1
|
Shi Y, Shao Q, Ren Z, Shang G, Han J, Cheng J, Zheng Y, Cheng F, Li C, Wang Q, Wang X. Mechanisms of pulmonary fibrosis and lung cancer induced by chronic PM 2.5 exposure: Focus on the airway epithelial barrier and epithelial-mesenchymal transition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118253. [PMID: 40311473 DOI: 10.1016/j.ecoenv.2025.118253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
This study aims to provide new insights into PM2.5-induced lung diseases through a focus on the pulmonary epithelial barrier and epithelial-mesenchymal transition (EMT). Firstly, we analyzed the mechanisms by which PM2.5 damages the airway epithelial barrier, including inflammatory responses, immune imbalance, oxidative stress, apoptosis, and autophagy. Subsequently, we investigated the mechanisms by which PM2.5 induces EMT, which involve the synergistic effect of oxidative stress and inflammation, the activation of key signaling pathways, and the regulatory role of non-coding RNAs. Furthermore, we explored the interaction between the airway epithelial barrier and EMT, especially the induction of EMT by epithelial barrier damage and the impact of EMT on epithelial barrier repair. Regarding lung injury diseases, we focused on the roles of the epithelial barrier and EMT in the development of pulmonary fibrosis and lung cancer, providing evidence from in vitro and in vivo studies. Emphasizing the translational prospects from basic research to clinical applications, and we proposed new ideas for treating PM2.5-related lung diseases from four aspects-anti-inflammatory and antioxidant drugs, signaling pathway inhibitors, non-coding RNA-targeted therapies, and gene editing and cell therapies-by focusing on the two key links of the airway epithelial barrier and EMT.
Collapse
Affiliation(s)
- Yuyu Shi
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zilin Ren
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guojiao Shang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinhua Han
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jialin Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxiao Zheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fafeng Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changxiang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Qingguo Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xueqian Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Jamali MC, Mohamed AH, Jamal A, Kamal MA, Al Abdulmonem W, Saeed BA, Mansuri N, Ahmad F, Mudhafar M, Shafie A, Hattiwale HM. Biological mechanisms and therapeutic prospects of interleukin-33 in pathogenesis and treatment of allergic disease. J Inflamm (Lond) 2025; 22:17. [PMID: 40355878 PMCID: PMC12070619 DOI: 10.1186/s12950-025-00438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/15/2025] [Indexed: 05/15/2025] Open
Abstract
Allergic diseases significantly impact the quality of life of people around the world. Cytokines play a crucial role in regulating the immune system. Due to their importance in pro-inflammatory mechanisms, cytokines are used to understand pathogenesis and serve as biomarkers in many diseases. One such cytokine is interleukin-33, a member of the IL-1 family, including IL- 1α, IL-1β, and IL-18. The IL-33 receptor is a heterodimer of IL-1 receptor-like 1 and IL-1 receptor accessory protein. IL-33 plays a critical role in regulating innate and adaptive immune responses. The primary targets of IL-33 in vivo are tissue-resident immune cells, including mast cells, group 2 innate lymphoid cells, regulatory T cells, T helper 2 cells, eosinophils, basophils, dendritic cells, Th1 cells, CD8 + T cells, NK cells, iNKT cells, B cells, neutrophils, and macrophages. However, IL-33 appears to act as an alarm signal that is promptly released by producing cells under cellular damage or stress conditions. IL-33 regulates signaling and various biological functions, including induction of pro-inflammatory cytokines, regulation of cell proliferation, and involvement in tissue remodeling. IL-33 is fundamental in immune-related diseases and plays a critical role in the control of inflammation. Recently, IL-33 has been shown to significantly impact allergic diseases, primarily by inducing Th2 immune responses. IL-33 is a key regulator of mast cell function and a promising therapeutic target for treating allergic diseases. This review provides an overview of the current understanding of the role of IL-33 in allergy pathogenesis and potential clinical approaches.
Collapse
Affiliation(s)
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Al-Majmaah 11952,, Saudi Arabia
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952 , Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Bashar Abdullah Saeed
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Nasrin Mansuri
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713 , Saudi Arabia
| | - Mustafa Mudhafar
- Department of Medical Physics, Faculty of Medical Applied Sciences, University of Kerbala, 56001, Karbala, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff university college, 56001, Kerbala, Iraq
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952 , Saudi Arabia.
| |
Collapse
|
3
|
Hund SK, Sampath V, Zhou X, Thai B, Desai K, Nadeau KC. Scientific developments in understanding food allergy prevention, diagnosis, and treatment. Front Immunol 2025; 16:1572283. [PMID: 40330465 PMCID: PMC12052904 DOI: 10.3389/fimmu.2025.1572283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Food allergies (FAs) are adverse immune reactions to normally innocuous foods. Their prevalence has been increasing in recent decades. They can be IgE-mediated, non-IgE mediated, or mixed. Of these, the mechanisms underlying IgE-mediated FA are the best understood and this has assisted in the development of therapeutics. Currently there are two approved drugs for the treatment of FA, Palforzia and Omalizumab. Palfornia is a characterized peanut product used as immunotherapy for peanut allergy. Immunotherapy, involves exposure of the patient to small but increasing doses of the allergen and slowly builds immune tolerance to the allergen and increases a patient's allergic threshold. Omalizumab, a biologic, is an anti-IgE antibody which binds to IgE and prevents release of proinflammatory allergenic mediators on exposure to allergen. Other biologics, investigational vaccines, nanoparticles, Janus Kinase and Bruton's tyrosine kinase inhibitors, or DARPins are also being evaluated as potential therapeutics. Oral food challenges (OFC) are the gold standard for the diagnosis for FA. However, they are time-consuming and involve risk of anaphylaxis; therefore, alternative diagnostic methods are being evaluated. This review will discuss how the immune system mediates an allergic response to specific foods, as well as FA risk factors, diagnosis, prevention, and treatments for FA.
Collapse
Affiliation(s)
- Shirin Karimi Hund
- Clinic for Internal Medicine, Spital Zollikerberg, Zollikerberg, Switzerland
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Xiaoying Zhou
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Bryan Thai
- Geffen Academy at UCLA, Los Angeles, CA, United States
| | - Khushi Desai
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
4
|
Carnazza M, Werner R, Tiwari RK, Geliebter J, Li XM, Yang N. The Etiology of IgE-Mediated Food Allergy: Potential Therapeutics and Challenges. Int J Mol Sci 2025; 26:1563. [PMID: 40004029 PMCID: PMC11855496 DOI: 10.3390/ijms26041563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Immunoglobulin E (IgE)-mediated food allergy has been dramatically increasing in incidence over the last few decades. The combinations of both genetic and environmental factors that affect the microbiome and immune system have demonstrated significant roles in its pathogenesis. The morbidity, and at times mortality, that occurs as the result of this specific, reproducible, but impaired immune response is due to the nature of the shift from a regulatory T (Treg) cellular response to a T helper 2 (Th2) cellular response. This imbalance caused by food allergens results in an interleukin (IL)-4 and IL-13 dominant environment that drives B cell activation and differentiation into IgE-producing plasma cells. The resulting symptoms can range from mild to more severe anaphylaxis, and even death. Current therapeutic strategies involve avoidance and broad symptom management upon accidental exposure; however, no definitive cure exists. This narrative review highlights how the elucidation of the pathogenesis of IgE-mediated food allergy resulted in the development of therapeutics that are more specific to these individual receptors and molecules which have been relatively successful in mitigating this potentially life-threatening allergic response. However, potential adverse effects and re-sensitization following the conclusion of treatment has urged the need for improved therapeutic methods. Therefore, given the understanding of their mechanism of action and the overlap with the mechanism of IgE-mediated food allergies, probiotics and small molecule natural compounds may provide novel therapeutic and preventative strategies. This is compelling, as they have demonstrated success in clinical trials and may provide hope to improve quality of life in allergy patients.
Collapse
Affiliation(s)
- Michelle Carnazza
- General Nutraceutical Technology, LLC, Elmsford, NY 10523, USA (N.Y.)
| | - Robert Werner
- General Nutraceutical Technology, LLC, Elmsford, NY 10523, USA (N.Y.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Nan Yang
- General Nutraceutical Technology, LLC, Elmsford, NY 10523, USA (N.Y.)
| |
Collapse
|
5
|
Krajewski D, Ranjitkar S, Jordan N, Schneider SS, Mathias CB. IL-33 signaling is dispensable for the IL-10-induced enhancement of mast cell responses during food allergy. Front Immunol 2025; 16:1526498. [PMID: 39935481 PMCID: PMC11810977 DOI: 10.3389/fimmu.2025.1526498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Background The IL-33/ST2 axis plays a pivotal role in the development of IgE-mediated mast cell (MC) responses during food allergy. We recently demonstrated that the pleiotropic cytokine, IL-10, not only exerts proinflammatory effects on IgE-mediated MC activation, but also promotes IL-33-induced MC responses. However, whether IL-33 is necessary for IL-10's proinflammatory effects has not been examined. Methods To therefore determine the role of the IL-33/ST2 axis in this pathway, we assessed the effects of IL-10 on IgE-mediated MC activation and food allergy development in wild-type (WT) and ST2-/- mice. Results IL-10 stimulation significantly enhanced IL-33 gene expression, ST2 receptor expression, cytokine production, mMCP-1 secretion, and proliferation in IgE and antigen-activated bone marrow-derived MCs (BMMCs) from WT mice. ST2-/- BMMCs exhibited reduced cytokine secretion in response to IgE-dependent activation. However, IL-10 enhanced cytokine production, mMCP-1 secretion, and proliferation in these cells as well. To further assess the role of IL-10, food allergy was induced in WT and ST2-/- mice subjected to antibody-mediated IL-10 depletion. IL-10-depleted WT mice exhibited a significant attenuation in MC-mediated responses to OVA challenge. While ST2-/- mice also exhibited a profound suppression of MC responses, IL-10 depletion had no additional effects. However, ST2-/-/IL-10-/- mice exhibited further decreases in OVA-IgE and antigen-specific MC activation compared to ST2-/- mice. Conclusion Our data demonstrates that IL-10 can enhance MC responses in both WT and ST2-/- mice, further corroborating its proinflammatory effects on MCs and suggesting that they are not regulated by IL-33 signaling.
Collapse
Affiliation(s)
- Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA, United States
| | - Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Nathan Jordan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA, United States
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
6
|
Oishi K, Nakano N, Ota M, Inage E, Izawa K, Kaitani A, Ando T, Hara M, Ohtsuka Y, Nishiyama C, Ogawa H, Kitaura J, Okumura K, Shimizu T. MHC Class II-Expressing Mucosal Mast Cells Promote Intestinal Mast Cell Hyperplasia in a Mouse Model of Food Allergy. Allergy 2025. [PMID: 39868907 DOI: 10.1111/all.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/13/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND IgE-mediated food allergy is accompanied by mucosal mast cell (MMC) hyperplasia in the intestinal mucosa. Intestinal MMC numbers correlate with the severity of food allergy symptoms. However, the mechanisms by which MMCs proliferate excessively are poorly understood. Here, we clarify the role of newly identified MHC class II (MHCII)-expressing MMCs in the effector phase of IgE-mediated food allergy. METHODS Mice reconstituted with MHCII-deficient or wild-type MMCs were used to generate a mouse mode of IgE-mediated food allergy. We assessed the extent of intestinal MMC hyperplasia and the severity of hypothermia in these mice. In addition, we performed in vitro antigen presentation assay using induced MHCII-expressing MMCs generated from bone marrow cells to evaluate the effect of CD4+ T cell activation on MMC proliferation. RESULTS In food-allergic mice, we identified the appearance of MHCII-expressing MMCs in the intestinal mucosa and showed that MMC hyperplasia was suppressed in mice with MHCII-deficient MMCs compared to mice with wild-type MMCs. In vitro assays demonstrated that MHCII-expressing MMCs incorporate food antigens directly and through the high-affinity IgE receptor FcεRI-mediated endocytosis and activate antigen-specific CD4+ T cells from food-allergic mice by antigen presentation. Activated CD4+ T cells secrete IL-4 and large amounts of IL-5, which enhance production of the mast cell growth factor IL-9 by IL-33-activated MMCs. Excess IL-9 causes excessive MMC proliferation, leading to the development of MMC hyperplasia. CONCLUSION Antigen presentation to CD4+ T cells by MHCII-expressing MMCs triggers intestinal MMC hyperplasia and exacerbates IgE-mediated food allergy.
Collapse
Affiliation(s)
- Kenji Oishi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masamu Ota
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Eisuke Inage
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Ohtsuka
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Benedé S, Pérez-Rodríguez L, Menchén-Martínez D, Molina E, López-Fandiño R. Ingested house dust mite favors sensitization to egg white in mice independently of its proteinase activity. Front Immunol 2025; 15:1505003. [PMID: 39902036 PMCID: PMC11788175 DOI: 10.3389/fimmu.2024.1505003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025] Open
Abstract
Background It is well-documented that house dust mite (HDM) exposure can cause tissue damage and activate innate immune responses. However, its role in promoting gastrointestinal sensitization and allergenicity to food proteins has been relatively unexplored. Methods This study investigates the immunostimulatory effects of HDM in a murine model of oral sensitization to egg white (EW) in the absence of exogenous adjuvants. Additionally, we examined a proteolytically inactivated form of HDM (iHDM) to assess the contribution of HDM protease activity to its adjuvant potential. Results Both HDM and iHDM enhanced allergic responses to EW proteins via the oral route, evidenced by mast cell degranulation in the intestinal tract upon EW challenge. Notably, only iHDM induced detectable concentrations of serum EW-specific IgE and IgG1 antibodies. Whereas HDM increased intestinal expression of genes encoding tight junction proteins and Th2-inducing alarmins to a greater extent than iHDM, active proteinases were not required for its adjuvant activity, as iHDM preferentially promoted Th2 responses in intestinal lymphoid tissues. Conclusions These findings suggest that ingestion of environmental dust may contribute to food allergy development and highlight the complex and context-dependent nature of the adjuvant activity of HDM.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| | | | | | | | | |
Collapse
|
8
|
Chen JS, Lee D, Gowthaman U. T follicular helper cells in food allergy. Curr Opin Immunol 2024; 91:102461. [PMID: 39276414 DOI: 10.1016/j.coi.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
T follicular helper (Tfh) cells help direct the production of antibodies by B cells. In addition to promoting antibody responses to vaccination and infection, Tfh cells have been found to mediate antibody production to food antigens. Work over the past decade has delineated the specific phenotypes of Tfh cells that induce antibodies to food while also clarifying the divergent Tfh cell requirement for different food-specific antibody isotypes. Furthermore, Tfh and antibody responses to food can occur at multiple barrier sites - namely, skin, airway, and gut. Depending on the context of food antigen exposure, the immune response to food at these sites can be protective, as in the case of tolerance or immunotherapy, or pathogenic, as in the case of allergy. This review will highlight recent advances in our understanding of how Tfh cells promote antibodies to food as well as future avenues for continued discovery.
Collapse
Affiliation(s)
- Jennifer S Chen
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA, USA
| | - Donguk Lee
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Uthaman Gowthaman
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
10
|
Zhang M, Cui Y, Liu P, Mo R, Wang H, Li Y, Wu Y. Oat β-(1 → 3, 1 → 4)-d-glucan alleviates food allergy-induced colonic injury in mice by increasing Lachnospiraceae abundance and butyrate production. Carbohydr Polym 2024; 344:122535. [PMID: 39218555 DOI: 10.1016/j.carbpol.2024.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Oat β-(1 → 3, 1 → 4)-d-glucan (OBG), a linear polysaccharide primarily found in oat bran, has been demonstrated to possess immunomodulatory properties and regulate gut microbiota. This study aimed to investigate the impact of low molecular weight (Mw) OBG (155.2 kDa) on colonic injury and allergic symptoms induced by food allergy (FA), and to explore its potential mechanism. In Experiment 1, results indicated that oral OBG improved colonic inflammation and epithelial barrier, and significantly relieved allergy symptoms. Importantly, the OBG supplement altered the gut microbiota composition, particularly increasing the abundance of Lachnospiraceae and its genera, and promoted the production of short-chain fatty acids, especially butyrate. However, in Experiment 2, the gut microbial depletion eliminated these protective effects of OBG on the colon in allergic mice. Further, in Experiment 3, fecal microbiota transplantation and sterile fecal filtrate transfer directly validated the role of OBG-mediated gut microbiota and its metabolites in relieving FA and its induced colonic injury. Our findings suggest that low Mw OBG can alleviate FA-induced colonic damage by increasing Lachnospiraceae abundance and butyrate production, and provide novel insights into the health benefits and mechanisms of dietary polysaccharide intervention for FA.
Collapse
Affiliation(s)
- Mingrui Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yingyue Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Pan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ruixia Mo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yingying Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yi Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Lee HY, Nazmul T, Lan J, Oyoshi MK. Maternal influences on offspring food allergy. Immunol Rev 2024; 326:130-150. [PMID: 39275992 PMCID: PMC11867100 DOI: 10.1111/imr.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.
Collapse
Affiliation(s)
- Hwa Yeong Lee
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tanuza Nazmul
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
| | - Jinggang Lan
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
| | - Michiko K. Oyoshi
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Ranjitkar S, Krajewski D, Tedeschi C, Perez NM, Jordan N, Gregory K, Schneider SS, Mathias CB. Mast cell responses in a mouse model of food allergy are regulated via a ST2/IL-4 axis. Allergy 2024; 79:2561-2564. [PMID: 39049569 PMCID: PMC11368605 DOI: 10.1111/all.16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Dylan Krajewski
- Department of Immunology, University of Connecticut, Farmington, CT 06030
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | | | - Nathan Jordan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Kelly Gregory
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
13
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
14
|
Schuetz JP, Anderson B, Sindher SB. New biologics for food allergy. Curr Opin Allergy Clin Immunol 2024; 24:147-152. [PMID: 38547423 DOI: 10.1097/aci.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore role of emerging biologics, including ligelizumab, UB-221, dupilumab, and antialarmins, in food allergy management. With a focus on recent developments, we evaluate their promise in mitigating adverse events during oral immunotherapy (OIT), reducing allergic reactions, and addressing the limitations of current therapeutic options. RECENT FINDINGS Antiimmunoglobulin E mAbs, exemplified by omalizumab, demonstrate efficacy in desensitization and safety improvement during multiallergen OIT. Next-generation antibodies like ligelizumab and UB-221 exhibit enhanced potency and unique mechanisms, holding promise for food allergy treatment. Dupilumab, targeting IL-4 receptor alpha, presents potential benefits in decreasing allergen-specific IgE and modifying the atopic march. Exploration of antialarmins, specifically anti-IL-33 (etokimab) and anti-TSLP (tezepelumab), reveals encouraging results, with etokimab showing early success in peanut allergy trials. SUMMARY Biologics hold promising potential for food allergy treatment. Tailoring therapeutic approaches based on shared decision-making becomes pivotal. While omalizumab remains a significant option, next-generation anti-IgE antibodies and agents targeting alarmins exhibit unique strengths. Dupilumab, despite limited success as monotherapy, shows promise as an adjunct for OIT. Careful consideration of treatment goals, patient preferences, and the evolving landscape of biologics will shape future clinical practice, offering allergists an expanded toolbox for personalized food allergy management.
Collapse
Affiliation(s)
- Jackson P Schuetz
- Department of Pathology, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
15
|
Ranjitkar S, Krajewski D, Garcia C, Tedeschi C, Polukort SH, Rovatti J, Mire M, Blesso CN, Jellison E, Schneider SS, Ryan JJ, Mathias CB. IL-10 Differentially Promotes Mast Cell Responsiveness to IL-33, Resulting in Enhancement of Type 2 Inflammation and Suppression of Neutrophilia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1407-1419. [PMID: 38497670 PMCID: PMC11018500 DOI: 10.4049/jimmunol.2300884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.
Collapse
Affiliation(s)
- Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Mohamed Mire
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | | | - Evan Jellison
- Department of Immunology, University of Connecticut, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
16
|
Palomares F, Pérez-Sánchez N, Nieto N, Núñez R, Cañas JA, Martín-Astorga MDC, Cruz-Amaya A, Torres MJ, Eguíluz-Gracia I, Mayorga C, Gómez F. Group 2 innate lymphoid cells are key in lipid transfer protein allergy pathogenesis. Front Immunol 2024; 15:1385101. [PMID: 38725998 PMCID: PMC11079275 DOI: 10.3389/fimmu.2024.1385101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Background Immunopathology in food allergy is characterized by an uncontrolled type 2 immune response and specific-IgE production. Recent studies have determined that group 2 innate lymphoid cells (ILC2) participate in the food allergy pathogenic mechanism and their severity. Our objective was to investigate the role of ILC2 in peach-allergic patients due to non-specific lipid transfer protein (Pru p 3) sensitization. Methods The immune response in peripheral blood mononuclear cells was characterized in lipid transfer protein-allergic patients and healthy controls. We have analyzed the Pru p 3 uptake on ILC2, the expression of costimulatory molecules, and their involvement on the T-cell proliferative response and cytokine production under different experimental conditions: cytokines involved in group 2 innate lymphoid cell activation (IL-33 and IL-25), Pru p 3 as main food allergen, and the combination of both components (IL-33/IL-25+Pru p 3) using cell sorting, EliSpot, flow cytometry, and confocal microscopy. Results Our results show that Pru p 3 allergen is taken up by group 2 innate lymphoid cells, regulating their costimulatory molecule expression (CD83 and HLA-DR) depending on the presence of Pru p 3 and its combination with IL-33/IL-25. The Pru p 3-stimulated ILC2 induced specific GATA3+Th2 proliferation and cytokine (IL-4, IL-5, and IL-13) production in lipid transfer protein-allergic patients in a cell contact-dependent manner with no changes in Tbet+Th1- and FOXP3+Treg cell differentiation. Conclusions The results indicate that in lipid transfer protein-allergic patients, the responsible allergen, Pru p 3, interacts with group 2 innate lymphoid cells, promoting a Th2 cell response. Our results might be of interest in vivo, as they show a role of group 2 innate lymphoid cells as antigen-presenting cells, contributing to the development of food allergy. Consequently, group 2 innate lymphoid cells may be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Natalia Pérez-Sánchez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Nazaret Nieto
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - José Antonio Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - María del Carmen Martín-Astorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - Anyith Cruz-Amaya
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - María José Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - Ibon Eguíluz-Gracia
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Francisca Gómez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| |
Collapse
|
17
|
Huerta Hernández RE, Ortega Martell JA. [Treatment for living with food allergy]. REVISTA ALERGIA MÉXICO 2023; 70:280-283. [PMID: 38506872 DOI: 10.29262/ram.v70i4.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/29/2023] [Indexed: 03/21/2024] Open
Abstract
The treatment of food allergy involves completely removing the allergenic food from the diet, careful label reading, and ingredient awareness. Family education is crucial, understanding alternative names for the allergen. An emergency action plan provided by the doctor, with clear instructions for epinephrine application and when to seek medical attention, is essential. For mild to moderate symptoms, oral antihistamines may be prescribed. Psychological support is necessary due to emotional repercussions. Collaboration with an allergy specialist is crucial for personalized treatment. Natural tolerance to the food may be achieved, especially in non-IgE-mediated allergies. However, some allergic manifestations persist, requiring treatment alternatives. Avoidance of the allergen and epinephrine application are key measures. Immunotherapy aims to desensitize immune cells, but its effectiveness varies. Bioterapeutic agents, such as monoclonal antibodies, are under investigation, although their clinical use still requires more studies.
Collapse
Affiliation(s)
| | - José Antonio Ortega Martell
- Pediatra, Alergólogo e Inmunólogo clínico; Profesor de Inmunología, Universidad Autónoma del Estado de Hidalgo, Pachuca
| |
Collapse
|
18
|
Agar Muñoz AM, Galván Calle CA. [Application of biologicals in patients with food allergies]. REVISTA ALERGIA MÉXICO 2023; 70:297-299. [PMID: 38506875 DOI: 10.29262/ram.v70i4.1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/29/2023] [Indexed: 03/21/2024] Open
Abstract
Despite promising advancements in oral immunotherapy for food allergies, medical implementation faces limitations. Non-specific treatment options based on inhibiting the type 2 inflammatory pathway, including monoclonal antibodies, are under investigation. TNX-901 and omalizumab have demonstrated increased reaction thresholds, reducing adverse events in peanut-allergic patients. Dupilumab, blocking the IL-4 receptor, shows positive results in both food allergies and eosinophilic esophagitis. Antibodies against alarmins and anti-IL-5, such as etokimab and mepolizumab, have proven efficacy in preclinical studies and clinical trials. While further studies are needed to establish their practical clinical use and determine suitability for different types of food allergies, these monoclonal antibodies present a promising horizon for the treatment of such conditions.
Collapse
Affiliation(s)
| | - César Alberto Galván Calle
- Médico Asistente, Alergólogo e Inmunólogo Clínico, Clínica Internacional Lima-Peru; Director Médico en Emedic Salud, Lima, Perú
| |
Collapse
|
19
|
Rojo Gutiérrez MI, Moncayo-Coello CV. [Prevention in food allergies]. REVISTA ALERGIA MÉXICO 2023; 70:293-296. [PMID: 38506874 DOI: 10.29262/ram.v70i4.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/29/2023] [Indexed: 03/21/2024] Open
Abstract
Preventing food allergies is key to reducing the incidence of the disease. Exclusive breastfeeding is recommended during the first months of life, in addition to supplementation with vitamin D and, due to the importance of the microbiota, addition of probiotics, prebiotics and symbiotic. Currently, late exposure to foods is controversial, and it is suggested to introduce allergenic foods early, trying not to expose the cutaneous route. The application of biologics in food allergy is an evolving area of research and treatment. Biologics are indicated in diseases evaluated in various studies, such as atopic dermatitis, and are approved by the FDA for prescription; However, its potential administration in the treatment of severe allergic reactions caused by food is still debated. These therapies may change the way food allergy is addressed in the future, but they are still in experimental stages and not widely available. Food anaphylaxis is a life-threatening allergic reaction that requires quick action. Prevention involves avoiding the triggering food, awareness of symptoms, and availability of epinephrine for immediate administration in case of a reaction.
Collapse
Affiliation(s)
- María Isabel Rojo Gutiérrez
- Pediatra, Alergóloga e Inmunóloga; profesora de Alergia pediátrica, Facultad de Medicina; Presidenta electa de la Sociedad Latinoamericana de Alergia, Asma e Inmunología (SLAAI) Montevideo,
| | | |
Collapse
|
20
|
Jorgensen R, Gao H, Arul Arasan TS, Van Antwerp C, Sundar V, Ng PKW, Gangur V. Is Wheat Glutenin Extract Intrinsically Allergenic? Evaluation Using a Novel Adjuvant-Free Mouse Model of Systemic Anaphylaxis. Int J Mol Sci 2023; 24:17247. [PMID: 38139075 PMCID: PMC10743909 DOI: 10.3390/ijms242417247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Wheat is a prominent allergenic food that can trigger life-threatening anaphylaxis. Presently, it remains unclear whether wheat glutenin (WG) extract possesses inherent sensitization potential independently, without the use of adjuvants, and whether it can sensitize mice to the extent of inducing life-threatening systemic anaphylaxis. In this study, we tested the hypothesis that repeated skin exposures to WG extract without adjuvant will sensitize mice with the resultant anaphylactic reaction upon systemic WG challenge. Balb/c mice were bred and maintained on a strict plant protein-free diet and were repeatedly exposed to a WG extract or vehicle once a week for 9 weeks. WG-specific (s)IgE and total (t)IgE levels were quantified. Mice were challenged with WG extract to induce anaphylactic reactions as measured by hypothermic shock response (HSR) and mucosal mast cell degranulation response (MMCR). We also conducted proteomic analysis of 120 spleen immune markers. These skin-sensitized mice exhibited exposure-dependent IgE responses and near-fatal anaphylaxis upon challenge. Proteomic analysis identified seven dramatically elevated immune biomarkers in anaphylactic mice. These data reveal that WG is intrinsically allergenic, and that chronic skin exposure to WG extract can prime the mice for potentially fatal anaphylaxis.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Tamil Selvan Arul Arasan
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Chris Van Antwerp
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Vaisheswini Sundar
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA;
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| |
Collapse
|
21
|
Udoye CC, Ehlers M, Manz RA. The B Cell Response and Formation of Allergenic and Anti-Allergenic Antibodies in Food Allergy. BIOLOGY 2023; 12:1501. [PMID: 38132327 PMCID: PMC10740584 DOI: 10.3390/biology12121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Food allergies are a growing public health concern worldwide, especially in children and young adults. Allergen-specific IgE plays a central role in the pathogenesis of food allergies, but their titers poorly correlate with allergy development. Host immune systems yield allergen-specific immunoglobulin (Ig)A, IgE and IgG subclasses with low or high affinities and differential Fc N-glycosylation patterns that can affect the allergic reaction to food in multiple ways. High-affinity IgE is required to induce strong mast cell activation eventually leading to allergic anaphylaxis, while low-affinity IgE can even inhibit the development of clinically relevant allergic symptoms. IgA and IgG antibodies can inhibit IgE-mediated mast cell activation through various mechanisms, thereby protecting IgE-positive individuals from allergy development. The production of IgE and IgG with differential allergenic potential seems to be affected by the signaling strength of individual B cell receptors, and by cytokines from T cells. This review provides an overview of the diversity of the B cell response and the diverse roles of antibodies in food allergy.
Collapse
Affiliation(s)
- Christopher C. Udoye
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
22
|
Franke K, Li Z, Bal G, Zuberbier T, Babina M. Synergism between IL-33 and MRGPRX2/FcεRI Is Primarily Due to the Complementation of Signaling Modules, and Only Modestly Supplemented by Prolonged Activation of Selected Kinases. Cells 2023; 12:2700. [PMID: 38067128 PMCID: PMC10705352 DOI: 10.3390/cells12232700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Skin mast cells (MCs) express high levels of MRGPRX2, FcεRI, and ST2, and vigorously respond to their ligands when triggered individually. IL-33/ST2 also potently synergizes with other receptors, but the molecular underpinnings are poorly understood. Human skin-derived MCs were stimulated via different receptors individually or jointly in the presence/absence of selective inhibitors. TNF was quantified by ELISA. Signaling cascades were studied by immunoblot. TNF was stimulated by FcεRI ≈ ST2 > MRGPRX2. Surprisingly, neither FcεRI nor MRGPRX2 stimulation elicited NF-κB activation (IκB degradation, p65 phosphorylation) in stark contrast to IL-33. Accordingly, TNF production did not depend on NF-κB in FcεRI- or MRGPRX2-stimulated MCs, but did well so downstream of ST2. Conversely, ERK1/2 and PI3K were the crucial modules upon FcεRI/MRGPRX2 stimulation, while p38 was key to the IL-33-elicited route. The different signaling prerequisites were mirrored by their activation patterns with potent pERK/pAKT after FcεRI/MRGPRX2, but preferential induction of pp38/NF-κB downstream of ST2. FcεRI/MRGPRX2 strongly synergized with IL-33, and some synergy was still observed upon inhibition of each module (ERK1/2, JNK, p38, PI3K, NF-κB). IL-33's contribution to synergism was owed to p38 > JNK > NF-κB, while the partner receptor contributed through ERK > PI3K ≈ JNK. Concurrent IL-33 led to slightly prolonged pERK (downstream of MRGPRX2) or pAKT (activated by FcεRI), while the IL-33-elicited modules (pp38/NF-κB) remained unaffected by co-stimulation of FcεRI/MRGPRX2. Collectively, the strong synergistic activity of IL-33 primarily results from the complementation of highly distinct modules following co-activation of the partner receptor rather than by altered signal strength of the same modules.
Collapse
Affiliation(s)
- Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
23
|
Abril AG, Carrera M, Pazos M. Immunomodulatory effect of marine lipids on food allergy. Front Nutr 2023; 10:1254681. [PMID: 38035353 PMCID: PMC10683508 DOI: 10.3389/fnut.2023.1254681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Manuel Pazos
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
24
|
Massironi S, Mulinacci G, Gallo C, Elvevi A, Danese S, Invernizzi P, Vespa E. Mechanistic Insights into Eosinophilic Esophagitis: Therapies Targeting Pathophysiological Mechanisms. Cells 2023; 12:2473. [PMID: 37887317 PMCID: PMC10605530 DOI: 10.3390/cells12202473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease characterized by eosinophilic infiltration of the esophagus. It arises from a complex interplay of genetic predisposition (susceptibility loci), environmental triggers (allergens and dietary antigens), and a dysregulated immune response, mainly mediated by type 2 T helper cell (Th2)-released cytokines, such as interleukin (IL)-4, IL-5, and IL-13. These cytokines control eosinophil recruitment and activation as well as tissue remodeling, contributing to the characteristic features of EoE. The pathogenesis of EoE includes epithelial barrier dysfunction, mast cell activation, eosinophil degranulation, and fibrosis. Epithelial barrier dysfunction allows allergen penetration and promotes immune cell infiltration, thereby perpetuating the inflammatory response. Mast cells release proinflammatory mediators and promote eosinophil recruitment and the release of cytotoxic proteins and cytokines, causing tissue damage and remodeling. Prolonged inflammation can lead to fibrosis, resulting in long-term complications such as strictures and dysmotility. Current treatment options for EoE are limited and mainly focus on dietary changes, proton-pump inhibitors, and topical corticosteroids. Novel therapies targeting key inflammatory pathways, such as monoclonal antibodies against IL-4, IL-5, and IL-13, are emerging in clinical trials. A deeper understanding of the complex pathogenetic mechanisms behind EoE will contribute to the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Sara Massironi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20125 Milan, Italy
| | - Giacomo Mulinacci
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20125 Milan, Italy
| | - Camilla Gallo
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20125 Milan, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (G.M.); (C.G.); (A.E.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20125 Milan, Italy
| | - Edoardo Vespa
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
25
|
Pérez-Rodríguez L, Lozano-Ojalvo D, Menchén-Martínez D, Molina E, López-Fandiño R, Benedé S. Egg yolk lipids induce sensitization to egg white proteins in a mouse model without adjuvant and exacerbate Th2 responses to egg white in cells from allergic patients. Food Res Int 2023; 172:112669. [PMID: 37689838 DOI: 10.1016/j.foodres.2023.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
This study evaluates the influence of egg lipid fractions in the induction of allergic sensitization to egg white (EW) proteins, using a mouse model of orally adjuvant-free induced allergy. Egg triglycerides (TG) and phospholipids (PL), and to a higher extent the whole egg lipid fraction (EL), induced allergy to EW proteins characterized by increased EW-specific IgG1. EL also increased EW-specific IgE. The administration to mice of a mixture of EW and EL increased the intestinal expression of Il33, Il25, and Tslp, the secretion of IL-33 and IL-6, the expansion of group 2 innate lymphoid cells, the regulation of Gata3, Il4 and Il13, dendritic cell (DC) activation and expression of DC molecules that drive Th2 differentiation. TG promoted the absorption of proteins through the intestinal epithelium, enhancing local Th2 responses, while PL favoured the delivery of antigens to the Peyer's Patches. This differential modulation of the site of absorption of egg proteins determined the different behaviour of TG and PL. Egg yolk lipids also induced activation of Th2-inducing innate responses on intestinal human cells in vitro and enhanced adaptive Th2 functions through the activation of DCs in egg-allergic subjects.
Collapse
Affiliation(s)
- Leticia Pérez-Rodríguez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - David Menchén-Martínez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9, 28049, Madrid, Spain.
| |
Collapse
|
26
|
Sindher SB, Hillier C, Anderson B, Long A, Chinthrajah RS. Treatment of food allergy: Oral immunotherapy, biologics, and beyond. Ann Allergy Asthma Immunol 2023; 131:29-36. [PMID: 37100276 PMCID: PMC10330596 DOI: 10.1016/j.anai.2023.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
The prevalence of food allergy (FA) has been increasing globally and comes with a heavy burden not just economically, but also on quality of life. Although oral immunotherapy (OIT) is effective at inducing desensitization to food allergens, it has several limitations that weaken its success. Limitations include a long duration of build-up, especially when used for multiple allergens, and a high rate of reported adverse events. Furthermore, OIT may not be effective in all patients. Efforts are underway to identify additional treatment options, either as monotherapy or in combination, to treat FA or enhance the safety and efficacy of OIT. Biologics such as omalizumab and dupilumab, which already have US Food and Drug Administration approval for other atopic conditions have been the most studied, but additional biologics and novel strategies are emerging. In this review, we discuss therapeutic strategies including immunoglobulin E inhibitors, immunoglobulin E disruptors, interleukin-4 and interleukin-13 inhibitors, antialarmins, JAK1 and BTK inhibitors, and nanoparticles, and the data surrounding their application in FA and highlighting their potential.
Collapse
Affiliation(s)
- Sayantani B Sindher
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California.
| | - Claire Hillier
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| | - Brent Anderson
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| | - Andrew Long
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| | - R Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| |
Collapse
|
27
|
Brandt EB, Ruff BP, Filuta AL, Chang WC, Shik D, Khurana Hershey GK. Thymic stromal lymphopoietin rather than IL-33 drives food allergy after epicutaneous sensitization to food allergen. J Allergy Clin Immunol 2023; 151:1660-1666.e4. [PMID: 36878383 PMCID: PMC10297746 DOI: 10.1016/j.jaci.2023.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND A major route of sensitization to food allergen is through an impaired skin barrier. IL-33 and thymic stromal lymphopoietin (TSLP) have both been implicated in epicutaneous sensitization and food allergy, albeit in different murine models. OBJECTIVE We assessed the respective contributions of TSLP and IL-33 to the development of atopic dermatitis (AD) and subsequent food allergy in TSLP and IL-33 receptor (ST2)-deficient mice using an AD model that does not require tape stripping. METHOD TSLP receptor (TSLPR)-/-, ST2-/-, and BALB/cJ control mice were exposed to 3 weekly epicutaneous skin patches of one of saline, ovalbumin (OVA), or a combination of OVA and Aspergillus fumigatus (ASP), followed by repeated intragastric OVA challenges and development of food allergy. RESULTS ASP and/or OVA patched, but not OVA-alone patched, BALB/cJ mice developed an AD-like skin phenotype. However, epicutaneous OVA sensitization occurred in OVA patched mice and was decreased in ST2-/- mice, resulting in lower intestinal mast cell degranulation and accumulation, as well as OVA-induced diarrhea occurrences on intragastric OVA challenges. In TSLPR-/- mice, intestinal mast cell accumulation was abrogated, and no diarrhea was observed. AD was significantly milder in OVA + ASP patched TSLPR-/- mice compared to wild type and ST2-/- mice. Accordingly, intestinal mast cell accumulation and degranulation were impaired in OVA + ASP patched TSLPR-/- mice compared to wild type and ST2-/- mice, protecting TSLPR-/- mice from developing allergic diarrhea. CONCLUSION Epicutaneous sensitization to food allergen and development of food allergy can occur without skin inflammation and is partly mediated by TSLP, suggesting that prophylactic targeting of TSLP may be useful in mitigating the development of AD and food allergy early in life in at-risk infants.
Collapse
Affiliation(s)
- Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brandy P Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alyssa L Filuta
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wan-Chi Chang
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dana Shik
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
28
|
Rizzi A, Lo Presti E, Chini R, Gammeri L, Inchingolo R, Lohmeyer FM, Nucera E, Gangemi S. Emerging Role of Alarmins in Food Allergy: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. J Clin Med 2023; 12:jcm12072699. [PMID: 37048784 PMCID: PMC10094851 DOI: 10.3390/jcm12072699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Food allergies are immuno-mediated adverse reactions to ingestion or contact with foods, representing a widespread health problem. The immune response can be IgE-mediated, non-IgE-mediated, or with a mixed mechanism. The role of innate immunity and alarmins in the pathogenesis of diseases such as asthma and atopic dermatitis is well known. Some authors have investigated the correlation between alarmins and food allergies, often obtaining interesting results. We analyzed articles published in English from the last 22 years present on PubMed concerning the role of alarmins in the pathogenesis of food allergies and their potential use as disease biomarkers, response biomarkers to therapy, or potential therapeutic targets. Nuclear alarmins (TSLP, IL-33, IL-25) appear to have a critical role in IgE-mediated allergies but are also implicated in entities such as eosinophilic esophagitis. Calprotectin and defensins may play a role as disease biomarkers and could help predict response to therapy, although results in the literature are often conflicting. Despite the promising results, more studies on humans still need to be conducted. Deepening our knowledge regarding alarmins and their involvement in food allergies could lead to the development of new biological therapies, significantly impacting patients' quality of life.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), 90146 Palermo, Italy
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
29
|
Berin MC. Targeting type 2 immunity and the future of food allergy treatment. J Exp Med 2023; 220:213917. [PMID: 36880703 PMCID: PMC9997511 DOI: 10.1084/jem.20221104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 03/08/2023] Open
Abstract
IgE-mediated food allergy affects 6-8% of the population in the United States. Type 2 immune responses are central to the pathogenesis of food allergy, but type 2 CD4+ T cell responses have been found to be heterogeneous in food allergy suggesting a division of labor between Tfh13 and peTH2 cells in promotion of IgE class switching, modulation of intestinal barrier function, and regulation of mast cell expansion. Oral immunotherapy for the treatment of food allergy incompletely targets subsets of type 2 immunity in a transient manner, but new therapeutics targeting different levels of type 2 immunity are in current or planned trials for food allergy. These new treatments and the basis for their use are the focus of this review.
Collapse
Affiliation(s)
- M Cecilia Berin
- Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| |
Collapse
|
30
|
Dijk W, Villa C, Benedé S, Vassilopoulou E, Mafra I, Garrido-Arandia M, Martínez Blanco M, Bouchaud G, Hoppenbrouwers T, Bavaro SL, Giblin L, Knipping K, Castro AM, Delgado S, Costa J, Bastiaan-Net S. Critical features of an in vitro intestinal absorption model to study the first key aspects underlying food allergen sensitization. Compr Rev Food Sci Food Saf 2023; 22:971-1005. [PMID: 36546415 DOI: 10.1111/1541-4337.13097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
New types of protein sources will enter our diet in a near future, reinforcing the need for a straightforward in vitro (cell-based) screening model to test and predict the safety of these novel proteins, in particular their potential risk for de novo allergic sensitization. The Adverse Outcome Pathway (AOP) for allergen sensitization describes the current knowledge of key events underlying the complex cellular interactions that proceed allergic food sensitization. Currently, there is no consensus on the in vitro model to study the intestinal translocation of proteins as well as the epithelial activation, which comprise the first molecular initiation events (ME1-3) and the first key event of the AOP, respectively. As members of INFOGEST, we have highlighted several critical features that should be considered for any proposed in vitro model to study epithelial protein transport in the context of allergic sensitization. In addition, we defined which intestinal cell types are indispensable in a consensus model of the first steps of the AOP, and which cell types are optional or desired when there is the possibility to create a more complex cell model. A model of these first key aspects of the AOP can be used to study the gut epithelial translocation behavior of known hypo- and hyperallergens, juxtaposed to the transport behavior of novel proteins as a first screen for risk management of dietary proteins. Indeed, this disquisition forms a basis for the development of a future consensus model of the allergic sensitization cascade, comprising also the other key events (KE2-5).
Collapse
Affiliation(s)
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sara Benedé
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Emilia Vassilopoulou
- Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Mónica Martínez Blanco
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tamara Hoppenbrouwers
- Food Quality & Design, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Simona Lucia Bavaro
- Institute of Sciences of Food Production, National Research Council (Ispa-Cnr), Campus Universitario Ecotekne, Lecce, Italy
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | | | - Ana Maria Castro
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Susana Delgado
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
31
|
Spergel JM, Du Toit G, Davis CM. Might biologics serve to interrupt the atopic march? J Allergy Clin Immunol 2023; 151:590-594. [PMID: 36681581 DOI: 10.1016/j.jaci.2023.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
The atopic march was described more than 20 years ago on the basis of initial observations, and it is now seen in prospective studies. The concept has evolved and is now considered to be the progression of atopic dermatitis to other atopic conditions, including asthma, allergic rhinitis, food allergy, and eosinophilic esophagitis in a nonlinear fashion. The progression can include some or all of the aforementioned atopic conditions. The pathogenesis is part of the classic type 2 inflammatory process involving IL-4, IL-5, and IL-13 preceded by induction of the alarmins (thymic stromal lymphopoietin, IL-33, and IL-25), leading to production of IgE in a genetically predisposed individual. The development of new biologics that interact with T2 pathway represent possible ways to prevent or modify the atopic march.
Collapse
Affiliation(s)
- Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa.
| | - George Du Toit
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Carla M Davis
- Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Texas Children's Hospital, Houston
| |
Collapse
|
32
|
Epicutaneous Sensitization and Food Allergy: Preventive Strategies Targeting Skin Barrier Repair-Facts and Challenges. Nutrients 2023; 15:nu15051070. [PMID: 36904070 PMCID: PMC10005101 DOI: 10.3390/nu15051070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Food allergy represents a growing public health and socio-economic problem with an increasing prevalence over the last two decades. Despite its substantial impact on the quality of life, current treatment options for food allergy are limited to strict allergen avoidance and emergency management, creating an urgent need for effective preventive strategies. Advances in the understanding of the food allergy pathogenesis allow to develop more precise approaches targeting specific pathophysiological pathways. Recently, the skin has become an important target for food allergy prevention strategies, as it has been hypothesized that allergen exposure through the impaired skin barrier might induce an immune response resulting in subsequent development of food allergy. This review aims to discuss current evidence supporting this complex interplay between the skin barrier dysfunction and food allergy by highlighting the crucial role of epicutaneous sensitization in the causality pathway leading to food allergen sensitization and progression to clinical food allergy. We also summarize recently studied prophylactic and therapeutic interventions targeting the skin barrier repair as an emerging food allergy prevention strategy and discuss current evidence controversies and future challenges. Further studies are needed before these promising strategies can be routinely implemented as prevention advice for the general population.
Collapse
|
33
|
Liu P, Zhang M, Liu T, Mo R, Wang H, Zhang G, Wu Y. Avenanthramide Improves Colonic Damage Induced by Food Allergies in Mice through Altering Gut Microbiota and Regulating Hsp70-NF-κB Signaling. Nutrients 2023; 15:992. [PMID: 36839351 PMCID: PMC9962348 DOI: 10.3390/nu15040992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Food allergies can cause intestinal damage that can exacerbate allergic symptoms, and gut microbiota have been shown to influence allergic development. This study was intended to investigate the effects of Avenanthramide (AVA) on colonic damage induced by food allergy and its mechanism. In Exp. 1, AVA administrations alleviated colonic inflammation in mice challenged with ovalbumin, as shown by decreased concentrations of TNF-α, IL-25 and IL-33. Additionally, the AVA supplementations improved intestinal barrier damage by elevating occludin, ZO-1 and claudin-1 levels. Moreover, AVA inhibited NF-κB phosphorylation and enhanced heat shock protein 70 (Hsp70) expression in the colon. In Exp. 2, apoptozole as a Hsp70 inhibitor was used to explore the Hsp70-NF-κB signaling contribution to AVA function. The AVA additions increased the productions of acetate and butyrate, but decreased propionate. Notably, AVA reduced the colonic abundance of propionate-producing microbes such as Muribaculaceae, but elevated butyrate-producing microbes including Roseburia, Blautia, and Lachnospiraceae_NK4A136_group. Microbial alteration could be responsible for the increased butyrate, and thus the up-regulated Hsp70. However, apoptozole treatment eliminated the effects of AVA. Our study revealed that AVA improved colonic injury and inflammation induced by food allergies, and this mechanism may be mediated by the increased microbial-derived butyrate and involved in the Hsp70-NF-κB signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
34
|
Parrón-Ballesteros J, Gordo RG, López-Rodríguez JC, Olmo N, Villalba M, Batanero E, Turnay J. Beyond allergic progression: From molecules to microbes as barrier modulators in the gut-lung axis functionality. FRONTIERS IN ALLERGY 2023; 4:1093800. [PMID: 36793545 PMCID: PMC9923236 DOI: 10.3389/falgy.2023.1093800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
The "epithelial barrier hypothesis" states that a barrier dysfunction can result in allergy development due to tolerance breakdown. This barrier alteration may come from the direct contact of epithelial and immune cells with the allergens, and indirectly, through deleterious effects caused by environmental changes triggered by industrialization, pollution, and changes in the lifestyle. Apart from their protective role, epithelial cells can respond to external factors secreting IL-25 IL-33, and TSLP, provoking the activation of ILC2 cells and a Th2-biased response. Several environmental agents that influence epithelial barrier function, such as allergenic proteases, food additives or certain xenobiotics are reviewed in this paper. In addition, dietary factors that influence the allergenic response in a positive or negative way will be also described here. Finally, we discuss how the gut microbiota, its composition, and microbe-derived metabolites, such as short-chain fatty acids, alter not only the gut but also the integrity of distant epithelial barriers, focusing this review on the gut-lung axis.
Collapse
Affiliation(s)
- Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rubén García Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom,The Francis Crick Institute, London, United Kingdom
| | - Nieves Olmo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Eva Batanero
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Javier Turnay
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain,Correspondence: Javier Turnay
| |
Collapse
|
35
|
Liu P, Liu T, Zhang M, Mo R, Zhou W, Li D, Wu Y. Effects of Avenanthramide on the Small Intestinal Damage through Hsp70-NF-κB Signaling in an Ovalbumin-Induced Food Allergy Model. Int J Mol Sci 2022; 23:ijms232315229. [PMID: 36499554 PMCID: PMC9739943 DOI: 10.3390/ijms232315229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
A food allergy is caused by an abnormal immune reaction and can induce serious intestinal inflammation and tissue damage. Currently, the avoidance of food allergens is still the most effective way to prevent or reduce allergic symptoms, so the development of new strategies to treat allergies is important. Avenanthramide (AVA) is a bioactive polyphenol derived from oats with a wide range of biological activities; however, it is still not clear whether or how AVA alleviates intestinal damage under allergic situations. The aim of this study was to explore the effect of AVA on the small intestinal damage in an ovalbumin (OVA)-induced food allergy model and its mechanism. In experiment 1, 10 mg/kg bw and 20 mg/kg bw doses of AVA both decreased the serum levels of OVA-specific IgE, histamine, and prostaglandin D induced by OVA. The AVA administration relieved inflammation indicated by the lower serum concentrations of pro-inflammatory cytokines including interleukin-1β, IL-6, and tumor necrosis factor-α. The levels of tight junction proteins including Claudin-1, ZO-1, and Occludin in the jejunum were elevated after AVA administration, accompanied by the improved intestinal morphology. Furthermore, AVA elevated the protein expression of heat shock protein 70 (Hsp70) and inhibited the phosphorylation of nuclear factor kappa-B (NF-κB), thus the apoptozole, which a Hsp70 inhibitor, was applied in experiment 2 to assess the contribution of Hsp70-NF-κB signaling to the effects of AVA. In the experiment 2, the inhibition of Hsp70 signaling treatment abolished the beneficial effects of AVA on the small intestinal damage and other allergic symptoms in mice challenged with OVA. Taken together, our results indicated that AVA exerted an intestinal protection role in the OVA-induced allergy, the mechanism of which was partly mediated by the Hsp70-NF-κB signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Wu
- Correspondence: ; Tel.: +86-6273-3588
| |
Collapse
|
36
|
Stanbery AG, Shuchi Smita, Jakob von Moltke, Tait Wojno ED, Ziegler SF. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol 2022; 150:1302-1313. [PMID: 35863509 PMCID: PMC9742339 DOI: 10.1016/j.jaci.2022.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
The release of cytokines from epithelial and stromal cells is critical for the initiation and maintenance of tissue immunity. Three such cytokines, thymic stromal lymphopoietin, IL-33, and IL-25, are important regulators of type 2 immune responses triggered by parasitic worms and allergens. In particular, these cytokines activate group 2 innate lymphoid cells, TH2 cells, and myeloid cells, which drive hallmarks of type 2 immunity. However, emerging data indicate that these tissue-associated cytokines are not only involved in canonical type 2 responses but are also important in the context of viral infections, cancer, and even homeostasis. Here, we provide a brief review of the roles of thymic stromal lymphopoietin, IL-33, and IL-25 in diverse immune contexts, while highlighting their relative contributions in tissue-specific responses. We also emphasize a biologically motivated framework for thinking about the integration of multiple immune signals, including the 3 featured in this review.
Collapse
Affiliation(s)
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, Wash
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Wash
| | | | - Steven F Ziegler
- Department of Immunology, University of Washington, Seattle, Wash; Benaroya Research Institute, Seattle, Wash.
| |
Collapse
|
37
|
Caco-2 Cell Response Induced by Peptides Released after Digestion of Heat-Treated Egg White Proteins. Foods 2022; 11:foods11223566. [PMID: 36429158 PMCID: PMC9689089 DOI: 10.3390/foods11223566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
The heat treatment of food proteins induces structural modifications that influence their interaction with human fluids and cells. We aimed to evaluate the Caco-2 cell response induced by peptides produced after digestion of heat-treated egg white proteins. In vitro digestion of ovalbumin (OVA), ovomucoid (OM), and lysozyme (LYS), untreated or previously heated, was performed. The digestibility of proteins and the response of Caco-2 cells exposed to peptides (<10 kDa) generated during digestion were evaluated. Intact OVA and LYS persisted after the digestion of native proteins, whereas OM was completely hydrolysed. A heat treatment at 65 °C for 30 min did not alter the digestibility of OVA, whereas at 90 °C for 3 min, protein degradation was favoured. The digestibility of OM and LYS was not affected by heat treatment. Peptides derived from OVA and OM digestion induced IL-6 and IL-8 production. OVA and LYS digestion promoted the expression of Tslp, and Il6 and Il33, respectively. A heat treatment prior to OVA digestion reduced IL-6 production and Tslp expression. It was concluded that heat treatments can reduce the release of OVA-derived peptides, but not OM and LYS, with proinflammatory activity during digestion.
Collapse
|
38
|
Abstract
Mast cells originate from the CD34+/CD117+ hematopoietic progenitors in the bone marrow, migrate into circulation, and ultimately mature and reside in peripheral tissues. Microbiota/metabolites and certain immune cells (e.g., Treg cells) play a key role in maintaining immune tolerance. Cross-linking of allergen-specific IgE on mast cells activates the high-affinity membrane-bound receptor FcεRI, thereby initiating an intracellular signal cascade, leading to degranulation and release of pro-inflammatory mediators. The intracellular signal transduction is intricately regulated by various kinases, transcription factors, and cytokines. Importantly, multiple signal components in the FcεRI-mast cell–mediated allergic cascade can be targeted for therapeutic purposes. Pharmacological interventions that include therapeutic antibodies against IgE, FcεRI, and cytokines as well as inhibitors/activators of several key intracellular signaling molecues have been used to inhibit allergic reactions. Other factors that are not part of the signal pathway but can enhance an individual’s susceptibility to allergen stimulation are referred to as cofactors. Herein, we provide a mechanistic overview of the FcεRI-mast cell–mediated allergic signaling. This will broaden our scope and visions on specific preventive and therapeutic strategies for the clinical management of mast cell–associated hypersensitivity reactions.
Collapse
|
39
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
40
|
Goh A, Muhardi L, Ali A, Liew WK, Estrada-Reyes E, Zepeda-Ortega B, Kudla U, van Neerven RJJ, Ulfman LH, Lambers TT, Warner JO. Differences between peptide profiles of extensive hydrolysates and their influence on functionality for the management of cow's milk allergy: A short review. FRONTIERS IN ALLERGY 2022; 3:950609. [PMID: 36660742 PMCID: PMC9843608 DOI: 10.3389/falgy.2022.950609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023] Open
Abstract
Extensively hydrolyzed formulas (eHFs) are recommended for the dietary management of cow's milk protein allergy (CMPA) in non-exclusively breastfed infants. Studies show that peptide profiles differ between eHFs. This short review aims to highlight the variability in peptides and their ability to influence allergenicity and possibly the induction of tolerance by different eHFs. The differences between eHFs are determined by the source of the protein fraction (casein or whey), peptide size-distribution profile and residual β-lactoglobulin which is the most immunogenic and allergenic protein in bovine milk for human infants as it is not present in human breastmilk. These differences occur from the hydrolyzation process which result in variable IgE reactivity against cow's milk allergen epitopes by subjects with CMPA and differences in the Th1, Th2 and pro-inflammatory cytokine responses elicited. They also have different effects on gut barrier integrity. Results suggest that one particular eHF-casein had the least allergenic potential due to its low residual allergenic epitope content and demonstrated the greatest effect on restoring gut barrier integrity by its effects on mucin 5AC, occludin and Zona Occludens-1 in human enterocytes. It also increased the production of the tolerogenic cytokines Il-10 and IFN-γ. In addition, recent studies documented promising effects of optional functional ingredients such as pre-, pro- and synbiotics on the management of cow's milk allergy and induction of tolerance, in part via the induction of the production of short chain fatty acids. This review highlights differences in the residual allergenicity, peptide size distribution, presence of optional functional ingredients and overall functionality of several well-characterized eHFs which can impact the management of CMPA and the ability to induce immune tolerance to cow's milk protein.
Collapse
Affiliation(s)
- Anne Goh
- Department of Paediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore,Correspondence: Anne Goh
| | - Leilani Muhardi
- Medical Affairs, Friesland Campina AMEA, Singapore, Singapore
| | - Adli Ali
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Center, Bangi, Malaysia
| | - Woei Kang Liew
- Paediatric Allergy Immunology Rheumatology Centre, Mount Elizabeth Novena Specialist Centre, Singapore, Singapore
| | | | - Benjamin Zepeda-Ortega
- Department of Pediatrics, Angeles Lomas Hospital Huixquilucan Mexican State, Mexico, Mexico
| | | | - R. J. Joost van Neerven
- R&D, FrieslandCampina, Amersfoort, the Netherlands,Cell Biology and Immunology, Wageningen University, Wageningen, the Netherlands
| | | | | | - John O. Warner
- National Heart and Lung Institute, Imperial College, London, United Kingdom,Departement Pediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Xiong Y, Xu G, Chen M, Ma H. Intestinal Uptake and Tolerance to Food Antigens. Front Immunol 2022; 13:906122. [PMID: 35757706 PMCID: PMC9226482 DOI: 10.3389/fimmu.2022.906122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Food allergy is a growing concern due to its increasing world-wide incidence. Strict avoidance of allergens is a passive treatment strategy. Since the mechanisms responsible for the occurrence and development of food allergy have not yet been fully elucidated, effective individualized treatment options are lacking. In this review, we summarize the pathways through which food antigens enter the intestine and review the proposed mechanisms describing how the intestine acquires and tolerates food antigens. When oral tolerance is not established, food allergy occurs. In addition, we also discuss the contribution of commensal bacteria of the gut in shaping tolerance to food antigens in the intestinal tract. Finally, we propose that elucidating the mechanisms of intestinal uptake and tolerance of food antigens will provide additional clues for potential treatment options for food allergy.
Collapse
Affiliation(s)
- Yuhong Xiong
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guifeng Xu
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingwu Chen
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongdi Ma
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
42
|
Ma Y, Zhao S, Zhang X, Yang J, Gong J. Allergenicity of alcohol-soluble wasp pupal proteins and its impact on the gut microbiota. Clin Immunol 2022; 241:109069. [DOI: 10.1016/j.clim.2022.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
|
43
|
Yu Y, Li J, Liu C. Oxytocin suppresses epithelial cell-derived cytokines production and alleviates intestinal inflammation in food allergy. Biochem Pharmacol 2022; 195:114867. [PMID: 34863977 DOI: 10.1016/j.bcp.2021.114867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Food allergy is a growing healthcare problem worldwide, but prophylactic options and regulatory therapies are limited. Oxytocin (OXT), conventionally acknowledged as a hormone, was recently proven to have potent anti-inflammatory and immunomodulatory activities in certain diseases. Here, we reported the novel function and its underlying mechanisms of OXT on food allergy in vivo and in vitro. We showed that the levels of OXT were elevated in ovalbumin (OVA)-allergic mice and patients with food allergy. In HT-29 cells, OXT inhibited the production of the epithelial cell-derived cytokines thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33 by suppressing NF-κB signaling, in which β-arrestin2 participated. These functions of OXT were abolished by oxytocin receptor (OXTR) depletion. Treating OVA-induced BALB/c mice with OXT suppressed TSLP, IL-25 and IL-33 production and attenuated systemic anaphylaxis and intestinal inflammation. OXTR-/- mice showed extreme increases in TSLP, IL-25 and IL-33 levels as well as severe systemic anaphylaxis and intestinal inflammation. In conclusion, through OXTRs, OXT has a promising antiallergic effect on experimental food allergy by suppressing epithelial TSLP, IL-25 and IL-33 production via inhibiting NF-κB signaling and upregulating β-arrestin2 expression. Our study provides a new therapeutic perspective for food allergy in humans.
Collapse
Affiliation(s)
- Yiang Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Provincial Key Lab of Mental Disorders, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
44
|
Popple SJ, Burrows K, Mortha A, Osborne LC. Remote regulation of type 2 immunity by intestinal parasites. Semin Immunol 2021; 53:101530. [PMID: 34802872 DOI: 10.1016/j.smim.2021.101530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The intestinal tract is the target organ of most parasitic infections, including those by helminths and protozoa. These parasites elicit prototypical type 2 immune activation in the host's immune system with striking impact on the local tissue microenvironment. Despite local containment of these parasites within the intestinal tract, parasitic infections also mediate immune adaptation in peripheral organs. In this review, we summarize the current knowledge on how such gut-tissue axes influence important immune-mediated resistance and disease tolerance in the context of coinfections, and elaborate on the implications of parasite-regulated gut-lung and gut-brain axes on the development and severity of airway inflammation and central nervous system diseases.
Collapse
Affiliation(s)
- S J Popple
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - K Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - A Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - L C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Ramsey N, Berin MC. Pathogenesis of IgE-mediated food allergy and implications for future immunotherapeutics. Pediatr Allergy Immunol 2021; 32:1416-1425. [PMID: 33715245 PMCID: PMC9096874 DOI: 10.1111/pai.13501] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the immune basis of food allergy has grown rapidly in parallel with the development of new immune-targeted interventions for the treatment of food allergy. Local tissue factors, including the composition of skin and gastrointestinal microbiota and production of Th2-inducing cytokines (TSLP, IL-33, and IL-25) from barrier sites, have been shown not only to contribute to the development of food allergy, but also to act as effective targets for treatment in mice. Ongoing clinical trials are testing the targeting of these factors in human disease. There is a growing understanding of the contribution of IL-13 to the induction of high-affinity IgE and the need for continual T-cell help in the maintenance of long-lived IgE. This provides a strong rationale to test biologics targeting both IL-4 and IL-13 in the treatment of established food allergy. Various forms of allergen immunotherapy for food allergy have clearly shown that low specific IgE and elevated specific IgG4 are predictive of sustained treatment effect. Treatments that mimic that immune response, for example, lowering IgE, with monoclonal antibodies such as omalizumab, or administering allergen-specific IgG, are in various stages of investigation. As we gain more opportunities to use immune-modifying treatments for the treatment of food allergy, studies of the immune and clinical response to those interventions will continue to rapidly advance our understanding of the immune basis of food allergy and tolerance.
Collapse
Affiliation(s)
- Nicole Ramsey
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
46
|
Gabryszewski SJ, Hill DA. One march, many paths: Insights into allergic march trajectories. Ann Allergy Asthma Immunol 2021; 127:293-300. [PMID: 33971364 PMCID: PMC8418995 DOI: 10.1016/j.anai.2021.04.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The classical allergic march model posits that atopy begins in infancy with atopic dermatitis and progresses to asthma and allergic rhinitis in a subset of individuals. The growing prevalence and severity of allergic diseases have prompted renewed interest in refining this model. This review outlines epidemiologic evidence for the existence of allergic march trajectories (distinct paths of atopy development in individuals); reviews the roles that genetics, environment, and disease endotypes play in determining trajectory outcomes; and discusses the clinical utility of the trajectory model. DATA SOURCES PubMed search of English-language articles and reviews without date limits pertaining to the epidemiology, genetics, and immunologic mechanisms of allergic march trajectories and disease endotypes. STUDY SELECTIONS Studies and reviews were selected based on their high quality and direct relevance to the review topic. RESULTS Recent work in the field has revealed that immunoglobulin E-mediated food allergy and eosinophilic esophagitis are components of the allergic march. Furthermore, the field is acknowledging that variability exists in the number and sequence of allergic manifestations that individuals develop. These allergic march pathways, or trajectories, are influenced by genetic, environmental, and psychosocial factors that are incompletely understood. CONCLUSION Continued elucidation of the landscape and origins of allergic march trajectories will inform efforts to personalize allergic disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Stanislaw J Gabryszewski
- Division of Allergy and Immunology and Center for Pediatric Eosinophilic Disorders, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David A Hill
- Division of Allergy and Immunology and Center for Pediatric Eosinophilic Disorders, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Institute for Immunology and Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
47
|
Tontini C, Bulfone-Paus S. Novel Approaches in the Inhibition of IgE-Induced Mast Cell Reactivity in Food Allergy. Front Immunol 2021; 12:613461. [PMID: 34456900 PMCID: PMC8387944 DOI: 10.3389/fimmu.2021.613461] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Allergy is an IgE-dependent type-I hypersensitivity reaction that can lead to life-threatening systemic symptoms such as anaphylaxis. In the pathogenesis of the allergic response, the common upstream event is the binding of allergens to specific IgE, inducing cross-linking of the high-affinity FcεRI on mast cells, triggering cellular degranulation and the release of histamine, proteases, lipids mediators, cytokines and chemokines with inflammatory activity. A number of novel therapeutic options to curb mast cell activation are in the pipeline for the treatment of severe allergies. In addition to anti-IgE therapy and allergen-specific immunotherapy, monoclonal antibodies targeted against several key Th2/alarmin cytokines (i.e. IL-4Rα, IL-33, TSLP), active modification of allergen-specific IgE (i.e. inhibitory compounds, monoclonal antibodies, de-sialylation), engagement of inhibitory receptors on mast cells and allergen-specific adjuvant vaccines, are new promising options to inhibit the uncontrolled release of mast cell mediators upon allergen exposure. In this review, we critically discuss the novel approaches targeting mast cells limiting allergic responses and the immunological mechanisms involved, with special interest on food allergy treatment.
Collapse
Affiliation(s)
- Chiara Tontini
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
48
|
Ukleja-Sokołowska N, Żbikowska-Gotz M, Lis K, Adamczak R, Bartuzi Z. Assessment of TSLP, IL 25 and IL 33 in patients with shrimp allergy. Allergy Asthma Clin Immunol 2021; 17:76. [PMID: 34301307 PMCID: PMC8299623 DOI: 10.1186/s13223-021-00576-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background Shrimp allergy is a growing problem among the European population. TSLP, IL-25 and IL-33 are involved in the pathophysiology of allergic diseases, including asthma and atopic dermatitis, as they activate the Th2-dependent immune response. Methods Thirty-seven patients (18 male and 19 female) with a positive history of symptoms associated with shrimp consumption were selected. All patients had blood samples taken to assess the concentration of allergen-specific IgE (sIgE) to house dust mites (HDM) and shrimp (Singleplex, quantitative method with cut off value > 0,35 kAU/L) as well as the level of allergen components using the ImmunoCap ISAC method (Microarray test, semi-quantitative with cut off value > 0,3 ISU-E). The concentrations of TSLP, IL-25 and IL-33 in the patients’ blood serum was assessed using the ELISA method (Cusabio). Twenty patients with negative allergy history of allergic disease tests were included in the control group. Results Among the 37 shrimp-allergic patients, ImmunoCap ISAC was identified the presence of sIgE to the available shrimp allergen components in only 14 cases (37.8%). TSLP and IL25 levels were significantly higher in the study group. No statistically significant correlation was found between the concentration of analyzed alarmins and the concentration of sIgE level to shrimp or HDM between the study and control groups. No statistically significant correlation was found between poly-sensitization occurring in patients and levels of TSLP, IL-25 and IL-33 . Conclusion In shrimp-allergic patients, the concentrations of TSLP and IL-25 were significantly higher than in the control group (1.33 vs. 0.49 and 157 vs. 39.36, respectively). There was no correlation between the concentrations of TSLP, IL-25 and IL-33 and the concentration of sIgE in the patients or the number of allergen components that the patients were sensitized to. Trial registration: Bioethics Committee 147/2015, 11.03.2015. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-021-00576-9.
Collapse
Affiliation(s)
- Natalia Ukleja-Sokołowska
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | - Magdalena Żbikowska-Gotz
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Rafał Adamczak
- Department of Obstetrics and Gynecology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| |
Collapse
|
49
|
Zhou C, Chen LL, Lu RQ, Ma WW, Xiao R. Alteration of Intestinal Microbiota Composition in Oral Sensitized C3H/HeJ Mice Is Associated With Changes in Dendritic Cells and T Cells in Mesenteric Lymph Nodes. Front Immunol 2021; 12:631494. [PMID: 34177885 PMCID: PMC8222730 DOI: 10.3389/fimmu.2021.631494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
This research aimed to investigate the allergic reaction of C3H/HeJ mice after sensitization with ovalbumin (OVA) without any adjuvant and to analyze the association between intestinal microbiota and allergy-related immune cells in mesenteric lymph nodes (MLN). The allergic responses of C3H/HeJ mice orally sensitized with OVA were evaluated, and immune cell subsets in spleen and MLN and cytokines were also detected. The intestinal bacterial community structure was analyzed, followed by Spearman correlation analysis between changed gut microbiota species and allergic parameters. Sensitization induced a noticeable allergic response to the gavage of OVA without adjuvant. Increased levels of Th2, IL-4, CD103+CD86+ DC, and MHCII+CD86+ DC and decreased levels of Th1, Treg, IFN-γ, TGF-β1, and CD11C+CD103+ DC were observed in allergic mice. Furthermore, families of Lachnospiraceae, Clostridiaceae_1, Ruminococcaceae, and peprostreptococcaceae, all of which belonging to the order Clostridiales, were positively related to Treg and CD11C+CD103+ DC, while they were negatively related to an allergic reaction, levels of Th2, CD103+CD86+ DC, and MHCII+CD86+ DC in MLN. The family of norank_o_Mollicutes_RF39 belonging to the order Mollicutes_RF39 was similarly correlated with allergic reaction and immune cells in MLN of mice. To sum up, allergic reactions and intestinal flora disturbances could be induced by OVA oral administration alone. The orders of Clostridiales and Mollicutes_RF39 in intestinal flora are positively correlated with levels of Treg and CD11C+CD103+ DC in MLN of mice.
Collapse
Affiliation(s)
- Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Ling-Ling Chen
- Nutritional Department, Handan First Hospital, Handan, China
| | - Rui-Qi Lu
- School of Basic Medicine, Capital Medical University, Beijing, China
| | - Wei-Wei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
A new approach for activation of the kiwifruit cysteine protease for usage in in-vitro testing. Mol Biol Rep 2021; 48:4065-4072. [PMID: 34109497 DOI: 10.1007/s11033-021-06416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Actinidin (Act d 1), a highly abundant cysteine protease from kiwifruit, is one of the major contributors to the development of kiwifruit allergy. Many studies have focused on the optimization of Act d 1 purification and its role in the development of food allergies. Testing on cell culture monolayers is a common step in the elucidation of food allergen sensitization. In the case of cysteine proteases, an additional activation step with L-cysteine is required before the testing. Hence, we aimed to evaluate whether L-cysteine already present in commonly used cell culture media would suffice for Act d 1 activation. Successfully activated Act d 1 (98.1% of proteolytic activity, as compared to L-cysteine activated Act d 1) was further tested in two commonly used 2D model systems (Caco-2 and HEK293 cells) to evaluate its role on the mRNA expression of cytokines involved in the innate immunity (IL-1β, IL-6, TNFα, TSLP). Furthermore, the contribution of Act d 1 in the promotion of inflammation through regulation of inducible nitric oxide synthase (iNOS) mRNA expression was also examined. These results demonstrate that activation of cysteine proteases can be achieved without previous enzyme incubation in L-cysteine -containing solution. Act d 1 incubated in cell culture medium was able to modulate gene expression of pro-inflammatory cytokines when tested on two model systems of the epithelial barrier.
Collapse
|