1
|
Rigutto G, McHale CM, Singam ERA, Rana I, Zhang L, Smith MT. Mapping assays to the key characteristics of carcinogens to support decision-making. Database (Oxford) 2025; 2025:baaf026. [PMID: 40261741 PMCID: PMC12013474 DOI: 10.1093/database/baaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
The key characteristics (KCs) of carcinogens are the properties common to known human carcinogens that can be used to search for, organize, and evaluate mechanistic data in support of hazard identification. A limiting factor in this approach is that relevant in vitro and in vivo assays, as well as corresponding biomarkers and endpoints, have been only partially documented for each of the 10 KCs (Smith MT, Guyton KZ, Kleinstreuer N et al. The key characteristics of carcinogens: relationship to the hallmarks of cancer, relevant biomarkers, and assays to measure them. Cancer Epidemiol Biomarkers Prev 2020;29:1887-903. https://doi.org/10.1158/1055-9965.EPI-19-1346). To address this limitation, a comprehensive database is described that catalogues these previously described methods and endpoints/biomarkers pertinent to the 10 KCs of carcinogens as well as those referenced as supporting evidence for each KC in the International Agency of Research on Cancer Monograph Volumes 112-131. Our comprehensive mapping of KCs to assays and endpoints can be used to facilitate mechanistic data searches, presents a useful tool for searching for assays and endpoints relevant to the 10 KCs, and can be used to create a roadmap for utilizing data to evaluate the strength of the evidence for each KC. The KC-Assay database is available to the public on the web at https://kcad.cchem.berkeley.edu and acts as a 'living document', with the ability to be updated and refined. Database URL: https://kcad.cchem.berkeley.edu.
Collapse
Affiliation(s)
- Gabrielle Rigutto
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| | | | - Iemaan Rana
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| |
Collapse
|
2
|
Sellaro F, Pernetti R, Oddone E. Early biological effects in outdoor workers exposed to urban air pollution: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124985. [PMID: 39299637 DOI: 10.1016/j.envpol.2024.124985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Urban outdoor workers (OWs), identified as professionals spending most of their working shifts in an urban environment, are exposed for at least 8 h/day to traffic air pollution, leading to potential health risks. This paper reports the results of a systematic review aimed at identifying the potential health outcomes of exposure to air pollutants for OWs, focusing mainly on police officers, drivers and street vendors. Health outcomes were analysed in terms of early biological effects quantified with specific measured indicators. The main inclusion criterion was the assessment of at least one early biological effect (genetic and epigenetic damage/alterations, inflammation or oxidative stress indicators, or hormonal imbalance) in a population of OWs exposed to urban air pollution. By applying the PRISMA workflow, 82 papers were included in this study. The results showed that the measured pollutant concentrations were significantly below the current occupational limit values, while exceeds the indications of WHO for urban air pollution. This exposure led to significant alterations of biological markers in OWs with respect to non-exposed subjects. In particular, OWs presented an increased frequency of micronuclei and DNA adducts as the main DNA alterations, while police officers (a category of highly exposed OWs) showed hormonal alterations affecting mainly the hypothalamic-pituitary-gonadal axis. Concerning oxidative stress and inflammation, all the analysed matrices (i.e. blood, sputum, urine and lachrymal fluids) showed increased indices for OWs respect to non-exposed groups. Therefore, the evaluation of effect biomarkers to detect early alterations provides crucial information for supporting the occupational risk management of OWs and, at broader level, allows for an insight of the early-stage health outcomes due to urban air pollution.
Collapse
Affiliation(s)
- Francesca Sellaro
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; National Biodiversity Future Center, Palermo, Italy
| | - Roberta Pernetti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; National Biodiversity Future Center, Palermo, Italy.
| | - Enrico Oddone
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; Hospital Occupational Medicine Unit, ICS Maugeri IRCCS, Pavia, Italy; National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
3
|
Lee J, Kwon J, Jo YJ, Yoon SB, Hyeon JH, Park BJ, You HJ, Youn C, Kim Y, Choi HW, Kim JS. Particulate matter 10 induces oxidative stress and apoptosis in rhesus macaques skin fibroblast. PeerJ 2023; 11:e16589. [PMID: 38130933 PMCID: PMC10734408 DOI: 10.7717/peerj.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background Particulate matter (PM) is a major air pollutant that affects human health worldwide. PM can pass through the skin barrier, thus causing skin diseases such as heat rash, allergic reaction, infection, or inflammation. However, only a few studies have been conducted on the cytotoxic effects of PM exposure on large-scale animals. Therefore, herein, we investigated whether and how PM affects rhesus macaque skin fibroblasts. Methods Rhesus macaque skin fibroblasts were treated with various concentrations of PM10 (1, 5, 10, 50, and 100 μg/mL) and incubated for 24, 48, and 72 h. Then, cell viability assay, TUNEL assay, and qRT-PCR were performed on the treated cells. Further, the reactive oxygen species, glutathione, and cathepsin B levels were determined. The MTT assay revealed that PM10 (>50 μg/mL) proportionately reduced the cell proliferation rate. Results PM10 treatment increased TUNEL-positive cell numbers, following the pro-apoptosis-associated genes (CASP3 and BAX) and tumor suppressor gene TP53 were significantly upregulated. PM10 treatment induced reactive oxidative stress. Cathepsin B intensity was increased, whereas GSH intensity was decreased. The mRNA expression levels of antioxidant enzyme-related genes (CAT, GPX1 and GPX3) were significantly upregulated. Furthermore, PM10 reduced the mitochondrial membrane potential. The mRNA expression of mitochondrial complex genes, such as NDUFA1, NDUFA2, NDUFAC2, NDUFS4, and ATP5H were also significantly upregulated. In conclusion, these results showed that PM10 triggers apoptosis and mitochondrial damage, thus inducing ROS accumulation. These findings provide potential information on the cytotoxic effects of PM10 treatment and help to understand the mechanism of air pollution-induced skin diseases.
Collapse
Affiliation(s)
- Jiin Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
- Department of Animal Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Jae-Hwan Hyeon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Beom-Jin Park
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Hyeong-Ju You
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Changsic Youn
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Yejin Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| |
Collapse
|
4
|
Maleky S, Faraji M. BTEX in Ambient Air of Zarand, the Industrial City in Southeast of Iran: Concentration, Spatio-temporal Variation and Health Risk Assessment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:25. [PMID: 37572109 DOI: 10.1007/s00128-023-03778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
The existence of several industries in Zarand, a city in Southeastern Iran, caused challenges for the residents about air pollutants and associated health effects. In the present study, the concentration of benzene, toluene, ethylbenzene, and xylene (BTEX), spatio-temporal distribution and related health risks were evaluated. Passive samplers were used to collect 30 samples in the over the hot and cold periods in 2020. The ordinary Kriging method was used to predict the spatio-temporal distribution of BTEXs. Also, the Monte Carlo simulation was used to evaluate the related carcinogenic and non-carcinogenic risks of BTEX for adults. The ranking of mean concentration of overall toluene, xylene, ethylbenzene, and benzene followed as 82.49 ± 26.86, 30.91 ± 14.04, 4.75 ± 3.28, and 0.91 ± 0.18 µg/m3, respectively. The mean value of lifetime carcinogenic risk (LTCR) for residents related to benzene was 7.52 × 10- 6, indicating a negligible carcinogenic risk for them. Furthermore, the ranking of non-carcinogenic risk calculated through hazard quotient (HQ) for investigated BTEX compounds followed as xylene > benzene > toluene > ethylbenzene over the hot period and xylene > toluene > ethylbenzene over the cold period which all points had HQ < 1. Additionally, according to the findings of the sensitivity analysis, the concentration of benzene was the main contributor in increasing the carcinogenic risk. According to our results, it can be stated that the existence of several industries in the study area could not possibly occur the significant carcinogenic and non-carcinogenic risks to the adults residents in the study period. Human studies are recommended to determine definite results.
Collapse
Affiliation(s)
- Sobhan Maleky
- Department of Environmental Health Engineering, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Supasri T, Gheewala SH, Macatangay R, Chakpor A, Sedpho S. Association between ambient air particulate matter and human health impacts in northern Thailand. Sci Rep 2023; 13:12753. [PMID: 37550356 PMCID: PMC10406826 DOI: 10.1038/s41598-023-39930-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/02/2023] [Indexed: 08/09/2023] Open
Abstract
Air pollution in Thailand is regarded as a serious health threat, especially in the northern region. High levels of particulate matter (PM2.5 and PM10) are strongly linked to severe health consequences and mortality. This study analyzed the relationship between exposure to ambient concentrations of PM2.5 and PM10 by using data from the Pollution Control Department of Thailand and the burden of disease due to an increase in the ambient particulate matter concentrations in northern Thailand. This study was conducted using the Life Cycle Assessment methodology considering the human health damage impact category in the ReCiPe 2016 method. The results revealed that the annual average years of life lived with disability from ambient PM2.5 in northern Thailand is about 41,372 years, while from PM10 it is about 59,064 years per 100,000 population. The number of deaths from lung cancer and cardiopulmonary diseases caused by PM2.5 were approximately 0.04% and 0.06% of the population of northern Thailand, respectively. Deaths due to lung cancer and cardiopulmonary diseases caused by PM10, on the other hand, were approximately 0.06% and 0.08%, respectively. The findings expressed the actual severity of the impact of air pollution on human health. It can provide valuable insights for organizations in setting strategies to address air pollution. Organizations can build well-informed strategies and turn them into legal plans by exploiting the study's findings. This ensures that their efforts to tackle air pollution are successful, in accordance with regulations, and contribute to a healthier, more sustainable future guidelines on appropriate practices of air pollution act/policy linkage with climate change mitigation.
Collapse
Affiliation(s)
- Titaporn Supasri
- Atmospheric Research Unit, National Astronomical Research Institute of Thailand, Chiang Mai, Thailand.
- Energy Engineering Program, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand.
| | - Shabbir H Gheewala
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Center of Excellence on Energy Technology and Environment, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - Ronald Macatangay
- Atmospheric Research Unit, National Astronomical Research Institute of Thailand, Chiang Mai, Thailand.
- Institute of Environmental Science and Meteorology, University of the Philippines Diliman, Quezon City, Philippines.
| | - Anurak Chakpor
- Atmospheric Research Unit, National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
| | - Surat Sedpho
- School of Energy and Environment, University of Phayao, Phayao, Thailand
| |
Collapse
|
6
|
Wu B, Lin M, Li H, Wu Y, Qi M, Tang J, Ma S, Li G, An T. Internal exposure risk based on urinary metabolites of PAHs of occupation and non-occupation populations around a non-ferrous metal smelting plant. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131563. [PMID: 37167870 DOI: 10.1016/j.jhazmat.2023.131563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
The emission of various metals from non-ferrous metal smelting activities is well known. However, relative investigations on potential occupational exposure of organic pollutants are still limited. Herein, total of 619 human urine samples were collected from workers engaged in smelting activities and residents living near and/or far from the smelting sites, and ten mono-hydroxylated metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) in human urine were determined. The median levels of Σ10OH-PAHs in smelting workers (25.6 ng/mL) were significantly higher (p < 0.01) than that of surrounding residents (9.00 ng/mL) and rural residents as the control (8.17 ng/mL), indicating an increase in occupational PAH exposure in non-ferrous metal smelting activities. The composition profiles of OH-PAH congeners were similar in three groups, in which naphthalene metabolites accounted for 76-82% of the total. The effects of smoking, drinking, gender, BMI, and occupational categories on urinary OH-PAHs were considered. The partial correlation analysis showed an insignificant effect of non-ferrous metal smelting activities on PAH exposure for surrounding residents. In the health risk assessments, almost all smelting workers had cancer risks exceeded the acceptable level of 10-6. This study provides a reference to occupational PAH exposure and reinforce the necessary of health monitoring among smelting workers.
Collapse
Affiliation(s)
- Bizhi Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mengdie Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Hisamuddin NH, Jalaludin J. Children's exposure to polycyclic aromatic hydrocarbon (PAHs): a review on urinary 1-hydroxypyrene and associated health effects. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:151-168. [PMID: 35019243 DOI: 10.1515/reveh-2021-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
This article reviewed the published studies on the environmental exposure to polycyclic aromatic hydrocarbons (PAHs) among children and assessed the urinary 1-hydroxypyrene (1-OHP) level as a biomarker of exposure to PAHs. The current knowledge of the potential health effects of increased 1-OHP in children was reviewed. Additionally, the influence of genetic polymorphism on the urinary 1-OHP level was discussed in this review. The assembled data showed that children who are attending schools or living close to industrial and polluted urban areas might have greater exposure to higher concentrations of PAHs with a higher level of urinary 1-OHP when compared to those children living in rural areas. Urinary 1-OHP may be a reliable biomarker for determining the genotoxic effects, oxidative stress and inflammation caused by exposure to PAHs. Strong research evidence indicated that the total body burden of PAHs should be evaluated by biomonitoring of 1-OHP in line with other urinary PAHs metabolites (with 2-3 rings) to evaluate recent total exposure to PAHs. Overall, the study suggests implementing a mitigation plan to combat air pollution to provide a cleaner environment for children.
Collapse
Affiliation(s)
- Nur Hazirah Hisamuddin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Occupational Health and Safety, Faculty of Public Health, Airlangga University, Surabaya, East Java, Indonesia
| |
Collapse
|
8
|
Matthews JC, Navasumrit P, Wright MD, Chaisatra K, Chompoobut C, Arbon R, Khan MAH, Ruchirawat M, Shallcross DE. Aerosol mass and size-resolved metal content in urban Bangkok, Thailand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79025-79040. [PMID: 35705762 PMCID: PMC9587116 DOI: 10.1007/s11356-022-20806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Inhalable particulate matter (PM) is a health concern, and people living in large cities such as Bangkok are exposed to high concentrations. This exposure has been linked to respiratory and cardiac diseases and cancers of the lung and brain. Throughout 2018, PM was measured in northern Bangkok near a toll road (13.87°N, 100.58°E) covering all three seasons (cool, hot and rainy). PM10 was measured in 24- and 72-h samples. On selected dates aerodynamic size and mass distribution were measured as 3-day samples from a fixed 5th floor inlet. Particle number concentration was measured from the 5th floor inlet and in roadside survey measurements. There was a large fraction of particle number concentration in the sub-micron range, which showed the greatest variability compared with larger fractions. Metals associated with combustion sources were most found on the smaller size fraction of particles, which may have implications for associated adverse health outcomes because of the likely location of aerosol deposition in the distal airways of the lung. PM10 samples varied between 30 and 100 μg m-3, with highest concentrations in the cool season. The largest metal fractions present in the PM10 measurements were calcium, iron and magnesium during the hot season with average airborne concentrations of 13.2, 3.6 and 2.0 μg m-3, respectively. Copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony and lead had large non-crustal sources. Principal component analysis (PCA) identified likely sources of the metals as crustal minerals, tailpipe exhaust and non-combustion traffic. A health risk analysis showed a higher risk of both carcinogenic and non-carcinogenic health effects in the drier seasons than the wet season due to ingestion of nickel, arsenic, cadmium and lead.
Collapse
Affiliation(s)
- James C Matthews
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Matthew D Wright
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Krittinee Chaisatra
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Chalida Chompoobut
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Robert Arbon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- Jean Golding Institute, Royal Fort House, University of Bristol, Bristol, BS8 1UH, UK
| | - M Anwar H Khan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Dudley E Shallcross
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville, 7375, South Africa
| |
Collapse
|
9
|
Holland R, Khan MAH, Matthews JC, Bonifacio S, Walters R, Koria P, Clowes J, Rodgers K, Jones T, Patel L, Cross R, Sandberg F, Shallcross DE. Investigating the Variation of Benzene and 1,3-Butadiene in the UK during 2000-2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11904. [PMID: 36231204 PMCID: PMC9564389 DOI: 10.3390/ijerph191911904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The concentrations of benzene and 1,3-butadiene in urban, suburban, and rural sites of the U.K. were investigated across 20 years (2000-2020) to assess the impacts of pollution control strategies. Given the known toxicity of these pollutants, it is necessary to investigate national long-term trends across a range of site types. We conclude that whilst legislative intervention has been successful in reducing benzene and 1,3-butadiene pollution from vehicular sources, previously overlooked sources must now be considered as they begin to dominate in contribution to ambient pollution. Benzene concentrations in urban areas were found to be ~5-fold greater than those in rural areas, whilst 1,3-butadiene concentrations were up to ~10-fold greater. The seasonal variation of pollutant concentration exhibited a maximum in the winter and a minimum in the summer with summer: winter ratios of 1:2.5 and 1:1.6 for benzene and 1,3-butadiene, respectively. Across the period investigated (2000-2020), the concentrations of benzene decreased by 85% and 1,3-butadiene concentrations by 91%. A notable difference could be seen between the two decades studied (2000-2010, 2010-2020) with a significantly greater drop evident in the first decade than in the second, proving, whilst previously successful, legislative interventions are no longer sufficiently limiting ambient concentrations of these pollutants. The health impacts of these pollutants are discussed, and cancer impact indices were utilized allowing estimation of cancer impacts across the past 20 years for different site types. Those particularly vulnerable to the adverse health effects of benzene and 1,3-butadiene pollution are discussed.
Collapse
Affiliation(s)
- Rayne Holland
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | | | | | - Rhian Walters
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Priya Koria
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Joanna Clowes
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Karla Rodgers
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Temi Jones
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Leeya Patel
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Rhianna Cross
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Freya Sandberg
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Dudley E. Shallcross
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Department Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
10
|
Joint association of polycyclic aromatic hydrocarbons and heavy metal exposure with pulmonary function in children and adolescents aged 6-19 years. Int J Hyg Environ Health 2022; 244:114007. [PMID: 35853342 DOI: 10.1016/j.ijheh.2022.114007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Studies have reported associations between polycyclic aromatic hydrocarbon (PAH) or heavy metal (HM) exposure and respiratory diseases. However, evidence of their joint associations with pulmonary function, especially in children and adolescents aged 6-19 years, is lacking. We utilized cross-sectional data from 1,734 children and adolescents aged 6-19 years collected in the National Health and Nutrition Examination Survey 2007-2012 and analysed mixed PAH and mixed HM exposures and their joint association with pulmonary function by applying weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR). Multivariate linear regressions were carried out to determine the relationships between individual urinary PAH metabolites or blood HM levels and pulmonary function indices. We found that mixed PAHs and HMs were negatively related to forced expiratory volume in 1 s (FEV1) in subjects aged 6-12 years (all p values < 0.05). We found synergistic associations of PAH and HM exposure on pulmonary function impairment, mainly in children; lead (Pb) was the most damaging. In the analysis of individual PAH metabolites or HMs, Pb exposure was negatively associated with FEV1 values in all subgroups (all p values < 0.05). Thus, our findings indicate that increased PAH or HM exposure is associated with impairments to pulmonary function and that this association is more pronounced in children.
Collapse
|
11
|
Hisamuddin NH, Jalaludin J, Abu Bakar S, Latif MT. The Influence of Environmental Polycyclic Aromatic Hydrocarbons (PAHs) Exposure on DNA Damage among School Children in Urban Traffic Area, Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042193. [PMID: 35206377 PMCID: PMC8872109 DOI: 10.3390/ijerph19042193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the association between particulate PAHs exposure and DNA damage in Malaysian schoolchildren in heavy traffic (HT) and low traffic (LT) areas. PAH samples at eight schools were collected using a low volume sampler for 24 h and quantified using Gas Chromatography-Mass Spectrometry. Two hundred and twenty-eight buccal cells of children were assessed for DNA damage using Comet Assay. Monte-Carlo simulation was performed to determine incremental lifetime cancer risk (ILCR) and to check the uncertainty and sensitivity of the estimated risk. Total PAH concentrations in the schools in HT area were higher than LT area ranging from 4.4 to 5.76 ng m-3 and 1.36 to 3.79 ng m-3, respectively. The source diagnostic ratio showed that PAHs in the HT area is pyrogenic, mainly from diesel emission. The 95th percentile of the ILCR for children in HT and LT area were 2.80 × 10-7 and 1.43 × 10-7, respectively. The degree of DNA damage was significantly more severe in children in the HT group compared to LT group. This study shows that total indoor PAH exposure was the most significant factor that influenced the DNA damage among children. Further investigation of the relationship between PAH exposure and genomic integrity in children is required to shed additional light on potential health risks.
Collapse
Affiliation(s)
- Nur Hazirah Hisamuddin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Correspondence:
| | - Suhaili Abu Bakar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| |
Collapse
|
12
|
Fernández SF, Pardo O, Hernández CS, Garlito B, Yusà V. Children's exposure to polycyclic aromatic hydrocarbons in the Valencian Region (Spain): Urinary levels, predictors of exposure and risk assessment. ENVIRONMENT INTERNATIONAL 2021; 153:106535. [PMID: 33831740 DOI: 10.1016/j.envint.2021.106535] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 05/25/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pollutants that are released into the environment during incomplete combustion of organic matter and which can have a negative effect on human health. PAHs enter the human body mostly through ingestion of food or inhalation of tobacco smoke. The purpose of the present study is to evaluate the internal levels of PAHs that children living in the Valencian Region (Spain) are exposed to. In total, we measured eleven biomarkers of exposure to naphthalene, fluorene, phenanthrene, pyrene, and benzo(a)pyrene in the urine of 566 children aged 5-12. The analytical method was based on a liquid-liquid extraction of the PAH metabolites from the urine samples, followed by their determination by liquid chromatography coupled to tandem mass spectrometry. In addition, we used a questionnaire to collect the socio-demographic characteristics and 72 h dietary recall information of the participants in our study. Overall, we detected PAH metabolites in more than 78% of the children, with the exception of 3-hydroxyfluorene and 3-hydroxybenzo(a)pyrene, which were found in less than 37% of the analyzed samples. The most abundant biomarker found was 2-hydroxynaphthalene, with a geometric mean of 10 ng·ml-1. Reference values (RV95) ranging from 0.11 (4-hydroxyphenanthrene) to 53 ng·ml-1 (2-hydroxynaphthalene) in urine of Spanish children were derived from the present study. According to the statistical analysis, the factors that were significantly associated with the internal exposure to PAHs were province of residence, body mass index (BMI), children's age, consumption of plastic-wrapped food, and dietary habits. The estimated daily intakes in geometric mean terms ranged from 5 (fluorene) to 204 ng·kg-bw-1·day-1 (naphthalene). Risk assessment calculations showed higher hazard quotients and hazard indexes for children aged 5-8 than those aged 9-12, but all were below 1. In conclusion, no potential non-cancer health risk due to PAH exposure was observed in children living in Spain.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of València Doctor, Moliner 50, 46100 Burjassot, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, University of València Doctor, Moliner 50, 46100 Burjassot, Spain.
| | - Cristina S Hernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of València Doctor, Moliner 50, 46100 Burjassot, Spain
| | - Borja Garlito
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of València Doctor, Moliner 50, 46100 Burjassot, Spain; Public Health Laboratory of València Av. Catalunya, 21, 46020 València, Spain
| |
Collapse
|
13
|
Sopian NA, Jalaludin J, Abu Bakar S, Hamedon TR, Latif MT. Exposure to Particulate PAHs on Potential Genotoxicity and Cancer Risk among School Children Living Near the Petrochemical Industry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052575. [PMID: 33806616 PMCID: PMC7967639 DOI: 10.3390/ijerph18052575] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023]
Abstract
This study aimed to assess the association of exposure to particle-bound (PM2.5) polycyclic aromatic hydrocarbons (PAHs) with potential genotoxicity and cancer risk among children living near the petrochemical industry and comparative populations in Malaysia. PM2.5 samples were collected using a low-volume sampler for 24 h at three primary schools located within 5 km of the industrial area and three comparative schools more than 20 km away from any industrial activity. A gas chromatography-mass spectrometer was used to determine the analysis of 16 United States Environmental Protection Agency (USEPA) priority PAHs. A total of 205 children were randomly selected to assess the DNA damage in buccal cells, employing the comet assay. Total PAHs measured in exposed and comparative schools varied, respectively, from 61.60 to 64.64 ng m-3 and from 5.93 to 35.06 ng m-3. The PAH emission in exposed schools was contributed mainly by traffic and industrial emissions, dependent on the source apportionment. The 95th percentiles of the incremental lifetime cancer risk estimated using Monte Carlo simulation revealed that the inhalation risk for the exposed children and comparative populations was 2.22 × 10-6 and 2.95 × 10-7, respectively. The degree of DNA injury was substantially more severe among the exposed children relative to the comparative community. This study reveals that higher exposure to PAHs increases the risk of genotoxic effects and cancer among children.
Collapse
Affiliation(s)
- Nor Ashikin Sopian
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Correspondence: ; Tel.: +603-97692401
| | - Suhaili Abu Bakar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Titi Rahmawati Hamedon
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
14
|
Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol 2021; 36:e2021003-0. [PMID: 33730790 PMCID: PMC8207007 DOI: 10.5620/eaht.2021003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Several millions of people are exposed to cadmium worldwide due to natural and anthropogenic activities that led to their widespread distribution in the environment and have shown potential adverse effects on the kidneys, liver, heart and nervous system. Recently human and animal-based studies have been shown that In utero and early life exposure to cadmium can have serious health issues that are related to the risk of developmental disabilities and other outcomes in adulthood. Since, cadmium crosses the placental barrier and reaches easily to the fetus, even moderate or high-level exposure of this metal during pregnancy could be of serious health consequences which might be reflected either in the children’s early or later stages of life. Mortality from various diseases including cancer, cardiovascular, respiratory, kidney and neurological problems, correlation with In utero or early life exposure to cadmium has been found in epidemiological studies. Animal studies with strong evidence of various diseases mostly support for the human studies, as well as suggested a myriad mechanism by which cadmium can interfere with human health and development. More studies are needed to establish the mechanism of cadmium-induced toxicity with environmentally relevant doses in childhood and later life. In this review, we provide a comprehensive examination of the literature addressing potential long- term health issues with In utero and early life exposure to cadmium, as well as correlating with human and animal exposure studies.
Collapse
Affiliation(s)
- Lalit Chandravanshi
- Department of Forensic Science, College and Traffic Management- Institute of Road and Traffic Education, Faridabad - Haryana - 121010, India
| | - Kunal Shiv
- Division of Forensic Science, School of Basic & Applied Sciences, Galgotias University Greater Noida - 201306, India
| | - Sudhir Kumar
- Forensic Science laboratory, Modinagar, Ghaziabad - 201204, India
| |
Collapse
|
15
|
Reynolds WJ, Hanson PS, Critchley A, Griffiths B, Chavan B, Birch‐Machin MA. Exposing human primary dermal fibroblasts to particulate matter induces changes associated with skin aging. FASEB J 2020; 34:14725-14735. [DOI: 10.1096/fj.202001357r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Wil J. Reynolds
- Dermatological Sciences Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Peter S. Hanson
- Campus for Ageing and Vitality Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | | | | | | | - Mark A. Birch‐Machin
- Dermatological Sciences Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
16
|
Alghamdi MA, Hassan SK, Alzahrani NA, Al Sharif MY, Khoder MI. Classroom Dust-Bound Polycyclic Aromatic Hydrocarbons in Jeddah Primary Schools, Saudi Arabia: Level, Characteristics and Health Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2779. [PMID: 32316605 PMCID: PMC7215388 DOI: 10.3390/ijerph17082779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Data concerning polycyclic aromatic hydrocarbons (PAHs) in Jeddah's schools, Saudi Arabia, and their implications for health risks to children, is scarce. Classroom air conditioner filter dusts were collected from primary schools in urban, suburban and residential areas of Jeddah. This study aimed to assess the characteristics of classroom-dust-bound PAHs and the health risks to children of PAH exposure. Average PAH concentrations were higher in urban schools than suburban and residential schools. Benzo (b)fluoranthene (BbF), benzo(ghi)perylene (BGP), chrysene (CRY) and Dibenz[a,h]anthracene (DBA) at urban and suburban schools and BbF, BGP, fluoranthene (FLT) and indeno (1, 2, 3, -cd)pyrene (IND) at residential schools were the dominant compounds in classroom dust. PAHs with five aromatic rings were the most abundant at all schools. The relative contribution of the individual PAH compounds to total PAH concentrations in the classroom dusts of schools indicate that the study areas do share a common source, vehicle emissions. Based on diagnostic ratios of PAHs, they are emitted from local pyrogenic sources, and traffic is the significant PAH source, with more significant contributions from gasoline-fueled than from diesel cars. Based on benzo[a]pyrene equivalent (BaPequi) calculations, total carcinogenic activity (TCA) for total PAHs represent 21.59% (urban schools), 20.99% (suburban schools), and 18.88% (residential schools) of total PAH concentrations. DBA and BaP were the most dominant compounds contributing to the TCA, suggesting the importance of BaP and DBA as surrogate compounds for PAHs in this schools. Based on incremental lifetime cancer risk (ILCingestion, ILCRinhalation, ILCRdermal) and total lifetime cancer risk (TLCR)) calculations, the order of cancer risk was: urban schools > suburban schools > residential schools. Both ingestion and dermal contact are major contributors to cancer risk. Among PAHs, DBA, BaP, BbF, benzo(a)anthracene (BaA), benzo(k)fluoranthene (BkF), and IND have the highest ILCR values at all schools. LCR and TLCR values at all schools were lower than 10-6, indicating virtual safety. DBA, BaP and BbF were the predominant contributors to cancer effects in all schools.
Collapse
Affiliation(s)
- Mansour A. Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia; (M.Y.A.S.); (M.I.K.)
| | - Salwa K. Hassan
- Air Pollution Department, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt;
| | - Noura A. Alzahrani
- Office of Education/South Jeddah (Girls), Department of Primary Grades, Ministry of Education, Jeddah 23524, Saudi Arabia;
| | - Marwan Y. Al Sharif
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia; (M.Y.A.S.); (M.I.K.)
| | - Mamdouh I. Khoder
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia; (M.Y.A.S.); (M.I.K.)
| |
Collapse
|
17
|
Chandanachulaka S. Thailand: country report on children's environmental health. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:71-77. [PMID: 32031982 DOI: 10.1515/reveh-2019-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Thailand is the home of 66.4 million people of which 17.21% are children aged 0-14 years. The total population of children has decreased from 20.23% in 2009 to 17.21% in 2018. The mortality ratio of infants and children under 5 years of age has also steadily decreased between 2008 and 2017. Urbanization, globalization, and industrialization appear to be the main contributors to the transition from infectious to chronic non-communicable diseases. The main types of environmental exposure to children are water, sanitation and hygiene, air pollution from traffic in inner cities, chemical hazards from pesticides which result from agricultural activities in countryside areas, heavy metal contaminants such as lead and arsenic from anthropogenic activities, e.g. from industrial zones, mining, electronic appliance waste, and ongoing climate change. It is concluded that economic development and rapid urbanization in Thailand have resulted in environmental degradation and pose a risk to children's health. Future development and implementation of measures to improve children's environmental health (CEH) in the country are needed. Some examples include research specific to environmental threats to children's health; international environmental health networks to share experience and expertise; and solutions to solve the problems.
Collapse
Affiliation(s)
- Siriwan Chandanachulaka
- Department of Health, Ministry of Public Health Thailand, Tiwanond Road, Muang, Nontaburi 11000, Thailand
| |
Collapse
|
18
|
Neurobehavioral performance of PAH exposure in male coal miners in Shanxi, China: a cross-sectional study. Int Arch Occup Environ Health 2020; 93:707-714. [DOI: 10.1007/s00420-020-01521-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
|
19
|
Huang X, Deng X, Li W, Liu S, Chen Y, Yang B, Liu Q. Internal exposure levels of polycyclic aromatic hydrocarbons in children and adolescents: a systematic review and meta-analysis. Environ Health Prev Med 2019; 24:50. [PMID: 31351468 PMCID: PMC6661086 DOI: 10.1186/s12199-019-0805-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely found in the environment, and comparing to adults, children are more vulnerable to PAHs exposure. Urinary metabolites of PAHs are used as preferred biomarkers to estimate the PAHs exposure. Systematic review on the internal exposure level of children and adolescents is rare. We aimed to calculate the internal exposure levels of PAHs in children and adolescents and compare the levels of PAHs internal exposure in various children groups. We searched PubMed, OVID, Web of Science, EBSCO, ACS, and four Chinese databases, and all studies examining the urinary concentrations of PAHs in children and adolescent were identified. The total exposure level of 11 PAHs metabolites were pooled. Standard mean difference (SMD) and 95% confidence intervals (CIs) of PAHs urinary concentration were calculated and pooled by RevMan5.3 to compare the exposure levels of different children groups. We found that 1-OHPyr, 2-OHNap, 2-OHFlu, 3-OHPhe, and 4-OHPhe were five PAHs metabolites most commonly studied in existing studies in children, and their total exposure levels were 0.38 ± 0.98, 2.32 ± 4.83, 0.81 ± 1.54, 0.09 ± 0.14, 0.03 ± 0.10 μmol/mol creatinine, respectively. The meta-analysis showed that the levels of 1-OHPyr were higher in higher environmental exposure group (SMD = 0.21, 95% CI = 0.03~0.40), ETS exposure group (SMD = 0.31, 95% CI = 0.08~0.54), and 6~11 years group (SMD = 0.16, 95% CI = 0.09~0.24); the level of 2-OHNap (SMD = 0.27, 95% CI = 0.01~0.53) was higher in higher environmental exposure group; however, the levels of 3-OHPhe (SMD = - 0.34, 95% CI = - 0.57~- 0.12) and 4-OHPhe (SMD = - 0.48, 95% CI = - 0.69~- 0.28) were higher in lower environmental exposure group. The levels of 1-OHPyr (SMD = - 0.01, 95% CI = - 0.11~0.10) and 2-OHNap (SMD = 0.01, 95% CI = - 0.20~0.22) were not statistically different between boys and girls. In conclusions, we found that the internal diversity of PAHs existed in children and adolescents, and the level of 1-OHPyr in children and adolescents was in higher status compared with non-occupational people who do not smoke.
Collapse
Affiliation(s)
- Xin Huang
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, No. 1 Yixueyuan Road Yuzhong District, Chongqing, 400016 China
| | - Xu Deng
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, No. 1 Yixueyuan Road Yuzhong District, Chongqing, 400016 China
| | - Wenyan Li
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, No. 1 Yixueyuan Road Yuzhong District, Chongqing, 400016 China
| | - Shudan Liu
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, No. 1 Yixueyuan Road Yuzhong District, Chongqing, 400016 China
| | - Yiwen Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, No. 1 Yixueyuan Road Yuzhong District, Chongqing, 400016 China
| | - Bo Yang
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, No. 1 Yixueyuan Road Yuzhong District, Chongqing, 400016 China
| | - Qin Liu
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, Chongqing Medical University, No. 1 Yixueyuan Road Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
20
|
Oliveira M, Slezakova K, Delerue-Matos C, Pereira MC, Morais S. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. ENVIRONMENT INTERNATIONAL 2019; 124:180-204. [PMID: 30654326 DOI: 10.1016/j.envint.2018.12.052] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Children, an important vulnerable group, spend most of their time at schools (up to 10 h per day, mostly indoors) and the respective air quality may significantly impact on children health. Thus, this work reviews the published studies on children biomonitoring and environmental exposure to particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) at school microenvironments (indoors and outdoors), major sources and potential health risks. A total of 28, 35, and 31% of the studies reported levels that exceeded the international outdoor ambient air guidelines for PM10, PM2.5, and benzo(a)pyrene, respectively. Indoor and outdoor concentrations of PM10 at European schools, the most characterized continent, ranged between 7.5 and 229 μg/m3 and 21-166 μg/m3, respectively; levels of PM2.5 varied between 4 and 100 μg/m3 indoors and 6.1-115 μg/m3 outdoors. Despite scarce information in some geographical regions (America, Oceania and Africa), the collected data clearly show that Asian children are exposed to the highest concentrations of PM and PAHs at school environments, which were associated with increased carcinogenic risks and with the highest values of urinary total monohydroxyl PAH metabolites (PAH biomarkers of exposure). Additionally, children attending schools in polluted urban and industrial areas are exposed to higher levels of PM and PAHs with increased concentrations of urinary PAH metabolites in comparison with children from rural areas. Strong evidences demonstrated associations between environmental exposure to PM and PAHs with several health outcomes, including increased risk of asthma, pulmonary infections, skin diseases, and allergies. Nevertheless, there is a scientific gap on studies that include the characterization of PM fine fraction and the levels of PAHs in the total air (particulate and gas phases) of indoor and outdoor air of school environments and the associated risks for the health of children. There is a clear need to improve indoor air quality in schools and to establish international guidelines for exposure limits in these environments.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Klara Slezakova
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal.
| |
Collapse
|
21
|
Idowu O, Semple KT, Ramadass K, O'Connor W, Hansbro P, Thavamani P. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. ENVIRONMENT INTERNATIONAL 2019; 123:543-557. [PMID: 30622079 DOI: 10.1016/j.envint.2018.12.051] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 05/07/2023]
Abstract
The genotoxic, mutagenic and carcinogenic effects of polar polycyclic aromatic hydrocarbons (polar PAHs) are believed to surpass those of their parent PAHs; however, their environmental and human health implications have been largely unexplored. Oxygenated PAHs (oxy-PAHs) is a critical class of polar PAHs associated with carcinogenic effects without enzymatic activation. They also cause an upsurge in reactive oxygen species (ROS) in living cells. This results in oxidative stress and other consequences, such as abnormal gene expressions, altered protein activities, mutagenesis, and carcinogenesis. Similarly, some nitrated PAHs (N-PAHs) are probable human carcinogens as classified by the International Agency for Research on Cancer (IARC). Heterocyclic PAHs (polar PAHs containing nitrogen, sulphur and oxygen atoms within the aromatic rings) have been shown to be potent endocrine disruptors, primarily through their estrogenic activities. Despite the high toxicity and enhanced environmental mobility of many polar PAHs, they have attracted only a little attention in risk assessment of contaminated sites. This may lead to underestimation of potential risks, and remediation end points. In this review, the toxicity of polar PAHs and their associated mechanisms of action, including their role in mutagenic, carcinogenic, developmental and teratogenic effects are critically discussed. This review suggests that polar PAHs could have serious toxicological effects on human health and should be considered during risk assessment of PAH-contaminated sites. The implications of not doing so were argued and critical knowledge gaps and future research requirements discussed.
Collapse
Affiliation(s)
- Oluyoye Idowu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wayne O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Port Stephens, Australia
| | - Phil Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; University of Technology Sydney, Faculty of Science, Ultimo, NSW 2007, Australia
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
22
|
Sinitkul R, Wongrathanandha C, Sirirattanapruk S, Plitponkarnpim A, Maude RJ, Marczylo EL. Children's Environmental Health in Thailand: Past, Present, and Future. Ann Glob Health 2018; 84:306-329. [PMID: 30835380 PMCID: PMC6748291 DOI: 10.29024/aogh.2301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: There is increasing evidence of a link between environmental pollution and preventable diseases in developing countries, including Thailand. Economic development has generated several types of pollution that can affect population health. While these environmental health effects can be observed throughout life, pregnant women and children represent particularly vulnerable and sensitive groups. Methods: The published epidemiological literature investigating environmental chemical exposure in Thai children was reviewed, highlighting those that investigated associations between exposure and subsequent health outcomes. Results: The majority of the Thai epidemiological studies on environmental health in children were cross-sectional in design, with some demonstrating associations between exposure and outcome. The three main types of chemical exposure in Thai children were pesticides, heavy metals, and air pollution, which resulted from agricultural activities in countryside areas, industrial zones (both registered and unregistered establishments), mining, and traffic in inner cities. Major health outcomes included detrimental effects on cognitive function and cancer risk. Pesticide exposure was focused on, but not limited to, agricultural areas. The success of the Thai environmental policy to introduce lead–free petrol can be demonstrated by the decline of mean blood lead levels in children, particularly in urban areas. However, unregistered lead-related factories and smelters act as hidden sources. In addition, there is increasing concern, but little acknowledgement, about the effects of chronic arsenic exposure related to mining. Lastly, air pollution remains a problem in both dense city populations due to traffic and in rural areas due to contamination of indoor air and house dust with heavy metals, endotoxins and other allergens. Conclusions: The increasing number of published articles demonstrates an improved awareness of children’s environmental health in Thailand. Chemical hazards, including the improper use of pesticides, environmental contamination with heavy metals (lead and arsenic), and air pollution in inner cities and indoor air, continue to be growing issues.
Collapse
Affiliation(s)
- Ratchaneewan Sinitkul
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, TH
| | | | | | | | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, TH.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Harvard TH Chan School of Public Health, Harvard University, Boston, US
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| |
Collapse
|
23
|
Slezakova K, Oliveira M, Madureira J, Fernandes EDO, Delerue-Matos C, Morais S, Pereira MDC. Polycyclic aromatic hydrocarbons (PAH) in Portuguese educational settings: a comparison between preschools and elementary schools. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:630-640. [PMID: 28679081 DOI: 10.1080/15287394.2017.1286931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aim of this study was to determine levels and risks due to inhalation exposure to polycyclic aromatic hydrocarbons (PAH) in different educational settings, namely for 3- to 5- year-old and 6- to 10-year-old children. Eighteen PAH (16 priority designated by US Environmental Protection Agency (USEPA) and dibenzo[a,l]pyrene and benzo[j]fluoranthene) were simultaneously collected in indoor and outdoor air at two Portuguese preschools (PS1-PS2) and five elementary schools (ES1-ES5) from March to May 2014. Indoor concentrations at PS and ES were significantly different, with total levels (∑PAHs) 0.721-15.9 ng/m3 at PS1-PS2 and 5.03-23.6 ng/m3 at ES1-ES5. The corresponding outdoor concentrations were, respectively, 1.22-32.7 ng/m3 and 2.6-31.5 ng/m3. Polycyclic aromatic hydrocarbons with 2-3 aromatic rings were predominantly emitted by indoor sources, while compounds with 4-6 aromatic rings were mainly generated by infiltration of ambient PAH pollution to indoors. Excess lifetime risks of lung cancer exceeded the World Health Organization (WHO) designated guideline of 10-5 in both types of schools (15-42-fold at PS; 15-52-fold at ES). However, total (sum of indoor and outdoor exposure) incremental lifetime cancer risks (ILCR) were below the USEPA level of 10-6 at all studied institutions and thus considered negligible. Finally, ILCR due to indoor exposure represented 60-75% and 70-85% of the total ILCR at PS and ES, respectively, thus indicating the need for development and implementation of indoor air quality guidelines in educations settings.
Collapse
Affiliation(s)
- Klara Slezakova
- a LEPABE, Departamento de Engenharia Química , Faculdade de Engenharia, Universidade do Porto , Porto , Portugal
- b REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto , Porto , Portugal
| | - Marta Oliveira
- a LEPABE, Departamento de Engenharia Química , Faculdade de Engenharia, Universidade do Porto , Porto , Portugal
- b REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto , Porto , Portugal
| | - Joana Madureira
- c Institute of Science and Innovation on Mechanical Engineering and Industrial Management , Porto , Portugal
| | | | - Cristina Delerue-Matos
- b REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto , Porto , Portugal
| | - Simone Morais
- b REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto , Porto , Portugal
| | - Maria do Carmo Pereira
- a LEPABE, Departamento de Engenharia Química , Faculdade de Engenharia, Universidade do Porto , Porto , Portugal
| |
Collapse
|
24
|
Oliveira M, Slezakova K, Delerue-Matos C, do Carmo Pereira M, Morais S. Assessment of exposure to polycyclic aromatic hydrocarbons in preschool children: Levels and impact of preschool indoor air on excretion of main urinary monohydroxyl metabolites. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:357-369. [PMID: 27776859 DOI: 10.1016/j.jhazmat.2016.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/03/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
The present work aimed to assess exposure of preschool children to polycyclic aromatic hydrocarbons (PAHs) by environmental monitoring (eighteen compounds in air) and biomonitoring (six urinary biomarkers of exposure (OH-PAHs)). The impact of preschool indoor air on excretion of urinary monohydroxyl metabolites was also evaluated. Gaseous and particulate-bound PAHs were simultaneously collected indoors and outdoors in two Portuguese preschools. PAHs and OH-PAHs were quantified by high-performance liquid chromatography with fluorescence and photodiode array detection. Total air (gaseous+total suspended particles) levels of PAHs (ΣPAHs) were higher indoors than outdoors. Gaseous phase (composed by ≥98% of 2-3 rings compounds) and particulate-bound PAHs (90-99% of 5-6 rings) accounted for 93-95% and 5-7% of ΣPAHs in indoor air, respectively. Total (including probable/possible) carcinogenic PAHs represented 26-45% of ΣPAHs; naphthalene and dibenz[a,h]anthracene were the strongest contributors. A similar distribution profile was observed between airborne PAHs and urinary OH-PAHs. Urinary 1-hydroxynaphthalene+1-hydroxyacenaphthene represented more than 78% of ΣOH-PAHs, being followed by 2-hydroxyfluorene, 1-hydroxypyrene, and 1-hydroxyphenanthrene. 3-hydroxybenzo[a]pyrene (PAH biomarker of carcinogenicity) was not detected. Results suggest that children had preschool indoor air as their major exposure source of naphthalene and acenaphthene, while no conclusion was reached regarding fluorene, phenanthrene and pyrene.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; LEPABE, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; LEPABE, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| |
Collapse
|
25
|
Oliveira M, Slezakova K, Madureira J, de Oliveira Fernandes E, Delerue-Matos C, Morais S, do Carmo Pereira M. Polycyclic aromatic hydrocarbons in primary school environments: Levels and potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1156-1167. [PMID: 27693148 DOI: 10.1016/j.scitotenv.2016.09.195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Although polycyclic aromatic hydrocarbons (PAHs) are priority air pollutants that strongly affect human health, information concerning the indoor exposures is still limited. This study characterized PAH levels in primary schools and evaluated risk for the respective students (aged 8-10years) in comparison with school personnel. During January-April 2014, eighteen particulate-bound (PM2.5) PAHs (16 USEPA priority compounds, dibenzo[a,l]pyrene, benzo[j]fluoranthene) were collected (indoors and outdoors) at ten primary urban schools in Portugal. Total mean concentrations (ΣPAHs) ranged 2.8-54ngm-3 in indoor air, whereas corresponding outdoor levels were 7.1-48ngm-3. Indoor/outdoor ratios of lighter congeners (2-3 aromatic rings) demonstrated a contribution from indoor origin while heavier PAHs (4-6 aromatic rings) originated mostly from infiltration of ambient air indoors; traffic (both from diesel and gasoline fuelled vehicles) was the predominant source of indoor PAHs. Total cancer risk of 8-10years old children exceeded (up to 22 times) USEPA recommended guideline of 10-6, and 7-87 times WHO health-based threshold of 10-5. Risk due to indoor exposure in schools was 2-10 times higher than outdoors, mainly because of the higher amount of time that students spent indoors.
Collapse
Affiliation(s)
- Marta Oliveira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Klara Slezakova
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Joana Madureira
- Institute of Science and Innovation on Mechanical Engineering and Industrial Management, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eduardo de Oliveira Fernandes
- Institute of Science and Innovation on Mechanical Engineering and Industrial Management, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
26
|
Flores-Ramírez R, Pérez-Vázquez FJ, Cilia-López VG, Zuki-Orozco BA, Carrizales L, Batres-Esquivel LE, Palacios-Ramírez A, Díaz-Barriga F. Assessment of exposure to mixture pollutants in Mexican indigenous children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8577-88. [PMID: 26797947 DOI: 10.1007/s11356-016-6101-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
The aim of the present work was to complete an exposure assessment in three Mexican indigenous communities using the community-based health risk assessment, which is the first step in the CHILD framework. We used 1-hydroxypyrene (1-OHP) as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) and trans, trans-muconic acid (t,t-MA) as an exposure biomarker to benzene, persistent organic pollutants (POPs), lead, manganese, arsenic, and fluoride. Anthropometric measurements were also taken. In these communities, high percentages of children with chronic malnutrition were found (28 to 49 %) based on their weight and age. All communities showed a high percentage of children with detectable levels of four or more compounds (70 to 82 %). Additionally, our results showed that in indigenous communities, children are exposed to elevated levels of certain environmental pollutants, including manganese with 17.6, 16.8, and 7.3 μg/L from SMP, TOC, and CUA, respectively. Lead and HCB levels were similar in the indigenous communities (2.5, 3.1, and 4.2 μg/dL and 2.5, 3.1, and 3.7 ng/mL, respectively). 1-OHP and t,t-MA levels were higher in TOC (0.8 μmol/mol of creatinine, 476 μg/g of creatinine, respectively) when compared with SMP (0.1 μmol/mol of creatinine, 215.5 μg/g of creatinine, respectively) and CUA (0.1 μmol/mol of creatinine, 185.2 μg/g of creatinine, respectively). DDE levels were 30.7, 26.9, and 9.6 ng/mL in CUA, SMP, and TOC, respectively. The strength of this study is that it assesses exposure to pollutants with indications for the resultant risk before an intervention is made by the CHILD program to manage this risk in the indigenous communities. Considering the large number of people, especially children, exposed to multiple pollutants, it is important to design effective intervention programs that reduce exposure and the resultant risk in the numerous indigenous communities in Mexico.
Collapse
Affiliation(s)
- R Flores-Ramírez
- Catedrático CONACYT-Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, S.L.P., México
| | - F J Pérez-Vázquez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - V G Cilia-López
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - B A Zuki-Orozco
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - L Carrizales
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - L E Batres-Esquivel
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - A Palacios-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - F Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México.
| |
Collapse
|
27
|
Ochoa-Martinez AC, Orta-Garcia ST, Rico-Escobar EM, Carrizales-Yañez L, Del Campo JDM, Pruneda-Alvarez LG, Ruiz-Vera T, Gonzalez-Palomo AK, Piña-Lopez IG, Torres-Dosal A, Pérez-Maldonado IN. Exposure Assessment to Environmental Chemicals in Children from Ciudad Juarez, Chihuahua, Mexico. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:657-670. [PMID: 26987540 DOI: 10.1007/s00244-016-0273-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
It has been demonstrated that the human biomonitoring of susceptible populations is a valuable method for the identification of critical contaminants. Therefore, the purpose of this study was to assess the exposure profile for arsenic (As), lead (Pb), mercury (Hg), 1-hydroxypyrene (1-OHP), 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in children living in Ciudad Juarez, Chihuahua, Mexico (a major manufacturing center in Mexico). In 2012, we evaluated a total of 135 healthy children living in Ciudad Juarez since birth. The total PBDEs levels ranged from nondetectable (< LOD) to 215 ng/g lipid, with a mean total PBDEs level of 29.5 ± 53.0 ng/g lipid (geometric mean ± standard deviation). The mean total PCBs level in the study participants was 29.0 ± 10.5 ng/g lipid (range 4.50-50.0 ng/g lipid). The mean concentration of total DDT (DDT + DDE) was 11.9 ± 6.70 ng/g lipid (range 3.00-26.0 ng/g lipid). The mean 1-OHP levels was 1.2 ± 1.1 µmol/mol creatinine (range <LOD to 3.90 µmol/mol creatinine). Regarding heavy metals levels, the mean urinary As levels was 19.5 ± 3.07 µg/g creatinine, for urinary mercury the levels ranged from <LOD to 11.5 µg/L, with a mean value of 2.10 µg/L, and finally, the mean blood lead level was 4.20 ± 3.80 µg/dL. In conclusion, our data indicate high exposure levels to chemicals analyzed in the children living in the study community. Therefore, a biomonitoring program for the surveillance of the child population in Ciudad Juarez is necessary.
Collapse
Affiliation(s)
- Angeles C Ochoa-Martinez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Sandra T Orta-Garcia
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Edna M Rico-Escobar
- Escuela de Medicina y Nutrición, Universidad de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Leticia Carrizales-Yañez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Jorge D Martin Del Campo
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Lucia G Pruneda-Alvarez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Tania Ruiz-Vera
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Ana K Gonzalez-Palomo
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Iris G Piña-Lopez
- Hospital General de Zona con Medicina Familiar No. 1, Instituto Mexicano del Seguro Social, Pachuca, Hidalgo, Mexico
| | - Arturo Torres-Dosal
- El Colegio de la Frontera Sur (ECOSUR), Unidad San Cristóbal, San Cristobal De Las Casas, Chiapas, Mexico
| | - Ivan N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico.
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico.
- Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
28
|
Lin Y, Qiu X, Yu N, Yang Q, Araujo JA, Zhu Y. Urinary Metabolites of Polycyclic Aromatic Hydrocarbons and the Association with Lipid Peroxidation: A Biomarker-Based Study between Los Angeles and Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3738-45. [PMID: 26913796 PMCID: PMC6057150 DOI: 10.1021/acs.est.5b04629] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Air pollution is among the top threats to human health in China. As air toxicants, polycyclic aromatic hydrocarbons (PAHs) could bring significant risks to population; however, the exposure to PAHs in China and its health impact are not fully understood. In 2012, a summer exchange program allowed 10 students to travel from Los Angeles to Beijing and stay there for 10 weeks. Based on the program, this study investigated the difference in urinary concentration of 12 hydroxylated-PAHs (Σ12OH-PAHs) and malondialdehyde (MDA) between the two cities. The median concentration of Σ12OH-PAHs in Beijing (14.1 μg g(-1) creatinine) was significantly higher than that in Los Angeles (5.78 μg g(-1) creatinine), indicating a higher exposure in Beijing. The ratios of homogeneous OH-PAHs (e.g., 1-/2-OH-NAP) changed significantly between the two cities (p < 0.01), which might suggest a potential alteration in metabolism subsequent to exposure. A significant association between Σ12OH-PAHs and MDA (p < 0.01) was observed, with the association varying between the two cities. This study suggests that exposure to PAHs might be linked to metabolism alteration and calls for future studies to investigate the role this possible alteration played in the health effects of PAHs exposure.
Collapse
Affiliation(s)
- Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
- Corresponding Authors: ,
| | - Nu Yu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Qiaoyun Yang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Jesus A. Araujo
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
- Corresponding Authors: ,
| |
Collapse
|
29
|
Lee M, Koutrakis P, Coull B, Kloog I, Schwartz J. Acute effect of fine particulate matter on mortality in three Southeastern states from 2007-2011. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:173-9. [PMID: 26306925 PMCID: PMC4758853 DOI: 10.1038/jes.2015.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/20/2015] [Indexed: 05/21/2023]
Abstract
Epidemiologic studies on acute effects of air pollution have generally been limited to larger cities, leaving questions about rural populations behind. Recently, we had developed a spatiotemporal model to predict daily PM2.5 level at a 1 km(2) using satellite aerosol optical depth (AOD) data. Based on the results from the model, we applied a case-crossover study to evaluate the acute effect of PM2.5 on mortality in North Carolina, South Carolina, and Georgia between 2007 and 2011. Mortality data were acquired from the Departments of Public Health in the States and modeled PM2.5 exposures were assigned to the zip code of residence of each decedent. We performed various stratified analyses by age, sex, race, education, cause of death, residence, and environmental protection agency (EPA) standards. We also compared results of analyses using our modeled PM2.5 levels and those imputed daily from the nearest monitoring station. 848,270 non-accidental death records were analyzed and we found each 10 μg/m(3) increase in PM2.5 (mean lag 0 and lag 1) was associated with a 1.56% (1.19 and 1.94) increase in daily deaths. Cardiovascular disease (2.32%, 1.57-3.07) showed the highest effect estimate. Blacks (2.19%, 1.43-2.96) and persons with education ≤ 8 year (3.13%, 2.08-4.19) were the most vulnerable populations. The effect of PM2.5 on mortality still exists in zip code areas that meet the PM2.5 EPA annual standard (2.06%, 1.97-2.15). The effect of PM2.5 below both EPA daily and annual standards was 2.08% (95% confidence interval=1.99-2.17). Our results showed more power and suggested that the PM2.5 effects on rural populations have been underestimated due to selection bias and information bias. We have demonstrated that our AOD-based exposure models can be successfully applied to epidemiologic studies. This will add new study populations in rural areas, and will confer more generalizability to conclusions from such studies.
Collapse
Affiliation(s)
- Mihye Lee
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Brent Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Chang CC, Su MJ, Lee SJ, Tsai YH, Kuo LY, Lin IH, Huang HL, Yen TH, Chu FY. The Immunotyping Distribution of Serum Monoclonal Paraprotein and Environmental Impact on Multiple Myeloma (MM) and Monoclonal Gammopathy of Uncertain Significance (MGUS) in Taiwan: A Medical Center-Based Experience. Asian Pac J Cancer Prev 2016; 17:395-399. [PMID: 26838245 DOI: 10.7314/apjcp.2016.17.1.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whether ambient exposure to environmental pollutants leads to hematopoietic malignancies such as multiple myeloma (MM) remains to be ascertained. Therefore, we aimed to investigate the immunotyping distribution of serum monoclonal paraprotein and the environmental influence on MM and monoclonal gammopathy of uncertain significance (MGUS) in the Taiwanese population. MATERIALS AND METHODS Serum protein electrophoresis with immunosubtraction by the capillary zone electrophoresis method was performed as primary screening for MM and MGUS. Clinical, pathological, and residence data of patients were also obtained. RESULTS From August, 2013 to June, 2015, a total of 327 patients underwent serum protein electrophoresis with immunosubtraction. Among these, 281 demonstrated no remarkable findings or non-malignant oligoclonal gammopathy, 23 were detected to have MGUS, 18 were identified as MM, and a further 5 were found as other malignancies. The most frequent immunotyping distribution of serum monoclonal paraprotein was IgG kappa (54.3%, n=25), followed by IgA lambda (15.2%, n=7) and IgG lambda (10.9%, n=5) in subjects with gammopathy. Additionally, it was shown that the elderly (OR: 4.61, 95% CI: 1.88-11.30, P<0.01) and males (OR: 2.04, 95% CI: 1.04-4.02, P=0.04) had significantly higher risk of developing MM and MGUS. There was no obvious impact of environmental factors on the health risk of MM and MGUS evolution (OR: 0.77, 95% CI: 0.40-1.50, P=0.49). CONCLUSIONS The most frequent immunotyping distribution of serum monoclonal paraprotein included IgG kappa, IgA lambda and IgG lambda in MM and MGUS in the Taiwanese population. The elderly and male subjects are at significantly higher risk of MM and MGUS development, but there was no obvious impact of environmental factors on risk.
Collapse
Affiliation(s)
- Chih-Chun Chang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Oliveira M, Slezakova K, Delerue-Matos C, Pereira MDC, Morais S. Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3-5 years old children). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:382-94. [PMID: 26552524 DOI: 10.1016/j.envpol.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 05/18/2023]
Abstract
This work characterizes levels of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of preschool environments, and assesses the respective risks for 3-5-years old children. Eighteen gaseous and particulate (PM1 and PM2.5) PAHs were collected indoors and outdoors during 63 days at preschools in Portugal. Gaseous PAHs accounted for 94-98% of total concentration (ΣPAHs). PAHs with 5-6 rings were predominantly found in PM1 (54-74% particulate ΣPAHs). Lighter PAHs originated mainly from indoor sources whereas congeners with 4-6 rings resulted mostly from outdoor emissions penetration (motor vehicle, fuel burning). Total cancer risks of children were negligible according to USEPA, but exceeded (8-13 times) WHO health-based guideline. Carcinogenic risks due to indoor exposure were higher than for outdoors (4-18 times).
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| |
Collapse
|
32
|
Oliveira M, Slezakova K, Delerue-Matos C, Pereira MC, Morais S. Polycyclic aromatic hydrocarbons: levels and phase distributions in preschool microenvironment. INDOOR AIR 2015; 25:557-568. [PMID: 25263282 DOI: 10.1111/ina.12164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/20/2014] [Indexed: 06/03/2023]
Abstract
This work aims to characterize levels and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in indoor air of preschool environment and to assess the impact of outdoor PAH emissions to indoor environment. Gaseous and particulate (PM1 and PM(2.5)) PAHs (16 USEPA priority pollutants, plus dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were concurrently sampled indoors and outdoors in one urban preschool located in north of Portugal for 35 days. The total concentration of 18 PAHs (ΣPAHs) in indoor air ranged from 19.5 to 82.0 ng/m(3) ; gaseous compounds (range of 14.1-66.1 ng/m(3)) accounted for 85% ΣPAHs. Particulate PAHs (range 0.7-15.9 ng/m(3)) were predominantly associated with PM1 (76% particulate ΣPAHs) with 5-ring PAHs being the most abundant. Mean indoor/outdoor ratios (I/O) of individual PAHs indicated that outdoor emissions significantly contributed to PAH indoors; emissions from motor vehicles and fuel burning were the major sources.
Collapse
Affiliation(s)
- M Oliveira
- REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - K Slezakova
- REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - C Delerue-Matos
- REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - M C Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - S Morais
- REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
33
|
Oliveira M, Slezakova K, Delerue-Matos C, Pereira MDC, Morais S. Exposure to polycyclic aromatic hydrocarbons and assessment of potential risks in preschool children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13892-13902. [PMID: 25943510 DOI: 10.1007/s11356-015-4588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
As children represent one of the most vulnerable groups in society, more information concerning their exposure to health hazardous air pollutants in school environments is necessary. Polycyclic aromatic hydrocarbons (PAHs) have been identified as priority air pollutants due to their mutagenic and carcinogenic properties that strongly affect human health. Thus, this work aims to characterize levels of 18 selected PAHs in preschool environment, and to estimate exposure and assess the respective risks for 3-5-year-old children (in comparison with adults). Gaseous PAHs (mean of 44.5 ± 12.3 ng m(-3)) accounted for 87% of the total concentration (ΣPAHs) with 3-ringed compounds being the most abundant (66% of gaseous ΣPAHs). PAHs with 5 rings were the most abundant ones in the particulate phase (PM; mean of 6.89 ± 2.85 ng m(-3)) being predominantly found in PM1 (78% particulate ΣPAHs). Overall child exposures to PAHs were not significantly different between older children (4-5 years old) and younger ones (3 years old). Total carcinogenic risks due to particulate-bound PAHs indoors were higher than outdoor ones. The estimated cancer risks of both preschool children and the staff were lower than the United States Environmental Protection Agency (USEPA) threshold of 10(-6) but slightly higher than WHO-based guideline.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | | | | | | | | |
Collapse
|
34
|
Møller P, Hemmingsen JG, Jensen DM, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Cao Y, Kermanizadeh A, Klingberg H, Christophersen DV, Hersoug LG, Loft S. Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure. Mutagenesis 2015; 30:67-83. [PMID: 25527730 DOI: 10.1093/mutage/geu035] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Exposure to ambient air particles is associated with elevated levels of DNA strand breaks (SBs) and endonuclease III, formamidopyrimidine DNA glycosylase (FPG) and oxoguanine DNA glycosylase-sensitive sites in cell cultures, animals and humans. In both animals and cell cultures, increases in SB and in oxidatively damaged DNA are seen after exposure to a range of engineered nanomaterials (ENMs), including carbon black, carbon nanotubes, fullerene C60, ZnO, silver and gold. Exposure to TiO2 has generated mixed data with regard to SB and oxidatively damaged DNA in cell cultures. Nanosilica does not seem to be associated with generation of FPG-sensitive sites in cell cultures, while large differences in SB generation between studies have been noted. Single-dose airway exposure to nanosized carbon black and multi-walled carbon nanotubes in animal models seems to be associated with elevated DNA damage levels in lung tissue in comparison to similar exposure to TiO2 and fullerene C60. Oral exposure has been associated with augmented DNA damage levels in cells of internal organs, although the doses have been typically very high. Intraveneous and intraperitoneal injection of ENMs have shown contradictory results dependent on the type of ENM and dose in each set of experiments. In conclusion, the exposure to both combustion-derived particles and ENMs is associated with increased levels of DNA damage in the comet assay. Particle size, composition and crystal structure of ENM are considered important determinants of toxicity, whereas their combined contributions to genotoxicity in the comet assay are yet to be thoroughly investigated.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Jette Gjerke Hemmingsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Pernille Høgh Danielsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Dorina Gabriela Karottki
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Kim Jantzen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Yi Cao
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Henrik Klingberg
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Daniel Vest Christophersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Lars-Georg Hersoug
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
35
|
Li J, Lu S, Liu G, Zhou Y, Lv Y, She J, Fan R. Co-exposure to polycyclic aromatic hydrocarbons, benzene and toluene and their dose-effects on oxidative stress damage in kindergarten-aged children in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:74-80. [PMID: 25889546 DOI: 10.1016/j.scitotenv.2015.04.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), benzene and toluene (BT) are ubiquitous toxic pollutants in the environment. Children are sensitive and susceptible to exposure to these contaminants. To investigate the potential oxidative DNA damage from the co-exposure of PAHs and BT in children, 87 children (aged 3-6) from a kindergarten in Guangzhou, China, were recruited. Ten urinary PAHs and four BT metabolites, as well as 8-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage)in urine, were determined using a liquid chromatography tandem mass spectrometer. The results demonstrated that the levels of PAHs and BT in children from Guangzhou were 2-30 times higher than those in children from the other countries based on a comparison with recent data from the literature. In particular, the difference is more substantial for pyrene and volatile BT. Co-exposure to PAHs and BT could lead to additive oxidative DNA damage. Significant dose-effects were observed between the sum concentration of urinary monohydroxylated metabolites of PAHs (∑OH-PAHs), the sum concentration of the metabolites of BT (∑BT) and 8-OHdG levels. Every one percent increase in urinary PAHs and BT generated 0.33% and 0.02% increases in urinary 8-OHdG, respectively. We also determined that the urinary levels of PAHs and BT were negatively associated with the age of the children. Moreover, significant differences in the levels of ∑OH-PAHs and ∑BT were determined between 3- and 6-year-old children (p<0.05), which may be caused by different metabolism capabilities or inhalation frequencies. In conclusion, exposure to PAHs or BT could lead to oxidative DNA damage, and 8-OHdG is a good biomarker for indicating the presence of DNA damage. There exists a significant dose-effect relationship between PAH exposure, BT exposure and the concentration of 8-OHdG in urine. Toddlers (3-4 years old) face a higher burden of PAH and BT exposure compared with older children.
Collapse
Affiliation(s)
- Junnan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuanxiu Zhou
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yanshan Lv
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianwen She
- Environmental Health Laboratory Branch, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA 94804, United States
| | - Ruifang Fan
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
36
|
Pinichka C, Bundhamcharoen K, Shibuya K. Diseases Burden of Chronic Obstructive Pulmonary Disease (COPD) Attributable to Ground-Level Ozone in Thailand: Estimates Based on Surface Monitoring Measurements Data. Glob J Health Sci 2015; 8:1-13. [PMID: 26234972 PMCID: PMC4803989 DOI: 10.5539/gjhs.v8n1p1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/25/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ambient ozone (O3) pollution has increased globally since preindustrial times. At present, O3 is one of the major air pollution concerns in Thailand, and is associated with health impacts such as chronic obstructive pulmonary disease (COPD). The objective of our study is to estimate the burden of disease attributed to O3 in 2009 in Thailand based on empirical evidence. METHODS We estimated disability-adjusted life years (DALYs) attributable to O3 using the comparative risk assessment framework in the Global Burden of Diseases (GBD) study. We quantified the population attributable fraction (PAF), integrated from Geographic Information Systems (GIS)-based spatial interpolation, the population distribution of exposure, and the exposure-response coefficient to spatially characterize exposure to ambient O3 pollution on a national scale. Exposure distribution was derived from GIS-based spatial interpolation O3 exposure model using Pollution Control Department Thailand (PCD) surface air pollution monitor network sources. Relative risk (RR) and population attributable fraction (PAF) were determined using health impact function estimates for O3. RESULT PAF (%) of COPD attributable to O3 were determined by region: at approximately, Northern=2.1, Northeastern=7.1, Central=9.6, Eastern=1.75, Western=1.47 and Southern=1.74. The total COPD burden attributable to O3 for Thailand in 2009 was 61,577 DALYs. Approximately 0.6% of the total DALYs in Thailand is male: 48,480 DALYs; and female: 13,097 DALYs. CONCLUSION This study provides the first empirical evidence on the health burden (DALYs) attributable to O3 pollution in Thailand. Varying across regions, the disease burden attributable to O3 was 0.6% of the total national burden in 2009. Better empirical data on local specific sites, e.g. urban and rural areas, alternative exposure assessment, e.g. land use regression (LUR), and a local concentration-response coefficient are required for future studies in Thailand.
Collapse
|
37
|
Kamal A, Cincinelli A, Martellini T, Malik RN. A review of PAH exposure from the combustion of biomass fuel and their less surveyed effect on the blood parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4076-4098. [PMID: 25410307 DOI: 10.1007/s11356-014-3748-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Many epidemiological studies from all over the world have reported that populations of rural and urban environments differ in their health issues due to the differences in the countrywide pollution pattern. In developing countries, various occupational cohorts and subsections of the population in urban and rural areas are routinely exposed to several environmentally widespread contaminants. Polycyclic aromatic hydrocarbons (PAHs) are a group of over hundred different compounds and have ubiquitous presence in rural and urban environments. Smoke from the combustion of biomass fuel contains a high concentration of carcinogenic PAHs, which are related with several human morbidities. The sources and types of biomass fuel are diverse and wide in distribution. Limited numbers of literature reports have focused the significant impact of PAHs on several components of blood, both in human and wildlife. The toxicity of PAHs to rapidly dividing cells (e.g., bone marrow cells) and other tissues is largely attributed to their reactive oxygenated metabolites, potential of causing oxidative stress, and the adducts of their metabolites with DNA. This review aims to encompass the blood-related effects of PAHs and associated human health risks-an aspect that needs further research-on the population of developing countries of the world in particular.
Collapse
Affiliation(s)
- Atif Kamal
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan,
| | | | | | | |
Collapse
|
38
|
Silva da Silva C, Rossato JM, Vaz Rocha JA, Vargas VMF. Characterization of an area of reference for inhalable particulate matter (PM2.5) associated with genetic biomonitoring in children. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 778:44-55. [DOI: 10.1016/j.mrgentox.2014.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
|
39
|
Wang Y, Fan R, Dong Y, Zhang W, Sheng G, Fu J. Urinary monohydroxylated metabolites of polycyclic aromatic hydrocarbons in children living in city and rural residences in Southern China. ENVIRONMENTAL TECHNOLOGY 2014; 35:2973-2981. [PMID: 25189845 DOI: 10.1080/09593330.2014.927532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Urinary 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, 1-hydroxypyrene and 3-hydroxybenz[a]pyrene concentrations in 179 randomly selected voluntary students were determined in the Southern China, aged 14-16 and living in four areas with different levels of polycyclic aromatic hydrocarbons (PAHs) in soil, water and ambient air. The excretion of 1-hydroxypyrene is significantly higher in students of the urban than in students of the rural, while there are no significant differences of urinary 2-hydroxynaphthalene, 2-hydoxyfluorene and 9-hydroxyphenanthrene between urban and rural children. Mean concentrations of 1-hydroxypyrene (0.54-0.80 μmol/mol creatinine) in the study are much higher than those in the children of Denmark, Germany, Spain, USA, Korea, Japan and Taiwan, and a little higher than those in the children of Ukraine and Thailand. Urinary 2-hydroxynaphthalene concentrations in the study are a little higher than those in the children of USA, and similar to that in non-occupational exposure residences in Korea. Urinary 9-hydroxyphenanthrene concentrations in China are much higher than those in the children of USA. Differences between children with smoking parents and non-smoking parents are not significant in the study.
Collapse
Affiliation(s)
- Yu Wang
- a Electric Power Test Research Institute , Guangdong Power Grid Company , Guangzhou 510080 , Guangdong Province , People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Branco PTBS, Alvim-Ferraz MCM, Martins FG, Sousa SIV. The microenvironmental modelling approach to assess children's exposure to air pollution - A review. ENVIRONMENTAL RESEARCH 2014; 135:317-332. [PMID: 25462682 DOI: 10.1016/j.envres.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 06/04/2023]
Abstract
Exposures to a wide spectrum of air pollutants were associated to several effects on children's health. Exposure assessment can be used to establish where and how air pollutants' exposures occur. However, a realistic estimation of children's exposures to air pollution is usually a great ethics challenge, especially for young children, because they cannot intentionally be exposed to contaminants and according to Helsinki declaration, they are not old enough to make a decision on their participation. Additionally, using adult surrogates introduces bias, since time-space-activity patterns are different from those of children. From all the different available approaches for exposure assessment, the microenvironmental (ME) modelling (indirect approach, where personal exposures are estimated or predicted from microenvironment measurements combined with time-activity data) seemed to be the best to assess children's exposure to air pollution as it takes into account the varying levels of pollution to which an individual is exposed during the course of the day, it is faster and less expensive. Thus, this review aimed to explore the use of the ME modelling approach methodology to assess children's exposure to air pollution. To meet this goal, a total of 152 articles, published since 2002, were identified and titles and abstracts were scanned for relevance. After exclusions, 26 articles were fully reviewed and main characteristics were detailed, namely: (i) study design and outcomes, including location, study population, calendar time, pollutants analysed and purpose; and (ii) data collection, including time-activity patterns (methods of collection, record time and key elements) and pollution measurements (microenvironments, methods of collection and duration and time resolution). The reviewed studies were from different parts of the world, confirming the worldwide application, and mostly cross-sectional. Longitudinal studies were also found enhancing the applicability of this approach. The application of this methodology on children is different from that on adults because of data collection, namely the methods used for collecting time-activity patterns must be different and the time-activity patterns are itself different, which leads to select different microenvironments to the data collection of pollutants' concentrations. The most used methods to gather information on time-activity patterns were questionnaires and diaries, and the main microenvironments considered were home and school (indoors and outdoors). Although the ME modelling approach in studies to assess children's exposure to air pollution is highly encouraged, a validation process is needed, due to the uncertainties associated with the application of this approach.
Collapse
Affiliation(s)
- P T B S Branco
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M C M Alvim-Ferraz
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - F G Martins
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - S I V Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
41
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
42
|
Pelallo-Martínez NA, Batres-Esquivel L, Carrizales-Yáñez L, Díaz-Barriga FM. Genotoxic and hematological effects in children exposed to a chemical mixture in a petrochemical area in Mexico. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:1-8. [PMID: 24473790 DOI: 10.1007/s00244-014-9999-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
Children living in Coatzacoalcos, Veracruz, and in nearby surrounding areas are exposed to a mixture of pollutants from different sources. Previous studies in the area have reported genotoxic and haematotoxic compounds, such as lead (Pb), benzene, toluene, and polycyclic aromatic hydrocarbons (PAHs), in environmental and biological samples. The final toxic effects of these compounds are unknown because the toxic behaviour of each compound is modified when in a complex mixture. This is the first study on the exposure and effect of chemical mixtures on children who live near a petrochemical area. The aim of this study was to evaluate genotoxicity and haematological effects in children environmentally exposed to such mixtures and to determine whether the final effect was modified by the composition of the mixture composition. Biomarkers of exposure to Pb, benzene, toluene, and PAHs were quantified in urine and blood samples of 102 children. DNA damage was evaluated using comet assay, and haematological parameters were determined. Our results show that Pb and toluene did not surpass the exposure guidelines; the exposure was similar in all three localities (Allenede, Mundo Nuevo, and López Mateos). In contrast, exposure to PAHs was observed at three levels of exposure: low, medium, and high. The most severe effects of these mixtures were strictly related to coexposure to high levels of PAHs.
Collapse
|
43
|
Shrestha A, Ritz B, Wilhelm M, Qiu J, Cockburn M, Heck JE. Prenatal exposure to air toxics and risk of Wilms' tumor in 0- to 5-year-old children. J Occup Environ Med 2014; 56:573-8. [PMID: 24854250 PMCID: PMC4204106 DOI: 10.1097/jom.0000000000000167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To study prenatal air toxic exposure and Wilms' tumor in children. METHODS We identified 337 Wilms' tumor cases among children younger than 6 years (1988 to 2008) from the California Cancer Registry, randomly selected 96,514 controls from California birth rolls in 20:1 ratio matched to all cancer cases, then linked birth addresses to air monitors within 15 miles to assess exposures. Multiple logistic regressions were applied to estimate effects. RESULTS Children prenatally exposed to formaldehyde, polycyclic aromatic hydrocarbons, perchloroethylene, or acetaldehyde in the third trimester had an increased odds of Wilms' tumor per interquartile increase in concentration (odds ratio [95% confidence interval]: 1.28 [1.12 to 1.45], 1.10 [0.99 to 1.22], 1.09 [1.00 to 1.18], 1.25 [1.07 to 1.45], respectively). CONCLUSIONS We found positive associations for four air toxics. This is the first study of this kind. Future studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Anshu Shrestha
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, CA 90095, USA
- Precision Health Economics, Los Angeles, CA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, CA 90095, USA
| | - Michelle Wilhelm
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, CA 90095, USA
| | - Jiaheng Qiu
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, CA 90095, USA
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Julia E Heck
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
O’Hagan HM. Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:278-91. [PMID: 24259318 PMCID: PMC4020002 DOI: 10.1002/em.21830] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 05/22/2023]
Abstract
Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure.
Collapse
Affiliation(s)
- Heather M. O’Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN
| |
Collapse
|
45
|
Tang D, Li TY, Chow JC, Kulkarni SU, Watson JG, Ho SSH, Quan ZY, Qu LR, Perera F. Air pollution effects on fetal and child development: a cohort comparison in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:90-96. [PMID: 24239591 DOI: 10.1016/j.envpol.2013.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/11/2013] [Accepted: 10/19/2013] [Indexed: 05/28/2023]
Abstract
In Tongliang, China, a coal-fired power plant was the major pollution source until its shutdown in 2004. We enrolled two cohorts of nonsmoking women and their newborns before and after the shutdown to examine the relationship between prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) and fetal and child growth and development. PAHs were used to measure exposure to air pollution generated by the power plant. Using PAH-DNA adduct levels as biomarkers for the biologically effective dose of PAH exposure, we examined whether PAH-DNA adduct levels were associated with birth outcome, growth rate, and neurodevelopment. Head circumference was greater in children of the second cohort, compared with the first (p = 0.001), consistent with significantly reduced levels of cord blood PAH-DNA adducts in cohort II (p < 0.001) and reduced levels of ambient PAHs (p = 0.01).
Collapse
Affiliation(s)
- Deliang Tang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 701 W. 168th Street, New York, NY 10027, USA, Columbia Center for Children's Environmental Health.
| | - Ting Yu Li
- Chongqing Medical University, Chongqing, China
| | - Judith C Chow
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Sanasi U Kulkarni
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 701 W. 168th Street, New York, NY 10027, USA, Columbia Center for Children's Environmental Health
| | - John G Watson
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA; Hong Kong Premium Services and Research Laboratory, Chai Wan, China
| | | | - L R Qu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 701 W. 168th Street, New York, NY 10027, USA, Columbia Center for Children's Environmental Health
| | - Frederica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 701 W. 168th Street, New York, NY 10027, USA, Columbia Center for Children's Environmental Health
| |
Collapse
|
46
|
Demircigil GÇ, Erdem O, Gaga EO, Altuğ H, Demirel G, Özden Ö, Arı A, Örnektekin S, Döğeroğlu T, van Doorn W, Burgaz S. Cytogenetic biomonitoring of primary school children exposed to air pollutants: micronuclei analysis of buccal epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1197-1207. [PMID: 23884878 DOI: 10.1007/s11356-013-2001-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
There is an increasing attempt in the world to determine the exposures of children to environmental chemicals. To analyze the genotoxic effect of air pollution, micronucleus (MN) assay was carried out in buccal epithelial cells (BECs) of children living in an urban city of Turkey. Children from two schools at urban-traffic and suburban sites were investigated in summer and winter seasons for the determination of BEC-MN frequency (per mille) and frequency of BEC with MN (per mille). The same children were also recruited for lung function measurements within a MATRA project ("Together Towards Clean Air in Eskisehir and Iskenderun") Measured NO2 and SO2 concentrations did not exceed the European Union (EU) limit levels either in urban-traffic or suburban regions. Higher O3 concentrations were measured in the suburban site especially in the summer period. Particulate matter (PM2.5 and PM10) levels which did not differ statistically between two regions were above the EU limits in general. Although BEC-MN frequencies of children living in the suburban sites were higher in general, the difference between two regions was not significant either in the summer or winter periods. BEC-MN frequencies of the urban-traffic children were found to be significantly higher in summer period (mean ± SD, 2.68 ± 1.99) when compared to winter period (1.64 ± 1.59; p = 0.004). On the other hand, no seasonality was observed for the suburban children. Similar results have been obtained in the BEC frequency with MN in our study. In summer, BEC-MN frequencies were significantly increased with the decrease in pulmonary function levels based on forced expiratory flow between 25 and 75% of vital capacity (FEF25-75%) levels (p < 0.05). As a conclusion, children living in urban-traffic and suburban areas in the city of Eskişehir exhibited similar genotoxicity. Seasonal variation in genotoxicity may be interpreted as relatively high ozone levels and increasing time spent at outdoors in the summer.
Collapse
|
47
|
Pérez-Maldonado IN, Trejo-Acevedo A, Pruneda-Alvarez LG, Gaspar-Ramirez O, Ruvalcaba-Aranda S, Perez-Vazquez FJ. DDT, DDE, and 1-hydroxypyrene levels in children (in blood and urine samples) from Chiapas and Oaxaca, Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:9287-9293. [PMID: 23709263 DOI: 10.1007/s10661-013-3251-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/11/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to evaluate the DDT, DDE, and 1-hydroxypyrene exposure levels of children living in communities located in southeastern Mexico. The study communities were Lacanja and Victoria in Chiapas state and Ventanilla in Oaxaca state. Children living in Lacanja had total blood DDT levels (mean ± SD, 29,039.6 ± 11,261.4 ng/g lipid) that were significantly higher than those of children in Victoria (10,220.5 ± 7,893.1 ng/g lipid) and Ventanilla (11,659.7 ± 6,683.7 ng/g lipid). With respect to the 1-hydroxypyrene levels in urine samples, the levels in Lacanja (4.8 ± 4.1 μg/L or 4.5 ± 3.9 μmol/mol creatinine) and Victoria (4.6 ± 3.8 μg/L or 3.9 ± 3.0 μmol/mol Cr) were significantly higher than levels found in Ventanilla (3.6 ± 1.4 μg/L or 2.5 ± 0.5 μmol/mol Cr). In conclusion, our data indicate high levels of exposure in children living in the communities studied in this work. The evidence found in this study could be further used as a trigger to revisit local policies on environmental exposures.
Collapse
Affiliation(s)
- Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, San Luis Potosí, 78210, SLP, México,
| | | | | | | | | | | |
Collapse
|
48
|
DeMarini DM. Genotoxicity biomarkers associated with exposure to traffic and near-road atmospheres: a review. Mutagenesis 2013; 28:485-505. [DOI: 10.1093/mutage/get042] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
49
|
Mielzynska-Svach D, Blaszczyk E, Butkiewicz D, Durzynska J, Rydzanicz M. Influence of genetic polymorphisms on biomarkers of exposure and effects in children living in Upper Silesia. Mutagenesis 2013; 28:591-9. [PMID: 23867956 DOI: 10.1093/mutage/get037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This article is a follow-up to our previous molecular epidemiology studies on the DNA damage in children from the Upper Silesia region of Poland. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to environmental exposure. In this study, we investigate the association between polymorphisms of metabolising (CYP2D, EPHX1, GSTM1, GSTP1, GSTT1, NAT2) and DNA repair (XPD, XRCC1, XRCC3) genes and selected biomarkers of exposure and effect such as levels of 1-hydroxypyrene (1-OHP) and urinary mutagenicity, aromatic DNA adducts, sister chromatid exchange (SCE) and micronuclei (MN) in 74 children. Both 1-OHP concentration and urinary mutagenicity tested by TA98+S9 were significantly higher in individuals with EPHX1 (exon 4) Arg/Arg genotype than in individuals with other genotype. The EPHX1 (exon 3) significantly affected urinary mutagenicity tested with strain YG1024+S9. The urinary mutagenicity in individuals with Tyr/Tyr homozygotes was lower than in individuals with Tyr/His and His/His (1057±685 vs. 1432±1003 revertants/mol creatinine). XRCC3 Met/Met genotype was associated with significantly higher levels of 1-OHP in urine compared with only The/Met genotype. The PAH-DNA adduct levels in the subgroup with GSTM1 null genotype was 2-fold higher than in individuals with GSTM1 active (7.06±5.12 vs. 13.14±9.81 adduct/10(8) nucleotides). The mean level of aromatic DNA adducts in children with deletion of the GSTT1 gene was significantly higher compared with individuals with that gene present (8.03±6.23 vs. 14.66±10.70 adduct/10(8) nucleotides). Also the carriers of the XPD Lys/Lys genotype showed higher levels of DNA adducts than heterozygotes (13.16±9.70 vs. 6.81±5.86 adducts/10(8) nucleotides). Children carrying the XRCC3-241 Met/Met genotype exhibited a higher number of SCE in peripheral blood lymphocytes than carriers of Thr/Met allele (8.15±0.86 vs. 7.62±0.79 SCE/cell). It was also observed that children with the GSTP1 slow conjugator had significantly elevated MN in peripheral blood lymphocytes compared with fast conjugator (4.23±3.49 vs. 6.56±5.00 MN/1000 cells).
Collapse
Affiliation(s)
- Danuta Mielzynska-Svach
- Department of Genetic Toxicology, Institute of Occupational Medicine and Environmental Health, Koscielna 13 Street, 41-200 Sosnowiec, Poland.
| | | | | | | | | |
Collapse
|
50
|
Pongpiachan S, Choochuay C, Hattayanone M, Kositanont C. Temporal and Spatial Distribution of Particulate Carcinogens and Mutagens in Bangkok, Thailand. Asian Pac J Cancer Prev 2013; 14:1879-87. [DOI: 10.7314/apjcp.2013.14.3.1879] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|