1
|
Pan Z, Huang L, Gan Y, Xia Y, Yu W. The Molecular Mechanisms of Cuproptosis and Small-Molecule Drug Design in Diabetes Mellitus. Molecules 2024; 29:2852. [PMID: 38930917 PMCID: PMC11206814 DOI: 10.3390/molecules29122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In the field of human health research, the homeostasis of copper (Cu) is receiving increased attention due to its connection to pathological conditions, including diabetes mellitus (DM). Recent studies have demonstrated that proteins associated with Cu homeostasis, such as ATOX1, FDX1, ATP7A, ATPB, SLC31A1, p53, and UPS, also contribute to DM. Cuproptosis, characterized by Cu homeostasis dysregulation and Cu overload, has been found to cause the oligomerization of lipoylated proteins in mitochondria, loss of iron-sulfur protein, depletion of glutathione, production of reactive oxygen species, and cell death. Further research into how cuproptosis affects DM is essential to uncover its mechanism of action and identify effective interventions. In this article, we review the molecular mechanism of Cu homeostasis and the role of cuproptosis in the pathogenesis of DM. The study of small-molecule drugs that affect these proteins offers the possibility of moving from symptomatic treatment to treating the underlying causes of DM.
Collapse
Affiliation(s)
- Zhaowen Pan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Lan Huang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Yuanyuan Gan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Yan Xia
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| |
Collapse
|
2
|
Ding L, Sun Y, Liang Y, Zhang J, Fu Z, Ren C, Li P, Liu W, Xiao R, Wang H, Zhang Z, Yue X, Li C, Wu Z, Feng Y, Liang X, Ma C, Gao L. Beta-Cell Tipe1 Orchestrates Insulin Secretion and Cell Proliferation by Promoting Gαs/cAMP Signaling via USP5. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304940. [PMID: 38417114 PMCID: PMC11040358 DOI: 10.1002/advs.202304940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Inadequate β-cell mass and insulin secretion are essential for the development of type 2 diabetes (T2D). TNF-α-induced protein 8-like 1 (Tipe1) plays a crucial role in multiple diseases, however, a specific role in T2D pathogenesis remains largely unexplored. Herein, Tipe1 as a key regulator in T2D, contributing to the maintenance of β cell homeostasis is identified. The results show that the β-cell-specific knockout of Tipe1 (termed Ins2-Tipe1BKO) aggravated diabetic phenotypes in db/db mice or in mice with high-fat diet-induced diabetes. Notably, Tipe1 improves β cell mass and function, a process that depends on Gαs, the α subunit of the G-stimulating protein. Mechanistically, Tipe1 inhibited the K48-linked ubiquitination degradation of Gαs by recruiting the deubiquitinase USP5. Consequently, Gαs or cAMP agonists almost completely restored the dysfunction of β cells observed in Ins2-Tipe1BKO mice. The findings characterize Tipe1 as a regulator of β cell function through the Gαs/cAMP pathway, suggesting that Tipe1 may emerge as a novel target for T2D intervention.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yan Liang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Jie Zhang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhendong Fu
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Pengfei Li
- Department of EndocrinologyYucheng People's HospitalDezhouShandong251200P. R. China
| | - Wen Liu
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Rong Xiao
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Hao Wang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and EmbryologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yuemin Feng
- Department of GastroenterologyShengLi Hospital of Shandong First Medical UniversityJinanShandong250012P. R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
3
|
Sakurai Y, Kubota N, Takamoto I, Wada N, Aihara M, Hayashi T, Kubota T, Hiraike Y, Sasako T, Nakao H, Aiba A, Chikaoka Y, Kawamura T, Kadowaki T, Yamauchi T. Overexpression of UBE2E2 in Mouse Pancreatic β-Cells Leads to Glucose Intolerance via Reduction of β-Cell Mass. Diabetes 2024; 73:474-489. [PMID: 38064504 DOI: 10.2337/db23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/03/2023] [Indexed: 02/22/2024]
Abstract
Genome-wide association studies have identified several gene polymorphisms, including UBE2E2, associated with type 2 diabetes. Although UBE2E2 is one of the ubiquitin-conjugating enzymes involved in the process of ubiquitin modifications, the pathophysiological roles of UBE2E2 in metabolic dysfunction are not yet understood. Here, we showed upregulated UBE2E2 expression in the islets of a mouse model of diet-induced obesity. The diabetes risk allele of UBE2E2 (rs13094957) in noncoding regions was associated with upregulation of UBE2E2 mRNA in the human pancreas. Although glucose-stimulated insulin secretion was intact in the isolated islets, pancreatic β-cell-specific UBE2E2-transgenic (TG) mice exhibited reduced insulin secretion and decreased β-cell mass. In TG mice, suppressed proliferation of β-cells before the weaning period and while receiving a high-fat diet was accompanied by elevated gene expression levels of p21, resulting in decreased postnatal β-cell mass expansion and compensatory β-cell hyperplasia, respectively. In TG islets, proteomic analysis identified enhanced formation of various types of polyubiquitin chains, accompanied by increased expression of Nedd4 E3 ubiquitin protein ligase. Ubiquitination assays showed that UBE2E2 mediated the elongation of ubiquitin chains by Nedd4. The data suggest that UBE2E2-mediated ubiquitin modifications in β-cells play an important role in regulating glucose homeostasis and β-cell mass.
Collapse
Affiliation(s)
- Yoshitaka Sakurai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Metabolic Medicine, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
- Clinical Nutrition Program, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Iseki Takamoto
- Department of Metabolism and Endocrinology, Ibaraki Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Nobuhiro Wada
- Department of Anatomy I, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masakazu Aihara
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takanori Hayashi
- Clinical Nutrition Program, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tetsuya Kubota
- Clinical Nutrition Program, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Division of Diabetes and Metabolism, Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Yuta Hiraike
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Harumi Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Chikaoka
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | | | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Lee JH, Ryu H, Lee H, Yu HR, Gao Y, Lee KM, Kim YJ, Lee J. Endoplasmic reticulum stress in pancreatic β cells induces incretin desensitization and β-cell dysfunction via ATF4-mediated PDE4D expression. Am J Physiol Endocrinol Metab 2023; 325:E448-E465. [PMID: 37729023 DOI: 10.1152/ajpendo.00156.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Pancreatic β-cell dysfunction and eventual loss are key steps in the progression of type 2 diabetes (T2D). Endoplasmic reticulum (ER) stress responses, especially those mediated by the protein kinase RNA-like ER kinase and activating transcription factor 4 (PERK-ATF4) pathway, have been implicated in promoting these β-cell pathologies. However, the exact molecular events surrounding the role of the PERK-ATF4 pathway in β-cell dysfunction remain unknown. Here, we report our discovery that ATF4 promotes the expression of PDE4D, which disrupts β-cell function via a downregulation of cAMP signaling. We found that β-cell-specific transgenic expression of ATF4 led to early β-cell dysfunction and loss, a phenotype that resembles accelerated T2D. Expression of ATF4, rather than C/EBP homologous protein (CHOP), promoted PDE4D expression, reduced cAMP signaling, and attenuated responses to incretins and elevated glucose. Furthermore, we found that β-cells of leptin receptor-deficient diabetic (db/db) mice had elevated nuclear localization of ATF4 and PDE4D expression, accompanied by impaired β-cell function. Accordingly, pharmacological inhibition of the ATF4 pathway attenuated PDE4D expression in the islets and promoted incretin-simulated glucose tolerance and insulin secretion in db/db mice. Finally, we found that inhibiting PDE4 activity with selective pharmacological inhibitors improved β-cell function in both db/db mice and β-cell-specific ATF4 transgenic mice. In summary, our results indicate that ER stress causes β-cell failure via ATF4-mediated PDE4D production, suggesting the ATF4-PDE4D pathway could be a therapeutic target for protecting β-cell function during the progression of T2D.NEW & NOTEWORTHY Endoplasmic reticulum stress has been implied to cause multiple β-cell pathologies during the progression of type 2 diabetes (T2D). However, the precise molecular events underlying this remain unknown. Here, we discovered that elevated ATF4 activity, which was seen in T2D β cells, attenuated β-cell proliferation and impaired insulin secretion via PDE4D-mediated downregulation of cAMP signaling. Additionally, we demonstrated that pharmacological inhibition of the ATF4 pathway or PDE4D activity alleviated β-cell dysfunction, suggesting its therapeutic usefulness against T2D.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hanguk Ryu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyejin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hye Ram Yu
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kyeong-Min Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Young-Joon Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
5
|
Liang R, Tan H, Jin H, Wang J, Tang Z, Lu X. The tumour-promoting role of protein homeostasis: Implications for cancer immunotherapy. Cancer Lett 2023; 573:216354. [PMID: 37625777 DOI: 10.1016/j.canlet.2023.216354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Protein homeostasis, an important aspect of cellular fitness that encompasses the balance of production, folding and degradation of proteins, has been linked to several diseases of the human body. Multiple interconnected pathways coordinate to maintain protein homeostasis within the cell. Recently, the role of the protein homeostasis network in tumorigenesis and tumour progression has gradually come to light. Here, we summarize the involvement of the most prominent components of the protein quality control mechanisms (HSR, UPS, autophagy, UPR and ERAD) in tumour development and cancer immunity. In addition, evidence for protein quality control mechanisms and targeted drugs is outlined, and attempts to combine these drugs with cancer immunotherapy are discussed. Altogether, combination therapy represents a promising direction for future investigations, and this exciting insight will be further illuminated by the development of drugs that can reach a balance between the benefits and hazards associated with protein homeostasis interference.
Collapse
Affiliation(s)
- Rong Liang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huabing Tan
- Department of Infectious Diseases, Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Honglin Jin
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Faculty of Medicine, Hokkaido University, Japan
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
6
|
Mangiafico SP, Tuo QZ, Li XL, Liu Y, Haralambous C, Ding XL, Ayton S, Wang Q, Laybutt DR, Chan JY, Zhang X, Kos C, Thomas HE, Loudovaris T, Yang CH, Joannides CN, Lamont BJ, Dai L, He HH, Dong B, Andrikopoulos S, Bush AI, Lei P. Tau suppresses microtubule-regulated pancreatic insulin secretion. Mol Psychiatry 2023; 28:3982-3993. [PMID: 37735502 DOI: 10.1038/s41380-023-02267-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet β-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in β-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.
Collapse
Affiliation(s)
- Salvatore P Mangiafico
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiao-Lan Li
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yu Liu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Christian Haralambous
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Xu-Long Ding
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Qing Wang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Jeng Yie Chan
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Cameron Kos
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
- Institute for Cellular Transplantation, Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, 85724-5066, USA
| | - Chieh-Hsin Yang
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Christos N Joannides
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Benjamin J Lamont
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia
| | - Lunzhi Dai
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hai-Huai He
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Biao Dong
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Sofianos Andrikopoulos
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, VIC, 3084, Australia.
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
7
|
Suzuki M, Kuromi H, Shindo M, Sakata N, Niimi N, Fukui K, Saitoe M, Sango K. A Drosophila model of diabetic neuropathy reveals a role of proteasome activity in the glia. iScience 2023; 26:106997. [PMID: 37378316 PMCID: PMC10291573 DOI: 10.1016/j.isci.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common chronic, progressive complication of diabetes mellitus. The main symptom is sensory loss; the molecular mechanisms are not fully understood. We found that Drosophila fed a high-sugar diet, which induces diabetes-like phenotypes, exhibit impairment of noxious heat avoidance. The impairment of heat avoidance was associated with shrinkage of the leg neurons expressing the Drosophila transient receptor potential channel Painless. Using a candidate genetic screening approach, we identified proteasome modulator 9 as one of the modulators of impairment of heat avoidance. We further showed that proteasome inhibition in the glia reversed the impairment of noxious heat avoidance, and heat-shock proteins and endolysosomal trafficking in the glia mediated the effect of proteasome inhibition. Our results establish Drosophila as a useful system for exploring molecular mechanisms of diet-induced peripheral neuropathy and propose that the glial proteasome is one of the candidate therapeutic targets for DPN.
Collapse
Affiliation(s)
- Mari Suzuki
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Hiroshi Kuromi
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Mayumi Shindo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Nozomi Sakata
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Naoko Niimi
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Koji Fukui
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Minoru Saitoe
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
8
|
Biomedical importance of the ubiquitin-proteasome system in diabetes and metabolic transdifferentiation of pancreatic duct epithelial cells into β-cells. Gene 2023; 858:147191. [PMID: 36632913 DOI: 10.1016/j.gene.2023.147191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a major pathway for cellular protein degradation. The molecular function of the UPS is the removal of damaged proteins, and this function is applied in many biological processes, including inflammation, proliferation, and apoptosis. Accumulating evidence also suggests that the UPS also has a key role in pancreatic β-cell transdifferentiation in diabetes and can be targeted for treatment of diabetic diseases. In this review, we summarized the mechanistic roles of the UPS in the biochemical activities of pancreatic β-cells, including the role of the UPS in insulin synthesis and secretion, as well as β-cell degradation. Also, we discuss how the UPS mediates the transdifferentiation of pancreatic duct epithelial cells into β-cells as the experimental basis for the development of new strategies for the treatment of diabetes in regenerative medicine.
Collapse
|
9
|
Bacos K, Perfilyev A, Karagiannopoulos A, Cowan E, Ofori JK, Bertonnier-Brouty L, Rönn T, Lindqvist A, Luan C, Ruhrmann S, Ngara M, Nilsson Å, Gheibi S, Lyons CL, Lagerstedt JO, Barghouth M, Esguerra JL, Volkov P, Fex M, Mulder H, Wierup N, Krus U, Artner I, Eliasson L, Prasad RB, Cataldo LR, Ling C. Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets. J Clin Invest 2023; 133:163612. [PMID: 36656641 PMCID: PMC9927941 DOI: 10.1172/jci163612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to β cell dysfunction in T2D pathophysiology.
Collapse
Affiliation(s)
- Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | | | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Jones K. Ofori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Ludivine Bertonnier-Brouty
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Cheng Luan
- Unit of Islet Pathophysiology, Department of Clinical Sciences
| | - Sabrina Ruhrmann
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Åsa Nilsson
- Human Tissue Lab, Department of Clinical Sciences
| | - Sevda Gheibi
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Claire L. Lyons
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Jens O. Lagerstedt
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | | | - Jonathan L.S. Esguerra
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| | - Malin Fex
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Hindrik Mulder
- Molecular Metabolism Unit, Department of Clinical Sciences, and
| | - Nils Wierup
- Neuroendocrine Cell Biology, Department of Experimental Medical Science
| | - Ulrika Krus
- Human Tissue Lab, Department of Clinical Sciences
| | - Isabella Artner
- Endocrine Cell Differentiation, Department of Laboratory Medicine, Lund Stem Cell Center, Malmö, Scania, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Rashmi B. Prasad
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden.,Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Luis Rodrigo Cataldo
- Molecular Metabolism Unit, Department of Clinical Sciences, and,The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences and
| |
Collapse
|
10
|
Vivoli A, Ghislain J, Filali-Mouhim A, Angeles ZE, Castell AL, Sladek R, Poitout V. Single-Cell RNA Sequencing Reveals a Role for Reactive Oxygen Species and Peroxiredoxins in Fatty Acid-Induced Rat β-Cell Proliferation. Diabetes 2023; 72:45-58. [PMID: 36191509 PMCID: PMC9797324 DOI: 10.2337/db22-0121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/24/2022] [Indexed: 01/19/2023]
Abstract
The functional mass of insulin-secreting pancreatic β-cells expands to maintain glucose homeostasis in the face of nutrient excess, in part via replication of existing β-cells. Type 2 diabetes appears when these compensatory mechanisms fail. Nutrients including glucose and fatty acids are important contributors to the β-cell compensatory response, but their underlying mechanisms of action remain poorly understood. We investigated the transcriptional mechanisms of β-cell proliferation in response to fatty acids. Isolated rat islets were exposed to 16.7 mmol/L glucose with or without 0.5 mmol/L oleate (C18:1) or palmitate (C16:0) for 48 h. The islet transcriptome was assessed by single-cell RNA sequencing. β-Cell proliferation was measured by flow cytometry. Unsupervised clustering of pooled β-cells identified different subclusters, including proliferating β-cells. β-Cell proliferation increased in response to oleate but not palmitate. Both fatty acids enhanced the expression of genes involved in energy metabolism and mitochondrial activity. Comparison of proliferating versus nonproliferating β-cells and pseudotime ordering suggested the involvement of reactive oxygen species (ROS) and peroxiredoxin signaling. Accordingly, N-acetyl cysteine and the peroxiredoxin inhibitor conoidin A both blocked oleate-induced β-cell proliferation. Our study reveals a key role for ROS signaling through peroxiredoxin activation in oleate-induced β-cell proliferation.
Collapse
Affiliation(s)
- Alexis Vivoli
- Montreal Diabetes Research Center, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, Montréal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Ali Filali-Mouhim
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Zuraya Elisa Angeles
- Montreal Diabetes Research Center, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Anne-Laure Castell
- Montreal Diabetes Research Center, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Robert Sladek
- Montreal Diabetes Research Center, Montréal, Québec, Canada
- Department of Human Genetics, McGill University and McGill Genome Centre, Montréal, Québec, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Xu X, Arunagiri A, Haataja L, Alam M, Ji S, Qi L, Tsai B, Liu M, Arvan P. Proteasomal degradation of wild-type proinsulin in pancreatic beta cells. J Biol Chem 2022; 298:102406. [PMID: 35988641 PMCID: PMC9486123 DOI: 10.1016/j.jbc.2022.102406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Preproinsulin entry into the endoplasmic reticulum yields proinsulin, and its subsequent delivery to the distal secretory pathway leads to processing, storage, and secretion of mature insulin. Multiple groups have reported that treatment of pancreatic beta cell lines, rodent pancreatic islets, or human islets with proteasome inhibitors leads to diminished proinsulin and insulin protein levels, diminished glucose-stimulated insulin secretion, and changes in beta-cell gene expression that ultimately lead to beta-cell death. However, these studies have mostly examined treatment times far beyond that needed to achieve acute proteasomal inhibition. Here, we report that although proteasomal inhibition immediately downregulates new proinsulin biosynthesis, it nevertheless acutely increases beta-cell proinsulin levels in pancreatic beta cell lines, rodent pancreatic islets, and human islets, indicating rescue of a pool of recently synthesized WT INS gene product that would otherwise be routed to proteasomal disposal. Our pharmacological evidence suggests that this disposal most likely reflects ongoing endoplasmic reticulum–associated protein degradation. However, we found that within 60 min after proteasomal inhibition, intracellular proinsulin levels begin to fall in conjunction with increased phosphorylation of eukaryotic initiation factor 2 alpha, which can be inhibited by blocking the general control nonderepressible 2 kinase. Together, these data demonstrate that a meaningful subfraction of newly synthesized INS gene product undergoes rapid proteasomal disposal. We propose that free amino acids derived from proteasomal proteolysis may potentially participate in suppressing general control nonderepressible 2 kinase activity to maintain ongoing proinsulin biosynthesis.
Collapse
Affiliation(s)
- Xiaoxi Xu
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
| | - Anoop Arunagiri
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105
| | - Leena Haataja
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105
| | - Maroof Alam
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105
| | - Shuhui Ji
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
| | - Ling Qi
- Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Billy Tsai
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052.
| | - Peter Arvan
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48105.
| |
Collapse
|
12
|
Overview of Transcriptomic Research on Type 2 Diabetes: Challenges and Perspectives. Genes (Basel) 2022; 13:genes13071176. [PMID: 35885959 PMCID: PMC9319211 DOI: 10.3390/genes13071176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes (T2D) is a common chronic disease whose etiology is known to have a strong genetic component. Standard genetic approaches, although allowing for the detection of a number of gene variants associated with the disease as well as differentially expressed genes, cannot fully explain the hereditary factor in T2D. The explosive growth in the genomic sequencing technologies over the last decades provided an exceptional impetus for transcriptomic studies and new approaches to gene expression measurement, such as RNA-sequencing (RNA-seq) and single-cell technologies. The transcriptomic analysis has the potential to find new biomarkers to identify risk groups for developing T2D and its microvascular and macrovascular complications, which will significantly affect the strategies for early diagnosis, treatment, and preventing the development of complications. In this article, we focused on transcriptomic studies conducted using expression arrays, RNA-seq, and single-cell sequencing to highlight recent findings related to T2D and challenges associated with transcriptome experiments.
Collapse
|
13
|
Karagiannopoulos A, Esguerra JL, Pedersen MG, Wendt A, Prasad RB, Eliasson L. Human pancreatic islet miRNA-mRNA networks of altered miRNAs due to glycemic status. iScience 2022; 25:103995. [PMID: 35310942 PMCID: PMC8927907 DOI: 10.1016/j.isci.2022.103995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression via mRNA targeting, playing important roles in the pancreatic islets. We aimed to identify molecular pathways and genomic regulatory regions associated with altered miRNA expression due to glycemic status, which could contribute to the development of type 2 diabetes (T2D). To this end, miRNAs were identified by a combination of differential miRNA expression and correlation analysis in human islet samples from donors with normal and elevated blood glucose levels. Analysis and clustering of highly correlated, experimentally validated gene targets of these miRNAs revealed two islet-specific clusters, which were associated with key aspects of islet functions and included a high number of T2D-related genes. Finally, cis-eQTLs and public GWAS data integration uncovered suggestive genomic signals of association with insulin secretion and T2D. The miRNA-driven network-based approach presented in this study contributes to a better understanding of impaired insulin secretion in T2D pathogenesis.
Collapse
Affiliation(s)
- Alexandros Karagiannopoulos
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences-Malmö, Lund University, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Jonathan L.S. Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences-Malmö, Lund University, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Morten G. Pedersen
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences-Malmö, Lund University, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Rashmi B. Prasad
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences-Malmö, Lund University, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, CRC 91-11, Box 50332, 202 13 Malmö, Sweden
| |
Collapse
|
14
|
Blood Immunoproteasome Activity Is Regulated by Sex, Age and in Chronic Inflammatory Diseases: A First Population-Based Study. Cells 2021; 10:cells10123336. [PMID: 34943847 PMCID: PMC8699521 DOI: 10.3390/cells10123336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.
Collapse
|
15
|
Chan JY, Bensellam M, Lin RCY, Liang C, Lee K, Jonas JC, Laybutt DR. Transcriptome analysis of islets from diabetes-resistant and diabetes-prone obese mice reveals novel gene regulatory networks involved in beta-cell compensation and failure. FASEB J 2021; 35:e21608. [PMID: 33977593 DOI: 10.1096/fj.202100009r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 01/02/2023]
Abstract
The mechanisms underpinning beta-cell compensation for obesity-associated insulin resistance and beta-cell failure in type 2 diabetes remain poorly understood. We used a large-scale strategy to determine the time-dependent transcriptomic changes in islets of diabetes-prone db/db and diabetes-resistant ob/ob mice at 6 and 16 weeks of age. Differentially expressed genes were subjected to cluster, gene ontology, pathway and gene set enrichment analyses. A distinctive gene expression pattern was observed in 16 week db/db islets in comparison to the other groups with alterations in transcriptional regulators of islet cell identity, upregulation of glucose/lipid metabolism, and various stress response genes, and downregulation of specific amino acid transport and metabolism genes. In contrast, ob/ob islets displayed a coordinated downregulation of metabolic and stress response genes at 6 weeks of age, suggestive of a preemptive reconfiguration in these islets to lower the threshold of metabolic activation in response to increased insulin demand thereby preserving beta-cell function and preventing cellular stress. In addition, amino acid transport and metabolism genes were upregulated in ob/ob islets, suggesting an important role of glutamate metabolism in beta-cell compensation. Gene set enrichment analysis of differentially expressed genes identified the enrichment of binding motifs for transcription factors, FOXO4, NFATC1, and MAZ. siRNA-mediated knockdown of these genes in MIN6 cells altered cell death, insulin secretion, and stress gene expression. In conclusion, these data revealed novel gene regulatory networks involved in beta-cell compensation and failure. Preemptive metabolic reconfiguration in diabetes-resistant islets may dampen metabolic activation and cellular stress during obesity.
Collapse
Affiliation(s)
- Jeng Yie Chan
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mohammed Bensellam
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Pôle D'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ruby C Y Lin
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Cassandra Liang
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kailun Lee
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jean-Christophe Jonas
- Pôle D'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Herold Z, Doleschall M, Somogyi A. Role and function of granin proteins in diabetes mellitus. World J Diabetes 2021; 12:1081-1092. [PMID: 34326956 PMCID: PMC8311481 DOI: 10.4239/wjd.v12.i7.1081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The granin glycoprotein family consists of nine acidic proteins; chromogranin A (CgA), chromogranin B (CgB), and secretogranin II-VIII. They are produced by a wide range of neuronal, neuroendocrine, and endocrine cells throughout the human body. Their major intracellular function is to sort peptides and proteins into secretory granules, but their cleavage products also take part in the extracellular regulation of diverse biological processes. The contribution of granins to carbohydrate metabolism and diabetes mellitus is a recent research area. CgA is associated with glucose homeostasis and the progression of type 1 diabetes. WE-14, CgA10-19, and CgA43-52 are peptide derivates of CgA, and act as CD4+ or CD8+ autoantigens in type 1 diabetes, whereas pancreastatin (PST) and catestatin have regulatory effects in carbohydrate metabolism. Furthermore, PST is related to gestational and type 2 diabetes. CgB has a crucial role in physiological insulin secretion. Secretogranins II and III have angiogenic activity in diabetic retinopathy (DR), and are novel targets in recent DR studies. Ongoing studies are beginning to investigate the potential use of granin derivatives as drugs to treat diabetes based on the divergent relationships between granins and different types of diabetes.
Collapse
Affiliation(s)
- Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest 1083, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| | - Marton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest 1089, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
17
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
18
|
Seiron P, Stenwall A, Hedin A, Granlund L, Esguerra JLS, Volkov P, Renström E, Korsgren O, Lundberg M, Skog O. Transcriptional analysis of islets of Langerhans from organ donors of different ages. PLoS One 2021; 16:e0247888. [PMID: 33711030 PMCID: PMC7954335 DOI: 10.1371/journal.pone.0247888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Insulin secretion is impaired with increasing age. In this study, we aimed to determine whether aging induces specific transcriptional changes in human islets. Laser capture microdissection was used to extract pancreatic islet tissue from 37 deceased organ donors aged 1-81 years. The transcriptomes of the extracted islets were analysed using Ion AmpliSeq sequencing. 346 genes that co-vary significantly with age were found. There was an increased transcription of genes linked to senescence, and several aspects of the cell cycle machinery were downregulated with increasing age. We detected numerous genes not linked to aging in previous studies likely because earlier studies analysed islet cells isolated by enzymatic digestion which might affect the islet transcriptome. Among the novel genes demonstrated to correlate with age, we found an upregulation of SPP1 encoding osteopontin. In beta cells, osteopontin has been seen to be protective against both cytotoxicity and hyperglycaemia. In summary, we present a transcriptional profile of aging in human islets and identify genes that could affect disease course in diabetes.
Collapse
Affiliation(s)
- Peter Seiron
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anton Stenwall
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anders Hedin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Louise Granlund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Petr Volkov
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Malmö, Sweden
| | - Erik Renström
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Malmö, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Chatterjee Bhowmick D, Ahn M, Oh E, Veluthakal R, Thurmond DC. Conventional and Unconventional Mechanisms by which Exocytosis Proteins Oversee β-cell Function and Protection. Int J Mol Sci 2021; 22:1833. [PMID: 33673206 PMCID: PMC7918544 DOI: 10.3390/ijms22041833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic β-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation. SNARE proteins and their regulators include the Syntaxins, SNAPs, Sec1/Munc18, VAMPs, and double C2-domain proteins. Recent studies using genomics, proteomics, and biochemical approaches have linked deficiencies of exocytosis proteins with the onset and progression of T2D. Promising results are also emerging wherein restoration or enhancement of certain exocytosis proteins to β-cells improves whole-body glucose homeostasis, enhances β-cell function, and surprisingly, protection of β-cell mass. Intriguingly, overexpression and knockout studies have revealed novel functions of certain exocytosis proteins, like Syntaxin 4, suggesting that exocytosis proteins can impact a variety of pathways, including inflammatory signaling and aging. In this review, we present the conventional and unconventional functions of β-cell exocytosis proteins in normal physiology and T2D and describe how these insights might improve clinical care for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (D.C.B.); (M.A.); (E.O.); (R.V.)
| |
Collapse
|
20
|
Marselli L, Piron A, Suleiman M, Colli ML, Yi X, Khamis A, Carrat GR, Rutter GA, Bugliani M, Giusti L, Ronci M, Ibberson M, Turatsinze JV, Boggi U, De Simone P, De Tata V, Lopes M, Nasteska D, De Luca C, Tesi M, Bosi E, Singh P, Campani D, Schulte AM, Solimena M, Hecht P, Rady B, Bakaj I, Pocai A, Norquay L, Thorens B, Canouil M, Froguel P, Eizirik DL, Cnop M, Marchetti P. Persistent or Transient Human β Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes. Cell Rep 2020; 33:108466. [PMID: 33264613 DOI: 10.1016/j.celrep.2020.108466] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic β cell failure is key to type 2 diabetes (T2D) onset and progression. Here, we assess whether human β cell dysfunction induced by metabolic stress is reversible, evaluate the molecular pathways underlying persistent or transient damage, and explore the relationships with T2D islet traits. Twenty-six islet preparations are exposed to several lipotoxic/glucotoxic conditions, some of which impair insulin release, depending on stressor type, concentration, and combination. The reversal of dysfunction occurs after washout for some, although not all, of the lipoglucotoxic insults. Islet transcriptomes assessed by RNA sequencing and expression quantitative trait loci (eQTL) analysis identify specific pathways underlying β cell failure and recovery. Comparison of a large number of human T2D islet transcriptomes with those of persistent or reversible β cell lipoglucotoxicity show shared gene expression signatures. The identification of mechanisms associated with human β cell dysfunction and recovery and their overlap with T2D islet traits provide insights into T2D pathogenesis, fostering the development of improved β cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy.
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Maikel L Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Amna Khamis
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille 59000, France
| | - Gaelle R Carrat
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College, London, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Laura Giusti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy; School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Centre for Advanced Studies and Technologies (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Mark Ibberson
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | | | - Ugo Boggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy; Division of General and Transplant Surgery, Cisanello University Hospital, Pisa 56124, Italy
| | - Paolo De Simone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy; Division of Liver Surgery and Transplantation, Cisanello University Hospital, Pisa 56124, Italy
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Miguel Lopes
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Daniela Nasteska
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Emanuele Bosi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Pratibha Singh
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology and the Critical Areas, University of Pisa, Pisa 56126, Italy
| | - Anke M Schulte
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Frankfurt, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden 01307, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg 85764, Germany
| | - Peter Hecht
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Frankfurt, Germany
| | | | | | | | | | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Mickaël Canouil
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille 59000, France
| | - Philippe Froguel
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels, Belgium; Indiana Biosciences Research Institute, Indianapolis, IN, USA; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy.
| |
Collapse
|
21
|
Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study. Genome Med 2020; 12:109. [PMID: 33261667 PMCID: PMC7708171 DOI: 10.1186/s13073-020-00806-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
Background The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D. Methods Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts. Results We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling. Conclusions Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
Collapse
|
22
|
Herold Z, Herold M, Rosta K, Doleschall M, Somogyi A. Lower serum chromogranin B level is associated with type 1 diabetes and with type 2 diabetes patients with intensive conservative insulin treatment. Diabetol Metab Syndr 2020; 12:61. [PMID: 32684986 PMCID: PMC7362558 DOI: 10.1186/s13098-020-00569-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/04/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chromogranin B (CgB) plays an important role in the physiological insulin secretion of pancreatic beta cells. Serum CgB levels were investigated in type 1 and type 2 diabetes patients in a cross-sectional study. METHODS An observational cross-sectional study was performed with the inclusion of 94 control subjects, 100 type 1 and 100 type 2 diabetes patients, at the Metabolic Outpatient Clinic of the Department of Internal Medicine and Hematology, Semmelweis University. Serum CgB levels were measured with enzyme-linked immunosorbent assay. RESULTS Serum CgB level was lower in type 1 diabetes patients than in matched control subjects (p = 0.0241), while they were equal in type 2 diabetes patients and controls (p = 0.1698). The subgroup of type 2 diabetes patients who received intensive conservative insulin treatment had significantly lower CgB levels compared to those with other regimens of antidiabetic therapies (p = 0.0283). CONCLUSION The lower serum CgB levels in the patients with type 1 diabetes and the type 2 diabetes patients with progressed disease stage suggested that the CgB production might be decreased due to the beta cell destruction and depletion.
Collapse
Affiliation(s)
- Zoltan Herold
- Department of Internal Medicine and Hematology, Semmelweis University, H-1088 Szentkiralyi u. 46, Budapest, Hungary
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, H-1088 Szentkiralyi u. 46, Budapest, Hungary
| | - Klara Rosta
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Marton Doleschall
- Molecular Medicine Research Group, Eotvos Lorand Research Network and Semmelweis University, Budapest, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, H-1088 Szentkiralyi u. 46, Budapest, Hungary
| |
Collapse
|
23
|
Kang T, Boland BB, Jensen P, Alarcon C, Nawrocki A, Grimsby JS, Rhodes CJ, Larsen MR. Characterization of Signaling Pathways Associated with Pancreatic β-cell Adaptive Flexibility in Compensation of Obesity-linked Diabetes in db/db Mice. Mol Cell Proteomics 2020; 19:971-993. [PMID: 32265294 PMCID: PMC7261816 DOI: 10.1074/mcp.ra119.001882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell's adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking-core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D.
Collapse
Affiliation(s)
- Taewook Kang
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; The Danish Diabetes Academy, Odense, Denmark
| | - Brandon B Boland
- The Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637; Cardiovascular, Renal and Metabolic Disease, BioPharmaceuticals Research and Development, AstraZeneca Gaithersburg, Maryland 20878
| | - Pia Jensen
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Cristina Alarcon
- The Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637
| | - Arkadiusz Nawrocki
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Joseph S Grimsby
- Cardiovascular, Renal and Metabolic Disease, BioPharmaceuticals Research and Development, AstraZeneca Gaithersburg, Maryland 20878
| | - Christopher J Rhodes
- The Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637; Cardiovascular, Renal and Metabolic Disease, BioPharmaceuticals Research and Development, AstraZeneca Gaithersburg, Maryland 20878
| | - Martin R Larsen
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
24
|
Marchetti P, Suleiman M, De Luca C, Baronti W, Bosi E, Tesi M, Marselli L. A direct look at the dysfunction and pathology of the β cells in human type 2 diabetes. Semin Cell Dev Biol 2020; 103:83-93. [PMID: 32417220 DOI: 10.1016/j.semcdb.2020.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022]
Abstract
β cells uniquely produce and secrete insulin under the control of several, integrated signals, to maintain blood glucose concentrations within a narrow physiological interval. β cell failure is key to the onset and progression of type 2 diabetes, due to impaired function and reduced mass. In this review we focus on several features of human β cell dysfunction and pathology in type 2 diabetes, as revealed by direct assessment of isolated islet traits and examination of pancreatic tissue from organ donors, surgical samples or autoptic specimens. Insulin secretion defects and pathology findings are discussed in relation to some of the major underlying mechanisms, to also provide clues for conceiving better prevention and treatment of type 2 diabetes by targeting the pancreatic β cells.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy.
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Walter Baronti
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Emanuele Bosi
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine - University of Pisa, Via Savi 10, Pisa, Italy
| |
Collapse
|
25
|
Wu T, Zhang S, Xu J, Zhang Y, Sun T, Shao Y, Wang J, Tang W, Chen F, Han X. HRD1, an Important Player in Pancreatic β-Cell Failure and Therapeutic Target for Type 2 Diabetic Mice. Diabetes 2020; 69:940-953. [PMID: 32086291 DOI: 10.2337/db19-1060] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/16/2020] [Indexed: 11/13/2022]
Abstract
Inadequate insulin secretion in response to glucose is an important factor for β-cell failure in type 2 diabetes (T2D). Although HMG-CoA reductase degradation 1 (HRD1), a subunit of the endoplasmic reticulum-associated degradation complex, plays a pivotal role in β-cell function, HRD1 elevation in a diabetic setting contributes to β-cell dysfunction. We report in this study the excessive HRD1 expression in islets from humans with T2D and T2D mice. Functional studies reveal that β-cell-specific HRD1 overexpression triggers impaired insulin secretion that will ultimately lead to severe hyperglycemia; by contrast, HRD1 knockdown improves glucose control and response in diabetic models. Proteomic analysis results reveal a large HRD1 interactome, which includes v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), a master regulator of genes implicated in the maintenance of β-cell function. Furthermore, mechanistic assay results indicate that HRD1 is a novel E3 ubiquitin ligase that targets MafA for ubiquitination and degradation in diabetic β-cells, resulting in cytoplasmic accumulation of MafA and in the reduction of its biological function in the nucleus. Our results not only reveal the pathological importance of excessive HRD1 in β-cell dysfunction but also establish the therapeutic importance of targeting HRD1 in order to prevent MafA loss and suppress the development of T2D.
Collapse
Affiliation(s)
- Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuang Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jialiang Xu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yixue Shao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiahui Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Jiangsu Province Geriatric Institute, Nanjing, Jiangsu, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Hu R, Walker E, Huang C, Xu Y, Weng C, Erickson GE, Coldren A, Yang X, Brissova M, Kaverina I, Balamurugan AN, Wright CVE, Li Y, Stein R, Gu G. Myt Transcription Factors Prevent Stress-Response Gene Overactivation to Enable Postnatal Pancreatic β Cell Proliferation, Function, and Survival. Dev Cell 2020; 53:390-405.e10. [PMID: 32359405 PMCID: PMC7278035 DOI: 10.1016/j.devcel.2020.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Although cellular stress response is important for maintaining function and survival, overactivation of late-stage stress effectors cause dysfunction and death. We show that the myelin transcription factors (TFs) Myt1 (Nzf2), Myt2 (Myt1l, Nztf1, and Png-1), and Myt3 (St18 and Nzf3) prevent such overactivation in islet β cells. Thus, we found that co-inactivating the Myt TFs in mouse pancreatic progenitors compromised postnatal β cell function, proliferation, and survival, preceded by upregulation of late-stage stress-response genes activating transcription factors (e.g., Atf4) and heat-shock proteins (Hsps). Myt1 binds putative enhancers of Atf4 and Hsps, whose overexpression largely recapitulated the Myt-mutant phenotypes. Moreover, Myt(MYT)-TF levels were upregulated in mouse and human β cells during metabolic stress-induced compensation but downregulated in dysfunctional type 2 diabetic (T2D) human β cells. Lastly, MYT knockdown caused stress-gene overactivation and death in human EndoC-βH1 cells. These findings suggest that Myt TFs are essential restrictors of stress-response overactivity.
Collapse
Affiliation(s)
- Ruiying Hu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chen Huang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chen Weng
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gillian E Erickson
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anastasia Coldren
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 27232, USA
| | - Xiaodun Yang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marcela Brissova
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 27232, USA
| | - Irina Kaverina
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Appakalai N Balamurugan
- Department of Surgery, Clinical Islet Transplantation Laboratory, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - Christopher V E Wright
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
27
|
Homma T, Fujii J. Emerging connections between oxidative stress, defective proteolysis, and metabolic diseases. Free Radic Res 2020; 54:931-946. [PMID: 32308060 DOI: 10.1080/10715762.2020.1734588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
28
|
Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid Redox Signal 2019; 31:722-751. [PMID: 30450940 PMCID: PMC6708273 DOI: 10.1089/ars.2018.7656] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
29
|
Bearrows SC, Bauchle CJ, Becker M, Haldeman JM, Swaminathan S, Stephens SB. Chromogranin B regulates early-stage insulin granule trafficking from the Golgi in pancreatic islet β-cells. J Cell Sci 2019; 132:jcs.231373. [PMID: 31182646 DOI: 10.1242/jcs.231373] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Chromogranin B (CgB, also known as CHGB) is abundantly expressed in dense core secretory granules of multiple endocrine tissues and has been suggested to regulate granule biogenesis in some cell types, including the pancreatic islet β-cell, though the mechanisms are poorly understood. Here, we demonstrate a critical role for CgB in regulating secretory granule trafficking in the β-cell. Loss of CgB impairs glucose-stimulated insulin secretion, impedes proinsulin processing to yield increased proinsulin content, and alters the density of insulin-containing granules. Using an in situ fluorescent pulse-chase strategy to track nascent proinsulin, we show that loss of CgB impairs Golgi budding of proinsulin-containing secretory granules, resulting in a substantial delay in trafficking of nascent granules to the plasma membrane with an overall decrease in total plasma membrane-associated granules. These studies demonstrate that CgB is necessary for efficient trafficking of secretory proteins into the budding granule, which impacts the availability of insulin-containing secretory granules for exocytic release.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shelby C Bearrows
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - McKenzie Becker
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Jonathan M Haldeman
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Svetha Swaminathan
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA .,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
30
|
Desmons A, Okwieka A, Doué M, Gorisse L, Vuiblet V, Pietrement C, Gillery P, Jaisson S. Proteasome-dependent degradation of intracellular carbamylated proteins. Aging (Albany NY) 2019; 11:3624-3638. [PMID: 31170093 PMCID: PMC6594819 DOI: 10.18632/aging.102002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/27/2019] [Indexed: 12/28/2022]
Abstract
Carbamylation, which corresponds to the binding of isocyanic acid to the amino groups of proteins, is a nonenzymatic post-translational modification responsible for alterations of protein structural and functional properties. Tissue accumulation of carbamylation-derived products and their role in pathological processes such as atherosclerosis or chronic renal failure have been previously documented. However, few studies have focused on the carbamylation of intracellular proteins and their subsequent role in cellular aging. This study aimed to determine the extent of intracellular protein carbamylation, its impact on cell functions and the ability of cells to degrade these modified proteins. Fibroblasts were incubated with cyanate or urea and the carbamylation level was evaluated by immunostaining and homocitrulline quantification. The results showed that carbamylated proteins accumulated intracellularly and that all proteins were susceptible. The presence of intracellular carbamylated proteins did not modify cell proliferation or type I collagen synthesis nor did it induce cell senescence, but it significantly decreased cell motility. Fibroblasts were able to degrade carbamylated proteins through the ubiquitin-proteasome system. In conclusion, intracellular proteins are susceptible to carbamylation but their accumulation does not seem to deeply affect cell function, owing largely to their elimination by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Aurore Desmons
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Pediatric Biology and Research, University Hospital of Reims, Reims, France
| | - Anaïs Okwieka
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
| | - Manon Doué
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
| | - Laëtitia Gorisse
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Present address: Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vincent Vuiblet
- Laboratory of Biopathology, University Hospital of Reims, Reims, France
| | - Christine Pietrement
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Department of Pediatrics (Nephrology unit), University Hospital of Reims, Reims, France
| | - Philippe Gillery
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Pediatric Biology and Research, University Hospital of Reims, Reims, France
| | - Stéphane Jaisson
- Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Pediatric Biology and Research, University Hospital of Reims, Reims, France
| |
Collapse
|
31
|
Böni-Schnetzler M, Meier DT. Islet inflammation in type 2 diabetes. Semin Immunopathol 2019; 41:501-513. [PMID: 30989320 PMCID: PMC6592966 DOI: 10.1007/s00281-019-00745-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Metabolic diseases including type 2 diabetes are associated with meta-inflammation. β-Cell failure is a major component of the pathogenesis of type 2 diabetes. It is now well established that increased numbers of innate immune cells, cytokines, and chemokines have detrimental effects on islets in these chronic conditions. Recently, evidence emerged which points to initially adaptive and restorative functions of inflammatory factors and immune cells in metabolism. In the following review, we provide an overview on the features of islet inflammation in diabetes and models of prediabetes. We separately emphasize what is known on islet inflammation in humans and focus on in vivo animal models and how they are used to elucidate mechanistic aspects of islet inflammation. Further, we discuss the recently emerging physiologic signaling role of cytokines during adaptation and normal function of islet cells.
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland. .,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Daniel T Meier
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland.,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| |
Collapse
|
32
|
Ghiasi SM, Dahllöf MS, Osmai Y, Osmai M, Jakobsen KK, Aivazidis A, Tyrberg B, Perruzza L, Prause MCB, Christensen DP, Fog-Tonnesen M, Lundh M, Grassi F, Chatenoud L, Mandrup-Poulsen T. Regulation of the β-cell inflammasome and contribution to stress-induced cellular dysfunction and apoptosis. Mol Cell Endocrinol 2018; 478:106-114. [PMID: 30121202 DOI: 10.1016/j.mce.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/03/2018] [Accepted: 08/04/2018] [Indexed: 12/17/2022]
Abstract
β-Cells may be a source of IL-1β that is produced as inactive pro-IL-1β and processed into biologically-active IL-1β by enzymatic cleavage mediated by the NLRP1-, NLRP3- and NLRC4-inflammasomes. Little is known about the β-cell inflammasomes. NLRP1-expression was upregulated in islet-cells from T2D-patients and by IL-1β+IFNγ in INS-1 cells in a histone-deacetylase dependent manner. NLRP3 was downregulated by cytokines in INS-1 cells. NLRC4 was barely expressed and not regulated by cytokines. High extracellular K+ reduced cytokine-induced apoptosis and NO production and restored cytokine-inhibited accumulated insulin-secretion. Basal inflammasome expression was JNK1-3 dependent. Knock-down of the ASC interaction domain common for NLRP1 and 3 improved insulin secretion and ameliorated IL-1β and/or glucolipotoxicity-induced cell death and reduced cytokine-induced NO-production. Broad inflammasome-inhibition, but not NLRP3-selective inhibition, protected against IL-1β-induced INS-1 cell-toxicity. We suggest that IL-1β causes β-cell toxicity in part by NLRP1 mediated caspase-1-activation and maturation of IL-1β leading to an autocrine potentiation loop.
Collapse
Affiliation(s)
- Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mattias Salling Dahllöf
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Yama Osmai
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mirwais Osmai
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kathrine Kronberg Jakobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Alexander Aivazidis
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Björn Tyrberg
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Dan Ploug Christensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Morten Fog-Tonnesen
- Diabetes Biology and Hagedorn Research Institute, Novo Nordisk, Copenhagen, Denmark
| | - Morten Lundh
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Fabio Grassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Lucienne Chatenoud
- Hospital Necker-Enfants Malades, Université Paris Descartes, INSERM, Paris, France
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
33
|
Kelly AC, Camacho LE, Pendarvis K, Davenport HM, Steffens NR, Smith KE, Weber CS, Lynch RM, Papas KK, Limesand SW. Adrenergic receptor stimulation suppresses oxidative metabolism in isolated rat islets and Min6 cells. Mol Cell Endocrinol 2018; 473:136-145. [PMID: 29360563 PMCID: PMC6045463 DOI: 10.1016/j.mce.2018.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/24/2023]
Abstract
Insulin secretion is stimulated by glucose metabolism and inhibited by catecholamines through adrenergic receptor stimulation. We determined whether catecholamines suppress oxidative metabolism in β-cells through adrenergic receptors. In Min6 cells and isolated rat islets, epinephrine decreased oxygen consumption rates compared to vehicle control or co-administration of epinephrine with α2-adrenergic receptor antagonist yohimbine. Epinephrine also decreased forskolin-stimulated oxygen consumption rates, indicating cAMP dependent and independent actions. Furthermore, glucose oxidation rates were decreased with epinephrine, independent of the exocytosis of insulin, which was blocked with yohimbine. We evaluated metabolic targets through proteomic analysis after 4 h epinephrine exposure that revealed 466 differentially expressed proteins that were significantly enriched for processes including oxidative metabolism, protein turnover, exocytosis, and cell proliferation. These results demonstrate that acute α2-adrenergic stimulation suppresses glucose oxidation in β-cells independent of nutrient availability and insulin exocytosis, while cAMP concentrations are elevated. Proteomics and immunoblots revealed changes in electron transport chain proteins that were correlated with lower metabolic reducing equivalents, intracellular ATP concentrations, and altered mitochondrial membrane potential implicating a new role for adrenergic control of mitochondrial function and ultimately insulin secretion.
Collapse
Affiliation(s)
- Amy C Kelly
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Leticia E Camacho
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Ken Pendarvis
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Hailey M Davenport
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Nathan R Steffens
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Kate E Smith
- Department of Surgery, University of Arizona, Tucson AZ, United States
| | - Craig S Weber
- Department of Physiology, University of Arizona, Tucson AZ, United States
| | - Ronald M Lynch
- Department of Physiology, University of Arizona, Tucson AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson AZ, United States
| | - Sean W Limesand
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States.
| |
Collapse
|
34
|
Bugliani M, Syed F, Paula FMM, Omar BA, Suleiman M, Mossuto S, Grano F, Cardarelli F, Boggi U, Vistoli F, Filipponi F, De Simone P, Marselli L, De Tata V, Ahren B, Eizirik DL, Marchetti P. DPP-4 is expressed in human pancreatic beta cells and its direct inhibition improves beta cell function and survival in type 2 diabetes. Mol Cell Endocrinol 2018; 473:186-193. [PMID: 29409957 DOI: 10.1016/j.mce.2018.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/20/2017] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
It has been reported that the incretin system, including regulated GLP-1 secretion and locally expressed DPP-4, is present in pancreatic islets. In this study we comprehensively evaluated the expression and role of DPP-4 in islet alpha and beta cells from non-diabetic (ND) and type 2 diabetic (T2D) individuals, including the effects of its inhibition on beta cell function and survival. Isolated islets were prepared from 25 ND and 18 T2D organ donors; studies were also performed with the human insulin-producing EndoC-βH1 cells. Morphological (including confocal microscopy), ultrastructural (electron microscopy, EM), functional (glucose-stimulated insulin secretion), survival (EM and nuclear dyes) and molecular (RNAseq, qPCR and western blot) studies were performed under several different experimental conditions. DPP-4 co-localized with glucagon and was also expressed in human islet insulin-containing cells. Furthermore, DPP-4 was expressed in EndoC-βH1 cells. The proportions of DPP-4 positive alpha and beta cells and DPP-4 gene expression were significantly lower in T2D islets. A DPP-4 inhibitor protected ND human beta cells and EndoC-βH1 cells against cytokine-induced toxicity, which was at least in part independent from GLP1 and associated with reduced NFKB1 expression. Finally, DPP-4 inhibition augmented glucose-stimulated insulin secretion, reduced apoptosis and improved ultrastructure in T2D beta cells. These results demonstrate the presence of DPP-4 in human islet alpha and beta cells, with reduced expression in T2D islets, and show that DPP-4 inhibition has beneficial effects on human ND and T2D beta cells. This suggests that DPP-4, besides playing a role in incretin effects, directly affects beta cell function and survival.
Collapse
Affiliation(s)
- Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Farooq Syed
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Flavia M M Paula
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Bilal A Omar
- Lund University, Department of Clinical Sciences, Lund Sweden
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Sandra Mossuto
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Francesca Grano
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Francesco Cardarelli
- National Enterprise for NanoScience and NanoTechnology (NEST), CNR and Scuola Normale Superiore, Pisa, Italy
| | - Ugo Boggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fabio Vistoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Franco Filipponi
- Department of Surgical Pathology, Medicine, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo De Simone
- Department of Surgical Pathology, Medicine, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Bo Ahren
- Lund University, Department of Clinical Sciences, Lund Sweden
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy.
| |
Collapse
|
35
|
Chatterjee Bhowmick D, Jeremic A. Functional proteasome complex is required for turnover of islet amyloid polypeptide in pancreatic β-cells. J Biol Chem 2018; 293:14210-14223. [PMID: 30012886 DOI: 10.1074/jbc.ra118.002414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) is the principal constituent of amyloid deposits and toxic oligomers in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Here, we explored the role of the cell's main proteolytic complex, the proteasome, in hIAPP turnover in normal and stressed β-cells evoked by chronic hyperglycemia. Moderate inhibition (10-35%) of proteasome activity/function in cultured human islets by the proteasome inhibitor lactacystin enhanced intracellular accumulation of hIAPP. Unexpectedly, prolonged (>1 h) and marked (>50%) impairment of proteasome activity/function had a strong inhibitory effect on hIAPP transcription and secretion from normal and stressed β-cells. This negative compensatory feedback mechanism for controlling IAPP turnover was also observed in the lactacystin-treated rat insulinoma β-cell line (INS 832/13), demonstrating the presence of an evolutionarily conserved mechanism for IAPP production. In line with these in situ studies, our current ex vivo data showed that proteasome activity and hIAPP expression are also down-regulated in islets isolated from T2DM subjects. Gene expression and promoter activity studies demonstrated that the functional proteasome complex is required for efficient activation of the hIAPP promoter and for full expression of IAPP's essential transcription factor, FOXA2. ChIP studies revealed that promoter occupancy of FoxA2 at the rat IAPP promoter region is an important and limiting factor for amylin expression in proteasome-impaired murine cells. This study suggests a novel regulatory pathway in β-cells involving proteasome, FOXA2, and IAPP, which can be possibly targeted to regulate hIAPP levels and islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Diti Chatterjee Bhowmick
- From the Departments of Biological Sciences and Biomedical Sciences, George Washington University, Washington, D. C. 20052
| | - Aleksandar Jeremic
- From the Departments of Biological Sciences and Biomedical Sciences, George Washington University, Washington, D. C. 20052
| |
Collapse
|
36
|
Ali Z, Chandrasekera PC, Pippin JJ. Animal research for type 2 diabetes mellitus, its limited translation for clinical benefit, and the way forward. Altern Lab Anim 2018; 46:13-22. [PMID: 29553794 DOI: 10.1177/026119291804600101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) have reached pandemic proportions worldwide, and considerable research efforts have been dedicated to investigating disease pathology and therapeutic options. The two hallmark features of T2DM, insulin resistance and pancreatic dysfunction, have been studied extensively by using various animal models. Despite the knowledge acquired from such models, particularly mechanistic discoveries that sometimes mimic human T2DM mechanisms or pathways, many details of human T2DM pathogenesis remain unknown, therapeutic options remain limited, and a cure has eluded research. Emerging human data have raised concern regarding inter-species differences at many levels (e.g. in gene regulation, pancreatic cytoarchitecture, glucose transport, and insulin secretion regulation), and the subsequent impact of these differences on the clinical translation of animal research findings. Therefore, it is important to recognise and address the translational gap between basic animal-based research and the clinical advances needed to prevent and treat T2DM. The purpose of this report is to identify some limitations of T2DM animal research, and to propose how greater human relevance and applicability of hypothesis-driven basic T2DM research could be achieved through the use of human-based data acquisition at various biological levels. This report addresses how in vitro, in vivo and in silico technologies could be used to investigate particular aspects of human glucose regulation. We do not propose that T2DM animal research has been without value in the identification of mechanisms, pathways, or potential targets for therapies, nor do we claim that human-based methods can provide all the answers. We recognise that the ultimate goal of T2DM animal research is to identify ways to advance the prevention, recognition and treatment of T2DM in humans, but postulate that this is where the use of animal models falls short, despite decades of effort. The best way to achieve this goal is by prioritising human-centred research.
Collapse
Affiliation(s)
- Zeeshan Ali
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | - John J Pippin
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| |
Collapse
|
37
|
An SCF FBXO28 E3 Ligase Protects Pancreatic β-Cells from Apoptosis. Int J Mol Sci 2018; 19:ijms19040975. [PMID: 29587369 PMCID: PMC5979299 DOI: 10.3390/ijms19040975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023] Open
Abstract
Loss of pancreatic β-cell function and/or mass is a central hallmark of all forms of diabetes but its molecular basis is incompletely understood. β-cell apoptosis contributes to the reduced β-cell mass in diabetes. Therefore, the identification of important signaling molecules that promote β-cell survival in diabetes could lead to a promising therapeutic intervention to block β-cell decline during development and progression of diabetes. In the present study, we identified F-box protein 28 (FBXO28), a substrate-recruiting component of the Skp1-Cul1-F-box (SCF) ligase complex, as a regulator of pancreatic β-cell survival. FBXO28 was down-regulated in β-cells and in isolated human islets under diabetic conditions. Consistently, genetic silencing of FBXO28 impaired β-cell survival, and restoration of FBXO28 protected β-cells from the harmful effects of the diabetic milieu. Although FBXO28 expression positively correlated with β-cell transcription factor NEUROD1 and FBXO28 depletion also reduced insulin mRNA expression, neither FBXO28 overexpression nor depletion had any significant impact on insulin content, glucose-stimulated insulin secretion (GSIS) or on other genes involved in glucose sensing and metabolism or on important β-cell transcription factors in isolated human islets. Consistently, FBXO28 overexpression did not further alter insulin content and GSIS in freshly isolated islets from patients with type 2 diabetes (T2D). Our data show that FBXO28 improves pancreatic β-cell survival under diabetogenic conditions without affecting insulin secretion, and its restoration may be a novel therapeutic tool to promote β-cell survival in diabetes.
Collapse
|
38
|
Gorrepati KDD, Lupse B, Annamalai K, Yuan T, Maedler K, Ardestani A. Loss of Deubiquitinase USP1 Blocks Pancreatic β-Cell Apoptosis by Inhibiting DNA Damage Response. iScience 2018; 1:72-86. [PMID: 30227958 PMCID: PMC6135944 DOI: 10.1016/j.isci.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Impaired pancreatic β-cell survival contributes to the reduced β-cell mass in diabetes, but underlying regulatory mechanisms and key players in this process remain incompletely understood. Here, we identified the deubiquitinase ubiquitin-specific protease 1 (USP1) as an important player in the regulation of β-cell apoptosis under diabetic conditions. Genetic silencing and pharmacological suppression of USP1 blocked β-cell death in several experimental models of diabetes in vitro and ex vivo without compromising insulin content and secretion and without impairing β-cell maturation/identity genes in human islets. Our further analyses showed that USP1 inhibition attenuated DNA damage response (DDR) signals, which were highly elevated in diabetic β-cells, suggesting a USP1-dependent regulation of DDR in stressed β-cells. Our findings highlight a novel function of USP1 in the control of β-cell survival, and its inhibition may have a potential therapeutic relevance for the suppression of β-cell death in diabetes. Genetic and chemical inhibition of USP1 promoted β-cell survival USP1 inhibitors blocked β-cell death in human islets without affecting β-cell function USP1 inhibition reduced DDR signals in stressed β-cells
Collapse
Affiliation(s)
- Kanaka Durga Devi Gorrepati
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Blaz Lupse
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Karthika Annamalai
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Ting Yuan
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Kathrin Maedler
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| | - Amin Ardestani
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| |
Collapse
|
39
|
Solimena M, Schulte AM, Marselli L, Ehehalt F, Richter D, Kleeberg M, Mziaut H, Knoch KP, Parnis J, Bugliani M, Siddiq A, Jörns A, Burdet F, Liechti R, Suleiman M, Margerie D, Syed F, Distler M, Grützmann R, Petretto E, Moreno-Moral A, Wegbrod C, Sönmez A, Pfriem K, Friedrich A, Meinel J, Wollheim CB, Baretton GB, Scharfmann R, Nogoceke E, Bonifacio E, Sturm D, Meyer-Puttlitz B, Boggi U, Saeger HD, Filipponi F, Lesche M, Meda P, Dahl A, Wigger L, Xenarios I, Falchi M, Thorens B, Weitz J, Bokvist K, Lenzen S, Rutter GA, Froguel P, von Bülow M, Ibberson M, Marchetti P. Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 2018; 61:641-657. [PMID: 29185012 PMCID: PMC5803296 DOI: 10.1007/s00125-017-4500-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/29/2017] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.
Collapse
Affiliation(s)
- Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), 01307, Dresden, Germany.
| | - Anke M Schulte
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Building H821, 65926, Frankfurt am Main, Germany.
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Florian Ehehalt
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Daniela Richter
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Manuela Kleeberg
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Hassan Mziaut
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Klaus-Peter Knoch
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Julia Parnis
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Afshan Siddiq
- Queen Mary University of London, Dawson Hall, London, UK
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Frédéric Burdet
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland
| | - Robin Liechti
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Daniel Margerie
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Building H821, 65926, Frankfurt am Main, Germany
| | - Farooq Syed
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Marius Distler
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Robert Grützmann
- Department of Surgery, University Hospital of Erlangen, Erlangen, Germany
| | - Enrico Petretto
- Medical Research Council (MRC), Institute of Medical Sciences, Imperial College London, London, UK
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Aida Moreno-Moral
- Medical Research Council (MRC), Institute of Medical Sciences, Imperial College London, London, UK
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Carolin Wegbrod
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Anke Sönmez
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Katja Pfriem
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Anne Friedrich
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Jörn Meinel
- Department of Pathology, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, Geneva University Medical Center, Geneva, Switzerland
| | - Gustavo B Baretton
- Department of Pathology, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Raphael Scharfmann
- INSERM, U1016, Institut Cochin, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Everson Nogoceke
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland
| | - Ezio Bonifacio
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Dorothée Sturm
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Birgit Meyer-Puttlitz
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Building H821, 65926, Frankfurt am Main, Germany
| | - Ugo Boggi
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Hans-Detlev Saeger
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franco Filipponi
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | | | - Paolo Meda
- Department of Cell Physiology and Metabolism, Geneva University Medical Center, Geneva, Switzerland
| | - Andreas Dahl
- Biotechnology Center, TU Dresden, Dresden, Germany
| | - Leonore Wigger
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland
| | - Ioannis Xenarios
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland
| | - Mario Falchi
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| | - Bernard Thorens
- Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jürgen Weitz
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Krister Bokvist
- Lilly Research Laboratories, Eli Lilly, Indianapolis, IN, USA
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Philippe Froguel
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University Hospital, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manon von Bülow
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Building H821, 65926, Frankfurt am Main, Germany
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland.
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy.
| |
Collapse
|
40
|
Rashid CS, Lien YC, Bansal A, Jaeckle-Santos LJ, Li C, Won KJ, Simmons RA. Transcriptomic Analysis Reveals Novel Mechanisms Mediating Islet Dysfunction in the Intrauterine Growth-Restricted Rat. Endocrinology 2018; 159:1035-1049. [PMID: 29309562 PMCID: PMC5793792 DOI: 10.1210/en.2017-00888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of type 2 diabetes developing in adulthood. In previous studies that used bilateral uterine artery ligation in a rat model of IUGR, age-associated decline in glucose homeostasis and islet function was revealed. To elucidate mechanisms contributing to IUGR pathogenesis, the islet transcriptome was sequenced from 2-week-old rats, when in vivo glucose tolerance is mildly impaired, and at 10 weeks of age, when rats are hyperglycemic and have reduced β-cell mass. RNA sequencing and functional annotation with Ingenuity Pathway Analysis revealed temporal changes in IUGR islets. For instance, gene expression involving amino acid metabolism was significantly reduced primarily at 2 weeks of age, but ion channel expression, specifically that involved in cell-volume regulation, was more disrupted in adult IUGR islets. Additionally, we observed alterations in the microenvironment of IUGR islets with extracellular matrix genes being significantly increased at 2 weeks of age and significantly decreased at 10 weeks. Specifically, hyaluronan synthase 2 expression and hyaluronan staining were increased in IUGR islets at 2 weeks of age (P < 0.05). Mesenchymal stromal cell-derived factors that have been shown to preserve islet allograft function, such as Anxa1, Cxcl12, and others, also were increased at 2 weeks and decreased in adult islets. Finally, comparisons of differentially expressed genes with those of type 2 diabetic human islets support a role for these pathways in human patients with diabetes. Together, these data point to new mechanisms in the pathogenesis of IUGR-mediated islet dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Cetewayo S. Rashid
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amita Bansal
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Lane J. Jaeckle-Santos
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
- Institute for Diabetes, Obesity, and Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity, and Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Genetics, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rebecca A. Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
41
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 2017; 6:943-957. [PMID: 28951820 PMCID: PMC5605733 DOI: 10.1016/j.molmet.2017.06.019] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Plasma insulin levels are predominantly the product of the morphological mass of insulin producing beta cells in the pancreatic islets of Langerhans and the functional status of each of these beta cells. Thus, deficiency in either beta cell mass or function, or both, can lead to insufficient levels of insulin, resulting in hyperglycemia and diabetes. Nonetheless, the precise contribution of beta cell mass and function to the pathogenesis of diabetes as well as the underlying mechanisms are still unclear. In the past, this was largely due to the restricted number of technologies suitable for studying the scarcely accessible human beta cells. However, in recent years, a number of new platforms have been established to expand the available techniques and to facilitate deeper insight into the role of human beta cell mass and function as cause for diabetes and as potential treatment targets. SCOPE OF REVIEW This review discusses the current knowledge about contribution of human beta cell mass and function to different stages of type 1 and type 2 diabetes pathogenesis. Furthermore, it highlights standard and newly developed technological platforms for the study of human beta cell biology, which can be used to increase our understanding of beta cell mass and function in human glucose homeostasis. MAJOR CONCLUSIONS In contrast to early disease models, recent studies suggest that in type 1 and type 2 diabetes impairment of beta cell function is an early feature of disease pathogenesis while a substantial decrease in beta cell mass occurs more closely to clinical manifestation. This suggests that, in addition to beta cell mass replacement for late stage therapies, the development of novel strategies for protection and recovery of beta cell function could be most promising for successful diabetes treatment and prevention. The use of today's developing and wide range of technologies and platforms for the study of human beta cells will allow for a more detailed investigation of the underlying mechanisms and will facilitate development of treatment approaches to specifically target human beta cell mass and function.
Collapse
Affiliation(s)
- Chunguang Chen
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian M. Cohrs
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia Stertmann
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Robert Bozsak
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
43
|
Purwana I, Liu JJ, Portha B, Buteau J. HSF1 acetylation decreases its transcriptional activity and enhances glucolipotoxicity-induced apoptosis in rat and human beta cells. Diabetologia 2017; 60:1432-1441. [PMID: 28547133 DOI: 10.1007/s00125-017-4310-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/13/2017] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Heat shock factor protein 1 (HSF1) is a transcription factor that regulates the expression of key molecular chaperones, thereby orchestrating the cellular response to stress. This system was recently implicated in the control of insulin sensitivity and is therefore being scrutinised as a novel therapeutic avenue for type 2 diabetes. However, the regulation and biological actions of HSF1 in beta cells remain elusive. Herein, we sought to investigate the regulation of HSF1 in pancreatic beta cells and to study its potential role in cell survival. METHODS We exposed human islets and beta cell lines to glucolipotoxicity and thapsigargin. HSF1 activity was evaluated by gel shift assay. HSF1 acetylation and interaction with the protein acetylase cAMP response element binding protein (CBP) were investigated by western blot. We measured the expression of HSF1 and its canonical targets in islets from Goto-Kakizaki (GK) rat models of diabetes and delineated the effects of HSF1 acetylation using mutants mimicking constitutive acetylation and deacetylation of the protein. RESULTS Glucolipotoxicity promoted HSF1 acetylation and interaction with CBP. Glucolipotoxicity-induced HSF1 acetylation inhibited HSF1 DNA binding activity and decreased the expression of its target genes. Restoration of HSF1 activity in beta cells prevented glucolipotoxicity-induced endoplasmic reticulum stress and apoptosis. However, overexpression of a mutant protein (K80Q) mimicking constitutive acetylation of HSF1 failed to confer protection against glucolipotoxicity. Finally, we showed that expression of HSF1 and its target genes were altered in islets from diabetic GK rats, suggesting that this pathway could participate in the pathophysiology of diabetes and constitutes a potential site for therapeutic intervention. CONCLUSIONS/INTERPRETATION Our results unravel a new mechanism by which HSF1 inhibition is required for glucolipotoxicity-induced beta cell apoptosis. Restoring HSF1 activity may represent a novel strategy for the maintenance of a functional beta cell mass. Our study supports the therapeutic potential of HSF1/heat shock protein-targeting agents in diabetes treatment.
Collapse
Affiliation(s)
- Indri Purwana
- Alberta Diabetes Institute, University of Alberta, Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jun J Liu
- Laboratoire Biologie et Pathologie du Pancréas Endocrine (B2PE), Unité Biologie Fonctionnelle et Adaptive (BFA), Centre national de la recherche scientifique (CNRS), Unité mixte de recherche (UMR) 8251, Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France
| | - Bernard Portha
- Laboratoire Biologie et Pathologie du Pancréas Endocrine (B2PE), Unité Biologie Fonctionnelle et Adaptive (BFA), Centre national de la recherche scientifique (CNRS), Unité mixte de recherche (UMR) 8251, Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France
| | - Jean Buteau
- Alberta Diabetes Institute, University of Alberta, Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
44
|
Malenczyk K, Girach F, Szodorai E, Storm P, Segerstolpe Å, Tortoriello G, Schnell R, Mulder J, Romanov RA, Borók E, Piscitelli F, Di Marzo V, Szabó G, Sandberg R, Kubicek S, Lubec G, Hökfelt T, Wagner L, Groop L, Harkany T. A TRPV1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO J 2017; 36:2107-2125. [PMID: 28637794 PMCID: PMC5510001 DOI: 10.15252/embj.201695347] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022] Open
Abstract
Ca2+-sensor proteins are generally implicated in insulin release through SNARE interactions. Here, secretagogin, whose expression in human pancreatic islets correlates with their insulin content and the incidence of type 2 diabetes, is shown to orchestrate an unexpectedly distinct mechanism. Single-cell RNA-seq reveals retained expression of the TRP family members in β-cells from diabetic donors. Amongst these, pharmacological probing identifies Ca2+-permeable transient receptor potential vanilloid type 1 channels (TRPV1) as potent inducers of secretagogin expression through recruitment of Sp1 transcription factors. Accordingly, agonist stimulation of TRPV1s fails to rescue insulin release from pancreatic islets of glucose intolerant secretagogin knock-out(-/-) mice. However, instead of merely impinging on the SNARE machinery, reduced insulin availability in secretagogin-/- mice is due to β-cell loss, which is underpinned by the collapse of protein folding and deregulation of secretagogin-dependent USP9X deubiquitinase activity. Therefore, and considering the desensitization of TRPV1s in diabetic pancreata, a TRPV1-to-secretagogin regulatory axis seems critical to maintain the structural integrity and signal competence of β-cells.
Collapse
Affiliation(s)
- Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fatima Girach
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petter Storm
- Department of Clinical Sciences, Diabetes and Endocrinology CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Åsa Segerstolpe
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | | | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jan Mulder
- Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erzsébet Borók
- Department of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli Naples, Italy
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rickard Sandberg
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Stefan Kubicek
- CeMM Research Centre for Molecular Medicine, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ludwig Wagner
- University Clinic for Internal Medicine III, General Hospital Vienna, Vienna, Austria
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Lundh M, Bugliani M, Dahlby T, Chou DHC, Wagner B, Ghiasi SM, De Tata V, Chen Z, Lund MN, Davies MJ, Marchetti P, Mandrup-Poulsen T. The immunoproteasome is induced by cytokines and regulates apoptosis in human islets. J Endocrinol 2017; 233:369-379. [PMID: 28438776 PMCID: PMC5501413 DOI: 10.1530/joe-17-0110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
In addition to degrading misfolded and damaged proteins, the proteasome regulates the fate of cells in response to stress. The role of the proteasome in pro-inflammatory cytokine-induced human beta-cell apoptosis is unknown. Using INS-1, INS-1E and human islets exposed to combinations of IFNγ, IL-1β and TNFα with or without addition of small molecules, we assessed the role of the immunoproteasome in pancreatic beta-cell demise. Here, we show that cytokines induce the expression and activity of the immuno-proteasome in INS-1E cells and human islets. Cytokine-induced expression of immuno-proteasome subunits, but not activity, depended upon histone deacetylase 3 activation. Inhibition of JAK1/STAT1 signaling did not affect proteasomal activity. Inhibition of the immuno-proteasome subunit PSMB8 aggravated cytokine-induced human beta-cell apoptosis while reducing intracellular levels of oxidized proteins in INS-1 cells. While cytokines increased total cellular NFκB subunit P50 and P52 levels and reduced the cytosolic NFκB subunit P65 and IκB levels, these effects were unaffected by PSMB8 inhibition. We conclude that beta cells upregulate immuno-proteasome expression and activity in response to IFNγ, likely as a protective response to confine inflammatory signaling.
Collapse
Affiliation(s)
- Morten Lundh
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Marco Bugliani
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | - Tina Dahlby
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Danny Hung-Chieh Chou
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Bridget Wagner
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | | | - Vincenzo De Tata
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Zhifei Chen
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Marianne Nissan Lund
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
- Department of Food ScienceUniversity of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Piero Marchetti
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | | |
Collapse
|
46
|
Marchetti P, Bugliani M, De Tata V, Suleiman M, Marselli L. Pancreatic Beta Cell Identity in Humans and the Role of Type 2 Diabetes. Front Cell Dev Biol 2017; 5:55. [PMID: 28589121 PMCID: PMC5440564 DOI: 10.3389/fcell.2017.00055] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic beta cells uniquely synthetize, store, and release insulin. Specific molecular, functional as well as ultrastructural traits characterize their insulin secretion properties and survival phentoype. In this review we focus on human islet/beta cells, and describe the changes that occur in type 2 diabetes and could play roles in the disease as well as represent possible targets for therapeutical interventions. These include transcription factors, molecules involved in glucose metabolism and insulin granule handling. Quantitative and qualitative insulin release patterns and their changes in type 2 diabetes are also associated with ultrastructural features involving the insulin granules, the mitochondria, and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Vincenzo De Tata
- Department of Translational Medicine, University of PisaPisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| |
Collapse
|
47
|
Dahan T, Ziv O, Horwitz E, Zemmour H, Lavi J, Swisa A, Leibowitz G, Ashcroft FM, In't Veld P, Glaser B, Dor Y. Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes. Diabetes 2017; 66:426-436. [PMID: 27864307 PMCID: PMC5248995 DOI: 10.2337/db16-0641] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022]
Abstract
β-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of β-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin+ cells, gastrin expression in humans with T2D occurs in both insulin+ and somatostatin+ cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated β-cells after exposure to severe hyperglycemia. Gastrin expression in adult β-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of β-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human β-cell reprogramming in diabetes.
Collapse
Affiliation(s)
- Tehila Dahan
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Oren Ziv
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Elad Horwitz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Hai Zemmour
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Judith Lavi
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avital Swisa
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Frances M Ashcroft
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, U.K
| | - Peter In't Veld
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
48
|
A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Syst 2016; 3:385-394.e3. [PMID: 27693023 PMCID: PMC5092539 DOI: 10.1016/j.cels.2016.09.002] [Citation(s) in RCA: 798] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/04/2016] [Accepted: 09/07/2016] [Indexed: 11/21/2022]
Abstract
To understand organ function, it is important to have an inventory of its cell types and of their corresponding marker genes. This is a particularly challenging task for human tissues like the pancreas, because reliable markers are limited. Hence, transcriptome-wide studies are typically done on pooled islets of Langerhans, obscuring contributions from rare cell types and of potential subpopulations. To overcome this challenge, we developed an automated platform that uses FACS, robotics, and the CEL-Seq2 protocol to obtain the transcriptomes of thousands of single pancreatic cells from deceased organ donors, allowing in silico purification of all main pancreatic cell types. We identify cell type-specific transcription factors and a subpopulation of REG3A-positive acinar cells. We also show that CD24 and TM4SF4 expression can be used to sort live alpha and beta cells with high purity. This resource will be useful for developing a deeper understanding of pancreatic biology and pathophysiology of diabetes mellitus. Single-cell sequencing of human pancreas allows in silico purification of cell types We provide cell-type-specific genes, transcription factors, and cell-surface markers StemID finds outlier populations of acinar and beta cells CD24 and TM4SF4 function as two markers to enrich for alpha and beta cells
Collapse
|
49
|
Singh KK, Mantella LE, Pan Y, Quan A, Sabongui S, Sandhu P, Teoh H, Al-Omran M, Verma S. A global profile of glucose-sensitive endothelial-expressed long non-coding RNAs. Can J Physiol Pharmacol 2016; 94:1007-14. [DOI: 10.1139/cjpp-2015-0585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperglycemia-related endothelial dysfunction is believed to be the crux of diabetes-associated micro- and macro-vascular complications. We conducted a systematic transcriptional survey to screen for human endothelial long non-coding RNAs (lncRNAs) regulated by elevated glucose levels. lncRNAs and protein-coding transcripts from human umbilical vein endothelial cells (HUVECs) cultured under high (25 mmol/L) or normal (5 mmol/L) glucose conditions for 24 h were profiled with the Arraystar Human LncRNA Expression Microarray V3.0. Of the 30 586 lncRNAs screened, 100 were significantly upregulated and 186 appreciably downregulated (P < 0.05) in response to high-glucose exposure. In the same HUVEC samples, 133 of the 26 109 mRNAs screened were upregulated and 166 downregulated. Of these 299 differentially expressed mRNAs, 26 were significantly associated with 28 differentially expressed long intergenic non-coding RNAs (P < 0.05). Bioinformatics analyses indicated that the mRNAs most upregulated are primarily enriched in axon guidance signaling pathways; those most downregulated are notably involved in pathways targeting vascular smooth muscle cell contraction, dopaminergic signaling, ubiquitin-mediated proteolysis, and adrenergic signaling. This is the first lncRNA and mRNA transcriptome profile of high-glucose-mediated changes in human endothelial cells. These observations may prove novel insights into novel regulatory molecules and pathways of hyperglycemia-related endothelial dysfunction and, accordingly, diabetes-associated vascular disease.
Collapse
Affiliation(s)
- Krishna K. Singh
- Divisions of Cardiac Surgery and Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Laura-Eve Mantella
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yi Pan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Sandra Sabongui
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Paul Sandhu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Hwee Teoh
- Divisions of Cardiac Surgery and Endocrinology & Metabolism, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Mohammed Al-Omran
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery, King Saud University and the King Saud University – Li Ka Shing Collaborative Research Program, Riyadh, Kingdom of Saudi Arabia
| | - Subodh Verma
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
50
|
Glucolipotoxicity initiates pancreatic β-cell death through TNFR5/CD40-mediated STAT1 and NF-κB activation. Cell Death Dis 2016; 7:e2329. [PMID: 27512950 PMCID: PMC5108311 DOI: 10.1038/cddis.2016.203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes is a chronic metabolic disorder, where failure to maintain normal glucose homoeostasis is associated with, and exacerbated by, obesity and the concomitant-elevated free fatty acid concentrations typically found in these patients. Hyperglycaemia and hyperlipidaemia together contribute to a decline in insulin-producing β-cell mass through activation of the transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)-1. There are however a large number of molecules potentially able to modulate NF-κB and STAT1 activity, and the mechanism(s) by which glucolipotoxicity initially induces NF-κB and STAT1 activation is currently poorly defined. Using high-density microarray analysis of the β-cell transcritptome, we have identified those genes and proteins most sensitive to glucose and fatty acid environment. Our data show that of those potentially able to activate STAT1 or NF-κB pathways, tumour necrosis factor receptor (TNFR)-5 is the most highly upregulated by glucolipotoxicity. Importantly, our data also show that the physiological ligand for TNFR5, CD40L, elicits NF-κB activity in β-cells, whereas selective knockdown of TNFR5 ameliorates glucolipotoxic induction of STAT1 expression and NF-κB activity. This data indicate for the first time that TNFR5 signalling has a major role in triggering glucolipotoxic islet cell death.
Collapse
|