1
|
Sasarom M, Anuchapreeda S, Hennink WE, Okonogi S. Influence of capping agents on physicochemical properties and leukemic cytotoxicity of copper oxide nanoparticles biosynthesized using Caesalpinia sappan extract. PLoS One 2025; 20:e0326791. [PMID: 40569954 PMCID: PMC12200837 DOI: 10.1371/journal.pone.0326791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 06/02/2025] [Indexed: 06/29/2025] Open
Abstract
The aim of this study was to investigate the effects of capping agents on the physicochemical and biological properties, particularly their leukemic cytotoxicity, of copper oxide nanoparticles (CuONPs) using a Caesalpinia sappan extract as a reducing agent. Gelatin, polyethylene glycol 400 (PEG), polysorbate 80 (P80), octyl phenol ethoxylate, sodium lauryl ether sulfate and mannitol were added as capping agents to ensure colloidal stability of the formed CuONPs. As a control, CuONPs were also synthesized using gelatin and sodium borohydride as the capping and reducing agent, respectively. The physicochemical properties of the obtained CuONPs were determined using dynamic light scattering, zeta-potential measurements, energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Their cytotoxic effects were investigated using normal human peripheral blood mononuclear cells (PBMC) and three strains of leukemic cell lines (KG1a, K562, and Molt4). The obtained CuONPs had a size range from 175-280 nm, with a reasonable size distribution between 0.2 and 0.4 and a negative zeta potential (range -30 to -35 mV) except the particles prepared using gelatin as a stabilizer which had a zeta potential of -3 mV. The CuONPs were incubated with both healthy PBMC and three types of leukemic cells to determine their IC50 values. The IC50 values of PEG-CuONPs and P80-CuONPs against healthy PBMC were 72.5 ± 5.8 and 85.0 ± 3.1 µg/mL, respectively, while that against the three strains of leukemic cells were in the range of 26-29 and 28-41 µg/mL, respectively. The results clearly demonstrate that the biosynthesized CuONPs using PEG and P80 as a capping agent exhibited the highest selectivity index defined as IC50 of the particles for PBMC/IC50 for leukemic cells. Therefore, these CuONPs are promising candidates for preclinical in vivo for leukemic treatments.
Collapse
Affiliation(s)
- Mathurada Sasarom
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, Thailand
| | - Wim E. Hennink
- Department of Pharmaceutics, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Yazdanshenas MR, Rezaei MR, Kharkan J. Comparative toxicity of zinc oxide nanoparticles and zinc salts in male mice: Hematological, biochemical, and histopathological impacts. Toxicol Rep 2025; 14:102003. [PMID: 40200928 PMCID: PMC11976247 DOI: 10.1016/j.toxrep.2025.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
The aim of this study was to investigate the toxicity of zinc oxide nanoparticles (ZnO NPs) compared to different zinc salts (ZnSO4, Zn(NO3)2, and ZnCl2) in male mice. For this purpose, 45 male mice were divided into five groups of nine (one control group). Mice were exposed to ZnO NPs and various zinc salts for 28 days, while the control group remained unexposed. After the exposure period, the mice were euthanized, and hematological, biochemical, enzymatic, and histopathological changes were recorded. Most hematological (RBC, WBC, Hb, Ht counts), biochemical (cholesterol, triglyceride, glucose, total protein, and albumin), and enzymatic parameters alkaline phosphatase (ALP), aspartate transaminase (AST), alanine aminotransferase (ALT) were significantly different in exposed mice compared to the control group (p < 0.05). The number of erythrocytes in mice exposed to ZnCl2 for 28 days (7.84 ± 1.41 × 106 mm3) was significantly lower than in the control group (10.11 ± 1.14 ×106 mm3) (p < 0.05). Additionally, mice exposed to ZnCl2 had significantly lower white blood cell (WBC) counts, hemoglobin (Hb), and hematocrit (Ht) levels than the control group (p < 0.05). Zn-exposed mice developed deformed erythrocytes, including dacrocytes, keratocytes, and ovalocytes, likely due to cytogenetically damaged RBC precursors. ZnO NPs and its various salts caused degeneration in hepatocytes, thickening and inflammatory cell infiltration in the renal capsule, congestion in the blood vessels of the lungs, and swelling of goblet cells in the intestine. Adding to the wealth of literature on the toxicity of ZnO NPs and zinc salts, especially ZnCl2, our study highlights the ecotoxicity of these compounds in mice. Effective and timely measures should be taken to reduce the use of ZnO NPs and its various salts worldwide.
Collapse
Affiliation(s)
- Mohammad Reza Yazdanshenas
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Mohammad Reza Rezaei
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Javad Kharkan
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
3
|
Yilmaz MD, Altves S, Ozcelik AB, Erbas-Cakmak S. Biocompatible Hyaluronic Acid-Stabilized Copper Nanoparticles for the Selective Oxidation of Morin Dye by H 2O 2. ACS OMEGA 2025; 10:14431-14438. [PMID: 40256537 PMCID: PMC12004143 DOI: 10.1021/acsomega.5c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
In this study, we report the synthesis and characterization of biocompatible hyaluronic acid-stabilized copper nanoparticles (HA-CuNPs) and their catalytic evaluation in the oxidation of morin as a model compound. HA-CuNPs have been characterized by several state-of-the-art analytical techniques, such as FESEM, STEM, UV-Vis, DLS, zeta potential, FTIR and XRD analyses. The average particle size and surface zeta potential of HA-CuNPs were determined to be 35 nm and -28 mV, respectively. The catalytic activity of HA-CuNPs was investigated in the oxidative degradation of morin dye in the presence of H2O2. The kinetic data show that the oxidation process follows a pseudo-first-order reaction, and the rate constant is dependent on the concentrations of morin, H2O2, and HA-CuNPs. In addition, HA-CuNPs were employed for the selective oxidation of morin on four important synthetic dyes, i.e., Congo red, methylene blue, zinc-phthalocyanine, and quinizarin. The high selectivity indicates the possible use of HA-CuNPs as low-temperature bleach catalysts for the oxidation of stains such as tea, coffee, and red wine, which contain polyphenolic compounds like morin. Further, cytotoxicity studies demonstrated the low toxicity and high biocompatibility of HA-CuNPs to Caco-2 human colorectal adenocarcinoma cells, MCF-7 human breast cancer cells, and HUVEC normal human umbilical vein endothelial cells. Combining biocompatibility with high catalytic activity could boost the potential of this eco-friendly nanocatalyst in various applications, such as wastewater treatment, laundry, textile, and wood pulp bleaching.
Collapse
Affiliation(s)
- M. Deniz Yilmaz
- Department
of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya 42140, Türkiye
- BITAM-Science
and Technology Research and Application Center, Necmettin Erbakan University, Konya 42140, Türkiye
| | - Safaa Altves
- BITAM-Science
and Technology Research and Application Center, Necmettin Erbakan University, Konya 42140, Türkiye
| | - Aliye Beyza Ozcelik
- Department
of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Türkiye
| | - Sundus Erbas-Cakmak
- BITAM-Science
and Technology Research and Application Center, Necmettin Erbakan University, Konya 42140, Türkiye
- Department
of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Türkiye
| |
Collapse
|
4
|
Skrajnowska D, Szterk A, Ofiara K, Kowalczyk P, Bobrowska-Korczak B. The Genistein Supply and Elemental Composition of Rat Kidneys in an Induced Breast Cancer Model. Nutrients 2025; 17:1184. [PMID: 40218942 PMCID: PMC11990330 DOI: 10.3390/nu17071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Many natural phytochemicals support the work of the kidneys. The health effects of genistein have been confirmed in many kidney diseases (inflammation and acute kidney injury, cancer or menopausal or senile changes). Genistein through various mechanisms can affect kidney conditions. Objectives: The purpose of this work was to analyze the supply of various forms of genistein at a low dose (0.2 mg/kg b.w.) on the renal mineral composition of rats under conditions of mammary gland tumorigenesis (induced with DMBA). Methods: Sprague rats at the age of 40 days were divided into four research groups, i.e., a control group receiving only standard feed and four groups receiving feed supplemented with genistein in the form of nanoparticles (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.) (size: 92 ± 41 nm), genistein in microparticle form (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.) (size: 587 ± 83 nm) and genistein in macroparticle form (normal, classical) (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.). Mammary gland cancer was induced using DMBA (7,12-dimethyl-1,2-benz(a)anthracene). The experiment lasted 100 days. The concentrations of Ca, Zn, Fe, Cu, As, Se, Rb, Sr, Mo, B, and Mn were measured using the ICP-MS method, while the levels of K, Mg, and Na were measured using the FAAS method. Results: It was shown that, depending on the degree of miniaturization of genistein, its administration affected changes in kidney mineral composition, primarily resulting in a strongly reduced calcium content in the group of rats receiving nanogenistein. We found a negative impact of nanogenistein administration on the amount of calcium and iron, indicating an increased distribution or excretion of these elements from the body, as well as an increase in the number of elements, especially magnesium, sodium, zinc, boron, and copper concentrations, compared to the non-supplemented group. Conclusions: This study confirms the need for thorough clinical analyses in the future, with regard to the effects of genistein, especially its nanoforms on the body.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| | - Arkadiusz Szterk
- ASLAB Science, Fort Służew 1/9, 02-787 Warsaw, Poland (K.O.)
- Chair of Preclinical Sciences, Department of Pharmacology and Toxicology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Karol Ofiara
- ASLAB Science, Fort Służew 1/9, 02-787 Warsaw, Poland (K.O.)
| | - Paweł Kowalczyk
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| |
Collapse
|
5
|
Su L, Wang S, Li Q, Guo P, Wu Y, Zhao L, Hu L, Li Y, Guo J, Zhang H, Pan J, Tang Z, Liao J. Hesperidin alleviates ZBP1-drived PANoptosis induced by copper nanoparticles in immune organs of gallus. J Trace Elem Med Biol 2025; 87:127575. [PMID: 39637734 DOI: 10.1016/j.jtemb.2024.127575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
With the application of copper nanoparticles (nano-Cu) in livestock and poultry feed addition, their biotoxicity has been gradually recognized. Therefore, it has become an urgent problem to find the effective natural antagonists to reduce the toxicity of copper nanoparticles. Here, we found that hesperidin could alleviate nano-Cu-induced pathological injury in the immune organs of chickens via the histopathological examination of the spleen, thymus, and bursa of Fabricius. Additionally, the results of western blot showed that nano-Cu exposure activated ZBP1-mediated PANoptosis in immune organs, with evidenced by the significant up-regulation of ZBP1 signal molecule and PANoptosis-related proteins (apoptosis: Caspase-7, Caspase-3, Caspase-8; pyroptosis: Caspase-1, GSDMD, GSDME; necroptosis: RIPK1 and MLKL). Besides that, immunohistochemistry and immunofluorescence also showed that the staining intensity of Caspase-9 and Caspase-8 proteins was observably elevated in nano-Cu group compared to control group, and the staining intensity of the hesperidin mixed nano-copper group was markedly lower than that of the nano-Cu group. Meanwhile, hesperidin effectively attenuated the ZBP1 expression and PANoptosis under nano-Cu exposure. These findings suggested that excessive nano-Cu could cause ZBP1-drived PANoptosis in immune organs, while hesperidin could alleviate toxic damage induced by nano-Cu exposure.
Collapse
Affiliation(s)
- Luna Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yijin Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lijiao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Zhang S, Peng S. Copper-Based biomaterials for anti-tumor therapy: Recent advances and perspectives. Acta Biomater 2025; 193:107-127. [PMID: 39800096 DOI: 10.1016/j.actbio.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Copper, an essential trace element, is integral to numerous metabolic pathways across biological systems. In recent years, copper-based biomaterials have garnered significant interest due to their superior biocompatibility and multifaceted functionalities, particularly in the treatment of malignancies such as sarcomas and cancers. On the one hand, these copper-based materials serve as efficient carriers for a range of therapeutic agents, including chemotherapeutic drugs, small molecule inhibitors, and antibodies, allowing them for precise delivery and controlled release triggered by specific modifications and stimuli. On the other hand, they can induce cell death through mechanisms such as ferroptosis, cuproptosis, apoptosis, and pyroptosis, or inhibit the proliferation and invasion of cancer cells via their outstanding properties. Furthermore, advanced design approaches enable these materials to support tumor imaging and immune activation. Despite this progress, the full scope of their functional capabilities remains to be fully elucidated. This review provides an overview of the anti-tumor functions, underlying mechanisms, and design strategies of copper-based biomaterials, along with their advantages and limitations. The aim is to provide insights into the design, study, and development of novel multifunctional biomaterials, with the ultimate goal of accelerating the clinical application of copper-based nanomaterials in cancer therapy. STATEMENT OF SIGNIFICANCE: This study explores the groundbreaking potential of copper-based biomaterials in cancer therapy, uniquely combining biocompatibility with diverse therapeutic mechanisms such as targeted drug delivery and inhibition of cancer cells through specific cell death pathways. By enhancing tumor imaging and immune activation, copper-based nanomaterials have opened new avenues for cancer treatment. This review examines these multifunctional biomaterials, highlighting their advantages and current limitations while addressing gaps in existing research. The findings aim to accelerate clinical applications of these materials in the field of oncology, providing valuable insights for the design of next-generation copper-based therapies. Therefore, this work is highly relevant to researchers and practitioners focused on innovative cancer treatments.
Collapse
Affiliation(s)
- Shufang Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
7
|
Sebastian A, Shanmuganathan MAA, Tripathy C, Chakravarty S, Ghosh S. Understanding Neurogenesis and Neuritogenesis via Molecular Insights, Gender Influence, and Therapeutic Implications: Intervention of Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:12-41. [PMID: 39718903 DOI: 10.1021/acsabm.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Neurological disorders impact global health by affecting both central and peripheral nervous systems. Understanding the neurogenic processes, i.e., neurogenesis and neuritogenesis, is of paramount importance in the context of nervous system development and regeneration as they hold promising therapeutic implications. Neurogenesis forms functional neurons from precursor cells, while neuritogenesis involves extending neurites for neuron connections. This review discusses how these processes are influenced by genetics, epigenetics, neurotrophic factors, environment, neuroinflammation, and neurotransmitters. It also covers gender-specific aspects of neurogenesis and neuritogenesis, their impact on brain plasticity, and susceptibility to neurological disorders. Alterations in these processes, under the influence of cytokines, growth factors, neurotransmitters, and aging, are linked to neurological disorders and potential therapeutic targets. Gender-specific effects of pharmacological interventions, like SSRIs, TCAs, atypical antipsychotics, and lithium, are explored in this review. Hormone-mediated effects of BDNF and PPAR-γ agonists, as well as variations in efficacy and tolerability of MAOIs, AEDs, NMDA receptor modulators, and ampakines, are detailed for accurate therapeutic design. The review also discusses nanotechnology's significant contribution to neural tissue regeneration for mending neurodegenerative disorders, enhancing neuronal connectivity, and stem cell differentiation. Gold nanoparticles support hippocampal neurogenesis, while other nanoparticles aid neuron growth and neurite outgrowth. Quantum dots and nanolayered double hydroxides assist neuroregeneration, which improves brain drug delivery. Gender-specific responses to nanomedicines designed to enhance neuroregeneration have not been extensively investigated. However, we have specified certain gender-related variables that should be taken into account during the development of nanomedicines in an aim to improve therapeutic efficacy. Further research on gender-specific responses to nanomedicines in neural processes could enhance personalized treatments for neurological disorders, paving the way for novel therapeutic approaches in neuroscience.
Collapse
Affiliation(s)
- Aishwarya Sebastian
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohanraj Alias Ayyappan Shanmuganathan
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinmayee Tripathy
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Xiao N, Li Y, Sun P, Zhu P, Wang H, Wu Y, Bai M, Li A, Ming W. A Comparative Review: Biological Safety and Sustainability of Metal Nanomaterials Without and with Machine Learning Assistance. MICROMACHINES 2024; 16:15. [PMID: 39858671 PMCID: PMC11767896 DOI: 10.3390/mi16010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
In recent years, metal nanomaterials and nanoproducts have been developed intensively, and they are now widely applied across various sectors, including energy, aerospace, agriculture, industry, and biomedicine. However, nanomaterials have been identified as potentially toxic, with the toxicity of metal nanoparticles posing significant risks to both human health and the environment. Therefore, the toxicological risk assessment of metal nanomaterials is essential to identify and mitigate potential adverse effects. This review provides a comprehensive analysis of the safety and sustainability of metallic nanoparticles (such as Au NPs, Ag NPs, etc.) in key domains such as medicine, energy, and environmental protection. Using a dual-perspective analysis approach, it highlights the unique advantages of machine learning in data processing, predictive modeling, and optimization. At the same time, it underscores the importance of traditional methods, particularly their ability to offer greater interpretability and more intuitive results in specific contexts. Finally, a comparative analysis of traditional methods and machine learning techniques for detecting the toxicity of metal nanomaterials is presented, emphasizing the key challenges that need to be addressed in future research.
Collapse
Affiliation(s)
- Na Xiao
- Department of Engineering, Huanghe University of Science and Technology, Zhengzhou 450008, China;
| | - Yonghui Li
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.L.); (P.S.); (P.Z.); (H.W.); (Y.W.)
| | - Peiyan Sun
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.L.); (P.S.); (P.Z.); (H.W.); (Y.W.)
| | - Peihua Zhu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.L.); (P.S.); (P.Z.); (H.W.); (Y.W.)
| | - Hongyan Wang
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.L.); (P.S.); (P.Z.); (H.W.); (Y.W.)
| | - Yin Wu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.L.); (P.S.); (P.Z.); (H.W.); (Y.W.)
| | - Mingyu Bai
- Guangdong HUST Industrial Technology Research Institute, Huazhong University of Science and Technology, Dongguan 523808, China;
| | - Ansheng Li
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.L.); (P.S.); (P.Z.); (H.W.); (Y.W.)
- Institute of Mechanical and Electronic Engineering, Henan Vocational College of Water Conservancy and Environment, Zhengzhou 450008, China
| | - Wuyi Ming
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.L.); (P.S.); (P.Z.); (H.W.); (Y.W.)
- Guangdong HUST Industrial Technology Research Institute, Huazhong University of Science and Technology, Dongguan 523808, China;
| |
Collapse
|
9
|
Rong W, Wei Y, Chen Y, Huang L, Huang S, Lv Y, Guan D, Li X. 16S rRNA Sequencing Analysis Uncovers Dose-Dependent Cupric Chloride Effects on Silkworm Gut Microbiome Composition and Diversity. Animals (Basel) 2024; 14:3634. [PMID: 39765538 PMCID: PMC11672621 DOI: 10.3390/ani14243634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Copper-based pesticides are extensively used in agriculture, yet their impacts on beneficial insects remain poorly understood. Here, we investigate how cupric chloride exposure affects the gut microbiome of Bombyx mori, a model organism crucial for silk production. Using 16S rRNA sequencing, we analyzed the gut bacterial communities of fifth-instar silkworm larvae exposed to different concentrations of cupric chloride (0, 4, and 8 g/kg) in an artificial diet. The high-dose exposure dramatically altered the microbial diversity and community structure, where the Bacteroidota abundance decreased from 50.43% to 23.50%, while Firmicutes increased from 0.93% to 18.92%. A network analysis revealed complex interactions between the bacterial genera, with Proteobacteria and Firmicutes emerging as key players in the community response to copper stress. The functional prediction indicated significant shifts in metabolic pathways and genetic information processing in the high-dose group. Notably, the low-dose treatment induced minimal changes in both the taxonomic composition and predicted functions, suggesting a threshold effect in the microbiome response to copper exposure. Our findings provide novel insights into how agricultural chemicals influence insect gut microbiota and highlight potential implications for silkworm health and silk production. This work contributes to understanding the ecological impacts of copper-based pesticides and may inform evidence-based policies for their use in sericulture regions.
Collapse
Affiliation(s)
- Wantao Rong
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Yanqi Wei
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Yazhen Chen
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Lida Huang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
| | - Shuiwang Huang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
| | - Yiwei Lv
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
| | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| |
Collapse
|
10
|
Ruggeri M, Nomicisio C, Taviot-Guého C, Vigani B, Boselli C, Grisoli P, Icaro Cornaglia A, Bianchi E, Viseras C, Rossi S, Sandri G. Smart copper-doped clays in biomimetic microparticles for wound healing and infection control. Mater Today Bio 2024; 29:101292. [PMID: 39483391 PMCID: PMC11525154 DOI: 10.1016/j.mtbio.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Chronic wounds are non-healing lesions characterized by a high degree of inflammation, posing significant challenges in clinical management due to the increased risk of severe infection. This study focuses on developing a powder for cutaneous application to enhance the healing and prevent infections in chronic wounds. The smart nanocomposites-based biomimetic microparticles here developed combine the properties of chitosan and of clays and represent a significant innovation in the field of biomaterials for skin regeneration since they possess enhanced antimicrobial properties, are multi-functional scaffolds and promote cell proliferation, support tissue reconstruction by mimicking the natural extracellular matrix, and provide hemostatic properties to control bleeding during wound closure. The microparticles were made of chitosan and doped with clay minerals, specifically montmorillonite or layered double hydroxides, containing copper ions. The synergistic combination of biomimetic polymers and clays aims to regulate cellular responses, angiogenesis, and extracellular matrix (ECM) deposition, leveraging the bioactive properties of both components to promote wound healing. Montmorillonite and layered double hydroxides were enriched with copper ions through intercalation or coprecipitation methods, respectively. The water-insoluble microparticles were prepared using a chitosan derivative, chitosan carbamate, synthesized to obtain chitosan-based microparticles via spray-drying without crosslinkers. Physico-chemical characterization confirmed the successful doping of Cu-clay interaction products in the microparticles. In addition to enhanced cell proliferation and hemostatic properties, the presence of Cu-clays boosted the microparticles' antibacterial properties. Encouraging preclinical in vitro and in vivo results suggest that these smart nanocomposite biomimetic microparticles doped with Cu-enriched clay minerals could be promising candidates for simultaneously enhancing healing and controlling infections in chronic wounds.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Christine Taviot-Guého
- Institut de Chimie de Clermont-Ferrand, Université Clermont-Auvergne, UMR CNRS 6296, 24 av Blaise Pascal, 63171, Aubière, France
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100, Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
11
|
Khan AU, Qutob M, Gacem A, Rafatullah M, Yadav KK, Kumar P, Bhutto JK, Rehman M, Bansoid S, Eltayeb LB, Malik N, Ali MA, Alreshidi MA, Alam MW. Investigation of a broad diversity of nanoparticles, including their processes, as well as toxicity testing in diverse organs and systems. Toxicology 2024; 509:153985. [PMID: 39510373 DOI: 10.1016/j.tox.2024.153985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology arising in wide-ranging areas, covers extensively different ranges of approaches attained from fields such as biology, chemistry, physics, and medicine engineering. Nanoparticles are a necessary part of nanotechnology effectually applied in the cure of a number of diseases. Nanoparticles have gained significant importance due to their unique properties, which differ from their bulk counterparts. These distinct properties of nanoparticles are primarily influenced by their morphology, size, and size distribution. At the nanoscale, nanoparticles exhibit behaviours that can enhance therapeutic efficacy and reduce drug toxicity. Their small size and large surface area make them promising candidates for applications such as targeted drug delivery, where they can improve treatment outcomes while minimizing adverse effects. The harmful effects of nanoparticles on the environment were critically investigated to obtain appropriate results and reduce the risk by incorporating the materials. Nanoparticles tend to penetrate the human body, clear the biological barriers to reach sensitive organs and are easily incorporated into human tissue, as well as dispersing to the hepatic tissues, heart tissues, encephalum, and GI tract. This study aims to examine a wide variety of nanoparticles, focusing on their manufacturing methods, functional characteristics, and interactions within biological systems. Particular attention will be directed towards assessing the toxicity of nanoparticles in different organs and physiological systems, yielding a thorough comprehension of their potential health hazards and the processes that drive nanoparticle-induced toxicity. This analysis will also emphasize recent developments in nanoparticle applications and safety assessment methodologies.
Collapse
Affiliation(s)
- Azhar U Khan
- School of Life and Basic Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Krishna Kumar Yadav
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Thi-Qar, Iraq.
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Meenal Rehman
- School of Life and Basic Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Sudhakar Bansoid
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University, Al-Kharj, Riyadh 11942, Saudi Arabia
| | - Nazia Malik
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohammed Azam Ali
- Department of Mechanical Engineering King Khalid University, Saudi Arabia
| | | | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| |
Collapse
|
12
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
13
|
Yang L, Bao G, Yao C, Diao T, Su Z, Liu T, Li G, Wang G, Chen X, Xu X, Sun B, Xu X, He B, Zheng Y. Mitigating adverse effects of Cu-containing intrauterine devices using a highly biocompatible Cu5Fe alloy. Acta Biomater 2024; 189:651-667. [PMID: 39362451 DOI: 10.1016/j.actbio.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Copper-containing intrauterine devices (Cu-IUD) are adopted by worldwide women for contraception with the advantages of long-term effectiveness, reversibility and affordability. However, adverse effects occur in the initial implantation stage of Cu-IUD in uterine because of the burst release of Cu2+. To minimize the burst release, in this study, we designed a series of Cu-Fe alloys with 0.5 wt%, 1 wt% and 5 wt% Fe and also further produced ultrafine grained (UFG) structure for these alloys via equal-channel angular pressing. The microstructures and properties of the coarse grained (CG) Cu, CG Cu-Fe alloys and UFG Cu-Fe alloys were systematically investigated, including grain structure and phase compositions, metallic ions release behavior, electrochemical corrosion performance, and in vitro cytotoxicity. With careful comparison and selection, we chose the CG Cu-5Fe and UFG Cu-5Fe for in vivo tests using rat model, including tissue biocompatibility, in vivo corrosion behavior, and contraceptive effectiveness. Moreover, the corrosion mechanism of the Cu-5Fe alloy and its improved biocompatibility was discussed. Both CG and UFG Cu-5Fe alloys exhibited dramatic suppression of Cu2+ release in simulated uterine fluid for the long-term immersion process. The in vivo tissue compatibility was significantly improved with both CG and UFG Cu-5Fe alloys implanted in the rats' uterine while the high contraceptive efficacy was well maintained. Due to the superior biocompatibility, the CG and UFG Cu-5Fe alloys can be the promising candidate material for Cu-IUD. STATEMENT OF SIGNIFICANCE: A highly biocompatible Cu-Fe alloy was designed and fabricated for Cu-containing intrauterine devices (Cu-IUD). With 5 wt% Fe, the burst release of Cu2+ is inhibited due to the formed galvanic cell of Cu and Fe, resulting in earlier release of Fe3+. As Fe is the most abundant essential trace element of human body, it can mitigate the toxic effects of Cu2+, thus significantly improving both in vitro cell compatibility and in vivo tissue compatibility. More importantly, the Cu-5Fe alloy exhibits 100 % contraceptive efficiency as the CG Cu, but with greatly reduced adverse effects to the uterus tissues. An advanced Cu-IUD can be developed using Cu-Fe alloys.
Collapse
Affiliation(s)
- Lijun Yang
- Graduate School of Peking Union Medical College, Beijing 100730, China; NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Guo Bao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Cancan Yao
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Tian Diao
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Zhenning Su
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Tingting Liu
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Guannan Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Gonglei Wang
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
| | - Xihua Chen
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Xiangbo Xu
- Graduate School of Peking Union Medical College, Beijing 100730, China; NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia.
| | - Bin He
- Graduate School of Peking Union Medical College, Beijing 100730, China; NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing 100081, China.
| | - Yufeng Zheng
- Graduate School of Peking Union Medical College, Beijing 100730, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Shareef N, Abid S, Amir A, Ismail A, Ullah A, Ahmad A, Ibenmoussa S, Bin Jardan YA, Bourhia M, Ibrahim A, Iqbal F. Toxicological evaluation of copper oxide nanoparticles following their intraperitoneal injection to Wistar rats. Toxicol Res (Camb) 2024; 13:tfae125. [PMID: 39132193 PMCID: PMC11306316 DOI: 10.1093/toxres/tfae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Background Copper oxide (Cu2O) nanoparticles (CO NPs) are in extensive use during our everyday life as antimicrobial agent, lubricant, in manufacturing electrodes of lithium ion batteries as well as for photo catalytic degradation of organic pollutants. Due to extensive and diverse use Cu2O NPs, they are likely to accumulate in the environment and to affect the live forms. Present investigation was aimed to report the biocompatibility of CO NPs in Wistar rats in sex specific manner. CO NPs, having average diameter of 14.06 nm, were synthesized by co-precipitation method and scanning electron microscopy and X ray diffraction were used for their characterization. Methods For 14 consecutive days, Wistar rats (6 weeks old) of both sexes were intraperitoneally injected with 10 mg/mL saline/Kg body weight of CO NPs, while the control groups intraperitoneally received saline solution for same duration. Behavioral tests (open field and novel object recognition), complete blood count, selected biomarkers of oxidative stress and Copper concentration in brain and liver were determined in all subjects. Results High mortality rates [male 40% and female 60%] were observed in rats exposed to CO NPs. A sever decrease in body weight was also observed in both male and female rats exposed to CO NPs. Female rats treated with CO NPs spent significantly more time with novel object as compared to control [P = 0.05] during second trial of novel object test. CO NPs treated female rats had higher mean corpuscular hemoglobin [P < 0.001] levels and Copper concentration in liver [P = 0.04] than control. Male rats exposed to CO NPs had significantly higher mean corpuscular volume [P = 0.02] and superoxide dismutase [SOD] [P = 0.04] in lungs than their control group. All other studied parameters non significantly varied upon comparison between CO NPs treated and untreated rats of both sex. Conclusion In conclusion, we are reporting that intraperitoneal injections of CO NPs for 14 days can disturb complete blood count and biomarkers of oxidative stress in lungs of Wistar rats.
Collapse
Affiliation(s)
- Nisha Shareef
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shairyar Abid
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aqsa Amir
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Amir Ismail
- Institute of Food Sciences and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abd Ullah
- Department of Zoology, Shaheed Benazir Butto University, Upper Dir 18050, Pakistan
| | - Adnan Ahmad
- Department of Zoology, Shaheed Benazir Butto University, Upper Dir 18050, Pakistan
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier 34000, France
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh 11451, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Ather Ibrahim
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Metallurgical and Materials Engineering, University of Engineering and Technology Lahore, 05422, Pakistan
| | - Furhan Iqbal
- Institute of Zoology, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
15
|
Giannakopoulos K, Lasithiotakis M, Karakasis C, Gini M, Gardelis S, Karakasiliotis I, Mouti N, Xesfyngi Y, Manolis GK, Georgoutsou-Spyridonos M, Dimitriou M, Eleftheriadis K. Spark Discharge Aerosol-Generated Copper-Based Nanoparticles: Structural & Optical Properties; Application on the Antiviral (SARS-CoV-2) and Antibacterial Improvement of Face Masks. Chempluschem 2024; 89:e202400194. [PMID: 38646973 DOI: 10.1002/cplu.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Nanoparticle formation by Spark Discharge Aerosol Generation offers low-cost fabrication of nanoparticles, without the use of chemicals or vacuum. It produces aerosol particles of a few nanometers in size with high purity. In this work, copper-based -CuO (tenorite) and Cu- nanoparticles are produced, characterized and used to modify face mask air filters, achieving the introduction of antibacterial and antiviral properties. A range of characterization techniques have been employed, down to the atomic level. The majority of the particles are CuO (of a few nanometers in size that agglomerate to form aggregates), the remainder being a small number of larger Cu particles. The particles were deposited on various substrates, mainly fiber filters in order to study them and use them as biocidal agents. On face masks, their antibacterial activity against Escherichia coli (E.coli) results in a 100 % decrease in bacteria cell viability. Their antiviral activity on face masks results in a 90 % reduction of the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) viability, 15 minutes post the application of the virus stock solution. This highlights the effectiveness of this approach, its simplicity, its low cost and its excellent environmental credentials.
Collapse
Affiliation(s)
- Konstantinos Giannakopoulos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | | | - Charalampos Karakasis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, GR-15784, Athens, Greece
| | - Maria Gini
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Spyros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, GR-15784, Athens, Greece
| | - Ioannis Karakasiliotis
- Department of Medicine, Democritus University of Thrace, GR-68100, Alexandroupoli, Greece
| | - Nafsika Mouti
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Yvonni Xesfyngi
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Georgios K Manolis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Maria Georgoutsou-Spyridonos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| | - Marios Dimitriou
- Department of Medicine, Democritus University of Thrace, GR-68100, Alexandroupoli, Greece
| | - Kostas Eleftheriadis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research-Demokritos, GR-15341, Agia Paraskevi, Greece
| |
Collapse
|
16
|
Sirch MM, Kamenac A, Neidinger SV, Wixforth A, Westerhausen C. Phase-State-Dependent Silica Nanoparticle Uptake of Giant Unilamellar Vesicles. J Phys Chem B 2024; 128:7172-7179. [PMID: 38995207 DOI: 10.1021/acs.jpcb.4c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
We quantify endocytosis-like nanoparticle (NP) uptake of model membranes as a function of temperature and, therefore, phase state. As model membranes, we use giant unilamellar vesicles (GUV) consisting of 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (15:0 PC). Time-series micrographs of the vesicle shrinkage show uptake rates that are a highly nonlinear function of temperature. A global maximum appears close to the main structural phase transition at T = Tm + 3 K = 37 °C and a minor peak at the pretransition T = Tp = 22 °C. The quality of linear fits to the shrinkage, and thus uptake kinetics, reveals a deviation from the linear trend at the vesicle shrinkage peaks. Taking values for the bending modulus as a function of temperature from literature and Helfrich's model allows us to draw qualitative conclusions on the membrane tension and the adhesion of the NP to the membrane as a function of temperature. These findings provide valuable insights into the dynamic interplay between temperature, membrane phase transitions, and NP uptake, shedding light on the complex behavior of biological membranes.
Collapse
Affiliation(s)
- Manuel M Sirch
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Andrej Kamenac
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Simon V Neidinger
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Achim Wixforth
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, Munich 80799, Germany
| | - Christoph Westerhausen
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, Munich 80799, Germany
| |
Collapse
|
17
|
Ren L, Ouyang C, Zhao S, Zheng Q, Guo W, Fan B, Zhou J, Zhang W, Hu M, Li J, Li B. A Novel Polymer Nanoparticle Polydimethyl Diallyl Ammonium Chloride as An Adjuvant Enhances the Immune Response of SARS-CoV-2 Subunit Vaccine. Adv Healthc Mater 2024; 13:e2304575. [PMID: 38436662 DOI: 10.1002/adhm.202304575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Indexed: 03/05/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has a significant impact on global health and the economy. It has underscored the urgent need for a stable, easily produced and effective vaccine. This study presents a novel approach using SARS-CoV-2 spike (S) protein-conjugated nanoparticles (NPs) in combination with cyclic GMP-AMP (cGAMP) (S-NPs-cGAMP) as a subunit vaccine. When mice are immunized, the antiserum of S-NPs-cGAMP group exhibits a 16-fold increase in neutralizing activity against a pseudovirus, compared to S protein group. Additionally, S-NPs-cGAMP induces even higher levels of neutralizing antibodies. Remarkably, the vaccine also triggers a robust humoral immune response, as evidenced by a notable elevation in virus-specific IgG and IgM antibodies. Furthermore, after 42 days of immunization, there is an observed increase in specific immune cell populations in the spleen. CD3+CD4+ and CD3+CD8+T lymphocytes, as well as B220+CD19+ and CD3-CD49b+ NK lymphocytes, show an upward trend, indicating a positive cellular immune response. Moreover, the S-NPs-cGAMP demonstrates promising results against the Delta strain and exhibits good cross-neutralization potential against other variants. These findings suggest that pDMDAAC NPs is potential adjuvant and could serve as a versatile platform for future vaccine development.
Collapse
MESH Headings
- Animals
- Nanoparticles/chemistry
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/pharmacology
- COVID-19 Vaccines/administration & dosage
- Mice
- SARS-CoV-2/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- Antibodies, Neutralizing/immunology
- Mice, Inbred BALB C
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Humans
- Immunity, Humoral/drug effects
- Adjuvants, Vaccine/chemistry
- Adjuvants, Vaccine/pharmacology
- Quaternary Ammonium Compounds/chemistry
- Quaternary Ammonium Compounds/pharmacology
- Polymers/chemistry
Collapse
Affiliation(s)
- Lili Ren
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
| | | | - Shuqing Zhao
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Qiqi Zheng
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Weilu Guo
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Wei Zhang
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
| | - Mi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
18
|
Sadeghi S, Mousavi-Sabet H, Hedayati A, Zargari A, Multisanti CR, Faggio C. Copper-oxide nanoparticles effects on goldfish (Carassius auratus): Lethal toxicity, haematological, and biochemical effects. Vet Res Commun 2024; 48:1611-1620. [PMID: 38413536 DOI: 10.1007/s11259-024-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
The advancement of nanotechnology and the widespread use of nanoparticles (NPs) in various industries have highlighted the importance of studying the potential harmful effects of nanomaterials on organisms. This study aimed to evaluate the lethal toxicity thresholds of Copper Oxide Nanoparticles (CuO-NPs). The investigation focused on examining the sub-lethal toxicity effects of CuO-NPs on blood parameters, as well as their influence on the gill tissue and liver of goldfish (Carassius auratus). Goldfish were exposed to varying concentrations of CuO-NPs (10, 20, 30, 40, 60, 80, and 100 mg/L) for 96 h. The Probit software was employed to determine the LC50 (lethal concentration causing 50% fish mortality) by monitoring and documenting fish deaths at 24, 48, 72, and 96-hour intervals. Subsequently, sub-lethal concentrations of 5% LC50 (T1), 10% LC50 (T2), and 15% LC50 (T3) of CuO-NPs were administered based on the LC50 level to investigate their effects on haematological parameters, encompassing the number of red blood cells and white blood cells, hematocrit and haemoglobin levels, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration. Additionally, histopathological examinations were conducted on the gill and liver tissues of the studied fish. Results indicated concentration-response of fish mortalities. In general, changes in the blood biochemical parameters of fish exposed to sub-lethal concentrations of CuO-NPs included a significant decrease in leukocyte count and glucose level and an increase in protein and triglyceride levels. Furthermore, an escalation in tissue damage such as gill apical and basal hyperplasia, lamellae attachment, squamous cell swelling, blood cell infiltration, and cellular oedema in gills tissue. and bleeding, increased sinusoidal space, necrosis, lateralization of the nucleus, cell swelling, and water retention in the liver. The findings showed dose-dependent increasing toxicity in goldfish specimens exposed to CuO-NPs.
Collapse
Affiliation(s)
- Saeed Sadeghi
- Faculty of Natural Resources, Guilan University, Rasht, Iran
| | | | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ashkan Zargari
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
19
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Jiang W, Peng J, Jiang N, Zhang W, Liu S, Li J, Duan D, Li Y, Peng C, Yan Y, Zhao Y, Han G. Chitosan Phytate Nanoparticles: A Synergistic Strategy for Effective Dental Caries Prevention. ACS NANO 2024; 18:13528-13537. [PMID: 38747549 DOI: 10.1021/acsnano.3c11806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dental caries is a widespread oral disease that poses a significant medical challenge. Traditional caries prevention methods, primarily the application of fluoride, often fall short in effectively destroying biofilms and preventing enamel demineralization, thereby providing limited efficacy in halting the progression of caries over time. To address this issue, we have developed a green and cost-effective synergistic strategy for the prevention of dental caries. By combining natural sodium phytate and chitosan, we have created chitosan-sodium phytate nanoparticles that offer both the antimicrobial properties of chitosan and the enamel demineralization-inhibiting capabilities of sodium phytate. In an ex vivo biofilm model of human teeth, we found that these nanoparticles effectively prevent biofilm buildup and acid damage to the mineralized tissue. Additionally, topical treatment of dental caries in rodent models has shown that these nanoparticles effectively suppress disease progression without negatively impacting oral microbiota diversity or causing harm to the gingival-mucosal tissues, unlike traditional prevention methods.
Collapse
Affiliation(s)
- Weibo Jiang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Orthodontics, Wuxi Stomatology Hospital, Health Road 6, Wuxi 214001, China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Nan Jiang
- Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianmin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yongfa Yan
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| |
Collapse
|
21
|
Rehman N, Jabeen F, Asad M, Nijabat A, Ali A, Khan SU, Luna-Arias JP, Mashwani ZUR, Siddiqa A, Karthikeyan A, Ahmad A. Exposure to zinc oxide nanoparticles induced reproductive toxicities in male Sprague Dawley rats. J Trace Elem Med Biol 2024; 83:127411. [PMID: 38387428 DOI: 10.1016/j.jtemb.2024.127411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND This research delves into the reproductive toxicology of zinc oxide nanoparticles (ZnO-NPs) in male Sprague Dawley rats. It specifically examines the repercussions of Zn accumulation in the testes, alterations in testosterone levels, and histopathological changes in the gonadal tissues. AIMS The primary objective of this study is to elucidate the extent of reproductive toxicity induced by ZnO-NPs in male Sprague Dawley rats. The investigation aims to contribute to a deeper understanding of the potential endocrine and reproductive disruptions caused by ZnO-NPs exposure. METHODS Characterization techniques including SEM-EDX and XRD affirmed the characteristic nature of ZnO-NPs. Twenty-five healthy post weaning rats (200-250 g) were intraperitoneally exposed to different concentrations of ZnO-NPs @ 10 or 20 or 30 mg/kg BW for 28 days on alternate days. RESULTS Results showed significant dose dependent decline in the body weight and testicular somatic index of rats. It also showed significant dose dependent accumulation of Zn in testis with increasing dose of ZnO-NPs. Conversely, serum testosterone level and sperm count were reduced with increasing dose of ZnO-NPs. Histological results showed dose dependent abnormalities i.e., vacuolization, edema, hemorrhage, destruction of seminiferous tubules, loss of germ cells and necrosis in rat testis. CONCLUSION The findings of this study clearly indicate that high doses of zinc oxide nanoparticles (ZnO-NPs) can adversely affect the structural integrity and functional efficacy of the male reproductive system. Given these results, it becomes crucial to implement stringent precautionary measures in the utilization of ZnO-NPs, particularly in cosmetics and other relevant sectors. Such measures are imperative to mitigate the toxicological impact of ZnO-NPs on the male reproductive system and potentially on other related physiological functions. This study underscores the need for regulatory vigilance and safety assessments in the application of nanotechnology to safeguard human health.
Collapse
Affiliation(s)
- Nagina Rehman
- Department of Zoology, University of Mianwali, Mianwali 42200, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College Women University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Asad
- Department of Zoology, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali 42200, Pakistan
| | - Amir Ali
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan; Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico.
| | - Safir Ullah Khan
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Juan Pedro Luna-Arias
- Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico; Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Ayesha Siddiqa
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, South Korea
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Zhao J, Xu Z, Wang X, Wan S, Chen W, Huang W, Wang M, Wang R, Zhang H. Environmental copper exposure, placental cuproptosis, and miscarriage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123847. [PMID: 38552771 DOI: 10.1016/j.envpol.2024.123847] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Copper pollution has become global environmental concern. Widespread Cu pollution results in excessive Cu exposure in human. Epidemiological studies and animal experiments revealed that Cu exposure might have reproductive toxicity. Cuproptosis is a newly reported Cu-dependent and programmed cell death formTsvetkov et al., 2022. However, whether copper exposure at real environmental exposure dose might cause placental cuproptosis and induce miscarriage was completely unexplored. In this study, we found that Cu exposure during pregnancy induced miscarriage or complete pregnancy loss by inducing placenta cuproptosis in CuCl2-exposed pregnant mice. Notably, Cu exposure at 1.3 mg/kg/d (a real environmental exposure dose) was enough to cause placenta cuproptosis. CuCl2 exposure disrupts the TCA cycle, causes proteotoxic stress, increases Cu2+ ion import/decreases Cu2+ export, and results in the loss of Fe-S cluster proteins in mouse placenta, which induces placenta cuproptosis. Moreover, we also identified that Cu exposure down-regulates the expression levels of mmu-miR-3473b, which interacts with Dlst or Rtel1 mRNA and simultaneously positively regulates Dlst or Rtel1 expression, thereby disrupting the TCA cycle and resulting in the loss of Fe-S cluster proteins, and thus epigenetically regulates placental cuproptosis. Treatment with TTM (a cuproptosis inhibitor) suppressed placental cuproptosis and alleviated miscarriage in CuCl2-exposed mice. This work provides novel reproductive toxicity of Cu exposure in miscarriage or complete pregnancy loss by causing placental cuproptosis. This study also provides new ways for further studies on other toxicological effects of Cu and proposes a new approach for protection against Cu-induced reproductive diseases.
Collapse
Affiliation(s)
- Jingsong Zhao
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shukun Wan
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Wenxin Huang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Manli Wang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Rong Wang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
23
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
24
|
Bak M, Plesér Z, Németh R. Improving the Decay Resistance of Wood through the Fixation of Different Nanoparticles Using Silica Aerogel. Gels 2024; 10:255. [PMID: 38667674 PMCID: PMC11049396 DOI: 10.3390/gels10040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, the protection of wood is becoming more important with the increasing demand for durable wood, in addition to its limited accessibility. One possible way to increase the durability is the use of nanoparticles, which can be effective even with a low intake of active ingredients. However, avoiding their leaching is a challenge. A possible solution to leaching is the use of silica aerogel as a fixative. This study investigated the use of mesoporous silica aerogel against the leaching of different nanoparticles under laboratory conditions. Tests were performed involving beech (Fagus sylvatica) and Scots pine (Pinus sylvestris) sapwood, using Trametes versicolor as a white rot and Coniophora puteana as a brown rot fungus. The results show that the subsequent treatment of the wood with mesoporous silica aerogel effectively fixed the nanoparticles in wood. The durability of the samples without aerogel significantly decreased as a result of leaching, whereas the resistance of the samples treated with aerogel decreased only slightly. However, the silica aerogel modification itself caused the leaching of silver nanoparticles, which is a limitation in the use of this method for the fixation of nanoparticles.
Collapse
Affiliation(s)
- Miklós Bak
- Faculty of Wood Engineering and Creative Industries, University of Sopron, H9400 Sopron, Hungary (R.N.)
| | | | | |
Collapse
|
25
|
Yao J, Chen Y, Zhang L, Cheng Y, Chen Z, Zhang Y, Zheng X, Lv Y, Wang S, Li Z, Zhao J. pH-responsive CuS/DSF/EL/PVP nanoplatform alleviates inflammatory bowel disease in mice via regulating gut immunity and microbiota. Acta Biomater 2024; 178:265-286. [PMID: 38417643 DOI: 10.1016/j.actbio.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
The clinical treatment of inflammatory bowel disease (IBD) is challenging. We developed copper sulfate (CuS)/disulfiram (DSF)/methacrylic acid-ethyl acrylate copolymer (EL)/polyvinylpyrrolidone (PVP) nanoplatform (CuS/DSF/EL/PVP) and evaluated its efficiency for treating IBD. After oral administration, the pH-sensitive EL protected the CuS/DSF/EL/PVP against degradation by acidic gastric juices. Once the colon was reached, EL was dissolved, releasing DSF and Cu2+. Further, the main in vivo metabolite of DSF can bind to Cu2+ and form copper (II) N, N-diethyldithiocarbamate (CuET), which significantly alleviated acute colitis in mice. Notably, CuS/DSF/EL/PVP outperformed CuS/EL/PVP and DSF/EL/PVP nanoplatforms in reducing colonic pathology and improving the secretion of inflammation-related cytokines (such as IL-4 and IL-10) in the colonic mucosa. RNA-seq analysis revealed that the nanoplatform reduced colonic inflammation and promoted intestinal mucosal repair by upregulating C-type lectin receptor (CLR)-related genes and signaling pathways. Furthermore, CuS/DSF/EL/PVP showed potential for improving colitis Th1/Th17 cells through innate immunity stimulation, down-regulation of inflammatory cytokines, and upregulation of anti-inflammatory cytokines. Additionally, the intervention with CuS/DSF/EL/PVP led to increased intestinal flora diversity, decreased Escherichia-Shigella abundance, and elevated levels of short-chain fatty acid (SCFA)-producing bacteria Prevotella, Lactobacillus, and Bifidobacterium, indicating their potential to modulate the dysregulated intestinal flora and suppress inflammation. STATEMENT OF SIGNIFICANCE: Our study introduces the CuS/DSF/EL/PVP nanoplatform as a therapeutic strategy for treating inflammatory bowel disease (IBD). This approach demonstrates significant efficacy in targeting the colon and alleviating acute colitis in mice. It uniquely modulates gut immunity and microbiota, exhibiting a notable impact on inflammation-related cytokines and promoting intestinal mucosal repair. The nanoplatform's ability to regulate gut flora diversity, combined with its cost-effective and scalable production, positions it as a potentially transformative treatment for IBD, offering new avenues for personalized medical interventions.
Collapse
Affiliation(s)
- Jinpeng Yao
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, PR China; National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Yu Chen
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, PR China
| | - Liang Zhang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Yuancun Cheng
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Zheng Chen
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Yanhui Zhang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Xiaoyi Zheng
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Yanwei Lv
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Shige Wang
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| | - Zhaoshen Li
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, PR China; National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| | - Jiulong Zhao
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| |
Collapse
|
26
|
Anwar A, Khan FU, Younas W, Zaman M, Noorullah M, Li L, Zuberi A, Wang Y. Reduced toxic effects of nano‑copper sulfate in comparison of bulk CuSO 4 on biochemical parameters in the Rohu (Labeo rohita). Toxicol In Vitro 2024; 95:105766. [PMID: 38104743 DOI: 10.1016/j.tiv.2023.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Considering the wide application of nanoparticles in various fields of life and growing concern regarding their toxic effects, the present study was designed with the aim to evaluate the potential risks of using copper sulfate nanoparticles (CuSO4-NPs) in comparison to bulk form. Nanoparticles of CuSO4, having mean size of 73 nm were prepared by ball milling method, and fingerlings of Labeo rohita were exposed to two levels, 20 and 100 μg L-1 of CuSO4 in both bulk and nano forms for 28 days and their comparative effects on the metallothioneins (MTs), heat shock proteins 70 (HSP 70), lipid profile, cholesterol (CHOL) and triglyceraldehyde (TG) levels, activities of some metabolic enzymes Alanine transaminase (ALT), Aspartate transaminase (AST) Akaline phosphatase (ALP), and genes expressions of HSP-70, TNF-α and IL1-ß were investigated. CuSO4 showed the concentration and particle type dependent effects. The over expression of HSPs and MTs, significant decreases in CHOL, TG, low density lipid (LDL) levels and ALP activity, while significant increases in high density lipid (HDL)level as well as ALT and AST activities and HSP-70, TNF-α and IL1-β expressions were observed in response to higher concentration of both bulk and nano form of copper sulfate. At lower concentration (20 μg L-1), however, only bulk form showed toxicity. Thus, low concentrations of CuSO4-NPs pose negligible threat to freshwater fish.
Collapse
Affiliation(s)
- Azka Anwar
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Waqar Younas
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhib Zaman
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noorullah
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Amina Zuberi
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
27
|
Zhang M, Wang W, Zhang D, Zhang Y, Yang Z, Li Y, Fang F, Xue Y, Zhang Y. Copper oxide nanoparticles impairs oocyte meiosis maturation by inducing mitochondrial dysfunction and oxidative stress. Food Chem Toxicol 2024; 185:114441. [PMID: 38218586 DOI: 10.1016/j.fct.2024.114441] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Copper oxides nanoparticles (CuO NPs) are widely used for a variety of industrial and life science applications. In addition to cause neurotoxicity, hepatotoxicity, immunotoxicity, CuO NPs have also been reported to adversely affect the reproductive system in animals; However, little is known about the effects and potential mechanism of CuO NPs exposure on oocyte quality, especially oocyte maturation. In the present study, we reported that CuO NPs exposure impairs the oocyte maturation by disrupting meiotic spindle assembly and chromosome alignment, as well as kinetochore-microtubule attachment. In addition, CuO NPs exposure also affects the acetylation level of α-tubulin in mice oocyte, which hence impairs microtubule dynamics and organization. Besides, CuO NPs exposure would result in the mis-localization of Juno and Ovastacin, which might be one of the critical factors leading to the failure of oocyte maturation. Finally, CuO NPs exposure impairs the mitochondrial distribution and induced high levels of ROS, which led to the accumulation of DNA damage and occurrence of apoptosis. In summary, our results indicated that CuO NPs exposure had potential toxic effects on female fertility and led to the poor oocyte quality in female mice.
Collapse
Affiliation(s)
- Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Wei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of WanBei Coal Group, Suzhou, 234000, China
| | - Yiwen Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Zaishan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| |
Collapse
|
28
|
Ahmad M, Khan MKA, Ahmad N, Parveen M, Shahzad K, Hasan A. Histotoxicity induced by copper oxide nanoparticles (CuO-NPs) on developing mice (Mus musculus). Food Chem Toxicol 2024; 184:114369. [PMID: 38110052 DOI: 10.1016/j.fct.2023.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/18/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
The wide range of applications of nanoparticles (NPs) in various industries have led to serious consequences in terms of teratogenic toxicity. The aim of current work was to evaluate the teratogenic effects of copper oxide (CuO) nanoparticles in albino mice.In this experimental study, after mating, inseminated 40 female mice were divided randomly into 4 pools (1 control and 3 experimental), ten each. Doses were administered intravenously (We followed the protocol by Yaqub et al. (2018), intravenous application is faster route as compared to oral dosage)to all the experimental groups on the 6th day of gestation (GD), dose concentrations were 200, 133.3 and 100 mg/kg body weights respectively.The doses were prepared in sequence (1/2, 1/3, 1/4 0f LD50) according to already published work. The effects of CuO-NPs show linear relationship with the above sequence. The control group was administered only with distilled water.The gravid females were sacrificed through cervical disruption at the 18th day of gestation, fetuses were removed and divided into four sets (pools) for morphometric, morphological and histological studies. Data were subjected to statistical analysis by using Tukey's test in light of ANOVA at p < 0.05 level of significance. Findings of the present study showed that CuO-NPs various concentrations affect developmental abnormalities i.e.runt embryos, resorbed uteri, exencephaly, hygroma, macroglossia, micromelia, open eye, omphalocoel, scoliosis, kyphosis and kinked tail. It is concluded that exposure to CuO-NPs may potentially lead to the developmental deformities in mice.
Collapse
Affiliation(s)
- Munir Ahmad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | | | - Naveed Ahmad
- Department of Zoology, University of Education, Vehari campus, Vehari, 56130, Pakistan
| | - Munazza Parveen
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of Okara, Okara, 56130, Pakistan
| | - Ali Hasan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
29
|
Devanabanda M, Sana SS, Madduri R, Kim SC, Iravani S, Varma RS, Vadde R. Immunomodulatory effects of copper nanoparticles against mitogen-stimulated rat splenic and thymic lymphocytes. Food Chem Toxicol 2024; 184:114420. [PMID: 38151072 DOI: 10.1016/j.fct.2023.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
In the present study, we have evaluated the effects of copper (Cu) nanoparticles (NPs) on the primary B-and T-lymphocytes proliferation, cytokine levels, and bio-distribution through in vitro, in vivo and ex-vivo studies to allow the possible exploitations of CuNPs in biomedical applications. CuNPs were characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). The proliferative response of lymphocytes was studied by 3H-thymidine incorporation assay and lymphocyte viability through trypan blue assay. The bio-distribution of CuNPs into lymphoid organs was examined by using ex-vivo imaging system. Cytokine levels in plasma of control and CuNPs treated animal groups were determined by enzyme-linked immunosorbent assay (ELISA) method along with other biochemical analysis. CuNPs significantly suppressed the proliferation of primary splenic and thymic lymphocytes in a dose dependent manner. Ex-vivo imaging exhibited the distribution of CuNPs in spleen and thymus. Oral administration of CuNPs (2 mg and 10 mg/kg body weight) significantly inhibited the proliferation of splenic and thymic lymphocytes along with lowered cytokines levels (TNF-alpha and IL-2) on comparison with controls. The results indicated the significant inhibition of lymphocytes proliferative response and secretion of cytokines, thus unveiling the immunomodulatory effects of CuNPs.
Collapse
Affiliation(s)
- Mallaiah Devanabanda
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India; Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500042, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Ramanadham Madduri
- Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500042, India
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India.
| |
Collapse
|
30
|
Jing Y, Tai Z, Liu JX. Copper nanoparticles and silver nanoparticles impair lymphangiogenesis in zebrafish. Cell Commun Signal 2024; 22:67. [PMID: 38273312 PMCID: PMC10809531 DOI: 10.1186/s12964-023-01403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024] Open
Abstract
Lymphatic system distributes in almost all vertebrate tissues and organs, and plays important roles in the regulation of body fluid balance, lipid absorption and immune monitoring. Although CuNPs or AgNPs accumulation has been reported to be closely associated with delayed hatching and motor dysfunction in zebrafish embryos, their biological effects on lymphangiogenesis remain unknown. In this study, thoracic duct was observed to be partially absent in both CuNPs and AgNPs stressed zebrafish larvae. Specifically, CuNPs stress induced hypermethylation of E2F7/8 binding sites on CCBE1 promoters via their producing ROS, thereby leading to the reduction of binding enrichment of E2F7/8 on CCBE1 promoter and its subsequently reduced expression, then resulting in defective lymphatic vessel formation. Differently, AgNPs stress induced down-regulated CCBE1 expression via down-regulating mRNA and protein levels of E2F7/8 transcription factors, thereby resulting in defective lymphatic vessel formation. This study may be the first to demonstrate that CuNPs and AgNPs damaged lymphangiogenesis during zebrafish embryogenesis, mechanistically, CuNPs epigenetically regulated the expression of lymphangiogenesis regulator CCBE1 via hypermethylating its promoter binding sites of E2F7/8, while AgNPs via regulating E2F7/8 expression. Meanwhile, overexpression of ccbe1 mRNA effectively rescued the lymphangiogenesis defects in both AgNPs and CuNPs stressed larvae, while overexpression of e2f7/8 mRNA effectively rescued the lymphangiogenesis defects in AgNPs rather than CuNPs stressed larvae. The results in this study will shed some light on the safety assessment of nanomaterials applied in medicine and on the ecological security assessments of nanomaterials. Video Abstract.
Collapse
Affiliation(s)
- YuanYuan Jing
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Gomte SS, Jadhav PV, Jothi Prasath V R N, Agnihotri TG, Jain A. From lab to ecosystem: Understanding the ecological footprints of engineered nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:33-73. [PMID: 38063467 DOI: 10.1080/26896583.2023.2289767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Nanotechnology has attained significant attention from researchers in past decades due to its numerous advantages, such as biocompatibility, biodegradability, and improved stability over conventional drug delivery systems. The fabrication of engineered nanoparticles (ENPs), including carbon nanotubes (CNTs), fullerenes, metallic and metal oxide-based NPs, has been steadily increasing day due to their wide range of applications from household to industrial applications. Fabricated ENPs can release different materials into the environment during their fabrication process. The effect of such materials on the environment is the primary concern with due diligence on the safety and efficacy of prepared NPs. In addition, an understanding of chemistry, reactivity, fabrication process, and viable mechanism of NPs involved in the interaction with the environment is very important. To date, only a limited number of techniques are available to assess ENPs in the natural environment which makes it difficult to ascertain the impact of ENPs in natural settings. This review extensively examines the environmental effects of ENPs and briefly discusses useful tools for determining NP size, surface charge, surface area, and external appearance. In conclusion, the review highlights the potential risks associated with ENPs and suggests possible solutions.
Collapse
Affiliation(s)
- Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Pratiksha Vasant Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Naga Jothi Prasath V R
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| |
Collapse
|
32
|
Murugan C, Lee H, Park S. A self-assembled three-dimensional hierarchical nanoflower: an efficient enzyme-mimetic material for cancer cell detection that improves ROS generation for therapy. NANOSCALE ADVANCES 2024; 6:590-605. [PMID: 38235072 PMCID: PMC10791118 DOI: 10.1039/d3na00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024]
Abstract
Three-dimensional (3D) nanomaterials with high functional properties are emerging as the most promising artificial enzymes for overcoming the significant disadvantages of natural enzymes. Anticancer therapy using 3D-enzyme mimetic materials has emerged as an essential development for catalyzing cancer cell destruction. We report for the first time a novel 3D-based enzyme mimetic material, CaMoO4/MoS2/CuS nanoflower (CMC NF), that exhibits a large specific surface area, uniform flower-like structure, excellent biocompatibility, and high porosity, making it a suitable candidate for cancer detection and therapy. Additionally, CMC NFs were conjugated with folic acid (FA) to selectively target cancer cells, resulting in FA-CMC NFs explicitly binding to overexpressed folate receptor alpha (FRα) in MDA-MB-231 cells. Based on the peroxidase activity, the FA-CMC NFs are an effective nanoprobe for the selective detection of MDA-MB-231 cells over a wide detection range (50 to 5.5 × 104 cells per mL) with a low limit of detection (LOD) value of 10 cells per mL. In addition to their cancer detection capability, the FA-CMC NFs also effectively generated ˙OH radicals in a concentration-dependent manner to treat cancer cells. Under light conditions, the FA-CMC NFs with H2O2 solution showed efficient degradation of methylene blue (MB) dye, and the solution color appeared to fade within 15 min, indicating that they generated ˙OH radicals, which can efficiently kill cancer cells. Thus, the superior functionality of FA-CMC NFs offers cost-effective, facile, and reliable cancer cell detection, providing a new treatment option for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Chandran Murugan
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Hyoryong Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Sukho Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| |
Collapse
|
33
|
Schildroth S, Valeri L, Kordas K, Shi B, Friedman A, Smith D, Placidi D, Wright RO, Lucchini RG, White RF, Horton M, Claus Henn B. Assessing the mediating role of iron status on associations between an industry-relevant metal mixture and verbal learning and memory in Italian adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167435. [PMID: 37774885 PMCID: PMC10918745 DOI: 10.1016/j.scitotenv.2023.167435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Metals, including lead (Pb), manganese (Mn), chromium (Cr) and copper (Cu), have been associated with neurodevelopment; iron (Fe) plays a role in the metabolism and neurotoxicity of metals, suggesting Fe may mediate metal-neurodevelopment associations. However, no study to date has examined Fe as a mediator of the association between metal mixtures and neurodevelopment. OBJECTIVE We assessed Fe status as a mediator of a mixture of Pb, Mn, Cr and Cu in relation to verbal learning and memory in a cohort of Italian adolescents. METHODS We used cross-sectional data from 383 adolescents (10-14 years) in the Public Health Impact of Metals Exposure Study. Metals were quantified in blood (Pb) or hair (Mn, Cr, Cu) using ICP-MS, and three markers of Fe status (blood hemoglobin, serum ferritin and transferrin) were quantified using luminescence assays or immunoassays. Verbal learning and memory were assessed using the California Verbal Learning Test for Children (CVLT-C). We used Bayesian Kernel Machine Regression Causal Mediation Analysis to estimate four mediation effects: the natural direct effect (NDE), natural indirect effect (NIE), controlled direct effect (CDE) and total effect (TE). Beta (β) coefficients and 95 % credible intervals (CIs) were estimated for all effects. RESULTS The metal mixture was jointly associated with a greater number of words recalled on the CVLT-C, but these associations were not mediated by Fe status. For example, when ferritin was considered as the mediator, the NIE for long delay free recall was null (β = 0.00; 95 % CI = -0.22, 0.23). Conversely, the NDE (β = 0.23; 95 % CI = 0.01, 0.44) indicated a beneficial association of the mixture with recall that operated independently of Fe status. CONCLUSION An industry-relevant metal mixture was associated with learning and memory, but there was no evidence of mediation by Fe status. Further studies in populations with Fe deficiency and greater variation in metal exposure are warranted.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Baoyi Shi
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Department of Neurology, Boston University, Boston, MA, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
34
|
Sharma R, Sharma N, Prashar A, Hansa A, Asgari Lajayer B, Price GW. Unraveling the plethora of toxicological implications of nanoparticles on living organisms and recent insights into different remediation strategies: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167697. [PMID: 37832694 DOI: 10.1016/j.scitotenv.2023.167697] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Increased use of nanoscale particles have benefited many industries, including medicine, electronics, and environmental cleaning. These particles provide higher material performance, greater reactivity, and improved drug delivery. However, the main concern is the generation of nanowastes that can spread in different environmental matrices, posing threat to our environment and human health. Nanoparticles (NPs) have the potential to enter the food chain through a variety of pathways, including agriculture, food processing, packaging, and environmental contamination. These particles can negatively impact plant and animal physiology and growth. Due to the assessment of their environmental damage, nanoparticles are the particles of size between 1 and 100 nm that is the recent topic to be discussed. Nanoparticles' absorption, distribution, and toxicity to plants and animals can all be significantly influenced by their size, shape, and surface chemistry. Due to their absorptive capacity and potential to combine with other harmful substances, they can alter the metabolic pathways of living organisms. Nevertheless, despite the continuous research and availability of data, there are still knowledge gaps related to the ecotoxicology, prevalence and workable ways to address the impact of nanoparticles. This review focuses on the impact of nanoparticles on different organisms and the application of advanced techniques to remediate ecosystems using hyperaccumulator plant species. Future considerations are explored around nano-phytoremediation, as an eco-friendly, convenient and cost effective technology that can be applied at field scales.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India.
| | - Nindhia Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abhinav Prashar
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abish Hansa
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
35
|
Song L, Lin L, Wei W, Zhang S, Wan L, Lou Z, Yu J, Xu X. Zero-valent iron-peroxydisulfate as synergistic co-milling agents for enhanced mechanochemical destruction of 2,4-dichlorophenol: Coupling reduction with oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118571. [PMID: 37421725 DOI: 10.1016/j.jenvman.2023.118571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Mechanochemical (MC) remediation with zero-valent iron (ZVI) as co-milling agent enables the non-combustion and solvent-free disposal of solid halogenated organic pollutants (HOPs) via solid-phase reaction, but suffers from incomplete dechlorination (especially for less chlorinated chemicals). Herein, a reduction-oxidation coupling strategy using ZVI and peroxydisulfate as synergistic (ZVI-PDS) co-milling agents was investigated, with 2,4-dichlorophenol (2,4-DCP) as probe contaminant. By revisiting the MC destruction process of 2,4-DCP by ZVI, the contribution of both reductive and oxidative routes is confirmed, and the inefficient •OH generation is addressed. With ball-to-material and reagent-to-pollutant mass ratios of 30:1 and 13:1, respectively, ZVI-PDS achieves higher dechlorination ratio (86.8%) for 2,4-DCP within 5 h, outcompeting sole ZVI (40.3%) or PDS (33.9%), due to the accumulation of numerous SO4•-. As suggested by a two-compartment kinetic model, the optimal ZVI/PDS molar ratio of 4:1 is determined, which balances the relative contribution of reductive/oxidative routes and leads to a maximum mineralization efficiency of 77.4%. The analysis on product distribution verifies the generation of dechlorinated, ring-opening and minor coupling products (with low acute toxicity). This work validates the necessity to couple reduction with oxidation in MC destruction for solid HOPs, and may provide information on reagent formulation.
Collapse
Affiliation(s)
- Ludi Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lvren Lin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenjia Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shengkun Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lei Wan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zimo Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jianming Yu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Antonio-Pérez A, Durán-Armenta LF, Pérez-Loredo MG, Torres-Huerta AL. Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications. MICROMACHINES 2023; 14:1882. [PMID: 37893319 PMCID: PMC10609153 DOI: 10.3390/mi14101882] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/29/2023]
Abstract
Copper nanoparticles (CuNPs) can be synthesized by green methods using plant extracts. These methods are more environmentally friendly and offer improved properties of the synthesized NPs in terms of biocompatibility and functional capabilities. Traditional medicine has a rich history of utilization of herbs for millennia, offering a viable alternative or complementary option to conventional pharmacological medications. Plants of traditional herbal use or those with medicinal properties are candidates to be used to obtain NPs due to their high and complex content of biocompounds with different redox capacities that provide a dynamic reaction environment for NP synthesis. Other synthesis conditions, such as salt precursor concentration, temperature, time synthesis, and pH, have a significant effect on the characteristics of the NPs. This paper will review the properties of some compounds from medicinal plants, plant extract obtention methods alternatives, characteristics of plant extracts, and how they relate to the NP synthesis process. Additionally, the document includes diverse applications associated with CuNPs, starting from antibacterial properties to potential applications in metabolic disease treatment, vegetable tissue culture, therapy, and cardioprotective effect, among others.
Collapse
Affiliation(s)
- Aurora Antonio-Pérez
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
| | - Luis Fernando Durán-Armenta
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium;
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - María Guadalupe Pérez-Loredo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
- División Académica de Tecnología Ambiental, Universidad Tecnológica Fidel Velázquez, Av. Emiliano Zapata S/N, El Tráfico, Nicolás Romero C.P.54400, Mexico
| | - Ana Laura Torres-Huerta
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
| |
Collapse
|
37
|
Anima B, Mondal P, Gurusubramanian G, Roy VK. Mechanistic study of copper nanoparticle (CuNP) toxicity on the mouse uterus via apelin signaling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88824-88841. [PMID: 37442930 DOI: 10.1007/s11356-023-28746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Copper nanoparticles (CuNPs) have been widely utilized in various applications. Due to its wider application, humans are at risk of its exposure. It has been reported that the exposure of CuNPs can lead to organ accumulation and affect organ toxicity. Recent study suggested that CuNPs can translocate into the uterus and affect uterine injury in rat, whereas uterine toxicity still remains unclear. The uterus is an important female organ which is required to sustain pregnancy. Thus, uterine structure and physiology are important. Therefore, this study hypothesized that CuNPs might have a toxic effect on the uterine features of mice. In this study, we have investigated the potential effects of CuNPs on the uterus of mice both in vivo and in vitro. In in vivo study, two groups of female mice were exposed to 5 and 50 mg/kg/day via oral exposure. In vivo results showed that CuNP treatment decreases the body weight and uterus weight and changes in antioxidant status with low estrogen and progesterone levels. Furthermore, CuNPs up-regulated the expression of caspase3 and down-regulated the expression of apelin receptor (APJ). Immunolocalization of apelin showed low abundance in the CuNP-treated uterus. These results suggest a poor apelin signaling in the uterus after CuNP treatment. The in vivo findings were further supported by the in vitro studies. Firstly, the uterus was cultured with 5 and 40 μg of CuNPs, and in the second in vitro experiment, the uterus was divided into 4 groups: control, 40 μg of CuNPs, 40 μg of CuNPs with apelin, and 40 μg of CuNPs with apelin receptor antagonist (ML221). In vitro study showed that CuNPs could directly induce the oxidative stress and apoptosis as well as changing antioxidant status in the uterus. The in vitro apelin 13 (APLN 13) treatments alleviated the expression of BCL2 and improved the antioxidant markers in CuNP-treated uterus. These results also provided an evidence of apelin-mediated signaling in the CuNP-treated uterus. In summary, our results present evidence that CuNPs can stimulate apoptotic pathways which may lead to uterine impairment due to weak apelin signaling.
Collapse
Affiliation(s)
- Borgohain Anima
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India
| | - Pradip Mondal
- Department of Zoology, Netaji Mahavidyalaya, Hooghly, West Bengal, 712616, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India.
| |
Collapse
|
38
|
Kauser S, Mughees M, Swami S, Wajid S. Pre-clinical toxicity assessment of Artemisia absinthium extract-loaded polymeric nanoparticles associated with their oral administration. Front Pharmacol 2023; 14:1196842. [PMID: 37492095 PMCID: PMC10363985 DOI: 10.3389/fphar.2023.1196842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Background: This study was designed to quantify the composition of the ethanolic extract of Artemisia absinthium through gas chromatography-mass spectrometry analysis and ensure in vivo safety of A. absinthium extract-loaded polymeric nanoparticles (ANPs) before considering their application as a drug carrier via the oral route. Methods: We synthesized N-isopropylacrylamide, N-vinyl pyrrolidone, and acrylic acid crosslinked polymeric NPs by free-radical polymerization reaction and characterized them by Fourier-transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering spectroscopy. Different concentrations of extract (50 mg/kg, 300 mg/kg, and 2,000 mg/kg body weight) were encapsulated into the hydrophobic core of polymeric micelles for the assessment of acute oral toxicity and their LD50 cut-off value as per the test procedure of OECD guideline 423. Orally administered female Wistar rats were observed for general appearance, behavioral changes, and mortality for the first 30 min, 4 h, 24 h, and then, daily once for 14 days. Result: ANPs at the dose of 300 mg/kg body weight were used as an initial dose, and rats showed few short-lived signs of toxicity, with few histological alterations in the kidney and intestine. Based on these observations, the next set of rats were treated at a lower dose of 50 mg/kg and a higher dose of 2,000 mg/kg ANPs. Rats administered with 50 mg/kg ANPs remained normal throughout the study with insignificant histological disintegration; however, rats treated at 2,000 mg/kg ANPs showed some signs of toxicity followed by mortality among all three rats within 24-36 h, affecting the intestine, liver, and kidney. There were no significant differences in hematological and biochemical parameters among rats treated at 50 mg/kg and 300 mg/kg ANPs. Conclusion: We conclude that the LD50 cut-off value of these ANPs will be 500 mg/kg extract loaded in polymeric NPs.
Collapse
|
39
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
40
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
41
|
Wadu Dasuni Wasana P, Vajragupta O, Rojsitthisak P, Towiwat P, Rojsitthisak P. Metformin and curcumin co-encapsulated chitosan/alginate nanoparticles as effective oral carriers against pain-like behaviors in mice. Int J Pharm 2023; 640:123037. [PMID: 37172632 DOI: 10.1016/j.ijpharm.2023.123037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology plays an integral role in multimodal analgesia. In this study, we co-encapsulated metformin (Met) and curcumin (Cur) into chitosan/alginate (CTS/ALG) nanoparticles (NPs) at their synergistic drug ratio by applying response surface methodology. The optimized Met-Cur-CTS/ALG-NPs were achieved with Pluronic® F-127 2.33% (w/v), Met 5.91 mg, and CTS:ALG mass ratio 0.05:1. The prepared Met-Cur-CTS/ALG-NPs had 243 nm particle size, -21.6 mV zeta potential, 32.6 and 44.2% Met and Cur encapsulations, 19.6 and 6.8% Met and Cur loading, respectively, and 2.9:1 Met:Cur mass ratio. Met-Cur-CTS/ALG-NPs displayed stability under simulated gastrointestinal (GI) fluid conditions and during storage. In vitro release study of Met-Cur-CTS/ALG-NPs in simulated GI fluids showed sustained release, with Met exhibiting Fickian diffusion and Cur demonstrating non-Fickian diffusion following the Korsmeyer-Peppas model. Met-Cur-CTS/ALG-NPs exhibited increased mucoadhesion and improved cellular uptake in Caco-2 cells. Additionally, Met-Cur-CTS/ALG-NPs exhibited better anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophage and BV-2 microglial cells than the equivalent amount of the Met-Cur physical mixture, indicating a greater ability to modulate peripheral and central immune mechanisms of pain. In the mouse formalin-induced pain model, Met-Cur-CTS/ALG-NPs administered orally exhibited better attenuation of pain-like behaviors and proinflammatory cytokine release compared to the Met-Cur physical mixture. Furthermore, Met-Cur-CTS/ALG-NPs did not induce significant side effects in mice at therapeutic doses. Altogether, the present study establishes a CTS/ALG nano-delivery system for Met-Cur combination against pain with improved efficacy and safety.
Collapse
Affiliation(s)
- Peththa Wadu Dasuni Wasana
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pasarapa Towiwat
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
42
|
Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation. ADVANCED FIBER MATERIALS 2023; 5:1-45. [PMID: 37361103 PMCID: PMC10088653 DOI: 10.1007/s42765-023-00275-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
Prevention of spreading viral respiratory disease, especially in case of a pandemic such as coronavirus disease of 2019 (COVID-19), has been proved impossible without considering obligatory face mask-wearing protocols for both healthy and contaminated populations. The widespread application of face masks for long hours and almost everywhere increases the risks of bacterial growth in the warm and humid environment inside the mask. On the other hand, in the absence of antiviral agents on the surface of the mask, the virus may have a chance to stay alive and be carried to different places or even put the wearers at risk of contamination when touching or disposing the masks. In this article, the antiviral activity and mechanism of action of some of the potent metal and metal oxide nanoparticles in the role of promising virucidal agents have been reviewed, and incorporation of them in an electrospun nanofibrous structure has been considered an applicable method for the fabrication of innovative respiratory protecting materials with upgraded safety levels. Graphical Abstract
Collapse
Affiliation(s)
- Farinaz Hadinejad
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973 Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691710001 Iran
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396 Turkey
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
43
|
Yin X, Fan T, Zheng N, Yang J, Yan L, He S, Ai F, Hu J. Palladium nanoparticle based smart hydrogels for NIR light-triggered photothermal/photodynamic therapy and drug release with wound healing capability. NANOSCALE ADVANCES 2023; 5:1729-1739. [PMID: 36926581 PMCID: PMC10012852 DOI: 10.1039/d2na00897a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Tumor recurrence and wound repair are two major challenges following cancer surgical resection that can be addressed through precision nanomedicine. Herein, palladium nanoparticles (Pd NPs) with photothermal and photodynamic therapy (PTT/PDT) capacity were successfully synthesized. The Pd NPs were loaded with chemotherapeutic doxorubicin (DOX) to form hydrogels (Pd/DOX@hydrogel) as a smart anti-tumor platform. The hydrogels were composed of clinically approved agarose and chitosan, with excellent biocompatibility and wound healing ability. Pd/DOX@hydrogel can be used for both PTT and PDT with a synergistic effect to kill tumor cells. Additionally, the photothermal effect of Pd/DOX@hydrogel allowed the photo-triggered drug release of DOX. Therefore, Pd/DOX@hydrogel can be used for near-infrared (NIR)-triggered PTT and PDT as well as for photo-induced chemotherapy, efficiently inhibiting tumor growth. Furthermore, Pd/DOX@hydrogel can be used as a temporary biomimetic skin to block the invasion of foreign harmful substances, promote angiogenesis, and accelerate wound repair and new skin formation. Thus, the as-prepared smart Pd/DOX@hydrogel is expected to provide a feasible therapeutic solution following tumor resection.
Collapse
Affiliation(s)
- Xiuzhao Yin
- College of Applied Technology, Shenzhen University Shenzhen 518060 P. R. China
| | - Taojian Fan
- College of Applied Technology, Shenzhen University Shenzhen 518060 P. R. China
| | - Nannan Zheng
- College of Applied Technology, Shenzhen University Shenzhen 518060 P. R. China
| | - Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Shuqing He
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Junqing Hu
- College of Applied Technology, Shenzhen University Shenzhen 518060 P. R. China
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| |
Collapse
|
44
|
Min Y, Suminda GGD, Heo Y, Kim M, Ghosh M, Son YO. Metal-Based Nanoparticles and Their Relevant Consequences on Cytotoxicity Cascade and Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030703. [PMID: 36978951 PMCID: PMC10044810 DOI: 10.3390/antiox12030703] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Emerging nanoscience allows us to take advantage of the improved evolutionary components and apply today’s advanced characterization and fabrication techniques to solve environmental and biological problems. Despite the promise that nanotechnology will improve our lives, the potential risks of technology remain largely uncertain. The lack of information on bio-impacts and the absence of consistent standards are the limitations of using metal-based nanoparticles (mNPs) for existing applications. To analyze the role played by the mNPs physicochemical characteristics and tactics to protect live beings, the field of nanotoxicology nowadays is focused on collecting and analyzing data from in vitro and in vivo investigations. The degree of reactive oxygen species (ROS) and oxidative stress caused by material nanoparticles (NPs) depends on many factors, such as size, shape, chemical composition, etc. These characteristics enable NPs to enter cells and interact with biological macromolecules and cell organelles, resulting in oxidative damage, an inflammatory response, the development of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. This report explored the mechanisms and cellular signaling cascades of mNPs-induced oxidative stress and the relevant health consequences.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | | | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mangeun Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Educational, Krishnankoil 626126, India
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| |
Collapse
|
45
|
Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus. Molecules 2023; 28:molecules28062460. [PMID: 36985432 PMCID: PMC10059899 DOI: 10.3390/molecules28062460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
This study aims to evaluate the toxicity of ZnS nanoparticles (ZnS NP50 = 50 µg/L and ZnS NP100 = 100 µg/L) and diethyl (3-cyano-1-hydroxy-2-methyl-1-phenylpropyl)phosphonate or P (P50 = 50 µg/L and P100 = 100 µg/L) in the clams Ruditapes decussatus using chemical and biochemical approaches. The results demonstrated that clams accumulate ZnS NPs and other metallic elements following exposure. Moreover, ZnS NPs and P separately lead to ROS overproduction, while a mixture of both contaminants has no effect. In addition, data showed that exposure to P100 resulted in increased levels of oxidative stress enzyme activities catalase (CAT) in the gills and digestive glands. A similar trend was also observed in the digestive glands of clams treated with ZnS100. In contrast, CAT activity was decreased in the gills at the same concentration. Exposure to ZnS100 and P100 separately leads to a decrease in acetylcholinesterase (AChE) levels in both gills and digestive glands. Thus, AChE and CAT after co-exposure to an environmental mixture of nanoparticles (ZnS100) and phosphonate (P100) did not show any differences between treated and non-treated clams. The outcome of this work certifies the use of biomarkers and chemical assay when estimating the effects of phosphonate and nanoparticles as part of an ecotoxicological assessment program. An exceptional focus was given to the interaction between ZnS NPs and P. The antioxidant activity of P has been demonstrated to have an additive effect on metal accumulation and antagonistic agents against oxidative stress in clams treated with ZnS NPs.
Collapse
|
46
|
Wang X, Cui X, Wu J, Bao L, Chen C. Oral administration of silver nanomaterials affects the gut microbiota and metabolic profile altering the secretion of 5-HT in mice. J Mater Chem B 2023; 11:1904-1915. [PMID: 36734837 DOI: 10.1039/d2tb02756a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Due to their excellent antibacterial ability, silver nanomaterials (Ag NMs) are the most frequently used nanomaterials. Their widespread use introduces the risk of human ingestion. However, the potential toxicity of Ag NMs to the gut microbiota and their metabolic profile are yet to be fully explored. In this study, we examined the effects of Ag NMs after oral administration (0.5 mg kg-1 and 2.5 mg kg-1, 14 and 28 days) on gut homeostasis by integrating tissue imaging, 16s rRNA gene sequencing and metabolomics techniques. We uncovered that silver nanoparticles (Ag NPs) and silver nanowires (Ag NWs) altered the structure (inhibiting the proliferation of Gram-negative bacteria) and decreased the diversity of gut microbiota in mice after short-term (14 days) exposure, while the microbial community tended to recover after long-term exposure (28 days), indicating that the resistance and resilience of the gut microbiome may pose a defense against the interference by reactive, exogenous nanomaterials. Interestingly, even though the gut microbiota structure recovered after 28 days of exposure, the gut metabolites significantly changed, showing increased 1H-indole-3-carboxylic acid and elevated levels of 5-HT in the gut and blood. Collectively, our results provide a piece of evidence on the association between the ingestion of exogenous nanoparticles and gut homeostasis, especially the metabolic profile of the host. This work thus provides additional insights for the continued investigation of the adverse effects of silver nanomaterials on biological hosts.
Collapse
Affiliation(s)
- Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China
| | - Junguang Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China
| |
Collapse
|
47
|
Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. COATINGS 2023; 13:486. [DOI: 10.3390/coatings13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biosensors use biological materials, such as enzymes, antibodies, or DNA, to detect specific analytes. These devices have numerous applications in the health and food industries, such as disease diagnosis, food safety monitoring, and environmental monitoring. However, the production of biosensors can result in the generation of chemical waste, which is an environmental concern for the developed world. To address this issue, researchers have been exploring eco-friendly alternatives for immobilising biomolecules on biosensors. One solution uses bio-coatings derived from nanoparticles synthesised via green chemistry and biopolymers. These materials offer several advantages over traditional chemical coatings, such as improved sensitivity, stability, and biocompatibility. In conclusion, the use of bio-coatings derived from green-chemistry synthesised nanoparticles and biopolymers is a promising solution to the problem of chemical waste generated from the production of biosensors. This review provides an overview of these materials and their applications in the health and food industries, highlighting their potential to improve the performance and sustainability of biosensors.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|
48
|
Abdel-Azeem AM, Abdel-Rehiem ES, Farghali AA, Khidr FK, Abdul-Hamid M. Ameliorative role of nanocurcumin against the toxicological effects of novel forms of Cuo as nanopesticides: a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26270-26291. [PMID: 36355242 PMCID: PMC9995535 DOI: 10.1007/s11356-022-23886-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Copper oxide nanoparticles (CuONPs) have a wide range of uses in agricultural applications. Nanocurcumin (NCur) acts as an antioxidant treatment. The goal of the study is to reduce the toxicity resulting from the use of CuONPs as nanopesticides on living organisms by inducing changes in the morphological shape of CuONPs or treating it with NCur. So, we induced a comparative study between three shapes of CuONPs: CuO nanosphere (CuONSp), CuO nanosheet (CuONS), and CuO nanoflower (CuONF). We characterize each nano-form by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (HRTEM), and Zetasizer HT device; 36 rats were divided into six groups (n = 6): 1st group was the control group; 2nd group received 50 mg/kg/day of NCur orally for 30 days; 3rd, 4th, and 5th groups received orally 50 mg/kg/day of CuONSp, CuONS, and CuONF, respectively, for 30 days; 6th group received 50 mg/kg/day CuONSp plus 50 mg/kg/day of NCur orally for 30 days. An elevation occurred in malondialdehyde (MDA), liver and kidney functions, tumor necrosis factor-alpha (TNF-α), and B-cell lymphoma 2 (Bcl2) by CuONSp > CuONS > CuONF, respectively. An inhibition occurred in glutathione (GSH), superoxidase (SOD) catalase (CAT), apoptotic Bax gene (Bax), histopathological, and ultrastructural alterations by CuONSp < CuONS < CuONF, respectively. NCur ameliorated these alternations. In conclusion, CuONF is a better form compared to other forms of nanopesticide in agriculture due to its lower toxicity. NCur decreased the biological alternations which induced by CuONSp due to its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Abeer M Abdel-Azeem
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. BOX 62521, Beni-Suef, Egypt
| | - Eman S Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, P.O. Box 62511, Beni-Suef, Egypt
| | - Fatma K Khidr
- Animal Research Department, Plant Protection Research Institute, Agricultural Research Center, Cairo, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. BOX 62521, Beni-Suef, Egypt.
| |
Collapse
|
49
|
Wang D, Peng Y, Li Y, Kpegah JKSK, Chen S. Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Front Mol Biosci 2023; 9:1105540. [PMID: 36660426 PMCID: PMC9846365 DOI: 10.3389/fmolb.2022.1105540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Osteosarcoma is the malignant tumor with the highest incidence rate among primary bone tumors and with a high mortality rate. The anti-osteosarcoma materials are the cross field between material science and medicine, having a wide range of application prospects. Among them, biological materials, such as compounds from black phosphorous, magnesium, zinc, copper, silver, etc., becoming highly valued in the biological materials field as well as in orthopedics due to their good biocompatibility, similar mechanical properties with biological bones, good biodegradation effect, and active antibacterial and anti-tumor effects. This article gives a comprehensive review of the research progress of anti-osteosarcoma biomaterials.
Collapse
Affiliation(s)
- Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yuezhan Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland,*Correspondence: Shijie Chen,
| | | | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China,*Correspondence: Shijie Chen,
| |
Collapse
|
50
|
Liu J, Lin S, Wu S, Lin Q, Fan Z, Wang C, Ye D, Guo P. Dietary supplementation with nano-composite of copper and carbon on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. J Anim Sci 2023; 101:skad362. [PMID: 37899715 PMCID: PMC10630021 DOI: 10.1093/jas/skad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023] Open
Abstract
New feed additives as antibiotics substitutes are in urgent need in poultry production. Nano-composite of copper and carbon (NCCC), a novel copper donor with stronger antibacterial properties, is expected to promote broiler growth and diminish the negative effects of excess copper (Cu). Hence, the purpose of this study is to investigate the effects of NCCC on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. A total of 240 1-d-old male yellow-feathered broilers were selected and randomly divided into four groups, with five replications per group and 12 birds per replication. The CON group was fed corn-soybean basal diets, while the N50, N100, and N200 groups were supplemented with 50, 100, and 200 mg/kg of NCCC in basal diets, respectively. The trial lasted for 63 d. The results demonstrated that only 200 mg/kg NCCC addition significantly increased the Cu content in serum and feces, and liver Cu content linearly increased with NCCC dosage increment (P < 0.05). Meanwhile, NCCC supplementation did not alter the growth performance, slaughter performance, immune organ indexes, and liver antioxidant ability of broilers (P > 0.05), but optimized the serum cytokine pattern by elevating the level of serum IL-10 (P < 0.05), and there were linear and quadratic increases in serum IL-4 with NCCC dosage increment (P < 0.05). On the whole, in spite of no impact on growth performance, 50 mg/kg NCCC was optimal to supplement in chicken diets due to the rise of serum IL-10 level and no extra environmental pollution and tissue residues.
Collapse
Affiliation(s)
- Jing Liu
- Instituteof AnimalHusbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Shiying Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqin Wu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingjie Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zitao Fan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingcheng Ye
- Instituteof AnimalHusbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Pingting Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|