. As an example, we focused on the NF-κB pathway and showed that chronic activation of NF-κB in a genetic mouse model impacted the sleep-wake patterns. CONCLUSION Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study genetic regulation of complex behaviors such as sleep.
Collapse
Affiliation(s)
- Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Gang Wu
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew R Morris
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Natalie Y Choo
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ron C Anafi
- Department of Medicine, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David F Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
24
|
SPATA2 restricts OTULIN-dependent LUBAC activity independently of CYLD. Cell Rep 2023; 42:111961. [PMID: 36640323 DOI: 10.1016/j.celrep.2022.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/10/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
SPATA2 mediates the recruitment of CYLD to immune receptor complexes by bridging the interaction of CYLD with the linear ubiquitylation assembly complex (LUBAC) component HOIP. Whether SPATA2 exhibits functions independently of CYLD is unclear. Here, we show that, while Cyld-/- and Spata2-/- mice are viable, double mutants exhibit highly penetrant perinatal lethality, indicating independent functions of SPATA2 and CYLD. Cyld-/-Spata2-/- fibroblasts show increased M1-linked TNFR1-SC ubiquitylation and, similar to Cyld-/-Spata2-/- macrophages and intestinal epithelial cells, elevated pro-inflammatory gene expression compared with Cyld-/- or Spata2-/- cells. We show that SPATA2 competes with OTULIN for binding to HOIP via its PUB-interacting motif (PIM) and its zinc finger domain, thereby promoting autoubiquitylation of LUBAC. Consistently, increased pro-inflammatory signaling in Cyld-/-Spata2-/- cells depends on the presence of OTULIN. Our data therefore indicate that SPATA2 counteracts, independently of CYLD, the deubiquitylation of LUBAC by OTULIN and thereby attenuates LUBAC activity and pro-inflammatory signaling.
Collapse
|
25
|
Koerner L, Schmiel M, Yang TP, Peifer M, Buettner R, Pasparakis M. NEMO- and RelA-dependent NF-κB signaling promotes small cell lung cancer. Cell Death Differ 2023; 30:938-951. [PMID: 36653597 PMCID: PMC10070460 DOI: 10.1038/s41418-023-01112-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive type of lung cancer driven by combined loss of the tumor suppressors RB1 and TP53. SCLC is highly metastatic and despite good initial response to chemotherapy patients usually relapse, resulting in poor survival. Therefore, better understanding of the mechanisms driving SCLC pathogenesis is required to identify new therapeutic targets. Here we identified a critical role of the IKK/NF-κB signaling pathway in SCLC development. Using a relevant mouse model of SCLC, we found that ablation of NEMO/IKKγ, the regulatory subunit of the IKK complex that is essential for activation of canonical NF-κB signaling, strongly delayed the onset and growth of SCLC resulting in considerably prolonged survival. In addition, ablation of the main NF-κB family member p65/RelA also delayed the onset and growth of SCLC and prolonged survival, albeit to a lesser extent than NEMO. Interestingly, constitutive activation of IKK/NF-κB signaling within the tumor cells did not exacerbate the pathogenesis of SCLC, suggesting that endogenous NF-κB levels are sufficient to fully support tumor development. Moreover, TNFR1 deficiency did not affect the development of SCLC, showing that TNF signaling does not play an important role in this tumor type. Taken together, our results revealed that IKK/NF-κB signaling plays an important role in promoting SCLC, identifying the IKK/NF-κB pathway as a promising therapeutic target.
Collapse
Affiliation(s)
- Lioba Koerner
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Marcel Schmiel
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Tsun-Po Yang
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Martin Peifer
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine (CMMC), Medical Faculty and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine (CMMC), Medical Faculty and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine (CMMC), Medical Faculty and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
26
|
Kearly A, Ottens K, Battaglia MC, Satterthwaite AB, Garrett-Sinha LA. B Cell Activation Results in IKK-Dependent, but Not c-Rel- or RelA-Dependent, Decreases in Transcription of the B Cell Tolerance-Inducing Gene Ets1. Immunohorizons 2022; 6:779-789. [PMID: 36445360 PMCID: PMC10069408 DOI: 10.4049/immunohorizons.2100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023] Open
Abstract
Ets1 is a key transcription factor in B cells that is required to prevent premature differentiation into Ab-secreting cells. Previously, we showed that BCR and TLR signaling downregulate Ets1 levels and that the kinases PI3K, Btk, IKK, and JNK are required for this process. PI3K is important in activating Btk by generating the membrane lipid phosphatidylinositol (3,4,5)-trisphosphate, to which Btk binds via its PH domain. Btk in turn is important in activating the IKK kinase pathway, which it does by activating phospholipase Cγ2→protein kinase Cβ signaling. In this study, we have further investigated the pathways regulating Ets1 in mouse B cells. Although IKK is well known for its role in activating the canonical NF-κB pathway, IKK-mediated downregulation of Ets1 does not require either RelA or c-Rel. We also examined the potential roles of two other IKK targets that are not part of the NF-κB signaling pathway, Foxo3a and mTORC2, in regulating Ets1. We find that loss of Foxo3a or inhibition of mTORC2 does not block BCR-induced Ets1 downregulation. Therefore, these two pathways are not key IKK targets, implicating other as yet undefined IKK targets to play a role in this process.
Collapse
Affiliation(s)
- Alyssa Kearly
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; and
| | - Kristina Ottens
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael C Battaglia
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; and
| |
Collapse
|
27
|
Khoenkhoen S, Ádori M, Solís-Sayago D, Soulier J, Russell J, Beutler B, Pedersen GK, Karlsson Hedestam GB. IκBNS expression in B cells is dispensable for IgG responses to T cell-dependent antigens. Front Immunol 2022; 13:1000755. [DOI: 10.3389/fimmu.2022.1000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mice lacking the atypical inhibitory kappa B (IκB) protein, IκBNS, a regulator of the NF-κB pathway encoded by the nfkbid gene, display impaired antibody responses to both T cell-independent (TI) and T cell-dependent (TD) antigens. To better understand the basis of these defects, we crossed mice carrying floxed nfkbid alleles with mice expressing Cre under the transcriptional control of the Cd79a gene to create mice that lacked IκBNS expression only in B cells. Analyses of these conditional knock-out mice revealed intact CD4+ and CD8+ T cell populations, including preserved frequencies of FoxP3+ regulatory T cells, which are known to be reduced in IκBNS knock-out mice. Like IκBNS knock-out mice, mice with conditional IκBNS ablation in B cells displayed defective IgM responses to TI antigens and a severe reduction in peritoneal B-1a cells. However, in contrast to mice lacking IκBNS altogether, the conditional IκBNS knock-out mice responded well to TD antigens compared to the control mice, with potent IgG responses following immunization with the viral antigen, rSFV-βGal or the widely used hapten-protein model antigen, NP-CGG. Furthermore, B cell intrinsic IκBNS expression was dispensable for germinal center (GC) formation and T follicular helper cell responses to NP-CGG immunization. The results presented here suggest that the defect in antibody responses to TD antigens observed in IκBNS knock-out mice results from a B cell extrinsic defect.
Collapse
|
28
|
Hall AE, Pohl SÖG, Cammareri P, Aitken S, Younger NT, Raponi M, Billard CV, Carrancio AB, Bastem A, Freile P, Haward F, Adams IR, Caceres JF, Preyzner P, von Kriegsheim A, Dunlop MG, Din FV, Myant KB. RNA splicing is a key mediator of tumour cell plasticity and a therapeutic vulnerability in colorectal cancer. Nat Commun 2022; 13:2791. [PMID: 35589755 PMCID: PMC9120198 DOI: 10.1038/s41467-022-30489-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022] Open
Abstract
Tumour cell plasticity is a major barrier to the efficacy of targeted cancer therapies but the mechanisms that mediate it are poorly understood. Here, we identify dysregulated RNA splicing as a key driver of tumour cell dedifferentiation in colorectal cancer (CRC). We find that Apc-deficient CRC cells have dysregulated RNA splicing machinery and exhibit global rewiring of RNA splicing. We show that the splicing factor SRSF1 controls the plasticity of tumour cells by controlling Kras splicing and is required for CRC invasion in a mouse model of carcinogenesis. SRSF1 expression maintains stemness in human CRC organoids and correlates with cancer stem cell marker expression in human tumours. Crucially, partial genetic downregulation of Srsf1 does not detrimentally affect normal tissue homeostasis, demonstrating that tumour cell plasticity can be differentially targeted. Thus, our findings link dysregulation of the RNA splicing machinery and control of tumour cell plasticity.
Collapse
Affiliation(s)
- Adam E Hall
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Sebastian Öther-Gee Pohl
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Patrizia Cammareri
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Stuart Aitken
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Nicholas T Younger
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland
| | - Michela Raponi
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, Scotland
| | - Caroline V Billard
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Alfonso Bolado Carrancio
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Aslihan Bastem
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Paz Freile
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Fiona Haward
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| | - Ian R Adams
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Javier F Caceres
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Paula Preyzner
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Alex von Kriegsheim
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Malcolm G Dunlop
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Farhat V Din
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland
| | - Kevin B Myant
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, EH4 2XU, Scotland.
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, Scotland.
| |
Collapse
|
29
|
p62 Promotes Survival and Hepatocarcinogenesis in Mice with Liver-Specific NEMO Ablation. Cancers (Basel) 2022; 14:cancers14102436. [PMID: 35626041 PMCID: PMC9139637 DOI: 10.3390/cancers14102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Chronic liver injury is a predisposing factor for hepatocellular carcinoma (HCC) development. p62-mediated Nrf2 overactivation has been shown to drive liver injury and HCC in mice with hepatic impairment of autophagy. Here, we addressed the role of this pathway in a liver disease mouse model that does not exhibit inherent autophagy defect. Genetically-induced Nrf2 overactivation without concomitant strong increase in p62 expression did not aggravate liver injury and hepatocarcinogenesis. In contrast, p62-driven Nrf2 overactivation was prominent in liver tumors of mice that expressed a p62 mutant and showed enhanced hepatocarcinogenesis. Moreover, a negative correlation was observed between p62/Nrf2high liver tumors and the autophagosome marker LC3, suggesting that acquired autophagy defects precede the activation of this pro-tumorigenic pathway. Our results suggest that autophagy activators or Nrf2 inhibitors could be considered therapeutically in cases of p62/Nrf2high liver tumors. Abstract SQSTM1/p62 is a multitasking protein that functions as an autophagy receptor, but also as a signaling hub regulating diverse cellular pathways. p62 accumulation in mice with autophagy-deficient hepatocytes mediates liver damage and hepatocarcinogenesis through Nrf2 overactivation, yet the role of the p62-Keap1-Nrf2 axis in cell death and hepatocarcinogenesis in the absence of underlying autophagy defects is less clear. Here, we addressed the role of p62 and Nrf2 activation in a chronic liver disease model, namely mice with liver parenchymal cell-specific knockout of NEMO (NEMOLPC-KO), in which we demonstrate that they show no inherent autophagy impairment. Unexpectedly, systemic p62 ablation aggravated the phenotype and caused early postnatal lethality in NEMOLPC-KO mice. Expression of a p62 mutant (p62ΔEx2-5), which retains the ability to form aggregates and activate Nrf2 signaling, did not cause early lethality, but exacerbated hepatocarcinogenesis in these mice. Our immunohistological and molecular analyses showed that the increased tumor burden was only consistent with increased expression/stability of p62ΔEx2-5 driving Nrf2 hyperactivation, but not with other protumorigenic functions of p62, such as mTOR activation, cMYC upregulation or increased fibrosis. Surprisingly, forced activation of Nrf2 per se did not increase liver injury or tumor burden in NEMOLPC-KO mice, suggesting that autophagy impairment is a necessary prerequisite to unleash the Nrf2 oncogenic potential in mice with autophagy-competent hepatocytes.
Collapse
|
30
|
Sugioka S, Ikeda S, Harada M, Kishihata M, Al-Huseini I, Kimura T, Ashida N. Effects of constitutively active IKKβ on cardiac development. Biochem Biophys Res Commun 2022; 614:169-174. [PMID: 35597154 DOI: 10.1016/j.bbrc.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
NF-κB is a major transcription factor regulating cell survival, organ development and inflammation, but its role in cardiac development has been inadequately explored. To examine this function, we generated mice in which IKKβ, an essential kinase for NF-κB activation, was constitutively activated in embryonic cardiomyocytes. For this purpose, we used smooth muscle-22α (SM22α)-Cre mice, which are frequently used for gene recombination in embryonic cardiomyocytes. Embryonic hearts of SM22αCre-CA (constitutively active) IKKβflox/flox mice revealed remarkably thin, spongy and hypoplastic myocardium. In exploring the mechanism, we found that the expression of bone morphogenetic protein 10 (BMP10) and T-box transcription factor 20 (Tbx20), major regulators of cardiac development, was significantly downregulated and upregulated, respectively, in the SM22αCre-CAIKKβflox/flox mice. We also generated NK2 homeobox 5 (Nkx2.5) Cre-CAIKKβflox/wt mice since Nkx2.5 is also expressed in embryonic cardiomyocytes and confirmed that the changes in these genes were also observed. These results implicated that the activation of NF-κB affects cardiac development.
Collapse
Affiliation(s)
- Sachiko Sugioka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shinya Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masayuki Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masako Kishihata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Isehaq Al-Huseini
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
31
|
Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat Commun 2022; 13:1969. [PMID: 35413950 PMCID: PMC9005658 DOI: 10.1038/s41467-022-29552-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/21/2022] [Indexed: 01/31/2023] Open
Abstract
Activation of microglia is a prominent pathological feature in tauopathies, including Alzheimer's disease. How microglia activation contributes to tau toxicity remains largely unknown. Here we show that nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, activated by tau, drives microglial-mediated tau propagation and toxicity. Constitutive activation of microglial NF-κB exacerbated, while inactivation diminished, tau seeding and spreading in young PS19 mice. Inhibition of NF-κB activation enhanced the retention while reduced the release of internalized pathogenic tau fibrils from primary microglia and rescued microglial autophagy deficits. Inhibition of microglial NF-κB in aged PS19 mice rescued tau-mediated learning and memory deficits, restored overall transcriptomic changes while increasing neuronal tau inclusions. Single cell RNA-seq revealed that tau-associated disease states in microglia were diminished by NF-κB inactivation and further transformed by constitutive NF-κB activation. Our study establishes a role for microglial NF-κB signaling in mediating tau spreading and toxicity in tauopathy.
Collapse
|
32
|
Amendt T, Jumaa H. Adaptive tolerance: Protection through self-recognition. Bioessays 2022; 44:e2100236. [PMID: 34984705 DOI: 10.1002/bies.202100236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
The random nature of immunoglobulin gene segment rearrangement inevitably leads to the generation of self-reactive B cells. Avoidance of destructive autoimmune reactions is necessary in order to maintain physiological homeostasis. However, current central and peripheral tolerance concepts fail to explain the massive number of autoantibody-borne autoimmune diseases. Moreover, recent studies have shown that in physiological mouse models autoreactive B cells were neither clonally deleted nor kept in an anergic state, but were instead able to mount autoantibody responses. We propose that activation of autoreactive B cells is induced by polyvalent autoantigen complexes that can occur under physiological conditions. Repeated encounter of autoantigen complexes leads to the production of affinity-matured autoreactive IgM that protects its respective self-targets from degradation. We refer to this novel mechanism as adaptive tolerance. This article discusses the discovery of adaptive tolerance and the unexpected role of high affinity IgM autoantibodies.
Collapse
Affiliation(s)
- Timm Amendt
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
33
|
Parthasarathy R, Hägglöf T, Hadley JT, McLennan A, Mattke A, Dudley EA, Kumagai A, Dong LQ, Leadbetter EA. Receptor Interacting Protein Kinase Pathways Regulate Innate B Cell Developmental Checkpoints But Not Effector Function in Mice. Front Immunol 2021; 12:758407. [PMID: 34956189 PMCID: PMC8696004 DOI: 10.3389/fimmu.2021.758407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the scaffolding domain of Receptor Interacting Protein kinases (RIP) underlie the recently described human autoimmune syndrome, CRIA, characterized by lymphadenopathy, splenomegaly, and autoantibody production. While disease mechanisms for CRIA remain undescribed, RIP kinases work together with caspase-8 to regulate cell death, which is critical for normal differentiation of many cell types. Here, we describe a key role for RIP1 in facilitating innate B cell differentiation and subsequent activation. By comparing RIP1, RIP3, and caspase-8 triple deficient and RIP3, caspase-8 double deficient mice, we identified selective contributions of RIP1 to an accumulation of murine splenic Marginal Zone (MZ) B cells and B1-b cells. We used mixed bone-marrow chimeras to determine that innate B cell commitment required B cell-intrinsic RIP1, RIP3, and caspase-8 sufficiency. RIP1 regulated MZ B cell development rather than differentiation and RIP1 mediates its innate immune effects independent of the RIP1 kinase domain. NP-KLH/alum and NP-Ficoll vaccination of mice doubly deficient in both caspase-8 and RIP3 or deficient in all three proteins (RIP3, caspase-8, and RIP1) revealed uniquely delayed T-dependent and T-independent IgG responses, abnormal splenic germinal center architecture, and reduced extrafollicular plasmablast formation compared to WT mice. Thus, RIP kinases and caspase-8 jointly orchestrate B cell fate and delayed effector function through a B cell-intrinsic mechanism.
Collapse
Affiliation(s)
- Raksha Parthasarathy
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Thomas Hägglöf
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Jason T. Hadley
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Alexandra McLennan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
- Department of Engineering, St Mary’s University, San Antonio, TX, United States
| | - Aiden Mattke
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Dudley
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Abigail Kumagai
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Lily Q. Dong
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Leadbetter
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
34
|
Kurgyis Z, Vornholz L, Pechloff K, Kemény LV, Wartewig T, Muschaweckh A, Joshi A, Kranen K, Hartjes L, Möckel S, Steiger K, Hameister E, Volz T, Mellett M, French LE, Biedermann T, Korn T, Ruland J. Keratinocyte-intrinsic BCL10/MALT1 activity initiates and amplifies psoriasiform skin inflammation. Sci Immunol 2021; 6:eabi4425. [PMID: 34826258 DOI: 10.1126/sciimmunol.abi4425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zsuzsanna Kurgyis
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Konstanze Pechloff
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Venereology, and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tim Wartewig
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Andreas Muschaweckh
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Abhinav Joshi
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Katja Kranen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Lara Hartjes
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Sigrid Möckel
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.,Institute of Pathology, Universität Würzburg, Würzburg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erik Hameister
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Thomas Volz
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital of Zürich, University of Zurich (UZH), Zürich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital of Zürich, University of Zurich (UZH), Zürich, Switzerland.,Department of Dermatology and Allergy, University Hospital, LMU Munich Munich, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Thomas Korn
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Center for Infection Research (DZIF), Munich partner site, Munich Germany
| |
Collapse
|
35
|
NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genet 2021; 17:e1009933. [PMID: 34807912 PMCID: PMC8648109 DOI: 10.1371/journal.pgen.1009933] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022] Open
Abstract
In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.
Collapse
|
36
|
Heida A, Gruben N, Catrysse L, Koehorst M, Koster M, Kloosterhuis NJ, Gerding A, Havinga R, Bloks VW, Bongiovanni L, Wolters JC, van Dijk T, van Loo G, de Bruin A, Kuipers F, Koonen DPY, van de Sluis B. The hepatocyte IKK:NF-κB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis. Mol Metab 2021; 54:101349. [PMID: 34626855 PMCID: PMC8581577 DOI: 10.1016/j.molmet.2021.101349] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Obesity-related chronic inflammation plays an important role in the development of Metabolic Associated Fatty Liver Disease (MAFLD). Although the contribution of the pro-inflammatory NF-κB signaling pathway to the progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is well-established, its role as an initiator of hepatic steatosis and the underlying mechanism remains unclear. Here, we investigated the hypothesis that the hepatocytic NF-κB signaling pathway acts as a metabolic regulator, thereby promoting hepatic steatosis development. METHODS A murine model expressing a constitutively active form of IKKβ in hepatocytes (Hep-IKKβca) was used to activate hepatocyte NF-κB. In addition, IKKβca was also expressed in hepatocyte A20-deficient mice (IKKβca;A20LKO). A20 is an NF-κB-target gene that inhibits the activation of the NF-κB signaling pathway upstream of IKKβ. These mouse models were fed a sucrose-rich diet for 8 weeks. Hepatic lipid levels were measured and using [1-13C]-acetate de novo lipogenesis and cholesterol synthesis rate were determined. Gene expression analyses and immunoblotting were used to study the lipogenesis and cholesterol synthesis pathways. RESULTS Hepatocytic NF-κB activation by expressing IKKβca in hepatocytes resulted in hepatic steatosis without inflammation. Ablation of hepatocyte A20 in Hep-IKKβca mice (IKKβca;A20LKO mice) exacerbated hepatic steatosis, characterized by macrovesicular accumulation of triglycerides and cholesterol, and increased plasma cholesterol levels. Both De novo lipogenesis (DNL) and cholesterol synthesis were found elevated in IKKβca;A20LKO mice. Phosphorylation of AMP-activated kinase (AMPK) - a suppressor in lipogenesis and cholesterol synthesis - was decreased in IKKβca;A20LKO mice. This was paralleled by elevated protein levels of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) and reduced phosphorylation of HMG-CoA reductase (HMGCR) both key enzymes in the cholesterol synthesis pathway. Whereas inflammation was not observed in young IKKβca;A20LKO mice sustained hepatic NF-κB activation resulted in liver inflammation, together with elevated hepatic and plasma cholesterol levels in middle-aged mice. CONCLUSIONS The hepatocytic IKK:NF-κB axis is a metabolic regulator by controlling DNL and cholesterol synthesis, independent of its central role in inflammation. The IKK:NF-κB axis controls the phosphorylation levels of AMPK and HMGCR and the protein levels of HMGCS1. Chronic IKK-mediated NF-κB activation may contribute to the initiation of hepatic steatosis and cardiovascular disease risk in MAFLD patients.
Collapse
Affiliation(s)
- Andries Heida
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nanda Gruben
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Leen Catrysse
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Martijn Koehorst
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mirjam Koster
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albert Gerding
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rick Havinga
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent W Bloks
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Laura Bongiovanni
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Justina C Wolters
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Theo van Dijk
- Departments of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Geert van Loo
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alain de Bruin
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Folkert Kuipers
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Departments of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Debby P Y Koonen
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Bart van de Sluis
- Departments of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
37
|
Catheline SE, Bell RD, Oluoch LS, James MN, Escalera-Rivera K, Maynard RD, Chang ME, Dean C, Botto E, Ketz JP, Boyce BF, Zuscik MJ, Jonason JH. IKKβ-NF-κB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci Signal 2021; 14:eabf3535. [PMID: 34546791 DOI: 10.1126/scisignal.abf3535] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard D Bell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Luke S Oluoch
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - M Nick James
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine Escalera-Rivera
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Robert D Maynard
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin E Chang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher Dean
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Elizabeth Botto
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John P Ketz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.,Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
38
|
Müller-Winkler J, Mitter R, Rappe JCF, Vanes L, Schweighoffer E, Mohammadi H, Wack A, Tybulewicz VLJ. Critical requirement for BCR, BAFF, and BAFFR in memory B cell survival. J Exp Med 2021; 218:211510. [PMID: 33119032 PMCID: PMC7604764 DOI: 10.1084/jem.20191393] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023] Open
Abstract
Memory B cells (MBCs) are long-lived cells that form a critical part of immunological memory, providing rapid antibody responses to recurring infections. However, very little is known about signals controlling MBC survival. Previous work has shown that antigen is not required for MBC survival, but a requirement for the B cell antigen receptor (BCR) has not been tested. Other studies have shown that, unlike naive B cells, MBCs do not express BAFFR and their survival is independent of BAFF, the ligand for BAFFR. Here, using inducible genetic ablation, we show that survival of MBCs is critically dependent on the BCR and on signaling through the associated CD79A protein. Unexpectedly, we found that MBCs express BAFFR and that their survival requires BAFF and BAFFR; hence, loss of BAFF or BAFFR impairs recall responses. Finally, we show that MBC survival requires IKK2, a kinase that transduces BAFFR signals. Thus, MBC survival is critically dependent on signaling from BCR and BAFFR.
Collapse
|
39
|
Wiles KN, Alioto CM, Hodge NB, Clevenger MH, Tsikretsis LE, Lin FT, Tétreault MP. IκB Kinase-β Regulates Neutrophil Recruitment Through Activation of STAT3 Signaling in the Esophagus. Cell Mol Gastroenterol Hepatol 2021; 12:1743-1759. [PMID: 34311141 PMCID: PMC8551782 DOI: 10.1016/j.jcmgh.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The epithelial barrier is the host's first line of defense against damage to the underlying tissue. Upon injury, the epithelium plays a critical role in inflammation. The IκB kinase β (IKKβ)/nuclear factor-κB pathway was shown to be active in the esophageal epithelium of patients with esophageal disease. However, the complex mechanisms by which IKKβ signaling regulates esophageal disease pathogenesis remain unknown. Our prior work has shown that expression of a constitutively active form of IKKβ specifically in esophageal epithelia of mice (IkkβcaEsophageal Epithelial Cell-Knockin (EEC-KI)) is sufficient to cause esophagitis. METHODS We generated ED-L2/Cre;Rosa26-Ikkβca+/L;Stat3L/L (IkkβcaEEC-KI;Stat3Esophageal Epithelial Cell Knockout (EEC-KO)) mice, in which the ED-L2 promoter activates Cre recombinase in the esophageal epithelium, leading to constitutive activation of IKKβ and loss of Stat3. Esophageal epithelial tissues were collected and analyzed by immunostaining, RNA sequencing, quantitative real-time polymerase chain reaction assays, flow cytometry, and Western blot. IkkβcaEEC-KI mice were treated with neutralizing antibodies against interleukin (IL)23p19 and IL12p40. RESULTS Here, we report that IkkβcaEEC-KI mice have increased activation of epithelial Janus kinase 2/STAT3 signaling. Stat3 deletion in IkkβcaEEC-KI mice attenuated the neutrophil infiltration observed in IkkβcaEEC-KI mice and resulted in decreased expression of genes related to immune cell recruitment and activity. Blocking experiments in IkkβcaEEC-KI mice showed that STAT3 activation and subsequent neutrophil recruitment are dependent on IL23 secretion. CONCLUSIONS Our study establishes a novel interplay between IKKβ and STAT3 signaling in epithelial cells of the esophagus, where IKKβ/IL23/STAT3 signaling controls neutrophil recruitment during the onset of inflammation. GEO accession number: GSE154129.
Collapse
Affiliation(s)
- Kelsey Nicole Wiles
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cara Maria Alioto
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Correspondence Address correspondence to: Marie-Pier Tétreault, PhD, Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, 15-753 Tarry Building, 300 East Superior Street, Chicago, Illinois 60611-3010. fax: (312) 908-9032.
| | - Nathan Bruce Hodge
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Margarette Helen Clevenger
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lia Elyse Tsikretsis
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Frederick T.J. Lin
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marie-Pier Tétreault
- Gastroenterology and Hepatology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
40
|
Chappaz S, McArthur K, Kealy L, Law CW, Tailler M, Lane RM, Lieschke A, Ritchie ME, Good-Jacobson KL, Strasser A, Kile BT. Homeostatic apoptosis prevents competition-induced atrophy in follicular B cells. Cell Rep 2021; 36:109430. [PMID: 34289356 DOI: 10.1016/j.celrep.2021.109430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
While the intrinsic apoptosis pathway is thought to play a central role in shaping the B cell lineage, its precise role in mature B cell homeostasis remains elusive. Using mice in which mature B cells are unable to undergo apoptotic cell death, we show that apoptosis constrains follicular B (FoB) cell lifespan but plays no role in marginal zone B (MZB) cell homeostasis. In these mice, FoB cells accumulate abnormally. This intensifies intercellular competition for BAFF, resulting in a contraction of the MZB cell compartment, and reducing the growth, trafficking, and fitness of FoB cells. Diminished BAFF signaling dampens the non-canonical NF-κB pathway, undermining FoB cell growth despite the concurrent triggering of a protective p53 response. Thus, MZB and FoB cells exhibit a differential requirement for the intrinsic apoptosis pathway. Homeostatic apoptosis constrains the size of the FoB cell compartment, thereby preventing competition-induced FoB cell atrophy.
Collapse
Affiliation(s)
- Stéphane Chappaz
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia.
| | - Kate McArthur
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Liam Kealy
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Maximilien Tailler
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Rachael M Lane
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | | | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Kim L Good-Jacobson
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Andreas Strasser
- Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005 SA, Australia.
| |
Collapse
|
41
|
Ferrua F, Bortolomai I, Fontana E, Di Silvestre D, Rigoni R, Marcovecchio GE, Draghici E, Brambilla F, Castiello MC, Delfanti G, Moshous D, Picard C, Taghon T, Bordon V, Schulz AS, Schuetz C, Giliani S, Soresina A, Gennery AR, Signa S, Dávila Saldaña BJ, Delmonte OM, Notarangelo LD, Roifman CM, Poliani PL, Uva P, Mauri PL, Villa A, Bosticardo M. Thymic Epithelial Cell Alterations and Defective Thymopoiesis Lead to Central and Peripheral Tolerance Perturbation in MHCII Deficiency. Front Immunol 2021; 12:669943. [PMID: 34211466 PMCID: PMC8239840 DOI: 10.3389/fimmu.2021.669943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Major Histocompatibility Complex (MHC) class II (MHCII) deficiency (MHCII-D), also known as Bare Lymphocyte Syndrome (BLS), is a rare combined immunodeficiency due to mutations in genes regulating expression of MHCII molecules. MHCII deficiency results in impaired cellular and humoral immune responses, leading to severe infections and autoimmunity. Abnormal cross-talk with developing T cells due to the absence of MHCII expression likely leads to defects in thymic epithelial cells (TEC). However, the contribution of TEC alterations to the pathogenesis of this primary immunodeficiency has not been well characterized to date, in particular in regard to immune dysregulation. To this aim, we have performed an in-depth cellular and molecular characterization of TEC in this disease. We observed an overall perturbation of thymic structure and function in both MHCII-/- mice and patients. Transcriptomic and proteomic profiling of murine TEC revealed several alterations. In particular, we demonstrated that impairment of lymphostromal cross-talk in the thymus of MHCII-/- mice affects mTEC maturation and promiscuous gene expression and causes defects of central tolerance. Furthermore, we observed peripheral tolerance impairment, likely due to defective Treg cell generation and/or function and B cell tolerance breakdown. Overall, our findings reveal disease-specific TEC defects resulting in perturbation of central tolerance and limiting the potential benefits of hematopoietic stem cell transplantation in MHCII deficiency.
Collapse
Affiliation(s)
- Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ileana Bortolomai
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Human Genome Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Dario Di Silvestre
- Department of Biomedical Sciences, Institute for Biomedical Technologies-National Research Council (CNR), Milan, Italy
| | - Rosita Rigoni
- Human Genome Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Genni Enza Marcovecchio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Draghici
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Brambilla
- Department of Biomedical Sciences, Institute for Biomedical Technologies-National Research Council (CNR), Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Children’s Hospital, AP-HP, Paris, France
- Laboratory “Genome Dynamics in the Immune System”, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Capucine Picard
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Children’s Hospital, AP-HP, Paris, France
- Centre d’Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, AP-HP, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Victoria Bordon
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Catharina Schuetz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Giliani
- Cytogenetics and Medical Genetics Unit and “A. Nocivelli” Institute for Molecular Medicine, Spedali Civili Hospital, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Andrew R. Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Pediatric Immunology and HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Sara Signa
- Department of Pediatric Immunology and HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto G. Gaslini, and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children's Sciences, University of Genoa, Genoa, Italy
| | - Blachy J. Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, United States
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States
| | - Chaim M. Roifman
- Division of Immunology & Allergy, Department of Pediatrics, The Hospital for Sick Children, the Canadian Centre for Primary Immunodeficiency and the University of Toronto, Toronto, ON, Canada
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Pier Luigi Mauri
- Department of Biomedical Sciences, Institute for Biomedical Technologies-National Research Council (CNR), Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
42
|
Constitutive activation of NF-κB during early bone marrow development results in loss of B cells at the pro-B-cell stage. Blood Adv 2021; 5:745-755. [PMID: 33560391 DOI: 10.1182/bloodadvances.2020002932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
There is a considerable body of work exploring the role of NF-κB family of transcription factors in the maturation and functions of later stage B cells; however, their role in the earlier bone marrow stages of development is less well understood despite the demonstration that NF-κB activity is present at all early stages of B-cell development. To explore the consequences of early, B cell-targeted constitutive activation of both NF-κB pathways on B-cell development, we generated mice that have either or both. NF-κB pathways constitutively activated beginning in early pro-B cells. In marked contrast to activating a single pathway, we found mice with both pathways constitutively activated displayed a profound loss of B cells, starting with early pro-B cells and peaking at the late pro-B-cell stage, at least in part as a result of increased apoptosis. This effect was found to be cell autonomous and to have striking phenotypic consequences on the secondary lymphoid organs and circulating antibody levels. This effect was also found to be temporal in nature as similar activation under a Cre expressed later in development did not result in generation of a similar phenotype. Taken together, these findings help to shed further light on the need for tight regulation of the NF-κB family of transcription factors during the various stages of B-cell development in the bone marrow.
Collapse
|
43
|
Tichy ED, Ma N, Sidibe D, Loro E, Kocan J, Chen DZ, Khurana TS, Hasty P, Mourkioti F. Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening. Cell Rep 2021; 35:109098. [PMID: 33979621 PMCID: PMC8183356 DOI: 10.1016/j.celrep.2021.109098] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/30/2020] [Accepted: 04/16/2021] [Indexed: 12/30/2022] Open
Abstract
During the repeated cycles of damage and repair in many muscle disorders, including Duchenne muscular dystrophy (DMD), the muscle stem cell (MuSC) pool becomes less efficient at responding to and repairing damage. The underlying mechanism of such stem cell dysfunction is not fully known. Here, we demonstrate that the distinct early telomere shortening of diseased MuSCs in both mice and young DMD patients is associated with aberrant NF-κB activation. We find that prolonged NF-κB activation in MuSCs in chronic injuries leads to shortened telomeres and Ku80 dysregulation and results in severe skeletal muscle defects. Our studies provide evidence of a role for NF-κB in regulating stem-cell-specific telomere length, independently of cell replication, and could be a congruent mechanism that is applicable to additional tissues and/or diseases characterized by systemic chronic inflammation. Tichy et al. reveal a role for NF-κB signaling in regulating telomere length in muscle stem cells (MuSCs) after chronic injuries. Persistent activation of NF-κB leads to shortened telomeres, Ku80 dysregulation, and muscle defects. The findings link stem cell dysfunction and NF-κB-dependent telomere shortening in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nuoying Ma
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Sidibe
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emanuele Loro
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Kocan
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia Z Chen
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tejvir S Khurana
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Hasty
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Regenerative Medicine, Musculoskeletal Regeneration Program, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Kober-Hasslacher M, Oh-Strauß H, Kumar D, Soberon V, Diehl C, Lech M, Engleitner T, Katab E, Fernández-Sáiz V, Piontek G, Li H, Menze B, Ziegenhain C, Enard W, Rad R, Böttcher JP, Anders HJ, Rudelius M, Schmidt-Supprian M. c-Rel gain in B cells drives germinal center reactions and autoantibody production. J Clin Invest 2021; 130:3270-3286. [PMID: 32191641 DOI: 10.1172/jci124382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Single-nucleotide polymorphisms and locus amplification link the NF-κB transcription factor c-Rel to human autoimmune diseases and B cell lymphomas, respectively. However, the functional consequences of enhanced c-Rel levels remain enigmatic. Here, we overexpressed c-Rel specifically in mouse B cells from BAC-transgenic gene loci and demonstrate that c-Rel protein levels linearly dictated expansion of germinal center B (GCB) cells and isotype-switched plasma cells. c-Rel expression in B cells of otherwise c-Rel-deficient mice fully rescued terminal B cell differentiation, underscoring its critical B cell-intrinsic roles. Unexpectedly, in GCB cells transcription-independent regulation produced the highest c-Rel protein levels among B cell subsets. In c-Rel-overexpressing GCB cells this caused enhanced nuclear translocation, a profoundly altered transcriptional program, and increased proliferation. Finally, we provide a link between c-Rel gain and autoimmunity by showing that c-Rel overexpression in B cells caused autoantibody production and renal immune complex deposition.
Collapse
Affiliation(s)
- Maike Kober-Hasslacher
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hyunju Oh-Strauß
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dilip Kumar
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Valeria Soberon
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Carina Diehl
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Maciej Lech
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Oncology and Functional Genomics and
| | - Eslam Katab
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Vanesa Fernández-Sáiz
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Hongwei Li
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Björn Menze
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Christoph Ziegenhain
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Oncology and Functional Genomics and
| | - Jan P Böttcher
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Jiang Y, Müller K, Khan MA, Assmann JC, Lampe J, Kilau K, Richter M, Kleint M, Ridder DA, Hübner N, Schmidt-Supprian M, Wenzel J, Schwaninger M. Cerebral angiogenesis ameliorates pathological disorders in Nemo-deficient mice with small-vessel disease. J Cereb Blood Flow Metab 2021; 41:219-235. [PMID: 32151223 PMCID: PMC8369998 DOI: 10.1177/0271678x20910522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cerebral small-vessel diseases (SVDs) often follow a progressive course. Little is known about the function of angiogenesis, which potentially induces regression of SVDs. Here, we investigated angiogenesis in a mouse model of incontinentia pigmenti (IP), a genetic disease comprising features of SVD. IP is caused by inactivating mutations of Nemo, the essential component of NF-κB signaling. When deleting Nemo in the majority of brain endothelial cells (NemobeKO mice), the transcriptional profile of vessels indicated cell proliferation. Brain endothelial cells expressed Ki67 and showed signs of DNA synthesis. In addition to cell proliferation, we observed sprouting and intussusceptive angiogenesis in NemobeKO mice. Angiogenesis occurred in all segments of the vasculature and in proximity to vessel rarefaction and tissue hypoxia. Apparently, NEMO was required for productive angiogenesis because endothelial cells that had escaped Nemo inactivation showed a higher proliferation rate than Nemo-deficient cells. Therefore, newborn endothelial cells were particularly vulnerable to ongoing recombination. When we interfered with productive angiogenesis by inducing ongoing ablation of Nemo, mice did not recover from IP manifestations but rather showed severe functional deficits. In summary, the data demonstrate that angiogenesis is present in this model of SVD and suggest that it may counterbalance the loss of vessels.
Collapse
Affiliation(s)
- Yun Jiang
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Kristin Müller
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Mahtab A Khan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Julian C Assmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Germany
| | - Knut Kilau
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Germany
| | - Marius Richter
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Maximilian Kleint
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Dirk A Ridder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Norbert Hübner
- DZHK (German Research Centre for Cardiovascular Research), Germany.,Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Germany
| |
Collapse
|
46
|
Maybury BD, Saavedra-Torres Y, Snoeks TJA, Fitzgibbon J, Calado DP. Generation and Surgical Analysis of Genetic Mouse Models to Study NF-κB-Driven Pathogenesis of Diffuse Large B Cell Lymphoma. Methods Mol Biol 2021; 2366:321-342. [PMID: 34236648 DOI: 10.1007/978-1-0716-1669-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enforced activation of NF-κB signaling can be achieved by constitutive NF-κB-inducing kinases, IKK2 and NIK, or via lymphoma-associated mutants of MYD88, CARD11, and CD79B. In order to model Diffuse Large B Cell Lymphoma (DLBCL) in mice, conditional alleles for these proteins are combined with alleles targeting Cre recombinase expression in mature B cells. However, unopposed NF-κB signaling promotes plasmablast differentiation, and as a consequence the model system must be complemented with further mutations that block differentiation, such as Prdm1/BLIMP1 inactivation or overexpression of BCL6. Here, we describe the currently available tools for DLBCL models in mice and their relative advantages and drawbacks. Furthermore, we describe methods to monitor lymphomagenesis, using ultrasound tomography of the spleen, and the technique of partial splenectomy surgery with recovery. These powerful techniques allow paired comparison of individual lymphoma cases before and after interventions, including therapies, and to study the evolution of lymphoma over time. NF-κB activation also promotes widespread nodal involvement with lymphoma and we describe the post-mortem dissection of major nodal groups.
Collapse
Affiliation(s)
- Bernard D Maybury
- The Francis Crick Institute, London, UK.
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | | | | | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Dinis P Calado
- The Francis Crick Institute, London, UK.
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
47
|
Zhang T, Sun J, Cheng J, Yin W, Li J, Miller H, Herrada AA, Gu H, Song H, Chen Y, Gong Q, Liu C. The role of ubiquitinase in B cell development and function. J Leukoc Biol 2020; 109:395-405. [PMID: 32816356 DOI: 10.1002/jlb.1mr0720-185rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 11/10/2022] Open
Abstract
Ubiquitinases are a select group of enzymes that modify target proteins through ubiquitination, which plays a crucial role in the regulation of protein degradation, location, and function. B lymphocytes that originated from bone marrow hematopoietic stem cells (HSC), exert humoral immune functions by differentiating into plasma cells and producing antibodies. Previous studies have shown that ubiquitination is involved in the regulation of the cell cycle and signal transduction important for B lymphocyte development and function. In this review, how ubiquitinases regulate B cell development, activation, apoptosis, and proliferation is discussed, which could help in understanding the physiological processes and diseases related to B cells and also provides potential new targets for further studies.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Li
- Department of hematology, Wuhan Union Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrés A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Heng Gu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 1, Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Mussbacher M, Salzmann M, Haigl B, Basílio J, Hochreiter B, Gleitsmann V, Moser B, Hoesel B, Suur BE, Puhm F, Ungerböck C, Kuttke M, Forteza MJ, Binder CJ, Ketelhuth DF, Assinger A, Schmid JA. Ikk2-mediated inflammatory activation of arterial endothelial cells promotes the development and progression of atherosclerosis. Atherosclerosis 2020; 307:21-31. [DOI: 10.1016/j.atherosclerosis.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 10/23/2022]
|
49
|
Wei Z, Zhang Y, Chen J, Hu Y, Jia P, Wang X, Zhao Q, Deng Y, Li N, Zang Y, Qin J, Wang X, Lu W. Pathogenic CARD11 mutations affect B cell development and differentiation through a noncanonical pathway. Sci Immunol 2020; 4:4/41/eaaw5618. [PMID: 31784498 DOI: 10.1126/sciimmunol.aaw5618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/29/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023]
Abstract
Pathogenic CARD11 mutations cause aberrant nuclear factor κB (NF-κB) activation, which is presumably responsible for multiple immunological disorders. However, whether there is an NF-κB-independent regulatory mechanism contributing to CARD11 mutations related to pathogenesis remains undefined. Using three distinct genetic mouse models, the Card11 knockout (KO) mouse model mimicking primary immunodeficiency, the CARD11 E134G point mutation mouse model representing BENTA (B cell expansion with NF-κB and T cell anergy) disease, and the mouse model bearing oncogenic K215M mutation, we show that CARD11 has a noncanonical function as a negative regulator of the AKT-FOXO1 signal axis, independent of NF-κB activation. Although BENTA disease-related E134G mutant elevates NF-κB activation, we find that E134G mutant mice phenotypically copy Card11 KO mice, in which NF-κB activation is disrupted. Mechanistically, the E134G mutant causes exacerbated AKT activation and reduced FOXO1 protein in B cells similar to that in Card11 KO cells. Moreover, the oncogenic CARD11 mutant K215M reinforces the importance of the noncanonical function of CARD11. In contrast to the E134G mutant, K215M shows a stronger inhibitory effect on AKT activation and more stabilized FOXO1. Likewise, E134G and K215M mutants have converse impacts on B cell development and differentiation. Our results demonstrate that, besides NF-κB, CARD11 also governs the AKT/FOXO1 signaling pathway in B cells. The critical role of CARD11 is further revealed by the effects of pathogenic CARD11 mutants on this noncanonical regulatory function on the AKT-FOXO1 signaling axis.
Collapse
Affiliation(s)
- Zheng Wei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Division of Immunotherapy, Institute of Human Virology (IHV), School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jingjing Chen
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China
| | - Yu Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pan Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qifang Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yicong Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China.
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
50
|
NF-κB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE. J Neurosci 2020; 40:6444-6456. [PMID: 32661025 DOI: 10.1523/jneurosci.1156-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/09/2023] Open
Abstract
Previous studies demonstrate that activation of pancreatic ER kinase (PERK) protects oligodendrocytes against inflammation in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Interestingly, data indicate that the cytoprotective effects of PERK activation on oligodendrocytes during EAE are not mediated by activating transcription factor 4 (ATF4) but are accompanied by activation of nuclear factor κB (NF-κB). NF-κB plays a critical role in MS and EAE; however, the effects of NF-κB activation on oligodendrocytes in these diseases remain elusive. Herein, we generated a mouse model that allow for activation of NF-κB specifically in oligodendrocytes and found that enhanced NF-κB activation in oligodendrocytes had a minimal effect on their viability and function under normal conditions (both male and female mice). Interestingly, we found that enhanced NF-κB activation in oligodendrocytes attenuated EAE disease severity and ameliorated EAE-induced oligodendrocyte loss, demyelination, and axon degeneration, without affecting inflammation (female mice). Moreover, we showed that the detrimental effects of PERK inactivation in oligodendrocytes in EAE were accompanied by impaired NF-κB activation in oligodendrocytes, and were completely rescued by enhanced NF-κB activation in oligodendrocytes (female mice). These findings suggest that NF-κB activation accounts for the cytoprotective effects of PERK activation on oligodendrocytes in MS and EAE.SIGNIFICANCE STATEMENT Nuclear factor κB (NF-κB) is activated in oligodendrocytes in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE); however, the role of NF-κB activation in oligodendrocytes in MS and EAE remains elusive. Herein, we generated a mouse model that allows for activation of NF-κB selectively in oligodendrocytes and demonstrated that NF-κB activation prevented oligodendrocyte death and myelin damage in the EAE model. We further demonstrated that NF-κB activation contributed to the protective effects of pancreatic ER kinase (PERK) activation on oligodendrocytes in the EAE model. As such, this work will facilitate the development of new treatments that enhance oligodendrocyte survival in MS patients by targeting the PERK-NF-κB pathway.
Collapse
|