1
|
Shi X, Wen M, Dong Z, Zhang J, Srivastava AK, Moussa MG, Zhang Y. Periodicity of Fruit Cracking in Orange Fruit and Integrated Management Intervention. PLANTS (BASEL, SWITZERLAND) 2025; 14:389. [PMID: 39942950 PMCID: PMC11820626 DOI: 10.3390/plants14030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025]
Abstract
Fruit cracking in citrus is one of the most researched constraints in crop management. However, researchers are still clueless even today on how to curtail this important production loss through an integrated management system. Our study introduces a management strategy for fruit cracking in citrus by analyzing different production constraints. As many as 70 Bingtang orange (Citrus sinensis L. Osbeck cv. Bingtang) orchards in Xinping County were investigated to determine the intensity and periodicity of fruit cracking. The results indicated that citrus cracking was in a high incidence state during production in the past two years, accounting for 48.2-50.6% of fruit drop following the physiological premature drop period, particularly exacerbating in the year with irregular rainfall (from June to September). Among factors such as soil texture, soil fertility, and orchard management, the soil sand proportion, soil calcium, soil potassium, and soil magnesium content were the main factors contributing to the occurrence of fruit cracking, with contributions of 18.57%, 17.14%, 10.00%, and 8.75%, respectively. Fruit cracking was significantly positively correlated with soil magnesium content (0.802) and significantly negatively correlated with soil calcium (0.8007), potassium (0.7616), and soil sand proportion (0.7826). The integrated management treatment (organic fertilizer to improve soil + foliar nutrient supplementation) showed better control on fruit cracking by 9.34-65.25% and an increase in yield by 4.13-37.49%, respectively, compared to the supplementation of a single element in all orchards with different production and quality traits. Our findings could thus help citrus growers optimize cultivation techniques for quality citrus production under increasingly changing climatic conditions.
Collapse
Affiliation(s)
- Xingjian Shi
- College of Resources and Environment, China Agriculture University, Beijing 100193, China; (X.S.); (Z.D.)
- Guangxi Academy of Specialty Crops, Guilin 541004, China;
| | - Mingxia Wen
- Zhejiang Institute of Citrus Research, Taizhou 318026, China
| | - Zhihao Dong
- College of Resources and Environment, China Agriculture University, Beijing 100193, China; (X.S.); (Z.D.)
| | - Jiangzhou Zhang
- College of Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China;
| | - Anoop Kumar Srivastava
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur 440033, Maharashtra, India;
| | - Mohamed G. Moussa
- International Center for Biosaline Agriculture, Dubai P.O. Box 14660, United Arab Emirates;
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing 610072, China;
| |
Collapse
|
2
|
Yu X, Du C, Wang X, Gao F, Lu J, Di X, Zhuang X, Cheng C, Yao F. Multivariate analysis between environmental factors and fruit quality of citrus at the core navel orange-producing area in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1510827. [PMID: 39717729 PMCID: PMC11664551 DOI: 10.3389/fpls.2024.1510827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024]
Abstract
Gannan is the largest navel orange production area in China. Most studies have primarily focused on the effects of either soil or topographic factors on the quality of navel oranges. However, there has been a lack of research exploring the relationship between navel orange quality and multiple environmental factors (meteorological, topographic, and soil). This study focused on Gannan navel oranges, selecting standard orchards in the core navel orange-producing area as the research region. It employed the Partial Least Squares Regression (PLSR) method to investigate the extent of the impact of environmental factors on fruit quality. The results indicated that the effect of soil factors on fruit shape and fruit flavor was greater than that of meteorological and topographic factors in the Gannan area. And the fruit peel is more uniformly influenced by environmental factors. Based on the degree of impact of various environmental factors, multiple regression equations for fruit quality have been established to identify the optimal conditions conducive to the comprehensive development of Gannan navel oranges. These findings help determine the optimal planting areas for Gannan navel oranges, providing practical evidence for the future development of navel oranges.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Chao Du
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Xiaojun Wang
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Fengying Gao
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Jing Lu
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Xinyue Di
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Xia Zhuang
- National Navel Orange Engineering Research Center, School of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Chen Cheng
- National Navel Orange Engineering Research Center, School of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fengxian Yao
- National Navel Orange Engineering Research Center, School of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
3
|
Mahmood SU, Huang X, Mao R, Hao H, Fang X. Integrated Biological Control Strategies for Citrus Rust Mites: Distribution, Impact on Mandarin Quality, and the Efficacy of Amblyseius largoensis. INSECTS 2024; 15:837. [PMID: 39590436 PMCID: PMC11594963 DOI: 10.3390/insects15110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Citrus rust mites (Phyllocoptruta oleivora Ashmead) are a major pest in citrus orchards, significantly affecting fruit quality and yield. Effective management of these mites is crucial for maintaining the economic viability of citrus production. This study investigated the ecological distribution of citrus rust mites and their natural predator, A. largoensis, in a mandarin orchard in Zengcheng District, Guangzhou City, of China. This research focused on population densities across different orchard sections and assessed the impact of mite infestations on the biochemical composition of mandarins, including vitamin C, soluble solids, acidity, and mineral content. Results showed that citrus rust mite populations were highest in the southern and western sections of the orchard. Infested fruits had reduced vitamin C and soluble solids but increased acidity and calcium levels. A. largoensis exhibited a strong functional (Type II) and numerical response, with higher predation rates and reproductive output for moderate prey densities. The findings emphasize the importance of targeted pest management strategies in citrus rust mite hotspots and highlight A. largoensis as a promising biological control agent. Future research should optimize its use in integrated pest management programs by focusing on areas of the orchard with high mite densities.
Collapse
Affiliation(s)
- Syed Usman Mahmood
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (S.U.M.); (R.M.)
| | - Xiaoyi Huang
- Department of Biological Sciences, School of Science, Qiongtai Normal University, Haikou 571127, China (H.H.)
| | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (S.U.M.); (R.M.)
| | - Huihua Hao
- Department of Biological Sciences, School of Science, Qiongtai Normal University, Haikou 571127, China (H.H.)
| | - Xiaoduan Fang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (S.U.M.); (R.M.)
| |
Collapse
|
4
|
Abdo AI, Li Y, Shi Z, El-Saadony MT, Alkahtani AM, Chen Y, Wang X, Zhang J, Wei H. Biochar of invasive plants alleviated impact of acid rain on soil microbial community structure and functionality better than liming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116726. [PMID: 39047360 DOI: 10.1016/j.ecoenv.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Acid rain and invasive plants have quintessential adverse impacts on terrestrial ecosystems. As an environmentally safe method for disposal of invasive plants, we tested the effect of biochar produced from these plants in altering soil deterioration under acid rain as compared with lime. Given the impacts of the feedstock type and soil properties on the response of soil to the added biochar, we hypothesized that the microbial community and functions would respond differently to the charred invasive plants under acid rain. A pot experiment was conducted to examine the response of soil microbiomes and functions to the biochar produced from Blackjack (Biden Pilosa), Wedelia (Wedelia trilobata), and Bitter vine (Mikania micrantha Kunth), or quicklime (CaO) at a rate of 1 % (w/w) under acid rain. Like soil pH, the nutrient contents (nitrogen, phosphorus, and potassium), calcium, and cation exchange capacity (CEC) were important as dominant edaphic factors affecting soil microbial community and functionality. In this respect, lime decreased nutrients availability, driven by 11-fold, 44 %, and 2-fold increments in calcium content, pH, and C/N ratio. Meanwhile, biochar improved nutrients availability under acid rain owing to maintaining a neutral pH (∼6.5), increasing calcium (by only 2-fold), and improving CEC, water repellency, and aggregation while decreasing the C/N ratio and aluminum content. Unlike biochar, lime decreased the relative abundance of Nitrosomonadaceae (the dominant ammonia-oxidizing bacteria) while augmenting the relative abundance of some fungal pathogens such as Spizellomycetaceae and Sporormiaceae. Given the highest nitrogen and dissolved organic carbon content than other biochar types, Wedelia-biochar resulted in the greatest relative abundance of Nitrosomonadaceae; thus, the microbial carbon and nitrogen biomasses were maximized. This study outlined the responses of the soil biogeochemical properties and the related microbial community structure and functionality to the biochar produced from invasive plants under acid rain. This study suggests that biochar can replace lime to ameliorate the effects of acid rain on soil physical, chemical and biological properties.
Collapse
Affiliation(s)
- Ahmed I Abdo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Yazheng Li
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Zhaoji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Yongjian Chen
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Xiaohui Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China.
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| |
Collapse
|
5
|
Amirfakhrian Z, Abdossi V, Mohammadi Torkashvand A, Weisany W, Ghanbari Jahromi M. Co-applied magnesium nanoparticles and biochar modulate salinity stress via regulating yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31806-31817. [PMID: 38637482 DOI: 10.1007/s11356-024-33329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
While previous studies have addressed the desirable effects of biochar (BC) or magnesium nanoparticles (Mg NPs) on salinity stress individually, there is a research gap regarding their simultaneous application. Additionally, the specific mechanisms underlying the effects of BC and Mg NPs on salinity in Physalis alkekengi L. remain unclear. This study aimed to investigate the synergistic effects of BC and Mg NPs on P. alkekengi L. under salinity stress conditions. A pot experiment was conducted with salinity at 100 and 200 mM sodium chloride (NaCl), as well as soil applied BC (4% v/v) and foliar applied Mg NPs (500 mg L-1) on physiological and biochemical properties of P. alkekengi L. The results represented that salinity, particularly 200 mM NaCl, significantly reduced plant yield (58%) and total chlorophyll (Chl, 36%), but increased superoxide dismutase (SOD, 82%) and catalase (CAT, 159%) activity relative to non-saline conditions. However, the co-application of BC and Mg NPs mitigated these negative effects and improved fruit yield, Chl, anthocyanin, and ascorbic acid. It also decreased the activity of antioxidant enzymes. Salinity also altered the fatty acid composition, increasing saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs), while decreasing monounsaturated fatty acids (MUFAs). The heat map analysis showed that fruit yield, anthocyanin, Chl, and CAT were sensitive to salinity. The findings can provide insights into the possibility of these amendments as sustainable strategies to mitigate salt stress and enhance plant productivity in affected areas.
Collapse
Affiliation(s)
- Zahra Amirfakhrian
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Abdossi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Purakayastha TJ, Bera T, Dey S, Pande P, Kumari S, Bhowmik A. Biochar aided priming of carbon and nutrient availability in three soil orders of India. Sci Rep 2024; 14:8420. [PMID: 38600155 PMCID: PMC11006917 DOI: 10.1038/s41598-024-56618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
In recent years biochar (BC) has gained importance for its huge carbon (C) sequestration potential and positive effects on various soil functions. However, there is a paucity of information on the long-term impact of BC on the priming effect and nutrient availability in soil with different properties. This study investigates the effects of BC prepared from rice husk (RBC4, RBC6), sugarcane bagasse (SBC4, SBC6) and mustard stalk (MBC4, MBC6) at 400 and 600 °C on soil C priming and nitrogen (N), phosphorus (P), and potassium (K) availability in an Alfisol, Inceptisol, and Mollisol. BC properties were analyzed, and its decomposition in three soil orders was studied for 290 days in an incubation experiment. Post-incubation, available N, P, and K in soil were estimated. CO2 evolution from BC and soil alone was also studied to determine the direction of priming effect on native soil C. Increasing pyrolysis temperature enhanced pH and EC of most of the BC. The pyrolysis temperature did not show clear trend with respect to priming effect and nutrient availability across feedstock and soil type. MBC6 increased C mineralization in all the soil orders while RBC6 in Alfisol and SBC6 in both Inceptisol and Mollisol demonstrated high negative priming, making them potential amendments for preserving native soil C. Most of the BC showed negative priming of native SOC in long run (290 days) but all these BC enhanced the available N, P, and K in soil. SBC4 enhanced N availability in Alfisol and Inceptisol, RBC4 improved N and P availability in Mollisol and P in Alfisol and MBC6 increased K availability in all the soils. Thus, based on management goals, tailored BC or blending different BC can efficiently improve C sequestration and boost soil fertility.
Collapse
Affiliation(s)
- T J Purakayastha
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Tanumoy Bera
- Texas A&M AgriLife Research Center, Beaumnt, TX, 77713, USA
| | - Saptaparnee Dey
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pooja Pande
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Savita Kumari
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Arpan Bhowmik
- Division ICAR-Indian Agricultural Research Institute, Dirpai Chapori, Gogamukh, Dhemaji, Assam, 787035, India
| |
Collapse
|
7
|
Wu X, Yang F, Zhang J, Gao F, Hu YC, Yang K, Wang P. Biochar's role in improving pakchoi quality and microbial community structure in rhizosphere soil. PeerJ 2024; 12:e16733. [PMID: 38515457 PMCID: PMC10956520 DOI: 10.7717/peerj.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/07/2023] [Indexed: 03/23/2024] Open
Abstract
Background Biochar amendments enhance crop productivity and improve agricultural quality. To date, studies on the correlation between different amounts of biochar in pakchoi (Brassica campestris L.) quality and rhizosphere soil microorganisms are limited, especially in weakly alkaline soils. The experiment was set up to explore the effect of different concentrations of biochar on vegetable quality and the correlation between the index of quality and soil bacterial community structure changes. Methods The soil was treated in the following ways via pot culture: the blank control (CK) without biochar added and with biochar at different concentrations of 1% (T1), 3% (T2), 5% (T3), and 7% (T4). Here, we investigatedthe synergistic effect of biochar on the growth and quality of pakchoi, soil enzymatic activities, and soil nutrients. Microbial communities from pakchoi rhizosphere soil were analyzed by Illumina MiSeq. Results The results revealed that adding 3% biochar significantly increased plant height, root length, and dry weight of pakchoi and increased the contents of soluble sugars, soluble proteins, Vitamin C (VC), cellulose, and reduced nitrate content in pakchoi leaves. Meanwhile, soil enzyme activities and available nutrient content in rhizosphere soil increased. This study demonstrated that the the microbial community structure of bacteria in pakchoi rhizosphere soil was changed by applying more than 3% biochar. Among the relatively abundant dominant phyla, Gemmatimonadetes, Anaerolineae, Deltaproteobacteria and Verrucomicrobiae were reduced, and Alphaproteobacteria, Gammaproteobacteria, Bacteroidia, and Acidimicrobiia relative abundance increased. Furthermore, adding 3% biochar reduced the relative abundance of Gemmatimonas and increased the relative abundances of Ilumatobacter, Luteolibacter, Lysobacter, Arthrobacter, and Mesorhizobium. The nitrate content was positively correlated with the abundance of Gemmatimonadetes, and the nitrate content was significantly negatively correlated with the relative abundance of Ilumatobacter. Carbohydrate transport and metabolism in the rhizosphere soil of pakchoi decreased, and lipid transport and metabolism increased after biochar application. Conclusion Overall, our results indicated that applying biochar improved soil physicochemical states and plant nutrient absorption, and affected the abundance of dominant bacterial groups (e.g., Gemmatimonadetes and Ilumatobacter), these were the main factors to increase pakchoi growth and promote quality of pakchoi. Therefore, considering the growth, quality of pakchoi, and soil environment, the effect of using 3% biochar is better.
Collapse
Affiliation(s)
- Xia Wu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- Heilongjiang Bayi Agricultural University, Ministry of Agriculture and Rural Aûairs, Key Laboratory of Low-carbon Green Agriculture Carbon in Northeastrn China, Daqing, Heilongjiang, China
| | - Fengjun Yang
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jili Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Feng Gao
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yi Chen Hu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Kejun Yang
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Peng Wang
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
8
|
Bolan S, Sharma S, Mukherjee S, Kumar M, Rao CS, Nataraj KC, Singh G, Vinu A, Bhowmik A, Sharma H, El-Naggar A, Chang SX, Hou D, Rinklebe J, Wang H, Siddique KHM, Abbott LK, Kirkham MB, Bolan N. Biochar modulating soil biological health: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169585. [PMID: 38157897 DOI: 10.1016/j.scitotenv.2023.169585] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Biochar can be used for multifunctional applications including the improvement of soil health and carbon storage, remediation of contaminated soil and water resources, mitigation of greenhouse gas emissions and odorous compounds, and feed supplementation to improve animal health. A healthy soil preserves microbial biodiversity that is effective in supressing plant pathogens and pests, recycling nutrients for plant growth, promoting positive symbiotic associations with plant roots, improving soil structure to supply water and nutrients, and ultimately enhancing soil productivity and plant growth. As a soil amendment, biochar assures soil biological health through different processes. First, biochar supports habitats for microorganisms due to its porous nature and by promoting the formation of stable soil micro-aggregates. Biochar also serves as a carbon and nutrient source. Biochar alters soil physical and chemical properties, creating optimum soil conditions for microbial diversity. Biochar can also immobilize soil pollutants and reduce their bioavailability that would otherwise inhibit microbial growth. However, depending on the pyrolysis settings and feedstock resources, biochar can be comprised of contaminants including polycyclic aromatic hydrocarbons and potentially toxic elements that can inhibit microbial activity, thereby impacting soil health.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia
| | - Shailja Sharma
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Ch Srinivasa Rao
- ICAR-National Academy of Agricultural Research Management, Hyderabad 500 030, India
| | - K C Nataraj
- Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anantapur 515 001, Andhra Pradesh, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment (CESE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment (CESE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States of America
| | - Harmandeep Sharma
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States of America
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, People's Republic of China; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Scott X Chang
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Lynette K Abbott
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States of America
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
9
|
Yan X, Ma Y, Kong K, Muneer MA, Zhang L, Zhang Y, Cheng Z, Luo Z, Ma C, Zheng C, Yang W, Guo J, Su D, Wu L, Li C, Zhang F. Mitigating life-cycle environmental impacts and increasing net ecosystem economic benefits via optimized fertilization combined with lime in pomelo production in Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169007. [PMID: 38040363 DOI: 10.1016/j.scitotenv.2023.169007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Excessive fertilization is acknowledged as a significant driver of heightened environmental pollution and soil acidification in agricultural production. Combining fertilizer optimization with soil acidity amendment can effectively achieve sustainable crop production in China, especially in Southeast China. However, there is a lack of long-term studies assessing the environmental and economic sustainability of combining fertilizer optimization with soil acidity amendment strategies, especially in fruit production. A four-year field experiment was conducted to explore pomelo yield, fruit quality, and environmental and economic performance in three treatments, e.g., local farmer practices (FP), optimized NPK fertilizer application (OPT), and OPT with lime (OPT+L). The results showed that the OPT+L treatment exhibited the highest pomelo yield and fruit quality among the three treatments. The OPT treatment had the lowest net greenhouse gas (GHG) emissions among the three treatments, which were 90.1 % and 42.6 % lower than those in FP and OPT+L, respectively. It is essential to note that GHG emissions associated with lime production constitute 40.7 % of the total emissions from fertilizer production. The OPT+L treatment reduced reactive nitrogen (Nr) emissions and phosphorus (P) losses, compared to FP and OPT. Moreover, the OPT+L treatment increased the net ecosystem economic benefit by 220.3 % and 20.3 % compared with the FP and OPT treatments, respectively. Overall, the OPT and OPT+L treatments underscore the potential to achieve environmentally friendly and economically sustainable pomelo production. Our study provides science-based evidence to achieve better environmental and economic performance in pomelo production through optimized NPK fertilization and alleviating soil acidification by lime.
Collapse
Affiliation(s)
- Xiaojun Yan
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifei Ma
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kunpeng Kong
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijun Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yadong Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihan Cheng
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziwei Luo
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changcheng Ma
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaoyuan Zheng
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhao Yang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiuxin Guo
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Da Su
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangquan Wu
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chunjian Li
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fusuo Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Yang L, Han R, Duan Y, Li J, Gou T, Zhou J, Zhu H, Xu Z, Guo J, Gong H. Exogenous application of silicon and selenium improves the tolerance of tomato plants to calcium nitrate stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108416. [PMID: 38354528 DOI: 10.1016/j.plaphy.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Silicon (Si) and selenium (Se) can improve the tolerance of plants to NaCl-induced salt stress. However, few studies are available on their regulatory effects on plants' tolerance to calcium nitrate stress, which often occurs in protected facilities, causing secondary soil salinization. In this study, we report the effects of Si (6 mM) and Se (20 μM) applied separately or in combination on the growth, photosynthesis, oxidative damage, and nitrogen metabolism of tomato plants, as well as fruit quality under calcium nitrate stress. The results showed that applications of Si or Se alone or in combination improved the plant growth and photosynthetic performance and reduced oxidative damage of the stressed plants. Applications of Si and Se did not decrease the calcium accumulation in leaves of the stressed plants. Under calcium nitrate stress, the concentrations of NO3-, NO2- and NH4+ in leaves were significantly increased, while the activities of nitrogen assimilation-related enzymes (including nitrate reductase, nitrite reductase, glutamine synthase, glutamine-2-oxoglutarate aminotransferase and glutamate dehydrogenase) were decreased. Applications of Si and Se, especially their combined treatment, decreased the NO3-, NO2-, and NH4+ concentrations and enhanced the activities of nitrogen assimilation-related enzymes in the stressed plants. Applied Si and Se also decreased the nitrate and titratable acid concentrations and increased vitamin levels in tomato fruits under calcium nitrate stress. It is suggested that Si and Se improved the tomato plant growth and fruit quality under calcium nitrate stress by alleviating oxidative damage and promoting both photosynthesis and nitrogen assimilation.
Collapse
Affiliation(s)
- Lan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Rong Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yaoke Duan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jiayi Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Tianyun Gou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Haijia Zhu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Zhongmin Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jia Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Haijun Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
11
|
Nain P, Purakayastha TJ, Sarkar B, Bhowmik A, Biswas S, Kumar S, Shukla L, Biswas DR, Bandyopadhyay KK, Agarwal BK, Saha ND. Nitrogen-enriched biochar co-compost for the amelioration of degraded tropical soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:246-261. [PMID: 36045480 DOI: 10.1080/09593330.2022.2103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Tropical soils are often deeply weathered and vulnerable to degradation having low pH and unfavorable Al/Fe levels, which can constrain crop production. This study aims to examine nitrogen-enriched novel biochar co-composts prepared from rice straw, maize stover, and gram residue in various mixing ratios of the biochar and their feedstock materials for the amelioration of acidic tropical soil. Three pristine biochar and six co-composts were prepared, characterized, and evaluated for improving the chemical and biological quality of the soil against a conventional lime treatment. The pH, cation exchange capacity (CEC), calcium carbonate equivalence (CCE) and nitrogen content of co-composts varied between 7.78-8.86, 25.3-30.5 cmol (p+) kg-1, 25.5-30.5%, and 0.81-1.05%, respectively. The co-compost prepared from gram residue biochar mixed with maize stover at a 1:7 dry-weight ratio showed the highest rise in soil pH and CEC, giving an identical performance with the lime treatment and significantly better effect (p < .05) than the unamended control. Agglomerates of calcite and dolomite in biochar co-composts, and surface functional groups contributed to pH neutralization and increased CEC of the amended soil. The co-composts also significantly (p < .05) increased the dehydrogenase (1.87 µg TPF g-1 soil h-1), β-glucosidase (90 µg PNP g-1 soil h-1), and leucine amino peptidase (3.22 µmol MUC g-1 soil h-1) enzyme activities in the soil, thereby improving the soil's biological quality. The results of this study are encouraging for small-scale farmers in tropical developing countries to sustainably reutilize crop residues via biochar-based co-composting technology.
Collapse
Affiliation(s)
- Pooja Nain
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - T J Purakayastha
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Arpan Bhowmik
- Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Sunanda Biswas
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Sarvendra Kumar
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Livleen Shukla
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - D R Biswas
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - K K Bandyopadhyay
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - B K Agarwal
- Department of Soil Science and Agricultural Chemistry, Birsa Agricultural University, Ranchi, Jharkhand, India
| | - Namita Das Saha
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| |
Collapse
|
12
|
Zhang S, Zhu Q, de Vries W, Ros GH, Chen X, Muneer MA, Zhang F, Wu L. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118531. [PMID: 37423193 DOI: 10.1016/j.jenvman.2023.118531] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Soil amendments, including lime, biochar, industrial by-products, manure, and straw are used to alleviate soil acidification and improve crop productivity. Quantitative insight in the effect of these amendments on soil pH is limited, hampering their appropriate use. Until now, there is no comprehensive evaluation of the effects of soil amendments on soil acidity and yield, accounting for differences in soil properties. We synthesized 832 observations from 142 papers to explore the impact of these amendments on crop yield, soil pH and soil properties, focusing on acidic soils with a pH value below 6.5. Application of lime, biochar, by-products, manure, straw and combinations of them significantly increased soil pH by 15%, 12%, 15%, 13%, 5% and 17%, and increased crop yield by 29%, 57%, 50%, 55%, 9%, and 52%, respectively. The increase of soil pH was positively correlated with the increase in crop yield, but the relationship varied among crop types. The most substantial increases in soil pH and yield in response to soil amendments were found under long-term applications (>6 year) in strongly acidic (pH < 5.0) sandy soils with a low cation exchange capacity (CEC, <100 mmolc kg-1) and low soil organic matter content (SOM, <12 g kg-1). Most amendments increased soil CEC, SOM and base saturation (BS) and decreased soil bulk density (BD), but lime application increased soil BD (1%) induced by soil compaction. Soil pH and yield were positively correlated with CEC, SOM and BS, while yield declined when soils became compacted. Considering the impact of the amendments on soil pH, soil properties and crop yield as well as their costs, the addition of lime, manure and straw seem most appropriate in acidic soils with an initial pH range from <5.0, 5.0-6.0 and 6.0-6.5, respectively.
Collapse
Affiliation(s)
- Siwen Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qichao Zhu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572000, China.
| | - Wim de Vries
- Wageningen University and Research, Environmental Systems Analysis Group, PO Box 47, 6700AA, Wageningen, the Netherlands
| | - Gerard H Ros
- Wageningen University and Research, Environmental Systems Analysis Group, PO Box 47, 6700AA, Wageningen, the Netherlands
| | - Xiaohui Chen
- Research Centre of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Liangquang Wu
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Huang K, Li M, Li R, Rasul F, Shahzad S, Wu C, Shao J, Huang G, Li R, Almari S, Hashem M, Aamer M. Soil acidification and salinity: the importance of biochar application to agricultural soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1206820. [PMID: 37780526 PMCID: PMC10537949 DOI: 10.3389/fpls.2023.1206820] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Soil acidity is a serious problem in agricultural lands as it directly affects the soil, crop production, and human health. Soil acidification in agricultural lands occurs due to the release of protons (H+) from the transforming reactions of various carbon, nitrogen, and sulfur-containing compounds. The use of biochar (BC) has emerged as an excellent tool to manage soil acidity owing to its alkaline nature and its appreciable ability to improve the soil's physical, chemical, and biological properties. The application of BC to acidic soils improves soil pH, soil organic matter (SOM), cation exchange capacity (CEC), nutrient uptake, microbial activity and diversity, and enzyme activities which mitigate the adverse impacts of acidity on plants. Further, BC application also reduce the concentration of H+ and Al3+ ions and other toxic metals which mitigate the soil acidity and supports plant growth. Similarly, soil salinity (SS) is also a serious concern across the globe and it has a direct impact on global production and food security. Due to its appreciable liming potential BC is also an important amendment to mitigate the adverse impacts of SS. The addition of BC to saline soils improves nutrient homeostasis, nutrient uptake, SOM, CEC, soil microbial activity, enzymatic activity, and water uptake and reduces the accumulation of toxic ions sodium (Na+ and chloride (Cl-). All these BC-mediated changes support plant growth by improving antioxidant activity, photosynthesis efficiency, stomata working, and decrease oxidative damage in plants. Thus, in the present review, we discussed the various mechanisms through which BC improves the soil properties and microbial and enzymatic activities to counter acidity and salinity problems. The present review will increase the existing knowledge about the role of BC to mitigate soil acidity and salinity problems. This will also provide new suggestions to readers on how this knowledge can be used to ameliorate acidic and saline soils.
Collapse
Affiliation(s)
- Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Mingquan Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Rongpeng Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sobia Shahzad
- Islamia University of Bahawalpur, Bahawalnagar, Pakistan
| | - Changhong Wu
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Guoqin Huang
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning, China
| | - Saad Almari
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Muhammad Aamer
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
14
|
Feng J, Yu D, Sinsabaugh RL, Moorhead DL, Andersen MN, Smith P, Song Y, Li X, Huang Q, Liu YR, Chen J. Trade-offs in carbon-degrading enzyme activities limit long-term soil carbon sequestration with biochar addition. Biol Rev Camb Philos Soc 2023; 98:1184-1199. [PMID: 36914985 DOI: 10.1111/brv.12949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
Biochar amendment is one of the most promising agricultural approaches to tackle climate change by enhancing soil carbon (C) sequestration. Microbial-mediated decomposition processes are fundamental for the fate and persistence of sequestered C in soil, but the underlying mechanisms are uncertain. Here, we synthesise 923 observations regarding the effects of biochar addition (over periods ranging from several weeks to several years) on soil C-degrading enzyme activities from 130 articles across five continents worldwide. Our results showed that biochar addition increased soil ligninase activity targeting complex phenolic macromolecules by 7.1%, but suppressed cellulase activity degrading simpler polysaccharides by 8.3%. These shifts in enzyme activities explained the most variation of changes in soil C sequestration across a wide range of climatic, edaphic and experimental conditions, with biochar-induced shift in ligninase:cellulase ratio correlating negatively with soil C sequestration. Specifically, short-term (<1 year) biochar addition significantly reduced cellulase activity by 4.6% and enhanced soil organic C sequestration by 87.5%, whereas no significant responses were observed for ligninase activity and ligninase:cellulase ratio. However, long-term (≥1 year) biochar addition significantly enhanced ligninase activity by 5.2% and ligninase:cellulase ratio by 36.1%, leading to a smaller increase in soil organic C sequestration (25.1%). These results suggest that shifts in enzyme activities increased ligninase:cellulase ratio with time after biochar addition, limiting long-term soil C sequestration with biochar addition. Our work provides novel evidence to explain the diminished soil C sequestration with long-term biochar addition and suggests that earlier studies may have overestimated soil C sequestration with biochar addition by failing to consider the physiological acclimation of soil microorganisms over time.
Collapse
Affiliation(s)
- Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dailin Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert L Sinsabaugh
- Department of Biology, University of New Mexico, Albuquerque, NM, 87102, USA
| | - Daryl L Moorhead
- Department of Environmental Sciences, University of Toledo, Toledo, OH, 43537, USA
| | - Mathias Neumann Andersen
- Department of Agroecology, Aarhus University, Blichers Allé 20, Tjele, 8830, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, 4000, Denmark
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, 101400, China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Yanting Song
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinqi Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Blichers Allé 20, Tjele, 8830, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, 4000, Denmark
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| |
Collapse
|
15
|
Yue X, Liu X, Wang F, Shen C, Zhang Y. Contrasting effects of organic materials versus their derived biochars on maize growth, soil properties and bacterial community in two type soils. Front Microbiol 2023; 14:1174921. [PMID: 37303791 PMCID: PMC10247979 DOI: 10.3389/fmicb.2023.1174921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
The objective of this study was to assess the benefit of applying biochar instead of its feedstock in enhancing soil quality. To accomplish this, we investigated the short-term effects of two organic materials and their derived biochars on maize growth, soil properties, and microbial community in fluvo-aquic and red soil with a pot experiment. Five treatments were applied to each soil, namely, the addition of straw, manure, straw-derived biochar, manure-derived biochar, and the control with no addition of any organic materials and biochar. Our results revealed that straw decreased the shoot biomass of maize in both soils, while straw-derived biochar, manure and manure-derived biochar increased it by 51.50, 35.47 and 74.95% in fluvo-aquic soil and by 36.38, 117.57 and 67.05% in red soil compared with the control, respectively. Regarding soil properties, although all treatments increased soil total organic carbon, straw and manure exhibited more pronounced effects on improving permanganate-oxidizable carbon, basal respiration, and enzyme activity compared with their derived biochars. Manure and its biochar had more significant effects on improving soil available phosphorus, whereas straw and its biochar exhibited more ameliorating effects on available potassium. Straw and manure consistently decreased bacterial alpha diversity (Chao1 and Shannon index) and altered bacterial community composition in the two soils by increasing the relative abundances of Proteobacteria, Firmicutes, and Bacteroidota and decreasing those of Actinobacteriota, Chloroflexi, and Acidobacteriota. More specifically, straw had a greater effect on Proteobacteria, whereas manure affected Firmicutes more. While straw-derived biochar had no effect on bacterial diversity and bacterial community composition in both soils, manure-derived biochar increased bacterial diversity in the fluvo-aquic soil and altered bacterial community composition in the red soil by increasing the relative abundances of Proteobacteria and Bacteroidota and decreasing that of Firmicutes. In summary, owing to the input of active organic carbon, straw and manure exhibited more pronounced short-term effects on soil enzyme activity and bacterial community compared with their derived biochar. Furthermore, straw-derived biochar was found to be a better option than straw in promoting maize growth and nutrient resorption, while the choice of manure and its biochar should be determined by the soil type.
Collapse
|
16
|
Bilias F, Kalderis D, Richardson C, Barbayiannis N, Gasparatos D. Biochar application as a soil potassium management strategy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159782. [PMID: 36309281 DOI: 10.1016/j.scitotenv.2022.159782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The established practices of intensive agriculture, combined with inadequate soil Κ replenishment by conventional inorganic fertilization, results in a negative environmental impact through the gradual exhaustion of different forms of K reserves in soils. Although biochar application as soil amendment has been established as an approach of integrated nutrient management, few works have focused on the impact of biochar application to soil K availability and crop uptake. This review provides an up-to-date analysis of the published literature, focusing on the impact of biochar in the availability of potassium in soil and crop growth. First, the effect of biomass type and pyrolysis temperature on potassium content of biochar was assessed. Second, the influence of biochar addition to the availability of potassium in soil and on potassium soil dynamics was examined. Finally, alternative methods for estimating available K in soils were proposed. The most promising biomasses in terms of potassium content were grape pomace, coffee husk and hazelnut husk however, these have not been widely utilized for biochar production. Higher pyrolysis temperatures (>500 °C) increase the total potassium content whereas lower temperatures increase the water-soluble and exchangeable potassium fractions. It was also determined that biochar has considerable potential for enhancing K availability through several distinct mechanisms which eventually lead directly or indirectly to increased K uptake by plants. Indirect mechanisms mainly include increased K retention capacity based on biochar properties such as high cation exchange capacity, porosity, and specific surface area, while the direct supply of K can be provided by K-rich biochar sources through purpose-made biochar production techniques. Research based on biochar applications for soil K fertility purposes is still at an early stage, therefore future work should focus on elucidating the mechanisms that define K retention and release processes through the complicated soil-biochar-plant system.
Collapse
Affiliation(s)
- Fotis Bilias
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronic Engineering, Hellenic Mediterranean University, Chania 73100, Greece
| | - Clive Richardson
- Department of Economic and Regional Development, Panteion University of Social and Political Sciences, Athens 17671, Greece
| | - Nikolaos Barbayiannis
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, Athens 11855, Greece.
| |
Collapse
|
17
|
Li Z, Duan S, Lu B, Yang C, Ding H, Shen H. Spraying alginate oligosaccharide improves photosynthetic performance and sugar accumulation in citrus by regulating antioxidant system and related gene expression. FRONTIERS IN PLANT SCIENCE 2023; 13:1108848. [PMID: 36793994 PMCID: PMC9923110 DOI: 10.3389/fpls.2022.1108848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 05/31/2023]
Abstract
Alginate oligosaccharides (AOS) are functional substances in seaweed extracts that regulate crop quality and stress tolerance. In this paper, the effects of AOS spray application on the antioxidant system, photosynthesis and fruit sugar accumulation in citrus was investigated through a two-year field experiment. The results showed that 8-10 spray cycles of 300-500 mg L-1 AOS (once per 15 days) increased soluble sugar and soluble solid contents by 7.74-15.79% and 9.98-15.35%, respectively, from citrus fruit expansion to harvesting. Compared with the control, the antioxidant enzyme activity and the expression of some related genes in citrus leaves started to increase significantly after the 1st AOS spray application, while the net photosynthetic rate of leaves increased obviously only after the 3rd AOS spray cycle, and the soluble sugar content of AOS-treated leaves increased by 8.43-12.96% at harvest. This suggests that AOS may enhance photosynthesis and sugar accumulation in leaves by antioxidant system regulation. Moreover, analysis of fruit sugar metabolism showed that during the 3rd to 8th AOS spray cycles, AOS treatment increased the activity of enzymes related to sucrose synthesis (SPS, SSs), upregulated the expression of sucrose metabolism (CitSPS1, CitSPS2, SUS) and transport (SUC3, SUC4) genes, and promoted the accumulation of sucrose, glucose and fructose in fruits. Notably, the concentration of soluble sugars in citrus fruits was significantly reduced at all treatments with 40% reduction in leaves of the same branch, but the loss of soluble sugars in AOS-treated fruits (18.18%) was higher than that in the control treatment (14.10%). It showed that there was a positive effect of AOS application on leaf assimilation product transport and fruit sugar accumulation. In summary, AOS application may improve fruit sugar accumulation and quality by regulating the leaf antioxidant system, increasing the photosynthetic rate and assimilate product accumulation, and promoting sugar transfer from leaves to fruits. This study shows the potential application of AOS in the production of citrus fruits for sugar enhancement.
Collapse
Affiliation(s)
- Zhiming Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Songpo Duan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bosi Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Chunmei Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Hanqing Ding
- Guangdong Nongken Tropical Agriculture Research Institute Co., Guangzhou, China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Chen X, Zhang J, Lin Q, Li G, Zhao X. Dispose of Chinese cabbage waste via hydrothermal carbonization: hydrochar characterization and its potential as a soil amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4592-4602. [PMID: 35974264 DOI: 10.1007/s11356-022-22359-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Landfill of waste biomass not only poses a threat to environmental protection but also leads to a great waste of biomass resources. Hydrothermal carbonization (HTC) has been considered a promising method to convert the wet biomass into hydrochar, a high-value-added product with multiple application potentials. The cabbage waste, typical wet waste biomass with a huge production per year, was hydrothermally carbonized under 190 °C and 260 °C, respectively. The results indicated that the majority of nutrients from feedstock were dissolved in spent liquor during HTC, with only a few amounts retained on hydrochar. Temperature showed a more significant impact on hydrochar properties than retention time, which enables hydrochar to be potentially used as a soil conditioner. Particularly, the hydrochar produced at 190 °C could improve plant nutrition in the short term, while that produced at 260 °C may benefit in C sequestration. Moreover, the hydrochar dominated by meso/macropores (> 90%) would be conducive to the storage of plant-available water. But both BTX and VOCs may release during hydrochar application; thus, further field experiments are needed to test the environmental risks of hydrochar when applied as a soil amendment.
Collapse
Affiliation(s)
- Xuejiao Chen
- School of Food Science and Bioengineering, Xihua University, Chengdu, 610039, China.
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Jinhong Zhang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qimei Lin
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
- Agricultural Resources and Environmental Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guitong Li
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Zhao
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Zhao L, Sun ZF, Pan XW, Tan JY, Yang SS, Wu JT, Chen C, Yuan Y, Ren NQ. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. WATER RESEARCH X 2023; 18:100167. [PMID: 37250290 PMCID: PMC10214287 DOI: 10.1016/j.wroa.2023.100167] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 05/31/2023]
Abstract
With the rapid growth yield of global sewage sludge, rational and effective treatment and disposal methods are becoming increasingly needed. Biochar preparation is an attractive option for sewage sludge treatment, the excellent physical and chemical properties of sludge derived biochar make it an attractive option for environmental improvement. Here, the current application state of sludge derived biochar was comprehensively reviewed, and the advances in the mechanism and capacity of sludge biochar in water contaminant removal, soil remediation, and carbon emission reduction were described, with particular attention to the key challenges involved, e.g., possible environmental risks and low efficiency. Several new strategies for overcoming sludge biochar application barriers to realize highly efficient environmental improvement were highlighted, including biochar modification, co-pyrolysis, feedstock selection and pretreatment. The insights offered in this review will facilitate further development of sewage sludge derived biochar, towards addressing the obstacles in its application in environmental improvement and global environmental crisis.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhong-Fang Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Wen Pan
- Power China Huadong Engineering Corporation Limited, China
| | - Jing-Yan Tan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie-Ting Wu
- School of Environment, Liaoning University, Shenyang, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
20
|
Pandey B, Suthar S, Chand N. Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. CHEMOSPHERE 2022; 307:135889. [PMID: 35944681 DOI: 10.1016/j.chemosphere.2022.135889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The use of low-cost substances such as biochar could be a sustainable approach to reduce the mobility, accumulation, and toxic impact of heavy metals in crop systems. This study investigates the effect of biochar amendment on heavy metal (Cr, Cd, Cu, Pb, Ni, Zn, Mg and Fe) mobility, bioaccumulation factor (BAF), plant (wheat) metal-uptake, plant oxidative stress, and soil enzymatic profile in contaminated industrial soil. Biochar was obtained from slow pyrolysis of Lantana (LBC), and Parthenium (PBC) biomass, and applied at 3% rates in contaminated soils for wheat crop study under a greenhouse experimental setup. Results show in comparison with control setups, low mobility of Cr (14.15-16.35%), Cd (7.17-15.24%), Cu (9.81-12.97%), Pb (7.99-15.23%), Ni (1.52-2.38%), Zn (10.47-14.42%), Mg (48.85-52.89%), and Fe (19.13-19.90%) contents in soils. The heavy metal uptake rates were 63.08% (Cr), 78.07% (Cd), 74.61% (Cu), 78.11% (Pb), 75.73% (Ni), 69.71% (Zn), 28.78% (Mg), and 49.26% (Fe) lower in biochar amendments, compared with the control treatments. Similarly, the biochar amended treatments exhibited low oxidative stress in wheat plants than control setups. In addition, soil enzymes (dehydrogenase, β-glucosidase, alkaline phosphatase, and urease) alleviated in biochar amended soils indicating reduced toxicity of metals in experimental soils. In summary, this study indicates that biochar amendment in contaminated soils not only improves plant growth but also lowers the rates of soil and plant toxicity and metal bioavailability as well.
Collapse
Affiliation(s)
- Bhawna Pandey
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India.
| | - Naveen Chand
- Environmental Engineering Research Group, National Institute of Technology Delhi, New Delhi, 110040, India
| |
Collapse
|
21
|
Mo X, Chen C, Riaz M, Moussa MG, Chen X, Wu S, Tan Q, Sun X, Zhao X, Shi L, Hu C. Fruit Characteristics of Citrus Trees Grown under Different Soil Cu Levels. PLANTS (BASEL, SWITZERLAND) 2022; 11:2943. [PMID: 36365397 PMCID: PMC9657546 DOI: 10.3390/plants11212943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The effects of the increased soil copper (Cu) on fruit quality due to the overuse of Cu agents have been a hot social issue. Seven representative citrus orchards in Guangxi province, China, were investigated to explore the fruit quality characteristics under different soil Cu levels and the relationship between soil-tree Cu and fruit quality. These results showed that pericarp color a value, titratable acid (TA), and vitamin C (Vc) were higher by 90.0, 166.6, and 22.4% in high Cu orchards and by 50.5, 204.2, and 55.3% in excess Cu orchards, compared with optimum Cu orchards. However, the ratio of total soluble solids (TSS)/TA was lower by 68.7% in high Cu orchards and by 61.6% in excess Cu orchards. With the increase of soil Cu concentrations, pericarp color a value and Vc were improved, TA with a trend of rising first then falling, and TSS/TA with a trend of falling first then rising were recorded. As fruit Cu increased, pericarp color a value and TSS reduced and as leaf Cu increased, TSS/TA decreased while Vc was improved. Moreover, a rise in soil Cu enhanced leaf Cu accumulation, and a rise in leaf Cu improved fruit Cu accumulation. Fruit Cu accumulation reduced fruit quality by direct effects, leaf Cu improved fruit quality by direct and indirect effects. Soil Cu affected fruit quality by indirect effects by regulating leaf Cu and fruit Cu. Therefore, reasonable regulation and control of soil Cu concentrations can effectively increase pericarp color, sugar, and acid accumulation in citrus fruit.
Collapse
Affiliation(s)
- Xiaorong Mo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China
| | - Chuanwu Chen
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mohamed G. Moussa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Xiangling Chen
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Libiao Shi
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
22
|
Liu M, Linna C, Ma S, Ma Q, Song W, Shen M, Song L, Cui K, Zhou Y, Wang L. Biochar combined with organic and inorganic fertilizers promoted the rapeseed nutrient uptake and improved the purple soil quality. Front Nutr 2022; 9:997151. [PMID: 36185688 PMCID: PMC9515580 DOI: 10.3389/fnut.2022.997151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Abstract
Biochar is a kind of organic matter that can be added into soil to improve soil quality. To study the effect of biochar combined with organic and inorganic fertilizers on rapeseed growth and purple soil fertility and microbial community, a completely randomized block design was designed with three levels of biochar (B0: no biochar, B1: low-rate biochar, B2: high-rate biochar); two levels of inorganic fertilizers (F1: low-rate inorganic fertilizer; F2: high-rate inorganic fertilizer); and two levels of organic fertilizers (M1: no organic fertilizer; M2: with organic fertilizer). All combinations were repeated three times. The combined application of biochar and organic and inorganic fertilizers could improve soil pH, soil fertility and soil microbial community richness: The pH of B1F2M1 increased 0.41 compared with the control, the nitrogen, phosphorus and potassium content increased by 103.95, 117.88, and 99.05%. Meanwhile, soil microbial community richness was also improved. Our research showed that biochar could promote the Nutrient Uptake of rapeseed, and the combined application of biochar with organic and inorganic fertilizers could improve soil fertility and increase microbial diversity. Low-rate biochar combined with organic fertilizer and low-rate inorganic fertilizer was the most suitable application mode in rapeseed production in purple soil area of Southwest China.
Collapse
Affiliation(s)
- Ming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cholidah Linna
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Shumin Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Qun Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Wenfeng Song
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Mingzhu Shen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lixia Song
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kaidong Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yuling Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Longchang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
- *Correspondence: Longchang Wang
| |
Collapse
|
23
|
Becerra-Agudelo E, López JE, Betancur-García H, Carbal-Guerra J, Torres-Hernández M, Saldarriaga JF. Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia. Heliyon 2022; 8:e10221. [PMID: 36051268 PMCID: PMC9424946 DOI: 10.1016/j.heliyon.2022.e10221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/16/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Soil acidification and increased bioavailability of Ni are problems that affect agricultural soils. This study aims to compare the effects of both lime and biochar from corn stover in soil acidity correction, improving soil physicochemical properties and soil re-acidification resistance. As well as assesseing the impacts on human health risk caused by bioavailability of nickel. A greenhouse pot experiment was conducted for 30 days to determine the effect of biochar and lime on soil physicochemical properties and nickel bioavailability. Afterwards, a laboratory test was carried out to determine the repercussions of both amendments on soil resistance to re-acidification and re-mobilization of nickel. Human health risk was determined using nickle bioavailable concentration. Overall, the results of this study showed that biochar application significantly reduced soil acidity from 8.2 ± 0.8 meq 100 g−1 to 1.9 ± 0.3 meq 100 g−1, this reduction markedly influenced the bioavailability of nickel, which decreased significantly. Moreover, soil physicochemical properties and soil resistance to acidification were improved. Furthermore, biochar significantly reduced human health risk compared to lime application, even under a re-acidification scenario. It was possible to verify that Ni immobilization in the soil was increased when biochar was used. Soil Ni immobilization is associated with co-precipitation and chemisorption. Hence, it was demonstrated that biochar is more effective than lime in reducing soil acidity and remedying nickel-contaminated agricultural soils.
Collapse
Affiliation(s)
- Evelyn Becerra-Agudelo
- Semillero de Investigación en Ciencias Ambientales - SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Julián E López
- Semillero de Investigación en Ciencias Ambientales - SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia.,Facultad de Ingenierías, Programa de Ingeniería Ambiental, Universidad de Medellín, Carrera 87 N° 30-65, 050026, Medellín, Colombia.,Facultad de Ingenierías, Tecnológico de Antioquia Institución Universitaria, Calle 78b # 72A-220, 050034, Medellín, Colombia
| | - Héctor Betancur-García
- Semillero de Investigación en Ciencias Ambientales - SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Jaiber Carbal-Guerra
- Semillero de Investigación en Ciencias Ambientales - SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Maicol Torres-Hernández
- Semillero de Investigación en Ciencias Ambientales - SICA, Diagnóstico y Control de la Contaminación, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65 - 46, 050034, Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| |
Collapse
|
24
|
Yin S, Zhang X, Suo F, You X, Yuan Y, Cheng Y, Zhang C, Li Y. Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. CHEMOSPHERE 2022; 298:134191. [PMID: 35248596 DOI: 10.1016/j.chemosphere.2022.134191] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Soil acidification has become a major environmental and economic concern worldwide. Char materials (e.g biochar, hydrochar) have attracted considerable attention as soil amendments to restore degraded soil. However, the comparative study of biochar and hydrochar on plant growth in acidified soil is limited. In this study, a microcosmic experiment was used to compare the effect of biochar and hydrochar from cow manure (CBC, CHC) and reed straw (RBC, RHC) on the growth of lettuce in the acidified soil. CBC and RHC significantly increased and decreased the biomass of lettuce by 18.7% and 32.5% in the acidified soil, respectively. The increase of the lettuce growth by CBC primarily attributed to the enhancement of soil properties (SOM and pH) and soil nutrient content (Olsen-P, K, Ca, Mg, Zn, Fe and Mn). Moreover, CBC enhanced the microbial activity and complexity and increased the abundance of beneficial genera like Gemmatimonas, Ramlibacter and Haliangium, which improved soil health and might indirectly benefited the lettuce growth. Our findings highlighted the priority of char materials feedstock and preparation technology for remediating the acidified soil.
Collapse
Affiliation(s)
- Shaojing Yin
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fengyue Suo
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
25
|
Influence of Rice Husk Biochar and Lime in Reducing Phosphorus Application Rate in Acid Soil: A Field Trial with Maize. SUSTAINABILITY 2022. [DOI: 10.3390/su14127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biochar has been suggested for application in acidic soils for increasing agricultural productivity, as it may result in the benefits of sustainable carbon offset into soils and of increasing soil fertility improvement. However, the role of biochar in enhancing nutrient bioavailability and plant performance is manifested through the complex interactions of biochar-soil-plant. Moreover, it is not yet known how a crop-residue-derived biochar would perform in acidic soil when applied with a reduced rate of lime and phosphorus. Here, we examined the performance of maize with different combinations of biochar, lime, and phosphorus (P) application rates under field conditions. Specifically, rice husk biochar (10 t ha−1) was applied with 75% of the required lime and three rates of phosphorus fertilizer (100%, 75%, and 50%). The results showed that incorporation of biochar and lime, irrespective of the rates of P application, significantly increased soil nutrient (nitrogen and P) availability, while aluminum (Al) and iron (Fe) concentrations in soil were reduced. Furthermore, when biochar was combined with a lower amount of lime (75% of the recommended amount) and half of the required P, maize production increased by 62.38% compared to the control. Similarly, nutrient uptake in plants increased significantly in the same treatment (e.g., P uptake increased by 231.88%). However, soil respiration (CO2 emission) increased with lime only and the combined application of lime with biochar compared to the control; these treatments resulted in a higher carbon loss, as CO2 from the soil (84.94% and 67.50% from only lime treatment (T2), and rice husk biochar (RHB) and lime with 50% triple superphosphate (TSP) (T5), respectively). Overall, our findings imply that biochar application may sustain productivity in acid soils even when lime and P fertilizer applications are made at a reduced rate.
Collapse
|
26
|
Chen L, Li X, Peng Y, Xiang P, Zhou Y, Yao B, Zhou Y, Sun C. Co-application of biochar and organic fertilizer promotes the yield and quality of red pitaya (Hylocereus polyrhizus) by improving soil properties. CHEMOSPHERE 2022; 294:133619. [PMID: 35041821 DOI: 10.1016/j.chemosphere.2022.133619] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the combined impact of biochar and organic fertilizer on the soil properties, yield and quality of red pitaya (Hylocereus polyrhizus). A two-year (2019 and 2020) field experiment was conducted to study the effects of 3 rates of biochar (with carbon fertilizer ratios of 0%, 3%, and 6% w/w) combined with 3 levels of organic fertilizer (22.5, 45, and 90 t ha-1) on soil properties, along with red pitaya yield and quality. The results showed that soil pH, total organic carbon, available nutrients (N, P, and K), the yield and qualities (reduced sugar, soluble protein, and soluble solid) of red pitaya increased with the application of organic fertilizer compared with no application of biochar and organic fertilizer (CK treatment), but the combined application of biochar and organic fertilizer was more effective than their sole application. Furthermore, a medium dose of organic fertilizer combined with 3% biochar (C3F2 treatment) and a high dose of organic fertilizer combined with 3% biochar (C3F3 treatment) had the highest yields of red pitaya in 2019 and 2020. However, an application of 6% biochar with a low dose of organic fertilizer treatment (C6F1) had the highest profit in 2020, not the C3F3 treatment. The highest profits were observed in the C3F2 (71.0 × 103 RMB·t-1) and C6F1 (51.2 × 103 RMB·t-1) treatments. From the point of view of red pitaya yield and economic benefits, 3% biochar +45 t ha-1 organic fertilizer was the recommended combination that showed the best synergistic effect.
Collapse
Affiliation(s)
- Limei Chen
- School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Xiaoying Li
- School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China
| | - Ping Xiang
- School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yuzhou Zhou
- School of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Bin Yao
- School of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yaoyu Zhou
- School of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chaoran Sun
- School of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
27
|
Adebajo SO, Oluwatobi F, Akintokun PO, Ojo AE, Akintokun AK, Gbodope IS. Impacts of rice-husk biochar on soil microbial biomass and agronomic performances of tomato (Solanum lycopersicum L.). Sci Rep 2022; 12:1787. [PMID: 35110620 PMCID: PMC8810918 DOI: 10.1038/s41598-022-05757-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Tomato is beneficial to human health because it contains valuable vitamins such as vitamins A, C and several minerals. However, to meet up with the demands of the ever increasing population, there is need to improve tomato production. This research, thus, investigated the impact of rice-husk biochar on the agronomic performances of tomato plant and microbial biomass of carbon, nitrogen and phosphorus in different tomato growth stages. The rice husk biochar pyrolyzed at 350 °C was amended with soil at four different application rates: 0, 2.5, 5.0 and 7.5 t/ha. Physicochemical property of soil was conducted using Mid Infrared Reflectance Spectroscopy method. Impact of biochar on Microbial Biomass Carbon, Microbial Biomass Nitrogen and Microbial Biomass Phosphorous was conducted using fumigation extraction method and monitored at three functional stages. Biochar application appreciably increase the soil physicochemical properties such as pH, Ca, Na, H+, S, P, B, C, Zn and cation exchangeable capacity in comparison with the control. Biochar amended soil significantly enhanced tomato height, stem girth, leaf area, flowers, fruit yields and weight. Although, B3 recorded the lowest leaf area, it possessed the highest number of fruits and fruit weight of 3 and 40%, respectively. The ratio of Microbial biomass C:N:P for biochar amended soil at 7.5 t/ha (B3) was 302.30:18.81:11.75 µg/g, compared to control, which was 242.12:18.30:11.49 µg/g. This study revealed that biochar amendments significantly (p < 0.05) increased the yields and microbial biomass of tomato plants. Conclusively, the application of rice-husk biochar (7.5 t/ha) to soil is considered as a suitable approach to improve tomato growth and yield.
Collapse
Affiliation(s)
- Seun Owolabi Adebajo
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Folasade Oluwatobi
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Pius Olugbenga Akintokun
- Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, Nigeria
| | - Abidemi Esther Ojo
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Ige Samuel Gbodope
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
28
|
Abstract
The wood processing industry produces a significant amount of wood waste. Biomass valorization through pyrolysis has the potential to increase the added value of wood wastes. Pyrolysis is an important thermochemical process that can produce solid, liquid, and gas products. This paper aims to review the pyrolysis of wood wastes from Indonesia, including teak wood (Tectona grandis), meranti (Shorea sp.), sengon (Paraserianthes falcataria (L) Nielsen), and rubberwood (Hevea brasiliensis). The review is based on an in-depth study of reliable literatures, statistical data from government agencies, and direct field observations. The results showed that pyrolysis could be a suitable process to increase the added value of wood waste. Currently, slow pyrolysis is the most feasible for Indonesia, with the main product of charcoal. The efficiency of the slow pyrolysis process can be increased by harvesting also liquid and gaseous products. The use of the main product of pyrolysis in the form of charcoal needs to be developed and diversified. Charcoal is not only used for fuel purposes but also as a potential soil improvement agent.
Collapse
|
29
|
Wu S, Li M, Zhang C, Tan Q, Yang X, Sun X, Pan Z, Deng X, Hu C. Effects of phosphorus on fruit soluble sugar and citric acid accumulations in citrus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:73-81. [PMID: 33482581 DOI: 10.1016/j.plaphy.2021.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) is one of the essential macro-elements for plants. Sugar and organic acid are important factors affecting sensory characteristics of citrus fruit quality. The aim of this study was to investigate how P fertilizer affects quality improvement particularly sucrose (Suc), fructose (Fru), glucose (Glu) and citric acid (CA) accumulations in Cara Cara navel. P fertilizer improved fruit quality of Cara Cara navel, as supported by decreasing titratable acid (TA), CA and increasing soluble solid (TSS), sugars and the ratio of TSS and TA. At the early stage of fruit development, P fertilizer had greater roles in degrading Suc into Fru and Glu due to the increased activities of Suc-degrading enzymes including acid invertase, neutral invertase and Suc synthase-cleavage activity. Coversely, at the mid and late stages of fruit development, P fertilizer had greater roles in re-synthesizing Suc due to the increased activities of Suc-synthesizing enzymes including Suc phosphate synthase and Suc synthase-synthetic activity. These results indicated that application of P fertilizer increased soluble sugars concentrations by improving Suc metabolism and sink strength in fruit conferred by the upregulations of the activities of Suc-degrading and Suc-synthesizing enzymes. P fertilizer decreased CA accumulations at least partially by inhibiting synthesis of CA due to the decreased activities of CA-synthesizing enzymes including citrate synthetase and phosphoenolpyruvate carboxylase. This study suggested that P fertilizer, particularly fertilized with 0.40 kg/plant, increased soluble sugars but decreased CA accumulations in citrus fruit.
Collapse
Affiliation(s)
- Songwei Wu
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Ming Li
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Changming Zhang
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Qiling Tan
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xiaozhen Yang
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xuecheng Sun
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Chengxiao Hu
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
30
|
Albert HA, Li X, Jeyakumar P, Wei L, Huang L, Huang Q, Kamran M, Shaheen SM, Hou D, Rinklebe J, Liu Z, Wang H. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142582. [PMID: 33065502 DOI: 10.1016/j.scitotenv.2020.142582] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The application of biochar to soils contaminated with potentially toxic elements (PTEs) has received particular attention due to its ability to reduce PTE uptake by the plants. Therefore, we conducted a meta-analysis to identify Cd and Pb concentrations in plant shoots and roots in response to biochar application and soil properties. We collected data from 65 peer-reviewed journal articles published from 2009 to 2020 in which 66% of manuscripts were published from 2015 to 2020. The data were processed using OpenMEE software. The results pinpointed that addition of biochar to soil caused a significant decrease in shoot and root Cd and Pb concentrations as compared to untreated soils with biochar (control), and the reduction rate was affected by plant types and both biochar and soil properties. The biochar size less than 2 mm, biochar pH higher than 10, pyrolysis temperature of 401-600 °C, and the application rate higher than 2% appeared to be effective in reducing shoot and root Cd and Pb concentration. Soil properties such as pH, SOC, and texture influenced the efficiency of biochar for reducing plant Cd and Pb uptake. Biochar application increased SOC (54.3%), CEC (48.0%), pH (0.08), and EC (59.4%), and reduced soil extractable Cd (42.1%) and Pb (47.1%) concentration in comparison to control. A detailed study on the rhizosphere chemistry and uptake mechanism will help to underpin the biochar application rates and their efficiency reducing PTE mobility and plant uptake.
Collapse
Affiliation(s)
- Houssou Assa Albert
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Xiang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lan Wei
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lianxi Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Qing Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Muhammad Kamran
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, Kafr El-Sheikh 33516, Egypt
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
31
|
Xu Y, Song Z, Chang X, Guo Z, Gao M. Effects of Fe-Mn oxide-modified biochar composite applications on phthalate esters (PAEs) accumulation in wheat grains and grain quality under PAEs-polluted brown soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111624. [PMID: 33396144 DOI: 10.1016/j.ecoenv.2020.111624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Phthalate esters (PAEs), such as dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), are used extensively as additives and plasticizers, and have become ubiquitous in the environment. PAEs in the soil could have adverse effects on crop plants as well as humans via accumulations in food chain. Thus, it is important to explore strategies to reduce the bioavailability of phthalate esters. We investigated the effects of Fe-Mn oxide-modified biochar composite (FMBC) applications on the quality of wheat grown in DBP- and DEHP-polluted brown soil. The application of FMBC and biochar (BC) increased the wheat grain biomass by 9.71-223.01% and 5.40-120.15% in the DBP-polluted soil, and 10.52-186.21% and 4.50-99.53% in the DEHP-spiked soil in comparison to the controls. All FMBC treatments were better than the BC treatments, in terms of decreasing DBP and DEHP bioavailability for the wheat grains. The activities of the glutamine synthetase and glutamic-pyruvic transaminase in the flag leaves at the filling stage and of granule-bound starch synthase, soluble starch synthase, and adenosine diphosphate-glucose pyrophosphorylase in the grains at maturity increased significantly with increases in either the BC or FMBC applications. This, in turn, increased the starch, protein, and amino acid content in the wheat grains. Compared with the BC treatment, the FMBC amendment induced only slight increases in the aforementioned factors. This study offers novel insights into potential strategies for decreasing PAEs bioavailability in soil, with potential positive implications for crop quality and environmental health improvements.
Collapse
Affiliation(s)
- Yalei Xu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China
| | - Xipeng Chang
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zeyang Guo
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China.
| |
Collapse
|
32
|
Lu H, Wu Y, Liang P, Song Q, Zhang H, Wu J, Wu W, Liu X, Dong C. Alkaline amendments improve the health of soils degraded by metal contamination and acidification: Crop performance and soil bacterial community responses. CHEMOSPHERE 2020; 257:127309. [PMID: 32535363 DOI: 10.1016/j.chemosphere.2020.127309] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Soil degradation due to heavy metal contamination and acidification has negative effects on soil health and crop growth. Many previous studies have tried to improve the growth of crops and decrease their metal uptake. The recovery of soil health, however, has rarely been focused in soil remediation. In this study, a pot trial was conducted with lettuce (Lactuca sativa L.) growing in heavy metal contaminated and acidic soils, to examine the effects of alkaline amendments (limestone, LS; calcium magnesium phosphate fertilizer, Pcm) and organic amendments (cow manure compost, CMC; biochar, BC) on the growth of lettuce and on the availability of heavy metals, enzyme activities, and bacterial community structures in the soils. The results showed that, in comparison with the CMC and BC treatments, LS and Pcm were more effective at improving lettuce growth and reducing metal concentrations in shoots. Urease and catalase activities in LS and Pcm amended soils were consistently higher than in those with CMC and BC. Additionally, the alkaline amendments dramatically improved the bacterial diversity and shaped more favorable bacterial community structures. Proteobacteria and Gemmatimonadetes were predominant in soils amended with alkaline treatments. The beneficial bacterial genera Gemmatimonas and f_Gemmatimonadaceae, which are vital for phosphate dissolution, microbial nitrogen metabolism, and soil respiration, were also enriched. The results suggest that alkaline amendments were superior to organic amendments, and thus may be useful for the future recovery of soil functions and health under heavy metal contamination and low pH.
Collapse
Affiliation(s)
- Huilin Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Puxing Liang
- Foshan Institute of Agricultural Sciences, Foshan, 528145, PR China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Huixi Zhang
- Foshan Institute of Agricultural Sciences, Foshan, 528145, PR China
| | - Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China.
| | - Xiaowen Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou, 510655, PR China
| | - Changxun Dong
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
33
|
The Potential Effectiveness of Biochar Application to Reduce Soil Cd Bioavailability and Encourage Oak Seedling Growth. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Today, it is very important to protect plants in soils contaminated with metals. We investigated the behavior of cadmium during the establishment of oak seedlings (Quercus castaneifolia C.A. Mey.) under biochar influence. This study was conducted in pots with loamy soil. Cadmium was added to soil at 0, 10, 30, and 50 mg per kg of soil, indicated by Control, Cd10, Cd30 and Cd50. Biochar was produced at 500–550 °C from rice husk and added at 1, 3, and 5% (wt/wt) levels, indicated by B1, B3, B5, and mixed with soil at planting in three replications. Generally, increasing biochar rates had significant effects on seedling height, diameter, and biomass. This coincided with Cd immobilization in the contaminated soil which reflects a decrease in Cd concentrations in the plant bioavailability of Cd. The tolerance index increased significantly, by 40.9%, 56%, and 60.6% in B1, B3, and B5 with Cd50, respectively, compared to polluted soil. The percent of Cd removal efficiency for Cd50 was 21%, 47%, and 67% in B1, B2, and B5, respectively. Our study highlights that biochar can reduce Cd bioavailability and improve the growth of oak seedlings in contaminated soil.
Collapse
|
34
|
Effects of Garden Waste Compost and Bentonite on Muddy Coastal Saline Soil. SUSTAINABILITY 2020. [DOI: 10.3390/su12093602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to effectively utilize resources and improve the amelioration effect of coastal saline soil, we studied the effects of applying garden waste compost and bentonite on highly saline coastal soil. Four treatments were established: a nonamended control; application of 68 kg·m−3 of garden waste compost; application of 15 kg·m−3 of bentonite; and mixed application of 68 kg·m−3 of garden waste compost and 15 kg·m−3 of bentonite. The results showed that the soil salinity of the three treatments was significantly lower than that of the nonamended control. The desalination effect of the mixed application was the best, and the salinity in the 0–20 and 20–40 cm soil layers decreased to 3.95 g·kg−1 and 3.82 g·kg−1, respectively. Application of both the garden waste compost alone and the mixed application significantly improved the physical and chemical properties of the soil. However, the mixed application had the best effect because of its ability to increase the total porosity, saturated hydraulic conductivity, and soil nutrient levels. The growth of Robinia pseudoacacia cv. Idaho in the mixed application treatment was also better than other treatments. Principal component analysis and comprehensive scores indicated that the addition of 68 kg·m−3 of garden waste compost and 15 kg·m−3 of bentonite was the optimal application.
Collapse
|