1
|
Singh B, Kumar R, Sharma S, Ramachandran T, Raja VKB, Mahapatro A, Gupta D, Kedia A, Ismail AI, Kumar A. Review on the synergistic mechanisms in harnessing rice residue-derived cellulose nanocrystals for sustainable water purification and wastewater treatment. Int J Biol Macromol 2025; 311:143225. [PMID: 40246130 DOI: 10.1016/j.ijbiomac.2025.143225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The review explores the innovative use of rice residue for developing Cellulose nanocrystals and reinforcement applications of CNCs for wastewater treatment. Rice residue, rich in lignocellulose components like cellulose, hemicellulose, and lignin, presents a sustainable resource for biocomposite fabrication. The review highlights the significant challenges of managing rice residue, particularly the environmental impact of its open field burning, which contributes to severe air pollution and health risks. By examining recent advancements in the extraction of cellulose nanocrystals (CNCs) from rice residue, the review emphasizes their potential for enhancing water treatment technologies and contributing to Sustainable Development Goal 6 (Clean Water and Sanitation). The review provides a comprehensive analysis of the current state of research such as facts and challenges related to using CNCs for water treatment, and suggests future directions for developing eco-friendly, high-performance water filtration and its reinforcement perspectives, underscoring the importance of integrating waste valorization with sustainable practices.
Collapse
Affiliation(s)
- Bhupinder Singh
- School of Mechanical Engineering, Lovely Professional University, Jalandhar, Punjab 144401, India
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Jalandhar, Punjab 144401, India.
| | - Shubham Sharma
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India; Jadara University Research Center, Jadara University, Jordan.
| | - T Ramachandran
- Department of Mechanical Engineering, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - V K Bupesh Raja
- Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Abinash Mahapatro
- Department of Mechanical Engineering, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Deepak Gupta
- Department of Mechanical Engineering, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India; Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India.
| | - Ankit Kedia
- Department of Mechanical & Aerospace Engineering, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India.
| | - A I Ismail
- Mechanical engineering Department, College of engineering and architecture, UMM Alqura, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002, Ekaterinburg, Russia
| |
Collapse
|
2
|
Rashed MMA, Han F, Ghaleb ADS, Bao N, Dong Z, Zhai KF, Al Hashedi SA, Lin L, Jafari SM. Traceability, authentication, and quality control of food-grade lavender essential oil: A comprehensive review. Adv Colloid Interface Sci 2025; 340:103466. [PMID: 40049066 DOI: 10.1016/j.cis.2025.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
The global lavender essential oil (LaEO) market is projected to grow at a compound annual growth rate (CAGR) of 6.3 %-6.8 % from 2024 to 2033. Valued at USD 138.2 million in 2024, the market is expected to reach USD 267.2 million by 2034. This growth is primarily driven by rising consumer demand for organic products, which has heightened interest in high-quality, non-toxic essential oils (EOs). Consequently, Generally Recognized as Safe (GRAS)-classified EOs are gaining attention as potential natural alternatives to synthetic food additives. However, due to its widespread use, LaEO is particularly susceptible to adulteration, often with Lavandin intermedia EO. To address this issue, mass spectrometry, and chemometric techniques have emerged as effective tools for authenticating LaEO and determining its origin. This review, therefore, investigates various quality indices, authentication techniques, and methods employed for LaEO traceability, with a specific focus on non-destructive approaches. Furthermore, LaEO's unique flavors and health benefits as food additives underscore the importance of maintaining stringent quality standards to ensure both product integrity and consumer health. Notably, NMR-based chemometric analysis, combined with GC/MS, is highlighted as an effective approach to detect adulteration, shaping the future role of LaEO in the food industry. Ultimately, ensuring the stringent quality of LaEO remains critical to its continued success in the market.
Collapse
Affiliation(s)
- Marwan M A Rashed
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China.
| | - Fangkai Han
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Abduljalil D S Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana'a ye 700, Yemen
| | - Nina Bao
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Zeng Dong
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke-Feng Zhai
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Yongqiao, Suzhou 234000, Anhui Province, China; Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Sallah A Al Hashedi
- Central Laboratories, Department of Microbiology, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran; Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
3
|
Kim S, Choi HK, Song Y, Seo M, Lee H, Bae S, Moon BJ, Lee S, Lee SH, Kim T. Omni-Directional Assembly of 2D Single-Crystalline Metal Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501632. [PMID: 40145860 PMCID: PMC12177855 DOI: 10.1002/adma.202501632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Indexed: 03/28/2025]
Abstract
Scalable and cost-effective fabrication of conductive films on substrates with complex geometries is crucial for industrial applications in electronics. Herein, an ultrasonic-driven omni-directional and selective assembly technique is introduced for the uniform deposition of 2D single-crystalline copper nanosheets (Cu NS) onto various substrates. This method leverages cavitation-induced forces to propel Cu NS onto hydrophilic surfaces, enabling the formation of monolayer films with largely monolayer films with some degree of nanosheet overlap. The assembly process is influenced by solvent polarity, nanosheet concentration, and ultrasonic parameters, with non-polar solvents significantly enhancing Cu NS adsorption onto hydrophilic substrates. Furthermore, selective assembly is achieved by patterning hydrophobic and hydrophilic regions on the substrate, ensuring precise localization of Cu NS films. The practical potential of this approach is demonstrated by fabricating a Cu NS-coated capillary tube heater, which exhibits excellent heating performance at low operating voltages. This ultrasonic-driven and selective assembly method offers a scalable and versatile solution for producing conductive films with tailored geometries, unlocking new possibilities for applications in flexible electronics, energy storage, and wearable devices with complex structural requirements.
Collapse
Affiliation(s)
- Seungyeon Kim
- Department of Flexible and Printable ElectronicsLANL‐JBNU Engineering Institute‐KoreaJeonbuk National UniversityJeonju54896Republic of Korea
| | - Ho Kwang Choi
- Department of Flexible and Printable ElectronicsLANL‐JBNU Engineering Institute‐KoreaJeonbuk National UniversityJeonju54896Republic of Korea
- Functional Composite Materials Research CenterInstitute of Advanced Composite MaterialsKorea Institute of Science and TechnologyJeollabuk‐do55324Republic of Korea
| | - Young‐Seok Song
- Department of Flexible and Printable ElectronicsLANL‐JBNU Engineering Institute‐KoreaJeonbuk National UniversityJeonju54896Republic of Korea
| | - Min‐Young Seo
- Department of Flexible and Printable ElectronicsLANL‐JBNU Engineering Institute‐KoreaJeonbuk National UniversityJeonju54896Republic of Korea
| | - Hyunjung Lee
- Department of Flexible and Printable ElectronicsLANL‐JBNU Engineering Institute‐KoreaJeonbuk National UniversityJeonju54896Republic of Korea
| | - Sukang Bae
- Functional Composite Materials Research CenterInstitute of Advanced Composite MaterialsKorea Institute of Science and TechnologyJeollabuk‐do55324Republic of Korea
- Department of JBNU‐KIST Industry‐Academia Convergence ResearchJeonbuk National University567 Baekje‐daero, Deokjin‐guJeonju54896Republic of Korea
| | - Byung Joon Moon
- Functional Composite Materials Research CenterInstitute of Advanced Composite MaterialsKorea Institute of Science and TechnologyJeollabuk‐do55324Republic of Korea
- Department of JBNU‐KIST Industry‐Academia Convergence ResearchJeonbuk National University567 Baekje‐daero, Deokjin‐guJeonju54896Republic of Korea
| | - Seoung‐Ki Lee
- School of Materials Science and EngineeringPusan National University2, Busandaehak‐ro‐63‐beon‐gil, Geumjeong‐guBusan46241Republic of Korea
| | - Sang Hyun Lee
- School of Chemical EngineeringChonnam National University77 Yongbong‐ro, Buk‐guGwangju61186Republic of Korea
| | - Tae‐Wook Kim
- Department of Flexible and Printable ElectronicsLANL‐JBNU Engineering Institute‐KoreaJeonbuk National UniversityJeonju54896Republic of Korea
- Department of JBNU‐KIST Industry‐Academia Convergence ResearchJeonbuk National University567 Baekje‐daero, Deokjin‐guJeonju54896Republic of Korea
| |
Collapse
|
4
|
Sivamanjari SM, Jesitha K, Sreekala MS, Thomas S. Nanocellulose - metal-organic framework (MOF) composites for efficient carbon dioxide capture and sequestration: a review. Int J Biol Macromol 2025; 315:144583. [PMID: 40412690 DOI: 10.1016/j.ijbiomac.2025.144583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Air pollution, a major global challenge, poses significant risks to human health and the environment. While various porous materials have been used to reduce pollutants, they have limitations. Metal-organic frameworks (MOFs) stand out due to their unique combination of organic and inorganic components, allowing precise tuning of their structure and functionality. With remarkable properties such as tunable pore sizes and high porosity, MOFs are highly effective for CO2 separation. However, their fragility has led to the integration of bio-based materials such as nanocellulose. Nanocellulose, known for its abundance, non-toxicity, renewability, excellent hydrophilicity, flexibility, strength and low cost, offers a promising support matrix for MOFs. Functionalising nanocellulose with MOFs (NC-MOFs) shows great promise in CO2 adsorption and separation, presenting a valuable approach to mitigate carbon dioxide emissions. This review summarises the properties and synthesis methods involving NC-MOFs, focusing on various types of nanocellulose and their efficiency in CO2 capture. It also explores the adsorption mechanisms and factors influencing the stability and capacity of NC-MOFs in gas capture. Furthermore, we discuss the current limitations and future opportunities of NC-MOFs in addressing global carbon emissions, emphasising their potential role in tackling one of the most critical environmental challenges of our time.
Collapse
Affiliation(s)
- S Mallya Sivamanjari
- Postgraduate & Research Department of Chemistry, Sree Sankara College, Kalady, Kerala, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - K Jesitha
- Postgraduate & Research Department of Chemistry, Sree Sankara College, Kalady, Kerala, India.
| | - M S Sreekala
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India; School of Polymer Science and Technology (SPST), Mahatma Gandhi University, Kottayam, Kerala, India; International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, India; School of Nanoscience and Nanotechnology (SNSNT), Mahatma Gandhi University, Kottayam, Kerala, India
| | - Sabu Thomas
- School of Polymer Science and Technology (SPST), Mahatma Gandhi University, Kottayam, Kerala, India; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum, Kerala, India; International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India; School of Nanoscience and Nanotechnology (SNSNT), Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
5
|
Li W, Wang N, Xu T, Du Q, Yang R, Ai M, Han X, Wang W. Ultrasound-Assisted Polysaccharide Extraction from Grape Skin and Assessment of In Vitro Hypoglycemic Activity of Polysaccharides. Foods 2025; 14:1801. [PMID: 40428580 PMCID: PMC12111032 DOI: 10.3390/foods14101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/04/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Grapes are commonly processed into shelf-stable products such as raisins, wine, juice, and syrup-canned syrup goods. During processing, byproducts like skins and seeds are generated, which contain bioactive compounds including polysaccharides and polyphenols that exhibit diverse biological activities. The objective of this work was to thoroughly evaluate the impact of ultrasound technology on both the extraction efficiency and in vitro hypoglycemic activity of the polysaccharides derived from grape skin. The isolation and purification of the polysaccharides were carried out using chromatographic column techniques, and the monosaccharide components were determined through HPLC. The hypoglycemic activity of the polysaccharides from grape skin in vitro was analyzed in vitro considering their inhibitory effects on α-amylase and α-glucosidase. The polysaccharides from grape skins were extracted via an ultrasound-assisted methodology (under the following conditions: 50 °C, 50 min, 20 mL/g ratio, and 210 W), resulting in an 11.82% extraction yield of GSPs. Monosaccharide constituent analysis revealed that GSP-1-1 consisted of galacturonic acid, arabinose, rhamnose, galactose, glucose, glucuronic acid, mannose, and xylose in a molar ratio of 40.26:26.99:13.58:12.2:2.24:1.97:1.63:1.42. In vitro evaluations indicated that both GSP and GSP-1-1 exhibited notable suppression of α-amylase and α-glucosidase activities, two key enzymes in carbohydrate digestion. This dual inhibitory action positions these compounds as potential therapeutic agents for blood glucose management strategies. This work provides a new direction for addressing the byproducts of the grape canning industry and also offers a theoretical basis for the development of functional grape products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (W.L.)
| |
Collapse
|
6
|
Meng Y, Yang H, Li Z, Zhang W, Guo L, Zhang Y, Jiang Y. Intelligent transformation of ultrasound-assisted novel solvent extraction plant active ingredients: Tools for machine learning and deep learning. Food Chem 2025; 486:144649. [PMID: 40349518 DOI: 10.1016/j.foodchem.2025.144649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/31/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Ultrasound-assisted novel solvent extraction enhances plant bioactive compound yield via cavitation, mechanical, and thermal mechanisms. However, the high designability of novel solvents, the multiple influence factors for extracting results, the complexity of extraction mechanisms, and the safety of extraction equipment still pose many challenges for ultrasound-assisted extraction (UAE). This review highlights advancements in utilizing machine learning and deep learning models to provide actionable solutions for UAE challenges, which include accelerating novel solvent screening, promoting the discovery of active ingredients, optimizing complex extraction processes, in-depth analysis of extraction mechanisms, and real-time monitoring of ultrasound equipment. Challenges such as model interpretability, dataset standardization, and industrial scalability are discussed. Future opportunities lie in developing universal predictive frameworks for ultrasound-related technologies and fostering cross-disciplinary integration of AI, computational chemistry, and sustainable engineering. This interdisciplinary approach aligns with the goals of Industry 5.0, fostering a transition toward digitized, eco-efficient, and intelligent extraction systems.
Collapse
Affiliation(s)
- Yue Meng
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanying Yang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimu Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
7
|
Salleh KM, Selamat ME, Nordin NA, Zuo Q. Understanding nonwoody cellulose extractions, treatments, and properties for biomedical applications. Int J Biol Macromol 2025; 308:142455. [PMID: 40158602 DOI: 10.1016/j.ijbiomac.2025.142455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Cellulose is a β1-4 glucan polymer that constitutes the most abundant polysaccharide on Earth. Recent advancements in its production have provided greater control and enabled the creation of functional celluloses with enhanced physical, mechanical, and chemical properties. With the increasing interest in polysaccharide materials, attention is now focused on alternative sources, particularly those derived from nonwoody plants such as jute, sisal, cotton, flax, or hemp. Compared to wood, nonwoody plants generally possess lower lignin content, shorter growing cycles with moderate irrigation requirements, high annual crops, and substantial annual cellulose yield. The discovery of nonwoody cellulose disintegration opens new avenues for environmentally friendly approaches, naturally paving the way for the exploration of new applications for this versatile material. Despite the broad range of potential applications, cellulose has primarily been utilized for industrial purposes, with only limited interest in the biomedical sector in the early stages. Therefore, this review focuses on nonwoody cellulose extraction and pretreatments while evaluating the compositions and properties of nonwoody plants, resulting in distinctive features beneficial for biomedical applications. This review aims to facilitate a deeper understanding of nonwoody cellulose and its prospects for biomedical applications.
Collapse
Affiliation(s)
- Kushairi Mohd Salleh
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mohd Ezwan Selamat
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia.
| | - Noor Afeefah Nordin
- Institute of Power Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
| | - Qi Zuo
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
8
|
Ghamari M, Suvish, Hwang See C, Yu H, Anitha T, Balamurugan VT, Velusamy S, Hughes D, Sundaram S. Nanocellulose Extraction from Biomass Waste: Unlocking Sustainable Pathways for Biomedical Applications. CHEM REC 2025; 25:e202400249. [PMID: 40035542 PMCID: PMC12067182 DOI: 10.1002/tcr.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Indexed: 03/05/2025]
Abstract
The escalating global waste crisis necessitates innovative solutions. This study investigates the sustainable production of nanocellulose from biomass waste and its biomedical applications. Cellulose-rich materials-including wood, textiles, agricultural residues, and food by-products-were systematically processed using alkaline, acid, and oxidative pretreatments to enhance fiber accessibility. Mechanical techniques, such as grinding and homogenization, combined with chemical methods like acid hydrolysis and 2,2,6,6-Tetramethylpiperidin-1-yl-oxyl (TEMPO) oxidation, were employed to successfully isolate nanocellulose. Post-treatment modifications, including surface coating and cross-linking, further tailored its properties for specific applications. The results demonstrated nanocellulose's biocompatibility, biodegradability, and functional versatility. In wound healing, it enhanced moisture management and exhibited antimicrobial properties. Its high surface area facilitated efficient drug loading and controlled release in drug delivery applications. Nanocellulose bioinks supported cell proliferation in 3D bioprinting for tissue engineering. Additional applications in biosensors and personal care products were also identified. This study advances sustainable materials science, aligning resource conservation with circular economy principles to address biomedical sector needs.
Collapse
Affiliation(s)
- Mehrdad Ghamari
- Cybersecurity and Systems EngineeringSchool of Computing, Engineering and the Built EnvironmentEdinburgh Napier UniversityMerchiston CampusEdinburghEH10 5DTUnited Kingdom
| | - Suvish
- School of Computing, Engineering and Digital TechnologiesTeesside UniversityTees ValleyMiddlesbroughTS1 3BXUnited Kingdom
| | - Chan Hwang See
- Cybersecurity and Systems EngineeringSchool of Computing, Engineering and the Built EnvironmentEdinburgh Napier UniversityMerchiston CampusEdinburghEH10 5DTUnited Kingdom
| | - Hongnian Yu
- Cybersecurity and Systems EngineeringSchool of Computing, Engineering and the Built EnvironmentEdinburgh Napier UniversityMerchiston CampusEdinburghEH10 5DTUnited Kingdom
| | - Thiyagarajan Anitha
- Department of Postharvest TechnologyHorticultural College and Research InstitutePeriyakulam, Theni, Tamil Nadu625 604India
| | - V. T. Balamurugan
- Department of Biomedical EngineeringBannari Amman Institute of TechnologySathya Mangalam, Theni, Tamil Nadu638 402India
| | - Sasireka Velusamy
- School of Computing, Engineering and Digital TechnologiesTeesside UniversityTees ValleyMiddlesbroughTS1 3BXUnited Kingdom
| | - David Hughes
- School of Computing, Engineering and Digital TechnologiesTeesside UniversityTees ValleyMiddlesbroughTS1 3BXUnited Kingdom
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital TechnologiesTeesside UniversityTees ValleyMiddlesbroughTS1 3BXUnited Kingdom
| |
Collapse
|
9
|
Wang H, Jiang Y, Shi J. Effect of ultrasound combined with TGase-type glycation on the structure, physicochemical, and functional properties of casein hydrolysate. ULTRASONICS SONOCHEMISTRY 2025; 116:107323. [PMID: 40138927 PMCID: PMC11986247 DOI: 10.1016/j.ultsonch.2025.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
This study investigated the effects of transglutaminase (TGase)-type glycation combined with ultrasound treatment on the structure, physicochemical properties, and functional properties of casein hydrolysate (CH). The results showed that TGase-type glycation and ultrasound treatment changed the secondary structure and reduced the fluorescence intensity of CH. Structural analysis revealed the intermolecular covalent interactions between oligochitosan and CH, confirming the occurrence of TGase-type glycation. The microstructure indicated that after 200 W sonication treatment, the structure of glycated CH was expanded and the molecular flexibility was enhanced. In addition, glycated CH treated with ultrasound treatment exhibited superior solubility, foaming capacity, antioxidant activity, and thermal stability. This study provides new insights into the combination of TGase-type glycation and ultrasound treatment, which may improve the function of casein and further increase its application in the food industry.
Collapse
Affiliation(s)
- Huimin Wang
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujun Jiang
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, PR China
| | - Jia Shi
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, PR China.
| |
Collapse
|
10
|
Rattanamato B, Kanha N, Thongchai P, Rakariyatham K, Klangpetch W, Osiriphun S, Laokuldilok T. Upcycling Scented Pandan Leaf Waste into High-Value Cellulose Nanocrystals via Ultrasound-Assisted Extraction for Edible Film Reinforcement. Foods 2025; 14:1528. [PMID: 40361611 PMCID: PMC12071369 DOI: 10.3390/foods14091528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
This study aims to optimize the parameters for the ultrasound-assisted extraction of cellulose nanocrystals (CNCs) from scented pandan leaf waste and to enhance the properties of edible films reinforced with CNC. The CNC extraction conditions were optimized using response surface methodology (central composite design) by varying two independent variables, including amplitude (25.86% to 54.14%) and ultrasonication time (11.89 min to 33.11 min). The optimal extraction conditions were 50% amplitude and 30 min ultrasonication, providing CNCs with the highest extraction yield (29.85%), the smallest crystallite size (5.85 nm), and the highest crystallinity index (59.32%). The extracted CNCs showed favorable physicochemical properties, including a zeta potential of -33.95 mV, an average particle diameter of 91.81 nm, and a polydispersity index of 0.26. Moreover, sweet potato starch (SPS)-based films incorporating various CNC concentrations (0, 2, 4, 6, and 8%) were fabricated. Increasing CNC concentrations improved key film properties, including thickness, moisture content, water vapor permeability, tensile strength, light transmittance, and color. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses confirmed hydrogen bonding, crystallinity, and uniform CNC distribution within the film as CNC content increased. These findings highlight ultrasound-assisted extraction as an efficient method for producing high-quality CNCs from pandan leaf waste, offering sustainable nanofillers to enhance biodegradable edible films.
Collapse
Affiliation(s)
| | - Nattapong Kanha
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (B.R.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prem Thongchai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (B.R.)
| | | | - Wannaporn Klangpetch
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (B.R.)
| | - Sukhuntha Osiriphun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (B.R.)
| | - Thunnop Laokuldilok
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (B.R.)
| |
Collapse
|
11
|
Zahra N, Wardhono EY, Ni’mah H, Lugito G, Widjaja T. Controlling Oligomer Chain Length via Ultrasonic Pretreatment in Lactic Acid Polycondensation for Enhanced Poly(lactic acid) ROP. ACS OMEGA 2025; 10:14657-14665. [PMID: 40290960 PMCID: PMC12019440 DOI: 10.1021/acsomega.4c07712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Controlling oligomer chain length in lactic acid (LA) polycondensation is crucial for producing good properties of poly(lactic acid) (PLA). This study explores the use of ultrasonic pretreatment to reduce the water content of LA, aiming to optimize the polycondensation process and enhance the quality of PLA through ring-opening polymerization (ROP). The methodology involved varying ultrasonic treatment time and power during LA pretreatment, followed by polycondensation at the optimized temperature. The study results indicate that ultrasonic pretreatment effectively reduces the water content in LA, with optimal conditions found at 90 min and 75 W, yielding the lowest water content. The polycondensation process, conducted at a gradual temperature of 150 °C followed by 180 °C, resulted in the highest yield of 92.75% and a molecular weight of 25,126 g/mol for the oligomers. Ultrasonic pretreatment enhances water removal efficiency, reduces byproduct formation, and increases oligomer reactivity, resulting in higher-purity oligomers and improved chain length control. During the ROP stage, oligomers prepared through ultrasonic pretreatment produced PLA with a higher molecular weight and crystallinity.
Collapse
Affiliation(s)
- Nikmatuz Zahra
- Department
of Chemical Engineering, Faculty of Industrial Technology and Systems
Engineering, Institut Teknologi Sepuluh
Nopember, Surabaya 60111, Indonesia
| | - Endarto Yudo Wardhono
- Department
of Chemical Engineering, Faculty of Engineering, University of Sultan Ageng Tirtayasa, Cilegon 42435, Indonesia
| | - Hikmatun Ni’mah
- Department
of Chemical Engineering, Faculty of Industrial Technology and Systems
Engineering, Institut Teknologi Sepuluh
Nopember, Surabaya 60111, Indonesia
| | - Graecia Lugito
- Department
of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Tri Widjaja
- Department
of Chemical Engineering, Faculty of Industrial Technology and Systems
Engineering, Institut Teknologi Sepuluh
Nopember, Surabaya 60111, Indonesia
| |
Collapse
|
12
|
Sharma V, Wang JX, Tsai ML, Yadav A, Dong CD, Nargotra P, Sun PP. Bioprocessing of pineapple leaf waste biomass using an integrated ultrasound-deep eutectic solvent pretreatment approach for improved bioethanol production. J Biotechnol 2025; 404:S0168-1656(25)00098-7. [PMID: 40252732 DOI: 10.1016/j.jbiotec.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Biorefineries play a crucial role in advancing the circular bioeconomy by integrating the environmental and socio-economic dimensions of the industrial sector. This study investigated the potential of integrated ultrasound (UL)-deep eutectic solvent (DES, choline chloride/glycerol) pretreatment of pineapple leaf (PL) waste for efficient bioethanol production, emphasizing its sustainability and environmental benefits. The pretreatment conditions were optimized using response surface methodology, with variables including ultrasound amplitude (45%), time (30min), and solid loading (10%, w/w). The solid PL biomass was physico-chemically characterized, revealing prominent variations in functional groups, surface morphology, crystallinity, and surface area across samples subjected to individual and integrated pretreatment approaches. A high reducing sugar yield of 324.41mg/g PL biomass was recovered after enzymatic hydrolysis of integrated UL-ChCl/glycerol pretreated PL samples under optimized conditions. The fermentation of the sugar hydrolysate yielded a 121.36mg/g ethanol with 89.61% fermentation efficiency. Notably, DES recyclability experiments indicated significant performance up to the third cycle, after which activity marginally declined in correlation with sugar yield. The synergistic UL-ChCl/glycerol pretreatment process supports circular bioeconomy by promoting sustainable biomass conversion and offering a promising approach to reducing environmental impacts by utilizing agricultural waste for renewable energy production.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; School of Biotechnology, University of Jammu, Jammu, India
| | - Jia Xiang Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; School of Biotechnology, University of Jammu, Jammu, India
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
13
|
Tang B, Liu X, Deng S, Zhong W, Shao J. Dielectric Constant Estimation of Spherical Particle-Filled Nanocomposites Based on the Poon and Shin Model, Considering Interphase Properties. Polymers (Basel) 2025; 17:1035. [PMID: 40284300 PMCID: PMC12030044 DOI: 10.3390/polym17081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
A revised version of the Poon and Shin (PS) model, incorporating the effects of the interphase, is introduced to predict the dielectric permittivity of polymer nanocomposites reinforced with spherical nanoparticles. In this modified approach, both the spherical nanoparticle and its surrounding interphase region are treated as an equivalent nanoparticle, modeled as a core-shell structure. This assumption enables a more accurate representation of the composite, where the polymer matrix and the equivalent nanoparticles form a homogeneous mixture. The process of calculating the dielectric permittivity of the composite occurs in two distinct steps. Initially, the dielectric permittivity of the equivalent particle-comprising both the nanoparticle core and its interphase-is computed. Subsequently, the overall dielectric permittivity of the composite material is determined, considering the properties of the polymer substrate and the equivalent nanoparticles, all within the framework of the modified PS model. To verify the validity of the proposed model, experimental data are compared against the predicted values, showing a high level of agreement when the interphase characteristics are appropriately incorporated. Additionally, the influence of various factors, including the properties of the spherical nanoparticles, the interphase, and the polymer matrix, on the dielectric performance of the nanocomposite is thoroughly investigated. This enhanced PS model offers a valuable theoretical framework for designing polymer-spherical nanoparticle composites with superior dielectric properties, paving the way for their potential application in advanced electronic and energy storage devices.
Collapse
Affiliation(s)
- Bin Tang
- School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
- The School of Optoelectronic Manufacturing, Zhejiang Industry and Trade Vocational College, Wenzhou 325002, China
| | - Xue Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Shengxiang Deng
- Department of Energy and Power Engineering, School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Wei Zhong
- School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Jiang Shao
- School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| |
Collapse
|
14
|
Duan C, Zhang P, Qi M. Recent advances in the extraction of nanocellulose from lignocellulosic waste for wastewater treatment applications. Int J Biol Macromol 2025; 304:140761. [PMID: 39922360 DOI: 10.1016/j.ijbiomac.2025.140761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Nano-cellulose is a sustainable and high-performance nanomaterial which developed as a transformative solution in different fields due to its excellent properties, including large surface area, and biodegradability. This review paper explored the different types of nano-cellulose (NC) that are Cellulose Nanocrystals, Cellulose Nano-fibers, and Bacterial NC and their distinctive characteristics that make a suitable for advanced applications and also focused on lignocellulosic materials, abundant renewable resources composed of cellulose, hemicellulose, lignin, and their complex structure, while challenging to analyze, offers significant potential for the extraction of nano-cellulose via the advanced process. Furthermore, this work emphasizes the methods used to extract the NCfrom lignocellulosic waste (LCW) and enzymatic pretreatment techniques that improve the efficiency of the process and highlight the fabrication of nano-cellulose membranes and their incorporation into wastewater treatment applications. The superior adsorption capacity and ability to remove organic pollutants, and pathogens make these membranes a capable solution to address the global water purification problems and also underscore the dual benefit of environmental sustainability. This comprehensive examination of nano-cellulose, its extraction from lignocellulosic biomass, and its application in wastewater treatment covered the way for innovations in renewable resources and green technologies.
Collapse
Affiliation(s)
- Chenxu Duan
- School of Mechanical Engineering, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China.
| | - Pan Zhang
- School of Mechanical Engineering, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China
| | - Min Qi
- School of Liquor -Brewing Engineering, Sichuan University Jinjiang College, Meishan, Sichuan 620860, China
| |
Collapse
|
15
|
Li W, Cheng C, Zhao J, Song Y, Xue C. Enhanced Azo Dye Removal through Sequential Ultrasound-Assisted-Treatment and Photocatalysis Using CdZnS. Angew Chem Int Ed Engl 2025; 64:e202425508. [PMID: 39910727 DOI: 10.1002/anie.202425508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
The treatment of high-concentration azo dyes remains challenging due to the inherent limitations of conventional single-mode approaches. Here, we propose an integrated strategy that sequentially combines ultrasound-assisted adsorption with photocatalysis using CdZnS solid solutions to efficiently and rapidly remove high-concentration azo dyes. CdZnS exhibits high adsorption capacity and exceptional photocatalytic activity, enabling initial dye capture and enrichment, followed by significantly enhanced photocatalytic degradation. The adsorption of Congo Red (CR) on CdZnS solid solutions follows the Freundlich and pseudo-second-order models, demonstrating a multilayer adsorption behavior involving physical and chemical interactions. Ultrasound assistance during the first stage not only significantly reduces equilibrium time, but also results in enhanced negative charges in CdZnS that extend to the subsequent photocatalysis stage. This charge enhancement substantially improves CR photodegradation performance, establishing synergistic interactions between ultrasonic treatment and photodegradation. The system demonstrates excellent performance in treating both concentrated single dyes and complex dye mixtures, maintaining high efficiency over multiple treatment cycles. This integrated approach provides new insights for developing more effective technologies for dye degradation and practical wastewater treatment applications.
Collapse
Affiliation(s)
- Wenchao Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chi Cheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Jiaqi Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yongxiu Song
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Chuang Xue
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| |
Collapse
|
16
|
Qian X, Yi W, Yan W, Cai Y, Hu S, Yan D, Zhao Z, Li R, Wang L, Xu H, Li Y. Cryo-Shocked Tumor-Reprogrammed Sonosensitive Antigen-Presenting Cells Improving Sonoimmunotherapy via T Cells and NK Cells Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413289. [PMID: 39955715 DOI: 10.1002/adma.202413289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Ultrasound therapy has turned up as a noninvasive multifunctional tool for cancer immunotherapy. However, the insufficient co-stimulating molecules and loss of peptide-major histocompatibility complex I (MHC-I) expression on tumor cells lead to poor therapy of sonoimmunotherapies. Herein, this work develops a sonosensitive system to augment MHC-I unrestricted natural killer (NK) cell-mediated innate immunity and T cell-mediated adaptive immunity by leveraging antigen presentation cell (APC)-like tumor cells. Genetically engineered tumor cells featuring sufficient co-stimulating molecules are cryo-shocked and conjugated with a sonosensitizer, hematoporphyrin monomethyl ether, using click chemistry. These cells (DPNLs) exhibit characteristics of tumor and draining lymph node homing. Under ultrasound, NK cell-mediated innate immunity within the tumor microenvironment could be activated, and T cells in the tumor-draining lymph nodes (TDLNs) are stimulated through co-stimulatory molecules. In combination with programmed cell death ligand 1 (PD-L1) antibody, DPNLs extend the survival time and inhibited lung metastasis in triple-negative breast cancer (TNBC) models. This study provides an alternative approach for sonoimmunotherapy with precise sonosensitizer delivery and enhanced NK cell and T cell activation.
Collapse
Affiliation(s)
- Xindi Qian
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, School of Medicine, Tongji University, Shanghai, 200072, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Wenzhe Yi
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations Yantai Institute of Materia Medica Shandong, Shanghai, 264000, China
| | - Shuangshuang Hu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dan Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongzhang Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Wang
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations Yantai Institute of Materia Medica Shandong, Shanghai, 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China
| |
Collapse
|
17
|
Yu LJ, Koh KS, Tarawneh MA, Tan MC, Guo Y, Wang J, Ren Y. Microfluidic systems and ultrasonics for emulsion-based biopolymers: A comprehensive review of techniques, challenges, and future directions. ULTRASONICS SONOCHEMISTRY 2025; 114:107217. [PMID: 39952167 PMCID: PMC11874545 DOI: 10.1016/j.ultsonch.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/24/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
Over the past decade, the advancement of microfluidic technology associated with ultrasonics had received a considerate impact across the field, especially in biomedical and polymer synthesis applications. Nevertheless, there are much hindrance remained unsolved, to achieve simple processing, high scalability and high yield biopolymer products that stabilize during the process. In this review, we discuss the underlying physics for both microfluidic and ultrasonic integration in the synthesis of emulsion-based biopolymer and application. The current progress was outlined, focus on its related applications. We also summarized the current strengths and weakness of the microfluidic-ultrasonic integrated technology, aiming to contribute into SDG 12 for responsible consumption and production.
Collapse
Affiliation(s)
- Lih Jiun Yu
- Faculty of Engineering, Technology and Built Environment, UCSI University 56100 Kuala Lumpur, Malaysia; UCSI-Cheras Low Carbon Innovation Hub Research Consortium 56100 Kuala Lumpur, Malaysia.
| | - Kai Seng Koh
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Putrajaya 62200 Malaysia.
| | - Mou'ad A Tarawneh
- Department of Physics, College of Science, Al-Hussein Bin Talal University, P.O. Box 20, Ma'an, Jordan
| | - Mei Ching Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900 Sepang, Malaysia.
| | - Yanhong Guo
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China; Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Jing Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China; Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Yong Ren
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China; Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
18
|
Aliannezhadi M, Doost Mohamadi F, Jamali M, Shariatmadar Tehrani F. Ultrasound-assisted green synthesized ZnO nanoparticles with different solution pH for water treatment. Sci Rep 2025; 15:7203. [PMID: 40021690 PMCID: PMC11871050 DOI: 10.1038/s41598-025-90305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Metal oxide nanoparticles (NPs), particularly ZnO NPs, have garnered significant attention in addressing global water-related challenges. This study introduces NPs agents for acidic water treatment by synthesizing ZnO nanostructures via ultrasound-assisted green synthesis utilizing Ginger extract. The research investigates the influence of solution pH on the physical properties of NPs and their photocatalytic efficiencies in treating acidic (pH = 5) and neutral (pH = 7) water through the photodegradation of methylene blue (MB) under ultraviolet (UV) illumination. Results indicate that the solution pH, varying between 7 and 13, significantly controls the morphologies of ZnO NPs, yielding hexagonal plates, barley-like structures, and nanoflakes. The band gap energies of the synthesized NPs are quite independent of the solution pH, but their crystallite sizes decrease with increasing pH values. Notably, ZnO NPs synthesized at pH = 11 exhibit the highest BET-specific surface area of 26.74 m²/g, correlating with their superior photocatalytic activity. The optimal degradation efficiencies of MB in acidic conditions (pH = 5) reach 93.54% and 86.04% when utilizing 10 and 5 mg of the irradiated photocatalyst, respectively, after a reaction time of 160 min. These findings underscore the potential of ZnO NPs as a cost-effective and environmentally sustainable solution for efficient acidic wastewater treatment.
Collapse
Affiliation(s)
| | | | - Mohaddeseh Jamali
- Faculty of Physics, Semnan University, PO Box: 35195-363, Semnan, Iran
| | | |
Collapse
|
19
|
Kumar R, Bhaduri GA. Biorefining of pine cone forest waste: Ultrasound assisted extraction followed with thermal degradation for a zero waste process. INDUSTRIAL CROPS AND PRODUCTS 2025; 224:120278. [DOI: 10.1016/j.indcrop.2024.120278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Zhang Y, Zhuang L, Ji B, Ren Y, Xu X, He J, Xue Y, Sun H. Ultrasonic cavitation treatment of o-cresol wastewater and long-term pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124208. [PMID: 39842363 DOI: 10.1016/j.jenvman.2025.124208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Acoustic cavitation is a cutting-edge and eco-friendly advanced oxidation technology with significant efficacy in removing organic pollutants from water. Despite its potential, research on the degradation of o-cresol, a common and challenging phenolic pollutant, is limited. This study systematically investigates the optimal conditions for degrading o-cresol via acoustic cavitation and evaluates its application potential through extensive pilot tests. Batch test results indicate that ultrasonic cavitation effectively treats high concentrations of o-cresol (300 mg L-1), with aeration and neutral pH conditions enhancing removal efficiency, while the initial concentration has minimal impact on the removal rate. Additionally, analyses of total organic carbon (TOC), degradation products, and volatile organic compounds (VOCs) reveal that the main intermediates of o-cresol degradation through ultrasonic cavitation are substituted phenols and alkanes, with a mineralization rate reaching 60%. To assess the practical application of ultrasonic cavitation devices for o-cresol wastewater treatment, long-term pilot tests were conducted. These tests confirmed the device's effectiveness in removing o-cresol and its operational stability over 180 days. Furthermore, the study established the relationship between the o-cresol removal rate, hydraulic retention time (HRT), and operational cost. Consequently, this study demonstrates the feasibility of ultrasonic cavitation technology in treating high-concentration o-cresol wastewater and its potential for use in the pretreatment stage of biochemical treatment processes.
Collapse
Affiliation(s)
- Yunian Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Lu Zhuang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Boyu Ji
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xia Xu
- College of Urban Construction, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Yingang Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Haohao Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.
| |
Collapse
|
21
|
Zhang Z, Hu Z, Xia B. Determination of oxyphenisatine and its total ester derivatives content in fermented green plum by ultra performance liquid chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:169-179. [PMID: 39787079 DOI: 10.1080/19440049.2024.2446709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Illegal additives such as oxyphenisatine and its esters are prevalent in the slimming food industry, necessitating a robust analytical method for their detection. This study presents a novel UPLC-MS/MS method for the rapid and accurate quantification of total oxyphenisatine levels in fermented green plum, following hydrolysis of its esters. An efficient ultrasonic extraction with a methanol and 0.1 mol/L NaOH mixture (5:5, v/v) was optimised to hydrolyse esters to oxyphenisatine within 18 min. Chromatographic separation was conducted on a C18 column (Waters Acquity UPLC BEH, 2.1 × 100 mm, 1.7 μm) with a mobile phase of 5 mmol/L ammonium acetate and acetonitrile under gradient elution at a flow rate of 0.3 mL/min. The method demonstrated linearity (r2 > 0.999) over 0.1-500 µg/L, with a LOD of 10 µg/kg and LOQ of 30 µg/kg. Quantitative analysis employed positive ion multi-response monitoring and external standardisation, achieving recoveries of 92.4-97.0% and RSDs of 2.9-4.1%. Application to ten real samples gave a 90% detection rate, with measured values closely aligning with theoretical predictions (-11.3 to 13.2% relative difference) and oxyphenisatine content ranging from 159 µg/kg to 452 mg/kg. This UPLC-MS/MS method provides a reliable and efficient tool for monitoring the presence of oxyphenisatine and its derivatives in the context of food safety.
Collapse
Affiliation(s)
- Zhihua Zhang
- School of Cyber Science and Engineering, Nanjing University of Science and Technology, Jiangyin, P. R. China
| | - Zhanqiang Hu
- School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, Shanghai, P. R. China
| | - Baolin Xia
- Jiangyin Food Safety Testing Center, Jiangyin, P. R. China
| |
Collapse
|
22
|
Priyatmojo A, Wirawan R, Ardy H, Puspitasari D, Asri PPP, Asri LATW. Cellulose Nanofiber Aerogel from Banana Peduncle Modified with Graphene Oxide as Bio-Adsorbent for Lead and Chromium Ions. Gels 2025; 11:95. [PMID: 39996638 PMCID: PMC11853812 DOI: 10.3390/gels11020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Textile industry waste contains high concentrations of heavy metals such as Pb(II) and Cr(VI) that must be reduced before they are released to the environment. The adsorption method is one way to reduce the heavy metal content. In this work, we develop a porous cellulose nanofiber (CNF) aerogel modified with graphene oxide (GO) as an alternative aerogel adsorbent for Pb(II) and Cr(VI). Cellulose was extracted from banana peduncle, a biomass waste that remains largely underutilized. The addition of GO aims to increase the adsorption properties. The aerogel adsorbents were synthesized by varying the ultrasonication time to 45 min for CNF 45 and 60 min for CNF 60, and the amount of GO added to 1 mL and 2 mL. The aerogel adsorbents were successfully prepared using the freeze-drying method with CNF45, CNF60, CNF45/GO1, CNF45/GO2, CNF60/GO1, and CNF60/GO2 variations. CNF was successfully isolated from a banana peduncle with an average diameter of 44.16 nm for 45 min (CNF 45) and an average diameter of 14.6 nm for 60 min (CNF 60) of ultrasonication. Chemical treatment and ultrasonication reduced the crystallinity index value of cellulose by 73% and 61% for CNF 45 and CNF 60, respectively. CNF aerogel has a very low shrinkage rate (<7%), resulting in a larger surface area. CNF60/GO2 obtained the optimum adsorption ability for Pb(II) metal at a concentration of 100 ppm and 27.27 mg/g at 30 min. On the other hand, the adsorption ability of Cr(VI) metal was obtained by CNF60/GO2 at a concentration of 100 ppm and 13.48 mg/g at 30 min. SEM images show that all aerogel adsorbents are porous, with a porosity value range of 96-98%. In conclusion, CNF60/GO2 proved to be the most effective aerogel adsorbent, offering the potential for heavy metal removal from industrial wastewater.
Collapse
Affiliation(s)
- Anjar Priyatmojo
- Doctoral Program of Materials Science and Engineering, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Riza Wirawan
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Husaini Ardy
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Dita Puspitasari
- Department of Biomedical Engineering, School of Electrical Engineering, Telkom University, Jalan Telekomunikasi 1, Bandung 40257, Indonesia
| | - Putri P P Asri
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Lia A T W Asri
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| |
Collapse
|
23
|
Falade EO, Kouamé KJEP, Zhu Y, Zheng Y, Ye X. A review: Examining the effects of modern extraction techniques on functional and structural properties of cellulose and hemicellulose in Brewer's Spent Grain dietary fiber. Carbohydr Polym 2025; 348:122883. [PMID: 39562135 DOI: 10.1016/j.carbpol.2024.122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Brewer's Spent Grain (BSG) is a by-product of the brewing industry, rich in dietary fibers that offer various health benefits. This review delves into the molecular and structural transformations of BSG and dietary fibers (arabinoxylan, beta-glucan, cellulose etc.) extracted from BSG, triggered by recent advancements in extraction technologies. Through an analysis of current methodologies, such as advanced solubilization methods and emerging technologies like ultrasonication, this paper discusses their significant improvement in yield of BSG-dietary fiber and impact on the structural and functional properties of BSG-dietary fibers (BSG-DF). The review highlights how these technologies enhance fiber solubilization and modify physicochemical properties, thereby improving their functionality in food applications. Furthermore, the review aims to bridge gaps in current research and suggest future directions for optimizing extraction processes to better exploit these fibers in the food industries.
Collapse
Affiliation(s)
- Ebenezer Ola Falade
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Kouadio Jean Eric-Parfait Kouamé
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yanyun Zhu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yunyun Zheng
- Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Xingqian Ye
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China.
| |
Collapse
|
24
|
Jabreen L, Maruthapandi M, Durairaj A, Luong JHT, Gedanken A. Ultrasonic Deposition of Cellulose Nanocrystals on Substrates for Enhanced Eradication Activity on Multidrug-Resistant Pathogens. Polymers (Basel) 2025; 17:154. [PMID: 39861227 PMCID: PMC11769134 DOI: 10.3390/polym17020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane. Noteworthy attributes of CNC-coated substrates include augmented reactive oxygen species (ROS) generation, heightened surface hydrophobicity, and comprehensive suppression of both drug-sensitive (MDR E. coli and MRSA) and susceptible (E. coli and S. aureus) planktonic and biofilm bacterial proliferation. In contrast, the uncoated substrates display 100% bacterial growth for the above bacteria. Empirical data corroborate the pronounced biofilm mass reduction capabilities of CNC-coated substrates across all tested bacterial strains. Elucidation of underlying mechanisms implicates ROS generation and electrostatic repulsion between CNCs and bacterial membranes in the disruption of mature biofilms. Hydroxyl radicals, superoxide, and hydrogen peroxide possess formidable reactivity, capable of disrupting essential biomolecules such as DNA, proteins, and lipids. The engineered CNC-coated substrates platform evinces considerable promise in the realm of infectious disease management, offering a cogent blueprint for the development of novel antimicrobial matrices adept at combating bacterial infections with efficacy and precision.
Collapse
Affiliation(s)
- Lama Jabreen
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (L.J.); (A.D.)
| | - Moorthy Maruthapandi
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Arulappan Durairaj
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (L.J.); (A.D.)
| | - John H. T. Luong
- School of Chemistry, University College Cork, T12 YN60 Cork, Ireland;
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (L.J.); (A.D.)
| |
Collapse
|
25
|
Li F, Xiang T, Jiang L, Cheng Y, Song G, Wang D, Yuan T, Li L, Chen F, Luo Z, Gong J. New insights into ultrasound-assisted noncovalent nanocomplexes of β-lactoglobulin and neochlorogenic acid/cryptochlorogenic acid and its potential application for curcumin loading. Food Res Int 2025; 199:115384. [PMID: 39658175 DOI: 10.1016/j.foodres.2024.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The cross-linking sites and structure of protein-polyphenol complexes are susceptible to the type, structure, weight of polyphenols under nonthermal process. The low bioavailability and poor gastrointestinal instability of curcumin (CUR) hampers its application. Hence, changes in binding mechanism, structural and functional properties between β-lactoglobulin (β-LG) with two different configurations of chlorogenic acids (neochlorogenic acids (3-CQA) and cryptochlorogenic acids (4-CQA) by non-covalent binding under ultrasonic treatment, and the potential capacity for loading CUR were researched. The binding affinity scores of β-LG-4CQA was -7.1 kcal/mol. It is higher than β-LG-3CQA (-6.8 kcal/mol), which implied that the interaction between β-LG and 4-CQA was stronger. Circular dichroism calculations showed that the sonicated complex of the β-LG and 4-CQA with a decreased content of α-helices by 5.4 %, β-sheets by 4.6 %, and an increased content of irregular curls by 8.4 % (p < 0.05). The result demonstrated ultrasound and the binding of β-LG to 3/4-CQA improved the hydrophilicity, thermal stability, and antioxidant property of β-LG. Furthermore, the embedding rate of CUR in the ultrasound-assisted β-LG-4-CQA complex could reach 71.56 %. Consistent with the structural characterization results, the CUR release rate of ULG-4-CQA + CUR complex reached 17.36 % in simulated intestinal digestion, which was 8.09 % higher than free CUR. Indicating that after embedding with protein-polyphenol complexes, the stability and bioaccessibility of CUR was improved. This study reveals the potential application of ultrasound-assisted protein-polyphenol complexes for loading CUR.
Collapse
Affiliation(s)
- Fang Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Taijiao Xiang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lie Jiang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, Zhejiang, China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, SC 29634, USA
| | - Zisheng Luo
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
26
|
Yazdan M, Naghib SM. Smart Ultrasound-responsive Polymers for Drug Delivery: An Overview on Advanced Stimuli-sensitive Materials and Techniques. Curr Drug Deliv 2025; 22:283-309. [PMID: 38288800 DOI: 10.2174/0115672018283792240115053302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 04/11/2025]
Abstract
In recent years, a notable advancement has occurred in the domain of drug delivery systems via the integration of intelligent polymers that respond to ultrasound. The implementation of this groundbreaking methodology has significantly revolutionised the controlled and precise delivery of therapeutic interventions. An in-depth investigation is conducted into the most recent developments in ultrasonic stimulus-responsive materials and techniques for the purpose of accomplishing precise medication administration. The investigation begins with an exhaustive synopsis of the foundational principles underlying drug delivery systems that react to ultrasonic stimuli, focusing specifically on the complex interplay between polymers and ultrasound waves. Significant attention is devoted to the development of polymers that demonstrate tailored responsiveness to ultrasound, thereby exemplifying their versatility in generating controlled drug release patterns. Numerous classifications of intelligent polymers are examined in the discussion, including those that react to variations in temperature, pH, and enzymes. When coupled with ultrasonic stimuli, these polymers offer a sophisticated framework for the precise manipulation of drug release in terms of both temporal and spatial dimensions. The present study aims to examine the synergistic effects of responsive polymers and ultrasound in overcoming biological barriers such as the blood-brain barrier and the gastrointestinal tract. By doing so, it seeks to shed light on the potential applications of these materials in intricate clinical scenarios. The issues and future prospects of intelligent ultrasound-responsive polymers in the context of drug delivery are critically analysed in this article. The objective of this study is to offer valuable perspectives on the challenges that must be overcome to enable the effective implementation of these technologies. The primary objective of this comprehensive review is to furnish researchers, clinicians, and pharmaceutical scientists with a wealth of information that will serve as a guide for forthcoming developments in the development and enhancement of intelligent drug delivery systems that employ ultrasound-responsive polymers to attain superior therapeutic outcomes.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| |
Collapse
|
27
|
Işıtan A, Pasquardini L, Bersani M, Gök C, Fioravanti S, Lunelli L, Çağlarer E, Koluman A. Sustainable Production of Microcrystalline and Nanocrystalline Cellulose from Textile Waste Using HCl and NaOH/Urea Treatment. Polymers (Basel) 2024; 17:48. [PMID: 39795454 PMCID: PMC11722568 DOI: 10.3390/polym17010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Bio-nanomaterials are gaining increasing attention due to their renewable and eco-friendly characteristics. Among these, nanocrystalline cellulose (NCC) stands out as one of the most advanced materials for applications in food, healthcare, composite production, and beyond. In this study, NCC was successfully extracted from cotton-based textile waste using a combination of chemical and mechanical methods. The cellulose fibers were first hydrolyzed using a dilute HCl solution, neutralized, and then dried, resulting in microcrystalline cellulose (MCC) with diameters ranging from 7 to 15 µm and lengths up to 300 µm (as observed via optical microscopy and scanning electron microscopy, SEM). To achieve nanoscale dimensions, NaOH/urea solution with mechanical treatment was applied, resulting in the successful extraction of NCC in the supernatant, particularly under room-temperature conditions. Dynamic light scattering (DLS) analysis confirmed the presence of nanostructures (average sizes ranging from 120 nm to 750 nm), and atomic force microscopy (AFM) analysis verified the nanoscale range (diameters between 2 and 4 nm and lengths from 200 nm to 1 µm). Fourier transform infrared (FTIR) spectroscopy revealed the conversion of cellulose I to cellulose II, confirming the successful transformation into NCC. For the first time, NCC was obtained from undyed cotton textile wastes using NaOH/urea treatment after HCl hydrolysis, eliminating the need for pre-treatment and intermediate steps.
Collapse
Affiliation(s)
- Arzum Işıtan
- Department of Mechanical Engineering, Pamukkale University, Denizli 20160, Türkiye
- Center for Sensors and Devices, Fondazione Bruno Kessler, 38123 Trento, Italy; (M.B.); (S.F.); (L.L.)
| | - Laura Pasquardini
- Indivenire srl, 38123 Trento, Italy;
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Massimo Bersani
- Center for Sensors and Devices, Fondazione Bruno Kessler, 38123 Trento, Italy; (M.B.); (S.F.); (L.L.)
| | - Cem Gök
- Department of Biomedical Engineering, Izmir Bakırçay University, Izmir 35665, Türkiye;
- Biomedical Technologies Design Application and Research Center, Izmir Bakırçay University, Izmir 35665, Türkiye
| | - Simona Fioravanti
- Center for Sensors and Devices, Fondazione Bruno Kessler, 38123 Trento, Italy; (M.B.); (S.F.); (L.L.)
| | - Lorenzo Lunelli
- Center for Sensors and Devices, Fondazione Bruno Kessler, 38123 Trento, Italy; (M.B.); (S.F.); (L.L.)
| | - Evren Çağlarer
- Department of Mechatronics Engineering, Kırklareli University, Kırklareli 39100, Türkiye;
| | - Ahmet Koluman
- Department of Biomedical Engineering, Pamukkale University, Denizli 20160, Türkiye;
| |
Collapse
|
28
|
Patil H, Naik R, Paramasivam SK. Utilization of banana crop ligno-cellulosic waste for sustainable development of biomaterials and nanocomposites. Int J Biol Macromol 2024; 282:137065. [PMID: 39481709 DOI: 10.1016/j.ijbiomac.2024.137065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Banana (Musa spp.) is a tropical fruit cultivated in over 130 countries, producing significant lignocellulosic biomass. However, much of the agro-industrial waste from banana plants is neglected, contributing to environmental pollution. Around 60 % of the plant's biomass is generated after fruit harvesting, representing an untapped resource. This review examines the potential of banana plant waste for developing biocomposite and biodegradable materials. It covers the extraction and modification of banana fibers for composites, with a focus on the fabrication of nano biocomposites using banana fibers as reinforcement and polysaccharides or proteins as matrices. The review also evaluates the biodegradability and environmental impact of these materials through Life Cycle Assessment studies. Future research directions include refining processing methods, improving fiber-matrix compatibility, and enhancing the durability of banana fiber composites for packaging applications.
Collapse
Affiliation(s)
- Hrishikesh Patil
- ICAR-Central Institute of Agricultural Engineering, Regional Station, Coimbatore, Tamil Nadu, India
| | - Ravindra Naik
- ICAR-Central Institute of Agricultural Engineering, Regional Station, Coimbatore, Tamil Nadu, India.
| | - Suresh Kumar Paramasivam
- Division of Crop Production and Postharvest Technology, ICAR - National Research Centre for Banana, Tiruchirappalli, India
| |
Collapse
|
29
|
Puss KK, Paaver P, Loog M, Salmar S. Ultrasound effect on a biorefinery lignin-cellulose mixture. ULTRASONICS SONOCHEMISTRY 2024; 111:107071. [PMID: 39303645 PMCID: PMC11440299 DOI: 10.1016/j.ultsonch.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Forest biorefineries provide multiple new avenues for applied research. The main concept lies in the malleability of the processes and their stepwise organization. The core element of the biorefinery concept addressed in the present study is the pretreatment step; here, wood biomass is converted into free hemicellulosic sugars, lignin and cellulose. In traditional approaches, the pretreatment step is a starting point for isolating and separating lignin or cellulose through different processes. In this study, instead of performing any separation, a lignin-cellulose mixture was used as its own material, and the effects of ultrasound treatment with a probe system at 20 kHz, with various amplitude, sonication time and dry matter content were investigated with the aim of assessing the formation of a nanocellulose structure with a high lignin content (>30 %) and investigating the stability of the lignin-cellulose mixture under aqueous conditions. We demonstrated the importance of dry matter content for the specific particle size and water retention values for this mixture. US treatment of lignin-cellulose mixtures <4 % dry matter formed a gel-like material, with low particle size (90 % below 30 μm and smallest at nanoscale). Low dry matter loading led to better US transfer and higher conversion of cellulose to <100 nm nanoparticles. Our study can serve as a baseline for future developments in the field of stable emulsions, filtering materials or inputs for material synthesis.
Collapse
Affiliation(s)
- Kait Kaarel Puss
- Institute of Bioengineering, Nooruse 1, Tartu, Estonia; Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia.
| | - Peeter Paaver
- University of Tartu, Institute of Ecology and Earth Sciences, Ravila 14a, Tartu, Estonia
| | - Mart Loog
- Institute of Bioengineering, Nooruse 1, Tartu, Estonia
| | - Siim Salmar
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia
| |
Collapse
|
30
|
Pradhan D, Jaiswal S, Tiwari BK, Jaiswal AK. Choline chloride - oxalic acid dihydrate deep eutectic solvent pretreatment of Barley straw for production of cellulose nanofibers. Int J Biol Macromol 2024; 281:136213. [PMID: 39368590 DOI: 10.1016/j.ijbiomac.2024.136213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
This study investigates the production of cellulose nanofibers (CNF) from Barley straw using ultrasound-assisted deep eutectic solvent (US-DES) treatment for biomass fractionation and subsequent high-intensity ultrasonication (HIUS) for nano-fibrillation. Two deep eutectic solvents (DES), synthesized from choline chloride (ChCl) and oxalic acid dihydrate (OAD) at 1:1 and 2:1 M ratio, achieved solubilisation of over 80 % of lignin and hemicellulose under optimal conditions. The purification of these DES-treated materials resulted in cellulose with a purity >88 %. CNFs, characterized by a size of <100 nm, a polydispersity index under 0.5, and a zeta potential lower than -30 mV, were successfully isolated through a combination of wet grinding and HIUS treatment. SEM and XRD results showed the formation of a network of interconnected fibres with a Type I cellulose structure. This research highlights Barley straw's potential as a sustainable source of high-value CNF from agricultural waste.
Collapse
Affiliation(s)
- Dileswar Pradhan
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| | - Swarna Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| | | | - Amit K Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| |
Collapse
|
31
|
Lei C, Jacobson B, Hartley JM, Scott S, Sumarlan I, Feeney A, Prentice P, Ryder KS, Abbott AP. Effect of organic solvent additives on the enhancement of ultrasonic cavitation effects in water for lithium-ion battery electrode delamination. ULTRASONICS SONOCHEMISTRY 2024; 110:107049. [PMID: 39226658 PMCID: PMC11403513 DOI: 10.1016/j.ultsonch.2024.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Ultrasonic delamination is a low energy approach for direct recycling of spent lithium-ion batteries. The efficiency of the ultrasonic delamination relies both on the thermophysical properties (such as viscosity, surface tension, and vapour pressure) of the solvent in which the delamination process is carried out, and the properties of the ultrasound source as well as the geometry of the containment vessel. However, the effect of tailoring solutions to optimise cavitation and delamination of battery cathode coatings has not yet been sufficiently investigated. Acoustic detection, high-speed imaging, and sonochemiluminescence (SCL) are employed to study the cavitation processes in water-glycol systems and identify the effect of tailoring solvent composition on cavitation strength. The addition of small volume fractions of organic solvent (ca. 10-30 vol%), including ethylene glycol or glycerol, to the aqueous delamination solution were found to significantly improve the delamination efficiency of lithium-ion battery cathode coatings due to the alteration of these thermophysical properties. However, greater volume fractions of glycol decrease delamination efficiency due to the signal-dampening effect of viscosity on the ultrasonic waves. The findings of this study offer valuable insights for optimising ultrasonic bath solution composition to enhance film delamination processes.
Collapse
Affiliation(s)
- Chunhong Lei
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| | - Ben Jacobson
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Sean Scott
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Iwan Sumarlan
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK; Department of Chemistry, University of Mataram, Lombok, Indonesia
| | - Andrew Feeney
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Paul Prentice
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Karl S Ryder
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Andrew P Abbott
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
32
|
Ahmima S, Naar N, Jędrzejczak P, Klapiszewska I, Klapiszewski Ł, Jesionowski T. Isolation and Characterization of Novel Cellulose Micro/Nanofibers from Lygeum spartum Through a Chemo-Mechanical Process. Polymers (Basel) 2024; 16:3001. [PMID: 39518211 PMCID: PMC11548440 DOI: 10.3390/polym16213001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Recent studies have focused on the development of bio-based products from sustainable resources using green extraction approaches, especially nanocellulose, an emerging nanoparticle with impressive properties and multiple applications. Despite the various sources of cellulose nanofibers, the search for alternative resources that replace wood, such as Lygeum spartum, a fast-growing Mediterranean plant, is crucial. It has not been previously investigated as a potential source of nanocellulose. This study investigates the extraction of novel cellulose micro/nanofibers from Lygeum spartum using a two-step method, including both alkali and mechanical treatment as post-treatment with ultrasound, as well as homogenization using water and dilute alkali solution as a solvent. To determine the structural properties of CNFs, a series of characterization techniques was applied. A significant correlation was observed between the Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) results. The FTIR results revealed the elimination of amorphous regions and an increase in the energy of the H-bonding modes, while the XRD results showed that the crystal structure of micro/nanofibers was preserved during the process. In addition, they indicated an increase in the crystallinity index obtained with both methods (deconvolution and Segal). Thermal analysis based on thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed improvement in the thermal properties of the isolated micro/nanofibers. The temperatures of maximum degradation were 335 °C and 347 °C. Morphological analysis using a scanning electron microscope (SEM) and atomic force microscope (AFM) showed the formation of fibers along the axis, with rough and porous surfaces. The findings indicate the potential of Lygeum spartum as a source for producing high-quality micro/nanofibers. A future direction of study is to use the cellulose micro/nanofibers as additives in recycled paper and to evaluate the mechanical properties of the paper sheets, as well as investigate their use in smart paper.
Collapse
Affiliation(s)
- Sabrina Ahmima
- Laboratory of Macromolecular Synthesis and Thio-Organics Macromolecular, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, BP 32, El Alia, Bab Ezzouar, Alger 16111, Algeria;
| | - Nacira Naar
- Laboratory of Macromolecular Synthesis and Thio-Organics Macromolecular, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, BP 32, El Alia, Bab Ezzouar, Alger 16111, Algeria;
| | - Patryk Jędrzejczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.J.); (T.J.)
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland;
| | - Izabela Klapiszewska
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland;
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.J.); (T.J.)
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.J.); (T.J.)
| |
Collapse
|
33
|
Decker BLA, Filho EDGA, E Silva LMA, Riceli Vasconcelos Ribeiro P, Sousa de Brito E, Narciso Fernandes FA, Vidal Fonteles T, Rodrigues S. Ultrasound-assisted extraction of anthocyanins from grape pomace using acidified water: Assessing total monomeric anthocyanin and specific anthocyanin contents. Food Res Int 2024; 194:114910. [PMID: 39232553 DOI: 10.1016/j.foodres.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
This study aimed to optimize the ultrasound-assisted extraction (UAE) of anthocyanins from oven-dried and freeze-dried Vitis labrusca grape pomace, using acidified water as the solvent. The effects of power density (8.3-16.7 W/mL), pulse interval (0-2 s), and extraction time (1-5 min) on both total and specific anthocyanins were investigated. The findings suggested that acidified water can be a viable alternative to conventional solvents and that oven drying was an effective method for drying the pomace. Using response surface methodology, the study identified power density and extraction time as key factors influencing total anthocyanin content, with extracts reaching contents up to 2.56 mg/g. The analysis using LC-MS identified 14 anthocyanins, while NMR quantified 3 and malvidin diglucoside was generally the most abundant. However, higher power and longer extraction times were found to reduce its content while increasing malvidin monoglucoside content, suggesting ultrasound-induced anthocyanin hydrolysis. In conclusion, this study presents a sustainable method for extracting anthocyanins using acidified water, contributing to the valorization of Vitis labrusca grape pomace for industrial use.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sueli Rodrigues
- Food Engineering Department, Federal University of Ceara, 60440-900, Fortaleza, CE, Brazil.
| |
Collapse
|
34
|
Othman JAS, Ilyas RA, Nordin AH, Ngadi N, Alkbir MFM. Recent advancements in bamboo nanocellulose-based bioadsorbents and their potential in wastewater applications: A review. Int J Biol Macromol 2024; 277:134451. [PMID: 39102907 DOI: 10.1016/j.ijbiomac.2024.134451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
The research interest in sustainable and eco-friendly materials based on natural sources has increased dramatically due to their recyclability, biodegradability, compatibility, and nontoxic behavior. Recently, nanocellulose-based green composites are under extensive exploration and have gained popularity among researchers owing to their lightweight, lost cost, low density, excellent mechanical and physical characteristics. This review provides a comprehensive overview of the recent advancements in the extraction, modification, and application of bamboo nanocellulose as a high-performance bioadsorbent. Bamboo, a rapidly renewable resource, offers an eco-friendly alternative to traditional materials due to its abundant availability and unique structural properties. Significantly, bamboo comprises a considerable amount of cellulose, approximately 40 % to 50%, rendering it a valuable source of cellulose fiber for the fabrication of cellulose nanocrystals. The review highlights different various modification techniques which enhance the adsorption capacities and selectivity of bamboo nanocellulose. Furthermore, the integration of bamboo nanocellulose into novel composite materials and its performance in removing contaminants such as heavy metals, dyes, and organic pollutants from wastewater are critically analyzed. Emphasis is placed on the mechanisms of adsorption, regeneration potential, and the economic and environmental benefits of using bamboo-based bioadsorbents. The findings underscore the potential of bamboo nanocellulose to play a pivotal role in developing sustainable wastewater treatment technologies, offering a promising pathway towards cleaner water and a greener future.
Collapse
Affiliation(s)
- Jameelah Alhad Salih Othman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia.
| | - M F M Alkbir
- Advanced Facilities Engineering Technology Research Cluster, Malaysian Institute of Industrial Technology (MITEC), University Kuala Lumpur, Malaysia; Plant Engineering Technology (PETech), UniKL Malaysian Institute of Industrial Technology (MITEC), Persiaran Sinaran Ilmu, Johor, Darul Takzim, Malaysia
| |
Collapse
|
35
|
Samanta AP, Ghosh A, Dutta K, Mandal D, Tudu S, Sarkar K, Das B, Ghosh SK, Chattopadhyay D. Biofabrication of aminated nanocellulose reinforced polyvinyl alcohol/chitosan nanofibrous scaffold for sustained release of diltiazem hydrochloride. Int J Biol Macromol 2024; 277:134395. [PMID: 39098668 DOI: 10.1016/j.ijbiomac.2024.134395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
In the modern environment conscious era, there has been a huge demand for the effective green method to fabricate biomaterials for sustained transdermal release of diltiazem hydrochloride to treat hypertension and cardiac failure. In this vein, the present study explores the amination of waste jute sourced nanocellulose (ANC) and its effect as a reinforcing filler to design electrospun polyvinyl alcohol (PVA)/chitosan based polymeric nanofibrous scaffold for drug delivery. The characterization results of FTIR (Fourier Transform Infrared Spectroscopy) confirm the successful chemical modification of nanocellulose (NCC). SEM (Scanning Electron Microscopy) results indicate the morphological modifications in ANC due to grafting. ANC enhances the mechanical properties of scaffold and sustains the release of the loaded drug to 67.89±3.39% as compared to the pure PVA/chitosan scaffold of 92.63±4.63% over a period of 72 h as shown by the results of in-vitro drug release study. Moreover, the incorporation of 0.5 % ANC improves the anti-bacterial activity against both gram-positive (97.4±4.87%, reduction in viable cells count) and gram-negative bacteria (98.5±4.93%, reduction in viable cells count). Further, the skin irritation and MTT assay authenticate the biocompatibility of the developed scaffold. The overall findings hence prove the efficacy of the engineered scaffold as a potential transdermal patch for sustained drug delivery applications.
Collapse
Affiliation(s)
- Arpita Priyadarshini Samanta
- Department of Jute and Fiber Technology, Institute of Jute Technology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India; Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India.
| | - Debashmita Mandal
- Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700 098, WB, India
| | - Surajit Tudu
- Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700 098, WB, India
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Beauty Das
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Swapan Kumar Ghosh
- Department of Jute and Fiber Technology, Institute of Jute Technology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India; Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700 098, WB, India.
| |
Collapse
|
36
|
Marchetti A, Marelli E, Bergamaschi G, Lahtinen P, Paananen A, Linder M, Pigliacelli C, Metrangolo P. Nanocellulose-short peptide self-assembly for improved mechanical strength and barrier performance. J Mater Chem B 2024; 12:9229-9237. [PMID: 39176991 PMCID: PMC11342157 DOI: 10.1039/d4tb01359j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Cellulose nanofibers (CNF) are the most abundant renewable nanoscale fibers on Earth, and their use in the design of hybrid materials is ever more acclaimed, although it has been mostly limited, to date, to CNF derivatives obtained via covalent functionalization. Herein, we propose a noncovalent approach employing a set of short peptides - DFNKF, DF(I)NKF, and DF(F5)NKF - as supramolecular additives to engineer hybrid hydrogels and films based on unfunctionalized CNF. Even at minimal concentrations (from 0.1% to 0.01% w/w), these peptides demonstrate a remarkable ability to enhance CNF rheological properties, increasing both dynamic moduli by more than an order of magnitude. Upon vacuum filtration of the hydrogels, we obtained CNF-peptide films with tailored hydrophobicity and surface wettability, modulated according to the peptide content and halogen type. Notably, the presence of fluorine in the CNF-DF(F5)NKF film, despite being minimal, strongly enhances CNF water vapor barrier properties and reduces the film water uptake. Overall, this approach offers a modular, straightforward method to create fully bio-based CNF-peptide materials, where the inclusion of DFNKF derivatives allows for facile functionalization and material property modulation, opening their potential use in the design of packaging solutions and biomedical devices.
Collapse
Affiliation(s)
- Alessandro Marchetti
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| | - Elisa Marelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| | - Greta Bergamaschi
- Istituto di Scienze e Tecnologie Chimiche, National Research Council of Italy, Via M. Bianco 9, 20131 Milano, Italy
| | - Panu Lahtinen
- VTT-Technical Research Centre of Finland Ltd, Tekniikantie 21, 02150 Espoo, Finland
| | - Arja Paananen
- VTT-Technical Research Centre of Finland Ltd, Tekniikantie 21, 02150 Espoo, Finland
| | - Markus Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Claudia Pigliacelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
37
|
Xiao Z, Jin Y, Cao Y, Yao T, Fu Y, Suo D, Wang S, Chen G, Zhao X, Li R, Fan X. Ultrasound probe enhanced enzymatic hydrolysis for rapid separation of β 2-adrenergic agonists from animal urine and livestock wastewater: Applicability to biomonitoring investigation. Anal Chim Acta 2024; 1320:343020. [PMID: 39142772 DOI: 10.1016/j.aca.2024.343020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND An increasing number of β2-adrenergic agonists are illicitly used for growth promoting and lean meat increasing in animal husbandry in recent years, but the development of analytical methods has lagged behind these emerging drugs. RESULTS Here, we designed and developed an ultrasound probe enhanced enzymatic hydrolysis reactor for quick separation and simultaneously quantification of 22 β2-adrenergic agonists in animal urine and livestock wastewater. Owing to the enhancement of the conventional enzymatic digestion through the ultrasound acoustic probe power, only 2 min was required for the comprehensively separation of β2-adrenergic agonists from the sample matrices, making it a much more desirable alternative tool for high-throughput investigation. The swine, bovine and sheep urines (n = 287), and livestock wastewater (n = 15) samples, collected from both the north and south China, were examined to demonstrate the feasibility and capability of the proposed approach. Six kinds of β2-adrenergic agonists (clenbuterol, salbutamol, ractopamine, terbutaline, clorprenaline and cimaterol) were found in animal urines, with concentrations ranged between 0.056 μg/L (terbutaline) and 5.79 μg/L (clenbuterol). Up to nine β2-adrenergic agonists were detected in wastewater samples, of which four were found in swine farms and nine in cattle/sheep farms, with concentration levels from 0.069 μg/L (tulobuterol) to 2470 μg/L (clenbuterol). SIGNIFICANCE Interestingly, since β2-adrenergic agonists are usually considered to be abused mainly in the pig farms, our data indicate that both the detection frequencies and concentrations of these agonists in the ruminant farms were higher than the pig farms. Furthermore, the findings of this work indicated that there is a widespread occurrence of β2-adrenergic agonists in livestock farms, especially for clenbuterol and salbutamol, which may pose both food safety and potential ecological risks. We recommend that stricter controls should be adopted to prevent the illegally usage of these β2-adrenergic agonists in agricultural animals, especially ruminants, and they should also be removed before discharging to the environment.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinji Jin
- Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Ying Cao
- Shanghai Institute for Veterinary Drugs and Feeds Control, Shanghai, 201103, China
| | - Ting Yao
- Beijing Veterinary Drug and Feed Monitoring Center, Beijing, 102200, China
| | - Yao Fu
- Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang Chen
- Beijing Technology and Business University, Beijing, 100048, China
| | - Xinxue Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Runxian Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
Zhang S, Du R, Li Q, Xu M, Yang Y, Fang S, Wan Z, Yang X. Food-grade emulsion gels and oleogels prepared by all-natural dual nanofibril system from citrus fiber and glycyrrhizic acid. Food Res Int 2024; 192:114830. [PMID: 39147519 DOI: 10.1016/j.foodres.2024.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
The natural dual nanofibril system consisting of the rigid semicrystalline nanofibrils disintegrated from citrus fiber (CF) and soft semiflexible nanofibrils self-assembled from glycyrrhizic acid (GA) has been recently shown to be effective structural building blocks for fabrication of emulsion gels. In this work, the effect of the CF nanofibrils prepared by different mechanical disintegration approaches (i.e., high-pressure microfluidization and hydrodynamic cavitation) on the interfibrillar CF-GA interactions and the subsequent formation and properties of emulsion gels were investigated, with the aim of evaluating the potential of the dual nanofibril-stabilized emulsion gels as templates for synthesizing all-natural edible oleogels. The obtained results demonstrate that compared to the cavitation, the high-pressure microfluidization is more capable of generating CF nanofibrils with a higher degree of nanofibrillation and individualization, thus forming a denser CF-GA gel network with higher viscoelasticity and structural stability due to the stronger multiple intrafibrillar and interfibrillar interactions. The emulsion gels stabilized by the dual nanofibril system are demonstrated to be an efficient template to fabricate solid-like oleogels, and the structural properties of the oleogels can be well tuned by the mechanical disintegration of CF and the GA nanofibril concentration. The prepared oleogels possess high oil loading capacity, dense network microstructure, superior rheological and large deformation compression performances, and satisfactory thermal stability, which is attributed to the compact and ordered CF-GA dual nanofibrillar network via multiple hydrogen-bonding interactions in the continuous phase as well as at the droplet surface. This study highlights the unique use of all-natural dual nanofibrils to develop oil structured soft materials for sustainable applications.
Collapse
Affiliation(s)
- Shiqi Zhang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Ruijie Du
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | | | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
39
|
Raja K, Suresh K, Anbalagan S, Ragini YP, Kadirvel V. Investigating the nutritional viability of marine-derived protein for sustainable future development. Food Chem 2024; 448:139087. [PMID: 38531302 DOI: 10.1016/j.foodchem.2024.139087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/24/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Marine-derived proteins are emerging as a pivotal resource with diverse applications in food, pharmaceuticals, and biotechnological industries. The marine environment offers many protein sources, including fish, shellfish, algae, and microbes, which garnered attention due to their nutritional composition. Evaluating their protein and amino acid profiles is essential in assessing their viability as substitutes for conventional protein sources. Continuously exploiting marine ecosystems for protein extraction has led to significant environmental impacts. The optimization of aquacultural practices and implementation of innovative practices are imperative for the sustainable production of marine-based protein. This review will discuss the different sources of marine proteins, their nutritional profile, and their associated environmental impact. It also reviews the relationship between aquaculture advancements and regulatory frameworks toward attaining sustainable practices, alongside exploring the challenges and potentials in utilizing marine sources for protein production.
Collapse
Affiliation(s)
- Kamalesh Raja
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - Karishma Suresh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - Saravanan Anbalagan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | | | - Vijayasri Kadirvel
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
40
|
Chuai S, Zhu X, Ye L, Liu Y, Wang Z, Li F. Study on the mechanism of ultrasonic cavitation effect on the surface properties enhancement of TC17 titanium alloy. ULTRASONICS SONOCHEMISTRY 2024; 108:106957. [PMID: 38901304 PMCID: PMC11239707 DOI: 10.1016/j.ultsonch.2024.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
In industrial production and scientific research, ultrasonic cavitation technology, with its outstanding physical and chemical processing capabilities, has been widely applied in fields such as material surface modification, chemical synthesis, and biotechnology, becoming a focal point of research and application. This article delves into the effects of different ultrasonic frequencies on cavitation outcomes through the combined use of numerical simulation, fluorescence analysis, and high-speed photography, specifically analyzing the quantitative improvement in the mechanical properties of TC17 titanium alloy under ultrasonic cavitation at frequencies of 20 kHz, 30 kHz, and 40 kHz. The study found that at an ultrasonic frequency of 20 kHz, the maximum expansion radius of cavitation bubbles can reach 51.4 μm, 8.6 times their initial radius. Correspondingly, fluorescence intensity and peak area also increased to 402.8 and 28104, significantly above the baseline level. Moreover, after modification by ultrasonic cavitation, the original machining marks on the surface of TC17 titanium alloy became fainter, with the emergence of new, uniformly distributed microfeatures. The microhardness of the material increased from 373.7 Hv to 383.84 Hv, 396.62 Hv, and 414.06 Hv, with a maximum improvement of 10.8 %. At the same time, surface height difference and roughness significantly decreased (to 3.168 μm and 0.61 μm respectively), with reductions reaching 45.1 % and 42.4 %, indicating a significant improvement in material surface quality. Notably, there is a negative correlation between the improvement of mechanical properties and ultrasonic frequency, suggesting that the improvement effects decrease as ultrasonic frequency increases. This research not only reveals the quantitative relationship between ultrasonic cavitation frequency and material surface modification effects but also provides a solid scientific basis and practical guidance for the application of ultrasonic cavitation technology in surface engineering, signifying the technology's potential for broad application in the future.
Collapse
Affiliation(s)
- Shida Chuai
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Xijing Zhu
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China.
| | - Linzheng Ye
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Yao Liu
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Zexiao Wang
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Fei Li
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
41
|
El-Gohary RM, El-Shafai NM, El-Mehasseb IM, Mostafa YS, Alamri SA, Beltagi AM. Removal of pollutants through photocatalysis, adsorption, and electrochemical sensing by a unique plasmonic structure of palladium and strontium oxide nanoparticles sandwiched between 2D nanolayers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121257. [PMID: 38850913 DOI: 10.1016/j.jenvman.2024.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
The redesigned engineering building of nanocomposite (NCP) depends on metal oxides of palladium oxide (PdO) nanoparticles (NPs) conjugate with the n-type semiconductor of strontium oxide (SrO) NPs on the electron carrier surface of graphene oxide (GO) and reduce graphene oxide (rGO) nanosheet is the main target of the current work. The low efficiency of PdO (n-type) and SrO (p-type) gave an overview of the increasing generation electron efficiency via building the ohmic area on the GO and rGO surface using the Z-scheme mechanism. The efficiency of the NCP surface for destroying organic pollutants such as mixed dyes of Rhodamine B and methylene blue (RhB/MB), as against insecticides like imidacloprid, and the removal of heavy metals such as chromium ions was studied. The production of clean water against pollutants materials was investigated through adsorption and photocatalytic processes, electrochemical, and spectroscopy methods to detect the activity of NCP. The rate constant of the adsorption pollutants is 0.1776 min-1 (MB), 0.3489 min-1 (RhB), 0.3627 min-1 (imidacloprid), and 0.5729 min-1 (Cr3+). The photocatalytic rate recorded at 0.01218 min-1 (MB), 0.0096 min-1 (RhB), appeared degradation rate at 0.0086 min-1 (imidacloprid), 0.0019 min-1 (Cr6+), and 0.0471 min-1 (Cr3+). The adsorption and photocatalytic efficiency of nanocatalyst (NCP) was calculated at 91% (RhB), 93% (MB), 73% (imidacloprid), 63% (Cr3+), while the photocatalytic efficiency is 63% (RhB), 94% (MB), 86% (imidacloprid), 33% (Cr3+). The recyclability of NCP was tested for five cycles, and the efficiency was discovered at 55% after the fifth cycle. The cytotoxicity of NCP was studied to detect the safety of the fabricated materials. The study validates that the fabricated nanocomposite exhibits great potential as an innovative material for producing clean water.
Collapse
Affiliation(s)
- Rasha M El-Gohary
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University 33516, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University 33516, Egypt.
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University 33516, Egypt.
| | - Yasser S Mostafa
- Department of Biology, College of Science, King Khalid University, Abha P.O. Box 9004, Saudi Arabia
| | - Saad A Alamri
- Department of Biology, College of Science, King Khalid University, Abha P.O. Box 9004, Saudi Arabia
| | - Amr M Beltagi
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University 33516, Egypt
| |
Collapse
|
42
|
Zhang X, Xu J, Zhang Z, Li P, He C, Zhong M. Pb(II) Adsorption Properties of a Three-Dimensional Porous Bacterial Cellulose/Graphene Oxide Composite Hydrogel Subjected to Ultrasonic Treatment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3053. [PMID: 38998136 PMCID: PMC11242312 DOI: 10.3390/ma17133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
A three-dimensional porous bacterial cellulose/graphene oxide (BC/GO) composite hydrogel (BC/GO) was synthesized with multi-layer graphene oxide (GO) as the modifier and bacterial cellulose as the skeleton via an ultrasonic shaking process to absorb lead ions effectively. The characteristics of BC/GO were investigated through TEM, SEM, FT-IR, NMR and Zeta potential experiments. Compared to bacterial cellulose, the ultrasonic method and the carboxyl groups stemming from GO helped to enhance the availability of O(3)H of BC, in addition to the looser three-dimensional structure and enriched oxygen-containing groups, leading to a significantly higher adsorption capacity for Pb(II). In this paper, the adsorption behavior of BC/GO is influenced by the GO concentration, adsorption time, and initial concentration. The highest adsorption capacity for Pb(II) on BC/GO found in this study was 224.5 mg/g. The findings implied that the pseudo-second-order model explained the BC/GO adsorption dynamics and that the data of its adsorption isotherm fit the Freundlich model. Because of the looser three-dimensional structure, the complexation of carboxyl groups, and the enhanced availability of O(3)H, bacterial cellulose exhibited a much better adsorption capacity.
Collapse
Affiliation(s)
- Xinxing Zhang
- Key Laboratory of Harbor & Marine Structure Durability Technology, Ministry of Transport of PRC, Guangzhou 510640, China
| | - Jing Xu
- School of Materials Science & Engineering, South China University of Technology, Guangzhou 510230, China
| | - Zhijie Zhang
- School of Materials Science & Engineering, South China University of Technology, Guangzhou 510230, China
| | - Pengping Li
- Key Laboratory of Harbor & Marine Structure Durability Technology, Ministry of Transport of PRC, Guangzhou 510640, China
| | - Chang He
- School of Materials Science & Engineering, South China University of Technology, Guangzhou 510230, China
| | - Mingfeng Zhong
- School of Materials Science & Engineering, South China University of Technology, Guangzhou 510230, China
| |
Collapse
|
43
|
Kumar V, Chandel A, Upadhyay P, Chakma S. Enhanced Total Contactless Photothermal Desalination by Translucent Thin Film Coating of Crystalline Nanocellulose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12343-12352. [PMID: 38853572 DOI: 10.1021/acs.langmuir.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The innovative approach of harnessing abundant solar energy to facilitate water purification holds great potential for addressing a diverse range of water-related challenges. Utilizing the same method of photothermal desalination is highly promising, sustainable, and cost effective. However, in photothermal desalination, generally, steam is generated at the liquid-air interface. Despite its immense potential, this results in a lower evaporation rate and is prone to salt fouling. Therefore, to address two main challenges, (1) fouling and (2) maximum interfacial temperature (100 °C), here, we report total contactless photothermal desalination by a translucent thin film coating of Crystalline Nanocellulose (CNC). In contactless photothermal desalination, the active photothermal layer remains in no physical contact with the saline water; thus, automatic antifouling and a temperature above the boiling point of water can be achieved for water purification. In this report, we have sustainably extracted CNC from waste sawdust by a sonochemical extraction method using minimal chemicals. Additionally, the sonoextraction method through cavitation helps in the desulfation of CNC. These thermally stable and highly crystalline CNCs are used in making active translucent photothermal active layers for photothermal desalination. CNCs were well characterized by both microscopic and spectroscopic techniques. In the photothermal desalination, the results show an augmented evaporation rate of ∼3.30 kg/m2·h and virtually infinite recyclability for longer usability. Moreover, the integrated setup reported here comprises an independent module with a highly flexible design that mimics the greenhouse effect for a high solar-to-steam output.
Collapse
Affiliation(s)
- Vishrant Kumar
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Abhinav Chandel
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Prachi Upadhyay
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
44
|
Carrillo YS, Ulloa JA, Urías Silvas JE, Ramírez Ramírez JC, Leyva RG. Physicochemical and functional characteristics of a gourd ( Cucurbita argyrosperma Huber) seed protein isolate subjected to high-intensity ultrasound. Heliyon 2024; 10:e32225. [PMID: 38868042 PMCID: PMC11168437 DOI: 10.1016/j.heliyon.2024.e32225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
The impact of high-intensity ultrasound (HIU, 20 kHz) on the physicochemical and functional characteristics of gourd seed protein isolate (GoSPI) was studied. GoSPI was prepared from oil-free gourd seed flour through alkaline extraction (pH 11) and subsequent isoelectric precipitation (pH 4). The crude protein concentration of GoSPI ranged from 91.56 ± 0.17 % to 95.43 ± 0.18 %. Aqueous suspensions of GoSPI (1:3.5 w/v) were ultrasonicated at powers of 200, 400, and 600 W for 15 and 30 min. Glutelins (76.18 ± 0.15 %) were the major protein fraction in GoSPI. HIU decreased the moisture, ash, ether extract, and nitrogen-free extract contents and the hue angle, available water and a* and b* color parameters of the GoSPI in some treatments. The L* color parameter increased (7.70 %) after ultrasonication. HIU reduced the bulk density (52.63 %) and particle diameter (39.45 %), as confirmed by scanning electron microscopy, indicating that ultrasonication dissociated macromolecular aggregates in GoSPI. These structural changes enhanced the oil retention capacity and foam stability by up to 62.60 and 6.84 %, respectively, while the increases in the solvability, water retention capacity, and emulsifying activity index of GoSPI were 90.10, 19.80, and 43.34 %, respectively. The gelation, foaming capacity, and stability index of the emulsion showed no improvement due to HIU. HIU altered the secondary structure of GoSPI by decreasing the content of α-helices (49.66 %) and increasing the content of β-sheets (52.00 %) and β-turns (65.00 %). The electrophoretic profile of the GoSPI was not changed by HIU. The ultrasonicated GoSPI had greater functional attributes than those of the control GoSPI and could therefore be used as a functional food component.
Collapse
Affiliation(s)
- Yessica Silva Carrillo
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Km 9, 63780, Xalisco, Nayarit, Mexico
| | - José Armando Ulloa
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Km 9, 63780, Xalisco, Nayarit, Mexico
- Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, 63155, Tepic, Nayarit, Mexico
| | - Judith Esmeralda Urías Silvas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío, 45019, Zapopan, Jalisco, Mexico
| | - José Carmen Ramírez Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera Compostela-Chapalilla, Km 3.5, 63700, Compostela, Nayarit, Mexico
| | - Ranferi Gutiérrez Leyva
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera Compostela-Chapalilla, Km 3.5, 63700, Compostela, Nayarit, Mexico
| |
Collapse
|
45
|
Xiong W, Kumar G, Zhang B, Dhital S. Sonication-mediated modulation of macronutrient structure and digestibility in chickpea. ULTRASONICS SONOCHEMISTRY 2024; 106:106904. [PMID: 38749102 PMCID: PMC11109878 DOI: 10.1016/j.ultsonch.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Ultrasound processing is an emerging green technology that has the potential for wider application in the food processing industry. While the effects of ultrasonication on isolated macromolecules such as protein and starch have been reported, the effects of physical barriers on sonication on these macro-molecules, for example inside whole seed, tissue or cotyledon cells, have mostly been overlooked. Intact chickpea cells were subjected to sonication with different ultrasound processing times, and the effects of sonication on the starch and protein structure and digestibility were studied. The digestibility of these macronutrients significantly increased with the extension of processing time, which, however was not due to the molecular degradation of starch or protein but related to damage to cell wall macro-structure with increasing sonication time, leading to enhanced enzyme accessibility. Through this study, it is demonstrated that ultrasound processing has least effect on whole food structure, for example, whole seeds but can modulate the nutrient bioavailability without changing the properties of the macronutrients in seed fractions e.g. intact cells, offering new scientific knowledge on effect of ultrasound in whole foods at various length scales.
Collapse
Affiliation(s)
- Weiyan Xiong
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gaurav Kumar
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Bin Zhang
- School of Food Science and Engineering, Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
| | - Sushil Dhital
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
46
|
Lim JJY, Hoo DY, Tang SY, Manickam S, Yu LJ, Tan KW. One-pot extraction of nanocellulose from raw durian husk fiber using carboxylic acid-based deep eutectic solvent with in situ ultrasound assistance. ULTRASONICS SONOCHEMISTRY 2024; 106:106898. [PMID: 38749103 PMCID: PMC11109900 DOI: 10.1016/j.ultsonch.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Nanocellulose (CNF) has emerged as a promising alternative to synthetic petroleum-based polymers, but the conventional preparation process involves multiple tedious steps, heavily dependent on chemical input, and proves cost-inefficient. This study presented an, in situ ultrasound-assisted extraction using deep eutectic solvent (DES) based on choline chloride and oxalic acid for more facile production of CNF from raw durian husk fibers. FESEM analysis confirmed the successful extraction of web-like nanofibril structure with width size ranging from 18 to 26 nm. Chemical composition analysis and FTIR revealed the selective removal of lignin and hemicellulose from the raw fiber. As compared to post-ultrasound treatment, in situ ultrasound-assisted extraction consistently outperforms, yielding a higher CNF yield with finer fiber width and significantly reduced lignin content. Integrating this eco-friendly in situ ultrasonication-assisted one-pot extraction method with a 7.5 min interval yielded the highest CNF yield of 58.22 % with minimal lignin content. The superior delignification ability achieved through the proposed in situ ultrasound-assisted protocol surpasses the individual efficacy of DES and ultrasonication processes, neither of which yielded CNF in our experimental setup. This single-step fabrication process significantly reduces chemical usage and streamlines the production steps yielding web-structured CNF that is ideal for sustainable application in membrane and separator.
Collapse
Affiliation(s)
- Jocelyn Jean Yi Lim
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Do Yee Hoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Lih Jiun Yu
- Faculty of Engineering, Technology, and Built Environment, UCSI University Kuala Lumpur Campus, No. 1, Jalan Menara Gading, UCSI Heights (Taman Connaught), Cheras 56000 Kuala Lumpur, Malaysia
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
47
|
Wang S, Han H, Lei X, Ma J, Tao Z, Ren Y. Cellulose nanofibers produced from spaghetti squash peel by deep eutectic solvents and ultrasonication. Int J Biol Macromol 2024; 261:129777. [PMID: 38286364 DOI: 10.1016/j.ijbiomac.2024.129777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
In this study, the cellulose nanofibers (CNFs) derived from spaghetti squash peel (SSP) were prepared using a novel approach involving deep eutectic solvent (DES) pretreatment coupled with ultrasonication. Molecular dynamics (MD) simulations revealed that the number of hydrogen bonds influences the viscosity and density of DES systems, and experimental viscosity (ηexp) confirmed consistency with the computed viscosity (ηMD) trends. After DES pretreatment and ultrasonication, the cellulose content of ChCl/oxalic acid (ChCl/OA) CNF (35.63%) and ChCl/formic acid (ChCl/FA) (32.46%) is higher than ChCl/Urea CNF (28.27%). The widths of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF were 19.83, 11.34, and 18.27 nm, respectively, showing a network-like fiber distribution. Compared with SSP (29.76%) and non-ultrasonic samples, the crystallinity index of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF was improved by ultrasonication. The thermal decomposition residue of ChCl/OA CNF (25.54%), ChCl/FA CNF (18.54%), and ChCl/Urea CNF (23.62%) was lower than that of SSP (29.57%). These results demonstrate that CNFs can be prepared from SSP via DES pretreatment combined with ultrasonication. The lowest viscosity observed in the formic acid DES group (ηexp of 18 mPa·s), the ChCl/FA CNF exhibits excellent stability (Zeta potential of -37.6 mV), which can provide a promising prospect for utilization in biomass by-products and applications in the materials field.
Collapse
Affiliation(s)
- Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianxiang Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ze Tao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
48
|
Mejía-Méndez JL, Navarro-López DE, Sanchez-Martinez A, Ceballos-Sanchez O, Garcia-Amezquita LE, Tiwari N, Juarez-Moreno K, Sanchez-Ante G, López-Mena ER. Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants (Basel) 2024; 13:213. [PMID: 38397812 PMCID: PMC10886043 DOI: 10.3390/antiox13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards Artemia salina nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559-42.546% and 18.230-38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC50 values ranging from 3.898 to 126.948 μg/mL. Against A. salina nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R2 = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratory of Phytochemistry Research, Chemical Biological Sciences Department, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| | - Diego E. Navarro-López
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Araceli Sanchez-Martinez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Oscar Ceballos-Sanchez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Luis Eduardo Garcia-Amezquita
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada No 2501, Monterrey 64849, Mexico;
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Edgar R. López-Mena
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| |
Collapse
|
49
|
Wu X, Sivakumar M, Lim SS, Wu T, Heng PC. Ultrasonic liquid exfoliation for producing graphene materials from rice stem: Investigating cellular components and functionalities. ULTRASONICS SONOCHEMISTRY 2024; 103:106782. [PMID: 38309050 PMCID: PMC10848135 DOI: 10.1016/j.ultsonch.2024.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
This study investigates a prospective and straightforward method for producing graphene material derived from biomass, examining the influence of plant cell composition and functions. The experimental outcomes highlight ultrasound's crucial role in synthesizing graphene material sourced from biomass. Ultrasound, a pivotal element in the experiment, significantly affects graphene production from biomass by working synergistically with the liquid components in the solvent system. Notably, the ethanol content reduces the solution's surface tension, facilitating the effective dispersion of biochar and graphene oxide sheets throughout the process. Simultaneously, the water content maintains the solution's polarity, enhancing the cavitation effect induced by ultrasound. Biomass-derived graphene is exfoliated utilizing an ultrasonic bath system (134.4 W, 40 kHz, 0.5 W/cm2) from biochar. The as-synthesized graphene oxide exhibits a structure comprising a few layers while remaining intact, featuring abundant functional groups. Interestingly, the resulting product displays nanopores with an approximate diameter of 100 nm. These nanopores are attributed to preserving specific cell structures, particularly those with specialized cell wall structures or secondary metabolite deposits from biomass resources. The study's findings shed light on the impact of cellular structure on synthesizing graphene material sourced from biomass, emphasizing the potential application of ultrasound as a promising approach in graphene production.
Collapse
Affiliation(s)
- Xinyun Wu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Manickam Sivakumar
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Tao Wu
- Key Laboratory for Carbonaceous Wastes Processing and Process, Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China; New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Pang Cheng Heng
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Municipal Key Laboratory of Clean Energy Conversion Technologies, University of Nottingham Ningbo China, Ningbo 315100, China.
| |
Collapse
|
50
|
Jicsinszky L, Bucciol F, Chaji S, Cravotto G. Mechanochemical Degradation of Biopolymers. Molecules 2023; 28:8031. [PMID: 38138521 PMCID: PMC10745761 DOI: 10.3390/molecules28248031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Mechanochemical treatment of various organic molecules is an emerging technology of green processes in biofuel, fine chemicals, or food production. Many biopolymers are involved in isolating, derivating, or modifying molecules of natural origin. Mechanochemistry provides a powerful tool to achieve these goals, but the unintentional modification of biopolymers by mechanochemical manipulation is not always obvious or even detectable. Although modeling molecular changes caused by mechanical stresses in cavitation and grinding processes is feasible in small model compounds, simulation of extrusion processes primarily relies on phenomenological approaches that allow only tool- and material-specific conclusions. The development of analytical and computational techniques allows for the inline and real-time control of parameters in various mechanochemical processes. Using artificial intelligence to analyze process parameters and product characteristics can significantly improve production optimization. We aim to review the processes and consequences of possible chemical, physicochemical, and structural changes.
Collapse
Affiliation(s)
- László Jicsinszky
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| | | | | | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| |
Collapse
|