1
|
Li Y, Bhargava R, Tran JT, Blane TR, Peng L, Luan F, Huang Z, Zhang Z, Sun Y, Xiao C, Nemazee D. Blocking plasma cell fate enhances antigen-specific presentation by B cells to boost anti-tumor immunity. Nat Commun 2025; 16:4454. [PMID: 40360528 PMCID: PMC12075458 DOI: 10.1038/s41467-025-59622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
B cells engage in anti-tumor immunity but how they contribute to cancer suppression remains unclear. We report that inhibiting plasma cell differentiation either in IgMi mice lacking Igh elements needed for antibody secretion or in mice with B cell-specific knockout of Blimp-1 (Blimp-1 BcKO) promotes rather than inhibits antitumor immunity and increases numbers of activated B cells. Deficiency of Blimp-1 in tumor-infiltrating B cells generates a unique transcription profile associated with expansion of mutated clones targeting cognate tumor cells. Major histocompatibility complex class II (MHC II) is required for anti-tumor efficacy. Blimp-1-deficient B cells have increased expression of CD80 and CD86 costimulatory molecules that enhance effector T cell function. The Blimp-1 inhibitor valproic acid suppresses tumor growth in a B cell-dependent manner. Thus, inhibition of plasma cell differentiation results in enhanced tumor-specific antigen presentation by B cells and thereby tumor repression, suggesting a potential avenue of immunotherapy against cancer.
Collapse
Affiliation(s)
- Yunqiao Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Raag Bhargava
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jenny Tuyet Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tanya R Blane
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zefan Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yunfan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Steixner-Kumar AA, Santacruz D, Geiger T, Rust W, Böttner D, Krenkel O, Bahrami E, Okafo G, Barth TF, Haenle M, Kratzer W, Schlingeloff P, Schmidberger J, Neubauer H, Dick A, Werner M, Simon E. Single-cell landscape of peripheral immune cells in MASLD/MASH. Hepatol Commun 2025; 9:e0643. [PMID: 40257301 PMCID: PMC12014121 DOI: 10.1097/hc9.0000000000000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/30/2024] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) progresses to metabolic dysfunction-associated steatohepatitis (MASH) and is a major cause of liver cirrhosis. Although liver inflammation is the hallmark feature of MASH versus MASLD, the involvement of the peripheral immune cell compartments in disease progression is poorly understood, and single-cell profiles of peripheral immune cells in MASLD/MASH are not known. METHODS Patients with MASLD/MASH and healthy volunteers have been prospectively enrolled in a cross-sectional study. Patients have been histologically stratified and further characterized by liver bulk RNA sequencing (RNA-Seq). Peripheral immune cells from patients and control blood samples have been comprehensively profiled using bulk and single RNA-Seq. RESULTS Twenty-two patients with fibrosis stage less than F3 have been histologically stratified into patients with low, medium, and high disease activity scores (NAFLD activity score [NAS]). In contrast to fibrosis, the NAS group correlated with noninvasive imaging readouts and blood biomarkers of liver damage and inflammation (ALT, AST). The prevalence of type 2 diabetes and obesity increased with the NAS stage. Bulk RNA-seq profiling of patient liver biopsies revealed gene signatures that were positively and negatively associated with NAS. Known marker genes for liver fibrosis where upregulated on RNA level. Blood bulk RNA-seq showed only moderate differences in patients versus healthy controls. In contrast, single-cell analysis of white blood cells revealed multiple alterations of immune (sub-)populations, including an increased abundance of immature B cells and myeloid suppressor cells in patients with MASLD/MASH as compared to healthy controls. CONCLUSIONS The study gives new insights into the pathophysiology of MASLD/MASH already manifesting relatively early in peripheral immune cell compartments. This opens new avenues for the development of new biomarker diagnostics and disease therapies.
Collapse
Affiliation(s)
- Agnes Anna Steixner-Kumar
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Diana Santacruz
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Tobias Geiger
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Werner Rust
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Dennis Böttner
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Oliver Krenkel
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Ehsan Bahrami
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - George Okafo
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | | | - Mark Haenle
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Wolfgang Kratzer
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | | | - Heike Neubauer
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Alec Dick
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Markus Werner
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Eric Simon
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| |
Collapse
|
3
|
Gao L, Zhang Y, Hu Z, Chen S, Wang Q, Zeng Y, Yin H, Zhao J, Zhan Y, Gao C, Xin Y, Chen B, van der Veen S, Zhao M, Fang D, Lu Q. Microbiota-Derived Inosine Suppresses Systemic Autoimmunity via Restriction of B Cell Differentiation and Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409837. [PMID: 40289872 PMCID: PMC12120789 DOI: 10.1002/advs.202409837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/27/2025] [Indexed: 04/30/2025]
Abstract
The role of gut microbiota dysbiosis in systemic lupus erythematosus (SLE) pathogenesis remains elusive. Here, it is shown that fecal microbiota transplantation (FMT) from healthy mice to lupus mice ameliorates lupus-like symptoms. Microbiota reconstitution effectively reduces systemic class switch recombination (CSR) and elevates immunoglobulin heavy chain (IGH) naïve isotype. Microbiota profiling reveals an enrichment of Lactobacillus johnsonii post-FMT, with a significant correlation to purine metabolites. Importantly, the L. johnsonii-derived inosine, an intermediate metabolite in purine metabolism, effectively alleviates lupus pathogenesis in mice. Inosine inhibits B cell differentiation and reduces renal B cell infiltration to protect mice from lupus. At the molecular level, inosine reprograms B cells through the extracellular signal-regulated kinase (ERK)-hypoxia-inducible factor-1alpha (HIF-1α) signaling pathway. Therefore, this study highlights the discovery of a novel microbial metabolite modulating autoimmunity and suggests its potential for innovative microbiome-based therapeutic approaches.
Collapse
Affiliation(s)
- Lingyu Gao
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Yuhan Zhang
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Zhi Hu
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Shengwen Chen
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Qiaolin Wang
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Yong Zeng
- Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya HospitalCentral South UniversityChangsha410013China
| | - Huiqi Yin
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Junpeng Zhao
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Yijing Zhan
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Changxing Gao
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Yue Xin
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
| | - Bing Chen
- Clinical LaboratoryThe Second Hospital of Anhui Medical UniversityHefei230601China
| | - Stijn van der Veen
- Department of Microbiologyand Department of DermatologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310058China
| | - Ming Zhao
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
- Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya HospitalCentral South UniversityChangsha410013China
| | - Deyu Fang
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Qianjin Lu
- Hospital for Skin DiseasesInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjing210042China
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjing210042China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsNanjing210042China
- Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya HospitalCentral South UniversityChangsha410013China
| |
Collapse
|
4
|
Kitaya K. B Cell Lineage in the Human Endometrium: Physiological and Pathological Implications. Cells 2025; 14:648. [PMID: 40358172 PMCID: PMC12071375 DOI: 10.3390/cells14090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/12/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Immunocompetent cells of B lineage function in the humoral immunity system in the adaptive immune responses. B cells differentiate into plasmacytes upon antigen-induced activation and produce different subclasses of immunoglobulins/antibodies. Secreted immunoglobulins not only interact with pathogens to inactivate and neutralize them, but also involve the complement system to exert antibacterial activities and trigger opsonization. Endometrium is a mucosal tissue that lines the mammalian uterus and is indispensable for the establishment of a successful pregnancy. The lymphocytes of B cell lineage are a minority in the human cycling endometrium. Human endometrial B cells have therefore been understudied so far. However, the disorders of the female reproductive tract, including chronic endometritis and endometriosis, have highlighted the importance of further research on the endometrial B cell lineage. This review aims to revisit lymphopoiesis, maturation, commitment, and survival of B cells, shedding light on their physiological and pathological implications in the human endometrium.
Collapse
Affiliation(s)
- Kotaro Kitaya
- Infertility Center, Iryouhoujin Kouseikai Mihara Hospital, 6-8 Kamikatsura Miyanogo-cho, Nishikyo-ku, Kyoto 615-8227, Japan
| |
Collapse
|
5
|
Lai W, Feng Q, Lei W, Xiao C, Wang J, Zhu Y, Mao L, Zhu Y, He J, Li Y, Wang H, Li Z, Chen G, Luo OJ. Deciphering Immunosenescence From Child to Frailty: Transcriptional Changes, Inflammation Dynamics, and Adaptive Immune Alterations. Aging Cell 2025:e70082. [PMID: 40285422 DOI: 10.1111/acel.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Aging induces significant alterations in the immune system, with immunosenescence contributing to age-related diseases. Peripheral blood mononuclear cells (PBMCs) offer a convenient and comprehensive snapshot of the body's immune status. In this study, we performed an integrated analysis of PBMCs using both bulk-cell and single-cell RNA-seq data, spanning from children to frail elderlies, to investigate age-related changes. We observed dynamic changes in the PBMC transcriptome during healthy aging, including dramatic shifts in inflammation, myeloid cells, and lymphocyte features during early life, followed by relative stability in later stages. Conversely, frail elderly individuals exhibited notable disruptions in peripheral immune cells, including an increased senescent phenotype in monocytes with elevated inflammatory cytokine expression, heightened effector activation in regulatory T cells, and functional impairment of cytotoxic lymphocytes. Overall, this study provides valuable insights into the complex dynamics of immunosenescence, elucidating the mechanisms driving abnormal inflammation and immunosuppression in frailty.
Collapse
Affiliation(s)
- Wenpu Lai
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Qiuyue Feng
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Wen Lei
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Juan Wang
- Musculoskeletal Pain Rehabilitation Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhu
- Musculoskeletal Pain Rehabilitation Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Yue Zhu
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Jiacheng He
- Department of Physics & Astronomy, University College London, London, UK
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Hao Wang
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhenhua Li
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
6
|
Su G, Wang H, Zhang Y, Wilkins MR, Canete PF, Yu D, Yang Y, Zhang W. Inferring gene regulatory networks by hypergraph generative model. CELL REPORTS METHODS 2025; 5:101026. [PMID: 40220759 DOI: 10.1016/j.crmeth.2025.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/16/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
We present hypergraph variational autoencoder (HyperG-VAE), a Bayesian deep generative model that leverages hypergraph representation to model single-cell RNA sequencing (scRNA-seq) data. The model features a cell encoder with a structural equation model to account for cellular heterogeneity and construct gene regulatory networks (GRNs) alongside a gene encoder using hypergraph self-attention to identify gene modules. The synergistic optimization of encoders via a decoder improves GRN inference, single-cell clustering, and data visualization, as validated by benchmarks. HyperG-VAE effectively uncovers gene regulation patterns and demonstrates robustness in downstream analyses, as shown in B cell development data from bone marrow. Gene set enrichment analysis of overlapping genes in predicted GRNs confirms the gene encoder's role in refining GRN inference. Offering an efficient solution for scRNA-seq analysis and GRN construction, HyperG-VAE also holds the potential for extending GRN modeling to temporal and multimodal single-cell omics.
Collapse
Affiliation(s)
- Guangxin Su
- School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), Melbourne, VIC, Australia
| | - Hanchen Wang
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), Melbourne, VIC, Australia; Australian Artificial Intelligence Institute, The University of Technology Sydney, Sydney, NSW, Australia
| | - Ying Zhang
- School of Computer Science and Technology, Zhejiang Gongshang University, Zhejiang, China
| | - Marc R Wilkins
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), Melbourne, VIC, Australia; Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Pablo F Canete
- Frazer Institute, Faculty of Health, Medicine and Behaviour Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Di Yu
- Frazer Institute, Faculty of Health, Medicine and Behaviour Sciences, The University of Queensland, Brisbane, QLD, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Health, Medicine and Behaviour Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yang Yang
- Frazer Institute, Faculty of Health, Medicine and Behaviour Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Wenjie Zhang
- School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Park J, Ke W, Kaage A, Feigin CY, Griffing AH, Pritykin Y, Donia MS, Mallarino R. Cathelicidin antimicrobial peptides mediate immune protection in marsupial neonates. SCIENCE ADVANCES 2025; 11:eads6359. [PMID: 40238884 PMCID: PMC12002115 DOI: 10.1126/sciadv.ads6359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, although the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins-a family of antimicrobial peptides expanded in the genomes of marsupials-are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters, and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. Functionally, cathelicidins modulate immune responses and have potent antibacterial effects, sufficient to provide protection in a mouse model of sepsis. Evolutionarily, cathelicidins have a complex history, with marsupials and monotremes uniquely retaining both clusters among tetrapods. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution may reflect the life history-specific immunological needs of these animals.
Collapse
Affiliation(s)
- Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wenfan Ke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Aellah Kaage
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Charles Y. Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron H. Griffing
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Mohamed S. Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
8
|
Walsh ES, Yang K, Tollison TS, Seenu S, Adams N, Zeitoun G, Sideri I, Folch G, Brochu HN, Chou H, Kossida S, York IA, Peng X. Development of ferret immune repertoire reference resources and single-cell-based high-throughput profiling assays. J Virol 2025; 99:e0018125. [PMID: 40116504 PMCID: PMC11998538 DOI: 10.1128/jvi.00181-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Domestic ferrets (Mustela putorius furo) are important for modeling human respiratory diseases. However, ferret B and T cell receptors have not been completely identified or annotated, limiting immune repertoire studies. Here, we performed long-read transcriptome sequencing of ferret splenocyte and lymph node samples to obtain over 120,000 high-quality full-length immunoglobin (Ig) and T cell receptor (TCR) transcripts. We constructed a complete reference set of the constant regions of ferret Ig and TCR isotypes and chain types. We also systematically annotated germline Ig and TCR variable (V), diversity (D), joining (J), and constant (C) genes on a recent ferret reference genome assembly. We designed new ferret-specific immune repertoire profiling assays by targeting positions in constant regions without allelic diversity across 11 ferret genome assemblies and experimentally validated them using a commercially compatible single-cell-based platform. These improved resources and assays will enable future studies to fully capture ferret immune repertoire diversity.IMPORTANCEDomestic ferrets (Mustela putorius furo) are an increasingly common model organism to study human respiratory diseases such as influenza infections. However, researchers lack ferret-specific reagents and resources to study the immune system and immune response in ferrets. In this study, we developed comprehensive ferret immune repertoire reference resources and assays, which will enable more accurate analyses of the ferret immune system in the future.
Collapse
Affiliation(s)
- Evan S. Walsh
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Kui Yang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tammy S. Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Sujatha Seenu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicole Adams
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Guilhem Zeitoun
- IMGT, The International ImMunoGeneTics Information System, Institute of Human Genetics, National Center for Scientific Research (CNRS), University of Montpellier (UM), Montpellier, France
| | - Ifigeneia Sideri
- IMGT, The International ImMunoGeneTics Information System, Institute of Human Genetics, National Center for Scientific Research (CNRS), University of Montpellier (UM), Montpellier, France
| | - Geraldine Folch
- IMGT, The International ImMunoGeneTics Information System, Institute of Human Genetics, National Center for Scientific Research (CNRS), University of Montpellier (UM), Montpellier, France
| | - Hayden N. Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Hsuan Chou
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Sofia Kossida
- IMGT, The International ImMunoGeneTics Information System, Institute of Human Genetics, National Center for Scientific Research (CNRS), University of Montpellier (UM), Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Ian A. York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Liu M, Hernandez MO, Castven D, Lee HP, Wu W, Wang L, Forgues M, Hernandez JM, Marquardt JU, Ma L. Tumor cell villages define the co-dependency of tumor and microenvironment in liver cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642107. [PMID: 40161587 PMCID: PMC11952337 DOI: 10.1101/2025.03.07.642107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Spatial cellular context is crucial in shaping intratumor heterogeneity. However, understanding how each tumor establishes its unique spatial landscape and what factors drive the landscape for tumor fitness remains significantly challenging. Here, we analyzed over 2 million cells from 50 tumor biospecimens using spatial single-cell imaging and single-cell RNA sequencing. We developed a deep learning-based strategy to spatially map tumor cell states and the architecture surrounding them, which we referred to as Spatial Dynamics Network (SDN). We found that different tumor cell states may be organized into distinct clusters, or 'villages', each supported by unique SDNs. Notably, tumor cell villages exhibited village-specific molecular co-dependencies between tumor cells and their microenvironment and were associated with patient outcomes. Perturbation of molecular co-dependencies via random spatial shuffling of the microenvironment resulted in destabilization of the corresponding villages. This study provides new insights into understanding tumor spatial landscape and its impact on tumor aggressiveness.
Collapse
Affiliation(s)
- Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Maria O. Hernandez
- Spatial Imaging Technology Resource, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Darko Castven
- Department of Medicine I, University Medical Center, Lübeck, Germany
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jonathan M. Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Jens U. Marquardt
- Department of Medicine I, University Medical Center, Lübeck, Germany
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Engelbrecht E, Stamp BF, Chew L, Sarkar OS, Harter P, Waigel SJ, Rouchka EC, Chariker J, Smolenkov A, Chesney J, McMasters K, Watson CT, Yaddanapudi K. Single-cell transcriptomics of melanoma sentinel lymph nodes identifies immune cell signatures associated with metastasis. JCI Insight 2025; 10:e183080. [PMID: 40048259 PMCID: PMC11981627 DOI: 10.1172/jci.insight.183080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
The sentinel lymph node (SLN) is the first lymph node encountered by a metastatic cancer cell and serves as a predictor of poor prognosis, as cases with clinically occult SLN metastases are classified as stage III with elevated rates of recurrence and diminished overall survival. However, the dynamics of immune infiltrates in SLNs remain poorly characterized. Here, using an unbiased cellular indexing of transcriptomes and epitopes by sequencing technique, we profiled 97,777 cells from SLN tissues obtained from patients with stages I/II and III cutaneous melanoma. We described the transcriptional programs of a multitude of T, B, and myeloid cell subtypes in SLNs. Based on the proportions of cell types, we determined that SLN subtypes stratified along a naive → activated axis; patients with a "high activated" signature score appeared to be undergoing a robust melanoma antigen-driven adaptive immune response and, thus, could be responsive to immunotherapy. Additionally, we identified transcriptomic signatures of SLN-infiltrating dendritic cell subsets that compromise antitumor immune responses. Our analyses provide valuable insights into tumor-driven immune changes in the SLN tissue, offering a powerful tool for the informed design of immune therapies for patients with high-risk melanoma.
Collapse
Affiliation(s)
| | | | - Lewis Chew
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
| | - Omar Sadi Sarkar
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
| | - Phillip Harter
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
| | | | - Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics
- Department of Computer Science and Engineering
| | | | | | - Jason Chesney
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- UofL-Health Brown Cancer Center
| | | | | | - Kavitha Yaddanapudi
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Cvijović I, Swift M, Quake SR. Long-term B cell memory emerges at uniform relative rates in the human immune response. Proc Natl Acad Sci U S A 2025; 122:e2406474122. [PMID: 40020190 PMCID: PMC11892634 DOI: 10.1073/pnas.2406474122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/13/2025] [Indexed: 03/12/2025] Open
Abstract
B cells generate pathogen-specific antibodies and play an essential role in providing adaptive protection against infection. Antibody genes are modified in evolutionary processes acting on the B cell populations within an individual. These populations proliferate, differentiate, and migrate to long-term niches in the body. However, the dynamics of these processes in the human immune system are primarily inferred from mouse studies. We addressed this gap by sequencing the antibody repertoire and transcriptomes from single B cells in four immune-rich tissues from six individuals. We find that B cells descended from the same pre-B cell ("lineages") often colocalize within the same tissue, with the bone marrow harboring the largest excess of lineages without representation in other tissues. Within lineages, cells with different levels of somatic hypermutation are uniformly distributed among tissues and functional states. This suggests that the relative probabilities of localization and differentiation outcomes change negligibly during affinity maturation, and quantitatively agrees with a simple dynamical model of B cell differentiation. While lineages strongly colocalize, we find individual B cells nevertheless appear to make independent differentiation decisions. Proliferative antibody-secreting cells, however, deviate from these global patterns. These cells are often clonally expanded, their clones appear universally distributed among all sampled organs, and form lineages with an excess of cells of the same type. Collectively, our findings show the limits of peripheral blood monitoring of the immune repertoire, and provide a probabilistic model of the dynamics of antibody memory formation in humans.
Collapse
Affiliation(s)
- Ivana Cvijović
- Department of Applied Physics, Stanford University, Stanford, CA94305
| | - Michael Swift
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA94305
| | - Stephen R. Quake
- Department of Applied Physics, Stanford University, Stanford, CA94305
- Department of Bioengineering, Stanford University, Stanford, CA94305
- The Chan Zuckerberg Initiative, Redwood City, CA94063
| |
Collapse
|
12
|
Tchouto MN, Bucher CH, Mess AK, Haas S, Schmidt-Bleek K, Duda GN, Beule D, Milek M. Pronounced impairment of B cell differentiation during bone regeneration in adult immune experienced mice. Front Immunol 2025; 16:1511902. [PMID: 40098964 PMCID: PMC11911212 DOI: 10.3389/fimmu.2025.1511902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Alterations of the adaptive immune system have been shown to impact bone healing and may result in impaired healing in some patients. Apart from T cells, B cells are the key drivers of adaptive immunity. Therefore, their role in age-associated impairments of bone healing might be essential to understand delays during the healing process. B cells are essential for bone formation, and their dysfunction has been associated with aging or autoimmune diseases. But whether age-associated changes in B cell phenotypes are involved in bone regeneration is unknown. Methods Here, we aimed to characterize the role of immune aging in B cell phenotypes during the early inflammatory phase of bone healing. By comparing non-immune experienced with young and immune experienced mice we aimed to analyze the effect of gained immune experience on B cells. Our single cell proteo-genomics analysis quantified thousands of transcriptomes of cells that were isolated from post osteotomy hematoma and the proximal and distal bone marrow cavities, and enabled us to evaluate cell proportion, differential gene expression and cell trajectories. Results While the B cell proportion in young and non-immune experienced animals did not significantly change from 2 to 5 days post osteotomy in the hematoma, we found a significant decrease of the B cell proportion in the immune experienced mice, which was accompanied by the decreased expression of B cell specific genes, suggesting a specific response in immune experienced animals. Furthermore, we detected the most extensive B cell differentiation block in immune-experienced mice compared to non-immune experienced and young animals, predominantly in the transition from immature to mature B cells. Discussion Our results suggest that the pronounced impairment of B cell production found in immune experienced animals plays an important role in the initial phase leading to delayed bone healing. Therefore, novel therapeutic approaches may be able target the B cell differentiation defect to retain B cell functionality even in the immune experienced setting, which is prone to delayed healing.
Collapse
Affiliation(s)
- Mireille Ngokingha Tchouto
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian H. Bucher
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ann-Kathrin Mess
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Haas
- Systems Hematology, Stem Cells & Precision Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Sarkkinen J, Yohannes DA, Kreivi N, Dürnsteiner P, Elsakova A, Huuhtanen J, Nowlan K, Kurdo G, Linden R, Saarela M, Tienari PJ, Kekäläinen E, Perdomo M, Laakso SM. Altered immune landscape of cervical lymph nodes reveals Epstein-Barr virus signature in multiple sclerosis. Sci Immunol 2025; 10:eadl3604. [PMID: 39982975 DOI: 10.1126/sciimmunol.adl3604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/17/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and Epstein-Barr virus (EBV) infection is a prerequisite for developing the disease. However, the pathogenic mechanisms that lead to MS remain to be determined. Here, we characterized the immune landscape of deep cervical lymph nodes (dcLNs) in newly diagnosed untreated patients with MS (pwMS) using fine-needle aspirations. By combining single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing, we observed increased memory B cells and reduced germinal center B cells with decreased clonality in pwMS. Double-negative memory B cells were increased in pwMS that transcriptionally resembled B cells with a lytic EBV infection. Moreover, EBV-targeting memory CD8 T cells were detected in a subset of pwMS. We also detected increased EBV DNA in dcLNs and elevated viral loads in patient saliva. These findings suggest that EBV-driven B cell dysregulation is a critical mechanism in MS pathogenesis.
Collapse
Affiliation(s)
- Joona Sarkkinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Dawit A Yohannes
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Nea Kreivi
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Pia Dürnsteiner
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Alexandra Elsakova
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Jani Huuhtanen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Kirsten Nowlan
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Goran Kurdo
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riikka Linden
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Saarela
- Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Maria Perdomo
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sini M Laakso
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Neurology, Brain Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
14
|
Ammons DT, Harris RA, Chow L, Dow S. Characterization of canine tumor-infiltrating leukocyte transcriptomic signatures reveals conserved expression patterns with human osteosarcoma. Cancer Immunol Immunother 2025; 74:105. [PMID: 39932553 PMCID: PMC11813853 DOI: 10.1007/s00262-025-03950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Immune cells play key roles in host responses to malignant tumors. The selective pressure that immune cells elicit on tumors promotes immune escape, while tumor-associated modulation of immune cells creates an environment favorable to tumor growth and progression. In this study we used publicly available single-cell RNA sequencing (scRNA-seq) data from the translationally relevant canine osteosarcoma (OS) model to compare tumor-infiltrating immune cells to circulating leukocytes. Through computational analysis we investigated the differences in cell type proportions and how the OS TME impacted infiltrating immune cell transcriptomic profiles relative to circulating leukocytes. Differential abundance analysis revealed increased proportions of follicular helper T cells, regulatory T cells, and mature regulatory dendritic cells (mregDCs) in the OS TME. Differential gene expression analysis identified exhaustion markers (LAG3, HAVCR2, PDCD1) to be upregulated in CD4 and CD8 T cells within the OS TME. Comparisons of B cell gene expression profiles revealed an enrichment of protein processing and endoplasmic reticulum pathways, suggesting infiltrating B cells were activated following tumor infiltration. Gene expression changes within myeloid cells identified increased expression of immune suppressive molecules (CD274, OSM, MSR1) in the OS TME, indicating the TME skews myeloid cells toward an immunosuppressive phenotype. Comparisons to human literature and analysis of human scRNA-seq data revealed conserved transcriptomic responses to tumor infiltration, while also identifying species differences. Overall, the analysis presented here provides new insights into how the OS TME impacts the transcriptional programs of major immune cell populations in dogs and acts as a resource for comparative immuno-oncology research.
Collapse
Affiliation(s)
- Dylan T Ammons
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - R Adam Harris
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lyndah Chow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
15
|
Segal Y, Soltys J, Clarkson BDS, Howe CL, Irani SR, Pittock SJ. Toward curing neurological autoimmune disorders: Biomarkers, immunological mechanisms, and therapeutic targets. Neuron 2025; 113:345-379. [PMID: 39809275 DOI: 10.1016/j.neuron.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis. The breakdown of immune tolerance, central to these conditions, is affected by modifiable and non-modifiable risk factors such as genetic predisposition, infections, and malignancy. While significant therapeutic advancements have revolutionized treatment of certain diseases, such as neuromyelitis optica, our understanding of many others, particularly T cell-mediated conditions, remains limited, with fewer treatment options available. Future research should focus on improving effector function modeling and deepening our understanding of the factors influencing immune tolerance, with the goal of providing novel treatment options and improving patient care.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - John Soltys
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin D S Clarkson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Division of Experimental Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sarosh R Irani
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 2025; 638:160-171. [PMID: 39695234 PMCID: PMC11798877 DOI: 10.1038/s41586-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions-exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease.
Collapse
Affiliation(s)
- Eric D Sun
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biophysics Graduate Program, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Wang S, Chen H, Dai B, Zheng K, Zheng J, Zhu Y, Yuan Y, Ding T, Wang Q, Xie L, Feng R, Zhu F, Xiang J, Ding W, Ding H, Li Y, Gu X, Wu K, Yuan Y, Song J, Zhuang D, Zhong H, Wu H, Mao Y, Chen T. Comparison of differences in transcriptional and genetic profiles between intra-central nervous system and extra-central nervous system large B-cell lymphoma. Neoplasia 2025; 60:101119. [PMID: 39733690 PMCID: PMC11743917 DOI: 10.1016/j.neo.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Primary central nervous system diffused large B-cell lymphoma (PCNS-DLBCL) is a rare type of non-Hodgkin lymphoma restricted to the central nervous system (CNS). To explore its specific pathogenesis and therapeutic targets, we performed multi-omics sequencing on tumor samples from patients diagnosed with PCNS-DLBCL, secondary CNS-DLBCL or extracranial (ec) DLBCL.By single-cell RNA sequencing, highly proliferated and dark zone (DZ)-related B cell subclusters, MKI67_B1, PTTG1_B2 and BTG1_B3, were predominant significantly in PCNS-DLBCL. Compared to SCNS-DLBCL and ecDLBCL, an immune-suppressive tumor microenvironment was observed in PCNS-DLBCL by analysis of immune-stimulating/inhibitory ligand‒receptor (L-R) pairs. By performing whole-exome sequencing in 93 patients, mutations enriched in BCR-NFkB and TLR pathways and the cooperation of these two pathways were found to be predominant in PCNS-DLBCL comparing to nonGCB-ecDLBCL. In summary, our study provides comprehensive insights into the transcriptomic and genetic characteristics of PCNS-DLBCL in contrast to ecDLBCL and will help dissect the oncogenic mechanism of this disease.
Collapse
Affiliation(s)
- Shu Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Kang Zheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jiajun Zheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yuqi Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yan Yuan
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Tianling Ding
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Qian Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Liqian Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Rui Feng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai 200040, PR China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Weiqun Ding
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Xiaodong Gu
- Department of Gastrointestinal Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Kunpeng Wu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai 200040, PR China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, PR China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, PR China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Haoshu Zhong
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Hanfeng Wu
- Department of Neurosurgery, Shanghai Gamma Hospital, Shanghai 200235, PR China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
18
|
Kodali S, Sands CM, Guo L, Huang Y, Di Stefano B. Biomolecular condensates in immune cell fate. Nat Rev Immunol 2025:10.1038/s41577-025-01130-z. [PMID: 39875604 DOI: 10.1038/s41577-025-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins. Findings have established a link between condensate formation and the gene regulatory networks that ensure the proper development of immune cells. Conversely, condensate dysregulation has been linked to impaired immune cell fates, including ageing and malignant transformation. This Review explores the putative mechanistic links between condensate assembly and the gene regulatory frameworks that govern normal and pathological development in the immune system.
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Jacobs BM, Gasperi C, Kalluri SR, Al-Najjar R, McKeon MO, Else J, Pukaj A, Held F, Sawcer S, Ban M, Hemmer B. Single-cell analysis of cerebrospinal fluid reveals common features of neuroinflammation. Cell Rep Med 2025; 6:101733. [PMID: 39708811 PMCID: PMC11866449 DOI: 10.1016/j.xcrm.2024.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 12/23/2024]
Abstract
Neuroinflammation is often characterized by immune cell infiltrates in the cerebrospinal fluid (CSF). Here, we apply single-cell RNA sequencing to explore the functional characteristics of these cells in patients with various inflammatory, infectious, and non-inflammatory neurological disorders. We show that CSF is distinct from the peripheral blood in terms of both cellular composition and gene expression. We report that the cellular and transcriptional landscape of CSF is altered in neuroinflammation but is strikingly similar across different neuroinflammatory disorders. We find clonal expansion of CSF lymphocytes in all disorders but most pronounced in inflammatory diseases, and we functionally characterize the transcriptional features of these cells. Finally, we explore the genetic control of gene expression in CSF lymphocytes. Our results highlight the common features of immune cells in the CSF compartment across diverse neurological diseases and may help to identify new targets for drug development or repurposing in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Benjamin M Jacobs
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Christiane Gasperi
- Department of Neurology, Technical University of Munich, Munich, Germany
| | | | - Raghda Al-Najjar
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mollie O McKeon
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jonathan Else
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Albert Pukaj
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Friederike Held
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Maria Ban
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
20
|
Mohd Faizal NF, Shai S, Savaliya BP, Karen-Ng LP, Kumari R, Kumar R, Vincent-Chong VK. A Narrative Review of Prognostic Gene Signatures in Oral Squamous Cell Carcinoma Using LASSO Cox Regression. Biomedicines 2025; 13:134. [PMID: 39857718 PMCID: PMC11759772 DOI: 10.3390/biomedicines13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies of the head and neck squamous cell carcinoma (HNSCC). HNSCC is recognized as the eighth most commonly occurring cancer globally in men. It is essential to distinguish between cancers arising in the head and neck regions due to significant differences in their etiologies, treatment approaches, and prognoses. As the Cancer Genome Atlas (TCGA) dataset is available in HNSCC, the survival analysis prognosis of OSCC patients based on the TCGA dataset for discovering gene expression-based prognostic biomarkers is limited. To address this paucity, we aimed to provide comprehensive evidence by recruiting studies that have reported new biomarkers/signatures to establish a prognostic model to predict the survival of OSCC patients. Using PubMed search, we have identified 34 studies that have been using the least absolute shrinkage and selection operator (LASSO)-based Cox regression analyses to establish signature prognosis that related to different pathways in OSCC from the past 4 years. Our review was focused on summarizing these signatures and implications for targeted therapy using FDA-approved drugs. Furthermore, we conducted an analysis of the LASSO Cox regression gene signatures. Our findings revealed 13 studies that correlated a greater number of regulatory T cells (Tregs) cells in protective gene signatures with increased recurrence-free and overall survival rates. Conversely, two studies displayed an opposing trend in cases of OSCC. We will also explore how the dysregulation of these signatures impacts immune status, promoting tumor immune evasion or, conversely, enhancing immune surveillance. Overall, this review will provide new insight for future anti-cancer therapies based on the potential gene that is associated with poor prognosis in OSCC.
Collapse
Affiliation(s)
- Nur Fatinazwa Mohd Faizal
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Saptarsi Shai
- Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Bansi P. Savaliya
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55901, USA;
| | - Lee Peng Karen-Ng
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Rupa Kumari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Vui King Vincent-Chong
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
21
|
Held F, Makarov C, Gasperi C, Flaskamp M, Grummel V, Berthele A, Hemmer B. Proteomics Reveals Age as Major Modifier of Inflammatory CSF Signatures in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200322. [PMID: 39536291 PMCID: PMC11563564 DOI: 10.1212/nxi.0000000000200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) can start as relapsing or progressive. While their clinical features and treatment responses are distinct, it has remained uncertain whether their pathomechanisms differ. A notable age-related effect on MS phenotype and response to immunotherapies is well acknowledged, but the underlying pathophysiologic reasons are yet to be fully elucidated. We aimed to identify disease-specific and age-related proteomic signatures using a comprehensive targeted proteomic analysis. METHODS In our retrospective cohort study, we analyzed the CSF and serum proteome of age-matched individuals with treatment-naïve relapsing-remitting and primary progressive MS, neurologic controls (NC), and individuals with neuroborreliosis using targeted proteomics and validated findings in an independent cohort. Proteomic results were integrated with clinical and laboratory covariates. RESULTS Among 2,500 proteins, 47 CSF proteins were distinct between individuals with MS (n = 60) and NC (n = 20), with a subset also differing from those with neuroborreliosis (n = 8). We identified MS-associated proteins, including novel candidate biomarkers such as LY9 and JCHAIN, and putative treatment targets, such as SLAMF7, BCMA, and IL5RA, for which drugs are already licensed in other indications. The CSF proteome differences between relapsing and progressive MS were minimal, but major changes were noted in individuals older than 50 years, indicating a shift from MS-associated inflammatory to age-related protein signature. NEFL was the only serum protein that differed between individuals with MS and controls. DISCUSSION This study unveils a unique CSF proteomic signature in MS, providing new pathophysiologic insights and identifying novel biomarker candidates and potential therapeutic targets. Our findings highlight similar immunologic mechanisms in relapsing and progressive MS and underscore aging's profound effect on the intrathecal immune response. This aligns with the observed lower efficacy of immunotherapies in the elderly, thus emphasizing the necessity for alternative therapeutic approaches in treating individuals with MS beyond the age of 50.
Collapse
Affiliation(s)
- Friederike Held
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Christine Makarov
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Christiane Gasperi
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Martina Flaskamp
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Verena Grummel
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Achim Berthele
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| | - Bernhard Hemmer
- From the Department of Neurology (F.H., C.M., C.G., M.F., V.G., A.B., B.H.), University Hospital rechts der Isar, School of Medicine and Health, Technical University Munich, and Munich Cluster for Systems Neurology (SyNergy) (B.H.), Munich, Germany
| |
Collapse
|
22
|
Oh T, Woo Y, Kim G, Koo BS, Baek SH, Hwang EH, An YJ, Kim Y, Kim DY, Hong JJ. Spatiotemporal Cellular Dynamics of Germinal Center Reaction in Coronavirus Disease 2019 Lung-Draining Lymph Node Based on Imaging-Based Spatial Transcriptomics. J Transl Med 2025; 105:102180. [PMID: 39522760 DOI: 10.1016/j.labinv.2024.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Although lymph node structures may be compromised in severe SARS-CoV-2 infection, the extent and parameters of recovery in convalescing patients remain unclear. Therefore, this study aimed to elucidate the nuances of lymphoid structural recovery and their implications for immunologic memory in nonhuman primates infected with SARS-CoV-2. To do so, we utilized imaging-based spatial transcriptomics to delineate immune cell composition and tissue architecture formation in the lung-draining lymph nodes during primary infection, convalescence, and reinfection from COVID-19. We noted the establishment of a germinal center with memory B cell differentiation within lymphoid follicles during convalescence accompanied by contrasting transcriptome patterns indicative of the acquisition of follicular helper T cells versus the loss of regulatory T cells. Additionally, repopulation of germinal center-like B cells was observed in the medullary niche with accumulating plasma cells along with enhanced transcriptional expression of B cell-activating factor receptor over the course of reinfection. The spatial transcriptome atlas produced herein enhances our understanding of germinal center formation with immune cell dynamics during COVID-19 convalescence and lymphoid structural recovery with transcriptome dynamics following reinfection. These findings have the potential to inform the optimization of vaccine strategies and the development of precise therapeutic interventions in the spatial context.
Collapse
Affiliation(s)
- Taehwan Oh
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - YoungMin Woo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Eun-Ha Hwang
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - You Jung An
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Yujin Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Dong-Yeon Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
23
|
Bozhkova M, Gardzheva P, Rangelova V, Taskov H, Murdjeva M. Cutting-edge assessment techniques for B cell immune memory: an overview. BIOTECHNOL BIOTEC EQ 2024; 38. [DOI: 10.1080/13102818.2024.2345119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 10/31/2024] Open
Affiliation(s)
- Martina Bozhkova
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Petya Gardzheva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University–Plovdiv, Plovdiv, Bulgaria
| | - Hristo Taskov
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| |
Collapse
|
24
|
Paczkowska J, Tang M, Wright KT, Song L, Luu K, Shanmugam V, Welsh EL, Weirather JL, Besson N, Olszewski H, Porter BA, Pfaff KL, Redd RA, Cader FZ, Mandato E, Ouyang J, Calabretta E, Bai G, Lawton LN, Armand P, Rodig SJ, Liu XS, Shipp MA. Cancer-specific innate and adaptive immune rewiring drives resistance to PD-1 blockade in classic Hodgkin lymphoma. Nat Commun 2024; 15:10740. [PMID: 39737927 PMCID: PMC11686379 DOI: 10.1038/s41467-024-54512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/11/2024] [Indexed: 01/01/2025] Open
Abstract
Hodgkin Reed-Sternberg (HRS) cells of classic Hodgkin lymphoma (cHL), like many solid tumors, elicit ineffective immune responses. However, patients with cHL are highly responsive to PD-1 blockade, which largely depends on HRS cell-specific retention of MHC class II and implicates CD4+ T cells and additional MHC class I-independent immune effectors. Here, we utilize single-cell RNA sequencing and spatial analysis to define shared circulating and microenvironmental features of the immune response to PD-1 blockade in cHL. Compared with non-responders, responding patients have more circulating CD4+ naïve and central memory T cells and B cells, as well as more diverse CD4+ T cell and B cell receptor repertoires. Importantly, a population of circulating and tumor-infiltrating IL1β+ monocytes/macrophages is detectable in patients with cHL but not healthy donors, and a proinflammatory, tumor-promoting signature of these circulating IL1β+ monocytes is associated with resistance to PD-1 blockade in cHL. Altogether, our findings reveal extensive immune rewiring and complementary roles of CD4+ T cells, B cells and IL1β+ monocytes in the response to PD-1 blockade and suggest that these features can be captured with a peripheral blood test.
Collapse
Affiliation(s)
- Julia Paczkowska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ming Tang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Astra Zeneca, Waltham, MA, USA
| | - Kyle T Wright
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA
| | - Kelsey Luu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- PathAI, Boston, MA, USA
| | - Vignesh Shanmugam
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma L Welsh
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason L Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Naomi Besson
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Harrison Olszewski
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Billie A Porter
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L Pfaff
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fathima Zumla Cader
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- AstraZeneca, City House, Cambridge, UK
| | - Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Mechanisms of Cancer Resistance Thematic Center, Bristol Myers Squibb, Cambridge, MA, USA
| | - Eleonora Calabretta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gali Bai
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lee N Lawton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaole Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- GV20 Therapeutics, LLC, Cambridge, MA, USA
| | - Margaret A Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
25
|
Li D, Geng K, Hao Y, Gu J, Kumar S, Olson AT, Kuismi CC, Kim HM, Pan Y, Sherman F, Williams AM, Li Y, Li F, Chen T, Thakurdin C, Ranieri M, Meynardie M, Levin DS, Stephens J, Chafitz A, Chen J, Donald-Paladino MS, Powell JM, Zhang ZY, Chen W, Ploszaj M, Han H, Gu SS, Zhang T, Hu B, Nacev BA, Kaiza ME, Berger AH, Wang X, Li J, Sun X, Liu Y, Zhang X, Bruno TC, Gray NS, Nabet B, Wong KK, Zhang H. Targeted degradation of oncogenic KRASG12V triggers antitumor immunity in lung cancer models. J Clin Invest 2024; 135:e174249. [PMID: 39718828 PMCID: PMC11735103 DOI: 10.1172/jci174249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/11/2024] [Indexed: 12/26/2024] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most frequently mutated oncogene in lung adenocarcinoma, with G12C and G12V being the most predominant forms. Recent breakthroughs in KRASG12C inhibitors have transformed the clinical management of patients with the G12C mutation and advanced our understanding of the function of this mutation. However, little is known about the targeted disruption of KRASG12V, partly due to a lack of specific inhibitors. Here, we leverage the degradation tag (dTAG) system to develop a KRASG12V-transgenic mouse model. We explored the therapeutic potential of KRASG12V degradation and characterized its effect on the tumor microenvironment (TME). Our study reveals that degradation of KRASG12V abolished lung and pancreatic tumors in mice and caused a robust inhibition of KRAS-regulated cancer-intrinsic signaling. Importantly, targeted degradation of KRASG12V reprogrammed the TME toward a stimulatory milieu and drove antitumor immunity, elicited mainly by effector and cytotoxic CD8+ T cells. Our work provides insights into the effect of KRASG12V degradation on both tumor progression and the immune response, highlighting degraders as a powerful strategy for targeting KRAS-mutant cancers.
Collapse
Affiliation(s)
- Dezhi Li
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Ke Geng
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, New York, USA
| | - Jiajia Gu
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Saurav Kumar
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Annabel T. Olson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Christina C. Kuismi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hye Mi Kim
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuanwang Pan
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Fiona Sherman
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Asia M. Williams
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yiting Li
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, and
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ting Chen
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Cassandra Thakurdin
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Michela Ranieri
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Mary Meynardie
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Daniel S. Levin
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Janaye Stephens
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Alison Chafitz
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Joy Chen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Jaylen M. Powell
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Ze-Yan Zhang
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Magdalena Ploszaj
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Han Han
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Shengqing Stan Gu
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Baoli Hu
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery
| | - Benjamin A. Nacev
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Medicine, Division of Hematology/Oncology, and
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Medard Ernest Kaiza
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alice H. Berger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Xuerui Wang
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jing Li
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuejiao Sun
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Yang Liu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Tullia C. Bruno
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Kwok-Kin Wong
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Hua Zhang
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Medicine, Division of Hematology/Oncology, and
| |
Collapse
|
26
|
Wang L, Vulesevic B, Vigano M, As’sadiq A, Kang K, Fernandez C, Samarani S, Anis AH, Ahmad A, Costiniuk CT. The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV. Vaccines (Basel) 2024; 12:1372. [PMID: 39772034 PMCID: PMC11679862 DOI: 10.3390/vaccines12121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
HIV causes intense polyclonal activation of B cells, resulting in increased numbers of spontaneously antibody-secreting cells in the circulation and hypergammaglobulinemia. It is accompanied by significant perturbations in various B cell subsets, such as increased frequencies of immature/transitional B cells, activated memory B cells, atypical memory B cells, short-lived plasmablasts and regulatory B cells, as well as by decreased frequencies of resting memory and resting naïve B cells. Furthermore, both memory and antigen-inexperienced naïve B cells show exhausted and immune-senescent phenotypes. HIV also drives the expansion and functional impairment of CD4+ T follicular helper cells, which provide help to B cells, crucial for the generation of germinal center reactions and production of long-lived plasma and memory B cells. By suppressing viral replication, anti-retroviral therapy reverses the virus-induced perturbations and functional defects, albeit inadequately. Due to HIV's lingering impact on B cells, immune senescence and residual chronic inflammation, people with HIV (PWH), especially immune non-responders, are immunocompromised and mount suboptimal antibody responses to vaccination for SARS-CoV-2. Here, we review how functionally and phenotypically distinct B cell subsets are induced in response to a vaccine and an infection and how HIV infection and anti-retroviral therapy (ART) impact them. We also review the role played by HIV-induced defects and perturbations in B cells in the induction of humoral immune responses to currently used anti-SARS-CoV-2 vaccines in PWH on ART. We also outline different strategies that could potentially enhance the vaccine-induced antibody responses in PWH. The review will provide guidance and impetus for further research to improve the immunogenicity of these vaccines in this human population.
Collapse
Affiliation(s)
- Lixing Wang
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; (L.W.); (C.F.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - Branka Vulesevic
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - MariaLuisa Vigano
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alia As’sadiq
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Kristina Kang
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cristina Fernandez
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; (L.W.); (C.F.)
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - Aslam H. Anis
- Centre for Advancing Health Outcomes Centre for Health Evaluation and Outcome Sciences, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
| | - Ali Ahmad
- Centre de Recherche, Hôpital Ste Justine, Montréal, QC H3T 1C5, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal QC H4A 3J1, Canada
| |
Collapse
|
27
|
Horie M, Akiyama Y, Katoh H, Taguchi S, Nakamura M, Mizuguchi K, Ito Y, Matsushita T, Ushiku T, Ishikawa S, Goto A, Kume H, Homma Y, Maeda D. APRIL/BAFF upregulation is associated with clonal B-cell expansion in Hunner-type interstitial cystitis. J Pathol 2024; 264:383-395. [PMID: 39360360 DOI: 10.1002/path.6353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Hunner-type interstitial cystitis (HIC) is a chronic inflammatory disease of the urinary bladder with an unknown etiology. We conducted comprehensive immunogenomic profiling of bladder specimens obtained by biopsy and cystectomy from 37 patients with HIC. Next-generation RNA sequencing demonstrated abundant plasma cell infiltration with frequent light chain restriction in HIC-affected bladder tissue. Subsequent analysis of the B-cell receptor repertoire revealed spatial and temporal expansion of B-cell clones. The extent of B-cell clonal expansion was significantly correlated with the gene expression levels of TNFSF13 and TNFSF13B, which encode APRIL and BAFF, respectively. These findings indicate that APRIL and BAFF are the key regulators of clonal B-cell expansion in HIC and might serve as therapeutic targets in this debilitating disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Akiyama
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoru Taguchi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Nakamura
- Department of Urology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Keishi Mizuguchi
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Yukinobu Ito
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Matsushita
- Department of Dermatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Interstitial Cystitis Medicine, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
28
|
Alsema AM, Wijering MHC, Miedema A, Kotah JM, Koster M, Rijnsburger M, van Weering HRJ, de Vries HE, Baron W, Kooistra SM, Eggen BJL. Spatially resolved gene signatures of white matter lesion progression in multiple sclerosis. Nat Neurosci 2024; 27:2341-2353. [PMID: 39501035 DOI: 10.1038/s41593-024-01765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/14/2024] [Indexed: 11/08/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and progressive neurodegeneration. To understand MS lesion initiation and progression, we generate spatial gene expression maps of white matter (WM) and grey matter (GM) MS lesions. In different MS lesion types, we detect domains characterized by a distinct gene signature, including an identifiable rim around active WM lesions. Expression changes in astrocyte-specific, oligodendrocyte-specific and microglia-specific gene sets characterize the active lesion rims. Furthermore, we identify three WM lesion progression trajectories, predicting how normal-appearing WM can develop into WM active or mixed active-inactive lesions. Our data shed light on the dynamic progression of MS lesions.
Collapse
Affiliation(s)
- Astrid M Alsema
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Marion H C Wijering
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Anneke Miedema
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Janssen M Kotah
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Mirjam Koster
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilmar R J van Weering
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wia Baron
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Susanne M Kooistra
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- MS Centrum Noord Nederland, Groningen, The Netherlands.
| |
Collapse
|
29
|
Wiarda JE, Shircliff AL, Becker SR, Stasko JB, Sivasankaran SK, Ackermann MR, Loving CL. Conserved B cell signaling, activation, and differentiation in porcine jejunal and ileal Peyer's patches despite distinct immune landscapes. Mucosal Immunol 2024; 17:1222-1241. [PMID: 39147277 DOI: 10.1016/j.mucimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Peyer's patches (PPs) are B cell-rich sites of intestinal immune induction, yet PP-associated B cell signaling, activation, and differentiation are poorly defined. Single-cell and spatial transcriptomics were completed to study B cells from porcine jejunum and ileum containing PPs. Intestinal locations had distinct immune landscapes, including more follicular B cells in ileum and increased MHC-II-encoding gene expression in jejunal B cells. Despite distinct landscapes, conserved B cell dynamics were detected across intestinal locations, including B cell signaling to CD4+ macrophages that are putative phagocytic, cytotoxic, effector cells and deduced routes of B cell activation/differentiation, including resting B cells migrating into follicles to replicate/divide or differentiate into antibody-secreting cells residing in intestinal crypts. A six-biomarker panel recapitulated transcriptomics findings of B cell phenotypes, frequencies, and spatial locations via ex vivo and in situ staining. Findings convey conserved B cell dynamics across intestinal locations containing PPs, despite location-specific immune environments. Results establish a benchmark of B cell dynamics for understanding intestinal immune induction important to promoting gut/overall health.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Adrienne L Shircliff
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sage R Becker
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA; Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
| | - Judith B Stasko
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | - Mark R Ackermann
- Office of the Director, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| |
Collapse
|
30
|
Yi L, Guo X, Liu Y, Jirimutu, Wang Z. Single-cell 5' RNA sequencing of camelid peripheral B cells provides insights into cellular basis of heavy-chain antibody production. Comput Struct Biotechnol J 2024; 23:1705-1714. [PMID: 38689719 PMCID: PMC11059136 DOI: 10.1016/j.csbj.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Camelids produce both conventional tetrameric antibodies (Abs) and dimeric heavy-chain antibodies (HCAbs). Although B cells that generate these two types of Abs exhibit distinct B cell receptors (BCRs), whether these two B cell populations differ in their phenotypes and developmental processes remains unclear. Here, we performed single-cell 5' RNA profiling of peripheral blood mononuclear cell samples from Bactrian camels before and after immunization. We characterized the functional subtypes and differentiation trajectories of circulating B cells in camels, and reconstructed single-cell BCR sequences. We found that in contrast to humans, the proportion of T-bet+ B cells was high among camelid peripheral B cells. Several marker genes of human B cell subtypes, including CD27 and IGHD, were expressed at low levels in the corresponding camel B cell subtypes. Camelid B cells expressing variable genes of HACbs (VHH) were widely present in various functional subtypes and showed highly overlapping differentiation trajectories with B cells expressing variable genes of conventional Abs (VH). After immunization, the transcriptional changes in VHH+ and VH+ B cells were largely consistent. Through structure modeling, we identified a variety of scaffold types among the reconstructed VHH sequences. Our study provides insights into the cellular context of HCAb production in camels and lays the foundation for developing single-B cell-based camelid single-domain Ab screening.
Collapse
Affiliation(s)
- Li Yi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Xin Guo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuexing Liu
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Jirimutu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Inner Mongolia China-Kazakhstan Camel Research Institute, Alxa 750306, China
| | - Zhen Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
31
|
Wang R, Liu J, Jiang B, Gao B, Luo H, Yang F, Ye Y, Chen Z, Liu H, Cui C, Xu K, Li B, Yang X. A single-cell perspective on immunotherapy for pancreatic cancer: from microenvironment analysis to therapeutic strategy innovation. Front Immunol 2024; 15:1454833. [PMID: 39539544 PMCID: PMC11557317 DOI: 10.3389/fimmu.2024.1454833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignancies, with conventional treatment options providing limited efficacy. Recent advancements in immunotherapy have offered new hope, yet the unique tumor microenvironment (TME) of pancreatic cancer poses significant challenges to its successful application. This review explores the transformative impact of single-cell technology on the understanding and treatment of pancreatic cancer. By enabling high-resolution analysis of cellular heterogeneity within the TME, single-cell approaches have elucidated the complex interplay between various immune and tumor cell populations. These insights have led to the identification of predictive biomarkers and the development of innovative, personalized immunotherapeutic strategies. The review discusses the role of single-cell technology in dissecting the intricate immune landscape of pancreatic cancer, highlighting the discovery of T cell exhaustion profiles and macrophage polarization states that influence treatment response. Moreover, it outlines the potential of single-cell data in guiding the selection of immunotherapy drugs and optimizing treatment plans. The review also addresses the challenges and prospects of translating these single-cell-based innovations into clinical practice, emphasizing the need for interdisciplinary research and the integration of artificial intelligence to overcome current limitations. Ultimately, the review underscores the promise of single-cell technology in driving therapeutic strategy innovation and improving patient outcomes in the battle against pancreatic cancer.
Collapse
Affiliation(s)
- Rui Wang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Jiang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Benjian Gao
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Honghao Luo
- Department of Radiology, Xichong People’s Hospital, Nanchong, China
| | - Fengyi Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuntao Ye
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuo Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Cui
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity in mouse models of bacterial infection and asthma. Nat Commun 2024; 15:8914. [PMID: 39414787 PMCID: PMC11484968 DOI: 10.1038/s41467-024-53269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Sensory neurons sense pathogenic infiltration to drive innate immune responses, but their role in humoral immunity is unclear. Here, using mouse models of Streptococcus pneumoniae infection and Alternaria alternata asthma, we show that sensory neurons are required for B cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion increases bacterial burden and reduces B cell numbers, IgG release, and neutrophil stimulation. Meanwhile, during A. alternata-induced airway inflammation, sensory neuron depletion decreases B cell population sizes, IgE levels, and asthmatic characteristics. Mechanistically, during bacterial infection, sensory neurons preferentially release vasoactive intestinal polypeptide (VIP). In response to asthma, sensory neurons release substance P. Administration of VIP into sensory neuron-depleted mice suppresses bacterial burden, while VIPR1 deficiency increases infection. Similarly, exogenous substance P delivery aggravates asthma in sensory neuron-depleted mice, while substance P deficiency ameliorates asthma. Our data, thus demonstrate that sensory neurons release select neuropeptides which target B cells dependent on the immunogen.
Collapse
Affiliation(s)
- Diane Aguilar
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fengli Zhu
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nicolas Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph Pisegna
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taylor A Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Marc Swidergall
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, Los Angeles, CA, USA
| | - Nicholas Jendzjowsky
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA.
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Huang D, Jiao X, Huang S, Liu J, Si H, Qi D, Pei X, Lu D, Wang Y, Li Z. Analysis of the heterogeneity and complexity of murine extraorbital lacrimal gland via single-cell RNA sequencing. Ocul Surf 2024; 34:60-95. [PMID: 38945476 DOI: 10.1016/j.jtos.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE The lacrimal gland is essential for maintaining ocular surface health and avoiding external damage by secreting an aqueous layer of the tear film. However, a healthy lacrimal gland's inventory of cell types and heterogeneity remains understudied. METHODS Here, 10X Genome-based single-cell RNA sequencing was used to generate an unbiased classification of cellular diversity in the extraorbital lacrimal gland (ELG) of C57BL/6J mice. From 43,850 high-quality cells, we produced an atlas of cell heterogeneity and defined cell types using classic marker genes. The possible functions of these cells were analyzed through bioinformatics analysis. Additionally, the CellChat was employed for a preliminary analysis of the cell-cell communication network in the ELG. RESULTS Over 37 subclasses of cells were identified, including seven types of glandular epithelial cells, three types of fibroblasts, ten types of myeloid-derived immune cells, at least eleven types of lymphoid-derived immune cells, and five types of vascular-associated cell subsets. The cell-cell communication network analysis revealed that fibroblasts and immune cells play a pivotal role in the dense intercellular communication network within the mouse ELG. CONCLUSIONS This study provides a comprehensive transcriptome atlas and related database of the mouse ELG.
Collapse
Affiliation(s)
- Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Yimian Wang
- Division of Medicine, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Zhijie Li
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
34
|
Aldersey JE, Lange MD, Beck BH, Abernathy JW. Single-nuclei transcriptome analysis of channel catfish spleen provides insight into the immunome of an aquaculture-relevant species. PLoS One 2024; 19:e0309397. [PMID: 39325796 PMCID: PMC11426453 DOI: 10.1371/journal.pone.0309397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
The catfish industry is the largest sector of U.S. aquaculture production. Given its role in food production, the catfish immune response to industry-relevant pathogens has been extensively studied and has provided crucial information on innate and adaptive immune function during disease progression. To further examine the channel catfish immune system, we performed single-cell RNA sequencing on nuclei isolated from whole spleens, a major lymphoid organ in teleost fish. Libraries were prepared using the 10X Genomics Chromium X with the Next GEM Single Cell 3' reagents and sequenced on an Illumina sequencer. Each demultiplexed sample was aligned to the Coco_2.0 channel catfish reference assembly, filtered, and counted to generate feature-barcode matrices. From whole spleen samples, outputs were analyzed both individually and as an integrated dataset. The three splenic transcriptome libraries generated an average of 278,717,872 reads from a mean 8,157 cells. The integrated data included 19,613 cells, counts for 20,121 genes, with a median 665 genes/cell. Cluster analysis of all cells identified 17 clusters which were classified as erythroid, hematopoietic stem cells, B cells, T cells, myeloid cells, and endothelial cells. Subcluster analysis was carried out on the immune cell populations. Here, distinct subclusters such as immature B cells, mature B cells, plasma cells, γδ T cells, dendritic cells, and macrophages were further identified. Differential gene expression analyses allowed for the identification of the most highly expressed genes for each cluster and subcluster. This dataset is a rich cellular gene expression resource for investigation of the channel catfish and teleost splenic immunome.
Collapse
Affiliation(s)
- Johanna E. Aldersey
- Oak Ridge Institute for Science and Education, Agricultural Research Service Research Participation Program, Oak Ridge, TN, United States of America
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Miles D. Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Benjamin H. Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Jason W. Abernathy
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| |
Collapse
|
35
|
DuBois AK, Ankomah PO, Campbell AC, Hua R, Nelson OK, Zeuthen CA, Das MK, Mann S, Mauermann A, Parry BA, Shapiro NI, Filbin MR, Bhattacharyya RP. Cryo-PRO facilitates whole blood cryopreservation for single-cell RNA sequencing of immune cells from clinical samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.18.24313760. [PMID: 39371152 PMCID: PMC11451723 DOI: 10.1101/2024.09.18.24313760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) has enhanced our understanding of host immune mechanisms in small cohorts, particularly in diseases with complex and heterogeneous immune responses such as sepsis. However, PBMC isolation from blood requires technical expertise, training, and approximately two hours of onsite processing using Ficoll density gradient separation ('Ficoll') for scRNA-seq compatibility, precluding large-scale sample collection at most clinical sites. To minimize onsite processing, we developed Cryo-PRO (Cryopreservation with PBMC Recovery Offsite), a method of PBMC isolation from cryopreserved whole blood that allows immediate onsite sample cryopreservation and subsequent PBMC isolation in a central laboratory prior to sequencing. We compared scRNA-seq results from samples processed using Cryo-PRO versus standard onsite Ficoll separation in 23 patients with sepsis. Critical scRNA-seq outputs including cell substate fractions and marker genes were similar for each method across multiple cell types and substates, including an important monocyte substate enriched in patients with sepsis (Pearson correlation 0.78, p<0.001; 70% of top marker genes shared). Cryo-PRO reduced onsite sample processing time from >2 hours to <15 minutes and was reproducible across two enrollment sites, thus demonstrating potential for expanding scRNA-seq in multicenter studies of sepsis and other diseases.
Collapse
Affiliation(s)
| | - Pierre O. Ankomah
- Broad Institute, Cambridge MA, USA
- Massachusetts General Hospital, Boston MA, USA
| | | | - Renee Hua
- Massachusetts General Hospital, Boston MA, USA
| | | | | | - M. Kartik Das
- Beth Israel Deaconess Medical Center, Boston MA, USA
| | - Shira Mann
- Beth Israel Deaconess Medical Center, Boston MA, USA
| | | | | | | | - Michael R. Filbin
- Broad Institute, Cambridge MA, USA
- Massachusetts General Hospital, Boston MA, USA
| | | |
Collapse
|
36
|
Bai J, Kato A, Hulse KE, Wechsler JB, Gujar V, Poposki JA, Harmon R, Iwasaki N, Wang BF, Huang JH, Stevens WW, Conley DB, Welch KC, Kern RC, Peters AT, Eisenbarth SC, Schleimer RP, Tan BK. Increased autoreactivity and maturity of EBI2+ antibody-secreting cells from nasal polyps. JCI Insight 2024; 9:e177729. [PMID: 39253973 PMCID: PMC11385095 DOI: 10.1172/jci.insight.177729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Elevated numbers of antibody-secreting cells (ASCs) and anti-double-stranded DNA (anti-dsDNA) antibodies are found in nasal polyp (NP) tissue. The presence of anti-dsDNA IgG in tissue prospectively predicts recurrent NP but the characteristics of the source ASCs are unknown. Here, we investigated whether NP B cells expressing the extrafollicular marker EBI2 have increased propensity for autoantibody production and evaluated the molecular characteristics of NP ASCs. NPs showed increased frequencies of anti-dsDNA IgG and total IgG ASCs compared with tonsils, with more pronounced differences among EBI2+ cells. In NPs, EBI2+ cells were frequently double negative (IgD-CD27-) and ASCs. Single-cell RNA-Seq analysis of tonsils and NPs revealed substantial differences in B lineage composition, including differences in percentages of ASCs, germinal centers, proliferative cells, and non-ASCs. NPs exhibited higher expression of specific isotypes (IGHE, IGHA1, IGHA2, and IGHG4) and mature plasma genes, including SDC1 and XBP1, than tonsils. Gene Ontology biological processes indicated upregulated NF-κB and downregulated apoptosis pathways in NP ASCs. Together, these data indicate that NP EBI2+ ASCs secret increased total and anti-dsDNA IgG compared with those from tonsils and had molecular features of mature plasma cell differentiation.
Collapse
Affiliation(s)
| | - Atsushi Kato
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | | | - Joshua B. Wechsler
- Departments of Pediatrics and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vikram Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University, Tulsa, Oklahoma, USA
| | | | | | | | - Bao-Feng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Wuhan, China
| | | | - Whitney W. Stevens
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | | | | | | | - Anju T. Peters
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | | | - Robert P. Schleimer
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | - Bruce K. Tan
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| |
Collapse
|
37
|
Park J, Ke W, Kaage A, Feigin CY, Pritykin Y, Donia MS, Mallarino R. Marsupial immune protection is shaped by enhancer sharing and gene cluster duplication of cathelicidin antimicrobial peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605640. [PMID: 39211247 PMCID: PMC11361154 DOI: 10.1101/2024.07.29.605640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, though the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins, a family of antimicrobial peptides expanded in the genomes of marsupials, are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. These cathelicidins modulate immune responses and have potent antimicrobial effects, sufficient to provide protection in a mouse model of sepsis. Lastly, cathelicidins have a complex evolutionary history, where marsupials and monotremes are the only tetrapods that retained two cathelicidin clusters. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution reflects the life history-specific immunological needs of these animals.
Collapse
|
38
|
Spencer J, Dionisi C. Immature B cell homing shapes human lymphoid tissue structure and function. J Exp Med 2024; 221:e20240085. [PMID: 39093311 PMCID: PMC11296955 DOI: 10.1084/jem.20240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Shortly after the emergence of newly formed human B cells from bone marrow as transitional cells, they diverge along two developmental pathways that can be distinguished by the level of IgM they express and migratory biases. Here, we propose that differential tissue homing of immature B cell subsets contributes to human lymphoid tissue structure and function.
Collapse
Affiliation(s)
- Jo Spencer
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
39
|
Yang Y, Chen X, Pan J, Ning H, Zhang Y, Bo Y, Ren X, Li J, Qin S, Wang D, Chen MM, Zhang Z. Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. Cell 2024; 187:4790-4811.e22. [PMID: 39047727 DOI: 10.1016/j.cell.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is important for advancing our understanding of their role in cancer development. Here, we establish a comprehensive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and subtype composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. Moreover, we identify stress-response memory B cells and tumor-associated atypical B cells (TAABs), two tumor-enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs, characterized by a high clonal expansion level and proliferative capacity as well as by close interactions with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource depicts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional commonality and diversity of B cells in cancer.
Collapse
Affiliation(s)
- Yu Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jieying Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Huiheng Ning
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Shishang Qin
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Min-Min Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
40
|
Rodrigues KA, Zhang YJ, Aung A, Morgan DM, Maiorino L, Yousefpour P, Gibson G, Ozorowski G, Gregory JR, Amlashi P, Buckley M, Ward AB, Schief WR, Love JC, Irvine DJ. Vaccines combining slow delivery and follicle targeting of antigens increase germinal center B cell clonal diversity and clonal expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608655. [PMID: 39229011 PMCID: PMC11370361 DOI: 10.1101/2024.08.19.608655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Vaccines incorporating slow delivery, multivalent antigen display, or immunomodulation through adjuvants have an important role to play in shaping the humoral immune response. Here we analyzed mechanisms of action of a clinically relevant combination adjuvant strategy, where phosphoserine (pSer)-tagged immunogens bound to aluminum hydroxide (alum) adjuvant (promoting prolonged antigen delivery to draining lymph nodes) are combined with a potent saponin nanoparticle adjuvant termed SMNP (which alters lymph flow and antigen entry into lymph nodes). When employed with a stabilized HIV Env trimer antigen in mice, this combined adjuvant approach promoted substantial enhancements in germinal center (GC) and antibody responses relative to either adjuvant alone. Using scRNA-seq and scBCR-seq, we found that the alum-pSer/SMNP combination both increased the diversity of GC B cell clones and increased GC B cell clonal expansion, coincident with increases in the expression of Myc and the proportion of S-phase GC B cells. To gain insight into the source of these changes in the GC response, we analyzed antigen biodistribution and structural integrity in draining lymph nodes and found that the combination adjuvant approach, but not alum-pSer delivery or SMNP alone, promoted accumulation of highly intact antigen on follicular dendritic cells, reflecting an integration of the slow antigen delivery and altered lymph node uptake effects of these two adjuvants. These results demonstrate how adjuvants with complementary mechanisms of action impacting vaccine biodistribution and kinetics can synergize to enhance humoral immunity.
Collapse
Affiliation(s)
- Kristen A. Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science; Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Yiming J. Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Grace Gibson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Gabriel Ozorowski
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Justin R. Gregory
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Maureen Buckley
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Andrew B. Ward
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - William R. Schief
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815 USA
| |
Collapse
|
41
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574231. [PMID: 38260709 PMCID: PMC10802321 DOI: 10.1101/2024.01.04.574231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sensory neurons sense pathogenic infiltration, serving to inform immune coordination of host defense. However, sensory neuron-immune interactions have been predominantly shown to drive innate immune responses. Humoral memory, whether protective or destructive, is acquired early in life - as demonstrated by both early exposure to streptococci and allergic disease onset. Our study further defines the role of sensory neuron influence on humoral immunity in the lung. Using a murine model of Streptococcus pneumonia pre-exposure and infection and a model of allergic asthma, we show that sensory neurons are required for B-cell and plasma cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion resulted in a larger bacterial burden, reduced B-cell populations, IgG release and neutrophil stimulation. Conversely, sensory neuron depletion reduced B-cell populations, IgE and asthmatic characteristics during allergen-induced airway inflammation. The sensory neuron neuropeptide released within each model differed. With bacterial infection, vasoactive intestinal polypeptide (VIP) was preferentially released, whereas substance P was released in response to asthma. Administration of VIP into sensory neuron-depleted mice suppressed bacterial burden and increased IgG levels, while VIP1R deficiency increased susceptibility to bacterial infection. Sensory neuron-depleted mice treated with substance P increased IgE and asthma, while substance P genetic ablation resulted in blunted IgE, similar to sensory neuron-depleted asthmatic mice. These data demonstrate that the immunogen differentially stimulates sensory neurons to release specific neuropeptides which specifically target B-cells. Targeting sensory neurons may provide an alternate treatment pathway for diseases involved with insufficient and/or aggravated humoral immunity.
Collapse
|
42
|
Kim J, Yong SH, Jang G, Kim Y, Park R, Koh HH, Kim S, Oh CM, Lee SH. Spatial profiling of non-small cell lung cancer provides insights into tumorigenesis and immunotherapy response. Commun Biol 2024; 7:930. [PMID: 39095464 PMCID: PMC11297140 DOI: 10.1038/s42003-024-06568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Lung cancer is the second most common cancer worldwide and a leading cause of cancer-related deaths. Despite advances in targeted therapy and immunotherapy, the prognosis remains unfavorable, especially in metastatic cases. This study aims to identify molecular changes in non-small cell lung cancer (NSCLC) patients based on their response to treatment. Using tumor and matched immune cell rich peritumoral tissues, we perform a retrospective, comprehensive spatial transcriptomic analysis of a proven malignant NSCLC sample treated with immune checkpoint inhibitor (ICI). In addition to T cells, other immune cell types, such as B cells and macrophages, were also activated in responders to ICI treatment. In particular, B cells and B cell-mediated immunity pathways are consistently found to be activated. Analysis of the histologic subgroup (lung squamous cell carcinoma, LUSC; lung adenocarcinoma, LUAD) of NSCLC also confirms activation of B cell mediated immunity. Analysis of B cell subtypes shows that B cell subtypes were more activated in immune cell-rich tissues near tumor tissue. Furthermore, increased expression of B cell immunity-related genes is associated with better prognosis. These findings provide insight into predicting ICI treatment responses and identifying appropriate candidates for immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Joon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Yong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gyuho Jang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyun-Hee Koh
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sehui Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Pathology, Korea University Guro Hospital, Seoul, Republic of Korea.
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea.
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Ramani M, Singh RK, Shrivastva S, Ribeyron L, Gupta SK, Roy A. A pre-B acute lymphoblastic leukemia cell line model reveals the mechanism of thalidomide therapy-related B-cell leukemogenesis. J Biol Chem 2024; 300:107578. [PMID: 39029626 PMCID: PMC11367411 DOI: 10.1016/j.jbc.2024.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/21/2024] Open
Abstract
Lenalidomide, a thalidomide derivative, is prescribed as maintenance therapy for multiple myeloma (MM). Patients with MM receiving lenalidomide were found to develop a distinct therapy-related B cell acute lymphoblastic leukemia (B-ALL). However, the molecular mechanism by which lenalidomide drives B-ALL is unknown. We show that thalidomide treatment of B cell lines increased CD34 expression and fibronectin adhesion. This resembled the effects of Ikzf1 loss of function mutations in B-ALL. IKZF1 is a transcription factor that can act as both a transcriptional activator and a repressor depending upon the target loci. In our experiments, thalidomide-induced degradation of IKZF1 increased the expression of its transcriptional repression targets Itga5 and CD34 explaining the increased adhesion and stemness. Strikingly, withdrawal of thalidomide lead to the mis-localization of IKZF1 to the cytoplasm. Moreover, chromatin immunoprecipitation data showed a long-term effect of thalidomide treatment on IKZF1 target loci. This included decreased chromatin occupancy at early B cell factor 1 (EBF1) and Spi1 (PU.1). Consequently, B-cell lineage specifying transcription factors including Pax5, Spi1 and EBF1 were downregulated even after 7 days of thalidomide withdrawal. Our study thus provides a molecular mechanism of thalidomide-induced B-ALL whereby thalidomide alters the chromatin occupancy of IKZF1 at key B-cell lineage transcription factors leading to a persistent block in B-cell differentiation.
Collapse
Affiliation(s)
- Malvika Ramani
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Rishi Kant Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saurabh Shrivastva
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Louis Ribeyron
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France
| | | | - Anita Roy
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
44
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
45
|
Perdrizet UG, Hill JE, Sobchishin L, Singh B, Fernando C, Bollinger TK, Misra V. Tissue and cellular tropism of Eptesicus fuscus gammaherpesvirus in big brown bats, potential role of pulmonary intravascular macrophages. Vet Pathol 2024; 61:550-561. [PMID: 38619093 PMCID: PMC11264566 DOI: 10.1177/03009858241244849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Gammaherpesviruses (γHVs) are recognized as important pathogens in humans but their relationship with other animal hosts, especially wildlife species, is less well characterized. Our objectives were to examine natural Eptesicus fuscus gammaherpesvirus (EfHV) infections in their host, the big brown bat (Eptesicus fuscus), and determine whether infection is associated with disease. In tissue samples from 132 individual big brown bats, EfHV DNA was detected by polymerase chain reaction in 41 bats. Tissues from 59 of these cases, including 17 from bats with detectable EfHV genomes, were analyzed. An EfHV isolate was obtained from one of the cases, and electron micrographs and whole genome sequencing were used to confirm that this was a unique isolate of EfHV. Although several bats exhibited various lesions, we did not establish EfHV infection as a cause. Latent infection, defined as RNAScope probe binding to viral latency-associated nuclear antigen in the absence of viral envelope glycoprotein probe binding, was found within cells of the lymphoid tissues. These cells also had colocalization of the B-cell probe targeting CD20 mRNA. Probe binding for both latency-associated nuclear antigen and a viral glycoprotein was observed in individual cells dispersed throughout the alveolar capillaries of the lung, which had characteristics of pulmonary intravascular macrophages. Cells with a similar distribution in bat lungs expressed major histocompatibility class II, a marker for antigen presenting cells, and the existence of pulmonary intravascular macrophages in bats was confirmed with transmission electron microscopy. The importance of this cell type in γHVs infections warrants further investigation.
Collapse
Affiliation(s)
| | | | | | - Baljit Singh
- University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Vikram Misra
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
46
|
McAndrews KM, Mahadevan KK, Kalluri R. Mouse Models to Evaluate the Functional Role of the Tumor Microenvironment in Cancer Progression and Therapy Responses. Cold Spring Harb Perspect Med 2024; 14:a041411. [PMID: 38191175 PMCID: PMC11216184 DOI: 10.1101/cshperspect.a041411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
47
|
Xu J, Zhai J, Zhao J. Pathogenic roles of follicular helper T cells in IgG4-related disease and implications for potential therapy. Front Immunol 2024; 15:1413860. [PMID: 38911857 PMCID: PMC11190345 DOI: 10.3389/fimmu.2024.1413860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
IgG4-related disease (IgG4-RD) is a recently described autoimmune disorder characterized by elevated serum IgG4 levels and tissue infiltration of IgG4+ plasma cells in multiple organ systems. Recent advancements have significantly enhanced our understanding of the pathological mechanism underlying this immune-mediated disease. T cell immunity plays a crucial role in the pathogenesis of IgG4-RD, and follicular helper T cells (Tfh) are particularly important in germinal center (GC) formation, plasmablast differentiation, and IgG4 class-switching. Apart from serum IgG4 concentrations, the expansion of circulating Tfh2 cells and plasmablasts may also serve as novel biomarkers for disease diagnosis and activity monitoring in IgG4-RD. Further exploration into the pathogenic roles of Tfh in IgG4-RD could potentially lead to identifying new therapeutic targets that offer more effective alternatives for treating this condition. In this review, we will focus on the current knowledge regarding the pathogenic roles Tfh cells play in IgG4-RD and outline potential therapeutic targets for future clinical intervention.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Jiayu Zhai
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
- Center for Rare Disease, Peking University Third Hospital, Beijing, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
- Center for Rare Disease, Peking University Third Hospital, Beijing, China
| |
Collapse
|
48
|
Islam R, Heyer J, Figura M, Wang X, Nie X, Nathaniel B, Indumathy S, Hartmann K, Pleuger C, Fijak M, Kliesch S, Dittmar F, Pilatz A, Wagenlehner F, Hedger M, Loveland B, Hotaling JH, Guo J, Loveland KL, Schuppe HC, Fietz D. T cells in testicular germ cell tumors: new evidence of fundamental contributions by rare subsets. Br J Cancer 2024; 130:1893-1903. [PMID: 38649788 PMCID: PMC11183042 DOI: 10.1038/s41416-024-02669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Immune cell infiltration is heterogeneous but common in testicular germ cell tumors (TGCT) and pre-invasive germ cell neoplasia in situ (GCNIS). Tumor-infiltrating T cells including regulatory T (Treg) and follicular helper T (Tfh) cells are found in other cancer entities, but their contributions to TGCT are unknown. METHODS Human testis specimens from independent patient cohorts were analyzed using immunohistochemistry, flow cytometry and single-cell RNA sequencing (scRNA-seq) with special emphasis on delineating T cell subtypes. RESULTS Profound changes in immune cell composition within TGCT, shifting from macrophages in normal testes to T cells plus B and dendritic cells in TGCT, were documented. In most samples (96%), the CD4+ T cell frequency exceeded that of CD8+ cells, with decreasing numbers from central to peripheral tumor areas, and to tumor-free, contralateral testes. T cells including Treg and Tfh were most abundant in seminoma compared to mixed tumors and embryonal carcinoma. CONCLUSION Despite considerable heterogeneity between patients, T cell subtypes form a key part of the TGCT microenvironment. The novel finding of rare Treg and Tfh cells in human testis suggests their involvement in TGCT pathobiology, with implications for understanding tumor progression, to assess patients' prognosis, and as putative targets for personalized immunotherapy.
Collapse
Affiliation(s)
- Rashidul Islam
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Jannis Heyer
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Miriam Figura
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Xiaoyan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Xichen Nie
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Benedict Nathaniel
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sivanjah Indumathy
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Katja Hartmann
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Christiane Pleuger
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Monika Fijak
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University of Muenster, Muenster, Germany
| | - Florian Dittmar
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Adrian Pilatz
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Florian Wagenlehner
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Mark Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | - James H Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jingtao Guo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Hans-Christian Schuppe
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Daniela Fietz
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany.
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
49
|
Zhang Y, Fu Z, Zhang H, Lin K, Song J, Guo J, Zhang Q, Yuan G, Wang H, Fan M, Zhao Y, Sun R, Guo T, Jiang N, Qiu C, Zhang W, Ai J. Proteomic and Cellular Characterization of Omicron Breakthrough Infections and a Third Homologous or Heterologous Boosting Vaccination in a Longitudinal Cohort. Mol Cell Proteomics 2024; 23:100769. [PMID: 38641227 PMCID: PMC11154224 DOI: 10.1016/j.mcpro.2024.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024] Open
Abstract
The understanding of dynamic plasma proteome features in hybrid immunity and breakthrough infection is limited. A deeper understanding of the immune differences between heterologous and homologous immunization could assist in the future establishment of vaccination strategies. In this study, 40 participants who received a third dose of either a homologous BBIBP-CorV or a heterologous ZF2001 protein subunit vaccine following two doses of inactivated coronavirus disease 2019 vaccines and 12 patients with BA2.2 breakthrough infections were enrolled. Serum samples were collected at days 0, 28, and 180 following the boosting vaccination and breakthrough and then analyzed using neutralizing antibody tests and mass spectrometer-based proteomics. Mass cytometry of peripheral blood mononuclear cell samples was also performed in this cohort. The chemokine signaling pathway and humoral response markers (IgG2 and IgG3) associated with infection were found to be upregulated in breakthrough infections compared to vaccination-induced immunity. Elevated expression of IGKV, IGHV, IL-17 signaling, and the phagocytosis pathway, along with lower expression of FGL2, were correlated with higher antibody levels in the boosting vaccination groups. The MAPK signaling pathway and Fc gamma R-mediated phagocytosis were more enriched in the heterologous immunization groups than in the homologous immunization groups. Breakthrough infections can trigger more intensive inflammatory chemokine responses than vaccination. T-cell and innate immune activation have been shown to be closely related to enhanced antibody levels after vaccination and therefore might be potential targets for vaccine adjuvant design.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhangfan Fu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieyu Song
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxin Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingxiang Fan
- Tongji Medical School, Tongji University, Shanghai, China
| | - Yuanhan Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Sun
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Tiannan Guo
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Ning Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Shanghai huashen institute of microbes and infections, Shanghai, China.
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Yu L, Zhang Y, Li W, Mao J, Li Y, Wang H, Li C, Yang L, He W, Jia Y, Tang W, Zhou L, Zhang Z, Jia Y, Tang X, Zhao X, An Y. Fluoxetine Successfully Treats Intracranial Enterovirus E18 Infection in a Patient with CD79a Deficiency Arising from Segmental Uniparental Disomy of Chromosome 19. J Clin Immunol 2024; 44:137. [PMID: 38805163 DOI: 10.1007/s10875-024-01740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The pre BCR complex plays a crucial role in B cell production, and its successful expression marks the B cell differentiation from the pro-B to pre-B. The CD79a and CD79b mutations, encoding Igα and Igβ respectively, have been identified as the cause of autosomal recessive agammaglobulinemia (ARA). Here, we present a case of a patient with a homozygous CD79a mutation, exhibiting recurrent respiratory infections, diarrhea, growth and development delay, unique facial abnormalities and microcephaly, as well as neurological symptoms including tethered spinal cord, sacral canal cyst, and chronic enteroviral E18 meningitis. Complete blockade of the early B cell development in the bone marrow of the patient results in the absence of peripheral circulating mature B cells. Whole exome sequencing revealed a Loss of Heterozygosity (LOH) of approximately 19.20Mb containing CD79a on chromosome 19 in the patient. This is the first case of a homozygous CD79a mutation caused by segmental uniparental diploid (UPD). Another key outcome of this study is the effective management of long-term chronic enteroviral meningitis using a combination of intravenous immunoglobulin (IVIG) and fluoxetine. This approach offers compelling evidence of fluoxetine's utility in treating enteroviral meningitis, particularly in immunocompromised patients.
Collapse
Affiliation(s)
- Lang Yu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yishi Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhui Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
| | - Jinxiao Mao
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yulin Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haoru Wang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chenlin Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenli He
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanjun Jia
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China
| | - Yuntao Jia
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China.
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|