1
|
Berankova M, Holoubek J, Hönig V, Matusova Z, Palus M, Salat J, Krayem I, Vojtiskova J, Svoboda P, Pranclova V, Valihrach L, Demant P, Lipoldova M, Ruzek D. Genotype-driven sensitivity of mice to tick-borne encephalitis virus correlates with differential host responses in peripheral macrophages and brain. J Neuroinflammation 2025; 22:22. [PMID: 39875898 PMCID: PMC11776336 DOI: 10.1186/s12974-025-03354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.5% of the STS genome on the BALB/c background, is more susceptible than BALB/c mice. In the present study, we employed these genetically distinct mouse models to investigate the host response to TBEV infection in both peripheral macrophages, one of the initial target cell populations, and the brain, the terminal target organ of the virus. METHODS TBEV growth and the production of key cytokines and chemokines were measured and compared in macrophages derived from BALB/c, CcS-11, and STS mice. In addition, brains from these TBEV-infected mouse strains underwent in-depth transcriptomic analysis. RESULTS Virus production in BALB/c and CcS-11 macrophages exhibited similar kinetics 24 and 48 h post-infection (hpi), but CcS-11 macrophages yielded significantly higher titers 72 hpi. Macrophages from both sensitive strains demonstrated elevated chemokine and proinflammatory cytokine production upon infection, whereas the resistant strain, STS, showed no cytokine/chemokine activation. Transcriptomic analysis of brain tissue demonstrated that the genetic background of the mouse strains dictated their transcriptional response to infection. The resistant strain exhibited a more robust cell-mediated immune response, whereas both sensitive strains showed a less effective cell-mediated response but increased cytokine signaling and signs of demyelination, with loss of oligodendrocytes. CONCLUSIONS Our findings suggest that variations in susceptibility linked to host genetic background correspond with distinct host responses, both in the periphery upon virus entry into the organism and in the brain, the target organ of the virus. These results provide insights into the influence of host genetics on the clinical trajectory of TBE.
Collapse
Affiliation(s)
- Michaela Berankova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Holoubek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
| | - Vaclav Hönig
- Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
| | - Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Palus
- Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Salat
- Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
| | - Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jarmila Vojtiskova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Svoboda
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Veronika Pranclova
- Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marie Lipoldova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Medical Genetics, Faculty of Medicine, Charles University, 3rd, Prague, Czech Republic
| | - Daniel Ruzek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
2
|
Halsby K, Dobler G, Easton A, Karelis G, Krbková L, Kyncl J, Sellner J, Strle F, Veje M, Zajkowska J, Zavadska D, Angulo FJ, Pilz A, Erber W, Gabriel M, Russo J, Price M, Madhava H, Meyding-Lamadé UK. Evaluating the need for standardised disease manifestation categories in patients infected with the tick-borne encephalitis virus: A Delphi panel. Ticks Tick Borne Dis 2025; 16:102431. [PMID: 39708718 DOI: 10.1016/j.ttbdis.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/07/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Categorization systems for tick-borne encephalitis virus (TBEV) infection lack consistency in classifying disease severity. To evaluate the need for a standard, consensus-based categorisation system for TBEV infection across subtypes, we gathered an expert panel of clinicians and scientists with diverse expertise in TBEV infection. Consensus was sought using the Delphi technique, which consisted of 2 web-based survey questionnaires and a final, virtual, consensus-building exercise. Ten panellists representing 8 European countries participated in the Delphi exercise, with specialities in neurology, infectious disease, paediatrics, immunology, virology, and epidemiology. Panellists reached unanimous consensus on the need for a standardised, international categorisation system to capture both clinical presentation and severity of TBEV infection. Ideally, such a system should be feasible for use at bedside, be clear and easy to understand, and capture both the acute and follow-up phases of TBEV infection. Areas requiring further discussion were (1) the timepoints at which assessments should be made and (2) whether there should be a separate system for children. This Delphi panel study found that a critical gap persists in the absence of a feasible and practical classification system for TBEV infection. Specifically, the findings of our Delphi exercise highlight the need for the development of a user-friendly classification system that captures the acute and follow-up (i.e., outcome) phases of TBEV infection and optimally reflects both clinical presentation and severity. Development of a clinical categorisation system will enhance patient care and foster comparability among studies, thereby supporting treatment development, refining vaccine strategies, and fortifying public health surveillance.
Collapse
Affiliation(s)
- Kate Halsby
- Vaccines and Antivirals Medical Affairs, Pfizer Ltd, Surrey, United Kingdom.
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Munich, Germany; Department of Infectious Diseases and Tropical Medicine, University Munich, Germany
| | - Ava Easton
- Encephalitis International, North Yorkshire, United Kingdom; Institute of Infection, Veterinary and Ecological Science, University of Liverpool, NIHR HPRU for Emerging and Zoonotic Infection, Liverpool, United Kingdom
| | - Guntis Karelis
- Rīga Stradiņš University, Dzirciema St. 16, Rīga, LV-1007, Latvia; Rīga East University Hospital, Hipokrata St. 2, Rīga, LV-1079, Latvia
| | - Lenka Krbková
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Masaryk University and Faculty Hospital, Brno, Czech Republic
| | - Jan Kyncl
- Department of Infectious Diseases Epidemiology, National Institute of Public Health, Srobarova 49, Prague, Czech Republic; Department of Epidemiology and Biostatistics, Third Faculty of Medicine, Charles University, Ruska 87, Prague, Czech Republic
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Affiliated with Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia
| | - Malin Veje
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Guldhedsgatan 10, 41346, Gothenburg, Sweden
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Żurawia 14, Białystok 15-540, Poland
| | - Dace Zavadska
- Riga Stradins University, Department of Paediatrics, Children Clinical University Hospital, Riga, Vienibas gatve 45, Riga, LV1004, Latvia
| | - Frederick J Angulo
- Vaccines and Antivirals Medical Affairs, Pfizer Biopharma Group, 500 Arcola Rd, Collegeville, PA,19426, United States
| | - Andreas Pilz
- Vaccines and Antivirals Medical Affairs, Pfizer Corporation Austria, Vienna, Austria
| | - Wilhelm Erber
- Vaccines and Antivirals Medical Affairs, Pfizer Corporation Austria, Vienna, Austria
| | - Meghan Gabriel
- RTI Health Solutions, 3040 East Cornwallis Road, Research Triangle Park, NC, United States
| | - Jon Russo
- RTI Health Solutions, 3040 East Cornwallis Road, Research Triangle Park, NC, United States
| | - Mark Price
- RTI Health Solutions, 3040 East Cornwallis Road, Research Triangle Park, NC, United States
| | - Harish Madhava
- Vaccines and Antivirals Medical Affairs, Pfizer Ltd, Surrey, United Kingdom
| | | |
Collapse
|
3
|
Gervais A, Marchal A, Fortova A, Berankova M, Krbkova L, Pychova M, Salat J, Zhao S, Kerrouche N, Le Voyer T, Stiasny K, Raffl S, Schieber Pachart A, Fafi-Kremer S, Gravier S, Robbiani DF, Abel L, MacDonald MR, Rice CM, Weissmann G, Kamal Eldin T, Robatscher E, Erne EM, Pagani E, Borghesi A, Puel A, Bastard P, Velay A, Martinot M, Hansmann Y, Aberle JH, Ruzek D, Cobat A, Zhang SY, Casanova JL. Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in ∼10% of patients. J Exp Med 2024; 221:e20240637. [PMID: 39316018 PMCID: PMC11448868 DOI: 10.1084/jem.20240637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Tick-borne encephalitis (TBE) virus (TBEV) is transmitted to humans via tick bites. Infection is benign in >90% of the cases but can cause mild (<5%), moderate (<4%), or severe (<1%) encephalitis. We show here that ∼10% of patients hospitalized for severe TBE in cohorts from Austria, Czech Republic, and France carry auto-Abs neutralizing IFN-α2, -β, and/or -ω at the onset of disease, contrasting with only ∼1% of patients with moderate and mild TBE. These auto-Abs were found in two of eight patients who died and none of 13 with silent infection. The odds ratios (OR) for severe TBE in individuals with these auto-Abs relative to those without them in the general population were 4.9 (95% CI: 1.5-15.9, P < 0.0001) for the neutralization of only 100 pg/ml IFN-α2 and/or -ω, and 20.8 (95% CI: 4.5-97.4, P < 0.0001) for the neutralization of 10 ng/ml IFN-α2 and -ω. Auto-Abs neutralizing type I IFNs accounted for ∼10% of severe TBE cases in these three European cohorts.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Andrea Fortova
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Michaela Berankova
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Lenka Krbkova
- Department of Children’s Infectious Diseases, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Pychova
- Department of Infectious Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Salat
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Nacim Kerrouche
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Karin Stiasny
- Medical University of Vienna, Center for Virology, Vienna, Austria
| | - Simon Raffl
- Medical University of Vienna, Center for Virology, Vienna, Austria
| | | | - Samira Fafi-Kremer
- Institut de Virologie, Strasbourg University Hospital, Strasbourg University, INSERM Unité Mixte de Recherche (UMR) S1109, Strasbourg, France
| | - Simon Gravier
- Infectious Diseases Department, Hôpitaux Civils, Colmar, France
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gaia Weissmann
- Department of Pediatrics and Neonatology, F. Tappeiner Hospital, Merano, Italy
| | - Tarek Kamal Eldin
- Infectious Disease Unit, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Eva Robatscher
- Laboratory of Microbiology and Virology, SABES-ASDAA, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Elke Maria Erne
- Infectious Disease Unit, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Elisabetta Pagani
- Laboratory of Microbiology and Virology, SABES-ASDAA, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Aurélie Velay
- Institut de Virologie, Strasbourg University Hospital, Strasbourg University, INSERM Unité Mixte de Recherche (UMR) S1109, Strasbourg, France
| | - Martin Martinot
- Infectious Diseases Department, Hôpitaux Civils, Colmar, France
| | - Yves Hansmann
- CHU de Strasbourg, Service des Maladies Infectieuses et Tropicales, Strasbourg, France
| | - Judith H. Aberle
- Medical University of Vienna, Center for Virology, Vienna, Austria
| | - Daniel Ruzek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
4
|
Simkute E, Pautienius A, Grigas J, Urbute P, Stankevicius A. The Prevalence, Seroprevalence, and Risk Factors of Tick-Borne Encephalitis Virus in Dogs in Lithuania, a Highly Endemic State. Viruses 2023; 15:2265. [PMID: 38005941 PMCID: PMC10674385 DOI: 10.3390/v15112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The rising awareness and increasing number of case reports of tick-borne encephalitis (TBE) in dogs indicate that the virus might be an important tick-borne pathogen in dogs, especially in endemic areas. Therefore, the aim of the present study was to investigate the prevalence rate of TBEV RNA and TBEV-specific antibodies in clinical samples of dogs living in a highly endemic region of Lithuania and to evaluate the main risk factors for severe disease course and death. The blood samples (n = 473) of dogs were collected in two veterinary clinics in central Lithuania. Tick-borne encephalitis virus (TBEV) RNA was detected in 18.6% (88/473; CI 95% 15.2-22.4) and TBEV-specific antibodies were found in 21.6% (102/473; CI 95% 17.9-25.6) of dog blood serum samples after confirmation with a virus neutralization test. The death/euthanasia rate was 18.2% (16/88; CI 95% 10.8-27.8) in PCR-positive dogs. Male dogs were more likely to develop neurological symptoms (p = 0.008). Older dogs (p = 0.003), dogs with the presence of neurological symptoms (p = 0.003), and dogs with the presence of TBEV-specific antibodies (p = 0.024) were more likely to experience worse outcomes of the disease. The results of the present study demonstrate that TBEV is a common and clinically important pathogen in dogs in such endemic countries as Lithuania.
Collapse
Affiliation(s)
- Evelina Simkute
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, (J.G.)
| | - Arnoldas Pautienius
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, (J.G.)
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Juozas Grigas
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, (J.G.)
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Paulina Urbute
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, (J.G.)
| | - Arunas Stankevicius
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, (J.G.)
| |
Collapse
|
5
|
Kwasnik M, Rola J, Rozek W. Tick-Borne Encephalitis-Review of the Current Status. J Clin Med 2023; 12:6603. [PMID: 37892741 PMCID: PMC10607749 DOI: 10.3390/jcm12206603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The tick-borne encephalitis virus (TBEV) is the arboviral etiological agent of tick-borne encephalitis (TBE), considered to be one of the most important tick-borne viral diseases in Europe and Asia. In recent years, an increase in the incidence of TBE as well as an increasing geographical range of the disease have been noted. Despite the COVID-19 pandemic and the imposition of restrictions that it necessitated, the incidence of TBE is rising in more than half of the European countries analyzed in recent studies. The virus is transmitted between ticks, animals, and humans. It seems that ticks and small mammals play a role in maintaining TBEV in nature. The disease can also affect dogs, horses, cattle, and small ruminants. Humans are incidental hosts, infected through the bite of an infected tick or by the alimentary route, through the consumption of unpasteurized milk or milk products from TBEV-infected animals. TBEV infections in humans may be asymptomatic, but the symptoms can range from mild flu-like to severe neurological. In Europe, cases of TBE are reported every year. While there is currently no effective treatment for TBE, immunization and protection against tick bites are critical in preventing this disease.
Collapse
Affiliation(s)
- Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (J.R.); (W.R.)
| | | | | |
Collapse
|
6
|
Svoboda P, Haviernik J, Bednar P, Matkovic M, Cervantes Rincón T, Keeffe J, Palus M, Salat J, Agudelo M, Nussenzweig MC, Cavalli A, Robbiani DF, Ruzek D. A combination of two resistance mechanisms is critical for tick-borne encephalitis virus escape from a broadly neutralizing human antibody. Cell Rep 2023; 42:113149. [PMID: 37715951 PMCID: PMC10591882 DOI: 10.1016/j.celrep.2023.113149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus that causes human neuroinfections and represents a growing health problem. The human monoclonal antibody T025 targets envelope protein domain III (EDIII) of TBEV and related tick-borne flaviviruses, potently neutralizing TBEV in vitro and in preclinical models, representing a promising candidate for clinical development. We demonstrate that TBEV escape in the presence of T025 or T028 (another EDIII-targeting human monoclonal antibody) results in virus variants of reduced pathogenicity, characterized by distinct sets of amino acid changes in EDII and EDIII that are jointly needed to confer resistance. EDIII substitution K311N impairs formation of a salt bridge critical for T025-epitope interaction. EDII substitution E230K is not on the T025 epitope but likely induces quaternary rearrangements of the virus surface because of repulsion of positively charged residues on the adjacent EDI. A combination of T025 and T028 prevents virus escape and improves neutralization.
Collapse
Affiliation(s)
- Pavel Svoboda
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - Jan Haviernik
- Veterinary Research Institute, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Bednar
- Veterinary Research Institute, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Martin Palus
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jiri Salat
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Davide F Robbiani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.
| | - Daniel Ruzek
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Japan.
| |
Collapse
|
7
|
Stone ET, Pinto AK. T Cells in Tick-Borne Flavivirus Encephalitis: A Review of Current Paradigms in Protection and Disease Pathology. Viruses 2023; 15:958. [PMID: 37112938 PMCID: PMC10146733 DOI: 10.3390/v15040958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The family Flaviviridae is comprised of a diverse group of arthropod-borne viruses that are the etiological agents of globally relevant diseases in humans. Among these, infection with several of these flaviviruses-including West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Powassan virus (POWV)-can result in neuroinvasive disease presenting as meningitis or encephalitis. Factors contributing to the development and resolution of tick-borne flavivirus (TBEV, POWV) infection and neuropathology remain unclear, though many recently undertaken studies have described the virus-host interactions underlying encephalitic disease. With access to neural tissues despite the selectively permeable blood-brain barrier, T cells have emerged as one notable contributor to neuroinflammation. The goal of this review is to summarize the recent advances in tick-borne flavivirus immunology-particularly with respect to T cells-as it pertains to the development of encephalitis. We found that although T cell responses are rarely evaluated in a clinical setting, they are integral in conjunction with antibody responses to restricting the entry of TBFV into the CNS. The extent and means by which they can drive immune pathology, however, merits further study. Understanding the role of the T cell compartment in tick-borne flavivirus encephalitis is instrumental for improving vaccine safety and efficacy, and has implications for treatments and interventions for human disease.
Collapse
Affiliation(s)
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| |
Collapse
|
8
|
Pilz A, Erber W, Schmitt HJ. Vaccine uptake in 20 countries in Europe 2020: Focus on tick-borne encephalitis (TBE). Ticks Tick Borne Dis 2023; 14:102059. [PMID: 36410164 DOI: 10.1016/j.ttbdis.2022.102059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Vaccination as a highly effective measure to protect against tick-borne encephalitis (TBE) comes into new focus as known risk areas are expanding across Europe and Asia. Here we present an online household survey conducted in 20 European countries spanning endemic and non-endemic regions of TBE in 2020. With a comprehensive and standardized list of questions, this survey provided a unique opportunity to compare TBE/TBE vaccine awareness, TBE severity perception, vaccine uptake, vaccination completeness/compliance and motivators/barriers for vaccination across Europe. Among the 51,478 participants, tetanus- (72-92%), influenza- (83-98%), and measles-awareness (79-96%) were highest, but awareness was low for Lyme borreliosis, bacterial meningitis and pneumococcal pneumonia. Awareness towards TBE and a TBE vaccine was 74% and 56% in endemic countries, respectively, compared to 30% and 12% in non-endemic countries. Vaccine uptake defined as at least one TBE vaccination was found to be highly heterogenous across both endemic (range 7-81%) and non-endemic countries (range 1-8%). Compliance with the recommended vaccination schedule was 21% for the primary vaccination series and dropped to 7% for the first booster vaccination in endemic countries. The percentage of participants protected against TBE by vaccination at the time of the survey ranged from 21% in Slovakia to 69% in Lithuania. The perception of personal risk or lack thereof was found to be the most influencing factor for and against TBE vaccination. Overall, these data indicate highly heterogenous responses in different European countries regarding not only awareness towards a TBE vaccine, but also regarding TBE vaccine uptake and compliance. Regionally focused strategies to increase diagnostic completeness as well as TBE vaccination are needed across Europe.
Collapse
|
9
|
Tick-Borne Encephalitis Virus Prevalence in Sheep, Wild Boar and Ticks in Belgium. Viruses 2022; 14:v14112362. [PMID: 36366458 PMCID: PMC9699201 DOI: 10.3390/v14112362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 01/31/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the most important tick-borne zoonotic virus in Europe. In Belgium, antibodies to TBEV have already been detected in wildlife and domestic animals, but up-to-date prevalence data for TBEV are lacking, and no studies have assessed its seroprevalence in sheep. Serum samples of 480 sheep from all over Belgium and 831 wild boar hunted in Flanders (northern Belgium) were therefore screened for TBEV antibodies by ELISA and plaque reduction neutralization test (PRNT), respectively. The specificity of positive samples was assessed by PRNTs for TBEV and the Louping Ill, West Nile, and Usutu viruses. TBEV seroprevalence was 0.42% (2/480, CI 95%: 0.11-1.51) in sheep and 9.27% (77/831, CI 95%: 7.48-11.43) in wild boar. TBEV seroprevalence in wild boar from the province of Flemish Brabant was significantly higher (22.38%, 15/67) compared to Limburg (7.74%, 34/439) and Antwerp (8.61%, 28/325). Oud-Heverlee was the hunting area harboring the highest TBEV seroprevalence (33.33%, 11/33). In an attempt to obtain a Belgian TBEV isolate, 1983 ticks collected in areas showing the highest TBEV seroprevalence in wild boars were tested by real-time qPCR. No TBEV-RNA-positive tick was detected. The results of this study suggest an increase in TBEV prevalence over the last decade and highlight the need for One-Health surveillance in Belgium.
Collapse
|
10
|
First Human Case of Tick-Borne Encephalitis in Non-Endemic Region in Italy: A Case Report. Pathogens 2022; 11:pathogens11080854. [PMID: 36014975 PMCID: PMC9412648 DOI: 10.3390/pathogens11080854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE), a human viral infectious disease caused by the tick-borne encephalitis virus (TBEV), is emerging in Italy, especially in the north-eastern area. No human cases of autochthonous TBE have been reported in Italy’s central regions (such as Emilia-Romagna, Italy). However, here we describe the first human case of TBEV infection in this region, pointing to endemic transmission of TBEV, supporting the concept of circulation of TBEV and of the presence of a possible hot spot in the Serramazzoni region in the Emilian Apennines.
Collapse
|
11
|
Bhide K, Mochnáčová E, Tkáčová Z, Petroušková P, Kulkarni A, Bhide M. Signaling events evoked by domain III of envelop glycoprotein of tick-borne encephalitis virus and West Nile virus in human brain microvascular endothelial cells. Sci Rep 2022; 12:8863. [PMID: 35614140 PMCID: PMC9133079 DOI: 10.1038/s41598-022-13043-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Tick-borne encephalitis virus and West Nile virus can cross the blood–brain barrier via hematogenous route. The attachment of a virion to the cells of a neurovascular unit, which is mediated by domain III of glycoprotein E, initiates a series of events that may aid viral entry. Thus, we sought to uncover the post-attachment biological events elicited in brain microvascular endothelial cells by domain III. RNA sequencing of cells treated with DIII of TBEV and WNV showed significant alteration in the expression of 309 and 1076 genes, respectively. Pathway analysis revealed activation of the TAM receptor pathway. Several genes that regulate tight-junction integrity were also activated, including pro-inflammatory cytokines and chemokines, cell-adhesion molecules, claudins, and matrix metalloprotease (mainly ADAM17). Results also indicate activation of a pro-apoptotic pathway. TLR2 was upregulated in both cases, but MyD88 was not. In the case of TBEV DIII, a MyD88 independent pathway was activated. Furthermore, both cases showed dramatic dysregulation of IFN and IFN-induced genes. Results strongly suggest that the virus contact to the cell surface emanates a series of events namely viral attachment and diffusion, breakdown of tight junctions, induction of virus uptake, apoptosis, reorganization of the extracellular-matrix, and activation of the innate immune system.
Collapse
Affiliation(s)
- Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic. .,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
12
|
Gonzalez G, Bournez L, Moraes RA, Marine D, Galon C, Vorimore F, Cochin M, Nougairède A, Hennechart-Collette C, Perelle S, Leparc-Goffart I, Durand GA, Grard G, Bénet T, Danjou N, Blanchin M, Lacour SA, Franck B, Chenut G, Mainguet C, Simon C, Brémont L, Zientara S, Moutailler S, Martin-Latil S, Dheilly NM, Beck C, Lecollinet S. A One-Health Approach to Investigating an Outbreak of Alimentary Tick-Borne Encephalitis in a Non-endemic Area in France (Ain, Eastern France): A Longitudinal Serological Study in Livestock, Detection in Ticks, and the First Tick-Borne Encephalitis Virus Isolation and Molecular Characterisation. Front Microbiol 2022; 13:863725. [PMID: 35479640 PMCID: PMC9037541 DOI: 10.3389/fmicb.2022.863725] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus’ (TBEV) geographic range and the human incidence are increasing throughout Europe, putting a number of non-endemic regions and countries at risk of outbreaks. In spring 2020, there was an outbreak of tick-born encephalitis (TBE) in Ain, Eastern France, where the virus had never been detected before. All patients but one had consumed traditional unpasteurised raw goat cheese from a local producer. We conducted an investigation in the suspected farm using an integrative One Health approach. Our methodology included (i) the detection of virus in cheese and milk products, (ii) serological testing of all animals in the suspected farm and surrounding farms, (iii) an analysis of the landscape and localisation of wooded area, (iv) the capture of questing ticks and small mammals for virus detection and estimating enzootic hazard, and (v) virus isolation and genome sequencing. This approach allowed us to confirm the alimentary origin of the TBE outbreak and witness in real-time the seroconversion of recently exposed individuals and excretion of virus in goat milk. In addition, we identified a wooded focus area where and around which there is a risk of TBEV exposure. We provide the first TBEV isolate responsible for the first alimentary-transmitted TBE in France, obtained its full-length genome sequence, and found that it belongs to the European subtype of TBEV. TBEV is now a notifiable human disease in France, which should facilitate surveillance of its incidence and distribution throughout France.
Collapse
Affiliation(s)
- Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| | - Rayane Amaral Moraes
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dumarest Marine
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Fabien Vorimore
- Bacterial Zoonosis Unit, Laboratory for Animal Health, ANSES Maisons-Alfort, Paris-Est University, Paris, France
| | - Maxime Cochin
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| | | | - Sylvie Perelle
- ANSES Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort, France
| | - Isabelle Leparc-Goffart
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France.,French National Reference Centre for Arbovirus, Armed Forces Biomedical Research Institute, Marseille, France
| | - Guillaume André Durand
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France.,French National Reference Centre for Arbovirus, Armed Forces Biomedical Research Institute, Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France.,French National Reference Centre for Arbovirus, Armed Forces Biomedical Research Institute, Marseille, France
| | - Thomas Bénet
- Santé Publique France, French Public Health Agency, Auvergne-Rhône-Alpes Regional Office, Lyon, France
| | - Nathalie Danjou
- Regional Health Agency (Agence Régionale de Santé), Auvergne-Rhône-Alpes, Lyon, France
| | - Martine Blanchin
- Regional Health Agency (Agence Régionale de Santé), Auvergne-Rhône-Alpes, Lyon, France
| | - Sandrine A Lacour
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Boué Franck
- ANSES, Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| | - Guillaume Chenut
- Local Health Authority, Direction Départementale de la Protection de la Population de l'Ain, Bourg-en-Bresse, France
| | - Catherine Mainguet
- Local Health Authority, Direction Départementale de la Protection de la Population de l'Ain, Bourg-en-Bresse, France
| | - Catherine Simon
- Local Health Authority, Direction Départementale de la Protection de la Population de l'Ain, Bourg-en-Bresse, France
| | - Laurence Brémont
- Local Health Authority, Direction Départementale de la Protection de la Population de l'Ain, Bourg-en-Bresse, France
| | - Stephan Zientara
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sandra Martin-Latil
- ANSES Laboratory for Food Safety, Université Paris-Est, Maisons-Alfort, France
| | - Nolwenn M Dheilly
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Cécile Beck
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sylvie Lecollinet
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
13
|
Constant O, Maarifi G, Blanchet FP, Van de Perre P, Simonin Y, Salinas S. Role of Dendritic Cells in Viral Brain Infections. Front Immunol 2022; 13:862053. [PMID: 35529884 PMCID: PMC9072653 DOI: 10.3389/fimmu.2022.862053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
To gain access to the brain, a so-called immune-privileged organ due to its physical separation from the blood stream, pathogens and particularly viruses have been selected throughout evolution for their use of specific mechanisms. They can enter the central nervous system through direct infection of nerves or cerebral barriers or through cell-mediated transport. Indeed, peripheral lymphoid and myeloid immune cells can interact with the blood-brain and the blood-cerebrospinal fluid barriers and allow viral brain access using the "Trojan horse" mechanism. Among immune cells, at the frontier between innate and adaptive immune responses, dendritic cells (DCs) can be pathogen carriers, regulate or exacerbate antiviral responses and neuroinflammation, and therefore be involved in viral transmission and spread. In this review, we highlight an important contribution of DCs in the development and the consequences of viral brain infections.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Fabien P. Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
14
|
Banović P, Díaz-Sánchez AA, Đurić S, Sević S, Turkulov V, Lendak D, Mikić SS, Simin V, Mijatović D, Bogdan I, Potkonjak A, Savić S, Obregón D, Cabezas-Cruz A. Unexpected TBEV Seropositivity in Serbian Patients Who Recovered from Viral Meningitis and Encephalitis. Pathogens 2022; 11:pathogens11030371. [PMID: 35335695 PMCID: PMC8951648 DOI: 10.3390/pathogens11030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The tick-borne encephalitis virus (TBEV) causes a life-threatening disease named Tick-borne encephalitis (TBE). The clinical symptoms associated with TBE range from non-specific to severe inflammation of the central nervous system and are very similar to the clinical presentation of other viral meningitis/encephalitis. In consequence, TBE is often misclassified by clinical physicians, mainly in the non-identified high-risk areas where none or only a few TBE cases have been reported. Considering this situation, we hypothesized that among persons from northern Serbia who recovered from viral meningitis or encephalitis, there would be evidence of TBEV infection. To test this hypothesis, in this observational study, we evaluated the seroreactivity against TBEV antigens in patients from northern Serbia who were hospitalized due to viral meningitis and/or viral encephalitis of unknown etiology. Three cases of seroreactivity to TBEV antigens were discovered among convalescent patients who recovered from viral meningitis and/or encephalitis and accepted to participate in the study (n = 15). The clinical and laboratory findings of these patients overlap with that of seronegative convalescent patients. Although TBE has been a notifiable disease in Serbia since 2004, there is no active TBE surveillance program for the serologic or molecular screening of TBEV infection in humans in the country. This study highlights the necessity to increase the awareness of TBE among physicians and perform active and systematic screening of TBEV antibodies among patients with viral meningitis and/or encephalitis.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence: (P.B.); (A.C.-C.)
| | | | - Selena Đurić
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
| | - Siniša Sević
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Vesna Turkulov
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Dajana Lendak
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Sandra Stefan Mikić
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Verica Simin
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (I.B.)
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Ivana Bogdan
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (I.B.)
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Sara Savić
- Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia;
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
- Correspondence: (P.B.); (A.C.-C.)
| |
Collapse
|
15
|
Schielein L, Tizek L, Biedermann T, Zink A. Tick bites in different professions and regions: pooled cross-sectional study in the focus area Bavaria, Germany. BMC Public Health 2022; 22:234. [PMID: 35120477 PMCID: PMC8817479 DOI: 10.1186/s12889-021-12456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND As the vector-borne diseases tick-borne encephalitis (TBE) and Lyme borreliosis (LB) are common in Germany and transmitted by tick bites, the aim of this study was to assess differences in the number of tick bites in various professions and regions across southern Germany to evaluate the differences in tick-associated risk. MATERIALS AND METHODS The analysis is based on three cross-sectional studies that were conducted in 2016 and 2017 in two real-life settings and in one medical setting in Bavaria. All participants filled in a paper-based questionnaire about their history with tick bites. Only adult participants (≥ 18 years) were included in this study. RESULTS Overall, 3503 individuals (mean age 50.8 ± 15.2 years, median age 53.0 ± 12.2 years, 54.0% female) were included. Of these, 50% worked in an outdoor profession and 56% lived in environs. Around 70% of participants reported at least one previous tick bite. In comparison to indoor workers, forestry workers (OR = 2.50; 95% CI: 1.10-5.68) had the highest risk for a tick bite followed by farmers (OR = 1.22; 95% CI: 1.01-1.47). Furthermore, people living in rural areas (OR = 1.97, 95% CI:1.49-2.59) and environs (OR = 1.98, 95% CI: 1.54-2.55) were twice as likely to have a previous tick bite than people living in urban areas. In general, slightly more tick bites were reported by people living in eastern Bavaria. CONCLUSION Rising numbers of TBE and LB indicate the need for further prevention strategies, which should focus on outdoor professions with a higher risk and people living in environs and rural areas.
Collapse
Affiliation(s)
- Louisa Schielein
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Linda Tizek
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Alexander Zink
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Biedersteiner Strasse 29, 80802, Munich, Germany.
- Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Incidence of Tick-Borne Encephalitis during the COVID-19 Pandemic in Selected European Countries. J Clin Med 2022; 11:jcm11030803. [PMID: 35160255 PMCID: PMC8836726 DOI: 10.3390/jcm11030803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ixodes ricinus ticks are one of the most important vectors and reservoirs of infectious diseases in Europe, and tick-borne encephalitis (TBE) is one of the most dangerous human diseases transmitted by these vectors. The aim of the present study was to investigate the TBE incidence in some European countries during the COVID-19 pandemic. To this end, we analyzed the data published by the European Center for Disease Prevention and Control (ECDC) and Eurostat on the number of reported TBE and COVID-19 cases in 2020 and TBE cases in 2015–2019 (reference period). Significant differences in the TBE incidence were found between the analyzed countries. The highest TBE incidence was found in Lithuania (25.45/100,000 inhabitants). A high TBE incidence was also observed in Central European countries. In 12 of the 23 analyzed countries, there was significant increase in TBE incidence during the COVID-19 pandemic during 2020 compared to 2015–2019. There was no correlation between the incidence of COVID-19 and TBE and between the availability of medical personnel and TBE incidence in the studied countries. In conclusion, Central Europe and the Baltic countries are areas with a high risk of TBE infection. Despite the COVID-19 pandemic and imposed restrictions, the incidence of TBE is increasing in more than half of the analyzed countries.
Collapse
|
17
|
The manifestation of myositis in tick-borne encephalitis as a prophet of severe disease course: a rare case report. Clin Rheumatol 2022; 41:1241-1245. [PMID: 35024987 DOI: 10.1007/s10067-022-06058-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is one of the most serious neurological tick-transmitted diseases. The initial phase usually occurs with non-specific symptoms such as fever, headache, and muscular pain. The clinical spectrum of the second phase of the disease typically ranges from mild meningitis to severe meningoencephalitis. Our case demonstrates a rare clinical case of acute myositis as manifestation of TBE virus infection. A 33-year-old female was admitted to the Rheumatology centre with a fever followed by proximal muscle pain and weakness. Despite the tick bite history and marginally positive anti-TBE virus IgM titre, the patient did not present any neurological symptoms. Laboratory test results showed elevated creatine kinase (CK) and myoglobin. Other infections, idiopathic inflammatory myopathies, were excluded. TBE virus infection was confirmed by rapid seroconversion of specific IgG class antibodies in serum. The second phase of the disease was followed by neurological symptoms and a repeated increase of CK and myoglobin. We suggest that in the case of acute myositis of unknown cause and the history of thick bite, TBE virus infection should be considered and creatine kinase might be considered as a laboratory marker of disease activity that correlates with the severity of the disease.
Collapse
|
18
|
Pavletič M, Korva M, Knap N, Bogovič P, Lusa L, Strle K, Nahtigal Klevišar M, Vovko T, Tomažič J, Lotrič-Furlan S, Strle F, Avšič-Županc T. Upregulated Intrathecal Expression of VEGF-A and Long Lasting Global Upregulation of Proinflammatory Immune Mediators in Vaccine Breakthrough Tick-Borne Encephalitis. Front Cell Infect Microbiol 2021; 11:696337. [PMID: 34277474 PMCID: PMC8281926 DOI: 10.3389/fcimb.2021.696337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
Although anti-TBE vaccines are highly effective, vaccine breakthrough (VBT) cases have been reported. With increasing evidence for immune system involvement in TBE pathogenesis, we characterized the immune mediators reflecting innate and adaptive T and B cell responses in neurological and convalescent phase in VBT TBE patients. At the beginning of the neurological phase, VBT patients have significantly higher serum levels of several innate and adaptive inflammatory cytokines compared to healthy donors, reflecting a global inflammatory state. The majority of cytokines, particularly those associated with innate and Th1 responses, are highly concentrated in CSF and positively correlate with intrathecal immune cell counts, demonstrating the localization of Th1 and proinflammatory responses in CNS, the site of disease in TBE. Interestingly, compared to unvaccinated TBE patients, VBT TBE patients have significantly higher CSF levels of VEGF-A and IFN-β and higher systemic levels of neutrophil chemoattractants IL-8/CXCL8 and GROα/CXCL1 on admission. Moreover, serum levels of IL-8/CXCL8 and GROα/CXCL1 remain elevated for two months after the onset of neurological symptoms, indicating a prolonged systemic immune activation in VBT patients. These findings provide the first insights into the type of immune responses and their dynamics during TBE in VBT patients. An observed systemic upregulation of neutrophil derived inflammation in acute and convalescent phase of TBE together with highly expressed VEGF-A could contribute to BBB disruption that facilitates the entry of immune cells and supports the intrathecal localization of Th1 responses observed in VBT patients.
Collapse
Affiliation(s)
- Miša Pavletič
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Misa Korva
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Lara Lusa
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Klemen Strle
- Division of Infectious Diseases, Microbial Pathogenesis and Immunology Laboratory, Wadsworth Center, New York State (NYS) Department of Health, Albany, NY, United States
| | | | - Tomaž Vovko
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Janez Tomažič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Radzišauskienė D, Urbonienė J, Kaubrys G, Andruškevičius S, Jatužis D, Matulytė E, Žvirblytė-Skrebutienė K. The epidemiology, clinical presentation, and predictors of severe Tick-borne encephalitis in Lithuania, a highly endemic country: A retrospective study of 1040 patients. PLoS One 2020; 15:e0241587. [PMID: 33211708 PMCID: PMC7676731 DOI: 10.1371/journal.pone.0241587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction In recent decades, the incidence of Tick-borne encephalitis (TBE) has been increasing and posing a growing health problem because of the high costs to the healthcare system and society. The clinical manifestations are well studied but there is a lack of research analyzing the severity of the disease. Objective The aim of this study was to analyze the epidemiology and clinical presentation of severe TBE, to identify the predictors for a severe disease course, and also predictors for meningoencephalomyelitic and severe meningoencephalitic/encephalitic forms. Methods A retrospective study was conducted in the Center of Infectious Diseases and the Center of Neurology at Vilnius University Hospital Santaros Klinikos in the years 2005–2017 to describe the clinical and epidemiological features of TBE in adults. Results 1040 patients were included in the study. A total of 152/1040 (14.6%) patients had a severe course. The highest proportion of severe cases, reaching 41.2%, was reported in the 70–79 year-old age group. A total of 36/152 (23.7%) severe patients presented meningoencephalomyelitis. Myelitic patients were older, were frequently infected in their living areas, and usually reported a monophasic disease course compared with severe meningoencephalitic/encephalitic patients. Severe meningoencephalitic/encephalitic patients, compared with non-severe meningoencephalitic/encephalitic, were older, less often noticed the tick bite, and often had a monophasic course. The sequelae on discharge were observed in 810/1000 (81%) of patients. Conclusions The prognostic factors associated with a severe disease course and severe meningoencephalitic form are: older age, comorbidities, a monophasic course, a fever of 40˚C and above, CRP more than 30 mg/l, CSF protein more than 1 g/l, delayed immune response of TBEV IgG, pathological findings in CT. Age above 60 years, presence of CNS disease, bulbar syndrome, pleocytosis 500x106/l and above, and delayed immune response of TBEV IgG are predictors of the most severe myelitic form.
Collapse
Affiliation(s)
- Daiva Radzišauskienė
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- * E-mail:
| | - Jurgita Urbonienė
- Center of Infectious Diseases, Vilnius University, Vilnius, Lithuania
| | - Gintaras Kaubrys
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Saulius Andruškevičius
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dalius Jatužis
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Elžbieta Matulytė
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Karolina Žvirblytė-Skrebutienė
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
20
|
Tick-borne encephalitis outbreak following raw goat milk consumption in a new micro-location, Croatia, June 2019. Ticks Tick Borne Dis 2020; 11:101513. [PMID: 32993933 DOI: 10.1016/j.ttbdis.2020.101513] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
In June 2019, the Croatian Institute of Public Health was informed of a cluster of patients with laboratory confirmed tick-borne encephalitis (TBE) from the Gorski Kotar region. Five of the six patients with TBE reported consuming raw (unpasteurized) goat milk in the two week period before symptom onset, and one reported a recent tick bite. To assess risk factors for infection, we selected six control individuals from among healthy family and community members, and conducted a case-control analysis. None of the cases or controls were vaccinated against TBE. Individuals with TBE (cases) had 25 (95 % CI 0.8-1410.2, p = 0.021) times higher odds of raw goat milk consumption compared to healthy controls. Milk samples from 12 goats from the implicated farm were tested for the TBE virus (TBEV) using RT-PCR. TBEV RNA was not detected in the milk, but serological testing of goats and other farm animals yielded evidence of exposure to the virus: Six goats from the flock had TBEV neutralizing antibodies. Our findings suggest that the vehicle for the outbreak was raw goat milk from a single farm. Following public health advice to cease consumption of raw dairy products, no further cases have been reported.
Collapse
|
21
|
Clinical and laboratory findings in tick-borne encephalitis virus infection. Parasite Epidemiol Control 2020; 10:e00160. [PMID: 32637663 PMCID: PMC7327414 DOI: 10.1016/j.parepi.2020.e00160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/17/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Tick-Borne Encephalitis (TBE), a disease caused by Tick-Borne Encephalitis Virus (TBEV), is emerging in Italy. This study aimed to characterize the epidemiological, clinical, laboratory, imaging and electroencephalogram characteristics in Belluno, North-East Italy. Results 76% were males, mean age 53 years; 50% did not report tick bite. 72% had a biphasic course, 42% a monophasic one, 8 cases of abortive TBE. Mostly no specific symptoms were observed, together with neurological signs and symptoms. None died, but 35% had sequelae at the one-month follow-up. Men had a higher risk of having neurological/neurocognitive sequelae; paresthesia or tremors were associated independently with sequelae. In terms of laboratory data, thrombocytopenia, neutropenia and lymphocytosis were associated with the first phase (p < .01), while monocytosis, lymphocytopenia, high levels of ESR and CRP with the second (p < .05). Other abnormal laboratory data were observed: high levels of transaminases, bilirubin, GGT, fibrinogen, amylase, LDH, CPK and electrolyte disorders. Most of the liquor showed pleocytosis and increased protein levels. No specific findings characterized imaging; electroencephalogram mainly reported general and focal anomalies in the temporal lobe. Conclusions Although patients have not reported a tick bite, TBEV infection should be considered for diagnosis. Usually no specific symptoms are reported along with neurological signs and symptoms. The biphasic course is more often described than the monophasic course; abortive TBE is sometimes present. Paresthesia and tremors are independently associated with neurological/neurocognitive sequelae; men have a higher risk of having sequelae. The first phase is probably associated with thrombocytopenia, neutropenia and lymphocytosis; the second with monocytosis, lymphocytopenia, high levels of CRP and ESR. Electrolyte disorders, high levels of transaminases, GGT, bilirubin, CPK, LDH, fibrinogen and amylase may characterize TBEV infection.
Collapse
|
22
|
Analysis of Multiple Risk Factors for Seronegative Rate of Anti-Tick-Borne Encephalitis Virus Immunization in Human Serum. ACTA ACUST UNITED AC 2020; 56:medicina56050244. [PMID: 32443896 PMCID: PMC7279439 DOI: 10.3390/medicina56050244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
Background and objectives: Tick-borne encephalitis virus (TBEV) infections have been the cause of threatening outbreaks for many years. Apart from several physical and chemical methods to prevent tick bites, active vaccination of people highly exposed to infection is still the most important strategy of prevention. However, in some subjects, the lack of or low response to TBEV antigens is observed. The aim of the current study was to assess the prevalence of seronegative rate for anti-TBEV antibodies and the risk factors for waning immunity. Materials and Methods: 2315 at least primary vaccinated subjects from the high risk group for TBEV infections participated in this study. A commercial enzyme-linked immunosorbent assay (ELISA) test was used for the assessment of anti-TBEV IgG serum level. Results: Data showed that 86.2% of subjects who underwent vaccination were positive for anti-TBEV antibodies within 5 years. As much as 13.8% of subjects that underwent primary or primary and booster vaccination were barely protected after vaccination. Women and subjects under 60 years underwent more effective protection but sex and older age was not a risk factor for being a subject of waning immunity. A logistic regression showed that both a longer time since the vaccination and a lower number of booster doses constantly increased the chance of lost anti-TBEV antibodies. Conclusions: This study demonstrates that the vaccination schedule should be reevaluated. The extension of the interval of booster immunization is risky and all subjects should be surrounded by care consisting of more frequent monitoring of serum antibodies by personalized schedule to adjust the frequency of subsequent doses of booster vaccination.
Collapse
|
23
|
Reusken C, Boonstra M, Rugebregt S, Scherbeijn S, Chandler F, Avšič-Županc T, Vapalahti O, Koopmans M, GeurtsvanKessel CH. An evaluation of serological methods to diagnose tick-borne encephalitis from serum and cerebrospinal fluid. J Clin Virol 2019; 120:78-83. [PMID: 31590114 DOI: 10.1016/j.jcv.2019.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is an infectious disease endemic to large parts of Europe and Asia. Diagnosing TBE often relies on the detection of TBEV-specific antibodies in serum and cerebrospinal fluid (CSF) as viral genome is mostly not detectable once neurological symptoms occur. OBJECTIVES We evaluated the performance of TBEV IgM and IgG ELISAs in both serum and CSF of confirmed TBEV patients and discuss the role of (CSF) serology in TBEV diagnostics. STUDY DESIGN For the assay evaluation we collected specimen from confirmed TBEV patients. Assay specificity was assessed using sera from patients with a related flavivirus infection or other acute infection. A selected ELISA assay was used to analyze TBEV-specific antibodies in CSF and to evaluate the use in confirming TBE diagnosis. RESULTS In this study the overall sensitivity of the IgM TBEV ELISAs was acceptable (94 -100 %). Four out of five IgM ELISA's demonstrated an excellent overall specificity from 94 -100% whereas a low overall specificity was observed for the IgG TBEV ELISAs (30-71%). Intrathecal antibody production against TBEV was demonstrated in a subset of TBE patients. CONCLUSIONS In four out of five ELISAs, IgM testing in serum and CSF of TBE patients is specific and confirmative. The lack of IgG specificity in all ELISAs emphasizes the need of confirmatory testing by virus neutralisation, depending on the patient's background and the geographic location of exposure to TBEV. A CSF-serum IgG antibody index can support the diagnosis specifically in chronic disease or once IgM has disappeared.
Collapse
Affiliation(s)
- Chantal Reusken
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2); Centre for infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Marrit Boonstra
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Sharona Rugebregt
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Sandra Scherbeijn
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Felicity Chandler
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| | - Olli Vapalahti
- Deptartment of Virology and Veterinary Biosciences: University of Helsinki, and HUSLAB, Helsinki University Hospital, Finland
| | - Marion Koopmans
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | | |
Collapse
|
24
|
Analysis of CCL-4, CCL-17, CCL-20 and IL-8 concentrations in the serum of patients with tick-borne encephalitis and anaplasmosis. Cytokine 2019; 125:154852. [PMID: 31561102 DOI: 10.1016/j.cyto.2019.154852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/16/2019] [Accepted: 09/08/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Tick-borne co-infections are a serious epidemiological and clinical problem. Only a few studies aimed to investigate the effect of tick-borne encephalitis (TBE) and human granulocytic anaplasmosis (HGA) co-infection in the course of the inflammatory process and the participation of chemokines in the pathomechanism of these diseases. The aim of the study was to evaluate CCL-4, CCL-17, CCL-20, and IL-8 serum concentrations in patients with HGA, TBE and HGA + TBE co-infection. METHODS Eighty-seven patients with HGA (n = 20), TBE (n = 49) and HGA + TBE (n = 18) were included to the study. The control group (CG) consisted of 20 healthy people. Concentrations of cytokines were measured in serum using commercial ELISA assays. In patients with TBE and HGA + TBE inflammatory markers were assessed during the acute and convalescent period. The results were analyzed using non-parametric tests with p < 0.05 considered as significant. RESULTS Before treatment, significantly higher concentrations of IL-8, CCL-4 and CCL-20 were observed in HGA patients. CCL-4 and CCL-20 concentrations were significantly higher in TBE patients compared to CG. Concentrations of IL-8, CCL-4, and CCL-20 were significantly higher in HGA + TBE than in CG. After treatment, a significant reduction of IL-8, CCL-4, and CCL-20 concentrations in TBE patients and IL-8 in HGA + TBE co-infection was observed. CCL-4 concentration was higher in HGA + TBE co-infection in comparison to patients with TBE after treatment. CONCLUSIONS Our study confirms that concentrations of IL-8, CCL-4, and CCL-20 are increased in the course of HGA and TBE. Their concentrations in serum may be used to monitor the course of TBE and HGA, as well as possibly detect co-infections with the diseases.
Collapse
|
25
|
Saksida A, Jakopin N, Jelovšek M, Knap N, Fajs L, Lusa L, Lotrič-Furlan S, Bogovič P, Arnež M, Strle F, Avšič-Županc T. Virus RNA Load in Patients with Tick-Borne Encephalitis, Slovenia. Emerg Infect Dis 2019; 24:1315-1323. [PMID: 29912706 PMCID: PMC6038823 DOI: 10.3201/eid2407.180059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We determined levels of tick-borne encephalitis (TBE) virus (TBEV) RNA in serum samples obtained from 80 patients during the initial phase of TBE in Slovenia. For most samples, levels were within the range of 3-6 log10 copies RNA/mL. Levels were higher in female patients than in male patients, but we found no association between virus load and several laboratory and clinical parameters, including severity of TBE. However, a weak humoral immune response was associated with a more severe disease course, suggesting that inefficient clearance of virus results in a more serious illness. To determine whether a certain genetic lineage of TBEV had a higher virulence potential, we obtained 56 partial envelope protein gene sequences by directly sequencing reverse transcription PCR products from clinical samples of patients. This method provided a large set of patient-derived TBEV sequences. We observed no association between phylogenetic clades and virus load or disease severity.
Collapse
|
26
|
Zawadzki R, Kubas B, Hładuński M, Zajkowska O, Zajkowska J, Jurgilewicz D, Garkowski A, Pancewicz S, Łebkowska U. Proton magnetic resonance spectroscopy ( 1H-MRS) of the brain in patients with tick-borne encephalitis. Sci Rep 2019; 9:2839. [PMID: 30808997 PMCID: PMC6391410 DOI: 10.1038/s41598-019-39352-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) is a disease caused by a tick-borne encephalitis virus (TBEV) belonging to the Flaviviridae family. The aforementioned virus is transmitted by the bite of infected ticks. In the recent years, TBEV has become a serious public health problem with a steady increase in its incidence, mainly due to the climate changes and spreading the infected ticks into new territories. The standard protocol of TBE diagnosis involves the serological laboratory test with a minor role of imaging techniques such as magnetic resonance imaging. Long-term complications affecting patients daily activities are reported in about 40–50% of the cases. However, no changes are revealed in the laboratory tests or the imaging examination. The development of new imaging techniques such as proton magnetic resonance spectroscopy (1H-MRS) can broaden the knowledge about TBE, contributing to its prevention. The aim of this study was to assess the usefulness of 1H-MRS of the brain in patients with TBE. Compared to controls, a statistically significant decrease in the N-acetylaspartate /creatine ratio was found bilaterally in the right and left thalamus as well as a statistically significant increase in the choline/creatine ratio in the right and left thalamus.
Collapse
Affiliation(s)
- Radosław Zawadzki
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland.
| | - Bożena Kubas
- Independent Department, Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Hładuński
- Independent Department, Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | - Olga Zajkowska
- Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Dorota Jurgilewicz
- Independent Department, Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | - Adam Garkowski
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Urszula Łebkowska
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
27
|
Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019; 164:23-51. [PMID: 30710567 DOI: 10.1016/j.antiviral.2019.01.014] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis (TBE) is an illness caused by tick-borne encephalitis virus (TBEV) infection which is often limited to a febrile illness, but may lead to very aggressive downstream neurological manifestations. The disease is prevalent in forested areas of Europe and northeastern Asia, and is typically caused by infection involving one of three TBEV subtypes, namely the European (TBEV-Eu), the Siberian (TBEV-Sib), or the Far Eastern (TBEV-FE) subtypes. In addition to the three main TBEV subtypes, two other subtypes; i.e., the Baikalian (TBEV-Bkl) and the Himalayan subtype (TBEV-Him), have been described recently. In Europe, TBEV-Eu infection usually results in only mild TBE associated with a mortality rate of <2%. TBEV-Sib infection also results in a generally mild TBE associated with a non-paralytic febrile form of encephalitis, although there is a tendency towards persistent TBE caused by chronic viral infection. TBE-FE infection is considered to induce the most severe forms of TBE. Importantly though, viral subtype is not the sole determinant of TBE severity; both mild and severe cases of TBE are in fact associated with infection by any of the subtypes. In keeping with this observation, the overall TBE mortality rate in Russia is ∼2%, in spite of the fact that TBEV-Sib and TBEV-FE subtypes appear to be inducers of more severe TBE than TBEV-Eu. On the other hand, TBEV-Sib and TBEV-FE subtype infections in Russia are associated with essentially unique forms of TBE rarely seen elsewhere if at all, such as the hemorrhagic and chronic (progressive) forms of the disease. For post-exposure prophylaxis and TBE treatment in Russia and Kazakhstan, a specific anti-TBEV immunoglobulin is currently used with well-documented efficacy, but the use of specific TBEV immunoglobulins has been discontinued in Europe due to concerns regarding antibody-enhanced disease in naïve individuals. Therefore, new treatments are essential. This review summarizes available data on the pathogenesis and clinical features of TBE, plus different vaccine preparations available in Europe and Russia. In addition, new treatment possibilities, including small molecule drugs and experimental immunotherapies are reviewed. The authors caution that their descriptions of approved or experimental therapies should not be considered to be recommendations for patient care.
Collapse
|
28
|
Erber W, Schmitt HJ. Self-reported tick-borne encephalitis (TBE) vaccination coverage in Europe: Results from a cross-sectional study. Ticks Tick Borne Dis 2018; 9:768-777. [DOI: 10.1016/j.ttbdis.2018.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
|
29
|
Egyed L, Rónai Z, Dán Á. Hungarian tick-borne encephalitis viruses isolated from a 0.5-ha focus are closely related to Finnish strains. Ticks Tick Borne Dis 2018; 9:1064-1068. [PMID: 29655579 DOI: 10.1016/j.ttbdis.2018.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 12/30/2022]
Abstract
Four tick-borne encephalitis virus strains were isolated from a small 0.5-ha focus over a six-year-long period (2011-2016) in Hungary. Two strains with identical genomes were isolated from Ixodes ricinus and Haemaphysalis concinna two months apart, which shows that the virus had not evolved separately in these tick species. Whole-genome sequencing of the virus revealed that the isolates differed from each other in 4 amino acids and 9 nucleotides. The calculated substitution rates indicated that the speed of genome evolution differs from habitat to habitat, and continuously changes even within the same focus. The amino acid changes affected the capsid, envelope, NS2a and NS5 genes, and one mutation each occurred in the 5' and 3' NCR as well as the premembrane, NS2a and NS5 genes. Phylogenetic analyses based on complete coding ORF sequences showed that the isolates belong to the European subtype of the virus and are closely related to the Finnish Kumlinge strains, the Bavarian isolate Leila and two isolates of Russian origin, but more distantly related to viruses from the neighbouring Central European countries. These isolates obviously have a common origin and are probably connected by migrating birds. These are the first published complete Hungarian TBEV sequences.
Collapse
Affiliation(s)
- László Egyed
- Veterinary Medical Research Institute, Agricultural Research Center of the Hungarian Academy of Sciences, Budapest, Hungary.
| | - Zsuzsanna Rónai
- Molecular Biology Department, National Food Chain Safety Office, Veterinary Diagnostic Institute, Budapest, Hungary
| | - Ádám Dán
- Molecular Biology Department, National Food Chain Safety Office, Veterinary Diagnostic Institute, Budapest, Hungary
| |
Collapse
|
30
|
Koper OM, Kamińska J, Grygorczuk S, Zajkowska J, Kemona H. CXCL9 concentrations in cerebrospinal fluid and serum of patients with tick-borne encephalitis. Arch Med Sci 2018; 14:313-320. [PMID: 29593804 PMCID: PMC5868655 DOI: 10.5114/aoms.2016.58667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION The aim of our current study was to evaluate cerebrospinal fluid (CSF) and serum CXCL9 concentrations and diagnostic usefulness of this molecule in tick-borne encephalitis (TBE). The study included TBE patients in the acute phase (TBE I) and after 2 weeks of follow-up (TBE II). The control group consisted of patients investigated for suspected central nervous system (CNS) infection, but with normal CSF findings. MATERIAL AND METHODS Concentrations of CXCL9 were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Cerebrospinal fluid and serum concentrations of CXCL9 in patients with TBE were significantly higher than in controls (p < 0.001). This alteration was also observed in the case of the CXCL9 index (ICXCL9; CSF CXCL9 concentration divided by serum CXCL9 concentration) (p < 0.001); moreover, ICXCL9 significantly decreased after 2 weeks (p < 0.001). This is the first study to evaluate the CSF and serum levels of CXCL9 in subjects with TBE. CONCLUSIONS CXCL9 is a ligand for CXCR3, which was found on all Th1 memory lymphocytes present in the peripheral blood; therefore the elevated concentrations of CXCL9 in TBE patients as compared to the controls might indicate that this chemokine perhaps takes part in the trafficking of Th1 cells into the CNS. The results presented here support the hypothesis that CXCL9 may play a role in TBE. However, further studies are required to determine whether this protein might be used as a potential tool for the diagnosis and monitoring of inflammation in TBE.
Collapse
Affiliation(s)
- Olga M. Koper
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Halina Kemona
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
31
|
Du Four S, Mertens R, Wiels W, De Keyser J, Bissay V, Flamez A. Meningoencephaloradiculitis following infection with tick borne encephalitis virus: case report and review of the literature. Acta Neurol Belg 2018; 118:93-96. [PMID: 29313244 DOI: 10.1007/s13760-017-0873-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
Abstract
Tick borne encephalitis (TBE) is an infectious zoonotic disease caused by an RNA virus that is endemic to Central and Eastern Europe, Russia, and large parts of Asia. The tick borne encephalitis virus (TBEV) is transmitted through the saliva of infected ticks and infected goat milk. In the vast majority of cases, an infection with TBEV has a subclinical course. However, in some cases, it leads to neurological symptoms due to meningitis, meningoencephalitis, meningoencephalomyelitis, or meningoencephaloradiculitis. Here, we present the first case of meningoencephaloradiculitis in Belgium.
Collapse
Affiliation(s)
- Stephanie Du Four
- Department of Neurosurgery, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Rembert Mertens
- Department of Infectious Diseases and Internal Medicine, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Wietse Wiels
- Department of Neurology, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Jacques De Keyser
- Department of Neurology, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Veronique Bissay
- Department of Neurology, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Anja Flamez
- Department of Neurology, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| |
Collapse
|
32
|
Palus M, Vancova M, Sirmarova J, Elsterova J, Perner J, Ruzek D. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity. Virology 2017; 507:110-122. [DOI: 10.1016/j.virol.2017.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/11/2022]
|
33
|
Santos RI, Hermance ME, Gelman BB, Thangamani S. Spinal Cord Ventral Horns and Lymphoid Organ Involvement in Powassan Virus Infection in a Mouse Model. Viruses 2016; 8:E220. [PMID: 27529273 PMCID: PMC4997582 DOI: 10.3390/v8080220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV) belongs to the family Flaviviridae and is a member of the tick-borne encephalitis serogroup. Transmission of POWV from infected ticks to humans has been documented in the USA, Canada, and Russia, causing fatal encephalitis in 10% of human cases and significant neurological sequelae in survivors. We used C57BL/6 mice to investigate POWV infection and pathogenesis. After footpad inoculation, infected animals exhibited rapid disease progression and 100% mortality. Immunohistochemistry and immunofluorescence revealed a very strong neuronal tropism of POWV infection. The central nervous system infection appeared as a meningoencephalitis with perivascular mononuclear infiltration and microglial activation in the brain, and a poliomyelitis-like syndrome with high level of POWV antigen at the ventral horn of the spinal cord. Pathological studies also revealed substantial infection of splenic macrophages by POWV, which suggests that the spleen plays a more important role in pathogenesis than previously realized. This report provides a detailed description of the neuroanatomical distribution of the lesions produced by POWV infection in C57BL/6 mice.
Collapse
Affiliation(s)
- Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Meghan E Hermance
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
34
|
Vilibic-Cavlek T, Barbic L, Stevanovic V, Petrovic G, Mlinaric-Galinovic G. IgG Avidity: an Important Serologic Marker for the Diagnosis of Tick-Borne Encephalitis Virus Infection. Pol J Microbiol 2016; 65:119-21. [PMID: 27282004 DOI: 10.5604/17331331.1197285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A total of 52 serum samples from patients with symptoms suggestive of tick-borne encephalitis virus (TBEV) infection and positive IgM and/or IgG antibodies were tested for IgG avidity. Acute/recent TBEV infection was confirmed by low/borderline avidity index (AI) in 94.8% IgM positive/IgG positive samples, while in 5.2% high AI was found indicating persisting IgM antibodies. Majority of IgM negative/IgG positive samples (78.6%) showed high AI consistent with past TBEV infection. However, in 21.3% patients without measurable IgM antibodies current/recent infection was confirmed by AI. IgG avidity represents an additional serologic marker that improves diagnosis of TBEV, especially in cases of atypical antibody response.
Collapse
|
35
|
The International Scientific Working Group on Tick-Borne Encephalitis (ISW TBE): Review of 17 years of activity and commitment. Ticks Tick Borne Dis 2016; 7:399-404. [DOI: 10.1016/j.ttbdis.2015.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
|
36
|
The Austrian Vaccination Paradox: Tick-borne Encephalitis Vaccination Versus Influenza Vaccination. Cent Eur J Public Health 2015; 23:223-6. [DOI: 10.21101/cejph.a4169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Bogovic P, Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J Clin Cases 2015; 3:430-441. [PMID: 25984517 PMCID: PMC4419106 DOI: 10.12998/wjcc.v3.i5.430] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/18/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023] Open
Abstract
Tick-borne encephalitis is an infection of central nervous system caused by tick-borne encephalitis virus transmitted to humans predominantly by tick bites. During the last few decades the incidence of the disease has been increasing and poses a growing health problem in almost all endemic European and Asian countries. Most cases occur during the highest period of tick activity, in Central Europe mainly from April to November. Tick-borne encephalitis is more common in adults than in children. Clinical spectrum of the disease ranges from mild meningitis to severe meningoencephalitis with or without paralysis. Rare clinical manifestations are an abortive form of the disease and a chronic progressive form. A post-encephalitic syndrome, causing long-lasting morbidity that often affects the quality of life develops in up to 50% of patients after acute tick-borne encephalitis. Clinical course and outcome vary by subtype of tick-borne encephalitis virus (the disease caused by the European subtype has milder course and better outcome than the disease caused by Siberian and Far-Easter subtypes), age of patients (increasing age is associated with less favorable outcome), and host genetic factors. Since clinical features and laboratory results of blood and cerebrospinal fluid are nonspecific, the diagnosis must be confirmed by microbiologic findings. The routine laboratory confirmation of the tick-borne encephalitis virus infection is based mainly on the detection of specific IgM and IgG antibodies in serum (and cerebrospinal fluid), usually by enzyme-linked immunosorbent assay. There is no specific antiviral treatment for tick-borne encephalitis. Vaccination can effectively prevent the disease and is indicated for persons living in or visiting tick-borne encephalitis endemic areas.
Collapse
|
38
|
Abstract
The list of emerging and reemerging pathogens that cause neurologic disease is expanding. Various factors, including population growth and a rise in international travel, have contributed to the spread of pathogens to previously nonendemic regions. Recent advances in diagnostic methods have led to the identification of novel pathogens responsible for infections of the central nervous system. Furthermore, new issues have arisen surrounding established infections, particularly in an increasingly immunocompromised population due to advances in the treatment of rheumatologic disease and in transplant medicine.
Collapse
Affiliation(s)
- Felicia C Chow
- Division of Infectious Diseases, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Carol A Glaser
- Division of Infectious Diseases, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Drelich A, Andreassen Å, Vainio K, Kruszyński P, Wąsik TJ. Prevalence of tick-borne encephalitis virus in a highly urbanized and low risk area in Southern Poland. Ticks Tick Borne Dis 2014; 5:663-7. [PMID: 25108791 DOI: 10.1016/j.ttbdis.2014.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/17/2014] [Accepted: 04/27/2014] [Indexed: 12/30/2022]
Abstract
The knowledge of the exact distribution of tick-borne encephalitis virus (TBEV) endemic foci is crucial to plan and implement the optimal prevention of tick-borne encephalitis (TBE), including a vaccination program. In Poland, however, there is still no data on the local distribution of TBEV in many areas of the country. Silesian agglomeration area (Southern Poland) is a highly urbanized and industrialized region of the country, where TBE cases are only sporadically recorded. In this study, a total of 4350 adult Ixodes ricinus were collected between September 2010 and June 2012 at twelve locations. The screening using real-time PCR was carried out on 854 tick pools of five specimens, and the positive pools were verified by pyrosequencing. TBEV was identified in 13 pools (1.52%) at 4 sites, of which 9 pools were verified by pyrosequencing. An overall pool prevalence was estimated at 0.31% ranging from 0.19% to 1.11% for positive locations [95% CI 0.16-0.52], which is comparable with regions with high number of TBE cases reported annually.
Collapse
Affiliation(s)
- Aleksandra Drelich
- Department and Institute of Microbiology and Virology, The School of Pharmacy and Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| | - Åshild Andreassen
- Division of Infectious Disease Control, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Kirsti Vainio
- Division of Infectious Disease Control, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Piotr Kruszyński
- Department and Institute of Microbiology and Virology, The School of Pharmacy and Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| | - Tomasz J Wąsik
- Department and Institute of Microbiology and Virology, The School of Pharmacy and Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
40
|
Strle F, Bogovič P, Cimperman J, Maraspin V, Ogrinc K, Rojko T, Stupica D, Lusa L, Avšič-Županc T, Smrdel KS, Jelovšek M, Lotrič-Furlan S. Are patients with erythema migrans who have leukopenia and/or thrombocytopenia coinfected with Anaplasma phagocytophilum or tick-borne encephalitis virus? PLoS One 2014; 9:e103188. [PMID: 25057802 PMCID: PMC4110002 DOI: 10.1371/journal.pone.0103188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022] Open
Abstract
Lyme borreliosis (LB), tick-borne encephalitis (TBE) and human granulocytic anaplasmosis (HGA) are endemic in central part of Slovenia. We tested the hypothesis that patients with erythema migrans (EM) from this region, who have leukopenia and/or thrombocytopenia (typical findings in HGA and in the initial phase of TBE but not in patients with LB) are coinfected with Anaplasma phagocytophilum and/or with TBE virus, i.e. that cytopenia is a result of concomitant HGA or the initial phase of TBE. Comparison of clinical and laboratory findings for 67 patients with EM who disclosed leukopenia/thrombocytopenia with the corresponding results in sex- and age-matched patients with EM and normal blood cell counts revealed no differences. In addition, patients with typical EM and leukopenia and/or thrombocytopenia tested negative for the presence of IgM and IgG antibodies to TBE virus by ELISA as well as for the presence of specific IgG antibodies to A. phagocytophilum antigens by IFA in acute and convalescent serum samples. Thus, none of 67 patients (95% CI: 0 to 5.3%) with typical EM (the presence of this skin lesion attests for early Lyme borreliosis and is the evidence for a recent tick bite) was found to be coinfected with A. phagocytophilum or had a recent primary infection with TBE virus. The findings in the present study indicate that in Slovenia, and probably in other European countries endemic for LB, TBE and HGA, patients with early LB are rarely coinfected with the other tick-transmitted agents.
Collapse
Affiliation(s)
- Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- * E-mail:
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Jože Cimperman
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Vera Maraspin
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Katarina Ogrinc
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tereza Rojko
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Daša Stupica
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Lara Lusa
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine Ljubljana, Ljubljana, Slovenia
| | - Katja Strašek Smrdel
- Institute of Microbiology and Immunology, Faculty of Medicine Ljubljana, Ljubljana, Slovenia
| | - Mateja Jelovšek
- Institute of Microbiology and Immunology, Faculty of Medicine Ljubljana, Ljubljana, Slovenia
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
41
|
Haditsch M, Kunze U. Tick-borne encephalitis: a disease neglected by travel medicine. Travel Med Infect Dis 2013; 11:295-300. [PMID: 23916617 DOI: 10.1016/j.tmaid.2013.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is a vector-borne disease that is primarily transmitted to humans by infected ticks and causes infection of the central nervous system. Clinical presentations range from meningitis to encephalitis with or without myelitis, and infection may result in death or long-term neurological sequelae. TBE is endemic in regions of at least 27 European as well as in some Asian countries. Infection and disease, however, can be averted successfully by tick-bite prevention and active vaccination. The risk of infection has shifted from daily life and occupational exposure to leisure-time activities, including travelling. Outdoor activities during the tick season with contact with nature increase the risk of tick bites. Although the number of travel-associated cases is unknown, it is certainly under-estimated because there is hardly any awareness of TBE in non-endemic countries. Therefore, the majority of cases remain undiagnosed, also because of the lack of diagnostic serology, as there is no routine screening for TBE in non-endemic regions. Because of the increasing number of travellers from TBE non-endemic to endemic regions, and in view of the fact that TBE was included in the list of notifiable diseases in the European Union in September 2012, this disease needs to become an important issue in travel medicine.
Collapse
Affiliation(s)
- Martin Haditsch
- TravelMedCenter Leonding, Austria and Labor Hannover MVZ GmbH, Germany
| | | |
Collapse
|
42
|
Pediatric tick-borne infections of the central nervous system in an endemic region of Sweden: a prospective evaluation of clinical manifestations. Eur J Pediatr 2012; 171:347-52. [PMID: 21842178 DOI: 10.1007/s00431-011-1542-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 07/26/2011] [Indexed: 12/30/2022]
Abstract
UNLABELLED Tick-borne encephalitis (TBE) and neuroborreliosis (NB) are well-known central nervous system (CNS) infections in children. Childhood tick-borne CNS infections are generally described as mild conditions. However, this view has recently been challenged, and the natural course, including potential sequelae, has been debated. If the diseases present with nonspecific symptoms and signs, some children may elude diagnosis. This study estimates the incidence of symptomatic tick-borne CNS infections in children under medical care and describes the spectrum of manifestations. One hundred twenty-four children with neurologic symptoms attending the Pediatric Emergency Department were included prospectively. Anti-TBE virus and anti-Borrelia serology results were analyzed together with inflammatory parameters in the blood and cerebrospinal fluid. Nearly one fourth of the children with neurologic symptoms were diagnosed with a tick-borne CNS infection (TBE, n = 10 [8%] and NB, n = 21 [16.8%]). In general, these children displayed an indistinct medical history and presented with nonspecific signs such as malaise/fatigue and headache. Diagnosis was based on analysis of acute and convalescent sera. Blood inflammatory parameters were nonspecific and did not contribute to the diagnostics. CONCLUSION Pediatric tick-borne CNS infections are unexpectedly common and should be considered in children with unspecific and unexplained acute CNS-related symptoms.
Collapse
|