1
|
Rezagholizadeh N, Datta G, Hasler WA, Nguon EC, Smokey EV, Khan N, Chen X. SLC38A9 is directly involved in Tat-induced endolysosome dysfunction and senescence in astrocytes. Life Sci Alliance 2025; 8:e202503231. [PMID: 40324823 PMCID: PMC12053450 DOI: 10.26508/lsa.202503231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Cellular senescence contributes to accelerated aging and the development of various neurodegeneration disorders including HIV-associated neurocognitive disorders. The development of HIV-associated neurocognitive disorders is attributed, at least in part, to the CNS persistence of HIV-1 transactivator of transcription (Tat), an essential protein for viral transcription that is actively secreted from HIV-1-infected cells. Secreted Tat enters cells via receptor-mediated endocytosis and induces endolysosome dysfunction and cellular senescence in CNS cells. Given that endolysosome dysfunction represents an early step in exogenous Tat-induced cellular senescence, we tested the hypothesis that Tat induces cellular senescence via an endolysosome-dependent mechanism in human astrocytes. We demonstrated that internalized Tat interacts with an endolysosome-resident arginine sensor SLC38A9 via the arginine-rich basic domain. Such an interaction between Tat and SLC38A9 leads to endolysosome dysfunction, enhanced HIV-1 LTR transactivation, and cellular senescence. These findings suggest that endolysosome dysfunction drives the development of senescence and highlight the novel role of SLC38A9 in Tat-induced endolysosome dysfunction and astrocyte senescence.
Collapse
Affiliation(s)
- Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Erica C Nguon
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Elise V Smokey
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
2
|
Sutar Y, Adams JS, Wu X, Bhoyarekar V, Garcia Diaz M, Wallace J, Dave M, Zhang QY, Date AA. Rilpivirine Ionic Liquid Nanoemulsion Augments the Oral Bioavailability of Rilpivirine and Its Delivery to the HIV Sanctuary Sites. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40392184 DOI: 10.1021/acsami.5c05456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Rilpivirine (RPV) is a potent antiretroviral drug used for the long-term management of HIV infection. The high crystallinity and very low aqueous solubility of RPV are responsible for the highly variable pharmacokinetics of RPV seen in HIV-infected patients. While fatty meals can increase the absorption of RPV, the low lipid solubility of RPV precludes the development of oral lipid-based formulations such as self-nanoemulsifying systems (SNES). To improve the oral delivery of RPV, we evaluated the potential of six biocompatible bulky anions to transform RPV into amphiphilic RPV ionic liquids with high lipid solubility and only sodium docusate successfully yielded an amphiphilic RPV ionic liquid (IL), RPV docusate (RPV-Doc). Spectroscopic, chromatographic, and thermal characterization techniques confirmed the formation of RPV-Doc as an IL. RPV-Doc showed remarkably higher (∼100-200-fold) solubility in lipids compared to pure RPV. RPV-Doc was incorporated into two SNES formulations that, depending upon the composition of the SNES formulation, yielded a <100 or <250 nm nanoemulsion irrespective of the pH of the dilution medium. Oral pharmacokinetics and biodistribution studies in mice showed that both SNES formulations containing RPV-Doc yielded rapid and significantly higher oral bioavailability (∼6-fold higher Cmax and AUC) of RPV compared to the RPV suspension. Furthermore, compared to the RPV suspension, both SNES formulations containing RPV-Doc resulted in significantly higher and sustained RPV levels in the HIV sanctuary sites such as mesenteric lymph nodes and the brain. Taken together, our innovative approach can be used to improve the oral bioavailability and tissue penetration of RPV, which can eventually result in a reduction in the pharmacokinetic variability and therapeutic dose of RPV leading to optimal drug utilization.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Joseph S Adams
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | | | - Monica Garcia Diaz
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Masumi Dave
- Gattefossé Corporation, Paramus, New Jersey 07652, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Abhijit A Date
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona 85711, United States
| |
Collapse
|
3
|
Meng L, Zhao H, Chang S, Li W, Tian Y, Wang R, Wang L, Gu T, Wu J, Yu B, Wang C, Yu X. Engineering of CD8 + T cells with an HIV-specific synthetic notch receptor to secrete broadly therapeutic antibodies for combining antiviral humoral and cellular immune responses. mBio 2025; 16:e0383924. [PMID: 39998238 PMCID: PMC11980546 DOI: 10.1128/mbio.03839-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
The application of immunotherapeutic strategies, such as chimeric antigen receptor-T cells and broadly neutralizing antibodies (bNAbs), for the treatment of human immunodeficiency virus (HIV) infection is hindered by the latent reservoirs and viral escape. Achieving long-term control of viral load in the absence of antiretroviral therapy requires a combination approach utilizing these immunotherapeutic strategies. For this purpose, we developed novel anti-HIV-1 synthetic Notch (synNotch) receptor-T cells, termed CD4-17b-VN, which express both a bNAb (VRC01) and a bispecific T cell-engaging protein (N6-αCD3) with antigenic control. The synNotch receptor-expressing cells can sense the viral antigen presented on both HIV-1 particles and the surface of target cells. A human T cell line equipped with the CD4-17b-VN circuit could effectively control VRC01 and N6-αCD3 secretion upon sensitization, suppress the infection of diverse subtypes of HIV-1 strains, and mediate specific bypass cytotoxic activity against infected and latency-reactivated cells. Additionally, CD4-17b-VN CD8+ T cells exhibited long-lasting suppression of infected cells and stronger killing effect on latency-reactivated cells in vitro. Importantly, we demonstrated that the synNotch receptor did not increase susceptibility to HIV-1 infection in the engineered cells. Our study validates the concept of a synNotch platform-based T cell therapeutic approach that can deliver broadly therapeutic antibodies in an HIV-1 antigen-controlled manner, which may have important implications for the functional cure of AIDS.IMPORTANCEAdoptive transfer of effector T cells modified with a chimeric antigen receptor has been proposed as an applicable approach to treat human immunodeficiency virus (HIV) infection. The synNotch receptor (SNR) system serves as a versatile tool, enabling customized programming of input and output functions in mammalian cells. Herein, we report a novel synNotch platform-based approach for T cell engineering targeting both cell-free particles and infected cells by coupling antibody neutralization with cytotoxicity. Our findings demonstrate that the engineered CD4-17b SNR enables controllable production of functional anti-HIV-1 broadly neutralizing antibody and bispecific T cell-engaging protein upon recognition of the viral particle and cell surface antigens by the bifunctional synNotch-T cells. Human primary CD8+ T cells equipped with the bifunctional synNotch circuit CD4-17b-VN can effectively suppress long-term viral replication and reduce latency-reactivated cells in vitro, without the undesired risk of being infected by the virus, suggesting their potential candidacy for AIDS therapy with prospects for future clinical applications.
Collapse
Affiliation(s)
- Lina Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Haichi Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Shangkun Chang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Weiting Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yinghui Tian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ruihong Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Libian Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tiejun Gu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Wang Y, Li Y, Chen J, Guo C, Yu X, Zhang Z, Fu Y, Han X, Hu Q, Ding H, Shang H, Jiang Y. Inhibition of TIGIT on NK cells improves their cytotoxicity and HIV reservoir eradication potential. mBio 2025; 16:e0322624. [PMID: 39918313 PMCID: PMC11898710 DOI: 10.1128/mbio.03226-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/10/2025] [Indexed: 03/14/2025] Open
Abstract
The latent human immunodeficiency virus (HIV) reservoir presents the biggest obstacle to curing HIV chronic infection. Consequently, finding novel strategies to control the HIV reservoir is critical. Natural killer (NK) cells are essential for antiviral immunity. However, the influence of NK cell subsets and their associated inhibitory or activating receptors on their cytotoxicity toward the HIV reservoir has not been fully studied. We investigated the relationship between the percentage of NK cells or NK cell subsets and the HIV reservoir. Our results indicated that the percentage of CD56-CD16+ NK cells was positively associated with HIV reservoir size (i.e., HIV DNA, HIV msRNA, or HIV usRNA). Additionally, we observed that the percentage of IFN-γ+ NK cells was inversely related to the HIV reservoir. Furthermore, the expression of TIGIT on NK cells, particularly CD56-CD16+ and CD56dim NK cell subsets, positively correlated with the HIV reservoir. Notably, individuals with higher percentage of TIGIT+ NK and lower percentage of CD226+ NK cells exhibited larger HIV reservoir. Mechanistically, we discovered that TIGIT could inhibit the PI3K-Akt-mTOR-mTORC1 (s6k) signaling pathway to decrease the production of IFN-γ in NK cells. Importantly, inhibiting TIGIT in NK cells enhanced their ability to eliminate reactivated latently infected CD4+ T cells. Our experiments underscored the crucial role of NK cells in controlling the HIV reservoir and suggested that TIGIT serves as a promising target for enhancing the NK cell-mediated clearance of the HIV reservoir. IMPORTANCE As a major barrier to human immunodeficiency virus (HIV) cure, HIV reservoir persist in viremia-suppressed infected individuals. NK cells are important antiviral cells, and their impact on reservoir has rarely been reported. We analyzed the relationship between the size of reservoir and NK cell subsets, inhibitory receptor TIGIT expression. Our analysis found that the percentage of CD56-CD16+ NK cells was positively associated with HIV reservoir size. Furthermore, TIGIT expression on NK cells and CD56-CD16+ NK cells or CD56dim NK cells has a positive correlation with the HIV reservoir. TIGIT can inhibit the PI3K-Akt-mTOR-mTORC1 (s6k) signaling pathway to decrease the production of IFN-γ on NK cells. Blocking TIGIT in NK cells can enhance their ability to eliminate reactivated latently infected CD4+ T cells. Our study indicated that NK cells are critical to the control of the reservoir size, and TIGIT may be a target for enhancing the NK cell-mediated elimination of the reservoir.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Yidi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Jiaqi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Chenxi Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Xiaowen Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Zining Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Yajing Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Xiaoxu Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Qinghai Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Haibo Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Hong Shang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| |
Collapse
|
5
|
Gasca-Capote C, Ruiz-Mateos E. Persistent elite controllers as the key model to identify permanent HIV remission. Curr Opin HIV AIDS 2025; 20:165-171. [PMID: 39773856 PMCID: PMC11809733 DOI: 10.1097/coh.0000000000000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW To summarize the heterogeneity in the elite controllers population with the aim to identify a compatible profile with a persistent HIV remission, making distinction between persistent elite controllers, people with HIV (PWHIV) who permanently maintain virological control in the absence of antiretroviral treatment (ART), and transient elite controllers, PWHIV who eventually lose virological control. For this purpose, it is important to consider the mechanisms and biomarkers that have previously been associated with the maintenance and loss of the natural virological control. RECENT FINDINGS Transient elite controllers, before losing virological control, exhibit a distinct metabolomic, proteomic, microRNAs (miRNA), immunological and virological profile compared to persistent elite controllers. In addition to a reduced and less polyfunctional HIV-specific T-cell response, transient elite controllers show a greater proportion of intact proviruses integrated into genic regions. In contrast, persistent elite controllers display a privileged HIV-1 reservoir profile with absence of detected intact proviruses or low proportion of clonal intact proviruses preferentially integrated into genomic features associated with HIV-1 transcriptional repression. SUMMARY According to previous studies, the comprehensive characterization of persistent elite controllers might be crucial to identify other PWHIV with this distinct profile as spontaneously cured.
Collapse
Affiliation(s)
- Carmen Gasca-Capote
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | |
Collapse
|
6
|
Langat R, Chakrawarti A, Klatt NR. Cannabis Use in HIV: Impact on Inflammation, Immunity and the Microbiome. Curr HIV/AIDS Rep 2025; 22:19. [PMID: 39984806 DOI: 10.1007/s11904-025-00729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
PURPOSE OF REVIEW This review explores how cannabis impacts the gut microbiome, immune system, and ART outcomes in people with HIV (PWH). Given the increasing prevalence of cannabis use among PWH, we investigated its potential to reduce chronic inflammation and enhance gut health, both of which can influence HIV pathogenesis. RECENT FINDINGS Cannabis has immunomodulatory and anti-inflammatory effects, including reducing systemic inflammatory biomarkers (such as MCP-1 and IP-10) and improving gut barrier integrity through increased short-chain fatty acid (SCFA) production. Studies have shown that cannabis use is associated with increased gut mucosal immunity, decreased immune activation, and a unique microbiome composition. Preliminary evidence indicates that cannabis may influence HIV reservoirs, although the results remain inconclusive. Cannabis shows promise in managing inflammation, gut dysbiosis, and immune dysfunction in PWH. However, its effects on HIV reservoirs, adherence to antiretroviral therapy, and long-term outcomes need further investigation through rigorous clinical trials using standardized formulations.
Collapse
Affiliation(s)
- Robert Langat
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, USA.
| | - Ashma Chakrawarti
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Nichole R Klatt
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
7
|
Chen W, Berkhout B, Pasternak AO. Phenotyping Viral Reservoirs to Reveal HIV-1 Hiding Places. Curr HIV/AIDS Rep 2025; 22:15. [PMID: 39903363 PMCID: PMC11794352 DOI: 10.1007/s11904-025-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist in various cell types and tissues and reignite active replication if therapy is stopped. Persistence of the viral reservoirs in people with HIV-1 (PWH) is the main obstacle to achieving a cure. Identification and characterization of cellular and tissue HIV-1 reservoirs is thus central to the cure research. Here, we discuss emerging insights into the phenotype of HIV-1 reservoir cells. RECENT FINDINGS HIV-1 persists in multiple tissues, anatomic locations, and cell types. Although contributions of different CD4 + T-cell subsets to the HIV-1 reservoir are not equal, all subsets harbor a part of the viral reservoir. A number of putative cellular markers of the HIV-1 reservoir have been proposed, such as immune checkpoint molecules, integrins, and pro-survival factors. CD32a expression was shown to be associated with a very prominent enrichment in HIV-1 DNA, although this finding has been challenged. Recent technological advances allow unbiased single-cell phenotypic analyses of cells harbouring total or intact HIV-1 proviruses. A number of phenotypic markers have been reported by several independent studies to be enriched on HIV-1 reservoir cells. Expression of some of these markers could be mechanistically linked to the reservoir persistence, as they could for instance shield the reservoir cells from the immune recognition or promote their survival. However, so far no single phenotypic marker, or combination of markers, can effectively distinguish HIV-infected from uninfected cells or identify all reservoir cells.
Collapse
Affiliation(s)
- Wenxuan Chen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Hetrick B, Siddiqui S, Spear M, Guo J, Liang H, Fu Y, Yang Z, Doyle-Meyers L, Pahar B, Veazey RS, Dufour J, Andalibi A, Ling B, Wu Y. Suppression of viral rebound by a Rev-dependent lentiviral particle in SIV-infected rhesus macaques. Gene Ther 2025; 32:16-24. [PMID: 39025983 PMCID: PMC11785524 DOI: 10.1038/s41434-024-00467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Persistence of human immunodeficiency virus (HIV) reservoirs prevents viral eradication, and consequently HIV-infected patients require lifetime treatment with antiretroviral therapy (ART) [1-5]. Currently, there are no effective therapeutics to prevent HIV rebound upon ART cessation. Here we describe an HIV/SIV Rev-dependent lentiviral particle that can be administered to inhibit viral rebound [6-9]. Using simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, we demonstrate that the administration of pre-assembled SIV Rev-dependent lentiviral particles into SIVmac239-infected Indian rhesus macaques can lead to reduction of viral rebound upon ART termination. One of the injected animals, KC50, controlled plasma and CNS viremia to an undetectable level most of the time for over two years after ART termination. Surprisingly, detailed molecular and immunological characterization revealed that viremia control was concomitant with the induction of neutralizing antibodies (nAbs) following the administration of the Rev-dependent vectors. This study emphasizes the importance of neutralizing antibodies (nAbs) for viremia control [10-15], and also provides proof of concept that the Rev-dependent vector can be used to target viral reservoirs, including the CNS reservoirs, in vivo. However, future large-scale in vivo studies are needed to understand the potential mechanisms of viremia control induced by the Rev-dependent vector.
Collapse
Affiliation(s)
- Brian Hetrick
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Mark Spear
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Jia Guo
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Huizhi Liang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Yajing Fu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Zhijun Yang
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Jason Dufour
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Ali Andalibi
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX, 78227, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
9
|
Murzin AI, Elfimov KA, Gashnikova NM. The Proviral Reservoirs of Human Immunodeficiency Virus (HIV) Infection. Pathogens 2024; 14:15. [PMID: 39860976 PMCID: PMC11768375 DOI: 10.3390/pathogens14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction. If treatment is not effective enough or is interrupted, the proviral reservoir can reactivate. Early initiation of ART improves the prognosis of the course of HIV infection, which is explained by the reduction in the proviral reservoir pool observed in the early stages of the disease. Different HIV subtypes present differences in the number of latent reservoirs, as determined by structural and functional differences. Unique signatures of patients with HIV, such as elite controllers, have control over viral replication and can be said to have achieved a functional cure for HIV infection. Uncovering the causes of this phenomenon will bring humanity closer to curing HIV infection, potential approaches to which include stem cell transplantation, clustered regularly interspaced short palindromic repeats (CRISPR)/cas9, "Shock and kill", "Block and lock", and the application of broad-spectrum neutralizing antibodies (bNAbs).
Collapse
Affiliation(s)
- Andrey I. Murzin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Russia; (K.A.E.); (N.M.G.)
| | | | | |
Collapse
|
10
|
Jang S, Bedwell G, Singh S, Yu H, Arnarson B, Singh P, Radhakrishnan R, Douglas A, Ingram Z, Freniere C, Akkermans O, Sarafianos S, Ambrose Z, Xiong Y, Anekal P, Montero Llopis P, KewalRamani V, Francis A, Engelman A. HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration. Nucleic Acids Res 2024; 52:11060-11082. [PMID: 39258548 PMCID: PMC11472059 DOI: 10.1093/nar/gkae769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which includes a central prion-like domain (PrLD) with capsid binding FG motif and C-terminal mixed-charge domain (MCD), to LLPS activity and to HIV-1 infection remain unclear. Herein, we determined that the PrLD and MCD both contribute to CPSF6 LLPS activity in vitro. Akin to FG mutant CPSF6, infection of cells expressing MCD-deleted CPSF6 uncharacteristically arrested at the nuclear rim. While heterologous MCDs effectively substituted for CPSF6 MCD function during HIV-1 infection, Arg-Ser domains from related SR proteins were largely ineffective. While MCD-deleted and wildtype CPSF6 proteins displayed similar capsid binding affinities, the MCD imparted LLPS-dependent higher-order binding and co-aggregation with capsids in vitro and in cellulo. NS depletion reduced CPSF6 puncta formation without significantly affecting integration into NS-proximal chromatin, and appending the MCD onto a heterologous capsid binding protein partially restored virus nuclear penetration and integration targeting in CPSF6 knockout cells. We conclude that MCD-dependent CPSF6 condensation with capsids underlies post-nuclear incursion for viral DNA integration and HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Satya P Singh
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Hyun Jae Yu
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Bjarki Arnarson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - AidanDarian W Douglas
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Zachary M Ingram
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Onno Akkermans
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Praju V Anekal
- MicRoN Core, Harvard Medical School, Boston, MA 02215, USA
| | | | - Vineet N KewalRamani
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ashwanth C Francis
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Sánchez-Gaona N, Gallego-Cortés A, Astorga-Gamaza A, Rallón N, Benito JM, Ruiz-Mateos E, Curran A, Burgos J, Navarro J, Suanzes P, Falcó V, Genescà M, Buzon MJ. NKG2C and NKG2A coexpression defines a highly functional antiviral NK population in spontaneous HIV control. JCI Insight 2024; 9:e182660. [PMID: 39288262 PMCID: PMC11529982 DOI: 10.1172/jci.insight.182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Elite controllers (ECs), a unique group of people with HIV (PWH), exhibit remarkable control of viral replication in the absence of antiretroviral therapy. In this study, we comprehensively characterized the NK cell repertoire in ECs after long-term viral control. Phenotypic profiling of NK cells revealed profound differences compared with other PWH, but marked similarities to uninfected individuals, with a distinctive prevalence of NKG2C+CD57+ memory-like NK cells. Functional analyses indicated that ECs had limited production of functional molecules upon NK stimulation and consequently reduced natural cytotoxicity against non-HIV target cells. Importantly, ECs showed an exceptional ability to kill primary HIV-infected cells by the antibody-dependent cell cytotoxicity adaptive mechanism, which was achieved by a specific memory-like NK population expressing CD16, NKG2A, NKG2C, CD57, and CXCR3. In-depth single-cell RNA-seq unveiled a unique transcriptional signature in these NK cells linked to increased cell metabolism, migration, chemotaxis, effector functions, cytokine secretion, and antiviral response. Our findings underscore a pivotal role of NK cells in the immune control of HIV and identify specific NK cells as emerging targets for immunotherapies.
Collapse
Affiliation(s)
- Nerea Sánchez-Gaona
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Gallego-Cortés
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José Miguel Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Adrian Curran
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Suanzes
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J. Buzon
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Tian RR, Li T, Zhang MX, Song TZ, Zheng HY, Zheng YT. Nonnegligible Contribution of Nonlymphoid Tissue to Viral Reservoir During the Short-Term Early cART in SIVmac239-Infected Chinese Rhesus Macaques. AIDS Res Hum Retroviruses 2024; 40:521-530. [PMID: 38535626 DOI: 10.1089/aid.2023.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
HIV/AIDS cannot be cured because of the persistence of the viral reservoir. Because of the complexity of the cellular composition and structure of the human organs, HIV reservoirs of anatomical site are also complex. Recently, although a variety of molecules have been reported to be involved in the establishment and maintenance of the viral reservoirs, or as marker of latent cells, the research mainly focuses on blood and lymph nodes. Now, the characteristics of the viral reservoir in tissue are not yet fully understood. In this study, various tissues were collected from SIVmac239-infected monkeys, and the level of total SIV DNA, SIV 2-LTR DNA, and cell-associated virus RNA in them were compared with character of the anatomical viral reservoir under early treatment. The results showed that short-term combination antiretroviral therapy (cART) starting from 3 days after infection could significantly inhibit viremia and reduce the size of the anatomical viral reservoir, but it could not eradicate de novo infections and ongoing replication of virus. Moreover, the effects of early cART on the level of total SIV DNA, SIV 2-LTR DNA, and cell-associated virus RNA in different tissues were different, which changed the size distribution of viral reservoir in anatomical site. Finally, the contribution of nonlymphoid tissues, especially liver and lung, to the viral reservoir increased after treatment, while the contribution of intestinal lymphoid to the viral reservoir significantly reduced. These results suggested that early treatment effectively decreased the size of viral reservoir, and that the effects of cART on the tissue viral reservoir varied greatly by tissue type. The results implied that persistent existence of virus in nonlymphoid tissues after short-term treatment suggested that the role of nonlymphoid tissues cannot be ignored in development strategies for AIDS therapy.
Collapse
Affiliation(s)
- Ren-Rong Tian
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ting Li
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ming-Xu Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tian-Zhang Song
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong-Yi Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming National High-Level Biosafety Research Center for Nonhuman Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
13
|
Marini S, Huber A, Cash MN, Salemi M, Cook RL, Borsa P, Mavian CN. Oral Cannabidiol Treatment Is Associated with an Anti-Inflammatory Gene Expression Signature in Myeloid Cells of People Living with HIV. Cannabis Cannabinoid Res 2024; 9:1028-1037. [PMID: 38252549 DOI: 10.1089/can.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Introduction: HIV-related comorbidities appear to be related to chronic inflammation, a condition characterizing people living with HIV (PLWH). Prior work indicates that cannabidiol (CBD) might reduce inflammation; however, the genetics underpinning of this effect are not well investigated. Our main objective is to detect gene expression alterations in human peripheral blood mononuclear cells (PBMCs) from PLWH after at least 1 month of CBD treatment. Materials and Methods: We analyzed ∼41,000 PBMCs from three PLWH at baseline and after CBD treatment (27-60 days) through single-cell RNA sequencing. Results: We obtained a coherent signature, characterized by an anti-inflammatory activity, of differentially expressed genes in myeloid cells. Conclusions: Our study shows how CBD is associated with alterations of gene expression in myeloid cells after CBD treatment. Clinical Trial Registration: NCT05209867.
Collapse
Affiliation(s)
- Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - Amanda Huber
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Melanie N Cash
- Department of Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Department of Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Robert L Cook
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Paul Borsa
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Carla N Mavian
- Department of Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Donadoni M, Cakir S, Bellizzi A, Swingler M, Sariyer IK. Modeling HIV-1 infection and NeuroHIV in hiPSCs-derived cerebral organoid cultures. J Neurovirol 2024; 30:362-379. [PMID: 38600307 PMCID: PMC11464638 DOI: 10.1007/s13365-024-01204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
The human immunodeficiency virus (HIV) epidemic is an ongoing global health problem affecting 38 million people worldwide with nearly 1.6 million new infections every year. Despite the advent of combined antiretroviral therapy (cART), a large percentage of people with HIV (PWH) still develop neurological deficits, grouped into the term of HIV-associated neurocognitive disorders (HAND). Investigating the neuropathology of HIV is important for understanding mechanisms associated with cognitive impairment seen in PWH. The major obstacle for studying neuroHIV is the lack of suitable in vitro human culture models that could shed light into the HIV-CNS interactions. Recent advances in induced pluripotent stem cell (iPSC) culture and 3D brain organoid systems have allowed the generation of 2D and 3D culture methods that possess a potential to serve as a model of neurotropic viral diseases, including HIV. In this study, we first generated and characterized several hiPSC lines from healthy human donor skin fibroblast cells. hiPSCs were then used for the generation of microglia-containing human cerebral organoids (hCOs). Once fully characterized, hCOs were infected with HIV-1 in the presence and absence of cART regimens and viral infection was studied by cellular, molecular/biochemical, and virological assays. Our results revealed that hCOs were productively infected with HIV-1 as evident by viral p24-ELISA in culture media, RT-qPCR and RNAscope analysis of viral RNA, as well as ddPCR analysis of proviral HIV-1 in genomic DNA samples. More interestingly, replication and gene expression of HIV-1 were also greatly suppressed by cART in hCOs as early as 7 days post-infections. Our results suggest that hCOs derived from hiPSCs support HIV-1 replication and gene expression and may serve as a unique platform to better understand neuropathology of HIV infection in the brain.
Collapse
Affiliation(s)
- Martina Donadoni
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Senem Cakir
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Michael Swingler
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Tanushree, Sharma A, Monika, Singh RP, Jhawat V. Human immunodeficiency virus infection challenges: Current therapeutic limitations and strategies for improved management through long-acting injectable formulation. Rev Med Virol 2024; 34:e2563. [PMID: 38886179 DOI: 10.1002/rmv.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
HIV infection has been a severe global health burden, with millions living with the virus and continuing new infections each year. Antiretroviral therapy can effectively suppress HIV replication but requires strict lifelong adherence to daily oral medication regimens, which presents a significant challenge. Long-acting formulations of antiretroviral drugs administered infrequently have emerged as a promising strategy to improve treatment outcomes and adherence to HIV therapy and prevention. Long-acting injectable (LAI) formulations are designed to gradually release drugs over extended periods of weeks or months following a single injection. Critical advantages of LAIs over conventional oral dosage forms include less frequent dosing requirements, enhanced patient privacy, reduced stigma associated with daily pill regimens, and optimised pharmacokinetic/pharmacodynamic profiles. Several LAI antiretroviral products have recently gained regulatory approval, such as the integrase strand transfer inhibitor cabotegravir for HIV preexposure prophylaxis and the Cabotegravir/Rilpivirine combination for HIV treatment. A leading approach for developing long-acting antiretroviral depots involves encapsulating drug compounds in polymeric microspheres composed of biocompatible, biodegradable materials like poly (lactic-co-glycolic acid). These injectable depot formulations enable high drug loading with customisable extended-release kinetics controlled by the polymeric matrix. Compared to daily oral therapies, LAI antiretroviral formulations leveraging biodegradable polymeric microspheres offer notable benefits, including prolonged therapeutic effects, reduced dosing frequency for improved adherence, and the potential to kerb the initial HIV transmission event. The present manuscript aims to review the pathogenesis of the virus and its progression and propose therapeutic targets and long-acting drug delivery strategies that hold substantial promise for enhancing outcomes in HIV treatment and prevention.
Collapse
Affiliation(s)
- Tanushree
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Monika
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
16
|
Alagaratnam J, Stöhr W, Hamlyn E, Porter K, Toombs J, Heslegrave A, Zetterberg H, Gisslén M, Underwood J, Schechter M, Kaleebu P, Tambussi G, Kinloch S, Miro JM, Kelleher AD, Babiker A, Frater J, Winston A, Fidler S. Impact of interrupting antiretroviral therapy started during primary HIV-1 infection on plasma neurofilament light chain protein, a marker of neuronal injury: The SPARTAC trial. J Virus Erad 2024; 10:100381. [PMID: 38988673 PMCID: PMC11234014 DOI: 10.1016/j.jve.2024.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Objective Antiretroviral therapy (ART)-conferred suppression of HIV replication limits neuronal injury and inflammation. ART interruption tests efficacy in HIV cure trials and viral rebound after ART interruption may induce neuronal injury. We investigated the impact of protocol-defined ART interruption, commenced during primary HIV-1 infection (PHI) on a biomarker of neuro-axonal injury (neurofilament light protein (NfL)), and its associations with inflammation (D-dimer and interleukin-6 (IL-6)) and HIV-1 reservoir size (total HIV-1 DNA). Design Retrospective study measuring plasma NfL in 83 participants enrolled in SPARTAC randomised to receive 48-weeks ART initiated during PHI, followed by ART interruption. Methods NfL (Simoa immunoassay, Quanterix™) was measured before ART, after 48 weeks on ART, and 12 weeks after stopping ART. Plasma D-dimer and IL-6, and total HIV-1 DNA in peripheral CD4+ T-cells results were available in a subset of participants. Longitudinal NfL changes were assessed using mixed models, and associations with clinical and laboratory parameters using linear regression. Results NfL decreased following 48-weeks ART (geometric mean 6.9 to 5.8 pg/mL, p = 0.006) with no further significant change up to 12-weeks post-stopping ART despite viral rebound in the majority of participants (median 1.7 to 3.9 plasma HIV-1 RNA log10 copies/mL). Higher baseline NfL was independently associated with higher plasma HIV-1 RNA (p = 0.020) and older age (p = 0.002). While NfL was positively associated with D-dimer (n = 48; p = 0.002), there was no significant association with IL-6 (n = 48) or total HIV-1 DNA (n = 51). Conclusions Using plasma NfL as a surrogate marker, a decrease in neuro-axonal injury was observed in a cohort of participants following ART initiation during PHI, with no evidence of neuro-axonal injury rebound following ART interruption for up to 12 weeks, despite viral rebound in the majority of participants.
Collapse
Affiliation(s)
- Jasmini Alagaratnam
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wolfgang Stöhr
- Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | - Elizabeth Hamlyn
- Caldecot Centre, Kings College Hospital NHS Foundation Trust, London, United Kingdom
| | - Kholoud Porter
- Institute for Global Health, University College London, London, United Kingdom
| | - Jamie Toombs
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Amanda Heslegrave
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Jonathan Underwood
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mauro Schechter
- Projeto Praça Onze, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Sabine Kinloch
- Department of Infection and Immunity, Royal Free Hospital, Pond Street, London, United Kingdom
| | - Jose M Miro
- Infectious Diseases Service, Hospital Clinic - IDIBAPS. University of Barcelona, Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Abdel Babiker
- Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
17
|
Yin L, Wang Q, Liu S, Chen J, Zhang Y, Lu L, Lu H, Song Z, Zhang L. iTRAQ-based proteomic study on monocyte cell model discovered an association of LAMP2 downregulation with HIV-1 latency. Proteome Sci 2024; 22:6. [PMID: 38750478 PMCID: PMC11095035 DOI: 10.1186/s12953-024-00230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Patients with immunodeficiency virus-1 (HIV-1) infection are challenging to be cured completely due to the existence of HIV-1 latency reservoirs. However, the knowledge of the mechanisms and biomarkers associated with HIV-1 latency is limited. Therefore, identifying proteins related to HIV-1 latency could provide new insights into the underlying mechanisms of HIV-1 latency, and ultimately contribute to the eradication of HIV reservoirs. METHODS An Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-labeled subcellular proteomic study was performed on an HIV-1 latently infected cell model (U1, a HIV-1-integrated U937 cell line) and its control (U937). Differentially expressed proteins (DEPs) were analyzed using STRING-DB. Selected DEPs were further evaluated by western blotting and multiple reaction monitoring technology in both cell model and patient-derived cluster of differentiation 4 (CD4)+ T cells. Finally, we investigated the relationship between a specific DEP lysosome-associated membrane glycoprotein 2 (LAMP2) and HIV-1 reactivation by panobinostat or lysosome regulation by a lysosomotropic agent hydroxychloroquine in U1 and U937 cells. RESULTS In total, 110 DEPs were identified in U1 cells comparing to U937 control cells. Bioinformatics analysis suggested associations of the altered proteins with the immune response and endosomal/lysosomal pathway. LAMP2, leukocyte surface antigen CD47, CD55, and ITGA6 were downregulated in HIV-1 latent cells. Downregulated LAMP2 was further confirmed in resting CD4+ T cells from patients with latent HIV-1 infection. Furthermore, both HIV-1 reactivation by panobinostat and stimulation with hydroxychloroquine upregulated LAMP2 expression. CONCLUSIONS Our results indicated the involvement of the endosomal/lysosomal pathway in HIV-1 latency in macrophage cell model. The down-modulation of LAMP2 was associated with HIV latency, and the restoration of LAMP2 expression accompanied the transition of viral latency to active infection. This study provides new insights into the mechanism of HIV-1 latency and potential strategies for eradicating HIV-1 reservoirs by targeting LAMP2 expression.
Collapse
Affiliation(s)
- Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qimin Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Siyuan Liu
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jun Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lingqing Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
18
|
Grandgenett DP, Engelman AN. Brief Histories of Retroviral Integration Research and Associated International Conferences. Viruses 2024; 16:604. [PMID: 38675945 PMCID: PMC11054761 DOI: 10.3390/v16040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.
Collapse
Affiliation(s)
- Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Ferreira EA, Clements JE, Veenhuis RT. HIV-1 Myeloid Reservoirs - Contributors to Viral Persistence and Pathogenesis. Curr HIV/AIDS Rep 2024; 21:62-74. [PMID: 38411842 PMCID: PMC11912345 DOI: 10.1007/s11904-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW HIV reservoirs are the main barrier to cure. CD4+ T cells have been extensively studied as the primary HIV-1 reservoir. However, there is substantial evidence that HIV-1-infected myeloid cells (monocytes/macrophages) also contribute to viral persistence and pathogenesis. RECENT FINDINGS Recent studies in animal models and people with HIV-1 demonstrate that myeloid cells are cellular reservoirs of HIV-1. HIV-1 genomes and viral RNA have been reported in circulating monocytes and tissue-resident macrophages from the brain, urethra, gut, liver, and spleen. Importantly, viral outgrowth assays have quantified persistent infectious virus from monocyte-derived macrophages and tissue-resident macrophages. The myeloid cell compartment represents an important target of HIV-1 infection. While myeloid reservoirs may be more difficult to measure than CD4+ T cell reservoirs, they are long-lived, contribute to viral persistence, and, unless specifically targeted, will prevent an HIV-1 cure.
Collapse
Affiliation(s)
- Edna A Ferreira
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
20
|
Fisher MA, Chaudhry W, Campbell LA. Gesicles packaging dCas9-VPR ribonucleoprotein complexes can combine with vorinostat and promote HIV proviral transcription. Mol Ther Methods Clin Dev 2024; 32:101203. [PMID: 38390557 PMCID: PMC10881426 DOI: 10.1016/j.omtm.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Despite the success of combination antiretroviral therapy (cART) in HIV treatment, a cure for HIV remains elusive. Scientists postulate that HIV latent reservoirs may be a vital target in curative strategies. Vorinostat is a latency-reversing agent that has demonstrated some effectiveness in reactivating latent HIV, but complementary therapies may be essential to enhance its efficacy. One such approach may utilize the CRISPR-Cas9 system, which has evolved to include transcriptional activators such as dCas9-VPR. In this study, we explored the effects of combining vorinostat coupled with gesicle-mediated delivery of dCas9-VPR in promoting the transcription of integrated HIV proviruses in HIV-NanoLuc CHME-5 microglia and J-Lat 10.6 lymphocytes. We confirmed that dCas9-VPR ribonucleoprotein complexes can be packaged into gesicles and application to cells successfully induced HIV transcription through interactions with the HIV LTR. Vorinostat also induced significant increases in proviral transcription but generated inhibition of cellular proliferation (microglia) or cell viability (lymphocytes) starting at 1,000 nM and higher concentrations. Experiments combining dCas9-VPR gesicles and vorinostat confirmed the enhanced transcriptional activation of the HIV provirus in microglia but not lymphocytes. Thus, a combination of dCas9-VPR gesicles with other latency-reversing agents may provide a complementary method to activate latent HIV in future studies utilizing patient-derived cells or small animal models.
Collapse
Affiliation(s)
- Michaela A Fisher
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC, USA
| | - Waj Chaudhry
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC, USA
| | - Lee A Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC, USA
| |
Collapse
|
21
|
McLaurin KA, Li H, Khalili K, Mactutus CF, Booze RM. HIV-1 mRNA knockdown with CRISPR/CAS9 enhances neurocognitive function. J Neurovirol 2024; 30:71-85. [PMID: 38355914 PMCID: PMC11035469 DOI: 10.1007/s13365-024-01193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S Limestone Street, Lexington, KY, 40508, USA
| | - Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
- Department of Psychology, Carolina Trustees Professor and Bicentennial Endowed Chair of Behavioral Neuroscience, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
22
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
23
|
Pasternak AO, Tsukamoto T, Berkhout B. 'Zombie' proviruses in the spotlight: exploring the dark side of HIV persistence. AIDS 2023; 37:2239-2241. [PMID: 37877277 DOI: 10.1097/qad.0000000000003721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tetsuo Tsukamoto
- Department of Health Informatics, Niigata University of Health and Welfare, Niigata, Japan
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Bolzenius JD, Goodkin K. Variability in the relationships between auditory processing and neurocognitive status among older adults with HIV. AIDS 2023; 37:2091-2093. [PMID: 37755426 DOI: 10.1097/qad.0000000000003668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Affiliation(s)
| | - Karl Goodkin
- Department of Psychiatry
- Institute of Neuroscience, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| |
Collapse
|
25
|
Astorga-Gamaza A, Perea D, Sanchez-Gaona N, Calvet-Mirabent M, Gallego-Cortés A, Grau-Expósito J, Sanchez-Cerrillo I, Rey J, Castellví J, Curran A, Burgos J, Navarro J, Suanzes P, Falcó V, Genescà M, Martín-Gayo E, Buzon MJ. KLRG1 expression on natural killer cells is associated with HIV persistence, and its targeting promotes the reduction of the viral reservoir. Cell Rep Med 2023; 4:101202. [PMID: 37741278 PMCID: PMC10591043 DOI: 10.1016/j.xcrm.2023.101202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023]
Abstract
Human immunodeficiency virus (HIV) infection induces immunological dysfunction, which limits the elimination of HIV-infected cells during treated infection. Identifying and targeting dysfunctional immune cells might help accelerate the purging of the persistent viral reservoir. Here, we show that chronic HIV infection increases natural killer (NK) cell populations expressing the negative immune regulator KLRG1, both in peripheral blood and lymph nodes. Antiretroviral treatment (ART) does not reestablish these functionally impaired NK populations, and the expression of KLRG1 correlates with active HIV transcription. Targeting KLRG1 with specific antibodies significantly restores the capacity of NK cells to kill HIV-infected cells, reactivates latent HIV present in CD4+ T cells co-expressing KLRG1, and reduces the intact HIV genomes in samples from ART-treated individuals. Our data support the potential use of immunotherapy against the KLRG1 receptor to impact the viral reservoir during HIV persistence.
Collapse
Affiliation(s)
- Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - David Perea
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Nerea Sanchez-Gaona
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Marta Calvet-Mirabent
- Universidad Autónoma de Madrid, 28049 Madrid, Spain; Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| | - Ana Gallego-Cortés
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Ildefonso Sanchez-Cerrillo
- Universidad Autónoma de Madrid, 28049 Madrid, Spain; Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| | - Joan Rey
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Castellví
- Department of Pathology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Adrian Curran
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Paula Suanzes
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Enrique Martín-Gayo
- Universidad Autónoma de Madrid, 28049 Madrid, Spain; Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain; Infectious Diseases CIBER (CIBERINFECC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria J Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| |
Collapse
|
26
|
McLaurin KA, Li H, Khalili K, Mactutus CF, Booze RM. HIV-1 mRNA Knockdown with CRISPR/Cas9 Enhances Neurocognitive Function. RESEARCH SQUARE 2023:rs.3.rs-3266933. [PMID: 37886577 PMCID: PMC10602171 DOI: 10.21203/rs.3.rs-3266933/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 mRNA from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 μL) of CRISPR/Cas9 for 72 hours. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n=5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the mPFC. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1 associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 partially restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.
Collapse
|
27
|
Damour A, Slaninova V, Radulescu O, Bertrand E, Basyuk E. Transcriptional Stochasticity as a Key Aspect of HIV-1 Latency. Viruses 2023; 15:1969. [PMID: 37766375 PMCID: PMC10535884 DOI: 10.3390/v15091969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This review summarizes current advances in the role of transcriptional stochasticity in HIV-1 latency, which were possible in a large part due to the development of single-cell approaches. HIV-1 transcription proceeds in bursts of RNA production, which stem from the stochastic switching of the viral promoter between ON and OFF states. This switching is caused by random binding dynamics of transcription factors and nucleosomes to the viral promoter and occurs at several time scales from minutes to hours. Transcriptional bursts are mainly controlled by the core transcription factors TBP, SP1 and NF-κb, the chromatin status of the viral promoter and RNA polymerase II pausing. In particular, spontaneous variability in the promoter chromatin creates heterogeneity in the response to activators such as TNF-α, which is then amplified by the Tat feedback loop to generate high and low viral transcriptional states. This phenomenon is likely at the basis of the partial and stochastic response of latent T cells from HIV-1 patients to latency-reversing agents, which is a barrier for the development of shock-and-kill strategies of viral eradication. A detailed understanding of the transcriptional stochasticity of HIV-1 and the possibility to precisely model this phenomenon will be important assets to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Alexia Damour
- MFP UMR 5234 CNRS, Université de Bordeaux, 33076 Bordeaux, France;
| | - Vera Slaninova
- IGH UMR 9002 CNRS, Université de Montpellier, 34094 Montpellier, France;
| | - Ovidiu Radulescu
- LPHI, UMR 5294 CNRS, University of Montpellier, 34095 Montpellier, France;
| | - Edouard Bertrand
- IGH UMR 9002 CNRS, Université de Montpellier, 34094 Montpellier, France;
| | - Eugenia Basyuk
- MFP UMR 5234 CNRS, Université de Bordeaux, 33076 Bordeaux, France;
| |
Collapse
|
28
|
Zhang W, Yan J, Luo H, Wang X, Ruan L. Incomplete immune reconstitution and its predictors in people living with HIV in Wuhan, China. BMC Public Health 2023; 23:1808. [PMID: 37716975 PMCID: PMC10505310 DOI: 10.1186/s12889-023-16738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVE This study aimed to build and validate a nomogram model to predict the risk of incomplete immune reconstitution in people living with HIV (PLWH). METHODS Totally 3783 individuals with a confirmed diagnosis of HIV/AIDS were included. A predictive model was developed based on a retrospective set (N = 2678) and was validated using the remaining cases (N = 1105). Univariate and multivariate logistic regression analyses were performed to determine valuable predictors among the collected clinical and laboratory variables. The predictive model is presented in the form of a nomogram, which is internally and externally validated with two independent datasets. The discrimination of nomograms was assessed by calculating the area under the curve (AUC). Besides, calibration curve and decision curve (DCA) analyses were performed in the training and validation sets. RESULTS The final model comprised 5 predictors, including baseline CD4, age at ART initiation, BMI, HZ and TBIL. The AUC of the nomogram model was 0.902, 0.926, 0.851 in the training cohort, internal validation and external cohorts. The calibration accuracy and diagnostic performance were satisfactory in both the training and validation sets. CONCLUSIONS This predictive model based on a retrospective study was externally validated using 5 readily available clinical indicators. It showed high performance in predicting the risk of incomplete immune reconstitution in people living with HIV.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China
| | - Jisong Yan
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Hong Luo
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Xianguang Wang
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China.
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China.
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China.
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China.
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China.
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China.
| |
Collapse
|
29
|
Debrabander Q, Hensley KS, Psomas CK, Bramer W, Mahmoudi T, van Welzen BJ, Verbon A, Rokx C. The efficacy and tolerability of latency-reversing agents in reactivating the HIV-1 reservoir in clinical studies: a systematic review. J Virus Erad 2023; 9:100342. [PMID: 37663575 PMCID: PMC10474473 DOI: 10.1016/j.jve.2023.100342] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Understanding the clinical potency of latency-reversing agents (LRAs) on the HIV-1 reservoir is useful to deploy future strategies. This systematic review evaluated the effects of LRAs in human intervention studies. Methods A literature search was performed using medical databases focusing on studies with adults living with HIV-1 receiving LRAs. Eligibility criteria required participants from prospective clinical studies, a studied compound hypothesised as LRA, and reactivation or tolerability assessments. Relevant demographical data, LRA reactivation capacity, reservoir size, and adverse events were extracted. A study quality assessment with analysis of bias was performed by RoB 2 and ROBINS-I tools. The primary endpoints were HIV-1 reservoir reactivation after LRA treatment quantified by cell-associated unspliced HIV-1 RNA, and LRA tolerability defined by adverse events. Secondary outcomes were reservoir size and the effect of LRAs on analytical treatment interruption (ATI) duration. Results After excluding duplicates, 5182 publications were screened. In total 45 publications fulfilled eligibility criteria including 26 intervention studies and 16 randomised trials. The risk of bias was evaluated as high. Chromatin modulators were the main investigated LRA class in 24 studies. Participants were mostly males (90.1%). Where reported, HIV-1 subtype B was most frequently observed. Reactivation after LRA treatment occurred in 78% of studies and was observed with nearly all chromatin modulators. When measured, reactivation mostly occurred within 24 h after treatment initiation. Combination LRA strategies have been infrequently studied and were without synergistic reactivation. Adverse events, where reported, were mostly low grade, yet occurred frequently. Seven studies had individuals who discontinued LRAs for related adverse events. The reservoir size was assessed by HIV-1 DNA in 80% of studies. A small decrease in reservoir was observed in three studies on immune checkpoint inhibitors and the histone deacetylase inhibitors romidepsin and chidamide. No clear effect of LRAs on ATI duration was observed. Conclusion This systematic review provides a summary of the reactivation of LRAs used in current clinical trials whilst highlighting the importance of pharmacovigilance. Highly heterogeneous study designs and underrepresentation of relevant patient groups are to be considered when interpreting these results. The observed reactivation did not lead to cure or a significant reduction in the size of the reservoir. Finding more effective LRAs by including well-designed studies are needed to define the required reactivation level to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Quinten Debrabander
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Mailbox 85500, 3508GA, Utrecht, the Netherlands
| | - Kathryn S. Hensley
- Department of Internal Medicine, Section Infectious Diseases, And Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Erasmus University Medical Centre, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Christina K. Psomas
- Department of Infectious Diseases and Internal Medicine, European Hospital, Marseille, France
| | - Wichor Bramer
- Medical Library, Erasmus MC, Erasmus University Medical Centre, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus MC, Erasmus University Medical Center, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Pathology, Erasmus MC, Erasmus University Medical Center, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
- Department of Urology, Erasmus MC, Erasmus University Medical Center, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Berend J. van Welzen
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Mailbox 85500, 3508GA, Utrecht, the Netherlands
| | - Annelies Verbon
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Mailbox 85500, 3508GA, Utrecht, the Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, And Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Erasmus University Medical Centre, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| |
Collapse
|
30
|
Chvatal-Medina M, Lopez-Guzman C, Diaz FJ, Gallego S, Rugeles MT, Taborda NA. Molecular mechanisms by which the HIV-1 latent reservoir is established and therapeutic strategies for its elimination. Arch Virol 2023; 168:218. [PMID: 37530901 DOI: 10.1007/s00705-023-05800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/12/2023] [Indexed: 08/03/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) reservoir, composed of cells harboring the latent, integrated virus, is not eliminated by antiretroviral therapy. It therefore represents a significant barrier to curing the infection. The biology of HIV-1 reservoirs, the mechanisms of their persistence, and effective strategies for their eradication are not entirely understood. Here, we review the molecular mechanisms by which HIV-1 reservoirs develop, the cells and compartments where the latent virus resides, and advancements in curative therapeutic strategies. We first introduce statistics and relevant data on HIV-1 infection, aspects of pathogenesis, the role of antiretroviral therapy, and the general features of the latent HIV reservoir. Then, the article is built on three main pillars: The molecular mechanisms related to latency, the different strategies for targeting the reservoir to obtain a cure, and the current progress in immunotherapy to counteract said reservoirs.
Collapse
Affiliation(s)
- Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Lopez-Guzman
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Francisco J Diaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Salomon Gallego
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia.
- Universidad Cooperativa de Colombia, Campus Medellin, Envigado, Colombia.
| |
Collapse
|
31
|
Kankaka EN, Redd AD, Khan A, Reynolds SJ, Saraf S, Kirby C, Lynch B, Hackman J, Tomusange S, Kityamuweesi T, Jamiru S, Anok A, Buule P, Bruno D, Martens C, Chang LW, Quinn TC, Prodger JL, Poon A. Dating reservoir formation in virologically suppressed people living with HIV-1 in Rakai, Uganda. Virus Evol 2023; 9:vead046. [PMID: 37547379 PMCID: PMC10399970 DOI: 10.1093/ve/vead046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
The timing of the establishment of the HIV latent viral reservoir (LVR) is of particular interest, as there is evidence that proviruses are preferentially archived at the time of antiretroviral therapy (ART) initiation. Quantitative viral outgrowth assays (QVOAs) were performed using Peripheral Blood Mononuclear Cells (PBMC) collected from Ugandans living with HIV who were virally suppressed on ART for >1 year, had known seroconversion windows, and at least two archived ART-naïve plasma samples. QVOA outgrowth populations and pre-ART plasma samples were deep sequenced for the pol and gp41 genes. The bayroot program was used to estimate the date that each outgrowth virus was incorporated into the reservoir. Bayroot was also applied to previously published data from a South African cohort. In the Ugandan cohort (n = 11), 87.9 per cent pre-ART and 56.3 per cent viral outgrowth sequences were unique. Integration dates were estimated to be relatively evenly distributed throughout viremia in 9/11 participants. In contrast, sequences from the South African cohort (n = 9) were more commonly estimated to have entered the LVR close to ART initiation, as previously reported. Timing of LVR establishment is variable between populations and potentially viral subtypes, which could limit the effectiveness of interventions that target the LVR only at ART initiation.
Collapse
Affiliation(s)
- Edward Nelson Kankaka
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
| | - Andrew D Redd
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Anzio Rd, Observatory, Cape Town 7925, South Africa
| | - Amjad Khan
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 5K8, Canada
| | - Steven J Reynolds
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Sharada Saraf
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Charles Kirby
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
| | - Briana Lynch
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Jada Hackman
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Stephen Tomusange
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Taddeo Kityamuweesi
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Samiri Jamiru
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Aggrey Anok
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Paul Buule
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Daniel Bruno
- Genomic Unit, Rocky Mountain Laboratories, NIAID, NIH, 904 South Fourth Street, Hamilton, MT 59840, USA
| | - Craig Martens
- Genomic Unit, Rocky Mountain Laboratories, NIAID, NIH, 904 South Fourth Street, Hamilton, MT 59840, USA
| | - Larry W Chang
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
| | - Thomas C Quinn
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 5K8, Canada
| | - Art Poon
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 5K8, Canada
| |
Collapse
|
32
|
Gerberick A, Rinaldo CR, Sluis-Cremer N. Antigen Presenting Cell-Mediated HIV-1 Trans Infection in the Establishment and Maintenance of the Viral Reservoir. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i7.1.4064. [PMID: 39634038 PMCID: PMC11616617 DOI: 10.18103/mra.v11i7.1.4064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Despite potent antiretroviral therapy, an HIV-1 reservoir persists that represents a major barrier to a cure. Understanding the mechanisms by which the HIV-1 reservoir is established and maintained is critical for the discovery of effective treatments to significantly reduce or eliminate the viral reservoir. In addition to cis infection, in which HIV-1 directly infects target CD4+ T cells, cell-to-cell transmission, or trans infection, can also occur. HIV-1 trans infection is significantly more efficient than cis infection, mostly due to the occurrence of multiple infections per cell during transfer. Additionally, trans infection is efficient even in the presence of ART and/or neutralizing antibodies. Cell-to-cell transmission is mediated by CD4+ T cells and professional antigen presenting cells (APC). Here we focus on APC, i.e., myeloid dendritic cells, B lymphocytes, and monocytes/macrophages, that bind, internalize, and transfer HIV-1 to target CD4+ T cells via various proposed mechanisms. We assess the potential impact of trans infection on the establishment and maintenance of the HIV-1 reservoir including its role in disease progression. We consider the natural interactions between APC and CD4+ T cells in vivo that HIV-1 may hijack, allowing for the highly efficient trans infection of CD4+ T cells, maintaining the viral reservoirs in tissue despite undetectable plasma viral loads in peripheral blood. We propose that these modes of viral pathogenesis need to be addressed in potential cure strategies to ensure eradication of the viral reservoir.
Collapse
Affiliation(s)
- Abigail Gerberick
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| | - Charles R Rinaldo
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| | - Nicolas Sluis-Cremer
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| |
Collapse
|
33
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
34
|
Gaikwad SY, Phatak P, Mukherjee A. Cutting edge strategies for screening of novel anti-HIV drug candidates against HIV infection: A concise overview of cell based assays. Heliyon 2023; 9:e16027. [PMID: 37215829 PMCID: PMC10195898 DOI: 10.1016/j.heliyon.2023.e16027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
The advent of Highly Active Antiretroviral Therapy has majorly contributed towards reducing the morbidity and mortality associated with HIV infected people, thus improving the quality of their life. Still, the eradication of HIV infection has not been achieved due to some important limitations such as non-adherence to therapy, cellular toxicity, restricted bioavailability of antiretroviral drugs and emergence of drug resistant viruses. Moreover, persistence of latent HIV-reservoirs even under antiviral-drug pressure is the major obstacle in HIV cure. Currently used antiretrovirals can suppress the viral replication in activated CD4+ cells, however, it has been observed that the available antiretroviral therapy appears inadequate to reduce latent reservoirs established in resting memory CD4+ T cells. Therefore, for eradication or reduction of latent reservoirs many immunotherapeutic and pharmacologic approaches including latency reversing agents are being studied constantly. Additionally, promising therapeutic strategies including discovery of novel drugs and drug targets are continuously being explored. Therefore, preclinical testing has become an important step of drug development process, continuously demanding innovative, but less time consuming evaluation strategies. Present review attempts to gather and line-up the information on existing cell-based methodologies applied for assessing drug candidates for their antiretroviral potential. Further, we intend to outline the advanced and reliable cell based methodologies that would expedite the process of discovery and development of antiretrovirals.
Collapse
Affiliation(s)
| | | | - Anupam Mukherjee
- Corresponding author. Division of Virology, ICMR-National AIDS Research Institute, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India.
| |
Collapse
|
35
|
Li S, Wang X, Yang Y, Wu X, Zhang L. Discovering the Mechanisms of Oleodaphnone as a Potential HIV Latency-Reversing Agent by Transcriptome Profiling. Int J Mol Sci 2023; 24:ijms24087357. [PMID: 37108519 PMCID: PMC10138910 DOI: 10.3390/ijms24087357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Latent HIV is a key factor that makes AIDS difficult to cure. Highly effective and specific latent HIV activators can effectively activate latent HIV, and then combined with antiretroviral therapy to achieve a functional cure of AIDS. Here, four sesquiterpenes (1-4) including a new one (1), five flavonoids (5-9) including three biflavonoid structures, and two lignans (10 and 11) were obtained from the roots of Wikstroemia chamaedaphne. Their structures were elucidated through comprehensive spectroscopic analyses. The absolute configuration of 1 was determined by experimental electronic circular dichroism. NH2 cell model was used to test the activity of these 11 compounds in activating latent HIV. Oleodaphnone (2) showed the latent HIV activation effect as well as the positive drug prostratin, and the activation effect was time- and concentration-dependent. Based on transcriptome analysis, the underlying mechanism was that oleodaphnone regulated the TNF, C-type lectin receptor, NF-κB, IL-17, MAPK, NOD-like receptor, JAK-Stat, FoxO, and Toll-like receptor signaling pathways. This study provides the basis for the potential development of oleodaphnone as an effective HIV latency-reversing agent.
Collapse
Affiliation(s)
- Shifei Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xiuyi Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuqin Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Liwei Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
36
|
Pasternak AO, Berkhout B. HIV persistence: silence or resistance? Curr Opin Virol 2023; 59:101301. [PMID: 36805974 DOI: 10.1016/j.coviro.2023.101301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 02/19/2023]
Abstract
Despite decades of suppressive antiretroviral therapy, human immunodeficiency virus (HIV) reservoirs in infected individuals persist and fuel viral rebound once therapy is interrupted. The persistence of viral reservoirs is the main obstacle to achieving HIV eradication or a long-term remission. The last decade has seen a profound change in our understanding of the mechanisms behind HIV persistence, which appears to be much more complex than originally assumed. In addition to the persistence of transcriptionally silent proviruses in a stable latent reservoir that is invisible to the immune system, HIV is increasingly recognized to persist by resistance to the immune clearance, which appears to play a surprisingly prominent role in shaping the reservoir. In this review, we discuss some emerging insights into the mechanisms of HIV persistence, as well as their implications for the development of strategies towards an HIV cure.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
37
|
Clark KM, Kim JG, Wang Q, Gao H, Presti RM, Shan L. Chemical inhibition of DPP9 sensitizes the CARD8 inflammasome in HIV-1-infected cells. Nat Chem Biol 2023; 19:431-439. [PMID: 36357533 PMCID: PMC10065922 DOI: 10.1038/s41589-022-01182-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) induce pyroptosis of HIV-1-infected CD4+ T cells through induction of intracellular HIV-1 protease activity, which activates the CARD8 inflammasome. Because high concentrations of NNRTIs are required for efficient elimination of HIV-1-infected cells, it is important to elucidate ways to sensitize the CARD8 inflammasome to NNRTI-induced activation. We show that this sensitization can be achieved through chemical inhibition of the CARD8 negative regulator DPP9. The DPP9 inhibitor Val-boroPro (VbP) can kill HIV-1-infected cells without the presence of NNRTIs and act synergistically with NNRTIs to promote clearance of HIV-1-infected cells in vitro and in humanized mice. More importantly, VbP is able to enhance clearance of residual HIV-1 in CD4+ T cells isolated from people living with HIV (PLWH). We also show that VbP can partially overcome NNRTI resistance. This offers a promising strategy for enhancing NNRTI efficacy in the elimination of HIV-1 reservoirs in PLWH.
Collapse
Affiliation(s)
- Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Josh G Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
38
|
Bai R, Song C, Lv S, Chang L, Hua W, Weng W, Wu H, Dai L. Role of microglia in HIV-1 infection. AIDS Res Ther 2023; 20:16. [PMID: 36927791 PMCID: PMC10018946 DOI: 10.1186/s12981-023-00511-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The usage of antiretroviral treatment (ART) has considerably decreased the morbidity and mortality related to HIV-1 (human immunodeficiency virus type 1) infection. However, ART is ineffective in eradicating the virus from the persistent cell reservoirs (e.g., microglia), noticeably hindering the cure for HIV-1. Microglia participate in the progression of neuroinflammation, brain aging, and HIV-1-associated neurocognitive disorder (HAND). Some methods have currently been studied as fundamental strategies targeting microglia. The purpose of this study was to comprehend microglia biology and its functions in HIV-1 infection, as well as to look into potential therapeutic approaches targeting microglia.
Collapse
Affiliation(s)
- Ruojing Bai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Chengcheng Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyun Lv
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Linlin Chang
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wei Hua
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Lili Dai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
39
|
Ramirez PW, Pantoja C, Beliakova-Bethell N. An Evaluation on the Role of Non-Coding RNA in HIV Transcription and Latency: A Review. HIV AIDS (Auckl) 2023; 15:115-134. [PMID: 36942082 PMCID: PMC10024501 DOI: 10.2147/hiv.s383347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
The existence of latent cellular reservoirs is recognized as the major barrier to an HIV cure. Reactivating and eliminating "shock and kill" or permanently silencing "block and lock" the latent HIV reservoir, as well as gene editing, remain promising approaches, but so far have proven to be only partially successful. Moreover, using latency reversing agents or "block and lock" drugs pose additional considerations, including the ability to cause cellular toxicity, a potential lack of specificity for HIV, or low potency when each agent is used alone. RNA molecules, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are becoming increasingly recognized as important regulators of gene expression. RNA-based approaches for combatting HIV latency represent a promising strategy since both miRNAs and lncRNAs are more cell-type and tissue specific than protein coding genes. Thus, a higher specificity of targeting the latent HIV reservoir with less overall cellular toxicity can likely be achieved. In this review, we summarize current knowledge about HIV gene expression regulation by miRNAs and lncRNAs encoded in the human genome, as well as regulatory molecules encoded in the HIV genome. We discuss both the transcriptional and post-transcriptional regulation of HIV gene expression to align with the current definition of latency, and describe RNA molecules that either promote HIV latency or have anti-latency properties. Finally, we provide perspectives on using each class of RNAs as potential targets for combatting HIV latency, and describe the complexity of the interactions between different RNA molecules, their protein targets, and HIV.
Collapse
Affiliation(s)
- Peter W Ramirez
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Christina Pantoja
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
40
|
Siegel DA, Thanh C, Wan E, Hoh R, Hobbs K, Pan T, Gibson EA, Kroetz DL, Martin J, Hecht F, Pilcher C, Martin M, Carrington M, Pillai S, Busch MP, Stone M, Levy CN, Huang ML, Roychoudhury P, Hladik F, Jerome KR, Kiem HP, Henrich TJ, Deeks SG, Lee SA. Host variation in type I interferon signaling genes (MX1), C-C chemokine receptor type 5 gene, and major histocompatibility complex class I alleles in treated HIV+ noncontrollers predict viral reservoir size. AIDS 2023; 37:477-488. [PMID: 36695358 PMCID: PMC9894159 DOI: 10.1097/qad.0000000000003428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/28/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Prior genomewide association studies have identified variation in major histocompatibility complex (MHC) class I alleles and C-C chemokine receptor type 5 gene (CCR5Δ32) as genetic predictors of viral control, especially in 'elite' controllers, individuals who remain virally suppressed in the absence of therapy. DESIGN Cross-sectional genomewide association study. METHODS We analyzed custom whole exome sequencing and direct human leukocyte antigen (HLA) typing from 202 antiretroviral therapy (ART)-suppressed HIV+ noncontrollers in relation to four measures of the peripheral CD4+ T-cell reservoir: HIV intact DNA, total (t)DNA, unspliced (us)RNA, and RNA/DNA. Linear mixed models were adjusted for potential covariates including age, sex, nadir CD4+ T-cell count, pre-ART HIV RNA, timing of ART initiation, and duration of ART suppression. RESULTS Previously reported 'protective' host genetic mutations related to viral setpoint (e.g. among elite controllers) were found to predict smaller HIV reservoir size. The HLA 'protective' B∗57:01 was associated with significantly lower HIV usRNA (q = 3.3 × 10-3), and among the largest subgroup, European ancestry individuals, the CCR5Δ32 deletion was associated with smaller HIV tDNA (P = 4.3 × 10-3) and usRNA (P = 8.7 × 10-3). In addition, genomewide analysis identified several single nucleotide polymorphisms in MX1 (an interferon stimulated gene) that were significantly associated with HIV tDNA (q = 0.02), and the direction of these associations paralleled MX1 gene eQTL expression. CONCLUSIONS We observed a significant association between previously reported 'protective' MHC class I alleles and CCR5Δ32 with the HIV reservoir size in noncontrollers. We also found a novel association between MX1 and HIV total DNA (in addition to other interferon signaling relevant genes, PPP1CB, DDX3X). These findings warrant further investigation in future validation studies.
Collapse
Affiliation(s)
- David A. Siegel
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | | | | | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Kristen Hobbs
- Department of Medicine, Division of Experimental Medicine
| | - Tony Pan
- Department of Medicine, Division of Experimental Medicine
| | | | | | - Jeffrey Martin
- Department of Biostatistics & Epidemiology, University of California San Francisco, California
| | - Frederick Hecht
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Christopher Pilcher
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Mars Stone
- Vitalant Blood Bank, San Francisco, California
| | | | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| |
Collapse
|
41
|
Salvatore B, Resop RS, Gordon BR, Epeldegui M, Martinez-Maza O, Comin-Anduix B, Lam A, Wu TT, Uittenbogaart CH. Characterization of T Follicular Helper Cells and T Follicular Regulatory Cells in HIV-Infected and Sero-Negative Individuals. Cells 2023; 12:cells12020296. [PMID: 36672230 PMCID: PMC9856637 DOI: 10.3390/cells12020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Humoral immune response is important in fighting pathogens by the production of specific antibodies by B cells. In germinal centers, T follicular helper (TFH) cells provide important help to B-cell antibody production but also contribute to HIV persistence. T follicular regulatory (TFR) cells, which inhibit the function of TFH cells, express similar surface markers. Since FOXP3 is the only marker that distinguishes TFR from TFH cells it is unknown whether the increase in TFH cells observed in HIV infection and HIV persistence may be partly due to an increase in TFR cells. Using multicolor flow cytometry to detect TFH and TFR cells in cryopreserved peripheral blood mononuclear cells from HIV-infected and non-infected participants in the UCLA Multicenter AIDS Cohort Study (MACS), we identified CD3+CXCR5+CD4+CD8-BCL6+ peripheral blood TFH (pTFH) cells and CD3+CXCR5+CD4+CD8-FOXP3+ peripheral blood TFR (pTFR) cells. Unlike TFR cells in germinal centers, pTFR cells do not express B cell lymphoma 6 (BCL6), a TFH cell master transcriptional regulator. Our major findings are that the frequency of pTFH cells, but not pTFR cells was higher in HIV-infected participants of the MACS and that pTFH cells expressed less CCR5 in HIV-infected MACS participants. Constitutive expression of CCR5 in TFR cells supports their potential to contribute to HIV persistence.
Collapse
Affiliation(s)
- Bradley Salvatore
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Rachel S. Resop
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Brent R. Gordon
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Marta Epeldegui
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Otoniel Martinez-Maza
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Surgical-Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Alex Lam
- Department of Molecular Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ting-Ting Wu
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Molecular Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Pediatrics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
42
|
Serumula W, Nkambule B, Parboosing R. Novel Aptamers for the Reactivation of Latent HIV. Curr HIV Res 2023; 21:279-289. [PMID: 37881079 DOI: 10.2174/011570162x248488230926045852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION A "Shock and Kill" strategy has been proposed to eradicate the HIV latent viral reservoir. Effective Latency Reversal Agents (LRA) are a key requirement for this strategy. The search for LRAs with a novel mechanism of action is ongoing. This is the first study to propose aptamers for the reactivation of HIV. OBJECTIVE The purpose of this study was to identify an aptamer that potentially reactivates HIV via the NF-κβ pathway, specifically by binding to IkB and releasing NF-κβ. METHODS Aptamer selection was performed at Aptus Biotech (www.aptusbiotech.es), using ikB human recombinant protein with His tag bound to Ni-NTA agarose resin using the SELEX procedure. Activation of NF-κβ was measured by SEAP Assay. HIV reactivation was measured in JLat cells using a BD FACS-Canto™ II flow cytometer. All flow cytometry data were analyzed using Kaluza analyzing software. RESULTS Clones that had equivalent or greater activation than the positive control in the SEAP assay were regarded as potential reactivators of the NF-κβ pathway and were sequenced. The three ikb clones namely R6-1F, R6-2F, and R6-3F were found to potentially activate the NF-κβ pathway. Toxicity was determined by exposing lymphocytes to serial dilutions of the aptamers; the highest concentration of the aptamers that did not decrease viability by > 20% was used for the reactivation experiments. The three novel aptamers R6-1F, R6-2F, and R6-3F resulted in 4,07%, 6,72% and 3,42% HIV reactivation, respectively, while the untreated control showed minimal (<0.18%) fluorescence detection. CONCLUSION This study demonstrated the reactivation of latent HIV by aptamers that act via the NF-κβ pathway. Although the effect was modest and unlikely to be of clinical benefit, future studies are warranted to explore ways of enhancing reactivation.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban4091, South Africa
| | - Bongani Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- National Health Laboratory Service/University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
43
|
Abstract
The biggest challenge to immune control of HIV infection is the rapid within-host viral evolution, which allows selection of viral variants that escape from T cell and antibody recognition. Thus, it is impossible to clear HIV infection without targeting "immutable" components of the virus. Unlike the adaptive immune system that recognizes cognate epitopes, the CARD8 inflammasome senses the essential enzymatic activity of the HIV-1 protease, which is immutable for the virus. Hence, all subtypes of HIV clinical isolates can be recognized by CARD8. In HIV-infected cells, the viral protease is expressed as a subunit of the viral Gag-Pol polyprotein and remains functionally inactive prior to viral budding. A class of anti-HIV drugs, the non-nucleoside reverse transcriptase inhibitors (NNRTIs), can promote Gag-pol dimerization and subsequent premature intracellular activation of the viral protease. NNRTI treatment triggers CARD8 inflammasome activation, which leads to pyroptosis of HIV-infected CD4+ T cells and macrophages. Targeting the CARD8 inflammasome can be a potent and broadly effective strategy for HIV eradication.
Collapse
Affiliation(s)
- Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Priya Pal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Josh G Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
44
|
Furtado Milão J, Love L, Gourgi G, Derhaschnig L, Svensson JP, Sönnerborg A, van Domselaar R. Natural killer cells induce HIV-1 latency reversal after treatment with pan-caspase inhibitors. Front Immunol 2022; 13:1067767. [PMID: 36561752 PMCID: PMC9763267 DOI: 10.3389/fimmu.2022.1067767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The establishment of a latency reservoir is the major obstacle for a cure of HIV-1. The shock-and-kill strategy aims to reactivate HIV-1 replication in HIV -1 latently infected cells, exposing the HIV-1-infected cells to cytotoxic lymphocytes. However, none of the latency reversal agents (LRAs) tested so far have shown the desired effect in people living with HIV-1. We observed that NK cells stimulated with a pan-caspase inhibitor induced latency reversal in co-cultures with HIV-1 latently infected cells. Synergy in HIV-1 reactivation was observed with LRAs prostratin and JQ1. The supernatants of the pan-caspase inhibitor-treated NK cells activated the HIV-1 LTR promoter, indicating that a secreted factor by NK cells was responsible for the HIV-1 reactivation. Assessing changes in the secreted cytokine profile of pan-caspase inhibitor-treated NK cells revealed increased levels of the HIV-1 suppressor chemokines MIP1α (CCL3), MIP1β (CCL4) and RANTES (CCL5). However, these cytokines individually or together did not induce LTR promoter activation, suggesting that CCL3-5 were not responsible for the observed HIV-1 reactivation. The cytokine profile did indicate that pan-caspase inhibitors induce NK cell activation. Altogether, our approach might be-in combination with other shock-and-kill strategies or LRAs-a strategy for reducing viral latency reservoirs and a step forward towards eradication of functionally active HIV-1 in infected individuals.
Collapse
Affiliation(s)
- Joana Furtado Milão
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Luca Love
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - George Gourgi
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Derhaschnig
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - J. Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden,Division of Clinical Microbiology, ANA Futura Laboratory, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert van Domselaar
- Division of Infectious Diseases, ANA Futura Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Robert van Domselaar,
| |
Collapse
|
45
|
Wattanasirikosone R, Modnak C. Analysing transmission dynamics of HIV/AIDS with optimal control strategy and its controlled state. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:499-527. [PMID: 35801335 DOI: 10.1080/17513758.2022.2096934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
HIV is a virus that weakens a person's immune system. HIV has three stages, and AIDS is the most severe stage of HIV (Stage 3). People with HIV should take medicine (called ART) recommended by WHO as soon as possible to reduce the amount of virus in the body. In this paper, we formulate a mathematical model for HIV/AIDS with a new approach by focusing on two groups of infectious individuals, HIV and AIDS. We also introduce a controlled class (treated patients and being monitored), and people in this class can spread the disease. We further investigate the essential dynamics of the model through an equilibrium analysis. Optimal control theory is applied to explore effective treatment strategies by combining two control measures: standard antiretroviral therapy and AIDS treatments. Numerical simulation results show the effects of the two time-dependent controls, and they can be used as guidelines for public health interventions.
Collapse
Affiliation(s)
| | - Chairat Modnak
- Department of Mathematics, Faculty of Science, Naresuan University, Tha Pho, Thailand
| |
Collapse
|
46
|
Nanfack AJ, Ambada Ndzengue GE, Fokam J, Ka'e AC, Sonela N, Kenou L, Tsoptio M, Sagnia B, Elong E, Beloumou G, Perno CF, Colizzi V, Ndjolo A. Characterization of the Viral Reservoirs Among HIV-1 Non-B Vertically Infected Adolescents Receiving Antiretroviral Therapy: Protocol for an Observational and Comparative Study in Cameroon. JMIR Res Protoc 2022; 11:e41473. [PMID: 36449339 PMCID: PMC9752448 DOI: 10.2196/41473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Antiretroviral therapy (ART) can bring HIV-1 levels in blood plasma to the undetectable level and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, ART is not curative and must be taken for life, because within a few weeks of treatment cessation, HIV viremia rebounds in most patients except for rare elite or posttreatment controllers of viremia. The primary source of this rebound is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of the resting memory cluster of differentiation 4 (CD4+) T cells. To achieve a cure for HIV, understanding the cell reservoir environment is of paramount importance. The size and nature of the viral reservoir might vary according to the timing of therapy, therapeutic response, ART duration, and immune response. The mechanisms of reservoir maintenance generally depend on the levels/type of immune recognition; in addition, the dynamics of viral persistence are different between pediatric and adult populations. This difference could become more evident as children grow toward adolescence. OBJECTIVE We aim to characterize the HIV reservoirs and their variability as per the virological and immunological profiles of HIV-1 non-B vertically infected adolescents receiving ART in Cameroon during the Adolescents' Viral Reservoirs study to provide accurate and reliable data for HIV cure research. METHODS This study will involve HIV-1 non-B vertically infected adolescents selected from an existing cohort in our institution. Blood samples will be collected for analyzing immunological/virological profiles, including CD4/CD8 count, plasma viral load, immune activation/inflammatory markers, genotyping, and quantification of HIV-1 viral reservoirs. We will equally recruit an age-matched group of HIV-negative adolescents as control for immunological profiling. RESULTS This study received funding in November 2021 and was approved by the national institutional review board in December 2021. Sample collection will start in November 2022, and the study will last for 18 months. The HIV-1 sequences generated will provide information on the circulating HIV-1 subtypes to guide the selection of the most appropriate ART for the participants. The levels of immune biomarkers will help determine the immune profile and help identify factors driving persistent immune activation/inflammation in HIV-infected adolescents compared to those in HIV-uninfected adolescents. Analysis of the virological and immunological parameters in addition to the HIV-1 reservoir size will shed light on the characteristics of the viral reservoir in adolescents with HIV-1 non-B infection. CONCLUSIONS Our findings will help in advancing the knowledge on HIV reservoirs, in terms of size and genetic variability in adolescents living with HIV. Such evidence will also help in understanding the effects of ART timing and duration on the size of the reservoirs among adolescents living with HIV-a unique population from whom the findings generated will largely contribute to designing functional cure strategies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/41473.
Collapse
Affiliation(s)
| | - Georgia Elna Ambada Ndzengue
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Department of Animal Biology and Physiology, University of Yaounde, Yaounde, Cameroon
| | - Joseph Fokam
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Faculty of Health Science, University of Buea, Buea, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde, Cameroon
| | - Aude Christelle Ka'e
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Department of Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Nelson Sonela
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Medical School, University of KwaZulu-Natal, Durban, South Africa
| | - Leslie Kenou
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Department of Microbiology and Parasitology, Protestant University of Central Africa, Yaounde, Cameroon
| | - Michelle Tsoptio
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Faculty of Medicine and Biomedical Science, University of Dschang, Dschang, Cameroon
| | - Bertrand Sagnia
- International Reference Center Chantal Biya, Yaounde, Cameroon
| | - Elise Elong
- International Reference Center Chantal Biya, Yaounde, Cameroon
| | - Grace Beloumou
- International Reference Center Chantal Biya, Yaounde, Cameroon
| | | | - Vittorio Colizzi
- International Reference Center Chantal Biya, Yaounde, Cameroon
- Department of Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Alexis Ndjolo
- International Reference Center Chantal Biya, Yaounde, Cameroon
| |
Collapse
|
47
|
Khetan P, Liu Y, Dhummakupt A, Persaud D. Advances in Pediatric HIV-1 Cure Therapies and Reservoir Assays. Viruses 2022; 14:v14122608. [PMID: 36560612 PMCID: PMC9787749 DOI: 10.3390/v14122608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Significant advances in the field of HIV-1 therapeutics to achieve antiretroviral treatment (ART)-free remission and cure for persons living with HIV-1 are being made with the advent of broadly neutralizing antibodies and very early ART in perinatal infection. The need for HIV-1 remission and cure arises due to the inability of ART to eradicate the major reservoir for HIV-1 in resting memory CD4+ T cells (the latent reservoir), and the strict adherence to lifelong treatment. To measure the efficacy of these cure interventions on reservoir size and to dissect reservoir dynamics, assays that are sensitive and specific to intact proviruses are critical. In this review, we provided a broad overview of some of the key interventions underway to purge the reservoir in adults living with HIV-1 and ones under study in pediatric populations to reduce and control the latent reservoir, primarily focusing on very early treatment in combination with broadly neutralizing antibodies. We also summarized assays currently in use to measure HIV-1 reservoirs and their feasibility and considerations for studies in children.
Collapse
Affiliation(s)
- Priya Khetan
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yufeng Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adit Dhummakupt
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Deborah Persaud
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-443-287-3735
| |
Collapse
|
48
|
Associations between NK Cells in Different Immune Organs and Cellular SIV DNA and RNA in Regional HLADR - CD4 + T Cells in Chronically SIV mac239-Infected, Treatment-Naïve Rhesus Macaques. Viruses 2022; 14:v14112513. [PMID: 36423122 PMCID: PMC9697022 DOI: 10.3390/v14112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of NK cell-directed therapeutic strategies, the actual effect of NK cells on the cellular SIV DNA levels of the virus in SIV-infected macaques in vivo remains unclear. In this study, five chronically SIVmac239-infected, treatment-naïve rhesus macaques were euthanized, and the blood, spleen, pararectal/paracolonic lymph nodes (PaLNs), and axillary lymph nodes (ALNs) were collected. The distributional, phenotypic, and functional profiles of NK cells were detected by flow cytometry. The highest frequency of NK cells was found in PBMC, followed by the spleen, while only 0~0.5% were found in LNs. Peripheral NK cells also exhibited higher cytotoxic potential (CD56- CD16+ NK subsets) and IFN-γ-producing capacity but low PD-1 and Tim-3 levels than those in the spleen and LNs. Our results demonstrated a significant positive correlation between the frequency of NK cells and the ratios of cellular SIV DNA/RNA in HLADR- CD4+ T cells (r = 0.6806, p < 0.001) in SIV-infected macaques, despite no discrepancies in the cellular SIV DNA or RNA levels that were found among the blood, spleen, and LNs. These findings showed a profile of NK cell frequencies and NK cytotoxicity levels in different immune organs from chronically SIVmac239-infected, treatment-naïve rhesus macaques. It was suggested that NK cell frequencies could be closely related to SIV DNA/RNA levels, which could affect the transcriptional activity of SIV proviruses. However, the cytotoxicity effect of NK cells on the latent SIV viral load in LNs could be limited due to the sparse abundance of NK cells in LNs. The development of NK cell-directed treatment approaches aiming for HIV clearance remains challenging.
Collapse
|
49
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Campbell GR, Spector SA. Current strategies to induce selective killing of HIV-1-infected cells. J Leukoc Biol 2022; 112:1273-1284. [PMID: 35707952 PMCID: PMC9613504 DOI: 10.1002/jlb.4mr0422-636r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/02/2023] Open
Abstract
Although combination antiretroviral therapy (ART) has led to significant HIV-1 suppression and improvement in immune function, persistent viral reservoirs remain that are refractory to intensified ART. ART poses many challenges such as adherence to drug regimens, the emergence of resistant virus, and cumulative toxicity resulting from long-term therapy. Moreover, latent HIV-1 reservoir cells can be stochastically activated to produce viral particles despite effective ART and contribute to the rapid viral rebound that typically occurs within 2 weeks of ART interruption; thus, lifelong ART is required for continued viral suppression. Several strategies have been proposed to address the HIV-1 reservoir such as reactivation of HIV-1 transcription using latency reactivating agents with a combination of ART, host immune clearance and HIV-1-cytotoxicity to purge the infected cells-a "shock and kill" strategy. However, these approaches do not take into account the multiple transcriptional and translational blocks that contribute to HIV-1 latency or the complex heterogeneity of the HIV-1 reservoir, and clinical trials have thus far failed to produce the desired results. Here, we describe alternative strategies being pursued that are designed to kill selectively HIV-1-infected cells while sparing uninfected cells in the absence of enhanced humoral or adaptive immune responses.
Collapse
Affiliation(s)
- Grant R. Campbell
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Stephen A. Spector
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA,Division of Infectious DiseasesRady Children's HospitalSan DiegoCaliforniaUSA
| |
Collapse
|