1
|
Volkman HR, Nguyen JL, Mustapha MM, Yang J, Jodar L, McLaughlin JM. Effectiveness of a single COVID-19 mRNA vaccine dose in individuals with prior SARS-CoV-2 infection: a systematic review. COMMUNICATIONS MEDICINE 2025; 5:151. [PMID: 40319136 PMCID: PMC12049417 DOI: 10.1038/s43856-025-00882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Based on high population immunity to SARS-CoV-2 from prior infection, vaccination, or both, in fall 2023, regulatory agencies globally authorized/approved a single mRNA XBB.1.5-adapted vaccine dose for individuals aged ≥5 years regardless of prior vaccination. METHODS We conducted a systematic review on vaccine effectiveness (VE) of a single COVID-19 mRNA dose in individuals with a history of prior infection compared to individuals who were (i) SARS-CoV-2 naïve, (ii) unvaccinated with prior infection, and (iii) vaccinated with >1 dose with or without prior infection. We searched MEDLINE and Embase for studies published January 2021-October 2023. Data were synthesized following Synthesis Without Meta-Analysis guidelines; bias was assessed using the Newcastle-Ottawa Scale. This study was registered with PROSPERO (CRD42023453257). RESULTS Eighteen studies were eligible. None of these studies reported bivalent or XBB.1.5-adapted VE, and none reported VE for immunocompromised populations or children aged <5 years. Among those with prior infection, a single mRNA dose increased protection by 8-71% against infection (during Omicron BA.1, BA.4/5, or XBB predominance), 39-67% against symptomatic infection (BA.1, BA.2, or BA.4/5), and 25-60% against hospitalization or hospitalization or death (BA.1). VE of one dose was comparable to two doses among those with prior infection, and higher than following two doses without prior infection. CONCLUSIONS A single dose of original mRNA COVID-19 vaccine provides similar protection to two doses for immunocompetent individuals aged ≥5 years in the current setting of high pre-existing immunity. This supports current recommendations for one dose to be given in advance of the respiratory season, regardless of history of infection or vaccination, with considerations for additional doses for certain populations including young children, older adults, and the immunocompromised.
Collapse
Affiliation(s)
| | | | - Mustapha M Mustapha
- Pfizer Inc., New York, NY, USA
- Department of Population Health, Hofstra University, Hempstead, NY, USA
| | - Jingyan Yang
- Pfizer Inc., New York, NY, USA
- Institute for Social and Economic Research and Policy, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
2
|
Chang S, Shin J, Park S, Park H, Kim JH, Kim TW, Jung IK, Song B, Shin KS, Park B, Kim SY, Jeon JH, Yeo J, Lee TY, Kang CY. Continuous Tracking for Effective Tackling: Ad5/35 Platform-Based JN1 Lineage Vaccines Development in Response to Evolving SARS-CoV-2 Variants. J Med Virol 2025; 97:e70206. [PMID: 39891605 DOI: 10.1002/jmv.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/20/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
The SARS-CoV-2 virus is continuously evolving, such that JN.1 and its subvariants, including KP.2, KP.3, and LB.1, are now predominant variants globally. JN.1 is derived from BA.2.86, which harbors more than 30 mutations in the spike protein compared with those of XBB and BA.2, and it carries an additional L455S mutation. Given the rapid evolution of these variants, assessing the neutralization capacity of current JN.1 lineage vaccines against prevalent variants, such as KP.3, is critical. Phylogenetic trees using spike protein sequences and antigenic cartography based on neutralization results reveal that JN.1 lineage variants are antigenically distant from previously circulating variants. Moreover, JN.1 subvariants showed inadequate neutralization titers compared with other variants against XBB.1.5-containing vaccine in mice. Immunization with vaccines targeting the JN.1, KP.2, KP.3, and LB.1 variants demonstrated significant neutralizing activity against predominant variants in mice. These results highlight the importance of vaccine development to keep pace with the evolution of SARS-CoV-2 variants and the need for updated vaccines targeting the JN.1 variant.
Collapse
Affiliation(s)
- Soojeong Chang
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Jieun Shin
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Seowoo Park
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Hyemin Park
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Jong Heon Kim
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Tae Wan Kim
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - In Kyung Jung
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Boyeong Song
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Kwang-Soo Shin
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Bongju Park
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| | - Seo-Yeon Kim
- Division of Infectious Disease Vaccine Research, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, South Korea
| | - Ji Hyang Jeon
- Division of Infectious Disease Vaccine Research, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, South Korea
| | - Jinah Yeo
- Division of Infectious Disease Vaccine Research, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, South Korea
| | - Tae-Young Lee
- Division of Infectious Disease Vaccine Research, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, South Korea
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co. Ltd., Seoul, South Korea
| |
Collapse
|
3
|
Rössler A, Netzl A, Lasrado N, Chaudhari J, Mühlemann B, Wilks SH, Kimpel J, Smith DJ, Barouch DH. Nonhuman primate antigenic cartography of SARS-CoV-2. Cell Rep 2025; 44:115140. [PMID: 39754717 PMCID: PMC11781863 DOI: 10.1016/j.celrep.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus. We evaluated neutralization profiles against 23 SARS-CoV-2 variants in nonhuman primates (NHPs) after single variant exposure and generated an NHP-derived antigenic map. We identified a distant antigenic region occupied by BA.2.86, JN.1, and the descendants KP.2, KP.3, and KZ.1.1.1. We also found that the monovalent XBB.1.5 mRNA vaccine induced broad immunity against the mapped antigenic space. In addition, substantial concordance was observed between our NHP-derived and two human antigenic maps, demonstrating the utility of NHPs as a surrogate for antigenic cartography in humans.
Collapse
Affiliation(s)
- Annika Rössler
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Ninaad Lasrado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jayeshbhai Chaudhari
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Berlin, Germany; German Centre for Infection Research (DZIF), Partner Site Charité, 10117 Berlin, Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, Innsbruck, Tyrol 6020, Austria
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Suntronwong N, Kanokudom S, Duangchinda T, Chantima W, Pakchotanon P, Klinfueng S, Puenpa J, Thatsanathorn T, Wanlapakorn N, Poovorawan Y. Neutralization of omicron subvariants and antigenic cartography following multiple COVID 19 vaccinations and repeated omicron non JN.1 or JN.1 infections. Sci Rep 2025; 15:1454. [PMID: 39789099 PMCID: PMC11718010 DOI: 10.1038/s41598-024-84138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
The ongoing emergence of SARS-CoV-2 variants, combined with antigen exposures from different waves and vaccinations, poses challenges in updating COVID-19 vaccine antigens. We collected 206 sera from individuals with vaccination-only, hybrid immunity, and single or repeated omicron post-vaccination infections (PVIs), including non-JN.1 and JN.1, and evaluated neutralization against omicron BA.5, BA.2.75, BQ.1.1, XBB.1.16, XBB.1.5, and JN.1. Neutralizing antibodies exhibited a narrow breadth against BA.5 and BA.2.75 and failed to neutralize BQ.1.1 and XBB lineages after three to five doses of the ancestral monovalent vaccine. Hybrid immunity elicited higher neutralizing titers than vaccination alone, but titers remained relatively low. A single omicron PVI elicited lower neutralization titers to all variants compared to wild-type (WT), indicating immunological imprinting. Repeated omicron PVIs, particularly JN.1, slightly mitigated these effects by increasing broad neutralization responses to all variants, though not significantly. Antigenic mapping demonstrated that XBB lineages and JN.1 are antigenically distant from WT and also evaded antibodies induced by earlier omicron variants (BA.1-5) PVIs. However, repeated JN.1 PVIs shortened this antigenic distance, indicating broader neutralization across omicron variants. These findings highlight SARS-CoV-2 immunity following various antigen boosts and the impact of repeated omicron JN.1 exposure on broad immunity, informing future COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani, 12120, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani, 12120, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- The Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Blanco J, Trinité B, Puig‐Barberà J. Rethinking Optimal Immunogens to Face SARS-CoV-2 Evolution Through Vaccination. Influenza Other Respir Viruses 2025; 19:e70076. [PMID: 39871737 PMCID: PMC11773156 DOI: 10.1111/irv.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
SARS-CoV-2, which originated in China in late 2019, quickly fueled the global COVID-19 pandemic, profoundly impacting health and the economy worldwide. A series of vaccines, mostly based on the full SARS-CoV-2 Spike protein, were rapidly developed, showing excellent humoral and cellular responses and high efficacy against both symptomatic infection and severe disease. However, viral evolution and the waning humoral neutralizing responses strongly challenged vaccine long term effectiveness, mainly against symptomatic infection, making necessary a strategy of repeated and updated booster shots. In this repeated vaccination context, antibody repertoire diversification was evidenced, although immune imprinting after booster doses or reinfection was also demonstrated and identified as a major determinant of immunological responses to repeated antigen exposures. Considering that a small domain of the SARS-CoV-2 Spike protein, the receptor binding domain (RBD), is the major target of neutralizing antibodies and concentrates most viral mutations, the following text aims to provide insights into the ongoing debate over the best strategies for vaccine boosters. We address the relevance of developing new booster vaccines that target the evolving RBD, thus focusing on the relevant antigenic sites of the SARS-CoV-2 new variants. A combination of this strategy with immunofusing and computerized approaches could minimize immune imprinting, therefore optimizing neutralizing immune responses and booster vaccine efficacy.
Collapse
Affiliation(s)
- Julià Blanco
- IrsiCaixaBadalonaCataloniaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaCataloniaSpain
- CIBER de Enfermedades InfecciosasMadridSpain
- Chair in Infectious Diseases and Immunity, Faculty of MedicineUniversity of Vic‐Central University of Catalonia (UVic‐UCC)VicCataloniaSpain
| | | | - Joan Puig‐Barberà
- Área de Investigación en VacunasFundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat ValencianaValenciaSpain
| |
Collapse
|
6
|
Guerra D, Radić L, Brinkkemper M, Poniman M, van der Maas L, Torres JL, Ward AB, Sliepen K, Schinkel J, Sanders RW, van Gils MJ, Beaumont T. Broadening sarbecovirus neutralization with bispecific antibodies combining distinct conserved targets on the receptor binding domain. Hum Vaccin Immunother 2024; 20:2388344. [PMID: 39165108 PMCID: PMC11340772 DOI: 10.1080/21645515.2024.2388344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Monoclonal neutralizing antibodies (mAbs) are considered an important prophylactic against SARS-CoV-2 infection in at-risk populations and a strategy to counteract future sarbecovirus-induced disease. However, most mAbs isolated so far neutralize only a few sarbecovirus strains. Therefore, there is a growing interest in bispecific antibodies (bsAbs) which can simultaneously target different spike epitopes and thereby increase neutralizing breadth and prevent viral escape. Here, we generate and characterize a panel of 30 novel broadly reactive bsAbs using an efficient controlled Fab-arm exchange protocol. We specifically combine some of the broadest mAbs described so far, which target conserved epitopes on the receptor binding domain (RBD). Several bsAbs show superior cross-binding and neutralization compared to the parental mAbs and cocktails against sarbecoviruses from diverse clades, including recent SARS-CoV-2 variants. BsAbs which include mAb COVA2-02 are among the most potent and broad combinations. As a result, we study the unknown epitope of COVA2-02 and show that this mAb targets a distinct conserved region at the base of the RBD, which could be of interest when designing next-generation bsAb constructs to contribute to a better pandemic preparedness.
Collapse
Affiliation(s)
- Denise Guerra
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Radić
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Lara van der Maas
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, USA
| | - Jonathan L. Torres
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, USA
| | - Andrew B. Ward
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, USA
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Jia T, Wang F, Chen Y, Liao G, Xu Q, Chen J, Wu J, Li N, Wang L, Yuan L, Wang D, Xie Q, Luo C, Luo H, Wang Y, Chen Y, Shu Y. Expanded immune imprinting and neutralization spectrum by hybrid immunization following breakthrough infections with SARS-CoV-2 variants after three-dose vaccination. J Infect 2024; 89:106362. [PMID: 39608577 DOI: 10.1016/j.jinf.2024.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Despite vaccination, SARS-CoV-2 evolution leads to breakthrough infections and reinfections worldwide. Knowledge of hybrid immunization is crucial for future broad-spectrum SARS-CoV-2 vaccines. METHODS In this study, we investigated neutralizing antibodies (nAbs) against the SARS-CoV-2 ancestral virus (wild-type [WT]), pre-Omicron VOCs, Omicron subvariants, and SARS-CoV-1 using plasma collected from four distinct cohorts: individuals who received three doses of BBIBP-CorV/CoronaVac vaccines, those who experienced BA.5 breakthrough infections, those with XBB breakthrough infections, and those with BA.5-XBB consecutive infections following three-dose vaccination. FINDINGS Following Omicron breakthrough infections, the levels of nAbs against WT and pre-Omicron VOCs were higher due to immune imprinting established by WT-based vaccination, in comparison to nAbs against Omicron variants. Interestingly, the XBB breakthrough infections elicited a broader neutralization spectrum against SARS-CoV-2 variants compared to the BA.5 breakthrough infections. This observation suggests that the XBB variant demonstrates superior immunogenicity relative to BA.5. Notably, hybrid immunization of BA.5 breakthrough infections after WT vaccination led to additional immune imprinting, resulting in a broadened neutralization profile against both WT and BA.5 variants in BA.5-XBB consecutive infections. However, the duration of nAbs was shorter in these reinfections compared to the breakthrough infections. Additionally, the expanded immune imprinting from previous WT vaccination and BA.5 breakthrough infections account for the enhanced plasma neutralization immunodominance observed in the antigenic cartography for BA.5-XBB consecutive infections. INTERPRETATION Overall, we demonstrated a persistent and expanded effect of immune imprinting from prior SARS-CoV-2 exposures. Thus, future vaccines should specifically address the latest variants, and booster shots should be given at a longer interval after the previous infection or vaccination.
Collapse
Affiliation(s)
- Tingting Jia
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fuxiang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yihao Chen
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiuyi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiamin Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dongli Wang
- Guangming District Center for Disease Control and Prevention, Shenzhen, PR China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Sun Yat-sen University, Shenzhen, PR China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, PR China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China.
| |
Collapse
|
8
|
Wang W, Bhushan G, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Pollett SD, Mitre E, Katzelnick LC, Weiss CD. Human and hamster sera correlate well in identifying antigenic drift among SARS-CoV-2 variants, including JN.1. J Virol 2024; 98:e0094824. [PMID: 39365051 DOI: 10.1128/jvi.00948-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024] Open
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with fivefold to sixfold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a fivefold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.IMPORTANCEUpdates to COVID-19 vaccine antigens depend on assessing how much vaccine antigens differ antigenically from newer SARS-CoV-2 variants. Human sera from single variant infections are ideal for discriminating antigenic differences among variants, but such primary infection sera are now rare due to high population immunity. It remains unclear whether sera from experimentally infected animals could substitute for human sera for antigenic assessments. This report shows that neutralization titers of variant-matched human and hamster primary infection sera correlate well and recognize variants similarly, indicating that hamster sera can be a proxy for human sera for antigenic assessments. We further show that human sera following an XBB.1.5 booster vaccine broadly neutralized XBB sub-lineage variants but titers were fivefold lower against the more recent JN.1 variant. These findings support updating the current COVID-19 vaccine variant composition and developing a framework for assessing antigenic differences in future variants using hamster primary infection sera.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhuanand Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Tony T Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Martinez EJ, Chang WC, Chen WH, Hajduczki A, Thomas PV, Jensen JL, Choe M, Sankhala RS, Peterson CE, Rees PA, Kimner J, Soman S, Kuklis C, Mendez-Rivera L, Dussupt V, King J, Corbett C, Mayer SV, Fernandes A, Murzello K, Cookenham T, Hvizdos J, Kummer L, Hart T, Lanzer K, Gambacurta J, Reagan M, Duso D, Vasan S, Collins ND, Michael NL, Krebs SJ, Gromowski GD, Modjarrad K, Kaundinya J, Joyce MG. SARS-CoV-2 ferritin nanoparticle vaccines produce hyperimmune equine sera with broad sarbecovirus activity. iScience 2024; 27:110624. [PMID: 39351195 PMCID: PMC11440237 DOI: 10.1016/j.isci.2024.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern (VoC) and the threat of future zoonotic sarbecovirus spillover emphasizes the need for broadly protective next-generation vaccines and therapeutics. We utilized SARS-CoV-2 spike ferritin nanoparticle (SpFN), and SARS-CoV-2 receptor binding domain ferritin nanoparticle (RFN) immunogens, in an equine model to elicit hyperimmune sera and evaluated its sarbecovirus neutralization and protection capacity. Immunized animals rapidly elicited sera with the potent neutralization of SARS-CoV-2 VoC, and SARS-CoV-1 pseudoviruses, and potent binding against receptor binding domains from sarbecovirus clades 1b, 1a, 2, 3, and 4. Purified equine polyclonal IgG provided protection against Omicron XBB.1.5 virus in the K18-hACE2 transgenic mouse model. These results suggest that SARS-CoV-2-based nanoparticle vaccines can rapidly produce a broad and protective sarbecovirus response in the equine model and that equine serum has therapeutic potential against emerging SARS-CoV-2 VoC and diverse sarbecoviruses, presenting a possible alternative or supplement to monoclonal antibody immunotherapies.
Collapse
Affiliation(s)
- Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jordan Kimner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vincent Dussupt
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Courtney Corbett
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
10
|
Cromer D, Reynaldi A, Mitchell A, Schlub TE, Juno JA, Wheatley AK, Kent SJ, Khoury DS, Davenport MP. Predicting COVID-19 booster immunogenicity against future SARS-CoV-2 variants and the benefits of vaccine updates. Nat Commun 2024; 15:8395. [PMID: 39333473 PMCID: PMC11436652 DOI: 10.1038/s41467-024-52194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
The ongoing evolution of the SARS-CoV-2 virus has led to a move to update vaccine antigens in 2022 and 2023. These updated antigens were chosen and approved based largely on in vitro neutralisation titres against recent SARS-CoV-2 variants. However, unavoidable delays in vaccine manufacture and distribution meant that the updated booster vaccine was no longer well-matched to the circulating SARS-CoV-2 variant by the time of its deployment. Understanding whether the updating of booster vaccine antigens improves immune responses to subsequent SARS-CoV-2 circulating variants is a major priority in justifying future vaccine updates. Here we analyse all available data on the immunogenicity of variants containing SARS-CoV-2 vaccines and their ability to neutralise later circulating SARS-CoV-2 variants. We find that updated booster antigens give a 1.4-fold [95% CI: 1.07-1.82] greater increase in neutralising antibody levels when compared with a historical vaccine immunogen. We then use this to predict the relative protection that can be expected from an updated vaccine even when the circulating variant has evolved away from the updated vaccine immunogen. These findings help inform the rollout of future booster vaccination programmes.
Collapse
Affiliation(s)
- Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Ainslie Mitchell
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Timothy E Schlub
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Postans M, Pacchiarini N, Song J, Cottrell S, Williams C, Beazer A, Moore C, Connor TR, Williams C. Evaluating the risk of SARS-CoV-2 reinfection with the Omicron or Delta variant in Wales, UK. PLoS One 2024; 19:e0309645. [PMID: 39240934 PMCID: PMC11379141 DOI: 10.1371/journal.pone.0309645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/08/2024] Open
Abstract
Recent studies suggest an increased risk of reinfection with the SARS-CoV-2 Omicron variant compared with previous variants, potentially due to an increased ability to escape immunity specific to older variants, high antigenic divergence of Omicron from earlier virus variants as well as its altered cell entry pathway. The present study sought to investigate epidemiological evidence for differential SARS-CoV-2 reinfection intervals and incidence rates for the Delta versus Omicron variants within Wales. Reinfections in Wales up to February 2022 were defined using genotyping and whole genome sequencing. The median inter-infection intervals for Delta and Omicron were 226 and 192 days, respectively. An incidence rate ratio of 2.17 for reinfection with Omicron compared to Delta was estimated using a conditional Poisson model, which accounted for several factors including sample collection date, age group, area of residence, vaccination and travel status. These findings are consistent with an increased risk of reinfection with the Omicron variant, and highlight the value of monitoring emerging variants that have the potential for causing further waves of cases.
Collapse
Affiliation(s)
- Mark Postans
- Communicable Disease Surveillance Centre (CDSC), Public Health Wales, Cardiff, Wales, United Kingdom
| | - Nicole Pacchiarini
- Communicable Disease Surveillance Centre (CDSC), Public Health Wales, Cardiff, Wales, United Kingdom
| | - Jiao Song
- Communicable Disease Surveillance Centre (CDSC), Public Health Wales, Cardiff, Wales, United Kingdom
| | - Simon Cottrell
- Communicable Disease Surveillance Centre (CDSC), Public Health Wales, Cardiff, Wales, United Kingdom
| | - Catie Williams
- Pathogen Genomics Unit, Public Health Wales, Cardiff, Wales, United Kingdom
| | - Andrew Beazer
- Pathogen Genomics Unit, Public Health Wales, Cardiff, Wales, United Kingdom
| | - Catherine Moore
- Wales Specialist Virology Centre, Microbiology, Public Health Wales, Cardiff, Wales, United Kingdom
| | - Thomas R Connor
- Pathogen Genomics Unit, Public Health Wales, Cardiff, Wales, United Kingdom
- Cardiff University School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Christopher Williams
- Communicable Disease Surveillance Centre (CDSC), Public Health Wales, Cardiff, Wales, United Kingdom
| |
Collapse
|
12
|
Mühlemann B, Trimpert J, Walper F, Schmidt ML, Jansen J, Schroeder S, Jeworowski LM, Beheim-Schwarzbach J, Bleicker T, Niemeyer D, Richter A, Adler JM, Vidal RM, Langner C, Vladimirova D, Wilks SH, Smith DJ, Voß M, Paltzow L, Martínez Christophersen C, Rose R, Krumbholz A, Jones TC, Corman VM, Drosten C. Antigenic cartography using variant-specific hamster sera reveals substantial antigenic variation among Omicron subvariants. Proc Natl Acad Sci U S A 2024; 121:e2310917121. [PMID: 39078681 PMCID: PMC11317614 DOI: 10.1073/pnas.2310917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has developed substantial antigenic variability. As the majority of the population now has pre-existing immunity due to infection or vaccination, the use of experimentally generated animal immune sera can be valuable for measuring antigenic differences between virus variants. Here, we immunized Syrian hamsters by two successive infections with one of nine SARS-CoV-2 variants. Their sera were titrated against 16 SARS-CoV-2 variants, and the resulting titers were visualized using antigenic cartography. The antigenic map shows a condensed cluster containing all pre-Omicron variants (D614G, Alpha, Delta, Beta, Mu, and an engineered B.1+E484K variant) and considerably more diversity among a selected panel of Omicron subvariants (BA.1, BA.2, BA.4/BA.5, the BA.5 descendants BF.7 and BQ.1.18, the BA.2.75 descendant BN.1.3.1, the BA.2-derived recombinants XBB.2 and EG.5.1, and the BA.2.86 descendant JN.1). Some Omicron subvariants were as antigenically distinct from each other as the wildtype is from the Omicron BA.1 variant. Compared to titers measured in human sera, titers in hamster sera are of higher magnitude, show less fold change, and result in a more compact antigenic map topology. The results highlight the potential of sera from hamsters for the continued antigenic characterization of SARS-CoV-2.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Felix Walper
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Marie L. Schmidt
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jenny Jansen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Simon Schroeder
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Lara M. Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Anja Richter
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Julia M. Adler
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | | | - Christine Langner
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Daria Vladimirova
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Mathias Voß
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Lea Paltzow
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | | | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | - Terry C. Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Victor M. Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Labor Berlin–Charité Vivantes GmbH, Berlin13353, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| |
Collapse
|
13
|
van der Straten K, Guerra D, Kerster G, Claireaux M, Grobben M, Schriek AI, Boyd A, van Rijswijk J, Tejjani K, Eggink D, Beaumont T, de Taeye SW, de Bree GJ, Sanders RW, van Gils MJ. Primary SARS-CoV-2 variant of concern infections elicit broad antibody Fc-mediated effector functions and memory B cell responses. PLoS Pathog 2024; 20:e1012453. [PMID: 39146376 PMCID: PMC11349224 DOI: 10.1371/journal.ppat.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by human sera is a strong correlate of protection against symptomatic and severe Coronavirus Disease 2019 (COVID-19). The emergence of antigenically distinct SARS-CoV-2 variants of concern (VOCs) and the relatively rapid waning of serum antibody titers, however, raises questions about the sustainability of serum protection. In addition to serum neutralization, other antibody functionalities and the memory B cell (MBC) response are suggested to help maintaining this protection. In this study, we investigate the breadth of spike (S) protein-specific serum antibodies that mediate effector functions by interacting with Fc-gamma receptor IIa (FcγRIIa) and FcγRIIIa, and of the receptor binding domain (RBD)-specific MBCs, following a primary SARS-CoV-2 infection with the D614G, Alpha, Beta, Gamma, Delta, Omicron BA.1 or BA.2 variant. Irrespectively of the variant causing the infection, the breadth of S protein-specific serum antibodies that interact with FcγRIIa and FcγRIIIa and the RBD-specific MBC responses exceeded the breadth of serum neutralization, although the Alpha-induced B cell response seemed more strain-specific. Between VOC groups, both quantitative and qualitative differences in the immune responses were observed, suggesting differences in immunogenicity. Overall, this study contributes to the understanding of protective humoral and B cell responses in the light of emerging antigenically distinct VOCs, and highlights the need to study the immune system beyond serum neutralization to gain a better understanding of the protection against emerging variants.
Collapse
Affiliation(s)
- Karlijn van der Straten
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Denise Guerra
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gius Kerster
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marloes Grobben
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Anders Boyd
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Stichting HIV monitoring, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Dirk Eggink
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tim Beaumont
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Steven W. de Taeye
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location Academic Medical Center, Department of Internal Medicine, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Marit J. van Gils
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Faraji N, Zeinali T, Joukar F, Aleali MS, Eslami N, Shenagari M, Mansour-Ghanaei F. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon 2024; 10:e30208. [PMID: 38707429 PMCID: PMC11066641 DOI: 10.1016/j.heliyon.2024.e30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The rapid emergence of multiple strains of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has sparked profound concerns regarding the ongoing evolution of the virus and its potential impact on global health. Classified by the World Health Organization (WHO) as variants of concern (VOC), these strains exhibit heightened transmissibility and pathogenicity, posing significant challenges to existing vaccine strategies. Despite widespread vaccination efforts, the continual evolution of SARS-CoV-2 variants presents a formidable obstacle to achieving herd immunity. Of particular concern is the coronavirus spike (S) protein, a pivotal viral surface protein crucial for host cell entry and infectivity. Mutations within the S protein have been shown to enhance transmissibility and confer resistance to antibody-mediated neutralization, undermining the efficacy of traditional vaccine platforms. Moreover, the S protein undergoes rapid molecular evolution under selective immune pressure, leading to the emergence of diverse variants with distinct mutation profiles. This review underscores the urgent need for vigilance and adaptation in vaccine development efforts to combat the evolving landscape of SARS-CoV-2 mutations and ensure the long-term effectiveness of global immunization campaigns.
Collapse
Affiliation(s)
- Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
15
|
Mühlemann B, Wilks SH, Baracco L, Bekliz M, Carreño JM, Corman VM, Davis-Gardner ME, Dejnirattisai W, Diamond MS, Douek DC, Drosten C, Eckerle I, Edara VV, Ellis M, Fouchier RAM, Frieman M, Godbole S, Haagmans B, Halfmann PJ, Henry AR, Jones TC, Katzelnick LC, Kawaoka Y, Kimpel J, Krammer F, Lai L, Liu C, Lusvarghi S, Meyer B, Mongkolsapaya J, Montefiori DC, Mykytyn A, Netzl A, Pollett S, Rössler A, Screaton GR, Shen X, Sigal A, Simon V, Subramanian R, Supasa P, Suthar MS, Türeli S, Wang W, Weiss CD, Smith DJ. Comparative analysis of SARS-CoV-2 neutralization titers reveals consistency between human and animal model serum and across assays. Sci Transl Med 2024; 16:eadl1722. [PMID: 38748773 DOI: 10.1126/scitranslmed.adl1722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/11/2024] [Indexed: 08/31/2024]
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Lauren Baracco
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Meriem Bekliz
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok 10700, Thailand
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabella Eckerle
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, CH-1211 Geneva, Switzerland
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bart Haagmans
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Benjamin Meyer
- Centre of Vaccinology, Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Carol D Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
16
|
Astakhova EA, Morozov AA, Vavilova JD, Filatov AV. Antigenic Cartography of SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:862-871. [PMID: 38880647 DOI: 10.1134/s0006297924050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 06/18/2024]
Abstract
Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.
Collapse
Affiliation(s)
- Ekaterina A Astakhova
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia.
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey A Morozov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Julia D Vavilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander V Filatov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
17
|
Wang W, Bhushan GL, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Mitre E, Pollett SD, Katzelnick LC, Weiss CD. Antigenic cartography using hamster sera identifies SARS-CoV-2 JN.1 evasion seen in human XBB.1.5 booster sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588359. [PMID: 38712124 PMCID: PMC11071293 DOI: 10.1101/2024.04.05.588359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali L. Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B. Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhu Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A. Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J. Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Tony T. Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D. Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
18
|
Chang S, Shin KS, Park B, Park S, Shin J, Park H, Jung IK, Kim JH, Bae SE, Kim JO, Baek SH, Kim G, Hong JJ, Seo H, Volz E, Kang CY. Strategy to develop broadly effective multivalent COVID-19 vaccines against emerging variants based on Ad5/35 platform. Proc Natl Acad Sci U S A 2024; 121:e2313681121. [PMID: 38408238 PMCID: PMC10927586 DOI: 10.1073/pnas.2313681121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/28/2024] [Indexed: 02/28/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron strain has evolved into highly divergent variants with several sub-lineages. These newly emerging variants threaten the efficacy of available COVID-19 vaccines. To mitigate the occurrence of breakthrough infections and re-infections, and more importantly, to reduce the disease burden, it is essential to develop a strategy for producing updated multivalent vaccines that can provide broad neutralization against both currently circulating and emerging variants. We developed bivalent vaccine AdCLD-CoV19-1 BA.5/BA.2.75 and trivalent vaccines AdCLD-CoV19-1 XBB/BN.1/BQ.1.1 and AdCLD-CoV19-1 XBB.1.5/BN.1/BQ.1.1 using an Ad5/35 platform-based non-replicating recombinant adenoviral vector. We compared immune responses elicited by the monovalent and multivalent vaccines in mice and macaques. We found that the BA.5/BA.2.75 bivalent and the XBB/BN.1/BQ.1.1 and XBB.1.5/BN.1/BQ.1.1 trivalent vaccines exhibited improved cross-neutralization ability compared to their respective monovalent vaccines. These data suggest that the developed multivalent vaccines enhance immunity against circulating Omicron subvariants and effectively elicit neutralizing antibodies across a broad spectrum of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Soojeong Chang
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Kwang-Soo Shin
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Bongju Park
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Seowoo Park
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Jieun Shin
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Hyemin Park
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - In Kyung Jung
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Jong Heon Kim
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| | - Seong Eun Bae
- Science Unit, International Vaccine Institute, Seoul08826, Republic of Korea
| | - Jae-Ouk Kim
- Science Unit, International Vaccine Institute, Seoul08826, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk28116, Republic of Korea
| | - Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk28116, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk28116, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science & Technology, Daejeon34141, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Erik Volz
- Department of Infectious Disease Epidemiology, Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, LondonW2 1PG, United Kingdom
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co., Ltd., Seoul08826, Republic of Korea
| |
Collapse
|
19
|
Powers JM, Leist SR, Mallory ML, Yount BL, Gully KL, Zweigart MR, Bailey AB, Sheahan TP, Harkema JR, Baric RS. Divergent pathogenetic outcomes in BALB/c mice following Omicron subvariant infection. Virus Res 2024; 341:199319. [PMID: 38224840 PMCID: PMC10835285 DOI: 10.1016/j.virusres.2024.199319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Following the emergence of B.1.1.529 Omicron, the SARS-CoV-2 virus evolved into a significant number of sublineage variants that possessed numerous mutations throughout the genome, but particularly within the spike glycoprotein (S) gene. For example, the BQ.1.1 and the XBB.1 and XBB.1.5 subvariants contained 34 and 41 mutations in S, respectively. However, these variants elicited largely replication only or mild disease phenotypes in mice. To better model pathogenic outcomes and measure countermeasure performance, we developed mouse adapted versions (BQ.1.1 MA; XBB.1 MA; XBB.1.5 MA) that reflect more pathogenic acute phase pulmonary disease symptoms of SARS-CoV-2, as well as derivative strains expressing nano-luciferase (nLuc) in place of ORF7 (BQ.1.1 nLuc; XBB.1 nLuc; XBB.1.5 nLuc). Amongst the mouse adapted (MA) viruses, a wide range of disease outcomes were observed including mortality, weight loss, lung dysfunction, and tissue viral loads in the lung and nasal turbinates. Intriguingly, XBB.1 MA and XBB.1.5 MA strains, which contained identical mutations throughout except at position F486S/P in S, exhibited divergent disease outcomes in mice (Ao et al., 2023). XBB.1.5 MA infection was associated with significant weight loss and ∼45 % mortality across two independent studies, while XBB.1 MA infected animals suffered from mild weight loss and only 10 % mortality across the same two independent studies. Additionally, the development and use of nanoluciferase expressing strains provided moderate throughput for live virus neutralization assays. The availability of small animal models for the assessment of Omicron VOC disease potential will enable refined capacity to evaluate the efficacy of on market and pre-clinical therapeutics and interventions.
Collapse
Affiliation(s)
- John M Powers
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Sarah R Leist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L Mallory
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Boyd L Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kendra L Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark R Zweigart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alexis B Bailey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jack R Harkema
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Kamuyu G, Coelho da Silva F, Tenet V, Schussler J, Godi A, Herrero R, Porras C, Mirabello L, Schiller JT, Sierra MS, Kreimer AR, Clifford GM, Beddows S. Global evaluation of lineage-specific human papillomavirus capsid antigenicity using antibodies elicited by natural infection. Nat Commun 2024; 15:1608. [PMID: 38383518 PMCID: PMC10881982 DOI: 10.1038/s41467-024-45807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Human Papillomavirus (HPV) type variants have been classified into lineages and sublineages based upon their whole genome sequence. Here we have examined the specificity of antibodies generated following natural infection with lineage variants of oncogenic types (HPV16, 18, 31, 33, 45, 52 and 58) by testing serum samples assembled from existing archives from women residing in Africa, The Americas, Asia or Europe against representative lineage-specific pseudoviruses for each genotype. We have subjected the resulting neutralizing antibody data to antigenic clustering methods and created relational antigenic profiles for each genotype to inform the delineation of lineage-specific serotypes. For most genotypes, there was evidence of differential recognition of lineage-specific antigens and in some cases of a sufficient magnitude to suggest that some lineages should be considered antigenically distinct within their respective genotypes. These data provide compelling evidence for a degree of lineage specificity within the humoral immune response following natural infection with oncogenic HPV.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Filomeno Coelho da Silva
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Vanessa Tenet
- International Agency for Research on Cancer (IARC/WHO) Early Detection, Prevention and Infections Branch, Lyon, France
| | - John Schussler
- Information Management Services Inc, Silver Spring, MD, USA
| | - Anna Godi
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John T Schiller
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mónica S Sierra
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Aimée R Kreimer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Gary M Clifford
- International Agency for Research on Cancer (IARC/WHO) Early Detection, Prevention and Infections Branch, Lyon, France
| | - Simon Beddows
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK.
- Blood Safety, Hepatitis, Sexually Transmitted Infections and HIV Division, UK Health Security Agency, London, UK.
| |
Collapse
|
21
|
Zaidi AK, Singh RB. SARS-CoV-2 variant biology and immune evasion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 202:45-66. [PMID: 38237990 DOI: 10.1016/bs.pmbts.2023.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter discusses the SARS-CoV-2 variants and their immune evasion strategies, shedding light on the dynamic nature of the COVID-19 pandemic. The ecological dynamics and viral evolution of SARS-CoV-2 are explored, considering carriers of infection, individual immunity profiles, and human movement as key factors in the emergence and dissemination of variants. The chapter discusses SARS-CoV-2 mutation, including mutation rate, substitution rate, and recombination, influencing genetic diversity and evolution. Transmission bottlenecks are highlighted as determinants of dominant variants during viral spread. The evolution phases of the pandemic are outlined, from limited early evolution to the emergence of notable changes like the D614G substitution and variants with heavy mutations. Variants of Concern (VOCs), including Alpha, Beta, Gamma, and the recent Omicron variant, are examined, with insights into inter-lineage and intra-lineage dynamics. The origin of VOCs and the Omicron variant is explored, alongside the role of the furin cleavage site (FCS) in variant emergence. The impact of structural and non-structural proteins on viral infectivity is assessed, as well as innate immunity evasion strategies employed by SARS-CoV-2 variants. The chapter concludes by considering future possibilities, including ongoing virus evolution, the need for surveillance, vaccine development, and public health measures.
Collapse
Affiliation(s)
| | - Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States; Department of Population, Policy and Practice, Greater Ormond Street Institute of Child Health, University College London, United Kingdom; Discipline of Ophthalmology and Visual Sciences, Adelaide Medical School, University of Adelaide, Australia.
| |
Collapse
|
22
|
Bianco A, Bortolami A, Miccolupo A, Sottili R, Ghergo P, Castellana S, Del Sambro L, Capozzi L, Pagliari M, Bonfante F, Ridolfi D, Bulzacchelli C, Giannico A, Parisi A. SARS-CoV-2 in Animal Companions: A Serosurvey in Three Regions of Southern Italy. Life (Basel) 2023; 13:2354. [PMID: 38137955 PMCID: PMC10745004 DOI: 10.3390/life13122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Several animal species have been found to be susceptible to SARS-CoV-2 infection. The occurrence of infection in dogs and cats living in close contact with owners deserves particular attention from public health authorities in a One Health approach. In this study, we conducted serological screening to identify SARS-CoV-2 exposure in the sera from dogs and cats in three regions of southern Italy sampled during the years 2021 and 2022. We collected 100 serum samples in 2021 (89 from dogs and 11 from cats) and 640 in 2022 (577 from dogs and 63 from cats). Overall, the ELISA positivity rate was found to be 2.7% (20/740), with higher seroprevalence in dogs. Serum neutralization tests confirmed positivity only in two samples collected from dogs, and the assays, performed with serologically distinct SARS-CoV-2 variants, showed variant-specific positivity. This paper shows that monitoring SARS-CoV-2 exposure in animals might be affected by the viral antigenic evolution, which requires continuous updates to the serological tests used. Serological surveys are useful in understanding the true extent of exposure occurring in specific animal populations, not suffering the same limitations as molecular tests, and could help in identifying the infecting virus if tests able to characterize the immune response are used. The use of variant-specific validated serological methods should always be considered in serosurvey studies in order to determine the real impact of emerging variants on animal populations and its implications for veterinary and human health, as well as to identify potential reservoirs of the virus and its evolutionary changes.
Collapse
Affiliation(s)
- Angelica Bianco
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Alessio Bortolami
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (A.B.); (M.P.); (F.B.)
| | - Angela Miccolupo
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Roldano Sottili
- ACV Triggiano Laboratorio di Analisi Cliniche Veterinarie, Via Suor Marcella Arosio 8, 70019 Triggiano, Italy; (R.S.)
| | - Paola Ghergo
- ACV Triggiano Laboratorio di Analisi Cliniche Veterinarie, Via Suor Marcella Arosio 8, 70019 Triggiano, Italy; (R.S.)
| | - Stefano Castellana
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Matteo Pagliari
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (A.B.); (M.P.); (F.B.)
| | - Francesco Bonfante
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (A.B.); (M.P.); (F.B.)
| | - Donato Ridolfi
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Carmela Bulzacchelli
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Anna Giannico
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e Basilicata, Via Manfredonia n. 20, 71121 Foggia, Italy; (A.B.); (S.C.); (L.D.S.); (L.C.); (D.R.); (C.B.); (A.G.); (A.P.)
| |
Collapse
|
23
|
Zhu F, Huang S, Liu X, Chen Q, Zhuang C, Zhao H, Han J, Jaen AM, Do TH, Peter JG, Dorado AG, Tirador LS, Zabat GMA, Villalobos REM, Gueco GP, Botha LLG, Iglesias Pertuz SP, Tan J, Zhu K, Quan J, Lin H, Huang Y, Jia J, Chu X, Chen J, Chen Y, Zhang T, Su Y, Li C, Ye X, Wu T, Zhang J, Xia N. Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. THE LANCET. RESPIRATORY MEDICINE 2023; 11:1075-1088. [PMID: 37979588 PMCID: PMC10682370 DOI: 10.1016/s2213-2600(23)00349-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND The live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine (dNS1-RBD, Pneucolin; Beijing Wantai Biological Pharmacy Enterprise, Beijing, China) confers long-lasting and broad protection in animal models and is, to our knowledge, the first COVID-19 mucosal vaccine to enter into human trials, but its efficacy is still unknown. We aimed to assess the safety and efficacy (but not the immunogenicity) of dNS1-RBD against COVID-19. METHODS We did a multicentre, randomised, double-blind, placebo-controlled, adaptive design, phase 3 trial at 33 centres (private or public hospitals, clinical research centres, or Centre for Disease Control and Prevention) in four countries (Colombia, Philippines, South Africa, and Viet Nam). Men and non-pregnant women (aged ≥18 years) were eligible if they had never been infected with SARS-CoV-2, and if they did not have a SARS-CoV-2 vaccination history at screening or if they had received at least one dose of other SARS-CoV-2 vaccines 6 months or longer before enrolment. Eligible adults were randomly assigned (1:1) to receive two intranasal doses of dNS1-RBD or placebo administered 14 days apart (0·2 mL per dose; 0·1 mL per nasal cavity), with block randomisation via an interactive web-response system, stratified by centre, age group (18-59 years or ≥60 years), and SARS-CoV-2 vaccination history. All participants, investigators, and laboratory staff were masked to treatment allocation. The primary outcomes were safety of dNS1-RBD in the safety population (ie, those who had received at least one dose of dNS1-RBD or placebo) and efficacy against symptomatic SARS-CoV-2 infection confirmed by RT-PCR occurring 15 days or longer after the second dose in the per-protocol population (ie, those who received two doses, were followed up for 15 days or longer after the second dose, and had no major protocol deviations). The success criterion was predefined as vaccine efficacy of more than 30%. This trial is registered with the Chinese Clinical Trial Registry (ChiCTR2100051391) and is completed. FINDINGS Between Dec 16, 2021, and May 31, 2022, 41 620 participants were screened for eligibility and 31 038 participants were enrolled and randomly assigned (15 517 in the vaccine group and 15 521 in the placebo group). 30 990 participants who received at least one dose (15 496 vaccine and 15 494 placebo) were included in the safety analysis. The results showed a favourable safety profile, with the most common local adverse reaction being rhinorrhoea (578 [3·7%] of 15 500 vaccine recipients and 546 [3·5%] of 15 490 placebo recipients) and the most common systemic reaction being headache (829 [5·3%] vaccine recipients and 797 [5·1%] placebo recipients). We found no differences in the incidences of adverse reactions between participants in the vaccine and placebo groups. No vaccination-related serious adverse events or deaths were observed. Among 30 290 participants who received two doses, 25 742 were included in the per-protocol efficacy analysis (12 840 vaccine and 12 902 placebo). The incidence of confirmed symptomatic SARS-CoV-2 infection caused by omicron variants regardless of immunisation history was 1·6% in the vaccine group and 2·3% in the placebo group, resulting in an overall vaccine efficacy of 28·2% (95% CI 3·4-46·6), with a median follow-up duration of 161 days. INTERPRETATION Although this trial did not meet the predefined efficacy criteria for success, dNS1-RBD was well tolerated and protective against omicron variants, both as a primary immunisation and as a heterologous booster. FUNDING Beijing Wantai Biological Pharmacy Enterprise, National Science and Technology Major Project, National Natural Science Foundation of China, Fujian Provincial Science and Technology Plan Project, Natural Science Foundation of Fujian Province, Xiamen Science and Technology Plan Special Project, Bill & Melinda Gates Foundation, the Ministry of Education of China, Xiamen University, and Fieldwork Funds of Xiamen University.
Collapse
Affiliation(s)
- Fengcai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Public Health Research Institute of Jiangsu Province, Nanjing, China
| | - Shoujie Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Xiaohui Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Qi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Chunlan Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Hui Zhao
- National Institute for Food and Drug Control, Beijing, China
| | - Jinle Han
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, China
| | | | - Thai Hung Do
- Pasteur Institute in Nha Trang, Nha Trang, Viet Nam
| | | | | | | | | | | | | | | | | | - Jiaxiang Tan
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, China
| | - Kongxin Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Jiali Quan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Hongyan Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Yue Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Jizong Jia
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, China
| | - Xiafei Chu
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, China
| | - Junyu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Yingying Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China
| | - Changgui Li
- National Institute for Food and Drug Control, Beijing, China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, China
| | - Ting Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China.
| |
Collapse
|
24
|
Meijers M, Ruchnewitz D, Eberhardt J, Łuksza M, Lässig M. Population immunity predicts evolutionary trajectories of SARS-CoV-2. Cell 2023; 186:5151-5164.e13. [PMID: 37875109 PMCID: PMC10964984 DOI: 10.1016/j.cell.2023.09.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023]
Abstract
The large-scale evolution of the SARS-CoV-2 virus has been marked by rapid turnover of genetic clades. New variants show intrinsic changes, notably increased transmissibility, and antigenic changes that reduce cross-immunity induced by previous infections or vaccinations. How this functional variation shapes global evolution has remained unclear. Here, we establish a predictive fitness model for SARS-CoV-2 that integrates antigenic and intrinsic selection. The model is informed by tracking of time-resolved sequence data, epidemiological records, and cross-neutralization data of viral variants. Our inference shows that immune pressure, including contributions of vaccinations and previous infections, has become the dominant force driving the recent evolution of SARS-CoV-2. The fitness model can serve continued surveillance in two ways. First, it successfully predicts the short-term evolution of circulating strains and flags emerging variants likely to displace the previously predominant variant. Second, it predicts likely antigenic profiles of successful escape variants prior to their emergence.
Collapse
Affiliation(s)
- Matthijs Meijers
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany
| | - Jan Eberhardt
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany
| | - Marta Łuksza
- Tisch Cancer Institute, Departments of Oncological Sciences and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany.
| |
Collapse
|
25
|
Zhou J, Sukhova K, Peacock TP, McKay PF, Brown JC, Frise R, Baillon L, Moshe M, Kugathasan R, Shattock RJ, Barclay WS. Omicron breakthrough infections in vaccinated or previously infected hamsters. Proc Natl Acad Sci U S A 2023; 120:e2308655120. [PMID: 37903249 PMCID: PMC10636328 DOI: 10.1073/pnas.2308655120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/17/2023] [Indexed: 11/01/2023] Open
Abstract
The ongoing SARS-CoV-2 epidemic was marked by the repeated emergence and replacement of "variants" with genetic and phenotypic distance from the ancestral strains, the most recent examples being viruses of the Omicron lineage. Here, we describe a hamster direct contact exposure challenge model to assess protection against reinfection conferred by either vaccination or prior infection. We found that two doses of self-amplifying RNA vaccine based on the ancestral Spike ameliorated weight loss following Delta infection and decreased viral loads but had minimal effect on Omicron BA.1 infection. Prior vaccination followed by Delta or BA.1 breakthrough infections led to a high degree of cross-reactivity to all tested variants, suggesting that repeated exposure to antigenically distinct Spikes, via infection and/or vaccination drives a cross-reactive immune response. Prior infection with ancestral or Alpha variant was partially protective against BA.1 infection, whereas all animals previously infected with Delta and exposed to BA.1 became reinfected, although they shed less virus than BA.1-infected naive hamsters. Hamsters reinfected with BA.1 after prior Delta infection emitted infectious virus into the air, indicating that they could be responsible for onwards airborne transmission. We further tested whether prior infection with BA.1 protected from reinfection with Delta or later Omicron sublineages BA.2, BA.4, or BA.5. BA.1 was protective against BA.2 but not against Delta, BA.4, or BA.5 reinfection. These findings suggest that cohorts whose only immune experience of COVID-19 is Omicron BA.1 infection may be vulnerable to future circulation of reemerged Delta-like derivatives, as well as emerging Omicron sublineages.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Thomas P. Peacock
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Paul F. McKay
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Jonathan C. Brown
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Maya Moshe
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Ruthiran Kugathasan
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Robin J. Shattock
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, LondonW2 1PG, United Kingdom
| |
Collapse
|
26
|
Moyo-Gwete T, Richardson SI, Keeton R, Hermanus T, Spencer H, Manamela NP, Ayres F, Makhado Z, Motlou T, Tincho MB, Benede N, Ngomti A, Baguma R, Chauke MV, Mennen M, Adriaanse M, Skelem S, Goga A, Garrett N, Bekker LG, Gray G, Ntusi NAB, Riou C, Burgers WA, Moore PL. Homologous Ad26.COV2.S vaccination results in reduced boosting of humoral responses in hybrid immunity, but elicits antibodies of similar magnitude regardless of prior infection. PLoS Pathog 2023; 19:e1011772. [PMID: 37943890 PMCID: PMC10684107 DOI: 10.1371/journal.ppat.1011772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/28/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 59-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points, suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.
Collapse
Affiliation(s)
- Thandeka Moyo-Gwete
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Simone I. Richardson
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Tandile Hermanus
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Holly Spencer
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P. Manamela
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Frances Ayres
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Zanele Makhado
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Thopisang Motlou
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Masego V. Chauke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital; Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town; Observatory, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital; Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town; Observatory, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital; Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town; Observatory, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Ameena Goga
- South African Medical Research Council, Cape Town, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Desmond Tutu HIV Centre, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Ntobeko A. B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital; Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town; Observatory, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Penny L. Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
27
|
Hogan AB, Wu SL, Toor J, Olivera Mesa D, Doohan P, Watson OJ, Winskill P, Charles G, Barnsley G, Riley EM, Khoury DS, Ferguson NM, Ghani AC. Long-term vaccination strategies to mitigate the impact of SARS-CoV-2 transmission: A modelling study. PLoS Med 2023; 20:e1004195. [PMID: 38016000 PMCID: PMC10715640 DOI: 10.1371/journal.pmed.1004195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/12/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Vaccines have reduced severe disease and death from Coronavirus Disease 2019 (COVID-19). However, with evidence of waning efficacy coupled with continued evolution of the virus, health programmes need to evaluate the requirement for regular booster doses, considering their impact and cost-effectiveness in the face of ongoing transmission and substantial infection-induced immunity. METHODS AND FINDINGS We developed a combined immunological-transmission model parameterised with data on transmissibility, severity, and vaccine effectiveness. We simulated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and vaccine rollout in characteristic global settings with different population age-structures, contact patterns, health system capacities, prior transmission, and vaccine uptake. We quantified the impact of future vaccine booster dose strategies with both ancestral and variant-adapted vaccine products, while considering the potential future emergence of new variants with modified transmission, immune escape, and severity properties. We found that regular boosting of the oldest age group (75+) is an efficient strategy, although large numbers of hospitalisations and deaths could be averted by extending vaccination to younger age groups. In countries with low vaccine coverage and high infection-derived immunity, boosting older at-risk groups was more effective than continuing primary vaccination into younger ages in our model. Our study is limited by uncertainty in key parameters, including the long-term durability of vaccine and infection-induced immunity as well as uncertainty in the future evolution of the virus. CONCLUSIONS Our modelling suggests that regular boosting of the high-risk population remains an important tool to reduce morbidity and mortality from current and future SARS-CoV-2 variants. Our results suggest that focusing vaccination in the highest-risk cohorts will be the most efficient (and hence cost-effective) strategy to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Alexandra B. Hogan
- School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Sean L. Wu
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States of America
| | - Jaspreet Toor
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Daniela Olivera Mesa
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Patrick Doohan
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver J. Watson
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Giovanni Charles
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Gregory Barnsley
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Eleanor M. Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David S. Khoury
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Neil M. Ferguson
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Azra C. Ghani
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Seow J, Shalim ZA, Graham C, Kimuda S, Pillai A, Lechmere T, Kurshan A, Khimji AM, Snell LB, Nebbia G, Mant C, Waters A, Fox J, Malim MH, Doores KJ. Broad and potent neutralizing antibodies are elicited in vaccinated individuals following Delta/BA.1 breakthrough infection. mBio 2023; 14:e0120623. [PMID: 37747187 PMCID: PMC10653880 DOI: 10.1128/mbio.01206-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE With the emergence of SARS-CoV-2 viral variants, there has been an increase in infections in vaccinated individuals. Here, we isolated monoclonal antibodies (mAbs) from individuals experiencing a breakthrough infection (Delta or BA.1) to determine how exposure to a heterologous Spike broadens the neutralizing antibody response at the monoclonal level. All mAbs isolated had reactivity to the Spike of the vaccine and infection variant. While many mAbs showed reduced neutralization of current circulating variants, we identified mAbs with broad and potent neutralization of BA.2.75.2, XBB, XBB.1.5, and BQ.1.1 indicating the presence of conserved epitopes on Spike. These results indicate that variant-based vaccine boosters have the potential to broaden the vaccine response.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Zayed A. Shalim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Simon Kimuda
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Aswin Pillai
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Ashwini Kurshan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Atika M. Khimji
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Luke B. Snell
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Gaia Nebbia
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Christine Mant
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Infectious Diseases, Infectious Diseases Biobank, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Anele Waters
- Harrison Wing, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Julie Fox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Harrison Wing, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
29
|
Guerra D, Beaumont T, Radić L, Kerster G, van der Straten K, Yuan M, Torres JL, Lee WH, Liu H, Poniman M, Bontjer I, Burger JA, Claireaux M, Caniels TG, Snitselaar JL, Bijl TP, Kruijer S, Ozorowski G, Gideonse D, Sliepen K, Ward AB, Eggink D, de Bree GJ, Wilson IA, Sanders RW, van Gils MJ. Broad SARS-CoV-2 neutralization by monoclonal and bispecific antibodies derived from a Gamma-infected individual. iScience 2023; 26:108009. [PMID: 37841584 PMCID: PMC10570122 DOI: 10.1016/j.isci.2023.108009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has remained a medical threat due to the evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants. A stabilized spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants, with COVA309-35 being the most potent against the autologous virus, as well as Omicron BA.1 and BA.2, and COVA309-22 having binding and neutralization activity against Omicron BA.4/5, BQ.1.1, and XBB.1. When combining the COVA309 mAbs as cocktails or bispecific antibodies, the breadth and potency were improved. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Denise Guerra
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tim Beaumont
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Laura Radić
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Gius Kerster
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meliawati Poniman
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Ilja Bontjer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Judith A. Burger
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tom G. Caniels
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Jonne L. Snitselaar
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tom P.L. Bijl
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Sabine Kruijer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Gideonse
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dirk Eggink
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, the Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W. Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Marit J. van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Port JR, Yinda CK, Riopelle JC, Weishampel ZA, Saturday TA, Avanzato VA, Schulz JE, Holbrook MG, Barbian K, Perry-Gottschalk R, Haddock E, Martens C, Shaia CI, Lambe T, Gilbert SC, van Doremalen N, Munster VJ. Infection- or AZD1222 vaccine-mediated immunity reduces SARS-CoV-2 transmission but increases Omicron competitiveness in hamsters. Nat Commun 2023; 14:6592. [PMID: 37852960 PMCID: PMC10584863 DOI: 10.1038/s41467-023-42346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Limited data is available on the effect of vaccination and previous virus exposure on the nature of SARS-CoV-2 transmission and immune-pressure on variants. To understand the impact of pre-existing immunity on SARS-CoV-2 airborne transmission efficiency, we perform a transmission chain experiment using naïve, intranasally or intramuscularly AZD1222 vaccinated, and previously infected hamsters. A clear gradient in transmission efficacy is observed: Transmission in hamsters vaccinated via the intramuscular route was reduced over three airborne chains (approx. 60%) compared to naïve animals, whereas transmission in previously infected hamsters and those vaccinated via the intranasal route was reduced by 80%. We also find that the Delta B.1.617.2 variant outcompeted Omicron B.1.1.529 after dual infection within and between hosts in naïve, vaccinated, and previously infected transmission chains, yet an increase in Omicron B.1.1.529 competitiveness is observed in groups with pre-existing immunity against Delta B.1.617.2. This correlates with an increase in the strength of the humoral response against Delta B.1.617.2, with the strongest response seen in previously infected animals. These data highlight the continuous need to improve vaccination strategies and address the additional evolutionary pressure pre-existing immunity may exert on SARS-CoV-2.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Zachary A Weishampel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
31
|
Wilks SH, Mühlemann B, Shen X, Türeli S, LeGresley EB, Netzl A, Caniza MA, Chacaltana-Huarcaya JN, Corman VM, Daniell X, Datto MB, Dawood FS, Denny TN, Drosten C, Fouchier RAM, Garcia PJ, Halfmann PJ, Jassem A, Jeworowski LM, Jones TC, Kawaoka Y, Krammer F, McDanal C, Pajon R, Simon V, Stockwell MS, Tang H, van Bakel H, Veguilla V, Webby R, Montefiori DC, Smith DJ. Mapping SARS-CoV-2 antigenic relationships and serological responses. Science 2023; 382:eadj0070. [PMID: 37797027 PMCID: PMC12145880 DOI: 10.1126/science.adj0070] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.
Collapse
Affiliation(s)
- Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoju Daniell
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael B Datto
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | | | - Patricia J Garcia
- School of Public Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Agatha Jassem
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Lara M Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlene McDanal
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, and Department of Population and Family Health, Mailman School of Public Health, New York, NY, USA
| | - Haili Tang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vic Veguilla
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
32
|
Vinzón SE, Lopez MV, Cafferata EGA, Soto AS, Berguer PM, Vazquez L, Nusblat L, Pontoriero AV, Belotti EM, Salvetti NR, Viale DL, Vilardo AE, Avaro MM, Benedetti E, Russo ML, Dattero ME, Carobene M, Sánchez-Lamas M, Afonso J, Heitrich M, Cristófalo AE, Otero LH, Baumeister EG, Ortega HH, Edelstein A, Podhajcer OL. Cross-protection and cross-neutralization capacity of ancestral and VOC-matched SARS-CoV-2 adenoviral vector-based vaccines. NPJ Vaccines 2023; 8:149. [PMID: 37794010 PMCID: PMC10550992 DOI: 10.1038/s41541-023-00737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.
Collapse
Affiliation(s)
- Sabrina E Vinzón
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - María V Lopez
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Eduardo G A Cafferata
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariadna S Soto
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Paula M Berguer
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Luciana Vazquez
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Leonora Nusblat
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Andrea V Pontoriero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Eduardo M Belotti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Natalia R Salvetti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Diego L Viale
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariel E Vilardo
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Martin M Avaro
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Estefanía Benedetti
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mara L Russo
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - María E Dattero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mauricio Carobene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Buenos Aires, Argentina
| | | | - Jimena Afonso
- Area de Bioterio, Fundación Instituto Leloir; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Alejandro E Cristófalo
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
| | - Lisandro H Otero
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud, CONICET, Universidad Nacional de Río Cuarto, Córdoba, X5804BYA, Argentina
| | - Elsa G Baumeister
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Alexis Edelstein
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
34
|
Mühlemann B, Wilks SH, Baracco L, Bekliz M, Carreño JM, Corman VM, Davis-Gardner ME, Dejnirattisai W, Diamond MS, Douek DC, Drosten C, Eckerle I, Edara VV, Ellis M, Fouchier RAM, Frieman M, Godbole S, Haagmans B, Halfmann PJ, Henry AR, Jones TC, Katzelnick LC, Kawaoka Y, Kimpel J, Krammer F, Lai L, Liu C, Lusvarghi S, Meyer B, Mongkolsapaya J, Montefiori DC, Mykytyn A, Netzl A, Pollett S, Rössler A, Screaton GR, Shen X, Sigal A, Simon V, Subramanian R, Supasa P, Suthar M, Türeli S, Wang W, Weiss CD, Smith DJ. Comparative Analysis of SARS-CoV-2 Antigenicity across Assays and in Human and Animal Model Sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559689. [PMID: 37808679 PMCID: PMC10557678 DOI: 10.1101/2023.09.27.559689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren Baracco
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Meriem Bekliz
- Department of Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, Switzerland
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabella Eckerle
- Department of Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bart Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Benjamin Meyer
- Centre of Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Mehul Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Carol D Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
35
|
Francis ME, Jansen EB, Yourkowski A, Selim A, Swan CL, MacPhee BK, Thivierge B, Buchanan R, Lavender KJ, Darbellay J, Rogers MB, Lew J, Gerdts V, Falzarano D, Skowronski DM, Sjaarda C, Kelvin AA. Previous infection with seasonal coronaviruses does not protect male Syrian hamsters from challenge with SARS-CoV-2. Nat Commun 2023; 14:5990. [PMID: 37752151 PMCID: PMC10522707 DOI: 10.1038/s41467-023-41761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
SARS-CoV-2 variants and seasonal coronaviruses continue to cause disease and coronaviruses in the animal reservoir pose a constant spillover threat. Importantly, understanding of how previous infection may influence future exposures, especially in the context of seasonal coronaviruses and SARS-CoV-2 variants, is still limited. Here we adopted a step-wise experimental approach to examine the primary immune response and subsequent immune recall toward antigenically distinct coronaviruses using male Syrian hamsters. Hamsters were initially inoculated with seasonal coronaviruses (HCoV-NL63, HCoV-229E, or HCoV-OC43), or SARS-CoV-2 pango B lineage virus, then challenged with SARS-CoV-2 pango B lineage virus, or SARS-CoV-2 variants Beta or Omicron. Although infection with seasonal coronaviruses offered little protection against SARS-CoV-2 challenge, HCoV-NL63-infected animals had an increase of the previously elicited HCoV-NL63-specific neutralizing antibodies during challenge with SARS-CoV-2. On the other hand, primary infection with HCoV-OC43 induced distinct T cell gene signatures. Gene expression profiling indicated interferon responses and germinal center reactions to be induced during more similar primary infection-challenge combinations while signatures of increased inflammation as well as suppression of the antiviral response were observed following antigenically distant viral challenges. This work characterizes and analyzes seasonal coronaviruses effect on SARS-CoV-2 secondary infection and the findings are important for pan-coronavirus vaccine design.
Collapse
Affiliation(s)
- Magen E Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ethan B Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alaa Selim
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cynthia L Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brian K MacPhee
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brittany Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rachelle Buchanan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew B Rogers
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Danuta M Skowronski
- BC Centre for Disease Control, Immunization Programs and Vaccine Preventable Diseases Service, Vancouver, BC, Canada
- University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada
| | - Calvin Sjaarda
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Centre, Kingston, ON, Canada
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
36
|
Sokal A, Barba-Spaeth G, Hunault L, Fernández I, Broketa M, Meola A, Fourati S, Azzaoui I, Vandenberghe A, Lagouge-Roussey P, Broutin M, Roeser A, Bouvier-Alias M, Crickx E, Languille L, Fournier M, Michel M, Godeau B, Gallien S, Melica G, Nguyen Y, Canoui-Poitrine F, Pirenne F, Megret J, Pawlotsky JM, Fillatreau S, Reynaud CA, Weill JC, Rey FA, Bruhns P, Mahévas M, Chappert P. SARS-CoV-2 Omicron BA.1 breakthrough infection drives late remodeling of the memory B cell repertoire in vaccinated individuals. Immunity 2023; 56:2137-2151.e7. [PMID: 37543032 DOI: 10.1016/j.immuni.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 08/07/2023]
Abstract
How infection by a viral variant showing antigenic drift impacts a preformed mature human memory B cell (MBC) repertoire remains an open question. Here, we studied the MBC response up to 6 months after SARS-CoV-2 Omicron BA.1 breakthrough infection in individuals previously vaccinated with three doses of the COVID-19 mRNA vaccine. Longitudinal analysis, using single-cell multi-omics and functional analysis of monoclonal antibodies from RBD-specific MBCs, revealed that a BA.1 breakthrough infection mostly recruited pre-existing cross-reactive MBCs with limited de novo response against BA.1-restricted epitopes. Reorganization of clonal hierarchy and new rounds of germinal center reactions, however, combined to maintain diversity and induce progressive maturation of the MBC repertoire against common Hu-1 and BA.1, but not BA.5-restricted, SARS-CoV-2 Spike RBD epitopes. Such remodeling was further associated with a marked improvement in overall neutralizing breadth and potency. These findings have fundamental implications for the design of future vaccination booster strategies.
Collapse
Affiliation(s)
- Aurélien Sokal
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France; Service de Médecine interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris Cité, Clichy, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Giovanna Barba-Spaeth
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Lise Hunault
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Unit of Antibodies in Therapy and Pathology, Paris, France; Sorbonne University, ED394, Paris, France; Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| | - Ignacio Fernández
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Matteo Broketa
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Unit of Antibodies in Therapy and Pathology, Paris, France; Sorbonne University, ED394, Paris, France
| | - Annalisa Meola
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Slim Fourati
- Département de Virologie, Bactériologie, Hygiène et Mycologie-Parasitologie, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France; INSERM U955, équipe 18. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Imane Azzaoui
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France; INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Alexis Vandenberghe
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France; INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Pauline Lagouge-Roussey
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France; INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Manon Broutin
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France; INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Anais Roeser
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Magali Bouvier-Alias
- Département de Virologie, Bactériologie, Hygiène et Mycologie-Parasitologie, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France; INSERM U955, équipe 18. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Etienne Crickx
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France; INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Laetitia Languille
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Morgane Fournier
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Bertrand Godeau
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Sébastien Gallien
- Service de Maladies Infectieuses, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Giovanna Melica
- Service de Maladies Infectieuses, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Yann Nguyen
- Service de Médecine Interne, Centre Hospitalier Universitaire Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Florence Canoui-Poitrine
- Département de Santé Publique, Unité de Recherche Clinique (URC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- Institut Mondor de Recherche Biomédicale (IMRB), Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - France Pirenne
- INSERM U955, équipe 18. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Etablissement Français du Sang (EFS) Ile de France, Créteil, France
| | - Jérôme Megret
- Plateforme de Cytométrie en Flux, Structure Fédérative de Recherche Necker, INSERM US24-CNRS UMS3633, Paris, France
| | - Jean-Michel Pawlotsky
- Département de Virologie, Bactériologie, Hygiène et Mycologie-Parasitologie, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France; INSERM U955, équipe 18. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Simon Fillatreau
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris, Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France
| | - Jean-Claude Weill
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France
| | - Félix A Rey
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Matthieu Mahévas
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France; Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France; INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France.
| | - Pascal Chappert
- Institut Necker Enfants Malades, INSERM U1151/CNRS UMR 8253, Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, Université Paris Cité, Université Paris Est-Créteil, Créteil, France; INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France.
| |
Collapse
|
37
|
Rössler A, Netzl A, Knabl L, Bante D, Wilks SH, Borena W, von Laer D, Smith DJ, Kimpel J. Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography. Nat Commun 2023; 14:5224. [PMID: 37633965 PMCID: PMC10460376 DOI: 10.1038/s41467-023-41049-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Antonia Netzl
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - David Bante
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Samuel H Wilks
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Derek J Smith
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK.
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria.
| |
Collapse
|
38
|
Wagh K, Shen X, Theiler J, Girard B, Marshall JC, Montefiori DC, Korber B. Mutational basis of serum cross-neutralization profiles elicited by infection or vaccination with SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553144. [PMID: 37645950 PMCID: PMC10461964 DOI: 10.1101/2023.08.13.553144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A series of SARS-CoV-2 variants emerged during the pandemic under selection for neutralization resistance. Convalescent and vaccinated sera show consistently different cross-neutralization profiles depending on infecting or vaccine variants. To understand the basis of this heterogeneity, we modeled serum cross-neutralization titers for 165 sera after infection or vaccination with historically prominent lineages tested against 18 variant pseudoviruses. Cross-neutralization profiles were well captured by models incorporating autologous neutralizing titers and combinations of specific shared and differing mutations between the infecting/vaccine variants and pseudoviruses. Infecting/vaccine variant-specific models identified mutations that significantly impacted cross-neutralization and quantified their relative contributions. Unified models that explained cross-neutralization profiles across all infecting and vaccine variants provided accurate predictions of holdout neutralization data comprising untested variants as infecting or vaccine variants, and as test pseudoviruses. Finally, comparative modeling of 2-dose versus 3-dose mRNA-1273 vaccine data revealed that the third dose overcame key resistance mutations to improve neutralization breadth. HIGHLIGHTS Modeled SARS-CoV-2 cross-neutralization using mutations at key sitesIdentified resistance mutations and quantified relative impactAccurately predicted holdout variant and convalescent/vaccine sera neutralizationShowed that the third dose of mRNA-1273 vaccination overcomes resistance mutations.
Collapse
|
39
|
Hu YF, Yuen TTT, Gong HR, Hu B, Hu JC, Lin XS, Rong L, Zhou CL, Chen LL, Wang X, Lei C, Yau T, Hung IFN, To KKW, Yuen KY, Zhang BZ, Chu H, Huang JD. Rational design of a booster vaccine against COVID-19 based on antigenic distance. Cell Host Microbe 2023; 31:1301-1316.e8. [PMID: 37527659 DOI: 10.1016/j.chom.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/03/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Current COVID-19 vaccines are highly effective against symptomatic disease, but repeated booster doses using vaccines based on the ancestral strain offer limited additional protection against SARS-CoV-2 variants of concern (VOCs). To address this, we used antigenic distance to in silico select optimized booster vaccine seed strains effective against both current and future VOCs. Our model suggests that a SARS-CoV-1-based booster vaccine has the potential to cover a broader range of VOCs. Candidate vaccines including the spike protein from ancestral SARS-CoV-2, Delta, Omicron (BA.1), SARS-CoV-1, or MERS-CoV were experimentally evaluated in mice following two doses of the BNT162b2 vaccine. The SARS-CoV-1-based booster vaccine outperformed other candidates in terms of neutralizing antibody breadth and duration, as well as protective activity against Omicron (BA.2) challenge. This study suggests a unique strategy for selecting booster vaccines based on antigenic distance, which may be useful in designing future booster vaccines as new SARS-CoV-2 variants emerge.
Collapse
Affiliation(s)
- Ye-Fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China; Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 4/F Professional Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China; BayVax Biotech Limited, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
| | - Terrence Tsz-Tai Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Hua-Rui Gong
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Bingjie Hu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Jing-Chu Hu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Xuan-Sheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Li Rong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Coco Luyao Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Lin-Lei Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Chaobi Lei
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Thomas Yau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 4/F Professional Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 4/F Professional Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Bao-Zhong Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China.
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 19/F Block T, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China.
| | - Jian-Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong, China; Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China; Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
40
|
Springer DN, Bauer M, Medits I, Camp JV, Aberle SW, Burtscher C, Höltl E, Weseslindtner L, Stiasny K, Aberle JH. Bivalent COVID-19 mRNA booster vaccination (BA.1 or BA.4/BA.5) increases neutralization of matched Omicron variants. NPJ Vaccines 2023; 8:110. [PMID: 37542025 PMCID: PMC10403593 DOI: 10.1038/s41541-023-00708-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023] Open
Abstract
We report SARS-CoV-2 neutralizing antibody titers in sera of triple-vaccinated individuals who received a booster dose of an original monovalent or a bivalent BA.1- or BA.4/BA.5-adapted vaccine or had a breakthrough infection with Omicron variants BA.1, BA.2 or BA.4/BA.5. A bivalent BA.4/BA.5 booster or Omicron-breakthrough infection induced increased Omicron-neutralization titers compared with the monovalent booster. The XBB.1.5 variant effectively evaded neutralizing-antibody responses elicited by current vaccines and/or infection with previous variants.
Collapse
Affiliation(s)
- David N Springer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Bauer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Iris Medits
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Jeremy V Camp
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Eva Höltl
- Health Center Erste Bank, Erste Bank, Vienna, Austria
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Harthaller T, Falkensammer B, Bante D, Huber M, Schmitt M, Benainouna H, Rössler A, Fleischer V, von Laer D, Kimpel J, Würzner R, Borena W. Retained avidity despite reduced cross-binding and cross-neutralizing antibody levels to Omicron after SARS-COV-2 wild-type infection or mRNA double vaccination. Front Immunol 2023; 14:1196988. [PMID: 37545492 PMCID: PMC10401431 DOI: 10.3389/fimmu.2023.1196988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction The rapid evolution of SARS-CoV-2 has posed a challenge to long-lasting immunity against the novel virus. Apart from neutralizing function, binding antibodies induced by vaccination or infection play an important role in containing the infection. Methods To determine the proportion of wild-type (WT)-generated antibodies recognizant of more recent variants, plasma samples from either SARS-CoV-2 WT-infected (n = 336) or double-mRNA (Comirnaty)-vaccinated individuals (n = 354, age and sex matched to the convalescent group) were analyzed for binding antibody capacity against the S1 protein of the BA.1 omicron variant. Results Overall, 38.59% (95% CI, 37.01- 40.20) of WT-generated antibodies recognized Omicron BA.1 S1 protein [28.83% (95% CI, 26.73-30.91) after infection and 43.46% (95% CI, 41.61-45.31) after vaccination; p < 0.001]. Although the proportion of WT-generated binding and neutralizing antibodies also binding to BA.1 is substantially reduced, the avidity of the remaining antibodies against the Omicron variant was non-inferior to that of the ancestral virus: Omicron: 39.7% (95% CI: 38.1-41.3) as compared to the avidity to WT: 27.0% (95% CI, 25.5-28.4), respectively (p < 0.001). Furthermore, we noticed a modestly yet statistically significant higher avidity toward the Omicron epitopes among the vaccinated group (42.2%; 95% CI, 40.51-43.94) as compared to the convalescent counterparts (36.4%; 95% CI, 33.42-38.76) (p = 0.003), even after adjusting for antibody concentration. Discussion Our results suggest that an aspect of functional immunity against the novel strain was considerably retained after WT contact, speculatively counteracting the impact of immune evasion toward neutralization of the strain. Higher antibody levels and cross-binding capacity among vaccinated individuals suggest an advantage of repeated exposure in generating robust immunity.
Collapse
Affiliation(s)
- Teresa Harthaller
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Barbara Falkensammer
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - David Bante
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Huber
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Melanie Schmitt
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Habib Benainouna
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Annika Rössler
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Verena Fleischer
- Department of Hygiene, Microbiology and Public Health, Institute of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Dorothee von Laer
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Reinhard Würzner
- Department of Hygiene, Microbiology and Public Health, Institute of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Wegene Borena
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
42
|
Astakhova EA, Morozov AA, Byazrova MG, Sukhova MM, Mikhailov AA, Minnegalieva AR, Gorchakov AA, Filatov AV. Antigenic Cartography Indicates That the Omicron BA.1 and BA.4/BA.5 Variants Remain Antigenically Distant to Ancestral SARS-CoV-2 after Sputnik V Vaccination Followed by Homologous (Sputnik V) or Heterologous (Comirnaty) Revaccination. Int J Mol Sci 2023; 24:10493. [PMID: 37445671 PMCID: PMC10341525 DOI: 10.3390/ijms241310493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid emergence of evasive SARS-CoV-2 variants is an ongoing challenge for COVID-19 vaccinology. Traditional virus neutralization tests provide detailed datasets of neutralization titers against the viral variants. Such datasets are difficult to interpret and do not immediately inform of the sufficiency of the breadth of the antibody response. Some of these issues could be tackled using the antigenic cartography approach. In this study, we created antigenic maps using neutralization titers of sera from donors who received the Sputnik V booster vaccine after primary Sputnik V vaccination and compared them with the antigenic maps based on serum neutralization titers of Comirnaty-boosted donors. A traditional analysis of neutralization titers against the WT (wild-type), Alpha, Beta, Delta, Omicron BA.1, and BA.4/BA.5 variants showed a significant booster humoral response after both homologous (Sputnik V) and heterologous (Comirnaty) revaccinations against all of the studied viral variants. However, despite this, a more in-depth analysis using antigenic cartography revealed that Omicron variants remain antigenically distant from the WT, which is indicative of the formation of insufficient levels of cross-neutralizing antibodies. The implications of these findings may be significant when developing a new vaccine regimen.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Morozov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Ministry of Science and Higher Education of Russia, RUDN University, 117198 Moscow, Russia
| | - Maria M. Sukhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem A. Mikhailov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aygul R. Minnegalieva
- Laboratory of Synthetic and Evolutionary Biology, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Andrey A. Gorchakov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
43
|
Tomris I, Unione L, Nguyen L, Zaree P, Bouwman KM, Liu L, Li Z, Fok JA, Ríos Carrasco M, van der Woude R, Kimpel ALM, Linthorst MW, Kilavuzoglu SE, Verpalen ECJM, Caniels TG, Sanders RW, Heesters BA, Pieters RJ, Jiménez-Barbero J, Klassen JS, Boons GJ, de Vries RP. SARS-CoV-2 Spike N-Terminal Domain Engages 9- O-Acetylated α2-8-Linked Sialic Acids. ACS Chem Biol 2023; 18:1180-1191. [PMID: 37104622 PMCID: PMC10178783 DOI: 10.1021/acschembio.3c00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan binding cleft. However, for the SARS-CoV-2 NTD, protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of variants of concern (VoC) show antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, alpha, beta, delta, and omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9-O-acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity toward 9-O-acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells.
Collapse
Affiliation(s)
- Ilhan Tomris
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Luca Unione
- CICbioGUNE,
Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
| | - Linh Nguyen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Pouya Zaree
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kim M. Bouwman
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lin Liu
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Zeshi Li
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jelle A. Fok
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - María Ríos Carrasco
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Roosmarijn van der Woude
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anne L. M. Kimpel
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mirte W. Linthorst
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sinan E. Kilavuzoglu
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Enrico C. J. M. Verpalen
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Tom G. Caniels
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Infectious Diseases, 1081 HZ Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Infectious Diseases, 1081 HZ Amsterdam, The Netherlands
- Department
of Microbiology and Immunology, Weill Medical
Center of Cornell University, 1300 York Avenue, New York, New York 10065, United States
| | - Balthasar A. Heesters
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Roland J. Pieters
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jesús Jiménez-Barbero
- CICbioGUNE,
Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Department
of Microbiology and Immunology, Weill Medical
Center of Cornell University, 1300 York Avenue, New York, New York 10065, United States
- Department
of Organic Chemistry, II Faculty of Science
and Technology University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, Av. Monforte de Lemos, 3-5. Pabellón
11. Planta 0, 28029 Madrid, Spain
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Geert-Jan Boons
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
44
|
Beesley LJ, Moran KR, Wagh K, Castro LA, Theiler J, Yoon H, Fischer W, Hengartner NW, Korber B, Del Valle SY. SARS-CoV-2 variant transition dynamics are associated with vaccination rates, number of co-circulating variants, and convalescent immunity. EBioMedicine 2023; 91:104534. [PMID: 37004335 PMCID: PMC10065418 DOI: 10.1016/j.ebiom.2023.104534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Throughout the COVID-19 pandemic, the SARS-CoV-2 virus has continued to evolve, with new variants outcompeting existing variants and often leading to different dynamics of disease spread. METHODS In this paper, we performed a retrospective analysis using longitudinal sequencing data to characterize differences in the speed, calendar timing, and magnitude of 16 SARS-CoV-2 variant waves/transitions for 230 countries and sub-country regions, between October 2020 and January 2023. We then clustered geographic locations in terms of their variant behavior across several Omicron variants, allowing us to identify groups of locations exhibiting similar variant transitions. Finally, we explored relationships between heterogeneity in these variant waves and time-varying factors, including vaccination status of the population, governmental policy, and the number of variants in simultaneous competition. FINDINGS This work demonstrates associations between the behavior of an emerging variant and the number of co-circulating variants as well as the demographic context of the population. We also observed an association between high vaccination rates and variant transition dynamics prior to the Mu and Delta variant transitions. INTERPRETATION These results suggest the behavior of an emergent variant may be sensitive to the immunologic and demographic context of its location. Additionally, this work represents the most comprehensive characterization of variant transitions globally to date. FUNDING Laboratory Directed Research and Development (LDRD), Los Alamos National Laboratory.
Collapse
Affiliation(s)
- Lauren J Beesley
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Kelly R Moran
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Lauren A Castro
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - James Theiler
- Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hyejin Yoon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nick W Hengartner
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA; The New Mexico Consortium, Los Alamos, NM, USA
| | - Sara Y Del Valle
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
45
|
Mykytyn AZ, Rosu ME, Kok A, Rissmann M, van Amerongen G, Geurtsvankessel C, de Vries RD, Munnink BBO, Smith DJ, Koopmans MPG, Lamers MM, Fouchier RAM, Haagmans BL. Antigenic mapping of emerging SARS-CoV-2 omicron variants BM.1.1.1, BQ.1.1, and XBB.1. THE LANCET. MICROBE 2023; 4:e294-e295. [PMID: 36657480 PMCID: PMC9842387 DOI: 10.1016/s2666-5247(22)00384-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Miruna E Rosu
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Adinda Kok
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | | | | | - Rory D de Vries
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Bas B Oude Munnink
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marion P G Koopmans
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Mart M Lamers
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam 3015CN, Netherlands.
| |
Collapse
|
46
|
Dijokaite-Guraliuc A, Das R, Zhou D, Ginn HM, Liu C, Duyvesteyn HME, Huo J, Nutalai R, Supasa P, Selvaraj M, de Silva TI, Plowright M, Newman TAH, Hornsby H, Mentzer AJ, Skelly D, Ritter TG, Temperton N, Klenerman P, Barnes E, Dunachie SJ, Roemer C, Peacock TP, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. Rapid escape of new SARS-CoV-2 Omicron variants from BA.2-directed antibody responses. Cell Rep 2023; 42:112271. [PMID: 36995936 PMCID: PMC9988707 DOI: 10.1016/j.celrep.2023.112271] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 and then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional receptor-binding domain (RBD) amino acid substitutions compared with BA.2. We describe a panel of 25 potent monoclonal antibodies (mAbs) generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titer of vaccine or BA.1, BA.2, or BA.4/5 immune serum.
Collapse
Key Words
- CP: Immunology
- CP: Microbiology
- SARS-CoV-2, BA.2, variant, mutation, RBD, antibodies, binding site, breakthrough, neutralizing, structure, COVID-19
Collapse
Affiliation(s)
- Aiste Dijokaite-Guraliuc
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Raksha Das
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daming Zhou
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M Ginn
- Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Jiandong Huo
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Rungtiwa Nutalai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Muneeswaran Selvaraj
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Megan Plowright
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thomas A H Newman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Donal Skelly
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas G Ritter
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent, UK
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand; Department of Medicine, University of Oxford, Oxford, UK
| | - Cornelius Roemer
- Biozentrum, University of Basel, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Neil G Paterson
- Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK
| | - Mark A Williams
- Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK
| | - David R Hall
- Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Diamond Light Source, Ltd., Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
47
|
Moyo-Gwete T, Richardson SI, Keeton R, Hermanus T, Spencer H, Manamela NP, Ayres F, Makhado Z, Motlou T, Tincho MB, Benede N, Ngomti A, Baguma R, Chauke MV, Mennen M, Adriaanse M, Skelem S, Goga A, Garrett N, Bekker LG, Gray G, Ntusi NA, Riou C, Burgers WA, Moore PL. Homologous Ad26.COV2.S vaccination results in reduced boosting of humoral responses in hybrid immunity, but elicits antibodies of similar magnitude regardless of prior infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.15.23287288. [PMID: 36993404 PMCID: PMC10055608 DOI: 10.1101/2023.03.15.23287288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 33-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.
Collapse
Affiliation(s)
- Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I. Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Holly Spencer
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P. Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Zanele Makhado
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thopisang Motlou
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Masego V. Chauke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital; Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town; Observatory, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital; Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town; Observatory, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital; Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town; Observatory, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Ameena Goga
- South African Medical Research Council, Cape Town, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Desmond Tutu HIV Centre, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Ntobeko A.B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital; Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town; Observatory, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology; University of Cape Town; Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Penny L. Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
48
|
Lu C, Zhang Y, Liu X, Hou F, Cai R, Yu Z, Liu F, Yang G, Ding J, Xu J, Hua X, Cheng X, Pan X, Liu L, Lin K, Wang Z, Li X, Lu J, Zhang Q, Li Y, Hu C, Fan H, Liu X, Wang H, Jia R, Xu F, Wang X, Huang H, Zhao R, Li J, Cheng H, Jia W, Yang X. Heterologous boost with mRNA vaccines against SARS-CoV-2 Delta/Omicron variants following an inactivated whole-virus vaccine. Antiviral Res 2023; 212:105556. [PMID: 36871919 PMCID: PMC9985518 DOI: 10.1016/j.antiviral.2023.105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
The coronavirus SARS-CoV-2 has mutated quickly and caused significant global damage. This study characterizes two mRNA vaccines ZSVG-02 (Delta) and ZSVG-02-O (Omicron BA.1), and associating heterologous prime-boost strategy following the prime of a most widely administrated inactivated whole-virus vaccine (BBIBP-CorV). The ZSVG-02-O induces neutralizing antibodies that effectively cross-react with Omicron subvariants. In naïve animals, ZSVG-02 or ZSVG-02-O induce humoral responses skewed to the vaccine's targeting strains, but cellular immune responses cross-react to all variants of concern (VOCs) tested. Following heterologous prime-boost regimes, animals present comparable neutralizing antibody levels and superior protection against Delta and Omicron BA.1variants. Single-boost only generated ancestral and omicron dual-responsive antibodies, probably by "recall" and "reshape" the prime immunity. New Omicron-specific antibody populations, however, appeared only following the second boost with ZSVG-02-O. Overall, our results support a heterologous boost with ZSVG-02-O, providing the best protection against current VOCs in inactivated virus vaccine-primed populations.
Collapse
Affiliation(s)
- Changrui Lu
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | | | - Xiaohu Liu
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Fujun Hou
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Rujie Cai
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Zhibin Yu
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Fei Liu
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Guohuan Yang
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Jun Ding
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Jiang Xu
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Xianwu Hua
- Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Xinhua Cheng
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Xinping Pan
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Lianxiao Liu
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Kang Lin
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Xinguo Li
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Jia Lu
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Qiu Zhang
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Yuwei Li
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Chunxia Hu
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Huifen Fan
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Xiaoke Liu
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Hui Wang
- Wuhan Institute of Biological Products Co., LTD (WIBP), China
| | - Rui Jia
- China National Biotec Group (CNBG), China
| | | | | | - Hongwei Huang
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China; Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Ronghua Zhao
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China; Virogin Biotech (Shanghai) Ltd (Virogin), China
| | - Jing Li
- Shuimu BioSciences Ltd, China
| | | | - William Jia
- China National Biological Group-Virogin Biotech (Shanghai) Ltd (CNBG-Virogin), China; Virogin Biotech (Shanghai) Ltd (Virogin), China.
| | | |
Collapse
|
49
|
Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, Barclay WS, de Silva TI, Towers GJ, Robertson DL. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 2023; 21:162-177. [PMID: 36653446 PMCID: PMC9847462 DOI: 10.1038/s41579-022-00841-7] [Citation(s) in RCA: 411] [Impact Index Per Article: 205.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/19/2023]
Abstract
In late 2020, after circulating for almost a year in the human population, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited a major step change in its adaptation to humans. These highly mutated forms of SARS-CoV-2 had enhanced rates of transmission relative to previous variants and were termed 'variants of concern' (VOCs). Designated Alpha, Beta, Gamma, Delta and Omicron, the VOCs emerged independently from one another, and in turn each rapidly became dominant, regionally or globally, outcompeting previous variants. The success of each VOC relative to the previously dominant variant was enabled by altered intrinsic functional properties of the virus and, to various degrees, changes to virus antigenicity conferring the ability to evade a primed immune response. The increased virus fitness associated with VOCs is the result of a complex interplay of virus biology in the context of changing human immunity due to both vaccination and prior infection. In this Review, we summarize the literature on the relative transmissibility and antigenicity of SARS-CoV-2 variants, the role of mutations at the furin spike cleavage site and of non-spike proteins, the potential importance of recombination to virus success, and SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity. SARS-CoV-2 shows a complicated relationship among virus antigenicity, transmission and virulence, which has unpredictable implications for the future trajectory and disease burden of COVID-19.
Collapse
Affiliation(s)
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Wendy S Barclay
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| |
Collapse
|
50
|
Follmann D, Janes HE, Chu E, Jayashankar L, Petropoulos CJ, Serebryannyy L, Carroll R, Jean-Baptiste N, Narpala S, Lin BC, McDermott A, Novak RM, Graciaa DS, Rolsma S, Magaret CA, Doria-Rose N, Corey L, Neuzil KM, Pajon R, Miller JM, Donis RO, Koup RA, Baden LR, El Sahly HM. Kinetics of the Antibody Response to Symptomatic SARS-CoV-2 Infection in Vaccinated and Unvaccinated Individuals in the Blinded Phase of the mRNA-1273 COVID-19 Vaccine Efficacy Trial. Open Forum Infect Dis 2023; 10:ofad069. [PMID: 36895286 PMCID: PMC9991588 DOI: 10.1093/ofid/ofad069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Background Hybrid immunity is associated with more durable protection against coronavirus disease 2019 (COVID-19). We describe the antibody responses following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vaccinated and unvaccinated individuals. Methods The 55 vaccine arm COVID-19 cases diagnosed during the blinded phase of the Coronavirus Efficacy trial were matched with 55 placebo arm COVID-19 cases. Pseudovirus neutralizing antibody (nAb) activity to the ancestral strain and binding antibody (bAb) responses to nucleocapsid and spike antigens (ancestral and variants of concern [VOCs]) were assessed on disease day 1 (DD1) and 28 days later (DD29). Results The primary analysis set was 46 vaccine cases and 49 placebo cases with COVID-19 at least 57 days post-first dose. For vaccine group cases, there was a 1.88-fold rise in ancestral antispike bAbs 1 month post-disease onset, although 47% had no increase. The vaccine-to-placebo geometric mean ratios for DD29 antispike and antinucleocapsid bAbs were 6.9 and 0.04, respectively. DD29 mean bAb levels were higher for vaccine vs placebo cases for all VOCs. DD1 nasal viral load positively correlated with bAb levels in the vaccine group. Conclusions Following COVID-19, vaccinated participants had higher levels and greater breadth of antispike bAbs and higher nAb titers than unvaccinated participants. These were largely attributable to the primary immunization series.
Collapse
Affiliation(s)
- Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Holly E Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Eric Chu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Naz Jean-Baptiste
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard M Novak
- Section of Infectious Diseases, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel S Graciaa
- Hope Clinic, Emory Vaccine Center, Division of Infectious Diseases, Emory University School of Medicine, Decatur, Georgia, USA
| | - Stephanie Rolsma
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Ruben O Donis
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|