1
|
Shokry AA, Bashir DW, Gamil NM, Nabil G. In-depth molecular assessment of Hedera helix's L. α - Hederin & Hederacoside C as a gastroprotective & a possible safe Omeprazole phyto-alternative in ethanol-induced gastric ulcer mice model. Int Immunopharmacol 2025; 156:114541. [PMID: 40273670 DOI: 10.1016/j.intimp.2025.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Hedera helix L. is among the most popular over-the-counter formulations for effectively alleviating respiratory disorders in adults & children due to its unique active constituents such as α - Hederin & Hederacoside C. Even though its respiratory pharmacological activity is thoroughly researched, its other pharmacological activities remain relatively unexplored. Alcoholism is a Western cultural habit that is associated with various side effects, including peptic ulcer disease (PUD) & drug interaction. The PUD is commonly & recurrently presented clinically, increasing the load on healthcare systems. PUD not only negatively affects the quality of life but is also associated with serious complications such as bleeding, penetration, perforation, pyloric stenosis, & gastric cancer. Alcohol interaction with drugs could either lead to therapeutic failure, accumulation of drug-toxic metabolites, or disturbance of the alcohol detoxification pathway, putting the treatment of alcoholism-induced PUD with a drug-interacting medication such as Omeprazole under the limelight. In line with that, finding plant-derived molecules with the potency of Omeprazole but without its associated side effects & drug-interacting property is a desperate clinical need. In this regard, we aimed to investigate the gastroprotective effect, potency, & molecular mechanism of α - Hederin & Hederacoside C pretreatment against ethanol-induced gastric ulcer in mice model. These compounds were tested in two upgrading doses (50 mg/kg & 75 mg/kg) compared to negative, positive, & Omeprazole groups. Our study revealed that daily oral administration of α - Hederin or Hederacoside C protected the stomach against ethanol-induced gastric ulcers in a dose-dependent manner. The potency of high doses of both compounds was comparable to Omeprazole. Their effectiveness was related to their ability to set the activated invasive forces, including CYP1A2, neutrophils, MDA, leptin, TNF-α, IL-6, IL-12, & NF-κB-p65 & to amplify the intrinsic defensive forces, including COX-2, PGE-2, CAT, & SOD. These intertwined actions were reflected in maintaining vibrant stomach architecture, such as mucosal layer re-epithelization, gland reconstruction, & restoring tunica muscularis normal thickness. Moreover, they limited the exaggeration of the repairing system, including HSP-70, VEGF, & Annexin-1, where their forge was positively correlated with damage depth. Therefore, we compendiously deduced that herbal-based medicine could face the constraints of synthesized medicine satisfactorily without their culminating side effects.
Collapse
Affiliation(s)
- Aya A Shokry
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Dina W Bashir
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Noha M Gamil
- Department of Pharmacology & Toxicology, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science & Technology (MUST), Giza P.O. Box 77, Egypt
| | - Ghazal Nabil
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| |
Collapse
|
2
|
Wang M, Zhao L, Wang Y, Zhang C, Li H. Sugarcane Molasses Polyphenol Extract Attenuates Alcohol-Induced Chronic Liver Damage via Antioxidant, Anti-Inflammatory, and CYP2E1/Keap1/NF-κB Pathway Modulation. Nutrients 2025; 17:1589. [PMID: 40362898 PMCID: PMC12073286 DOI: 10.3390/nu17091589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVE The prevention and treatment of alcoholic liver disease (ALD) urgently require safe and effective nutritional intervention strategies. Polyphenol extracts from sugarcane molasses (SP) show antioxidant and anti-inflammatory potential, yet their protective effects against ALD have not been elucidated. This study explored the therapeutic potential of SP in alcohol-induced chronic liver damage. METHODS A graded alcohol concentration-induced liver damage model was established in C57BL/6J mice to systematically evaluate SP's regulatory effects on liver function markers, lipid metabolism, oxidative stress indicators, inflammatory factors, and related molecular mechanisms through a 10-week nutritional intervention. RESULTS The results demonstrated that SP intervention significantly inhibited the liver index, alanine aminotransferase and aspartate aminotransferase activities, and triglyceride and total cholesterol accumulation in mice. SP enhanced antioxidant enzyme activities in a dose-dependent manner, with the high-dose group increasing catalase activity by 161.19% and superoxide dismutase activity by 22.97%. Furthermore, SP significantly reduced the levels of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α, thereby alleviating hepatic inflammatory infiltration. Mechanistic studies revealed that SP effectively mitigated alcohol-induced oxidative stress and inflammatory injury by inhibiting cytochrome P450 2E1 overexpression, regulating the Kelch-like ECH-associated protein 1 signaling pathway, and suppressing nuclear factor-kappa B pathway activation. CONCLUSIONS The findings reveal that SP mitigates ALD via synergistic antioxidant and anti-inflammatory mechanisms, providing a novel strategy for high-value utilization of sugarcane molasses byproducts in agricultural industries. Future studies should focus on the contribution of the different phenolics in SP and validate their specific hepatoprotective mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (M.W.); (L.Z.); (Y.W.)
| | - Lin Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (M.W.); (L.Z.); (Y.W.)
| | - Yumei Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (M.W.); (L.Z.); (Y.W.)
| | | | - He Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (M.W.); (L.Z.); (Y.W.)
| |
Collapse
|
3
|
Pannala VR, Hari A, AbdulHameed MDM, Balik-Meisner MR, Mav D, Phadke DP, Scholl EH, Shah RR, Auerbach SS, Wallqvist A. Quantifying liver-toxic responses from dose-dependent chemical exposures using a rat genome-scale metabolic model. Toxicol Sci 2025; 204:154-168. [PMID: 39821420 PMCID: PMC11939075 DOI: 10.1093/toxsci/kfaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Because the liver plays a vital role in the clearance of exogenous chemical compounds, it is susceptible to chemical-induced toxicity. Animal-based testing is routinely used to assess the hepatotoxic potential of chemicals. Although large-scale high-throughput sequencing data can indicate the genes affected by chemical exposures, we need system-level approaches to interpret these changes. To this end, we developed an updated rat genome-scale metabolic model to integrate large-scale transcriptomics data and utilized a chemical structure similarity-based ToxProfiler tool to identify chemicals that bind to specific toxicity targets to understand the mechanisms of toxicity. We used high-throughput transcriptomics data from a 5-day in vivo study where rats were exposed to different non-toxic and hepatotoxic chemicals at increasing concentrations and investigated how liver metabolism was differentially altered between the non-toxic and hepatotoxic chemical exposures. Our analysis indicated that the genes identified via toxicity target analysis and those mapped to the metabolic model showed a distinct gene expression pattern, with the majority showing upregulation for hepatotoxicants compared with non-toxic chemicals. Similarly, when we mapped the metabolic genes at the pathway level, we identified several pathways in carbohydrate, amino acid, and lipid metabolism that were significantly upregulated for hepatotoxic chemicals. Furthermore, using our system-level integration of gene expression data with the rat metabolic model, we could differentiate metabolites in these pathways that were systematically elevated or suppressed due to hepatotoxic versus non-toxic chemicals. Thus, using our combined approach, we were able to identify a set of potential gene signatures that clearly differentiated liver toxic responses from non-toxic chemicals, which helped us identify potential metabolic pathways and metabolites that are systematically associated with the toxicant exposure.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States
| | - Archana Hari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States
| | - Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States
| | | | - Deepak Mav
- Sciome LLC, Research Triangle Park, NC 27709, United States
| | | | | | - Ruchir R Shah
- Sciome LLC, Research Triangle Park, NC 27709, United States
| | - Scott S Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, United States
| |
Collapse
|
4
|
Ge L, Yang Y, Gao Y, Xiao T, Chang W, Wang H, Xiao Z, Chen J, Li M, Yu M, Jin P, Zhang JV. Ovarian Endometrioma Disrupts Oocyte-Cumulus Communication and Mitochondrial Function, With Melatonin Mitigating the Effects. Cell Prolif 2025; 58:e13800. [PMID: 39837534 PMCID: PMC11969245 DOI: 10.1111/cpr.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Ovarian endometrioma (OEM), a particularly severe form of endometriosis, is an oestrogen-dependent condition often associated with pain and infertility. The mechanisms by which OEM impairs fertility, particularly through its direct impact on oocyte-cumulus cell (CC) communication and related pathways, remain poorly understood. This study investigates the impact of OEM on oocyte-CC communication and explores melatonin's therapeutic potential. We used a mouse model of OEM and employed ovarian transcriptome and gene set enrichment analyses to identify disrupted gene pathways, alongside phalloidin staining for cytoskeletal analysis, gap junction coupling analysis for intercellular communication, and mitochondrial function assessments for cellular metabolism. Our results showed that OEM significantly impairs steroidogenesis and cumulus cell function, leading to increased apoptosis, disrupted transzonal projections (TZPs), and impaired antioxidant transfer to oocytes. This culminates in oxidative stress, mitochondrial dysfunction, and compromised ATP production. OEM oocytes also exhibited severe abnormalities, including DNA damage, maturation defects, spindle assembly disruptions, and increased aneuploidy. This study identifies disrupted TZPs as a key pathological feature in OEM and highlights melatonin's potential to restore intercellular communication, mitigate oxidative damage, and improve reproductive outcomes.
Collapse
Affiliation(s)
- Lei Ge
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Yali Yang
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Yuqing Gao
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauMacauChina
| | - Tianxia Xiao
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauMacauChina
| | - Hefei Wang
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Zhonglin Xiao
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
- Faculty of Data ScienceCity University of MacauMacauChina
| | - Jie Chen
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Mengxia Li
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Ming Yu
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
| | - Ping Jin
- Shenzhen Maternity and Child Healthcare HospitalShenzhenGuangdongChina
- The First School of Clinical MedicineSouthern Medical UniversityShenzhenGuangdongChina
| | - Jian V. Zhang
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
- Shenzhen Key Laboratory of Metabolic HealthShenzhenGuangdongChina
- Faculty of Pharmaceutical SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
- Sino‐European Center of Biomedicine and HealthShenzhenGuangdongChina
| |
Collapse
|
5
|
Chen M, Zhang S, Huang X, Zhang D, Zhu D, Ouyang C, Li Y. The protective effects and mechanism of myricetin in liver diseases (Review). Mol Med Rep 2025; 31:87. [PMID: 39917997 PMCID: PMC11811602 DOI: 10.3892/mmr.2025.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Liver diseases have become one of the significant threats to global health. However, there is a lack of effective targeted therapeutic drugs in this field and the existing drugs used for liver disease treatment usually have side‑effects. Traditional Chinese medicine (TCM) has the distinctive advantages of multi‑target and low side‑effects. As a flavonoid with various pharmacological activities such as anti‑tumour, anti‑oxidant, anti‑inflammatory and anti‑bacterial, the TCM myricetin has been widely used in liver disease research. The present work focuses on the role and molecular mechanism of myricetin in liver diseases such as acute liver injury, fatty liver, liver fibrosis and hepatocellular carcinoma. It is a promising reference for further research and application of myricetin in the treatment of liver diseases.
Collapse
Affiliation(s)
- Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shengnan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yankun Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
6
|
Kang J, Park SH, Khanam M, Park SB, Shin S, Seo W. Impact of binge drinking on alcoholic liver disease. Arch Pharm Res 2025; 48:212-223. [PMID: 40035998 DOI: 10.1007/s12272-025-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025]
Abstract
Numerous studies have examined the pathophysiological changes induced by chronic alcohol (ethanol) consumption and the underlying mechanisms, while much less attention has been devoted to understanding the health impacts of binge drinking. Binge drinking is defined as the excessive consumption of alcohol within a single drinking episode, and is the typical consumption pattern among young people in Western countries. While most young binge drinkers are not clinically alcohol dependent, binge drinking has emerged as a significant social and public health concern. The circulating alcohol consumed during binge episodes permeates cellular membranes throughout the body, exerting profound effects on multiple organs, and signaling pathways. Regular binge drinking eventually induces hepatic steatosis (fatty liver), initiates acute inflammation, and accelerates neutrophil infiltration, de novo lipogenesis, adipocyte death/lipolysis, and the production of nonoxidative alcohol metabolites, processes that synergize to damage liver tissue and impair liver function. Metabolic abnormalities such as diabetes and obesity can also exacerbate the progression of alcohol-related liver disease among binge drinkers. Several animal models have been developed to evaluate the pathophysiological changes resulting from binge drinking; however, the pathogenesis of binge drinking is not fully understood due to differences in alcohol metabolism between animal models and humans. Thus, given the high prevalence and severe health implications of binge drinking, there is an urgent need for comprehensive experimental and clinical investigations to unravel the associated pathophysiological changes. This review summarizes recent research findings on the impact of binge drinking, specifically focusing on its contributions to alcoholic liver injury.
Collapse
Affiliation(s)
- Jisoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seol Hee Park
- Department of Companion Animal Health, Hanyang Women's University, Seoul, 04763, Republic of Korea
| | - Mushira Khanam
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Bhin Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sumin Shin
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Wonhyo Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
7
|
Zhang J, Yang Z, Liu X, Yang X, Li Y, Jin X, Duan H, Chen H, Zhao W, Wang Q, Liu Y. New Insights into the Pathogenesis of Alcoholic Liver Disease Based on Global Research. Dig Dis Sci 2025; 70:903-918. [PMID: 39806089 DOI: 10.1007/s10620-024-08778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND AIMS Alcoholic liver disease (ALD) is the leading cause of death among alcohol-related diseases, yet its pathogenesis remains incompletely understood. This article employs data mining methods to conduct an indepth study of articles on ALD published in the past three decades, aiming to elucidate the pathogenesis of ALD. METHODS Firstly, articles related to the pathogenesis of ALD were retrieved from the Web of Science (WOS) database. CiteSpace 6.1.R2 and VOSviewer 1.6.18 were used to visually analyze the authors, institutions, journals, and keywords of the published articles. Secondly, by thoroughly reading the top 100 most cited articles and focusing on research hotspots such as cytochrome P450 2E1 (CYP2E1), gut microbiota, acetaldehyde dehydrogenase (ALDH), and alcohol dehydrogenase (ADH), the pathogenesis of ALD was preliminarily explored. Finally, the pathogenesis of ALD was further analyzed based on disease databases. RESULTS A total of 1521 articles were retrieved from the WOS database, and 384 of these were selected for in-depth reading. From GeneCards, 9084 genes related to ALD were identified. KEGG enrichment analysis was performed using DAVID, and the hsa04936: Alcoholic liver disease pathway was selected for visualization. CONCLUSIONS This study preliminarily elucidates the pathogenesis of ALD, which may be associated with the release of acetaldehyde, reactive oxygen species (ROS), and various pro-inflammatory factors during alcohol metabolism. It is also closely related to gut microbiota dysbiosis and increased intestinal permeability induced by multiple factors.
Collapse
Affiliation(s)
- Jinbao Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China.
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China.
- Key Laboratory of Pharmacology and Toxicology of TCM in Gansu Province, Lanzhou, China.
- Engineering Research Center for Evaluation, Protection and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, Gansu, China.
| | - Zonghui Yang
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
| | - Xiaona Liu
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
| | - Xiujuan Yang
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Key Laboratory of Pharmacology and Toxicology of TCM in Gansu Province, Lanzhou, China
| | - Yaling Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haijing Duan
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Key Laboratory of Pharmacology and Toxicology of TCM in Gansu Province, Lanzhou, China
| | - Honggang Chen
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Engineering Research Center for Evaluation, Protection and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, Gansu, China
| | - Wenlong Zhao
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Engineering Research Center for Evaluation, Protection and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, Gansu, China
| | - Qian Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
8
|
Jiang W, Sang R, Zhang C, Yin R, Ouyang Z, Wei Y. Application of small interfering RNA technology in cytochrome P450 gene modulation. Drug Metab Dispos 2025; 53:100040. [PMID: 40010050 DOI: 10.1016/j.dmd.2025.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/28/2025] Open
Abstract
Cytochrome P450 plays key roles in the biotransformation of endogenous and exogenous chemicals including drugs and environmental pollutants. The inhibition and downregulation of P450s can have therapeutic effects, and/or modulate drug metabolism. P450s are largely inhibited by small molecules; however, this strategy is often hampered by intrinsic toxicity and drug-drug interactions. Furthermore, it is challenging for small molecules to exhibit high selectivity and inhibitory efficiencies. Recently, small interfering RNA (siRNA) technology has demonstrated the potential for P450 modulation. Examples of recent applications of siRNAs in P450 gene modulation, in vitro and in vivo, are highlighted in this review. The necessity of siRNA techniques and their advantages as P450 modulators are discussed, along with a review of current obstacles and a perspective on future advancements. SIGNIFICANCE STATEMENT: This article reviews studies on the application of small interfering RNA technology to cytochrome P450 gene modulation. The necessity of siRNA methods and the benefits of their use as P450 modulators have been suggested by comparison with small-molecule drugs. Additionally, the challenges that presently limit the broader implementation of this topic are examined, and a perspective for future developments is proposed.
Collapse
Affiliation(s)
- Wenzhao Jiang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ruoyao Sang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
9
|
Wang L, Dong W, Fan L, Kong H, Liang S, Huang Z, Chen J, Zhi S, Xu S, Qiu Q, Yang M, Hou Y, Hu Y, Pan T, Zheng M, Li X, Huang Z, Song L. Repression of the ERRγ-CYP2E1 pathway by FGF4 mitigates alcohol-associated liver injury. Hepatology 2025:01515467-990000000-01184. [PMID: 40009617 DOI: 10.1097/hep.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease (ALD) represents a critical global health challenge characterized by liver damage resulting from excessive alcohol consumption. Early detection and timely intervention are essential for optimizing patient outcomes. However, the mechanisms underlying alcohol-induced liver injury have not been fully elucidated. Fibroblast growth factor 4 (FGF4) has been implicated in the progression of various liver diseases. This study aims to elucidate the role of FGF4 in the pathogenesis of ALD. APPROACH AND RESULTS We analyzed human liver specimens and observed significant upregulation of FGF4 mRNA and protein levels in patients with ALD. Consistent findings were noted in mouse models subjected to a Lieber-DeCarli liquid diet. Importantly, hepatic FGF4 expression exhibited a positive correlation with ALD severity in both human subjects and murine models. Hepatocyte-specific deletion of Fgf4 ( Fgf4 -LKO) exacerbated alcohol-induced liver injury through increased oxidative stress, inflammation, and apoptosis. Specifically, Fgf4 -LKO mice demonstrated heightened susceptibility to ethanol plus CCl 4 -induced fibrosis and liver injury. However, treatment with the ERRγ inverse agonist GSK5182 and CYP2E1 inhibitor chlormethiazole (CMZ) mitigated the exacerbated liver injury associated with Fgf4 deficiency. Mechanistic investigations revealed that FGFR4 phosphorylates ERRγ, promoting its ubiquitination and degradation in hepatocytes. Hepatic-specific knockout of Fgfr4 intensified alcohol-induced liver injury and nullified the protective conferred of recombinant FGF4 △NT . CONCLUSIONS Our study identifies FGF4 as a stress-responsive regulator in liver pathophysiology, operating through an FGFR4-mediated ERRγ-CYP2E1 signaling pathway. These results underscore the potential of FGF4 and its downstream pathways as therapeutic targets for ALD treatment.
Collapse
Affiliation(s)
- Luyao Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenliya Dong
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Fan
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyu Liang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuobing Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Zhi
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyan Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiaoling Qiu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miaomiao Yang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yushu Hou
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Hu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tongtong Pan
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minghua Zheng
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifeng Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Song
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Wang J, Chen B, Cheng C, Wang Q, Yang L, Li Z, Lv X. Timosaponin B II as a novel KEAP1-NRF2 inhibitor to alleviate alcoholic liver disease:Receptor structure-based virtual screening and biological evaluation. Chem Biol Interact 2025; 408:111390. [PMID: 39862944 DOI: 10.1016/j.cbi.2025.111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/02/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Oxidative stress induced by excess ethanol is an important factor in the progression of alcoholic liver disease (ALD). In recent years, inhibiting Kelch-like ECH-associated protein 1 (KEAP1) to activate the antioxidant regulator Nuclear factor erythroid 2-related factor 2 (NRF2) has been considered an effective strategy for treating oxidative stress-related diseases, but its application in ALD remains insufficiently explored. This study aims to discover high-affinity inhibitors targeting the KEAP1 receptor. We conducted virtual screening of a compound library based on a structure-based pharmacophore model, ultimately identifying the candidate compound Timosaponin B II (TBII). Subsequently, we established ALD models in AML-12 cells and C57BL/6 mice, and evaluated the therapeutic effects and mechanisms of TBII on ALD using methods including Immunofluorescence, Western blotting, RT-qPCR, Biochemical assays, and histological staining. Results indicate that TBII significantly improved ethanol-induced liver injury, inhibited the elevation of serum Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Total Cholesterol (T-CHO), and Triglycerides (TG) levels, and reduced lipid droplet accumulation in liver tissues. Furthermore, TBII treatment enhanced the antioxidant capacity of AML-12 cells and mouse liver, increasing Glutathione (GSH) and Superoxide Dismutase (SOD) levels while reducing Malondialdehyde (MDA) and Reactive Oxygen Species (ROS) levels. Mechanistic studies indicated that TBII inhibited the ethanol-induced increase in KEAP1 and reversed the ethanol-induced changes in NRF2 and its downstream targets. In conclusion, this study suggests that TBII may become a potential therapeutic agent for ALD by modulating the KEAP1-NRF2 pathway to alleviate oxidative stress and lipid metabolism abnormalities.
Collapse
Affiliation(s)
- Junjie Wang
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Baoyi Chen
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Chaofan Cheng
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Qingqing Wang
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Lili Yang
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Zeng Li
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China.
| | - Xiongwen Lv
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China.
| |
Collapse
|
11
|
Du J, Zhang K, Miao J, Yang Y, Tian Y, Wu T, Tao C, Wang Y, Yang S. Molecular pathological characteristics and mechanisms of the liver in metabolic disease-susceptible transgenic pigs. Life Sci 2025; 362:123337. [PMID: 39734013 DOI: 10.1016/j.lfs.2024.123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/05/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
AIMS This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis. MATERIALS AND METHODS The triple-transgenic (PNPLA3I148M-GIPRdn-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials. The transcriptome, metabolome, and lipidome were used to investigate the molecular mechanisms of the liver in pigs. KEY FINDINGS The TG2 pigs presented mild metaflammation and insulin resistance (IR) which was similar to WT12 pigs. Compared with the other three groups, the TG12 pigs presented severe hepatocyte ballooning, fat deposition, and portal area fibrosis. The transcriptome data suggested that the TG2 pigs presented upregulated gene expression in the extracellular matrix (ECM). The TG12 pigs presented more severe metaflammation and exhibited imbalanced glycolipid metabolism. Interestingly, genes such as ETNPPL, GABBR2, and BMP8B might be key regulatory targets for liver injury. The metabolome and lipidome suggested that long-chain polyunsaturated fatty acids (LCPUFAs) and phospholipids with corresponding LCPUFAs were remodelled. Importantly, bis(monoacylglycerol) phosphates (BMPs) and sulfatides (SLs) could be the key regulatory metabolites in liver injury. SIGNIFICANCE ETNPPL, GABBR2, and BMP8B might be potential therapeutic targets for liver injury. BMPs and SLs might be biomarkers for the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jiakun Miao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yu Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuying Tian
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
12
|
Zhu Y, Wang Y, Hoshitsuki K, Yang D, Kokai L, Ma X, Xie W, Fernandez CA. Induction of Cyp2e1 contributes to asparaginase-induced hepatocyte sensitization to lipotoxicity. Acta Pharm Sin B 2025; 15:963-972. [PMID: 40177540 PMCID: PMC11959929 DOI: 10.1016/j.apsb.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 04/05/2025] Open
Abstract
One of the leading therapies for acute lymphoblastic leukemia (ALL) is the chemotherapeutic agent PEGylated E. coli-derived-l-asparaginase (PEG-ASNase). Due to the high risk of dose-limiting liver injury, characterized by clinically elevated levels of hepatic transaminases, PEG-ASNase therapy is generally avoided in adult patients. Our preclinical investigations have indicated that PEG-ASNase-induced liver injury is associated with the release of free fatty acids (FFAs) from white adipose tissue (WAT), suggesting potential lipotoxic effects. However, it remains uncertain whether PEG-ASNase directly induces hepatotoxicity or sensitizes hepatocytes to FFA-induced toxicity. Our results show that PEG-ASNase treatment results in hepatocyte apoptosis and lipid peroxidation. Ex vivo and in vitro studies in mouse and human WAT suggest that PEG-ASNase induces the expression of adipose triglyceride lipase (ATGL), activates the lipase, and stimulates adipose tissue lipolysis, suggesting that the FFAs from WAT may contribute to the observed liver injury. Moreover, treatment with PEG-ASNase sensitizes hepatocytes to FFA-induced lipotoxicity. Mechanistically, our RNA-sequencing (RNA-seq) analyses reveal that PEG-ASNase-induced sensitization to lipotoxicity is accompanied by the induction of Cyp2e1. We demonstrated that this sensitization effect is attenuated by both pharmacological and genetic inhibition of Cyp2e1. Our findings suggest that PEG-ASNase therapy induces WAT lipolysis and sensitizes hepatocytes to hepatic lipotoxicity in a Cyp2e1-dependent manner.
Collapse
Affiliation(s)
- Yin Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuyin Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Keito Hoshitsuki
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lauren Kokai
- Department of Plastic Surgery, University of Pittsburgh and the McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Hussaini H, Waheed A, Fadeyi O, Boostany T, Hashimoto Y, Flint AT. Acute Liver Injury Following Herbal Drink Consumption With Steatosis and Immune Activation: A Case Report. Cureus 2025; 17:e79839. [PMID: 40161146 PMCID: PMC11955213 DOI: 10.7759/cureus.79839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Herbal medicines are widely used for their perceived health benefits; however, their potential for liver toxicity is well-documented. We report a case of acute liver injury (ALI) in a 32-year-old male patient following the consumption of a multi-herbal drink. The patient, with a history of cholecystectomy for gallstones and nephrolithiasis, presented with severe epigastric pain radiating to the right shoulder, nausea, high blood pressure (170/113 mmHg), and a rapid heart rate. Laboratory tests revealed significant liver damage, with aspartate aminotransferase (AST) at 1,043 U/L, alanine aminotransferase (ALT) at 1,645 U/L, and total bilirubin at 4.8 mg/dL. Ultrasound imaging showed fatty liver disease without bile duct obstruction. Autoimmune testing was negative for antinuclear antibodies (ANA) and antimitochondrial antibodies (AMA), while elevated immunoglobulin G (IgG) levels suggested immune activation as a potential mechanism. The patient improved with supportive care. This case highlights the potential liver toxicity of polyherbal remedies and underscores the importance of early recognition and management to prevent long-term complications.
Collapse
Affiliation(s)
- Helai Hussaini
- Internal Medicine, West Anaheim Medical Center (WAMC), Orange, USA
| | | | - Olaniyi Fadeyi
- Gastroenterology, West Anaheim Medical Center (WAMC), Orange, USA
| | - Tony Boostany
- Gastroenterology, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Yusuke Hashimoto
- Gastroenterology, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Andrew T Flint
- General Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| |
Collapse
|
14
|
Tao HZ, He WB, Ding L, Wen L, Xu Z, Cheng YH, Chen ML. Enrichment of antioxidant peptide from rice protein hydrolysates via rice husk derived biochar. Food Chem 2025; 463:141050. [PMID: 39236384 DOI: 10.1016/j.foodchem.2024.141050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In this study, rice husk biochar was engineered with abundant iron ion sites to enhance the enrichment of antioxidant peptides from rice protein hydrolysates through metal-chelating interactions. The π-π interactions and metal ion chelation were identified as the primary mechanisms for the enrichment process. Through peptide sequencing, four peptides were identified: LKFL (P1: Leu-Lys-Phe-Leu), QLLF (P2: Gln-Leu-Leu-Phe), WLAYG (P3: Trp-Leu-Ala-Tyr-Gly), and HFCGG (P4: His-Phe-Cys-Gly-Gly). The vitro analysis and molecular docking revealed that peptides P1-P4 possessed remarkable scavenging ability against radicals and Fe2+ chelating ability. Notably, peptide P4 showed radical scavenging activity comparable to glutathione (GSH) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate (ABTS) radicals. Cellular experiments further confirmed that peptide P4 effectively protected HepG2 cells from oxidative stress-induced damage. The modified rice husk biochar proved to be an effective means for enriching rice antioxidant peptides from protein hydrolysates.
Collapse
Affiliation(s)
- Hui-Zhen Tao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Wen-Bin He
- Hunan Provincial Institute of Product and Goods Quality Inspection, Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Changsha, Hunan, China 410007
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Yun-Hui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Mao-Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| |
Collapse
|
15
|
Yaribeygi H, Kashian K, Moghaddam KI, Karim SR, Bagheri N, Karav S, Jamialahmadi T, Rizzo M, Sahebkar A. Hepatic effects of GLP-1 mimetics in diabetic milieu: A mechanistic review of involved pathways. J Diabetes Complications 2025; 39:108928. [PMID: 39644538 DOI: 10.1016/j.jdiacomp.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Patients with diabetic are at a higher risk of developing hepatic disorders compared to non-diabetic individuals. This increased risk can be attributed to the diabetic environment, which triggers and exacerbates harmful pathways involved in both diabetic complications and hepatic disorders. Therefore, it is important to consider the use of antidiabetic agents that offer benefits beyond glycemic control and have positive effects on liver tissues. Glucagon-like peptide-1 (GLP-1) mimetics are a novel class of antidiabetic medications known for their potent blood sugar-lowering effects. Emerging evidence suggests that these drugs also have favorable effects on the liver. However, the precise effects and underlying mechanisms are not yet fully understood. In this review, we aim to provide a mechanistic perspective on the liver benefits of GLP-1 mimetics and outline the mediating mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Kiana Kashian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Narges Bagheri
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Zhang C, Fang Y, Guo M, Tang L, Xing Y, Zhou J, Guo Y, Gu Y, Wen Q, Gao N, Xu H, Qiao H. Q11, a CYP2E1 inhibitor, exerts anti-hepatocellular carcinoma effect by inhibiting M2 macrophage polarization. Cancer Immunol Immunother 2024; 74:35. [PMID: 39738913 PMCID: PMC11685367 DOI: 10.1007/s00262-024-03912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025]
Abstract
Despite significant advancements in cancer immunotherapy, many patients continue to respond poorly. Novel therapeutic strategies and drugs are urgently needed. Here, we found that CYP2E1 is upregulated in M2 macrophages. The CYP2E1 inhibitor, Q11, could inhibit M2 macrophage polarization, while CYP2E1 overexpression could promote it. Increased levels of CYP2E1 and M2 macrophages in the tumor microenvironment of HCC patients correlate with poor prognosis. Q11 could inhibit tumor cells by targeting M2 macrophages rather than directly attacking tumor cells. Both Q11 and Cyp2e1 knockout could effectively suppress tumor growth. Q11 reduces the production of CYP2E1 metabolites ( ±)9(10)-DiHOME and ( ±)12(13)-DiHOME, thus attenuating PPARγ activation and M2 macrophage polarization. In summary, our findings suggest that Q11 could suppress M2 macrophage polarization by modulating the CYP2E1/( ±)9(10)-DiHOME or ( ±)12(13)-DiHOME/PPARγ axis, indicating that CYP2E1 may be a potential therapeutic target for HCC, and its inhibitor Q11 may be a potential drug for the treatment of HCC.
Collapse
Affiliation(s)
- Cunzhen Zhang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Fang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengxue Guo
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China
| | - Liming Tang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yurong Xing
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Zhou
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanyuan Guo
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yuhan Gu
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiang Wen
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiwei Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
Mokhtari I, Shahat AA, Noman OM, Milenkovic D, Amrani S, Harnafi H. Effects of Cynara scolymus L. Bract Extract on Lipid Metabolism Disorders Through Modulation of HMG-CoA Reductase, Apo A-1, PCSK-9, p-AMPK, SREBP-2, and CYP2E1 Expression. Metabolites 2024; 14:728. [PMID: 39728509 DOI: 10.3390/metabo14120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver steatosis in mice fed a high-fat, high-sucrose diet while elucidating the underlying mechanisms. Methods: An 8-week study used hyperlipidemic mice treated with AE at daily doses of 100 and 200 mg/kg bw, compared to fenofibrate. Plasma, liver, fecal, and biliary lipids, as well as blood glucose, were analyzed enzymatically. The liver antioxidative defense was assessed by measuring reduced glutathione, malondialdehyde (MDA), and antioxidant enzyme activities, while liver steatosis was evaluated through transaminase and alkaline phosphatase activities and histological monitoring of lipid droplets. Polyphenol profiling and quantification were performed using HPLC-DAD, and potential mechanisms were predicted by molecular docking and confirmed in HepG2 cells. Results: At 200 mg/kg, AE significantly improved plasma lipid profiles by reducing total cholesterol, triglycerides, and LDL-cholesterol while increasing HDL-cholesterol. It facilitated cholesterol reduction in the liver and its excretion, indicating activation of reverse cholesterol transport, which led to reduced body weight and liver steatosis. AE lowered MDA levels and enhanced antioxidant enzyme activities. AE was found to be safe (LD50 > 5000 mg/kg) and modulated gene expression in HepG2 cells. Conclusions: Based on our results, the artichoke bract extract could be considered a natural resource of bioactive compounds to treat hyperlipidemia and related cardiometabolic diseases.
Collapse
Affiliation(s)
- Imane Mokhtari
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Dragan Milenkovic
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco
| |
Collapse
|
18
|
Zhao L, Tang H, Cheng Z. Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances. Pharmaceuticals (Basel) 2024; 17:1724. [PMID: 39770566 PMCID: PMC11677259 DOI: 10.3390/ph17121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a progressive scarring process primarily caused by chronic inflammation and injury, often closely associated with viral hepatitis, alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), drug-induced liver injury, and autoimmune liver disease (AILD). Currently, there are very few clinical antifibrotic drugs available, and effective targeted therapy is lacking. Recently, emerging antifibrotic drugs and immunomodulators have shown promising results in animal studies, and some have entered clinical research phases. This review aims to systematically review the molecular mechanisms underlying liver fibrosis, focusing on advancements in drug treatments for hepatic fibrosis. Furthermore, since liver fibrosis is a progression or endpoint of many diseases, it is crucial to address the etiological treatment and secondary prevention for liver fibrosis. We will also review the pharmacological treatments available for common hepatitis leading to liver fibrosis.
Collapse
Affiliation(s)
- Liangtao Zhao
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haolan Tang
- School of Medicine, Southeast University, Nanjing 210009, China;
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| |
Collapse
|
19
|
Tarantino G, Cataldi M, Citro V. Could chronic opioid use be an additional risk of hepatic damage in patients with previous liver diseases, and what is the role of microbiome? Front Microbiol 2024; 15:1319897. [PMID: 39687876 PMCID: PMC11646994 DOI: 10.3389/fmicb.2024.1319897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Among illicit drugs, addiction from opioids and synthetic opioids is soaring in an unparalleled manner with its unacceptable amount of deaths. Apart from these extreme consequences, the liver toxicity is another important aspect that should be highlighted. Accordingly, the chronic use of these substances, of which fentanyl is the most frequently consumed, represents an additional risk of liver damage in patients with underlying chronic liver disease. These observations are drawn from various preclinical and clinical studies present in literature. Several downstream molecular events have been proposed, but recent pieces of research strengthen the hypothesis that dysbiosis of the gut microbiota is a solid mechanism inducing and worsening liver damage by both alcohol and illicit drugs. In this scenario, the gut flora modification ascribed to non-alcoholic fatty liver disease performs an additive role. Interestingly enough, HBV and HCV infections impact gut-liver axis. In the end, the authors tried to solicit the attention of operators on this major healthcare problem.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, Naples, Italy
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, Nocera Inferiore, Italy
| |
Collapse
|
20
|
Balaji D, Balakrishnan R, Srinivasan D, Subbarayan R, Shrestha R, Srivastava N, Chauhan A. The Impact of SARS-CoV-2 on Liver Diseases and Potential Phytochemical Treatments. INFECTIOUS MICROBES AND DISEASES 2024; 6:177-188. [DOI: 10.1097/im9.0000000000000161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has brought about numerous challenges. One of these challenges is the impact of SARS-CoV-2 on the liver. Although this virus primarily affects the lungs, it can induce elevated transaminase levels and the development of scar tissue in the liver, exacerbating preexisting liver conditions. Individuals with preexisting conditions, such as nonalcoholic fatty liver disease, alcohol-induced liver disease and hepatocellular carcinoma, face an increased risk of mortality from COVID-19. However, drugs currently used to treat COVID-19 have undesirable side effects, which make them unsuitable for patients with preexisting liver conditions. In this review, we explore the potential of phytochemicals, such as apigenin, berberine, curcumin, epigallocatechin-3-gallate, quercetin, resveratrol and silymarin, for treatment of the liver conditions, including nonalcoholic fatty liver disease, alcohol-induced liver disease and hepatocellular carcinoma. We also discuss significant associations between phytochemicals and COVID-19 by depicting their molecular interactions. Based on the discussed overlapping functions, it is important to assess the therapeutic efficacy of phytochemicals that possess hepatoprotective properties as potential alternative treatments for COVID-19.
Collapse
Affiliation(s)
- Dhanvee Balaji
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | | | | | | | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
21
|
Jiang L, Xu QY, Zhou YC, Xu J, Fan JG. Spatial Transcriptomics Reveals the Transcriptomic Signatures in a Mouse Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2341-2355. [PMID: 39222909 DOI: 10.1016/j.ajpath.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is considered the progressive form of metabolic dysfunction-associated steatotic liver disease, which is the leading cause of chronic liver disease in children. However, the pathogenesis of pediatric MASH remains poorly understood because of the lack of animal models. In this study, a mouse model of pediatric MASH was developed and its hepatic transcriptomic profile was characterized using spatial transcriptomics technology. C57BL/6J mice were fed a Western diet (WD) along with weekly injections of carbon tetrachloride (CCl4) from the age of 3 weeks and lasting up to 8 weeks. After 5 weeks of feeding, WD + CCl4-treated mice showed significant liver injury without the development of insulin resistance. Histologically, WD + CCl4 induced key features of type 2 MASH, the most common type observed in children, characterized by liver steatosis, portal inflammation, and portal fibrosis. Spatial transcriptomics analysis of liver tissues indicated that cluster 0 in the mouse from the WD + CCl4 group was enriched in pathways associated with lipid metabolism. Further investigation revealed that cytochrome p450 2E1 was the top marker gene of cluster 0, and its expression was increased in the periportal area of mice from the WD + CCl4 group. These findings suggest that this mouse model of pediatric MASH mirrors the histologic features of human MASH, and the up-regulation of cytochrome p450 2E1 may be linked to the disease pathogenesis.
Collapse
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Qing-Yang Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Juan Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Taru V, Szabo G, Mehal W, Reiberger T. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation. J Hepatol 2024; 81:895-910. [PMID: 38908436 PMCID: PMC11881887 DOI: 10.1016/j.jhep.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Chronic liver disease leads to hepatocellular injury that triggers a pro-inflammatory state in several parenchymal and non-parenchymal hepatic cell types, ultimately resulting in liver fibrosis, cirrhosis, portal hypertension and liver failure. Thus, an improved understanding of inflammasomes - as key molecular drivers of liver injury - may result in the development of novel diagnostic or prognostic biomarkers and effective therapeutics. In liver disease, innate immune cells respond to hepatic insults by activating cell-intrinsic inflammasomes via toll-like receptors and NF-κB, and by releasing pro-inflammatory cytokines (such as IL-1β, IL-18, TNF-α and IL-6). Subsequently, cells of the adaptive immune system are recruited to fuel hepatic inflammation and hepatic parenchymal cells may undergo gasdermin D-mediated programmed cell death, termed pyroptosis. With liver disease progression, there is a shift towards a type 2 inflammatory response, which promotes tissue repair but also fibrogenesis. Inflammasome activation may also occur at extrahepatic sites, such as the white adipose tissue in MASH (metabolic dysfunction-associated steatohepatitis). In end-stage liver disease, flares of inflammation (e.g., in severe alcohol-related hepatitis) that spark on a dysfunctional immune system, contribute to inflammasome-mediated liver injury and potentially result in organ dysfunction/failure, as seen in ACLF (acute-on-chronic liver failure). This review provides an overview of current concepts regarding inflammasome activation in liver disease progression, with a focus on related biomarkers and therapeutic approaches that are being developed for patients with liver disease.
Collapse
Affiliation(s)
- Vlad Taru
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Iuliu Hatieganu University of Medicine and Pharmacy, 4(th) Dept. of Internal Medicine, Cluj-Napoca, Romania
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Wajahat Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; West Haven Veterans Medical Center, West Haven, CT, USA.
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Science, Vienna, Austria
| |
Collapse
|
23
|
Han Z, Liu C, Li M, Deng M, Ding Y, Li Y, Huo M, Xu H, Qiao H, Gao N. Discovery of CYP2E1 as a novel target in rheumatoid arthritis and validation by a new specific CYP2E1 inhibitor. Biochem Pharmacol 2024; 229:116501. [PMID: 39173843 DOI: 10.1016/j.bcp.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Considerable evidence indicates that CYP2E1 is associated with a variety of inflammatory diseases. Here we evaluated CYP2E1 as a potential therapeutic target for rheumatoid arthritis (RA) and established the protective effect of a new CYP2E1 inhibitor. Gene-expression datasets were used to analyze the change in expression of CYP2E1 in RA patients; CYP2E1 activity in collagen-induced arthritis (CIA) rats was determined by HPLC. We further evaluated the protective effects of Cyp2e1 knockout and a CYP2E1-specific inhibitor, Q11, synthesized by our group, in CIA and adjuvant-induced arthritis (AIA) rats. The expression of CYP2E1 in synovial tissue was elevated in RA patients and in CIA rats and the activity of CYP2E1 in vivo and in vitro in CIA rats was greater than that of controls. Cyp2e1 knockout significantly reduced the incidence of CIA and alleviated the severity of symptoms. Treatment with different doses of Q11 decreased paw thickness, volume and arthritis scores and reduced the serum levels of IL-6, TNF-α, IL-1β and MDA, and increased the level of GSH in CIA rats. A similar inhibitory effect was exhibited for Q11 in the AIA rats. Moreover, Q11 significantly impeded proliferation, migration, and invasion of human rheumatoid arthritis synovial fibroblasts cells. Q11 decreased the release of ROS and enhanced Nrf2 nuclear translocation and HO-1 expression in the cell nucleus. Overall, our results indicated that CYP2E1 may be a new target for RA and Q11 has potential protective effects against RA by reducing oxidative stress and opposing the inflammatory response via the ROS/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zixinying Han
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxu Liu
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingrui Li
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Ding
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunchao Li
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Meidan Huo
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Na Gao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
24
|
Meng Z, Li M, Wang X, Zhang K, Wu C, Zhang X. Inula britannica ameliorates alcohol-induced liver injury by modulating SIRT1-AMPK/Nrf2/NF-κB signaling pathway. CHINESE HERBAL MEDICINES 2024; 16:667-678. [PMID: 39606269 PMCID: PMC11589284 DOI: 10.1016/j.chmed.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 11/29/2024] Open
Abstract
Objective Inula britannica is a traditional Chinese medicinal and functional food with various effects such as anti-liver injury, hypoglycemia, antioxidants, and anti-tumor. The aim of this study was to investigate the protective effects and mechanisms of the ethanolic extract of I. britannica (EEIB) on alcohol-induced liver injury in mice. Methods Fifty-six female C57BL/6 mice were randomly divided into seven groups: control group (Con), ethanol feeding model group (EtOH), Silibinin positive treatment group (EtOH + Silibinin 100 mg/kg), EEIB treatment group (EtOH + EEIB 100, 200, and 400 mg/kg), and EEIB control group (EEIB 400 mg/kg). The National Institute on Alcohol Abuse and Alcoholism (NIAAA) ethanol-feeding model was used to study the effects of EEIB on alcohol-induced lipid metabolism, inflammation, oxidative stress, and fibril formation in mice by histopathological evaluation, immunofluorescence staining, Western blotting analysis and molecular docking. Results EEIB reduced liver indices to different degrees to normal levels and improved liver morphology in mice. EEIB inhibited alcohol-induced liver injury by activating the sirtuin 1 (SIRT1)-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in the liver of alcohol-fed mice, in which sesquiterpenes may be the potential active ingredients, and also down-regulated the expression of alpha-smooth muscle actin (α-SMA), collagen alpha (Collagen I), tumor necrosis factor-alpha (TNF-α) and attenuated alcohol-induced liver injury. In addition, EEIB also activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which alleviated alcohol-induced liver injury at the level of oxidative stress. Notably, the EEIB control group demonstrated that EEIB had no toxic effects in mice. EEIB reduced alcoholic liver injury in a dose-dependent manner. Its therapeutic efficacy was comparable to, if not better than, that of Silibinin when administered at a dose of 400 mg/kg. Conclusion EEIB showed significant therapeutic effects on alcohol-induced liver injury in mice, and its mechanism of action was related to the SIRT1-AMPK, nuclear factor-kappa B (NF-κB), and Nrf2 signaling pathways, in which sesquiterpenes may be the potential active ingredients.
Collapse
Affiliation(s)
- Zhennan Meng
- Faculity of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengyuan Li
- Faculity of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoli Wang
- Faculity of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kuo Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoshu Zhang
- Faculity of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
25
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
27
|
Wang H, Zhao J, Ji S, Liu T, Cheng Z, Huang Z, Zang Y, Chen J, Zhang J, Ding Z. Metallofullerenol alleviates alcoholic liver damage via ROS clearance under static magnetic and electric fields. Free Radic Biol Med 2024; 220:236-248. [PMID: 38704052 DOI: 10.1016/j.freeradbiomed.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.
Collapse
Affiliation(s)
- Haoyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junqi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shiliang Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, 215153, China
| | - Tingjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhisheng Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, 210023, China; Changzhou High-Tech Research Institute of Nanjing University, Changzhou, 213164, China.
| |
Collapse
|
28
|
Husseini AA. Genotypic variation in CYP2E1, GCKR, and PNPLA3 among nonalcoholic steatohepatitis patients of Turkish origin. Mol Biol Rep 2024; 51:845. [PMID: 39042259 DOI: 10.1007/s11033-024-09787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND This study examines genetic variations in CYP2E1 (rs6413432, rs3813867), GCKR (rs780094, rs1260326), and PNPLA3 (rs738409) among Turkish patients to assess their influence on nonalcoholic steatohepatitis. METHODS Allele and genotype frequencies were compared between 245 NASH patients and 120 healthy controls using SNP genotyping via polymerase chain reaction-restriction fragment length polymorphism. Additionally, the deviation of the observed genotype frequencies from Hardy-Weinberg proportion was examined. RESULTS No significant differences were found in the allelic and genotypic distributions of rs6413432, rs3813867, and rs780094 between NASH patients and healthy controls. However, significant disparities were noted for rs1260326 and rs738409. Gender and age-specific distributions showed no notable differences. The only observed deviation from Hardy-Weinberg proportion was in the genotype frequency of rs738409. CONCLUSIONS Variants in GCKR (rs1260326) and PNPLA3 (rs738409) are significantly associated with increased NASH risk in the Turkish population, with the rs738409 variant potentially playing a more prominent role in NASH development.
Collapse
Affiliation(s)
- Abbas Ali Husseini
- Life Science, and Biomedical Engineering Application and Research Center, Istanbul Gelisim University, Istanbul, 34310, Turkey.
- Vocational School of health services, Istanbul Gelisim University, Istanbul, 34310, Turkey.
| |
Collapse
|
29
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
30
|
Zhang Q, Wu S, Chen Q, Zhang Y, Zhang C, Yin R, Ouyang Z, Wei Y. Reducing Oxidative Stress-Mediated Alcoholic Liver Injury by Multiplexed RNAi of Cyp2e1, Cyp4a10, and Cyp4a14. Biomedicines 2024; 12:1505. [PMID: 39062078 PMCID: PMC11274525 DOI: 10.3390/biomedicines12071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The prevalence of excessive drinking-related alcoholic liver disease (ALD) is rising, yet therapeutic options remain limited. High alcohol consumption and consequent oxidative metabolism by cytochrome P450 (CYP) can lead to extremely high levels of reactive oxygen species, which overwhelm cellular defenses and harm hepatocytes. Our previous investigations showed that inhibiting Cyp2e1 using RNA interference reduced the incidence of ALD. However, compensatory mechanisms other than CYP2E1 contribute to oxidative stress in the liver. Therefore, we coupled triple siRNA lipid nanoparticles (LNPs) targeting Cyp2e1 with two isoenzymes Cyp4a10 and Cyp4a14 to treat ALD mouse models fed with Lieber-Decarli ethanol liquid diet for 12 weeks at the early (1st week), middle (5th week), and late (9th week) stages. The administration of triple siRNA LNPs significantly ameliorated chronic alcoholic liver injury in mice, and early treatment achieved the most profound effects. These effects can be attributed to a reduction in oxidative stress and increased expression of antioxidant genes, including Gsh-Px, Gsh-Rd, and Sod1. Moreover, we observed the alleviation of inflammation, evidenced by the downregulation of Il-1β, Il-6, Tnf-α, and Tgf-β, and the prevention of excessive lipid synthesis, evidenced by the restoration of the expression of Srebp1c, Acc, and Fas. Finally, triple siRNA treatment maintained normal metabolism in lipid oxidation. In brief, our research examined the possible targets for clinical intervention in ALD by examining the therapeutic effects of triple siRNA LNPs targeting Cyp2e1, Cyp4a10, and Cyp4a14. The in vivo knockdown of the three genes in this study is suggested as a promising siRNA therapeutic approach for ALD.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yahong Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| |
Collapse
|
31
|
Wang X, Sun Z, Wang X, Li M, Zhou B, Zhang X. Solanum nigrum L. berries extract ameliorated the alcoholic liver injury by regulating gut microbiota, lipid metabolism, inflammation, and oxidative stress. Food Res Int 2024; 188:114489. [PMID: 38823872 DOI: 10.1016/j.foodres.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Solanum nigrum L. (SN) berry is an edible berry containing abundant polyphenols and bioactive compounds, which possess antioxidant and antiinflammatory properties. However, the effects of SN on alcohol-induced biochemical changes in the enterohepatic axis remain unclear. In the current study, a chronic ethanol-fed mice ALD model was used to test the protective mechanisms of SN berries. Microbiota composition was determined via 16S rRNA sequencing, we found that SN berries extract (SNE) improved intestinal imbalance by reducing the Firmicutes to Bacteroides ratio, restoring the abundance of Akkermansia microbiota, and reducing the abundance of Allobaculum and Shigella. SNE restored the intestinal short-chain fatty acids content. In addition, liver transcriptome data analysis revealed that SNE primarily affected the genes involved in lipid metabolism and inflammatory responses. Furthermore, SNE ameliorated hepatic steatosis in alcohol-fed mice by activating AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPAR-α). SNE reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88) nuclear factor kappa-B (NF-κB), which can indicate that SNE mainly adjusted LPS/TLR4/MyD88/NF-κB pathway to reduce liver inflammation. SNE enhanced hepatic antioxidant capacity by regulating NRF2-related protein expression. SNE alleviates alcoholic liver injury by regulating of gut microbiota, lipid metabolism, inflammation, and oxidative stress. This study may provide a reference for the development and utilization of SN resources.
Collapse
Affiliation(s)
- Xueying Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ziqi Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoli Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Minjie Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Boru Zhou
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
32
|
You Y, Huang Y, Wang X, Ni H, Ma Q, Ran H, Cai J, Lin X, Luo T, Wu C, Xiao X, Ma L. Ketogenic diet time-dependently prevents NAFLD through upregulating the expression of antioxidant protein metallothionein-2. Clin Nutr 2024; 43:1475-1487. [PMID: 38723301 DOI: 10.1016/j.clnu.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND & AIMS The past few decades have witnessed a rapid growth in the prevalence of nonalcoholic fatty liver disease (NAFLD). While the ketogenic diet (KD) is considered for managing NAFLD, the safety and efficacy of the KD on NAFLD has been a controversial topic. Here, we aimed to investigate the effect of KD of different durations on metabolic endpoints in mice with NAFLD and explore the underlying mechanisms. METHODS NAFLD mice were fed with KD for 1, 2, 4 and 6 weeks, respectively. The blood biochemical indexes (blood lipids, AST, ALT and etc.) and liver fat were measured. The LC-MS/MS based proteomic analysis was performed on liver tissues. Metallothionein-2 (MT2) was knocked down with adeno-associated virus (AAV) or small interfering RNA (siRNA) in NAFLD mice and AML-12 cells, respectively. H&E, BODIPY and ROS staining were performed to examine lipid deposition and oxidative stress. Furthermore, MT2 protein levels, nucleus/cytoplasm distribution and DNA binding activity of peroxisome proliferators-activated receptors α (PPARα) were evaluated. RESULTS KD feeding for 2 weeks showed the best improvement on NAFLD phenotype. Proteomic analysis revealed that MT2 was a key candidate for different metabolic endpoints of NAFLD affected by different durations of KD feeding. MT2 knockdown in NAFLD mice blocked the effects of 2 weeks of KD feeding on HFD-induced steatosis. In mouse primary hepatocytes and AML-12 cells, MT2 protein levels were induced by β-hydroxybutyric acid (β-OHB). MT2 Knockdown blunted the effects of β-OHB on alleviating PA-induced lipid deposition. Mechanistically, 2 weeks of KD or β-OHB treatment reduced oxidative stress and upregulated the protein levels of MT2 in nucleus, which subsequently increased its DNA binding activity and PPARα protein expression. CONCLUSIONS Collectively, these findings indicated that KD feeding prevented NAFLD in a time dependent manner and MT2 is a potential target contributing to KD improvement on steatosis.
Collapse
Affiliation(s)
- Yuehua You
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Hongbin Ni
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qin Ma
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jingshu Cai
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojing Lin
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ting Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Xiaoqiu Xiao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Li Ma
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
33
|
Chen H, Luo S, Deng X, Li S, Mao Y, Yan J, Cheng Y, Liu X, Pan J, Huang H. Pre-eclamptic foetal programming predisposes offspring to hepatic steatosis via DNA methylation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167189. [PMID: 38648899 DOI: 10.1016/j.bbadis.2024.167189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES Gamete and embryo-foetal origins of adult diseases hypothesis proposes that adulthood chronic disorders are associated with adverse foetal and early life traits. Our study aimed to characterise developmental changes and underlying mechanisms of metabolic disorders in offspring of pre-eclampsia (PE) programmed pregnancy. METHODS Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME) induced pre-eclampsia-like C57BL/6J mouse model was used. Lipid profiling, histological morphology, indirect calorimetry, mRNA sequencing, and pyrosequencing were performed on PE offspring of both young and elderly ages. RESULTS PE offspring exhibited increased postnatal weight gain, hepatic lipid accumulation, enlarged adipocytes, and impaired energy balance that continued to adulthood. Integrated RNA sequencing of foetal and 52-week-old livers revealed that the differentially expressed genes were mainly enriched in lipid metabolism, including glycerol-3-phosphate acyl-transferase 3 (Gpat3), a key enzyme for de novo synthesis of triglycerides (TG), and carnitine palmitoyltransferase-1a (Cpt1a), a key transmembrane enzyme that mediates fatty acid degradation. Pyrosequencing of livers from PE offspring identified hypomethylated and hypermethylated regions in Gpat3 and Cpt1a promoters, which were associated with upregulated and downregulated expressions of Gpat3 and Cpt1a, respectively. These epigenetic alterations are persistent and consistent from the foetal stage to adulthood in PE offspring. CONCLUSION These findings suggest a methylation-mediated epigenetic mechanism for PE-induced intergenerational lipid accumulation, impaired energy balance and obesity in offspring, and indicate the potential benefits of early interventions in offspring exposed to maternal PE to reduce their susceptibility to metabolic disorder in their later life.
Collapse
Affiliation(s)
- Huixi Chen
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; State Key Laboratory of Cardiology, Shanghai 200000, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Sisi Luo
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Xiuyu Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Sisi Li
- Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China; Reproductive Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Jing Yan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Xia Liu
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China.
| | - Hefeng Huang
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai 200011, China; Reproductive Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; State Key Laboratory of Cardiology, Shanghai 200000, China.
| |
Collapse
|
34
|
Zhou M, Cao Y, Xie S, Xiang Y, Li M, Yang H, Dong Z. Gypenoside XLIX alleviates acute liver injury: Emphasis on NF-κB/PPAR-α/NLRP3 pathways. Int Immunopharmacol 2024; 131:111872. [PMID: 38503011 DOI: 10.1016/j.intimp.2024.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Liver is one of the vital organs in the human body and liver injury will have a very serious impact on human damage. Gypenoside XLIX is a PPAR-α activator that inhibits the activation of the NF-κB signaling pathway. The components of XLIX have pharmacological effects such as cardiovascular protection, antihypoxia, anti-tumor and anti-aging. In this study, we used cecum ligation and puncture (CLP) was used to induce in vivo mice hepatic injury, and lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells, evaluated whether Gypenoside XLIX could have a palliative effect on sepsis-induced acute liver injury via NF-κB/PPAR-α/NLRP3. In order to gain insight into these mechanisms, six groups were created in vivo: the Contol group, the Sham group, the CLP group, the CLP + XLIX group (40 mg/kg) and the Sham + XLIX (40 mg/kg) group, and the CLP + DEX (2 mg/kg) group. Three groups were created in vitro: Control, LPS, LPS + XLIX (40 μM). The analytical methods used included H&E staining, qPCR, reactive oxygen species (ROS), oil red O staining, and Western Blot. The results showed that XLIX attenuated hepatic inflammatory injury in mice with toxic liver disease through inhibition of the TLR4-mediated NF-κB pathway, attenuated lipid accumulation through activation of PPAR-α, and attenuated hepatic pyroptosis by inhibiting NLRP3 production. Regarding the imbalance between oxidative and antioxidant defenses due to septic liver injury, XLIX reduced liver oxidative stress-related biomarkers (ALT, AST), reduced ROS accumulation, decreased the amount of malondialdehyde (MDA) produced by lipid peroxidation, and increased the levels of antioxidant enzymes such as glutathione (GSH) and catalase (CAT). Our results demonstrate that XLIX can indeed attenuate septic liver injury. This is extremely important for future studies on XLIX and sepsis, and provides a potential pathway for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Cao
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaocheng Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
35
|
He YX, Liu MN, Wang YY, Wu H, Wei M, Xue JY, Zou Y, Zhou X, Chen H, Li Z. Hovenia dulcis: a Chinese medicine that plays an essential role in alcohol-associated liver disease. Front Pharmacol 2024; 15:1337633. [PMID: 38650630 PMCID: PMC11033337 DOI: 10.3389/fphar.2024.1337633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Globally, alcohol-associated liver disease (ALD) has become an increased burden for society. Disulfirams, Benzodiazepines (BZDs), and corticosteroids are commonly used to treat ALD. However, the occurrence of side effects such as hepatotoxicity and dependence, impedes the achievement of desirable and optimal therapeutic efficacy. Therefore, there is an urgent need for more effective and safer treatments. Hovenia dulcis is an herbal medicine promoting alcohol removal clearance, lipid-lowering, anti-inflammatory, and hepatoprotective properties. Hovenia dulcis has a variety of chemical components such as dihydromyricetin, quercetin and beta-sitosterol, which can affect ALD through multiple pathways, including ethanol metabolism, immune response, hepatic fibrosis, oxidative stress, autophagy, lipid metabolism, and intestinal barrier, suggesting its promising role in the treatment of ALD. Thus, this work aims to comprehensively review the chemical composition of Hovenia dulcis and the molecular mechanisms involved in the process of ALD treatment.
Collapse
Affiliation(s)
- Yi-Xiang He
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Meng-Nan Liu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang-Yang Wang
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Wu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mei Wei
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jin-Yi Xue
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Zou
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zhou
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhi Li
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
36
|
Zhong H, Jin Y, Abdullah, Hussain M, Liu X, Feng F, Guan R. Recent advances of hepatoprotective peptides: Production, structure, mechanisms, and interactions with intestinal microbiota. FOOD BIOSCI 2024; 58:103744. [DOI: 10.1016/j.fbio.2024.103744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Gandhi N, Wills L, Akers K, Su Y, Niccum P, Murali TM, Rajagopalan P. Comparative transcriptomic and phenotypic analysis of induced pluripotent stem cell hepatocyte-like cells and primary human hepatocytes. Cell Tissue Res 2024; 396:119-139. [PMID: 38369646 DOI: 10.1007/s00441-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Primary human hepatocytes (PHHs) are used extensively for in vitro liver cultures to study hepatic functions. However, limited availability and invasive retrieval prevent their widespread use. Induced pluripotent stem cells exhibit significant potential since they can be obtained non-invasively and differentiated into hepatic lineages, such as hepatocyte-like cells (iHLCs). However, there are concerns about their fetal phenotypic characteristics and their hepatic functions compared to PHHs in culture. Therefore, we performed an RNA-sequencing (RNA-seq) analysis to understand pathways that are either up- or downregulated in each cell type. Analysis of the RNA-seq data showed an upregulation in the bile secretion pathway where genes such as AQP9 and UGT1A1 were higher expressed in PHHs compared to iHLCs by 455- and 15-fold, respectively. Upon immunostaining, bile canaliculi were shown to be present in PHHs. The TCA cycle in PHHs was upregulated compared to iHLCs. Cellular analysis showed a 2-2.5-fold increase in normalized urea production in PHHs compared to iHLCs. In addition, drug metabolism pathways, including cytochrome P450 (CYP450) and UDP-glucuronosyltransferase enzymes, were upregulated in PHHs compared to iHLCs. Of note, CYP2E1 gene expression was significantly higher (21,810-fold) in PHHs. Acetaminophen and ethanol were administered to PHH and iHLC cultures to investigate differences in biotransformation. CYP450 activity of baseline and toxicant-treated samples was significantly higher in PHHs compared to iHLCs. Our analysis revealed that iHLCs have substantial differences from PHHs in critical hepatic functions. These results have highlighted the differences in gene expression and hepatic functions between PHHs and iHLCs to motivate future investigation.
Collapse
Affiliation(s)
- Neeti Gandhi
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA
| | - Lauren Wills
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA
| | - Kyle Akers
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - Yiqi Su
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Parker Niccum
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
38
|
Chen P, Li Y, Dai Y, Wang Z, Zhou Y, Wang Y, Li G. Advances in the Pathogenesis of Metabolic Liver Disease-Related Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:581-594. [PMID: 38525158 PMCID: PMC10960512 DOI: 10.2147/jhc.s450460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer globally and the primary cause of death in cancer cases, with significant public health concern worldwide. Despite the overall decline in the incidence and mortality rates of HCC in recent years in recent years, the emergence of metabolic liver disease-related HCC is causing heightened concern, especially in countries like the United States, the United Kingdom, and P.R. China. The escalation of metabolic liver disease-related HCC is attributed to a combination of factors, including genetic predisposition, lifestyle choices, and changes in the living environment. However, the pathogenesis of metabolic liver disease-associated HCC remains imperfect. In this review, we encapsulate the latest advances and essential aspects of the pathogenesis of metabolic liver disease-associated HCC, including alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and inherited metabolic liver diseases.
Collapse
Affiliation(s)
- Pinggui Chen
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yaoxuan Li
- Department of School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yunyan Dai
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Zhiming Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yunpeng Zhou
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yi Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Gaopeng Li
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
39
|
Goel H, Printz RL, Pannala VR, AbdulHameed MDM, Wallqvist A. Probing Liver Injuries Induced by Thioacetamide in Human In Vitro Pooled Hepatocyte Experiments. Int J Mol Sci 2024; 25:3265. [PMID: 38542239 PMCID: PMC10970511 DOI: 10.3390/ijms25063265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024] Open
Abstract
Animal studies are typically utilized to understand the complex mechanisms associated with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro pooled human hepatocytes have the potential to capture population variability. Here, we examined the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots, obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle, 1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We assessed gene expression variability using heat maps, correlation plots, and statistical variance. We used KEGG pathways and co-expression modules to identify underlying physiological processes/pathways. The co-expression module analysis showed that the majority of the lots exhibited activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of common differentially expressed genes across the lots with similarities in their response to amino acid, lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
| |
Collapse
|
40
|
Chu Y, Zheng Y, Li Y, Gui S, Zhao J, Zhao Y, Chen X. Dietary supplementation of magnolol alleviates fatty liver hemorrhage syndrome in postpeak Xinhua laying hens via regulation of liver lipid metabolism. Poult Sci 2024; 103:103378. [PMID: 38228060 PMCID: PMC10823128 DOI: 10.1016/j.psj.2023.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
As a metabolic disease, fatty liver hemorrhagic syndrome (FLHS) has emerged as a major cause of noninfectious mortality in laying hens, resulting in substantial economic losses to the poultry industry. This study aimed to investigate the therapeutic effects of magnolol on FLHS in postpeak laying hen model, focusing on lipid metabolism, antioxidative capacity, and potential molecular mechanisms of action. We selected 150 Xinhua laying hens aged 50 wk and divided them into normal diet group (ND), high-fat diet group (HFD), 100 mg/kg magnolol group (MG100), 300 mg/kg magnolol group (MG300), 500 mg/kg magnolol group (MG500) on average. The experiment lasted for 6 wk, and liver samples were collected from the hens at the end of the experiment. The results demonstrated that the inclusion of magnolol in the diet had a significant impact on various factors. It led to a reduction in weight, an increase in egg production rate, a decrease in blood lipid levels, and an improvement in abnormal liver function, liver steatosis, and oxidative stress. These effects were particularly prominent in the MG500 group. The RNA-Seq analysis demonstrated that in the MG500 group, there was a down-regulation of genes associated with fatty acid synthesis (Acc, Fasn, Scd, Srebf1, Elovl6) compared to the HFD group. Moreover, genes related to fatty acid oxidation (CPT1A and PGC1α) were found to be up-regulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these differentially expressed genes indicated their enrichment in the PPAR signaling pathway. These findings demonstrate that magnolol can mitigate FLHS by inhibiting fatty acid synthesis and promoting fatty acid oxidation. This discovery offers a novel approach for treating FLHS in laying hens, reducing the economic losses associate with FLHS.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Yidanyuan Agricultural and Animal Husbandry Technology Co. LTD, Yingcheng, 432400, China
| | - Yazhen Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sisi Gui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
41
|
Yan T, Zhang Y, Lu H, Zhao J, Wen C, Song S, Ai C, Yang J. The protective effect of Enteromorpha prolifera polysaccharide on alcoholic liver injury in C57BL/6 mice. Int J Biol Macromol 2024; 261:129908. [PMID: 38320642 DOI: 10.1016/j.ijbiomac.2024.129908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
An alcohol-induced liver injury model was induced in C57BL/6 mice to assess the protective efficacy of Enteromorpha prolifera polysaccharides (EP) against liver damage. Histological alterations in the liver were examined following hematoxylin-eosin (H&E) staining. Biochemical assay kits and ELISA kits were employed to analyze serum and liver biochemical parameters, as well as the activity of antioxidant enzymes and alcohol metabolism-related enzymes. The presence of oxidative stress-related proteins in the liver was detected using western blotting. Liquid chromatography and mass spectrometry were used to profile serum metabolites in mice. The findings demonstrated that EP-H (100 mg/Kg) reduced serum ALT and AST activity by 2.31-fold and 2.32-fold, respectively, when compared to the alcohol-induced liver injury group. H&E staining revealed a significant attenuation of microvesicular steatosis and ballooning pathology in the EP-H group compared to the model group. EP administration was found to enhance alcohol metabolism by regulating metabolite-related enzymes (ADH and ALDH) and decreasing CYP2E1 expression. EP also modulated the Nrf2/HO-1 signaling pathway to bolster hepatic antioxidant capacity. Furthermore, EP restored the levels of lipid metabolites (Glycine, Butanoyl-CoA, and Acetyl-CoA) to normalcy. In summary, EP confers protection to the liver through the regulation of antioxidant activity and lipid metabolites in the murine liver.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuying Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hengyu Lu
- West China School of Pharmacy, Sichuan University, Chengdu 610207, China
| | - Jun Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunqing Ai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
42
|
Lai W, Zhou S, Bai Y, Che Q, Cao H, Guo J, Su Z. Glucosamine attenuates alcohol-induced acute liver injury via inhibiting oxidative stress and inflammation. Curr Res Food Sci 2024; 8:100699. [PMID: 38420347 PMCID: PMC10900259 DOI: 10.1016/j.crfs.2024.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Alcohol liver disease (ALD) is a liver disease caused by long-term heavy drinking. Glucosamine (GLC) is an amino monosaccharide that plays a very important role in the synthesis of human and animal cartilage. GLC is commonly used in the treatment of mild to moderate osteoarthritis and has good anti-inflammatory and antioxidant properties. In this study, alcoholic injury models were constructed in mice and human normal hepatocyte L02 cells to explore the protective effect and mechanism of GLC on ALD. Mice were given GLC by gavage for 30 days. Liver injury models of both mice and L02 cells were produced by ethanol. Detecting the levels of liver injury biomarkers, lipid metabolism, oxidative stress biomarkers, and inflammatory factors through different reagent kits. Exploring oxidative and inflammatory pathways in mouse liver tissue through Western blot and RT-PCR. The results showed that GLC can significantly inhibit the abnormal increase of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), triglycerides (TG), total cholesterol (TC), very low density lipoprotein (VLDL), low-density lipoprotein cholesterol (LDL-C), and can significantly improve the level of high-density lipoprotein cholesterol (HDL-C). In addition, GLC intervention significantly improved alcohol induced hepatic oxidative stress by reducing the levels of malondialdehyde (MDA) and, increasing the levels of glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the liver. Further mechanisms suggest that GLC can inhibit the expression of ethanol metabolism enzyme cytochrome P4502E1 (CYP2E1), activate the antioxidant pathway Keap1/Nrf2/HO-1, down-regulate the phosphorylation of MAPK and NF-κB signaling pathways, and thus reduce the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Therefore, GLC may be a significant candidate functional food for attenuating alcohol induced acute liver injury.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
43
|
Soto A, Spongberg C, Martinino A, Giovinazzo F. Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines 2024; 12:397. [PMID: 38397999 PMCID: PMC10886580 DOI: 10.3390/biomedicines12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread contributor to chronic liver disease globally. A recent consensus on renaming liver disease was established, and metabolic dysfunction-associated steatotic liver disease, MASLD, was chosen as the replacement for NAFLD. The disease's range extends from the less severe MASLD, previously known as non-alcoholic fatty liver (NAFL), to the more intense metabolic dysfunction-associated steatohepatitis (MASH), previously known as non-alcoholic steatohepatitis (NASH), characterized by inflammation and apoptosis. This research project endeavors to comprehensively synthesize the most recent studies on MASLD, encompassing a wide spectrum of topics such as pathophysiology, risk factors, dietary influences, lifestyle management, genetics, epigenetics, therapeutic approaches, and the prospective trajectory of MASLD, particularly exploring its connection with organoids.
Collapse
Affiliation(s)
- Allison Soto
- Department of Surgery, University of Illinois College of Medicine, Chicago, IL 60607, USA;
| | - Colby Spongberg
- Touro College of Osteopathic Medicine, Great Falls, MT 59405, USA
| | | | - Francesco Giovinazzo
- General Surgery and Liver Transplant Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
44
|
Hjazi A, Hsu CY, Al-Attar WM, Almajidi YQ, Hussien BM, Alzahrani AA, Kareem AK, Abdulhussien Alazbjee AA, Meng X. The association of exposure to polychlorinated biphenyls with lipid profile and liver enzymes in umbilical cord blood samples. CHEMOSPHERE 2024; 350:141096. [PMID: 38176591 DOI: 10.1016/j.chemosphere.2023.141096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Evidence on prenatal exposure to polychlorinated biphenyls (PCBs) and its effects on newborns and potential biological mechanisms is not well defined yet. Therefore, this study aimed to examine whether PCBs are associated with lipid profile and non-invasive markers of hepatocyte injuries in samples of blood obtained from the umbilical cord. This study included 450 mothers-newborn pairs. Umbilical levels of PCBs were measured using Gas Chromatography/Mass Spectrophotometry (GC/MS). Lipid profile including low-density lipoprotein (LDL-C), total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL-C), as well as liver enzymes i.e., alanine amino transferase (ALT), aspartate amino transferase (AST), γ-glutamyl-transferase (GGT) and alkaline phosphatase (ALP) were determined from umbilical cord blood samples. Quantile g-computation analysis was applied to evaluate the collective influence of PCBs on both lipid profiles and liver enzymes, along with the impact of lipid profiles on liver enzymes. Exposure to the mixture of PCBs was significantly associated with increases in ALP, AST, ALT, and GGT levels in cord blood samples, with increments of 90.38 U/L (95%CI: 65.08, 115.70, p < 0.01), 11.88 U/L (95%CI: 9.03, 14.74, p < 0.01), 2.19 U/L (95%CI:1.43, 2.94, p < 0.01), and 50.67 U/L (95%CI: 36.32, 65.03, p < 0.01), respectively. Additionally, combined PCBs exposure was correlated with significant increases in umbilical TG, TC, and LDL-C levels, with values of 3.97 mg/dL (95%CI: 0.86, 7.09, p = 0.01), 6.30 mg/dL (95%CI: 2.98, 9.61, p < 0.01), and 4.63 mg/dL (95%CI: 2.04, 7.23, p < 0.01) respectively. Exposure to the mixture of lipids was linked to elevated levels of AST and GGT in umbilical cord blood samples. Furthermore, a noteworthy mediating role of TC and LDL-C was observed in the association between total PCBs exposure and umbilical cord blood liver enzyme levels. Overall our findings suggested that higher levels of umbilical cord blood PCBs and lipid profile could affect liver function in newborns.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Yasir Qasim Almajidi
- Lecturer Dr and Dean Assistant of Baghdad College of Medical Sciences-department of Pharmacy (pharmaceutics), Baghdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq; Medical Laboratory Technology Department, College of Medical Technology, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technology Department, College of Medical Technology, the Islamic University of Babylon, Babylon, Iraq
| | | | - A K Kareem
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq
| | | | - Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Hepatobiliary Surgery Department, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, Hebei, 065001, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
45
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
46
|
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med 2024; 95:101231. [PMID: 38056058 DOI: 10.1016/j.mam.2023.101231] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Liver fibrosis, as an excess deposition of extracellular matrix (ECM) components, results from chronic liver injury as well as persistent activation of inflammatory response and of fibrogenesis. Liver fibrosis is a major determinant for chronic liver disease (CLD) progression and in the last two decades our understanding on the major molecular and cellular mechanisms underlying the fibrogenic progression of CLD has dramatically improved, boosting pre-clinical studies and clinical trials designed to find novel therapeutic approaches. From these studies several critical concepts have emerged, starting to reveal the complexity of the pro-fibrotic microenvironment which involves very complex, dynamic and interrelated interactions between different hepatic and extrahepatic cell populations. This review will offer first a recapitulation of established and novel pathophysiological basic principles and concepts by intentionally focus the attention on NAFLD/NASH, a metabolic-related form of CLD with a high impact on the general population and emerging as a leading cause of CLD worldwide. NAFLD/NASH-related pro-inflammatory and profibrogenic mechanisms will be analysed as well as novel information on cells, mediators and signalling pathways which have taken advantage from novel methodological approaches and techniques (single cell genomics, imaging mass cytometry, novel in vitro two- and three-dimensional models, etc.). We will next offer an overview on recent advancement in diagnostic and prognostic tools, including serum biomarkers and polygenic scores, to support the analysis of liver biopsies. Finally, this review will provide an analysis of current and emerging therapies for the treatment of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Maurizio Parola
- Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine - Royal Free Hospital, London, NW32PF, United Kingdom.
| |
Collapse
|
47
|
Lee Y, Jang HR, Lee D, Lee J, Jung HR, Cho SY, Lee HY. Graphislactone A, a Fungal Antioxidant Metabolite, Reduces Lipogenesis and Protects against Diet-Induced Hepatic Steatosis in Mice. Int J Mol Sci 2024; 25:1096. [PMID: 38256169 PMCID: PMC10816634 DOI: 10.3390/ijms25021096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Graphislactone A (GPA), a secondary metabolite derived from a mycobiont found in the lichens of the genus Graphis, exhibits antioxidant properties. However, the potential biological functions and therapeutic applications of GPA at the cellular and animal levels have not yet been investigated. In the present study, we explored the therapeutic potential of GPA in mitigating non-alcoholic fatty liver disease (NAFLD) and its underlying mechanisms through a series of experiments using various cell lines and animal models. GPA demonstrated antioxidant capacity on a par with that of vitamin C in cultured hepatocytes and reduced the inflammatory response induced by lipopolysaccharide in primary macrophages. However, in animal studies using an NAFLD mouse model, GPA had a milder impact on liver inflammation while markedly attenuating hepatic steatosis. This effect was confirmed in an animal model of early fatty liver disease without inflammation. Mechanistically, GPA inhibited lipogenesis rather than fat oxidation in cultured hepatocytes. Similarly, RNA sequencing data revealed intriguing associations between GPA and the adipogenic pathways during adipocyte differentiation. GPA effectively reduced lipid accumulation and suppressed lipogenic gene expression in AML12 hepatocytes and 3T3-L1 adipocytes. In summary, our study demonstrates the potential application of GPA to protect against hepatic steatosis in vivo and suggests a novel role for GPA as an underlying mechanism in lipogenesis, paving the way for future exploration of its therapeutic potential.
Collapse
Affiliation(s)
- Yeonmi Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hye-Rim Jang
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Dongjin Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jongjun Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Hae-Rim Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea (S.-Y.C.)
| | - Sung-Yup Cho
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea (S.-Y.C.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Hui-Young Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
48
|
Bai Q, Han Y, Khan S, Wu T, Yang Y, Wang Y, Tang H, Li Q, Jiang W. A Novel Endoplasmic Reticulum-Targeted Metal-Organic Framework-Confined Ruthenium (Ru) Nanozyme Regulation of Oxidative Stress for Central Post-Stroke Pain. Adv Healthc Mater 2024; 13:e2302526. [PMID: 37823717 DOI: 10.1002/adhm.202302526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Central post-stroke pain (CPSP) is a chronic neuropathic pain caused by cerebrovascular lesion or disfunction after stroke. Convincing evidence suggest that excessive reactive oxygen species (ROS), generated matrix metalloproteinase (MMPs) and neuroinflammation are largely involved in the development of pain. In this study, an effective strategy is reported for treating pain hypersensitivity using an endoplasmic reticulum (ER)-targeted metal-organic framework (MOF)-confined ruthenium (Ru) nanozyme. The Ru MOF is coated with a p-dodecylbenzene sulfonamide (p-DBSN) modified liposome with endoplasmic reticulum-targeted function. The experimental results reveals that ROS, Emmprin, MMP-2, and MMP-9 are upregulated in the brain of CPSP mice, along with the elevated expression of inflammation markers such as TNF-α and IL-6. Compared to vehicle, one-time intravenous administration of ER-Ru MOF significantly reduces mechanical hypersensitivity after CPSP for three days. Overall, ER-Ru MOF system can inhibit oxidative stress in the brain tissues of CPSP model, reduce MMPs expression, and suppress neuroinflammation response-induced injury, resulting in satisfactory prevention and effective treatment of CPSP during a hemorrhagic stroke. The ER-Ru MOF is expected to be useful for the treatment of neurological diseases associated with the vicious activation of ROS, based on the generality of the approach used in this study.
Collapse
Affiliation(s)
- Qian Bai
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yupeng Han
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Suliman Khan
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tingting Wu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ying Yang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Wang
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hao Tang
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, China
| | - Qing Li
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wei Jiang
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, China
| |
Collapse
|
49
|
Siddique R, Mehmood MH, Shehzad MA. Current antioxidant medicinal regime and treatments used to alleviate oxidative stress in infertility issues. FUNDAMENTAL PRINCIPLES OF OXIDATIVE STRESS IN METABOLISM AND REPRODUCTION 2024:287-315. [DOI: 10.1016/b978-0-443-18807-7.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Qiu L, Feng R, Wu QS, Wan JB, Zhang QW. Total saponins from Panax japonicus attenuate acute alcoholic liver oxidative stress and hepatosteatosis by p62-related Nrf2 pathway and AMPK-ACC/PPARα axis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116785. [PMID: 37321425 DOI: 10.1016/j.jep.2023.116785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax japonicus (T. Nees) C.A. Mey. (PJ) has been used as a tonic traditional Chinese medicine (TCM) for years. Based on its meridian tropism in liver, spleen, and lung, PJ was popularly used to enhance the function of these organs. It is originally recorded with detoxicant effect on binge drink in Ben Cao Gang Mu Shi Yi, a persuasive Chinese materia medica. And binge dink has a close relationship with alcoholic liver disease (ALD). Hence, it's meaningful to investigate whether PJ exerts liver protection against binge drink toxicity. AIM OF THE STUDY This investigation was carried out not only to emphasize the right recognition of total saponins from PJ (SPJ), but also to study on its sober-up effectiveness and defensive mechanism against acute alcoholic liver injury in vivo and in vitro. MATERIALS AND METHODS SPJ constituents were verified by HPLC-UV analysis. In vivo, acute alcoholic liver oxidative stress and hepatosteatosis were established by continuous ethanol gavage to C57BL/6 mice for 3 days. SPJ was pre-administered for 7 days to investigate its protective efficacy. Loss of righting reflex (LORR) assay was employed to assess anti-inebriation effect of SPJ. Transaminases levels and hematoxylin and eosin (H&E) staining were measured to indicate the alcoholic liver injury. Antioxidant enzymes were measured to evaluate the oxidative stress degree in liver. Measurement of hepatic lipid accumulation was based on Oil Red O staining. Levels of inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). In vitro, HepG2 cells were treated with ethanol for 24 h, and SPJ was pre-administered for 2 h. 2,7-dichlorofluorescein diacetate (DCFH-DA) was used as a probe to indicate reactive oxygen species (ROS) generation. Nrf2 activation was verified by the favor of specific inhibitor, ML385. The nuclear translocation of Nrf2 was indicated with immunofluorescence analysis. Proteins expressions of related pathways were determined by Western blotting. RESULTS Oleanane-type saponins are the most abundant constituents of SPJ. In this acute model, SPJ released inebriation of mice in a dose dependent manner. It decreased levels of serum ALT and AST, and hepatic TG. Besides, SPJ inhibited CYP2E1 expression and reduced MDA level in liver, with upregulations of antioxidant enzymes GSH, SOD and CAT. p62-related Nrf2 pathway was activated by SPJ with downstream upregulations of GCLC and NQO1 in liver. AMPK-ACC/PPARα axis was upregulated by SPJ to alleviate hepatic lipidosis. Hepatic IL-6 and TNF-α levels were downregulated by SPJ, which indicated a regressive lipid peroxidation in liver. In HepG2 cells, SPJ reduced ethanol-exposed ROS generation. Activated p62-related Nrf2 pathway was verified to contribute to the alleviation of alcohol-induced oxidative stress in hepatic cells. CONCLUSION This attenuation of hepatic oxidative stress and steatosis suggested the therapeutic value of SPJ for ALD.
Collapse
Affiliation(s)
- Ling Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China
| | - Qiu-Shuang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| |
Collapse
|