1
|
Zhang H, Zhang Y, Li D, Zheng J, Zhang J, Li Z, Liu K, Li B, Shao D, Qiu Y, Ma Z, Wei J, Liu J. Partial protective efficacy of the current licensed Japanese encephalitis live vaccine against the emerging genotype I Japanese encephalitis virus isolated from sheep. Front Immunol 2025; 16:1513261. [PMID: 40018033 PMCID: PMC11865068 DOI: 10.3389/fimmu.2025.1513261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Vaccination remains the most effective strategy for preventing and controlling Japanese encephalitis (JE). The Japanese encephalitis virus (JEV) seroconversion has been documented in sheep and goats across various countries, with occasional fatal cases occurring among sheep on farms in China. Despite the widespread use of attenuated live vaccines, the efficacy of these vaccines in protecting sheep against JE remains uncertain. This study aimed to assess the protective efficacy of currently available attenuated vaccines against genotype I (GI) JEV strains isolated from sheep using a mouse challenge model. Methods In this study, vaccination-challenge experiments were conducted using a mouse challenge model to assess the efficacy of attenuated vaccines. The specific vaccines tested were the SA14-14-2 (GI) and SD12-F120 (GI) attenuated live vaccines. The neutralizing antibodies generated by these vaccines were titrated to evaluate their levels of protection. Mice were immunized with high, medium, or low doses of the vaccines and then challenged with either homologous or heterologous JEV strains. The challenge strains included the SH2201 (GI) and N28 (GIII) strains. Viremia levels and the development of encephalitis lesions were monitored as indicators of protection. Results The neutralizing antibody titers against the sheep-derived SH2201 (GI) strain were significantly lower in mice immunized with the SA14-14-2 (GIII) vaccine compared to those receiving the SD12-F120 (GI) vaccine. Immunization with high and medium doses of SA14-14-2 (GIII) vaccine provided complete protection against challenge with the homologous N28 (GIII) strain but only partial protection against the heterologous SH2201 (GI) strain. Mice immunized with medium and low doses of SA14-14-2 (GIII) vaccine showed varying levels of viremia and developed characteristic encephalitis lesions after being challenged with the heterologous SH2201 (GI) strain. Conversely, mice immunized with high and medium doses of the SD12-F120 (GI) vaccine exhibited 100% protection against the challenge with the homologous SH2201 (GI) strain. Discussion The results of this study suggest that while the SA14-14-2 (GIII) attenuated live vaccine offers partial protection against sheep-derived GI strains, it is not fully effective against heterologous strains like SH2201 (GI). This highlights a significant gap in the ability of the current vaccines to protect across different JEV genotypes and host species. In contrast, the SD12-F120 (GI) vaccine demonstrated stronger protection against the homologous SH2201 (GI) strain. These findings indicate a pressing need for the development of new vaccination strategies that can provide broader and more effective protection against JE, particularly in diverse host species and against a wide range of JEV genotypes.
Collapse
MESH Headings
- Animals
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/genetics
- Japanese Encephalitis Vaccines/immunology
- Japanese Encephalitis Vaccines/administration & dosage
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Encephalitis, Japanese/veterinary
- Mice
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Sheep/virology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Genotype
- Female
- Disease Models, Animal
- Vaccination
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Hailong Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Dan Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiayang Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 PMCID: PMC11792744 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
3
|
Fan YC, Chen JM, Chen YY, Ke YD, Chang GJJ, Chiou SS. Epitope(s) involving amino acids of the fusion loop of Japanese encephalitis virus envelope protein is(are) important to elicit protective immunity. J Virol 2024; 98:e0177323. [PMID: 38530012 PMCID: PMC11019926 DOI: 10.1128/jvi.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Dengue vaccine candidates have been shown to improve vaccine safety and efficacy by altering the residues or accessibility of the fusion loop on the virus envelope protein domain II (DIIFL) in an ex vivo animal study. The current study aimed to comprehensively investigate the impact of DIIFL mutations on the antigenicity, immunogenicity, and protective efficacy of Japanese encephalitis virus (JEV) virus-like particles (VLPs) in mice. We found the DIIFL G106K/L107D (KD) and W101G/G106K/L107D (GKD) mutations altered the binding activity of JEV VLP to cross-reactive monoclonal antibodies but had no effect on their ability to elicit total IgG antibodies in mice. However, JEV VLPs with KD or GKD mutations induced significantly less neutralizing antibodies against JEV. Only 46% and 31% of the KD and GKD VLPs-immunized mice survived compared to 100% of the wild-type (WT) VLP-immunized mice after a lethal JEV challenge. In passive protection experiments, naïve mice that received sera from WT VLP-immunized mice exhibited a significantly higher survival rate of 46.7% compared to those receiving sera from KD VLP- and GKD VLP-immunized mice (6.7% and 0%, respectively). This study demonstrated that JEV DIIFL is crucial for eliciting potently neutralizing antibodies and protective immunity against JEV. IMPORTANCE Introduction of mutations into the fusion loop is one potential strategy for generating safe dengue and Zika vaccines by reducing the risk of severe dengue following subsequent infections, and for constructing live-attenuated vaccine candidates against newly emerging Japanese encephalitis virus (JEV) or Japanese encephalitis (JE) serocomplex virus. The monoclonal antibody studies indicated the fusion loop of JE serocomplex viruses primarily comprised non-neutralizing epitopes. However, the present study demonstrates that the JEV fusion loop plays a critical role in eliciting protective immunity in mice. Modifications to the fusion loop of JE serocomplex viruses might negatively affect vaccine efficacy compared to dengue and zika serocomplex viruses. Further studies are required to assess the impact of mutant fusion loop encoded by commonly used JEV vaccine strains on vaccine efficacy or safety after subsequent dengue virus infection.
Collapse
Affiliation(s)
- Yi-Chin Fan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jo-Mei Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Dun Ke
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Gwong-Jen J. Chang
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort, Fort Collins, Colorado, USA
| | - Shyan-Song Chiou
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Monath TP. Japanese Encephalitis: Risk of Emergence in the United States and the Resulting Impact. Viruses 2023; 16:54. [PMID: 38257754 PMCID: PMC10820346 DOI: 10.3390/v16010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Japanese encephalitis virus is a mosquito-borne member of the Flaviviridae family. JEV is the leading cause of viral encephalitis in Asia and is characterized by encephalitis, high lethality, and neurological sequelae in survivors. The virus also causes severe disease in swine, which are an amplifying host in the transmission cycle, and in horses. US agricultural authorities have recently recognized the threat to the swine industry and initiated preparedness activities. Other mosquito-borne viruses exotic to the Western Hemisphere have been introduced and established in recent years, including West Nile, Zika, and chikungunya viruses, and JEV has recently invaded continental Australia for the first time. These events amply illustrate the potential threat of JEV to US health security. Susceptible indigenous mosquito vectors, birds, feral and domestic pigs, and possibly bats, constitute the receptive ecological ingredients for the spread of JEV in the US. Fortunately, unlike the other virus invaders mentioned above, an inactivated whole virus JE vaccine (IXIARO®) has been approved by the US Food and Drug Administration for human use in advance of a public health emergency, but there is no veterinary vaccine. This paper describes the risks and potential consequences of the introduction of JEV into the US, the need to integrate planning for such an event in public health policy, and the requirement for additional countermeasures, including antiviral drugs and an improved single dose vaccine that elicits durable immunity in both humans and livestock.
Collapse
Affiliation(s)
- Thomas P Monath
- Quigley BioPharma LLC, 114 Water Tower Plaza No. 1042, Leominster, MA 01453, USA
| |
Collapse
|
5
|
Haga K, Chen Z(N, Himeno M, Majima R, Moi ML. Utility of an In-Vitro Micro-Neutralizing Test in Comparison to a Plaque Reduction Neutralization Test for Dengue Virus, Japanese Encephalitis Virus, and Zika Virus Serology and Drug Screening. Pathogens 2023; 13:8. [PMID: 38276154 PMCID: PMC10821437 DOI: 10.3390/pathogens13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Flavivirus infections, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), present significant global public health challenges. For successful vaccine design, the assessment of neutralizing antibody activity requires reliable and robust methodologies for determining antibody titers. Although the plaque reduction neutralization test (PRNT) is commonly acknowledged as the gold standard, it has limitations in terms of time and cost, and its usage may be limited in resource-limited settings. To address these challenges, we introduced the micro-neutralization test (MNT) as a simplified alternative to the PRNT. The MNT employs a 96-well plate format, conducts microscale neutralization assays, and assesses cell viability by dissolving cells to create a uniform color solution, which is measured with a spectrometer. In this study, we evaluated the utility of the MNT by contrasting the end-point titers of the MNT and PRNT using 4 monoclonal antibodies, 15 non-human primate serum samples, and 2 therapeutic drug candidates across flaviviruses. The results demonstrated a strong correlation between the MNT and PRNT titers, affirming the robustness and reproducibility of the MNT for evaluating control measures against flaviviruses. This research contributes valuable insights toward the development of a cost-effective antibody titer testing approach that is particularly suitable for resource-limited settings.
Collapse
MESH Headings
- Zika Virus/immunology
- Encephalitis Virus, Japanese/immunology
- Neutralization Tests/methods
- Humans
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Animals
- Dengue Virus/immunology
- Zika Virus Infection/immunology
- Zika Virus Infection/diagnosis
- Zika Virus Infection/blood
- Dengue/immunology
- Dengue/diagnosis
- Dengue/blood
- Drug Evaluation, Preclinical/methods
- Viral Plaque Assay/methods
- Encephalitis, Japanese/diagnosis
- Encephalitis, Japanese/immunology
- Serologic Tests/methods
- Antibodies, Monoclonal/immunology
- Encephalitis Viruses, Japanese/immunology
Collapse
Affiliation(s)
- Kazumi Haga
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.H.); (M.H.)
| | - Zhenying (Nancy) Chen
- Department of Biology, Emory College of Art and Science, Emory University, Atlanta, GA 30322, USA;
| | - Misao Himeno
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.H.); (M.H.)
| | - Ryuichi Majima
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.H.); (M.H.)
| | - Meng Ling Moi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.H.); (M.H.)
| |
Collapse
|
6
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
7
|
Patel SS, Winkle P, Faccin A, Nordio F, LeFevre I, Tsoukas CG. An open-label, Phase 3 trial of TAK-003, a live attenuated dengue tetravalent vaccine, in healthy US adults: immunogenicity and safety when administered during the second half of a 24-month shelf-life. Hum Vaccin Immunother 2023; 19:2254964. [PMID: 37846724 PMCID: PMC10583633 DOI: 10.1080/21645515.2023.2254964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 10/18/2023] Open
Abstract
Dengue is caused by a mosquito-transmitted flavivirus. The disease is now endemic to many tropical and subtropical regions, manifesting as approximately 96 million symptomatic cases of dengue each year. Clinical trials have shown TAK-003 (Qdenga®), a live attenuated dengue tetravalent vaccine, to be well-tolerated, immunogenic, and efficacious in adults with no prior exposure to dengue virus infection living in non-endemic regions, as well as in adults and children living in dengue-endemic areas. This open-label, single-arm phase 3 trial (NCT03771963) was conducted in two dengue non-endemic areas of the USA, and it evaluated the immunogenicity and safety of naturally-aged TAK-003 administered to adult participants. Overall, the immunogenicity data from this trial are consistent with those reported from other TAK-003 phase 2 and 3 trials, and the safety data are consistent with the broader integrated safety data analysis. The data show that naturally-aged TAK-003 had a well-tolerated reactogenicity and adverse events profile when administered in the second half of its clinical 24-month shelf-life and that it still elicited an immune response that persisted up to 6 months after the second dose against all four dengue serotypes, with no important safety risks identified during the trial.
Collapse
Affiliation(s)
- Sanjay S. Patel
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - Alice Faccin
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - Inge LeFevre
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | |
Collapse
|
8
|
Lakhotia D, Tun YM, Mongkol N, Likhit O, Suthisawat S, Mangmee S, Tongthainan D, Fungfuang W, Tulayakul P, Boonnak K. A Serosurvey of Japanese Encephalitis Virus in Monkeys and Humans Living in Proximity in Thailand. Viruses 2023; 15:v15051125. [PMID: 37243211 DOI: 10.3390/v15051125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a member of the Flaviviridae family and one of Asia's most common causes of encephalitis. JEV is a zoonotic virus that is transmitted to humans through the bite of infected mosquitoes of the Culex species. While humans are dead-end hosts for the virus, domestic animals such as pigs and birds are amplification hosts. Although JEV naturally infected monkeys have been reported in Asia, the role of non-human primates (NHPs) in the JEV transmission cycle has not been intensively investigated. In this study, we demonstrated neutralizing antibodies against JEV in NHPs (Macaca fascicularis) and humans living in proximity in two provinces located in western and eastern Thailand by using Plaque Reduction Neutralization Test (PRNT). We found a 14.7% and 5.6% seropositive rate in monkeys and 43.7% and 45.2% seropositive rate in humans living in west and east Thailand, respectively. This study observed a higher seropositivity rate in the older age group in humans. The presence of JEV neutralizing antibodies in NHPs that live in proximity to humans shows the occurrence of natural JEV infection, suggesting the endemic transmission of this virus in NHPs. According to the One Health concept, regular serological studies should be conducted especially at the animal-human interface.
Collapse
Affiliation(s)
- Divya Lakhotia
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yin May Tun
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nanthanida Mongkol
- Division of Microbiology and Parasitology, Faculty of Medicine, Siam University, Bangkok 10160, Thailand
| | - Oranit Likhit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sarocha Suthisawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suthee Mangmee
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi 20110, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
9
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
10
|
Ayers VB, Huang YJS, Dunlop JI, Kohl A, Brennan B, Higgs S, Vanlandingham DL. Immunogenicity of a Candidate Live Attenuated Vaccine for Rift Valley Fever Virus with a Two-Segmented Genome. Viral Immunol 2023; 36:33-40. [PMID: 36399689 PMCID: PMC9885543 DOI: 10.1089/vim.2022.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging arbovirus that affects both ruminants and humans. RVFV causes severe and recurrent outbreaks in Africa and the Arabian Peninsula with a significant risk for emergence into new locations. Although there are a variety of RVFV veterinary vaccines for use in endemic areas, there is currently no licensed vaccine for human use; therefore, there is a need to develop and assess new vaccines. Herein, we report a live-attenuated recombinant vaccine candidate for RVFV, based on the previously described genomic reconfiguration of the conditionally licensed MP12 vaccine. There are two general strategies used to develop live-attenuated RVFV vaccines, one being serial passage of wild-type RVFV strains to select attenuated mutants such as Smithburn, Clone 13, and MP12 vaccine strains. The second strategy has utilized reverse genetics to attenuate RVFV strains by introducing deletions or insertions within the viral genome. The novel candidate vaccine characterized in this report contains a two-segmented genome that lacks the medium viral segment (M) and two virulence genes (nonstructural small and nonstructural medium). The vaccine candidate, named r2segMP12, was evaluated for the production of neutralizing antibodies to RVFV in outbred CD-1 mice. The immune response induced by the r2segMP12 vaccine candidate was directly compared to the immune response induced by the rMP12 parental strain vaccine. Our study demonstrated that a single immunization with the r2segMP12 vaccine candidate at 105 plaque-forming units elicited a higher neutralizing antibody response than the rMP12 vaccine at the same vaccination titer without the need for a booster.
Collapse
Affiliation(s)
- Victoria B. Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA.,Address correspondence to: Dr. Dana L. Vanlandingham, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
11
|
Virulence and Cross-Protection Conferred by an Attenuated Genotype I-Based Chimeric Japanese Encephalitis Virus Strain Harboring the E Protein of Genotype V in Mice. Microbiol Spectr 2022; 10:e0199022. [PMID: 36301111 PMCID: PMC9769820 DOI: 10.1128/spectrum.01990-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Japanese encephalitis virus (JEV) genotype V (GV) emerged in China in 2009, then South Korea, and has since spread to other regions in Asia and beyond, raising concern about its pathogenicity and the cross-protection offered by JEV vaccines against different genotypes. In this study, we replaced the structural proteins (C-prM-E) of an attenuated genotype I (GI) SD12-F120 strain with those of a virulent GV XZ0934 strain to construct a recombinant chimeric GI-GV JEV (JEV-GI/V) strain to determine the role of the structural proteins in virulence and cross-protection. The recombinant chimeric virus was highly neurovirulent and neuroinvasive in mice. This demonstrated the determinant role of the structural proteins in the virulence of the GV strain. Intracerebral or intraperitoneal inoculation of mice with JEV-GI/V-E5 harboring a combination of substitutions (N47K, L107F, E138K, H123R, and I176R) in E protein, but not mutants containing single substitution of these residues, resulted in decreased or disappeared mortality, suggesting that these residues synergistically, but not individually, played a role in determining the neurovirulence and neuroinvasiveness of the GV strain. Immunization of mice with attenuated strain JEV-GI/V-E5 provided complete protection and induced high neutralizing antibody titers against parental strain JEV-GI/V, but partial cross-protection and low cross-neutralizing antibodies titers against the heterologous GI and GIII strains in mice, suggesting the reduced cross-protection of JEV vaccines among different genotypes. Overall, these findings suggested the essential role of the structural proteins in determination of the virulence of GV strain, and highlighted the need for a novel vaccine against this newly emerged strain. IMPORTANCE The GV JEV showed an increase in epidemic areas, which exhibited higher pathogenicity in mice than the prevalent GI and GIII strains. We replaced a recombinant chimeric GI-GV JEV (JEV-GI/V) strain to determine the role of the structural proteins in virulence and cross-protection. It was found that the essential role of the structural proteins is to determinethe virulence of the GV strain. It is also suggested that there is reduced cross-protection of JEV vaccines among different genotypes, which provides basic data for subsequent JEV prevention, control, and new vaccine development.
Collapse
|
12
|
A Recombinant Genotype I Japanese Encephalitis Virus Expressing a Gaussia Luciferase Gene for Antiviral Drug Screening Assay and Neutralizing Antibodies Detection. Int J Mol Sci 2022; 23:ijms232415548. [PMID: 36555192 PMCID: PMC9778660 DOI: 10.3390/ijms232415548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in humans throughout Asia. In the past twenty years, the emergence of the genotype I (GI) JEV as the dominant genotype in Asian countries has raised a significant threat to public health security. However, no clinically approved drug is available for the specific treatment of JEV infection, and the commercial vaccines derived from the genotype III JEV strains merely provided partial protection against the GI JEV. Thus, an easy-to-perform platform in high-throughput is urgently needed for the antiviral drug screening and assessment of neutralizing antibodies specific against the GI JEV. In this study, we established a reverse genetics system for the GI JEV strain (YZ-1) using a homologous recombination strategy. Using this reverse genetic system, a gaussia luciferase (Gluc) expression cassette was inserted into the JEV genome to generate a reporter virus (rGI-Gluc). The reporter virus exhibited similar growth kinetics to the parental virus and remained genetically stable for at least ten passages in vitro. Of note, the bioluminescence signal strength of Gluc in the culture supernatants was well correlated with the viral progenies determined by viral titration. Taking advantage of this reporter virus, we established Gluc readout-based assays for antiviral drug screening and neutralizing antibody detection against the GI JEV. These Gluc readout-based assays exhibited comparable performance to the assays using an actual virus and are less time consuming and are applicable for a high-throughput format. Taken together, we generated a GI JEV reporter virus expressing a Gluc gene that could be a valuable tool for an antiviral drug screening assay and neutralization assay.
Collapse
|
13
|
Thompson D, Guenther B, Manayani D, Mendy J, Smith J, Espinosa DA, Harris E, Alexander J, Vang L, Morello CS. Zika virus-like particle vaccine fusion loop mutation increases production yield but fails to protect AG129 mice against Zika virus challenge. PLoS Negl Trop Dis 2022; 16:e0010588. [PMID: 35793354 PMCID: PMC9292115 DOI: 10.1371/journal.pntd.0010588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus with maternal infection associated with preterm birth, congenital malformations, and fetal death, and adult infection associated with Guillain-Barré syndrome. Recent widespread endemic transmission of ZIKV and the potential for future outbreaks necessitate the development of an effective vaccine. We developed a ZIKV vaccine candidate based on virus-like-particles (VLPs) generated following transfection of mammalian HEK293T cells using a plasmid encoding the pre-membrane/membrane (prM/M) and envelope (E) structural protein genes. VLPs were collected from cell culture supernatant and purified by column chromatography with yields of approximately 1-2mg/L. To promote increased particle yields, a single amino acid change of phenylalanine to alanine was made in the E fusion loop at position 108 (F108A) of the lead VLP vaccine candidate. This mutation resulted in a modest 2-fold increase in F108A VLP production with no detectable prM processing by furin to a mature particle, in contrast to the lead candidate (parent). To evaluate immunogenicity and efficacy, AG129 mice were immunized with a dose titration of either the immature F108A or lead VLP (each alum adjuvanted). The resulting VLP-specific binding antibody (Ab) levels were comparable. However, geometric mean neutralizing Ab (nAb) titers using a recombinant ZIKV reporter were significantly lower with F108A immunization compared to lead. After virus challenge, all lead VLP-immunized groups showed a significant 3- to 4-Log10 reduction in mean ZIKV RNAemia levels compared with control mice immunized only with alum, but the RNAemia reduction of 0.5 Log10 for F108A groups was statistically similar to the control. Successful viral control by the lead VLP candidate following challenge supports further vaccine development for this candidate. Notably, nAb titer levels in the lead, but not F108A, VLP-immunized mice inversely correlated with RNAemia. Further evaluation of sera by an in vitro Ab-dependent enhancement assay demonstrated that the F108A VLP-induced immune sera had a significantly higher capacity to promote ZIKV infection in FcγR-expressing cells. These data indicate that a single amino acid change in the fusion loop resulted in increased VLP yields but that the immature F108A particles were significantly diminished in their capacity to induce nAbs and provide protection against ZIKV challenge. Zika virus (ZIKV) is transmitted by mosquitoes and is a serious health threat due to potential epidemic spread. Infection in adults may lead to Guillain-Barré syndrome, a neurological disorder, or may cause harm to a developing fetus resulting in preterm birth, fetal death, or devastating congenital malformations. There are currently no approved vaccines against ZIKV. We previously developed a lead candidate vaccine based on a virus-like particle (VLP) that was generated in tissue culture. This ZIKV shell is devoid of any viral genetic material. In previous studies, this lead VLP candidate generated neutralizing antibodies (nAbs) that recognized wild-type ZIKV and prevented viral replication in both mice and non-human primates. To increase production of the lead VLP candidate and decrease cost-of-goods, we introduced a single amino acid change, phenylalanine to alanine, in the envelope glycoprotein. This change resulted in a modest increase in VLP yield. However, this single amino acid change resulted in reduced induction of nAbs following immunization and no significant reduction of RNAemia following challenge compared to the lead candidate. The results of this study suggest this investigational vaccine candidate is not suitable for further vaccine development and that ZIKV VLP maturation may have an important role in protection.
Collapse
Affiliation(s)
- Danielle Thompson
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Ben Guenther
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Darly Manayani
- PaxVax Inc., San Diego, California, United States of America
| | - Jason Mendy
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Jonathan Smith
- PaxVax Inc., San Diego, California, United States of America
| | - Diego A. Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeff Alexander
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- PaxVax Inc., San Diego, California, United States of America
| | - Lo Vang
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | | |
Collapse
|
14
|
Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr Opin Chem Biol 2022; 70:102172. [PMID: 35785601 DOI: 10.1016/j.cbpa.2022.102172] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 01/06/2023]
Abstract
Until recently, the development of new human adjuvants was held back by a poor understanding of their mechanisms of action. The field was revolutionized by the discovery of the toll-like receptors (TLRs), innate immune receptors that directly or indirectly are responsible for detecting pathogen-associated molecular patterns (PAMPs) and respond to them by activating innate and adaptive immune pathways. Hundreds of ligands targeting various TLRs have since been identified and characterized as vaccine adjuvants. This work has important implications not only for the development of vaccines against infectious diseases but also for immuno-therapies against cancer, allergy, Alzheimer's disease, drug addiction and other diseases. Each TLR has its own specific tissue localization and downstream gene signalling pathways, providing researchers the opportunity to precisely tailor adjuvants with specific immune effects. TLR agonists can be combined with other TLR or alternative adjuvants to create combination adjuvants with synergistic or modulatory effects. This review provides an introduction to the various classes of TLR adjuvants and their respective signalling pathways. It provides an overview of recent advancements in the TLR field in the past 2-3 years and discusses criteria for selecting specific TLR adjuvants based on considerations, such as disease mechanisms and correlates of protection, TLR immune biasing capabilities, route of administration, antigen compatibility, new vaccine technology platforms, and age- and species-specific effects.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | | | - Deshkanwar Brar
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
15
|
Fang E, Liu X, Liu X, Li M, Wang L, Li M, Zhang Z, Li Y, Yu Y. Investigation of immune response induction by Japanese encephalitis live-attenuated and chimeric vaccines in mice. MedComm (Beijing) 2022; 3:e117. [PMID: 35415706 PMCID: PMC8986025 DOI: 10.1002/mco2.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
The Japanese encephalitis (JE) live-attenuated vaccine SA14-14-2 and the chimeric vaccine IMOJEV (JE-CV) are two kinds of vaccines available for use worldwide. JE-CV was previously known as ChimeriVax-JE, that consists of yellow fever vaccine 17D (YFV-17D) from which the structural genes (prM/E) have been replaced with those of SA14-14-2. This study aimed to investigate the neutralizing antibody, protection efficacy, and specific T-cell response elicited by both vaccines in mice. The neutralizing antibodies produced by JE-CV were slightly lower than those produced by SA14-14-2, but the protection conferred by JE-CV was considerably lower in the low vaccine dose immunization group. Furthermore, the JE-CV did not induce a specific T-cell response against JEV NS3, while it did induce a potent antigen-specific T-cell response against the viral backbone vaccine YFV. In conclusion, this study is the first detailed investigation of the cellular immune response to the two vaccines. Enzyme-linked immunospot (ELISPOT) and flow staining suggest a more potent specific T-cell response against the JEV antigen was elicited in mice immunized with SA14-14-2 but not JE-CV. Using heterologous flaviviruses as a live-attenuated vaccine backbone may unlikely generate an optimal T-cell response against the vaccine strain virus and might affect the protective efficacy.
Collapse
Affiliation(s)
- Enyue Fang
- National Institutes for Food and Drug Control Beijing 102629 China
- Wuhan Institute of Biological Products, Co., LtD. Wuhan 430207 China
| | - Xinyu Liu
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Xiaohui Liu
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Ming Li
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Ling Wang
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Miao Li
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Zelun Zhang
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Yuhua Li
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Yongxin Yu
- National Institutes for Food and Drug Control Beijing 102629 China
| |
Collapse
|
16
|
He J, Chen J, Han X, Gu Q, Liang J, Sun M, Liu S, Yao Y, Shi L. Association of HLA-DM and HLA class II Genes with Antibody Response Induced by Inactivated Japanese Encephalitis Vaccine. HLA 2022; 99:357-367. [PMID: 35118816 DOI: 10.1111/tan.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
HLA (HLA) class II molecules, HLA-DR, DP, and DQ, together with HLA II-like protein DM, play a dominant role in the processing and presentation of antigens, which may influence vaccine effectiveness. We previously demonstrated that variations in the HLA-DRB1, DPB1, and DQB1 genes may affect the neutralising antibody (NAb) response induced by the inactivated Japanese encephalitis vaccine (IJEV). In the present study, we genotyped HLA-DPA1, DQA1, DMA, and DMB genes and used previous HLA-DRB1, DPB1, and DQB1 data to evaluate the association of these genes with IJEV-induced NAbs, at both the seroconversion and geometric mean titres (GMTs). We confirmed the seropositive association of DQB1*02:01 and NAbs (0.156 vs. 0.075, Padj = 0.018; OR = 2.270; 95% CI = 1.285-3.999) and seronegative association of DQB1*02:02 (0.014 vs. 0.09, Padj = 0.0002; OR = 0.130; 95% CI = 0.047-0.400). Furthermore, the DMB*01:03-DMA*01:01-DPA1*01:03-DPB1*04:01 haplotype was associated with a negative response (0.020 vs. 0.074; Padj = 0.03; OR = 0.250; 95% CI = 0.097-0.649), whereas DRB1*15:02-DMB*01:01-DMA*01:01 was associated with a positive response (0.034 vs. 0; Padj = 0.044). In addition, DRB1*12:02, DRB1*13:02, DPB1*04:01, DPB1*05:01, DPB1*09:01, DQA1*06:01, and DQA1*01:02 were associated with a higher GMT of NAbs, whereas DRB1*11:01, DPB1*13:01, and DQA1*05:05 were associated with a lower GMT of NAbs. In conclusion, the present study suggests that variations in the HLA-DM and HLA class II genes, as well as their combined allotypes, may influence the IJEV NAbs at seroconversion and GMT levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jihong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Jun Chen
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xue Han
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
17
|
Effectiveness of Live-Attenuated Genotype III Japanese Encephalitis Viral Vaccine against Circulating Genotype I Viruses in Swine. Viruses 2022; 14:v14010114. [PMID: 35062317 PMCID: PMC8778556 DOI: 10.3390/v14010114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
Abstract
Expansion of genotype I (GI) Japanese encephalitis viruses (JEV) has resulted in the replacement of the dominant genotype III (GIII) viruses, raising serious public health concerns for using GIII virus-derived vaccines to effectively control JEV epidemics. Therefore, this study used swine as the model to estimate the effectiveness of GIII live-attenuated vaccine against GI virus infection by comparing the incidence of stillbirth/abortion in gilts from vaccinated and non-vaccinated pig farms during the GI-circulation period. In total, 389 and 213 litters of gilts were recorded from four vaccinated and two non-vaccinated pig farms, respectively. All viruses detected in the aborted fetuses and mosquitoes belonged to the GI genotype during the study period. We thus estimated that the vaccine effectiveness of GIII live-attenuated vaccine against GI viruses in naive gilts based on the overall incidence of stillbirth/abortion and incidence of JEV-confirmed stillbirth/abortion was 65.5% (50.8–75.7%) and 74.7% (34.5–90.2%), respectively. In contrast to previous estimates, the GIII live-attenuated vaccine had an efficacy of 95.6% (68.3–99.4%) to prevent the incidence of stillbirth/abortion during the GIII-circulating period. These results indicate that the vaccine effectiveness of GIII live-attenuated JEV vaccine to prevent stillbirth/abortion caused by GI viruses is lower than that against GIII viruses.
Collapse
|
18
|
An Advax-Adjuvanted Inactivated Cell-Culture Derived Japanese Encephalitis Vaccine Induces Broadly Neutralising Anti-Flavivirus Antibodies, Robust Cellular Immunity and Provides Single Dose Protection. Vaccines (Basel) 2021; 9:vaccines9111235. [PMID: 34835166 PMCID: PMC8618450 DOI: 10.3390/vaccines9111235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/24/2023] Open
Abstract
ccJE+Advax is an inactivated cell culture Japanese encephalitis (JE) vaccine formulated with Advax, a novel polysaccharide adjuvant based on delta inulin. This vaccine has previously shown promise in murine and equine studies and the current study sought to better understand its mechanism of action and assess the feasibility of single dose vaccine protection. Mice immunised with ccJE+Advax had higher serum neutralisation titres than those immunised with ccJE alone or with alum adjuvant. ccJE+Advax induced extraordinarily broad cross-neutralising antibodies against multiple flaviviruses including West Nile virus (WNV), Murray Valley encephalitis virus (MVEV), St Louis encephalitis virus (SLEV) and Dengue virus-1 and -2 (DENV-1 and -2). Notably, the DENV-2 cross-neutralising antibodies from ccJE+Advax immunised mice uniquely had no DENV-2 antibody-dependent infection enhancement (ADIE) activity, in contrast to high ADIE activity seen with DENV-1 cross-reactive antibodies induced by mbJE or ccJE alone or with alum adjuvant. JEV-stimulated splenocytes from ccJE+Advax immunised mice showed increased IL-17 and IFN-γ production, consistent with a mixed Th1 and Th17 response, whereas ccJE-alum was associated with production of mainly Th2 cytokines. In a mouse lethal challenge study against highly virulent JaTH160 JEV strain, ccJE+Advax conferred complete protection in a two-dose schedule with 50 ng of vaccine antigen and near complete protection after a single 200 ng dose of vaccine antigen. There is an ongoing lack of human vaccines against particular flaviviruses, including WNV, SLEV and MVEV. Given its ability to provide single-dose JEV protection and induce broadly neutralising antibodies devoid of ADIE activity, ccJE+Advax vaccine could be useful in situations where rapid protection is desirable, e.g., during a local outbreak or for use in travellers or armies requiring rapid deployment to JEV endemic regions.
Collapse
|
19
|
The Specificity of the Persistent IgM Neutralizing Antibody Response in Zika Virus Infections among Individuals with Prior Dengue Virus Exposure. J Clin Microbiol 2021; 59:e0040021. [PMID: 33980647 DOI: 10.1128/jcm.00400-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dengue viruses (DENV) and Zika virus (ZIKV) are related mosquito-borne flaviviruses with similar disease manifestations, vector ecologies, and geographic ranges. The ability to differentiate these viruses serologically is vital due to the teratogenic nature of ZIKV and the potential confounding of preexisting cross-reactive anti-DENV antibodies. Here, we illustrate the kinetics of the IgM neutralizing antibody (NAb) response using longitudinal samples ranging from acute ZIKV infection to late convalescence from individuals with evidence of prior DENV infection. By serially depleting antibody isotypes prior to the neutralization assay, we determined that IgM contributes predominantly to ZIKV neutralization and is less cross-reactive than the IgG NAb. The IgM NAb peaked around 14 days (95% confidence interval [95% CI], 13 to 15) and had a median duration of 257 days (95% CI, 133 to 427). These results demonstrate the persistence of IgM NAb after ZIKV infection and imply its potential role in diagnosis, vaccine evaluation, serosurveillance, and research on flavivirus-host interactions.
Collapse
|
20
|
Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med 2021; 81:100994. [PMID: 34274157 DOI: 10.1016/j.mam.2021.100994] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus, spread by the bite of carrier Culex mosquitoes. The subsequent disease caused is Japanese encephalitis (JE), which is the leading global cause of virus-induced encephalitis. The disease is predominant in the entire Asia-Pacific region with the potential of global spread. JEV is highly neuroinvasive with symptoms ranging from mild fever to severe encephalitis and death. One-third of JE infections are fatal, and half of the survivors develop permanent neurological sequelae. Disease prognosis is determined by a series of complex and intertwined signaling events dictated both by the virus and the host. All flaviviruses, including JEV replicate in close association with ER derived membranes by channelizing the protein and lipid components of the ER. This leads to activation of acute stress responses in the infected cell-oxidative stress, ER stress, and autophagy. The host innate immune and inflammatory responses also enter the fray, the components of which are inextricably linked to the cellular stress responses. These are especially crucial in the periphery for dendritic cell maturation and establishment of adaptive immunity. The pathogenesis of JEV is a combination of direct virus induced neuronal cell death and an uncontrolled neuroinflammatory response. Here we provide a comprehensive review of the JEV life cycle and how the cellular stress responses dictate the pathobiology and resulting immune response. We also deliberate on how modulation of these stress pathways could be a potential strategy to develop therapeutic interventions, and define the persisting challenges.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
21
|
Woo JH, Jeong YE, Jo JE, Shim SM, Ryou J, Kim KC, Lee WJ, Lee JY. Genetic Characterization of Japanese Encephalitis Virus Genotype 5 Isolated from Patient, South Korea, 2015. Emerg Infect Dis 2021; 26:1002-1006. [PMID: 32310056 PMCID: PMC7181942 DOI: 10.3201/eid2605.190977] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We isolated Japanese encephalitis virus genotype 5 from human specimens in South Korea. Whole-genome analysis showed 90.4% identity with other genotype 5 viruses from humans. This virus had a unique insertion in the NS4A gene. However, the envelope protein contained Lys 84, which was specific to strains of genotype 5 viruses from South Korea.
Collapse
|
22
|
Chauhan S, Rathore DK, Sachan S, Lacroix-Desmazes S, Gupta N, Awasthi A, Vrati S, Kalia M. Japanese Encephalitis Virus Infected Human Monocyte-Derived Dendritic Cells Activate a Transcriptional Network Leading to an Antiviral Inflammatory Response. Front Immunol 2021; 12:638694. [PMID: 34220803 PMCID: PMC8247639 DOI: 10.3389/fimmu.2021.638694] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
A comprehensive understanding of the human immune response to virus infection is imperative for developing effective therapies, antivirals, and vaccines. Dendritic cells (DCs) are among the first cells to encounter the virus and are also key antigen-presenting cells that link the innate and adaptive immune system. In this study, we focus on the human immune response to the mosquito-borne Japanese encephalitis virus (JEV), which is the leading cause of virus-induced encephalitis in south-east Asia and has the potential to become a global pathogen. We describe the gene regulatory circuit of JEV infection in human monocyte-derived DCs (moDCs) along with its functional validation. We observe that JEV can productively infect human moDCs leading to robust transcriptional activation of the interferon and NF-κB-mediated antiviral and inflammatory pathways. This is accompanied with DC maturation and release of pro-inflammatory cytokines and chemokines TNFα, IL-6, IL-8, IL-12, MCP-1. and RANTES. JEV-infected moDCs activated T-regulatory cells (Tregs) in allogenic mixed lymphocyte reactions (MLR) as seen by upregulated FOXP3 mRNA expression, suggestive of a host response to reduce virus-induced immunopathology. The virus also downregulated transcripts involved in Peroxisome Proliferator Activated Receptor (PPAR) signalling and fatty acid metabolism pathways suggesting that changes in cellular metabolism play a crucial role in driving the DC maturation and antiviral responses. Collectively, our data describe and corroborate the human DC transcriptional network that is engaged upon JEV sensing.
Collapse
Affiliation(s)
| | | | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Sebastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amit Awasthi
- Translational Health Science & Technology Institute, Faridabad, India
| | - Sudhanshu Vrati
- Translational Health Science & Technology Institute, Faridabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Manjula Kalia
- Translational Health Science & Technology Institute, Faridabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
23
|
Ngwe Tun MM, Kyaw AK, Nwe KM, Inoue S, Thant KZ, Morita K. Effectiveness of the SA 14-14-2 Live-Attenuated Japanese Encephalitis Vaccine in Myanmar. Vaccines (Basel) 2021; 9:vaccines9060568. [PMID: 34072933 PMCID: PMC8227667 DOI: 10.3390/vaccines9060568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Myanmar is an endemic country for the Japanese encephalitis virus (JEV), and the SA-14-14-2 live-attenuated JEV vaccine was first introduced as a catch-up vaccination campaign in 2017. To determine the effectiveness of vaccination by means of neutralizing antibody titers against JEV, a cross-sectional descriptive study was conducted among five to 15-year-old monastic school children in Mandalay, Myanmar. A total of 198 students who had received vaccines were recruited, and single-time investigation of anti-JEV IgG and neutralizing antibodies against wild-type JEV were determined using anti-JEV IgG ELISA and plaque reduction neutralization tests (PRNT50). All students 100% (198/198) showed positive results on the anti-JEV IgG ELISA, and 87% (172/198) of the students had neutralizing antibodies against JEV six months after immunization. The geometric mean titers of both IgG antibodies and neutralizing antibodies increased with the participants’ age groups, and statistically significant differences in anti-JEV IgG titers were noted across age groups. In this study, we could not investigate the persistence of neutralizing antibodies as only single-time blood collection was done. This study, which is the first report of JEV vaccination among children in Myanmar, showed similar neutralizing antibody production rates among vaccinated individuals as did studies in other countries.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine and Leading Program, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (S.I.); (K.M.)
- Correspondence: ; Tel.: +81-95-819-7829
| | - Aung Kyaw Kyaw
- Department of Medical Research, Pyin Oo Lwin Branch, Pyin Oo Lwin 05082, Myanmar;
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine and Leading Program, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (S.I.); (K.M.)
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine and Leading Program, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (S.I.); (K.M.)
| | - Kyaw Zin Thant
- Myanmar Academy of Medical Sciences, Yangon 11181, Myanmar;
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine and Leading Program, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (S.I.); (K.M.)
| |
Collapse
|
24
|
Bohning K, Sonnberg S, Chen HL, Zahralban-Steele M, Powell T, Hather G, Patel HK, Dean HJ. A high throughput reporter virus particle microneutralization assay for quantitation of Zika virus neutralizing antibodies in multiple species. PLoS One 2021; 16:e0250516. [PMID: 33891631 PMCID: PMC8064526 DOI: 10.1371/journal.pone.0250516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Zika virus is a Flavivirus, transmitted via Aedes mosquitos, that causes a range of symptoms including Zika congenital syndrome. Zika has posed a challenging situation for health, public and economic sectors of affected countries. To quantitate Zika virus neutralizing antibody titers in serum samples, we developed a high throughput plate based Zika virus reporter virus particle (RVP) assay that uses an infective, non-replicating particle encoding Zika virus surface proteins and capsid (CprME) and a reporter gene (Renilla luciferase). This is the first characterization of a Zika virus RVP assay in 384-well format using a Dengue replicon Renilla reporter construct. Serially diluted test sera were incubated with RVPs, followed by incubation with Vero cells. RVPs that have not been neutralized by antibodies in the test sera entered the cells and expressed Renilla luciferase. Quantitative measurements of neutralizing activity were determined using a plate-based assay and commercially available substrate. The principle of limiting the infection to a single round increases the precision of the assay measurements. RVP log10EC50 titers correlated closely with titers determined using a plaque reduction neutralization test (PRNT) (R2>95%). The plate-based Zika virus RVP assay also demonstrated high levels of precision, reproducibility and throughput. The assay employs identical reagents for human, rhesus macaque and mouse serum matrices. Spiking studies indicated that the assay performs equally well in different species, producing comparable titers irrespective of the serum species. The assay is conducted in 384-well plates and can be automated to simultaneously achieve high throughput and high reproducibility.
Collapse
Affiliation(s)
- Kelly Bohning
- Takeda Vaccines, Inc., Cambridge, Massachusetts, United States of America
| | - Stephanie Sonnberg
- Takeda Vaccines, Inc., Cambridge, Massachusetts, United States of America
| | - Hui-Ling Chen
- Takeda Vaccines, Inc., Cambridge, Massachusetts, United States of America
| | | | - Timothy Powell
- Takeda Vaccines, Inc., Cambridge, Massachusetts, United States of America
| | - Greg Hather
- Takeda Vaccines, Inc., Cambridge, Massachusetts, United States of America
| | - Hetal K. Patel
- Takeda Vaccines, Inc., Cambridge, Massachusetts, United States of America
| | - Hansi J. Dean
- Takeda Vaccines, Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
25
|
Dussupt V, Modjarrad K, Krebs SJ. Landscape of Monoclonal Antibodies Targeting Zika and Dengue: Therapeutic Solutions and Critical Insights for Vaccine Development. Front Immunol 2021; 11:621043. [PMID: 33664734 PMCID: PMC7921836 DOI: 10.3389/fimmu.2020.621043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
The unprecedented 2015-2016 Zika outbreak in the Americas sparked global concern and drove the rapid deployment of vaccine and therapeutic countermeasures against this re-emerging pathogen. Alongside vaccine development, a number of potent neutralizing antibodies against Zika and related flaviviruses have been identified in recent years. High-throughput antibody isolation approaches have contributed to a better understanding of the B cell responses elicited following infection and/or vaccination. Structure-based approaches have illuminated species-specific and cross-protective epitopes of therapeutic value. This review will highlight previously described monoclonal antibodies with the best therapeutic potential against ZIKV and related flaviviruses, and discuss their implications for the rational design of better vaccine strategies.
Collapse
Affiliation(s)
- Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Shelly J. Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
26
|
Human DDX3X Unwinds Japanese Encephalitis and Zika Viral 5' Terminal Regions. Int J Mol Sci 2021; 22:ijms22010413. [PMID: 33401776 PMCID: PMC7795613 DOI: 10.3390/ijms22010413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
Flavivirus genus includes many deadly viruses such as the Japanese encephalitis virus (JEV) and Zika virus (ZIKV). The 5' terminal regions (TR) of flaviviruses interact with human proteins and such interactions are critical for viral replication. One of the human proteins identified to interact with the 5' TR of JEV is the DEAD-box helicase, DDX3X. In this study, we in vitro transcribed the 5' TR of JEV and demonstrated its direct interaction with recombinant DDX3X (Kd of 1.66 ± 0.21 µM) using microscale thermophoresis (MST). Due to the proposed structural similarities of 5' and 3' TRs of flaviviruses, we investigated if the ZIKV 5' TR could also interact with human DDX3X. Our MST studies suggested that DDX3X recognizes ZIKV 5' TR with a Kd of 7.05 ± 0.75 µM. Next, we performed helicase assays that suggested that the binding of DDX3X leads to the unwinding of JEV and ZIKV 5' TRs. Overall, our data indicate, for the first time, that DDX3X can directly bind and unwind in vitro transcribed flaviviral TRs. In summary, our work indicates that DDX3X could be further explored as a therapeutic target to inhibit Flaviviral replication.
Collapse
|
27
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
28
|
Yao Y, Xu X, Li Y, Wang X, Yang H, Chen J, Liu S, Deng Y, Zhao Z, Yin Q, Sun M, Shi L. Study of the association of seventeen single nucleotide polymorphisms and their haplotypes in the TNF-α, IL-2, IL-4 and IL-10 genes with the antibody response to inactivated Japanese encephalitis vaccine. Hum Vaccin Immunother 2020; 16:2449-2455. [PMID: 32186960 PMCID: PMC7644173 DOI: 10.1080/21645515.2020.1724743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate whether the TNF-α, IL-2, IL-4 and IL-10 genes contribute to variations in vaccine-induced immune responses after immunization with the inactivated Japanese encephalitis vaccine (IJEV), a total of 369 individuals who received the IJEV were enrolled. Based on Japanese encephalitis virus (JEV) neutralization antibodies (NAbs), the individuals were divided into seropositive (SP) and seronegative (SN) groups. Then, 17 SNPs in the TNF-α, IL-2, IL-4 and IL-10 genes were genotyped using the TaqMan method. Although there was no association of the TNF-α, IL-2, IL-4 and IL-10 genes with JEV seropositivity triggered by JEV vaccination when all the individuals in the SP and SN groups were compared, differences were observed in a subgroup analysis. In the male group, rs2243291 in the IL-4 gene showed a difference between the JEV SP and SN groups with the overdominant model (P = .045), and the C/G genotypes conferred more JEV seropositivity (OR = 1.87; 95% CI: 1.01-3.49); the CT genotype of rs3093726 in the TNF-α gene showed higher JEV NAbs geometric mean titer (GMT) than the TT genotype (P = .018, CT: 1.677 ± 0.144 vs TT: 1.271 ± 0.039). Furthermore, the rs1800629 genotype in the TNF-α gene and the rs1800896 genotype in the IL-10 gene exhibited a trend of association with JEV seropositivity in the female group, but the difference was not significant. The present study suggested that the polymorphisms in the cytokine genes could be associated with sex-specific JEV NAbs seroconversion. However, more samples should be studied, and further functional verification should be performed.
Collapse
Affiliation(s)
- Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China
| | - Xiuwen Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China
| | - Yaheng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China
| | - Xiaona Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China
| | - Huijuan Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China.,Yunnan Key Laboratory of Vaccine Research, Development on Severe Infectious Disease , Kunming, China
| | - Jun Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China
| | - Yan Deng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China.,Yunnan Key Laboratory of Vaccine Research, Development on Severe Infectious Disease , Kunming, China
| | - Zhimei Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China.,Yunnan Key Laboratory of Vaccine Research, Development on Severe Infectious Disease , Kunming, China
| | - Qiongzhou Yin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China.,Yunnan Key Laboratory of Vaccine Research, Development on Severe Infectious Disease , Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China.,Yunnan Key Laboratory of Vaccine Research, Development on Severe Infectious Disease , Kunming, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , Kunming, China
| |
Collapse
|
29
|
Araujo SC, Pereira LR, Alves RPS, Andreata-Santos R, Kanno AI, Ferreira LCS, Gonçalves VM. Anti-Flavivirus Vaccines: Review of the Present Situation and Perspectives of Subunit Vaccines Produced in Escherichia coli. Vaccines (Basel) 2020; 8:vaccines8030492. [PMID: 32878023 PMCID: PMC7564369 DOI: 10.3390/vaccines8030492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
This article aims to review the present status of anti-flavivirus subunit vaccines, both those at the experimental stage and those already available for clinical use. Aspects regarding development of vaccines to Yellow Fever virus, (YFV), Dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) are highlighted, with particular emphasis on purified recombinant proteins generated in bacterial cells. Currently licensed anti-flavivirus vaccines are based on inactivated, attenuated, or virus-vector vaccines. However, technological advances in the generation of recombinant antigens with preserved structural and immunological determinants reveal new possibilities for the development of recombinant protein-based vaccine formulations for clinical testing. Furthermore, novel proposals for multi-epitope vaccines and the discovery of new adjuvants and delivery systems that enhance and/or modulate immune responses can pave the way for the development of successful subunit vaccines. Nonetheless, advances in this field require high investments that will probably not raise interest from private pharmaceutical companies and, therefore, will require support by international philanthropic organizations and governments of the countries more severely stricken by these viruses.
Collapse
Affiliation(s)
- Sergio C. Araujo
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Lennon R. Pereira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Rubens P. S. Alves
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Alex I. Kanno
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Luis Carlos S. Ferreira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| |
Collapse
|
30
|
Kalia A, Agrawal M, Gupta N. CD8 + T cells are crucial for humoral immunity establishment by SA14-14-2 live attenuated Japanese encephalitis vaccine in mice. Eur J Immunol 2020; 51:368-379. [PMID: 32749679 DOI: 10.1002/eji.202048745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Indexed: 11/09/2022]
Abstract
The live attenuated SA14-14-2 Japanese encephalitis (JE) vaccine is a historical vaccine that protects against JE. Despite its extensive use, the mechanism of protective immunity conferred by the SA14-14-2 vaccine is not well established. Here, we used mouse models to understand the mechanism of the development of humoral immunity against the vaccine. The vaccine induces robust GC responses within a week postimmunization. In lethal virus challenge, we show that CD4+ T cells alone, but not CD8+ T cells, are sufficient to confer vaccine-mediated protection. However, the CD4-mediated protection was potentiated in the presence of vaccine-primed CD8+ T cells. Employing CD8-deficient mice, we show that both the protective traits of CD4+ T cells and the quality of antibody response to the vaccine are impaired in absence of CD8+ T cells. We further demonstrate that the poor protective immune response induced by the vaccine in absence of CD8+ T cells is mainly due to the impaired differentiation and function of follicular Th cells, leading to suboptimal GC reaction. Our study highlights an unprecedented role of CD8+ T cells in the establishment of humoral responses to the vaccine. By elucidating underlying cellular determinants of vaccine-induced protective immunity, our work has implications for rational design of vaccines against JE virus and related flaviviruses.
Collapse
Affiliation(s)
- Anurag Kalia
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Mona Agrawal
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
31
|
Goh VSL, Mok CK, Chu JJH. Antiviral Natural Products for Arbovirus Infections. Molecules 2020; 25:molecules25122796. [PMID: 32560438 PMCID: PMC7356825 DOI: 10.3390/molecules25122796] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the course of the last 50 years, the emergence of several arboviruses have resulted in countless outbreaks globally. With a high proportion of infections occurring in tropical and subtropical regions where arthropods tend to be abundant, Asia in particular is a region that is heavily affected by arboviral diseases caused by dengue, Japanese encephalitis, West Nile, Zika, and chikungunya viruses. Major gaps in protection against the most significant emerging arboviruses remains as there are currently no antivirals available, and vaccines are only available for some. A potential source of antiviral compounds could be discovered in natural products—such as vegetables, fruits, flowers, herbal plants, marine organisms and microorganisms—from which various compounds have been documented to exhibit antiviral activities and are expected to have good tolerability and minimal side effects. Polyphenols and plant extracts have been extensively studied for their antiviral properties against arboviruses and have demonstrated promising results. With an abundance of natural products to screen for new antiviral compounds, it is highly optimistic that natural products will continue to play an important role in contributing to antiviral drug development and in reducing the global infection burden of arboviruses.
Collapse
Affiliation(s)
- Vanessa Shi Li Goh
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chee-Keng Mok
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| |
Collapse
|
32
|
Chang YH, Chiao DJ, Hsu YL, Lin CC, Wu HL, Shu PY, Chang SF, Chang JH, Kuo SC. Mosquito Cell-Derived Japanese Encephalitis Virus-Like Particles Induce Specific Humoral and Cellular Immune Responses in Mice. Viruses 2020; 12:v12030336. [PMID: 32204533 PMCID: PMC7150764 DOI: 10.3390/v12030336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is the major cause of an acute encephalitis syndrome in many Asian countries, despite the fact that an effective vaccine has been developed. Virus-like particles (VLPs) are self-assembled multi-subunit protein structures which possess specific epitope antigenicities related to corresponding native viruses. These properties mean that VLPs are considered safe antigens that can be used in clinical applications. In this study, we developed a novel baculovirus/mosquito (BacMos) expression system which potentially enables the scalable production of JEV genotype III (GIII) VLPs (which are secreted from mosquito cells). The mosquito-cell-derived JEV VLPs comprised 30-nm spherical particles as well as precursor membrane protein (prM) and envelope (E) proteins with densities that ranged from 30% to 55% across a sucrose gradient. We used IgM antibody-capture enzyme-linked immunosorbent assays to assess the resemblance between VLPs and authentic virions and thereby characterized the epitope specific antigenicity of VLPs. VLP immunization was found to elicit a specific immune response toward a balanced IgG2a/IgG1 ratio. This response effectively neutralized both JEV GI and GIII and elicited a mixed Th1/Th2 response in mice. This study supports the development of mosquito cell-derived JEV VLPs to serve as candidate vaccines against JEV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cell Line
- Culicidae/virology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/ultrastructure
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Enzyme-Linked Immunosorbent Assay
- Epitopes/immunology
- Fluorescent Antibody Technique
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Neutralization Tests
- Vaccines, Virus-Like Particle/immunology
- Virion
Collapse
Affiliation(s)
- Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsueh-Ling Wu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Jui-Huan Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: ; Tel.: +886-2-8177-7038 (ext. 19946)
| |
Collapse
|
33
|
Kling K, Harder T, Younger Z, Burchard G, Schmidt-Chanasit J, Wichmann O. Vaccination against Japanese encephalitis with IC51: systematic review on immunogenicity, duration of protection and safety. J Travel Med 2020; 27:5732465. [PMID: 32043122 DOI: 10.1093/jtm/taaa016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/28/2020] [Indexed: 01/04/2023]
Abstract
Japanese encephalitis is a disease caused by a flavivirus which is transmitted by mosquitos in endemic countries. Considering the potentially severe outcomes of the disease, vaccination is recommended for those at risk of exposure. During recent years, IC51 (IXIARO®, JESPECT®, JEVAL®) has increasingly been used to protect travellers from Europe and the USA. However, no systematic review exists that summarizes the currently available evidence on the immunogenicity and safety of this vaccine. We conducted a systematic review on the immunogenicity and safety of IC51, using the databases PubMed, MEDLINE, EMBASE and ClinicalTrials.gov (search date: 31 August 2019). Data extracted from included studies were grouped by outcomes and stratified by population and setting. Risk of bias (ROB) was assessed using the RoB 2 tool for randomized controlled trials (RCTs) and ROBINS-I for non-randomized studies. Due to high heterogeneity, meta-analysis was not performed. A total of 32 studies from 16 countries met the inclusion criteria (15 RCTs, 17 non-randomized studies). ROB was serious or high in the majority of studies. Seroprotection rates ranged from 93 to 100% in adults (seven studies) and from 91 to 100% in children (four studies). In the study involving adults aged 64 years and older, seroprotection was 65% with higher rates in persons who were previously vaccinated against tick-borne encephalitis virus. Safety was investigated in 27 studies. Rates of serious adverse events were below 5% in all age groups, with the majority not being causally related to the vaccine. IC51 is a safe vaccine with good seroprotective abilities in persons aged >2 months to <64 years. The body of evidence, however, is weakened by a large amount of heterogeneity in study and clinical trial methodology. Further well-designed RCTs with special risk groups are needed.
Collapse
Affiliation(s)
- Kerstin Kling
- Immunization Unit, Robert Koch Institute, Berlin 13353, Germany
| | - Thomas Harder
- Immunization Unit, Robert Koch Institute, Berlin 13353, Germany
| | - Zane Younger
- Immunization Unit, Robert Koch Institute, Berlin 13353, Germany
| | - Gerd Burchard
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg 22609, Germany
| | - Ole Wichmann
- Immunization Unit, Robert Koch Institute, Berlin 13353, Germany
| |
Collapse
|
34
|
Young CL, Lyons AC, Hsu WW, Vanlandingham DL, Park SL, Bilyeu AN, Ayers VB, Hettenbach SM, Zelenka AM, Cool KR, Peterson GJ, Higgs S, Huang YJS. Protection of swine by potent neutralizing anti-Japanese encephalitis virus monoclonal antibodies derived from vaccination. Antiviral Res 2019; 174:104675. [PMID: 31825852 DOI: 10.1016/j.antiviral.2019.104675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus endemic in the Asia Pacific region. Despite use of several highly effective vaccines, it is estimated that up to 44,000 new cases of Japanese encephalitis (JE) occur every year including 14,000 deaths and 24,000 survivors with permanent sequelae. Humoral immunity induced by vaccination is critical for effective protection. Potently neutralizing antibodies reactive with the JEV envelope (E) protein are important since protective immune responses induced by both live-attenuated and inactivated JE vaccines target the E protein. Our understanding of how vaccine-induced humoral immunity protects vaccinees from morbidity and mortality is, however, limited and largely obtained from in vitro studies. With the exception of neurovirulence mouse models, very few platforms are available for evaluating the protective efficacy of neutralizing antibodies against JEV in vivo. Swine are a major amplifying host in the natural JEV transmission cycle and develop multiple pathological outcomes similar to humans infected with JEV. In this study, prophylactic passive immunization was performed in a miniature swine model, using two vaccination-induced monoclonal antibodies (mAb), JEV-31 and JEV-169. These were selected as representatives for antibodies reactive with the major antigenic structures in the E protein of JEV and related flaviviruses. JEV-31 recognizes the lateral ridge of E protein domain III (EDIII) whilst JEV-169 has a broad footprint of binding involving residues throughout domains I (EDI) and II (EDII) of the E protein. Detection of neutralizing antibodies in the serum of immunized animals mimics the presence of neutralizing antibodies in vaccinated individuals. Passive immunization with both mAbs significantly reduced the severity of diseases that resemble the symptoms of human JE including fever, viremia, viral shedding, systemic infection, and neuroinvasion. In contrast to the uniformed decrease of viral loads in lymphoid and central nervous systems, distinct kinetics in the onset of fever and viremia between animals receiving JEV-31 and JEV-169 suggest potential differences in immune protection mechanisms between anti-EDI and anti-EDIII neutralizing antibodies elicited by vaccination. Our data demonstrate the feasibility of using swine models in characterizing the protective humoral immunity against JEV and increase our understanding of how clonal populations of anti-E mAbs derived from JE vaccination protect against infection in vivo.
Collapse
Affiliation(s)
- Christian L Young
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA; National Bio- and Agro-Defense Facility Scientist Training Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, USA
| | - Amy C Lyons
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - So Lee Park
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Ashley N Bilyeu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Victoria B Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA; National Bio- and Agro-Defense Facility Scientist Training Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, USA
| | - Susan M Hettenbach
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Ashley M Zelenka
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Konner R Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Gregory J Peterson
- University Research Compliance Office, Kansas State University, Manhattan, KS, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
35
|
Meeting Report: WHO consultation on considerations for regulatory expectations of Zika virus vaccines for use during an emergency. Vaccine 2019; 37:7443-7450. [DOI: 10.1016/j.vaccine.2016.10.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/25/2022]
|
36
|
Kaiser JA, Barrett ADT. Twenty Years of Progress Toward West Nile Virus Vaccine Development. Viruses 2019; 11:E823. [PMID: 31491885 PMCID: PMC6784102 DOI: 10.3390/v11090823] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Although West Nile virus (WNV) has been a prominent mosquito-transmitted infection in North America for twenty years, no human vaccine has been licensed. With a cumulative number of 24,714 neurological disease cases and 2314 deaths in the U.S. since 1999, plus a large outbreak in Europe in 2018 involving over 2000 human cases in 15 countries, a vaccine is essential to prevent continued morbidity, mortality, and economic burden. Currently, four veterinary vaccines are licensed, and six vaccines have progressed into clinical trials in humans. All four veterinary vaccines require multiple primary doses and annual boosters, but for a human vaccine to be protective and cost effective in the most vulnerable older age population, it is ideal that the vaccine be strongly immunogenic with only a single dose and without subsequent annual boosters. Of six human vaccine candidates, the two live, attenuated vaccines were the only ones that elicited strong immunity after a single dose. As none of these candidates have yet progressed beyond phase II clinical trials, development of new candidate vaccines and improvement of vaccination strategies remains an important area of research.
Collapse
Affiliation(s)
- Jaclyn A Kaiser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
37
|
Wei J, Wang X, Zhang J, Guo S, Pang L, Shi K, Liu K, Shao D, Qiu Y, Liu L, Widén F, Li B, Ma Z. Partial cross-protection between Japanese encephalitis virus genotype I and III in mice. PLoS Negl Trop Dis 2019; 13:e0007601. [PMID: 31374086 PMCID: PMC6693775 DOI: 10.1371/journal.pntd.0007601] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/14/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Genotype III (GIII) Japanese encephalitis virus (JEV) predominance has gradually been replaced by genotype I (GI) over the last 20 years in many Asian countries. This genotype shift raises concerns about the protective efficacy of Japanese encephalitis (JE) vaccines, as all of the currently licensed JE vaccines are derived from GIII strains. In this study, we conducted vaccination-challenge protection assays to evaluate the cross-protective efficacy of GI- or GIII-derived vaccines against the challenge of a heterologous genotype using a mouse challenge model. Titration of the neutralizing antibodies elicited by SA14-14-2 live-attenuated JE vaccine (SA14-14-2 vaccine), a GIII-derived vaccine, indicated that the titer of neutralizing antibodies specific to heterologous genotype GI stain was significantly lower than that specific to homologous genotype GIII strain in both pigs and mice immunized with the SA14-14-2 vaccine. Vaccination of mice with SA14-14-2 vaccine or a GIII-inactivated vaccine at high and medium doses completely protected vaccinated mice against challenge with the homologous genotype GIII strains, but failed to provide the vaccinated mice complete protection against the challenge of heterologous genotype GI strains. The protection rates against GI strain challenge were 60%–80%, showing that these vaccines were partially protective against GI strain challenge. Additionally, vaccination of mice with a GI-inactivated vaccine conferred 100% protection against the challenge of homologous genotype GI strains, but 50%–90% protection against the challenge of heterologous genotype GIII strains, showing a reduced protective efficacy of a GI-derived vaccine against GIII strain challenge. Overall, these observations demonstrated a partial cross-protection between GI and GIII strains and suggested a potential need for new JE vaccine strategies, including options like a bivalent vaccine, to control both genotype infection. Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes Japanese encephalitis (JE) in humans and reproductive disorders in pigs. JEV is phylogenetically classified into five genotypes. JEV genotype III (GIII) was historically dominant throughout most of Asia, but has been replaced by genotype I (GI) over the last 20 years in many Asian countries. Amino acid variations in JEV envelope protein play major roles in determination of antigenicity. Elicitation of cross-neutralizing antibodies for GI and GIII strains has been reported, showing an antigenic difference between the two genotypes. These amino acid differences in JEV envelope proteins raise a concern about the protective efficacy of JE vaccines against the emerged GI strain infection, because all currently licensed JE vaccines are derived from GIII strains. We evaluated the protective efficacy of JE vaccines against the heterologous genotype strain using a mouse challenge model and found a partial cross-protection between GI- or GIII-derived vaccines against the challenge of the heterologous genotype. This partial cross-protective efficacy suggested a potential need for a new JE vaccine, one solution may be a bivalent vaccine, to control infection with either genotype. However, more comprehensive studies should be conducted to address the partial cross-protective efficacy of JE vaccines against the heterologous genotype strains using JEV natural hosts such as pigs.
Collapse
Affiliation(s)
- Jianchao Wei
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xin Wang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Junjie Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Shuang Guo
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Linlin Pang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Kun Shi
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Ke Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Donghua Shao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Yafeng Qiu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Lihong Liu
- Department of Virology, Immunobiology and Parasitology (VIP), The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Frederik Widén
- Department of Virology, Immunobiology and Parasitology (VIP), The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Beibei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
- * E-mail: (BL); (ZM)
| | - Zhiyong Ma
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
- * E-mail: (BL); (ZM)
| |
Collapse
|
38
|
Hills SL, Walter EB, Atmar RL, Fischer M. Japanese Encephalitis Vaccine: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep 2019; 68:1-33. [PMID: 31518342 PMCID: PMC6659993 DOI: 10.15585/mmwr.rr6802a1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This report updates the 2010 recommendations from the CDC Advisory Committee on Immunization Practices (ACIP) regarding prevention of Japanese encephalitis (JE) among U.S. travelers and laboratory workers (Fischer M, Lindsey N, Staples JE, Hills S. Japanese encephalitis vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010;59[No. RR-1]). The report summarizes the epidemiology of JE, describes the JE vaccine that is licensed and available in the United States, and provides recommendations for its use among travelers and laboratory workers.JE virus, a mosquitoborne flavivirus, is the most common vaccine-preventable cause of encephalitis in Asia. JE occurs throughout most of Asia and parts of the western Pacific. Approximately 20%-30% of patients die, and 30%-50% of survivors have neurologic, cognitive, or behavioral sequelae. No antiviral treatment is available.Inactivated Vero cell culture-derived JE vaccine (Ixiaro [JE-VC]) is the only JE vaccine that is licensed and available in the United States. In 2009, the U.S. Food and Drug Administration (FDA) licensed JE-VC for use in persons aged ≥17 years; in 2013, licensure was extended to include children aged ≥2 months.Most travelers to countries where the disease is endemic are at very low risk for JE. However, some travelers are at increased risk for infection on the basis of their travel plans. Factors that increase the risk for JE virus exposure include 1) traveling for a longer period; 2) travel during the JE virus transmission season; 3) spending time in rural areas; 4) participating in extensive outdoor activities; and 5) staying in accommodations without air conditioning, screens, or bed nets. All travelers to countries where JE is endemic should be advised to take precautions to avoid mosquito bites to reduce the risk for JE and other vectorborne diseases. For some persons who might be at increased risk for JE, the vaccine can further reduce the risk for infection. The decision about whether to vaccinate should be individualized and consider the 1) risks related to the specific travel itinerary, 2) likelihood of future travel to countries where JE is endemic, 3) high morbidity and mortality of JE, 4) availability of an effective vaccine, 5) possibility (but low probability) of serious adverse events after vaccination, and 6) the traveler's personal perception and tolerance of risk.JE vaccine is recommended for persons moving to a JE-endemic country to take up residence, longer-term (e.g., ≥1 month) travelers to JE-endemic areas, and frequent travelers to JE-endemic areas. JE vaccine also should be considered for shorter-term (e.g., <1 month) travelers with an increased risk for JE on the basis of planned travel duration, season, location, activities, and accommodations and for travelers to JE-endemic areas who are uncertain about their specific travel duration, destinations, or activities. JE vaccine is not recommended for travelers with very low-risk itineraries, such as shorter-term travel limited to urban areas or outside of a well-defined JE virus transmission season.
Collapse
|
39
|
Abstract
The emergence of Zika virus in Brazil and its association with microcephaly and Guillain-Barré syndrome led to accelerated vaccine development efforts. Based on prior flavivirus vaccine development programs, knowledge of flavivirus particle structure, definition of E dimers as the key antigenic target, and deep understanding of neutralizing mechanisms, multiple vaccine strategies have advanced to the stage of clinical evaluation with unprecedented speed. These include nucleic acid (DNA and messenger RNA), whole-inactivated virus, live-attenuated or chimeric virus, and protein or viruslike particle vaccines. Within a year from the declaration by the World Health Organization of Zika virus as a Public Health Emergency of International Concern, multiple vaccine candidates entered clinical trials, now totaling 7 products with an additional 40-plus candidate vaccines in preclinical development. The rapid progress in vaccine development demonstrates the capacity of governments, public health organizations, and the scientific community to respond to pandemic threats when sufficient prior knowledge exists, emergency funding is made available, and interagency cooperation is achieved and serves as a paradigm for preparing for future emerging infectious diseases.
Collapse
Affiliation(s)
- Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
40
|
Wang R, Xie L, Gao N, Fan D, Chen H, Wang P, Zhou H, An J. Decreases in Both the Seroprevalence of Serum Antibodies and Seroprotection against Japanese Encephalitis Virus among Vaccinated Children. Virol Sin 2019; 34:243-252. [PMID: 30911897 DOI: 10.1007/s12250-019-00099-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/01/2019] [Indexed: 02/02/2023] Open
Abstract
The incidence of Japanese encephalitis (JE) has significantly decreased in China due to JE vaccines. In this study, we investigated the post-JE vaccination seroprevalence and protection provided by vaccinated sera against Japanese encephalitis virus (JEV) to elucidate the persistence and waning of antibodies to JEV among JE-SA14-14-2-vaccinated children. A total of 300 serum samples were collected from vaccinated children aged 3-10 years in Zhaotong, Yunnan, China. The seroprevalence of anti-JEV antibodies was determined by enzyme-linked immune sorbent assay and plaque reduction neutralization test. The highest seropositivity of 82% was observed in vaccinated children during the first 0.5-1.5 years after booster vaccination. Then, the seropositivity began to decline and remained lower than the original level observed in the 0.5-1.5-year group. An association was found between the waning of seroprevalence and elapsed time of the post-booster vaccination. Similarly, the neutralizing antibody (nAb) titres gradually decreased over time, and the levels showed a positive correlation with the protective efficacy in mice. This finding suggests that nAbs play an important role in the antiviral process and that the nAb titre is an adequately credible parameter for evaluating the protective efficacy induced by the JE vaccine. Our results provide data that clarify the persistence and waning of antibodies to JEV, which may help elucidate the pathogenesis of JE.
Collapse
Affiliation(s)
- Ran Wang
- Department of Microbiology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing, 100069, China
| | - Lyu Xie
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, China
| | - Na Gao
- Department of Microbiology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing, 100069, China
| | - Dongying Fan
- Department of Microbiology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing, 100069, China
| | - Hui Chen
- Department of Microbiology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing, 100069, China
| | - Peigang Wang
- Department of Microbiology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing, 100069, China
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing, 100069, China. .,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
41
|
Yao Y, Yang H, Shi L, Liu S, Li C, Chen J, Zhou Z, Sun M, Shi L. HLA Class II Genes HLA-DRB1, HLA-DPB1, and HLA-DQB1 Are Associated With the Antibody Response to Inactivated Japanese Encephalitis Vaccine. Front Immunol 2019; 10:428. [PMID: 30906300 PMCID: PMC6418001 DOI: 10.3389/fimmu.2019.00428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/18/2019] [Indexed: 01/31/2023] Open
Abstract
Aim: The objective of this study was to evaluate the association of the human leukocyte antigen (HLA) class II genes HLA-DRB1, HLA-DPB1, and HLA-DQB1 with the humoral immune response elicited by inactivated Japanese encephalitis (JE) vaccine (IJEV). Methods: A total of 373 individuals aged 3–12 years in the Inner Mongolia Autonomous Region in China, who received two doses of IJEV at 0 and 7 days, were enrolled in the current study. Based on the individuals' specific JE virus (JEV)-neutralizing antibodies (NAbs), they were divided into a seropositive and a seronegative group. HLA-DRB1, HLA-DPB1, and HLA-DQB1 were genotyped using a sequencing-based typing method. Next, the association of the HLA class II genes and their haplotypes with antibody response was evaluated. Results: Based on NAbs, a total of 161 individuals were classified as seropositive and 212 as seronegative. DQB1*02:01 was significantly associated with JEV seropositivity (P < 0.001, OR = 0.364, 95% CI: 0.221–0.600), while DQB1*02:02 was significantly associated with JEV seronegativity (P = 5.03 × 10−6, OR = 7.341, 95% CI: 2.876–18.736). The haplotypes DRB1*07:01-DPB1*04:01-DQB1*02:01, DRB1*15:01-DPB1*02:01-DQB1*06:02, DRB1*07:01-DQB1*02:01, and DPB1*02:01-DQB1*06:02 were very frequent in the seropositive group, while DRB1*07:01-DPB1*17:01-DQB1*02:02, DRB1*07:01-DQB1*02:02, and DPB1*17:01-DQB1*02:02 were very frequent in the seronegative group. The presence of DRB1*01:01, DRB1*04:05, DRB1*09:01, DRB1*12:02, DRB1*13:02, and DRB1*14:01 was associated with a higher geometric mean titer (GMT) of NAbs than that of DRB1*11:01 at the DRB1 locus (P < 0.05). At the DPB1 locus, the presence of DPB1*05:01 was associated with higher GMTs than that of DPB1*02:01 and DPB1*13:01 (P < 0.05), and the presence of DPB1*04:01 and DPB1*09:01 was associated with higher GMTs than that of DPB1*13:01 (P < 0.05). Conclusions: The present study suggests that HLA class II genes may influence the antibody response to IJEV.
Collapse
Affiliation(s)
- Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Huijuan Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Lei Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Chuanying Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jun Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ziyun Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
42
|
Sornjai W, Jaratsittisin J, Auewarakul P, Wikan N, Smith DR. Analysis of Zika virus neutralizing antibodies in normal healthy Thais. Sci Rep 2018; 8:17193. [PMID: 30464242 PMCID: PMC6249253 DOI: 10.1038/s41598-018-35643-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) infections have been reported from all over Thailand, but the number of reported cases remains low, suggesting a degree of immune protection against ZIKV infection. To address this possibility, the presence of ZIKV neutralizing antibodies was determined in serum from 135 healthy Thai adults with a plaque reduction neutralization test (PRNT), and a number of samples were subsequently analyzed for the presence of neutralizing antibodies to dengue virus (DENV) and Japanese encephalitis virus (JEV). Results showed that 70.4% (PRNT50 ≥ 10), 55.6 (PRNT50 ≥ 20) or 22.2% (PRNT90 ≥ 20) of the samples showed neutralizing antibodies to ZIKV. Detailed analysis showed no association between the presence of neutralizing antibodies to other flaviviruses (DENV, JEV) and the presence of ZIKV neutralizing antibodies. These results suggest that the level of ZIKV neutralizing antibodies in the Thai population is enough to dampen the transmission of the virus in Thailand.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand.
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
43
|
Baldwin WR, Livengood JA, Giebler HA, Stovall JL, Boroughs KL, Sonnberg S, Bohning KJ, Dietrich EA, Ong YT, Danh HK, Patel HK, Huang CYH, Dean HJ. Purified Inactivated Zika Vaccine Candidates Afford Protection against Lethal Challenge in Mice. Sci Rep 2018; 8:16509. [PMID: 30405178 PMCID: PMC6220238 DOI: 10.1038/s41598-018-34735-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/23/2018] [Indexed: 01/07/2023] Open
Abstract
In response to the 2016 global public health emergency of international concern announced by the World Health Organization surrounding Zika virus (ZIKV) outbreaks, we developed a purified inactivated Zika virus vaccine (PIZV) candidate from ZIKV strain PRVABC59, isolated during the outbreak in 2015. The virus isolate was plaque purified, creating six sub-isolated virus stocks, two of which were selected to generate PIZV candidates for preclinical immunogenicity and efficacy evaluation in mice. The alum-adjuvanted PIZV candidates were highly immunogenic in both CD-1 and AG129 mice after a 2-dose immunization. Further, AG129 mice receiving 2 doses of PIZV formulated with alum were fully protected against lethal ZIKV challenge and mouse immune sera elicited by the PIZV candidates were capable of neutralizing ZIKVs of both African and Asian genetic lineages in vitro. Additionally, passive immunization of naïve mice with ZIKV-immune serum showed strong positive correlation between neutralizing ZIKV antibody (NAb) titers and protection against lethal challenge. This study supported advancement of the PIZV candidate toward clinical development.
Collapse
Affiliation(s)
- Whitney R. Baldwin
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA ,0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Jill A. Livengood
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| | - Holli A. Giebler
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA ,0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Janae L. Stovall
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Karen L. Boroughs
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | | | - Kelly J. Bohning
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| | - Elizabeth A. Dietrich
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Yee Tsuey Ong
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Hoang K. Danh
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| | - Hetal K. Patel
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| | - Claire Y.-H. Huang
- 0000 0001 2163 0069grid.416738.fArboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Hansi J. Dean
- 0000 0004 0447 7762grid.419849.9Takeda Vaccines Inc, Cambridge, MA USA
| |
Collapse
|
44
|
Barzon L, Palù G. Recent developments in vaccines and biological therapies against Japanese encephalitis virus. Expert Opin Biol Ther 2018; 18:851-864. [DOI: 10.1080/14712598.2018.1499721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
45
|
Wagner A, Garner-Spitzer E, Jasinska J, Kollaritsch H, Stiasny K, Kundi M, Wiedermann U. Age-related differences in humoral and cellular immune responses after primary immunisation: indications for stratified vaccination schedules. Sci Rep 2018; 8:9825. [PMID: 29959387 PMCID: PMC6026142 DOI: 10.1038/s41598-018-28111-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Immunosenescence is characterised by reduced B and T cell responses. Evidence shows that booster vaccinations are less effective in elderly people, but data on the efficacy of primary immunisation are sparse. We conducted a monocentric, open label, phase IV trial to compare immune responses to primary vaccinations using the inactivated, adjuvanted Japanese Encephalitis vaccine by 30 elderly people (mean 69, range 61-78 years) and 30 younger people (mean 24, range 18-30 years). Humoral and cellular immune responses were analysed in relation to age and cytomegalovirus (CMV) seropositivity. Vaccine-specific antibody titres were significantly lower in elderly participants and 47% of them were non- or low responders after the two doses of the vaccine neo-antigen. The reduced humoral immune responses in elderly people correlated with reduced cytokine production, such as interferon gamma (IFN-γ) in vitro, as well as higher frequencies of late-differentiated effector and effector memory T cells and T regulatory cells. These cellular changes and lower antibody titres were particularly prominent in CMV-seropositive elderly participants. If primary vaccination before the age of 60 is not possible, elderly patients may require different vaccination strategies to ensure sufficient long-lasting immunity, such as adapted or accelerated schedules and the use of different adjuvants.
Collapse
Affiliation(s)
- Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Erika Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Joanna Jasinska
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Herwig Kollaritsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Karin Stiasny
- Center of Virology, Medical University of Vienna, Vienna, 1090, Austria
| | - Michael Kundi
- Institute of Environmental Health, Medical University of Vienna, Vienna, 1090, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
46
|
Fan YC, Chen JM, Lin JW, Chen YY, Wu GH, Su KH, Chiou MT, Wu SR, Yin JH, Liao JW, Chang GJJ, Chiou SS. Genotype I of Japanese Encephalitis Virus Virus-like Particles Elicit Sterilizing Immunity against Genotype I and III Viral Challenge in Swine. Sci Rep 2018; 8:7481. [PMID: 29748549 PMCID: PMC5945781 DOI: 10.1038/s41598-018-25596-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/21/2018] [Indexed: 01/04/2023] Open
Abstract
Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.
Collapse
Affiliation(s)
- Yi-Chin Fan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Chen
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Jen-Wei Lin
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Guan-Hong Wu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Hsuan Su
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ji-Hang Yin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Gwong-Jen J Chang
- Arboviral Diseases Branch, Center for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Shyan-Song Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
47
|
Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nat Immunol 2017; 19:20-28. [PMID: 29199281 PMCID: PMC7097586 DOI: 10.1038/s41590-017-0007-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 12/30/2022]
Abstract
Emerging infectious diseases will continue to threaten public health and are sustained by global commerce, travel and disruption of ecological systems. Most pandemic threats are caused by viruses from either zoonotic sources or vector-borne sources. Developing better ways to anticipate and manage the ongoing microbial challenge will be critical for achieving the United Nations Sustainable Development Goals and, conversely, each such goal will affect the ability to control infectious diseases. Here we discuss how technology can be applied effectively to better prepare for and respond to new viral diseases with a focus on new paradigms for vaccine development. Emerging viral diseases present a huge and increasingly important global threat to public health systems. Graham and Sullivan discuss the challenges presented by emerging viral diseases and discuss how innovations in technology and policy can address this threat.
Collapse
|
48
|
Espinosa D, Mendy J, Manayani D, Vang L, Wang C, Richard T, Guenther B, Aruri J, Avanzini J, Garduno F, Farness P, Gurwith M, Smith J, Harris E, Alexander J. Passive Transfer of Immune Sera Induced by a Zika Virus-Like Particle Vaccine Protects AG129 Mice Against Lethal Zika Virus Challenge. EBioMedicine 2017; 27:61-70. [PMID: 29269041 PMCID: PMC5828544 DOI: 10.1016/j.ebiom.2017.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) poses a serious public health threat due to its association with birth defects in developing fetuses and Guillain-Barré Syndrome in adults. We are developing a ZIKV vaccine based on virus-like particles (VLPs) generated in transiently transfected HEK293 cells. The genetic construct consists of the prM and envelope structural protein genes of ZIKV placed downstream from a heterologous signal sequence. To better understand the humoral responses and correlates of protection (CoP) induced by the VLP vaccine, we evaluated VLP immunogenicity with and without alum in immune-competent mice (C57Bl/6 x Balb/c) and observed efficient induction of neutralizing antibody as well as a dose-sparing effect of alum. To assess the efficacy of the immune sera, we performed passive transfer experiments in AG129 mice. Mice that received the immune sera prior to ZIKV infection demonstrated significantly reduced viral replication as measured by viral RNA levels in the blood and remained healthy, whereas control mice succumbed to infection. The results underscore the protective effect of the antibody responses elicited by this ZIKV VLP vaccine candidate. These studies will help define optimal vaccine formulations, contribute to translational efforts in developing a vaccine for clinical development, and assist in the definition of immunologic CoP.
Collapse
Affiliation(s)
- Diego Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, United States
| | | | | | - Lo Vang
- PaxVax, San Diego, CA 92121, USA
| | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, United States
| | | | | | | | | | | | | | | | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, United States
| | | |
Collapse
|
49
|
Comparison of the adjuvanticity of two adjuvant formulations containing de-O-acylated lipooligosaccharide on Japanese encephalitis vaccine in mice. Arch Pharm Res 2017; 41:219-228. [DOI: 10.1007/s12272-017-0985-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
|
50
|
García-Nicolás O, Ricklin ME, Liniger M, Vielle NJ, Python S, Souque P, Charneau P, Summerfield A. A Japanese Encephalitis Virus Vaccine Inducing Antibodies Strongly Enhancing In Vitro Infection Is Protective in Pigs. Viruses 2017; 9:v9050124. [PMID: 28531165 PMCID: PMC5454436 DOI: 10.3390/v9050124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 01/17/2023] Open
Abstract
The Japanese encephalitis virus (JEV) is responsible for zoonotic severe viral encephalitis transmitted by Culex mosquitoes. Although birds are reservoirs, pigs play a role as amplifying hosts, and are affected in particular through reproductive failure. Here, we show that a lentiviral JEV vector, expressing JEV prM and E proteins (TRIP/JEV.prME), but not JEV infection induces strong antibody-dependent enhancement (ADE) activities for infection of macrophages. Such antibodies strongly promoted infection via Fc receptors. ADE was found at both neutralizing and non-neutralizing serum dilutions. Nevertheless, in vivo JEV challenge of pigs demonstrated comparable protection induced by the TRIP/JEV.prME vaccine or heterologous JEV infection. Thus, either ADE antibodies cause no harm in the presence of neutralizing antibodies or may even have protective effects in vivo in pigs. Additionally, we found that both pre-infected and vaccinated pigs were not fully protected as low levels of viral RNA were found in lymphoid and nervous system tissue in some animals. Strikingly, the virus from the pre-infection persisted in the tonsils throughout the experiment. Finally, despite the vaccination challenge, viral RNA was detected in the oronasal swabs in all vaccinated pigs. These latter data are relevant when JEV vaccination is employed in pigs.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Cell Line
- Culex/immunology
- Disease Models, Animal
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/pathogenicity
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Lentivirus/immunology
- Lymphocytes/virology
- Macrophages/virology
- Nervous System/virology
- RNA, Viral/isolation & purification
- Receptors, IgG
- Sus scrofa
- Swine
- Vaccination
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Obdulio García-Nicolás
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Meret E Ricklin
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Matthias Liniger
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Nathalie J Vielle
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Sylvie Python
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| | - Philippe Souque
- Virologie Moléculaire et Vaccinologie, Institut Pasteur, 75015 Paris, France.
| | - Pierre Charneau
- Virologie Moléculaire et Vaccinologie, Institut Pasteur, 75015 Paris, France.
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Immunopathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland.
| |
Collapse
|