1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Huldani H, Rashid AI, Turaev KN, Opulencia MJC, Abdelbasset WK, Bokov DO, Mustafa YF, Al-Gazally ME, Hammid AT, Kadhim MM, Ahmadi SH. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Commun Signal 2022; 20:167. [PMID: 36289525 PMCID: PMC9597983 DOI: 10.1186/s12964-022-00972-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Concanavalin A (ConA), the most studied plant lectin, has been known as a potent anti-neoplastic agent for a long time. Since initial reports on its capacity to kill cancer cells, much attention has been devoted to unveiling the lectin's exact molecular mechanism. It has been revealed that ConA can bind to several receptors on cancerous and normal cells and modulate the related signaling cascades. The most studied host receptor for ConA is MT1-MMP, responsible for most of the lectin's modulations, ranging from activating immune cells to killing tumor cells. In this study, in addition to studying the effect of ConA on signaling and immune cell function, we will focus on the most up-to-date advancements that unraveled the molecular mechanisms by which ConA can induce autophagy and apoptosis in various cancer cell types, where it has been found that P73 and JAK/STAT3 are the leading players. Moreover, we further discuss the main signaling molecules causing liver injury as the most significant side effect of the lectin injection. Altogether, these findings may shed light on the complex signaling pathways controlling the diverse responses created via ConA treatment, thereby modulating these complex networks to create more potent lectin-based cancer therapy. Video Abstract
Collapse
Affiliation(s)
- Huldani Huldani
- grid.443126.60000 0001 2193 0299Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan Indonesia
| | - Ahmed Ibraheem Rashid
- grid.427646.50000 0004 0417 7786Department of Pharmacology, Collage of Medicine, University of Babylon, Hilla, Iraq
| | - Khikmatulla Negmatovich Turaev
- grid.444694.f0000 0004 0403 0119Department of Clinical Pharmacology, Samarkand State Medical Institute, Samarkand, Uzbekistan ,grid.513581.b0000 0004 6356 9173Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan 100047
| | | | - Walid Kamal Abdelbasset
- grid.449553.a0000 0004 0441 5588Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia ,grid.7776.10000 0004 0639 9286Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- grid.448878.f0000 0001 2288 8774Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991 Russian Federation ,grid.466474.3Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240 Russian Federation
| | - Yasser Fakri Mustafa
- grid.411848.00000 0000 8794 8152Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq ,grid.444971.b0000 0004 6023 831XCollege of Technical Engineering, The Islamic University, Najaf, Iraq ,Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Seyed Hossein Ahmadi
- grid.411705.60000 0001 0166 0922Research Center for Cell and Molecular Sciences, School of Medicine, Tehran University of Medical Sciences, PO Box 1417613151, Tehran, Iran
| |
Collapse
|
3
|
Yasmin IA, Mohana Sundaram S, Banerjee A, Varier L, Dharmarajan A, Warrier S. Netrin-like domain of sFRP4, a Wnt antagonist inhibits stemness, metastatic and invasive properties by specifically blocking MMP-2 in cancer stem cells from human glioma cell line U87MG. Exp Cell Res 2021; 409:112912. [PMID: 34762897 DOI: 10.1016/j.yexcr.2021.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
Rapid proliferation, high stemness potential, high invasiveness and apoptotic evasion are the distinctive hallmarks of glioma malignancy. The dysregulation of the Wnt/β-catenin pathway is the key factor regulating glioma malignancy. Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), which has a prominent pro-apoptotic role in glioma stem cells, has two functional domains, the netrin-like domain (NLD), and cysteine-rich domain (CRD) both of which contribute to apoptotic properties of the whole protein. However, there are no reports elucidating the specific effects of individual domains of sFRP4 in inhibiting the invasive properties of glioma. This study explores the efficacy of the domains of sFRP4 in inhibiting the key hallmarks of glioblastoma such as invasion, metastasis, and stemness. We overexpressed sFRP4 and its domains in the glioblastoma cell line, U87MG cells and observed that both CRD and NLD domains played prominent roles in attenuating cancer stem cell properties. Significantly, we could demonstrate for the first time that both NLD and CRD domains negatively impacted the key driver of metastasis and migration, the matrix metalloproteinase-2 (MMP-2). Mechanistically, compared to CRD, NLD domain suppressed MMP-2 mediated invasion more effectively in glioma cells as observed in matrigel invasion assay and a function-blocking antibody assay. Fluorescent matrix degradation assay further revealed that NLD reduces matrix degradation. NLD also significantly disrupted fibronectin assembly and decreased cell adhesion in another glioma cell line LN229. In conclusion, the NLD peptide of sFRP4 could be a potent short peptide therapeutic candidate for targeting MMP-2-mediated invasion in the highly malignant glioblastoma multiforme.
Collapse
Affiliation(s)
- Ishmat Ara Yasmin
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India
| | - S Mohana Sundaram
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India
| | - Anasuya Banerjee
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India
| | | | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600 116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India.
| |
Collapse
|
4
|
Thome I, Lacle R, Voß A, Bortolussi G, Pantazis G, Schmidt A, Conrad C, Jacob R, Timmesfeld N, Bartsch JW, Pagenstecher A. Neoplastic Cells are the Major Source of MT-MMPs in IDH1-Mutant Glioma, Thus Enhancing Tumor-Cell Intrinsic Brain Infiltration. Cancers (Basel) 2020; 12:E2456. [PMID: 32872536 PMCID: PMC7565296 DOI: 10.3390/cancers12092456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
Tumor-cell infiltration is a major obstacle to successful therapy for brain tumors. Membrane-type matrix metalloproteinases (MT-MMPs), a metzincin subfamily of six proteases, are important mediators of infiltration. The cellular source of MT-MMPs and their role in glioma biology, however, remain controversial. Thus, we comprehensively analyzed the expression of MT-MMPs in primary brain tumors. All MT-MMPs were differentially expressed in primary brain tumors. In diffuse gliomas, MT-MMP1, -3, and -4 were predominantly expressed by IDH1mutated tumor cells, while macrophages/microglia contributed significantly less to MT-MMP expression. For functional analyses, individual MT-MMPs were expressed in primary mouse p53-/- astrocytes. Invasion and migration potential of MT-MMP-transduced astrocytes was determined via scratch, matrigel invasion, and novel organotypic porcine spinal slice migration (OPoSSM) and invasion assays. Overall, MT-MMP-transduced astrocytes showed enhanced migration compared to controls. MMP14 was the strongest mediator of migration in scratch assays. However, in the OPoSSM assays, the glycosylphosphatidylinositol (GPI)-anchored MT-MMPs MMP17 and MMP25, not MMP14, mediated the highest infiltration rates of astrocytes. Our data unequivocally demonstrate for the first time that glioma cells, not microglia, are the predominant producers of MT-MMPs in glioma and can act as potent mediators of tumor-cell infiltration into CNS tissue. These proteases are therefore promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ina Thome
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Raphael Lacle
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Andreas Voß
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Ginette Bortolussi
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Georgios Pantazis
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Ansgar Schmidt
- Departments of Pathology, Philipps University Marburg, 35043 Marburg, Germany;
| | - Catharina Conrad
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
| | - Ralf Jacob
- Departments of Clinical Cytobiology and Cytopathology, Philipps University Marburg, 35037 Marburg, Germany;
| | - Nina Timmesfeld
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University Bochum, 44780 Bochum, Germany;
| | - Jörg W. Bartsch
- Departments of Neurosurgery, Philipps University Marburg, 35043 Marburg, Germany;
- Centre for Mind, Brain, and Behaviour, 35032 Marburg, Germany
| | - Axel Pagenstecher
- Departments of Neuropathology, Philipps University Marburg, 35043 Marburg, Germany; (I.T.); (R.L.); (A.V.); (G.B.); (G.P.); (C.C.)
- Centre for Mind, Brain, and Behaviour, 35032 Marburg, Germany
| |
Collapse
|
5
|
Manou D, Bouris P, Kletsas D, Götte M, Greve B, Moustakas A, Karamanos NK, Theocharis AD. Serglycin activates pro-tumorigenic signaling and controls glioblastoma cell stemness, differentiation and invasive potential. Matrix Biol Plus 2020; 6-7:100033. [PMID: 33543029 PMCID: PMC7852318 DOI: 10.1016/j.mbplus.2020.100033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the functional role of serglycin as an intracellular proteoglycan, a variety of malignant cells depends on its expression and constitutive secretion to advance their aggressive behavior. Serglycin arose to be a biomarker for glioblastoma, which is the deadliest and most treatment-resistant form of brain tumor, but its role in this disease is not fully elucidated. In our study we suppressed the endogenous levels of serglycin in LN-18 glioblastoma cells to decipher its involvement in their malignant phenotype. Serglycin suppressed LN-18 (LN-18shSRGN) glioblastoma cells underwent astrocytic differentiation characterized by induced expression of GFAP, SPARCL-1 and SNAIL, with simultaneous loss of their stemness capacity. In particular, LN-18shSRGN cells presented decreased expression of glioma stem cell-related genes and ALDH1 activity, accompanied by reduced colony formation ability. Moreover, the suppression of serglycin in LN-18shSRGN cells retarded the proliferative and migratory rate, the invasive potential in vitro and the tumor burden in vivo. The lack of serglycin in LN-18shSRGN cells was followed by G2 arrest, with subsequent reduction of the expression of cell-cycle regulators. LN-18shSRGN cells also exhibited impaired expression and activity of proteolytic enzymes such as MMPs, TIMPs and uPA, both in vitro and in vivo. Moreover, suppression of serglycin in LN-18shSRGN cells eliminated the activation of pro-tumorigenic signal transduction. Of note, LN-18shSRGN cells displayed lower expression and secretion levels of IL-6, IL-8 and CXCR-2. Concomitant, serglycin suppressed LN-18shSRGN cells demonstrated repressed phosphorylation of ERK1/2, p38, SRC and STAT-3, which together with PI3K/AKT and IL-8/CXCR-2 signaling control LN-18 glioblastoma cell aggressiveness. Collectively, the absence of serglycin favors an astrocytic fate switch and a less aggressive phenotype, characterized by loss of pluripotency, block of the cell cycle, reduced ability for ECM proteolysis and pro-tumorigenic signaling attenuation.
Collapse
Key Words
- ALDH1, aldehyde dehydrogenase 1
- Astrocytic differentiation
- CXCR, C-X-C chemokine receptor
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ERK, extracellular-signal-regulated kinase
- GFAP, glial fibrillary acid protein
- Glioblastoma
- IL, interleukin
- Interleukins
- MAPK, mitogen-activated protein kinase
- MMPs, metalloproteinases
- PGs, proteoglycans
- PI3K, phosphoinositide 3-kinase
- Proteoglycans
- Proteolytic enzymes
- SRGN, serglycin
- STAT-3, signal transducer and activator of transcription 3
- Serglycin
- Signaling
- Stemness
- TIMPs, tissue inhibitors of metalloproteinases
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital, Muenster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital, Muenster, Germany
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
6
|
Palamà IE, D'Amone S, Ratano P, Donatelli A, Liscio A, Antonacci G, Testini M, Di Angelantonio S, Ragozzino D, Cortese B. Mechanical Durotactic Environment Enhances Specific Glioblastoma Cell Responses. Cancers (Basel) 2019; 11:E643. [PMID: 31075964 PMCID: PMC6562761 DOI: 10.3390/cancers11050643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023] Open
Abstract
Background: A hallmark of glioblastoma is represented by their ability to widely disperse throughout the brain parenchyma. The importance of developing new anti-migratory targets is critical to reduce recurrence and improve therapeutic efficacy. Methods: Polydimethylsiloxane substrates, either mechanically uniform or presenting durotactic cues, were fabricated to assess GBM cell morphological and dynamical response with and without pharmacological inhibition of NNMII contractility, of its upstream regulator ROCK and actin polymerization. Results: Glioma cells mechanotactic efficiency varied depending on the rigidity compliance of substrates. Morphologically, glioma cells on highly rigid and soft bulk substrates displayed bigger and elongated aggregates whereas on durotactic substrates the same cells were homogeneously dispersed with a less elongated morphology. The durotactic cues also induced a motility change, cell phenotype dependent, and with cells being more invasive on stiffer substrates. Pharmacological inhibition of myosin or ROCK revealed a rigidity-insensitivity, unlike inhibition of microfilament contraction and polymerization of F-actin, suggesting that alternative signalling is used to respond to durotactic cues. Conclusions: The presence of a distinct mechanical cue is an important factor in cell migration. Together, our results provide support for a durotactic role of glioma cells that acts through actomyosin contractility to regulate the aggressive properties of GBM cells.
Collapse
Affiliation(s)
| | - Stefania D'Amone
- National Research Council-Nanotechnology Institute, 73100 Lecce, Italy.
| | - Patrizia Ratano
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy.
| | - Amato Donatelli
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy.
| | - Andrea Liscio
- National Research Council-Institute for Microelectronics and Microsystems, via del Fosso del Cavaliere 100, 00133 Roma, Italy.
| | - Giuseppe Antonacci
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00185 Rome, Italy.
| | | | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy.
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00185 Rome, Italy.
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy.
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy.
| |
Collapse
|
7
|
Velez DO, Ranamukhaarachchi SK, Kumar A, Modi RN, Lim EW, Engler AJ, Metallo CM, Fraley SI. 3D collagen architecture regulates cell adhesion through degradability, thereby controlling metabolic and oxidative stress. Integr Biol (Camb) 2019; 11:221-234. [PMID: 31251330 PMCID: PMC6657753 DOI: 10.1093/intbio/zyz019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/08/2019] [Accepted: 05/23/2019] [Indexed: 11/14/2022]
Abstract
The collagen-rich tumor microenvironment plays a critical role in directing the migration behavior of cancer cells. 3D collagen architectures with small pores have been shown to confine cells and induce aggressive collective migration, irrespective of matrix stiffness and density. However, it remains unclear how cells sense collagen architecture and transduce this information to initiate collective migration. Here, we tune collagen architecture and analyze its effect on four core cell-ECM interactions: cytoskeletal polymerization, adhesion, contractility, and matrix degradation. From this comprehensive analysis, we deduce that matrix architecture initially modulates cancer cell adhesion strength, and that this results from architecture-induced changes to matrix degradability. That is, architectures with smaller pores are less degradable, and degradability is required for cancer cell adhesion to 3D fibrilar collagen. The biochemical consequences of this 3D low-attachment state are similar to those induced by suspension culture, including metabolic and oxidative stress. One distinction from suspension culture is the induction of collagen catabolism that occurs in 3D low-attachment conditions. Cells also upregulate Snail1 and Notch signaling in response to 3D low-attachment, which suggests a mechanism for the emergence of collective behaviors.
Collapse
Affiliation(s)
- Daniel O Velez
- Bioengineering Department, University of California San Diego, CA, USA
| | | | - Aditya Kumar
- Bioengineering Department, University of California San Diego, CA, USA
| | - Rishi N Modi
- Bioengineering Department, University of California San Diego, CA, USA
| | - Esther W Lim
- Bioengineering Department, University of California San Diego, CA, USA
| | - Adam J Engler
- Bioengineering Department, University of California San Diego, CA, USA
| | | | - Stephanie I Fraley
- Bioengineering Department, University of California San Diego, CA, USA
- Moore’s Cancer Center, University of California San Diego La Jolla, CA, USA
| |
Collapse
|
8
|
Nanni SB, Pratt J, Beauchemin D, Haidara K, Annabi B. Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas. BIOMARKERS IN CANCER 2016; 8:77-87. [PMID: 27226736 PMCID: PMC4874747 DOI: 10.4137/bic.s38894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 01/13/2023]
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP-1) is a multiligand endocytic receptor, which plays a pivotal role in controlling cytoskeleton dynamics during cancer cell migration. Its rapid endocytosis further allows efficient clearance of extracellular ligands. Concanavalin-A (ConA) is a lectin used to trigger in vitro physiological cellular processes, including cytokines secretion, nitric oxide production, and T-lymphocytes activation. Given that ConA exerts part of its effects through cytoskeleton remodeling, we questioned whether it affected LRP-1 expression, intracellular trafficking, and cell surface function in grade IV U87 glioblastoma cells. Using flow cytometry and confocal microscopy, we found that loss of the cell surface 600-kDa mature form of LRP-1 occurs upon ConA treatment. Consequently, internalization of the physiological α2-macroglobulin and the synthetic angiopep-2 ligands of LRP-1 was also decreased. Silencing of known mediators of ConA, such as the membrane type-1 matrix metalloproteinase, and the Toll-like receptors (TLR)-2 and TLR-6 was unable to rescue ConA-mediated LRP-1 expression decrease, implying that the loss of LRP-1 was independent of cell surface relayed signaling. The ConA-mediated reduction in LRP-1 expression was emulated by the actin cytoskeleton-disrupting agent cytochalasin-D, but not by the microtubule inhibitor nocodazole, and required both lysosomal- and ubiquitin-proteasome system-mediated degradation. Our study implies that actin cytoskeleton integrity is required for proper LRP-1 cell surface functions and that impaired trafficking leads to specialized compartmentation and degradation. Our data also strengthen the biomarker role of cell surface LRP-1 functions in the vectorized transport of therapeutic angiopep bioconjugates into brain cancer cells.
Collapse
Affiliation(s)
- Samuel Burke Nanni
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| | - Jonathan Pratt
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| | - David Beauchemin
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| | - Khadidja Haidara
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, QC, Canada
| |
Collapse
|
9
|
Functional characterization of Anopheles matrix metalloprotease 1 reveals its agonistic role during sporogonic development of malaria parasites. Infect Immun 2014; 82:4865-77. [PMID: 25183733 DOI: 10.1128/iai.02080-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to invade tissues is a unique characteristic of the malaria stages that develop/differentiate within the mosquitoes (ookinetes and sporozoites). On the other hand, tissue invasion by many pathogens has often been associated with increased matrix metalloprotease (MMP) activity in the invaded tissues. By employing cell biology and reverse genetics, we studied the expression and explored putative functions of one of the three MMPs encoded in the genome of the malaria vector Anopheles gambiae, namely, the Anopheles gambiae MMP1 (AgMMP1) gene, during the processes of blood digestion, midgut epithelium invasion by Plasmodium ookinetes, and oocyst development. We show that AgMMP1 exists in two alternative isoforms resulting from alternative splicing; one secreted (S-MMP1) and associated with hemocytes, and one membrane type (MT-MMP1) enriched in the cell attachment sites of the midgut epithelium. MT-MMP1 showed a remarkable response to ookinete midgut invasion manifested by increased expression, enhanced zymogen maturation, and subcellular redistribution, all indicative of an implication in the midgut epithelial healing that accompanies ookinete invasion. Importantly, RNA interference (RNAi)-mediated silencing of the AgMMP1 gene revealed a postinvasion protective function of AgMMP1 during oocyst development. The combined results link for the first time an MMP with vector competence and mosquito-Plasmodium interactions.
Collapse
|
10
|
Risinger GM, Updike DL, Bullen EC, Tomasek JJ, Howard EW. TGF-beta suppresses the upregulation of MMP-2 by vascular smooth muscle cells in response to PDGF-BB. Am J Physiol Cell Physiol 2009; 298:C191-201. [PMID: 19846754 DOI: 10.1152/ajpcell.00417.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During platelet-derived growth factor (PDGF)-BB-mediated recruitment to neovascular sprouts, vascular smooth muscle cells (VSMCs) dedifferentiate from a contractile to a migratory phenotype. This involves the downregulation of contractile markers such as smooth muscle (SM) alpha-actin and the upregulation of promigration genes such as matrix metalloproteinase (MMP)-2. The regulation of MMP-2 in response to PDGF-BB is complex and involves both stimulatory and inhibitory signaling pathways, resulting in a significant delay in upregulation. Here, we provide evidence that the delay in MMP-2 upregulation may be due to the autocrine expression and activation of transforming growth factor (TGF)-beta, which is known to promote the contractile phenotype in VSMCs. Whereas PDGF-BB could induce the loss of stress fibers and focal adhesions, TGF-beta was able to block or reverse this transition to a noncontractile state. TGF-beta did not, however, suppress early signaling events stimulated by PDGF-BB. Over time, though PDGF-BB induced increased TGF-beta1 levels, it suppressed TGF-beta2 and TGF-beta3 expression, leading to a net decrease in the total TGF-beta pool, resulting in the upregulation of MMP-2. Together, these findings indicate that MMP-2 expression is suppressed by a threshold level of active TGF-beta, which in turn promotes a contractile VSMC phenotype that prevents the upregulation of MMP-2.
Collapse
Affiliation(s)
- George M Risinger
- Young Blvd., Biomedical Sciences Bldg., Rm 513, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
11
|
Non-apoptotic Fas signaling regulates invasiveness of glioma cells and modulates MMP-2 activity via NFkappaB-TIMP-2 pathway. Cell Signal 2009; 22:212-20. [PMID: 19788921 DOI: 10.1016/j.cellsig.2009.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/04/2009] [Accepted: 09/14/2009] [Indexed: 12/31/2022]
Abstract
Fas (CD95/APO-1) is a cell surface "death receptor" that mediates apoptosis upon engagement by its ligand, FasL. Paradoxically, Fas/FasL can also promote cell invasion among non-apoptotic cells; here, we show that Fas/FasL signaling can promote tumor invasion when apoptosis is compromised. We have developed a recombinant FasL Interfering Protein (FIP) to interfere with Fas signaling in C6 glioma cells expressing both Fas receptor and its ligand. FIP administration did not affect cell viability but impaired cell motility and invasiveness of glioma cells. Blockade of Fas signaling reduced MMP-2 activity in glioma cells, that was associated with down-regulation of MAPK signaling, and AP-1 and NFkappaB-driven transcription. FIP treatment did not affect mmp-2 and mt1-mmp expression but significantly attenuated timp-2 expression and TIMP-2 amount in the culture medium. Studies with pharmacological inhibitors of JNK/c-Jun (SP600125) and NFkappaB (BAY11-7082) signaling pathways demonstrated that timp-2 expression is regulated by NFkappaB transcription factor. Our findings show that non-apoptotic Fas signaling activated in the autocrine manner or through microenvironment derived factors can regulate invasiveness of glioma cells via modulation of MMP-2 activation, likely by controlling TIMP-2 expression.
Collapse
|
12
|
Park MH, Ahn BH, Hong YK, Min DS. Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways. Carcinogenesis 2009; 30:356-65. [PMID: 19126647 DOI: 10.1093/carcin/bgn287] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma is a severe type of primary brain tumor, and its highly invasive character is considered to be a major therapeutic obstacle. Phospholipase D (PLD) isozyme is overexpressed in various human tumor tissues and involved in tumorigenesis. However, the molecular mechanisms by which PLD enhances glioma invasion are unknown. In this study, we demonstrate that the increased expression of PLD and its enzymatic activity in the glioma stimulate the secretion and expression of matrix metalloproteinase (MMP)-2 and induce the invasiveness of glioma cells. The upregulation of MMP-2 induced by phosphatidic acid (PA), the product of PLD, was mediated by protein kinase C (PKC), protein kinase A (PKA), nuclear factor-kappaB (NF-kappaB) and Sp1 and it enhanced glioma cell invasion. PA activated PKC and PKA and induced the nuclear translocation and transactivation of NF-kappaB. PA also increased the binding of NF-kappaB and Sp1 to the MMP-2 promoter. Mutation of the NF-kappaB- or Sp1-binding sites significantly attenuated MMP-2 promoter activity. This is the first report to show that NF-kappaB and Sp1 are essential transcriptional factors linking PLD to MMP-2 upregulation, providing evidence that PLD contributes to glioma progression by enhancing MMP-2 expression and tumor cell invasion via PKC/PKA/NF-kappaB/Sp1-mediated signaling pathways.
Collapse
Affiliation(s)
- Mi Hee Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Geumjeong gu, Busan, Korea
| | | | | | | |
Collapse
|
13
|
Yodkeeree S, Garbisa S, Limtrakul P. Tetrahydrocurcumin inhibits HT1080 cell migration and invasion via downregulation of MMPs and uPA. Acta Pharmacol Sin 2008; 29:853-60. [PMID: 18565284 DOI: 10.1111/j.1745-7254.2008.00792.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIM Tetrahydrocurcumin (THC) is an active metabolite of curcumin. It has been reported to have similar pharmacological activity to curcumin. The proteases that participate in extracellular matrix (ECM) degradation are involved in cancer cell metastasis. The present study investigates the effect of an ultimate metabolite of curcumin, THC, on the invasion and motility of highly-metastatic HT1080 human fibrosarcoma cells. METHODS The effect of THC on HT1080 cell invasion and migration was determined using Boyden chamber assay. Cell-adhesion assay was used for examining the binding of cells to ECM molecules. Zymography assay was used to analyze the effect of THC on matrix metalloproteinase (MMP)-2, MMP-9, and urokinase plasminogen activator (uPA) secretion from HT1080 cells. Tissue inhibitor of metalloproteinase (TIMP)-2 and membrane-type 1 matrix metalloproteinase (MT1-MMP) proteins levels were analyzed by Western blotting. RESULTS Treatment with THC reduced HT1080 cell invasion and migration in a dose-dependent manner. THC also decreased the cell adhesion to Matrigel and laminin-coated plates. Analysis by zymography demonstrated that treatment with THC reduced the levels of MMP-2, MMP-9, and uPA. THC also inhibited the levels of MT1-MMP and TIMP-2 proteins detected by Western blot analysis. CONCLUSION Our findings revealed that THC reduced HT1080 cell invasion and migration. The inhibition of cancer cell invasion is associated with the downregulation of ECM degradation enzymes and the inhibition of cell adhesion to ECM proteins.
Collapse
|
14
|
van Kilsdonk JWJ, Wilting RH, Bergers M, van Muijen GNP, Schalkwijk J, van Kempen LCLT, Swart GWM. Attenuation of melanoma invasion by a secreted variant of activated leukocyte cell adhesion molecule. Cancer Res 2008; 68:3671-9. [PMID: 18483249 DOI: 10.1158/0008-5472.can-07-5767] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a marker of various cancers and mesenchymal stem cells, is involved in melanoma metastasis. We have exploited a secreted NH(2)-terminal fragment, sALCAM, to test the hypothesis that ALCAM coordinates tissue growth and cell migration. Overexpression of sALCAM in metastatic melanoma cells disturbed clustering of endogenous ALCAM and inhibited activation of matrix metalloproteinase-2 (MMP-2). Exposure of HT1080 fibrosarcoma cells to sALCAM similarly inhibited MMP-2, suggesting a broader effect on ALCAM-positive tumor cells. In contrast to the previously reported, promotive effects of an NH(2)-terminally truncated, transmembrane variant (DeltaN-ALCAM), sALCAM impaired the migratory capacity of transfected cells in vitro, reduced basement membrane penetration in reconstituted human skin equivalents, and diminished metastatic capacity in nude mice. Remarkably, L1 neuronal cell adhesion molecule (L1CAM/CD171), another progression marker of several cancers including melanoma, was suppressed upon sALCAM overexpression but was up-regulated by DeltaN-ALCAM. The partially overlapping and opposite effects induced by alternative strategies targeting ALCAM functions collectively attribute an integrative role to ALCAM in orchestrating cell adhesion, growth, invasion, and proteolysis in the tumor tissue microenvironment and disclose a therapeutic potential for sALCAM.
Collapse
Affiliation(s)
- Jeroen W J van Kilsdonk
- Department of Biomolecular Chemistry 271, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Faculty of Science, Radboud University Nijmegen
| | | | | | | | | | | | | |
Collapse
|
15
|
Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem 2008; 20:87-95. [PMID: 18495463 DOI: 10.1016/j.jnutbio.2007.12.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 11/22/2022]
Abstract
Curcumin (Cur), a component of turmeric (Curcuma longa), has been reported to exhibit antimetastatic activities, but the mechanisms remain unclear. Other curcuminoids present in turmeric, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) have not been investigated whether they exhibit antimetastatic activity to the same extent as curcumin. The regulation of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) play important role in cancer cell invasion by cleavage of extracellular matrix (ECM). In this line, we comparatively examined the influence of Cur, DMC and BDMC on the expressions of uPA, MMP-2, MMP-9, membrane Type 1 MMP (MT1-MMP), tissue inhibitor of metalloproteinases (TIMP-2), and in vitro invasiveness of human fibrosarcoma cells. The results indicate that the differential potency for inhibition of cancer cell invasion was BDMC> or =DMC>Cur, whereas the cell migration was not affected. Zymography analysis exhibited that curcumin, DMC and BDMC significantly decreased uPA, active-MMP-2 and MMP-9 but not pro-MMP-2 secretion from the cells in a dose-dependent manner, in which BDMC and DMC show higher potency than curcumin. The suppression of active MMP-2 level correlated with inhibition of MT1-MMP and TIMP-2 protein levels involved in pro-MMP-2 activation. Importantly, BDMC and DMC at 10 microM reduced MT1-MMP and TIMP-2 protein expression, but curcumin slightly reduced only MT1-MMP but not TIMP-2. In addition, three forms of curcuminoids significantly inhibited collagenase, MMP-2, and MMP-9 but not uPA activity. In summary, these data demonstrated that DMC and BDMC show higher antimetastasis potency than curcumin by the differentially down-regulation of ECM degradation enzymes.
Collapse
|
16
|
Cho JA, Osenkowski P, Zhao H, Kim S, Toth M, Cole K, Aboukameel A, Saliganan A, Schuger L, Bonfil RD, Fridman R. The inactive 44-kDa processed form of membrane type 1 matrix metalloproteinase (MT1-MMP) enhances proteolytic activity via regulation of endocytosis of active MT1-MMP. J Biol Chem 2008; 283:17391-405. [PMID: 18413312 DOI: 10.1074/jbc.m708943200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane type 1 (MT1) matrix metalloproteinase (MMP-14) is a membrane-tethered MMP considered to be a major mediator of pericellular proteolysis. MT1-MMP is regulated by a complex array of mechanisms, including processing and endocytosis that determine the pool of active proteases on the plasma membrane. Autocatalytic processing of active MT1-MMP generates an inactive membrane-tethered 44-kDa product (44-MT1) lacking the catalytic domain. This form preserves all other enzyme domains and is retained at the cell surface. Paradoxically, accumulation of the 44-kDa form has been associated with increased enzymatic activity. Here we report that expression of a recombinant 44-MT1 (Gly(285)-Val(582)) in HT1080 fibrosarcoma cells results in enhanced pro-MMP-2 activation, proliferation within a three-dimensional collagen I matrix, and tumor growth and lung metastasis in mice. Stimulation of pro-MMP-2 activation and growth in collagen I was also observed in other cell systems. Expression of 44-MT1 in HT1080 cells is associated with a delay in the rate of active MT1-MMP endocytosis resulting in higher levels of active enzyme at the cell surface. Consistently, deletion of the cytosolic domain obliterates the stimulatory effects of 44-MT1 on MT1-MMP activity. In contrast, deletion of the hinge turns the 44-MT1 form into a negative regulator of enzyme function in vitro and in vivo, suggesting a key role for the hinge region in the functional relationship between active and processed MT1-MMP. Together, these results suggest a novel role for the 44-kDa form of MT1-MMP generated during autocatalytic processing in maintaining the pool of active enzyme at the cell surface.
Collapse
Affiliation(s)
- Jin-Ah Cho
- Department of Pathology and Proteases and Cancer Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ahmed TAE, Griffith M, Hincke M. Characterization and inhibition of fibrin hydrogel-degrading enzymes during development of tissue engineering scaffolds. ACTA ACUST UNITED AC 2007; 13:1469-77. [PMID: 17518706 DOI: 10.1089/ten.2006.0354] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The goal of articular cartilage tissue engineering is to provide cartilaginous constructs to replace abnormal cartilage. We have evaluated the chondroprogenitor clonal cell line RCJ3.1C5.18 (C5.18) as a model to guide the development of appropriate scaffolds for tissue engineering. Rapid degradation of fibrin hydrogels was observed after encapsulation of C5.18 cells. The enzymes responsible for this fibrin gel breakdown were characterized to control their activity and regulate gel stability. Western blotting, confirming zymography, revealed bands due to matrix metalloproteinases (MMP-2, MMP-3) that are secreted concomitantly with fibrin hydrogels breakdown. High plasmin activity was detected in conditioned media during hydrogel breakdown but not in the confluent cells before encapsulation. Reverse transcriptase polymerase chain reaction indicated the expression of MMP-2, -3, and -9 and plasminogen in the cells. MMP-9 was 100 times higher at day 1, whereas MMP-2 started to increase and reached its maximum level by day 7. Aprotinin, a known serine protease inhibitor, and galardin (GM6001), a potent MMP inhibitor, in combination or separately, prevented the breakdown of fibrin-C5.18 hydrogels, whereas only the combination of both promoted the accumulation of extracellular matrix. These findings suggest that plasmin and MMPs contribute independently to fibrin hydrogel breakdown, but that either enzyme can achieve extracellular matrix breakdown.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
18
|
McClung HM, Thomas SL, Osenkowski P, Toth M, Menon P, Raz A, Fridman R, Rempel SA. SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neurosci Lett 2007; 419:172-7. [PMID: 17490812 PMCID: PMC1978544 DOI: 10.1016/j.neulet.2007.04.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/16/2007] [Accepted: 04/18/2007] [Indexed: 12/30/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human gliomas and promotes glioma invasion. We have shown by cDNA array analysis that SPARC upregulates membrane type 1-matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2) transcripts. To confirm these findings at the protein level and determine whether SPARC expression correlates with increased MMP activity, we used Western blot to assess the levels of MT1-MMP, and gelatin zymography to assess MMP-2 levels and activity. We also examined the expression, secretion, and cleavage of galectin-3, a target of MT1-MMP and MMP-2. Our data confirm that SPARC upregulates MT1-MMP levels and MMP-2 activity. There was also an increase in secreted galectin-3, as well as an increase in the proteolytically processed form of galectin-3. Previous studies have demonstrated that MT1-MMP, MMP-2, and galectin-3 are increased in gliomas. Our results suggest that their upregulation and activation may be a consequence of increased SPARC expression. These data provide a provisional mechanism whereby SPARC contributes to brain tumor invasion.
Collapse
Affiliation(s)
- Heather M McClung
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Belkaid A, Fortier S, Cao J, Annabi B. Necrosis induction in glioblastoma cells reveals a new "bioswitch" function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision. Neoplasia 2007; 9:332-340. [PMID: 17460777 PMCID: PMC1854846 DOI: 10.1593/neo.07142] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 12/30/2022]
Abstract
Cytoskeleton disorganization is an early step in the activation process of matrix metalloproteinase 2 (MMP-2) by membrane type 1 MMP (MT1-MMP) but is also associated with endoplasmic reticulum (ER) dysfunction and subsequent cell death. Given evidence that the ER-embedded glucose-6-phosphate transporter (G6PT) regulates glioblastoma cell survival and that MT1-MMP is a key enzyme in the cancer cell invasive phenotype, we explored the molecular link between G6PT and MT1-MMP. Cytoskeleton-disrupting agents such as concanavalin A (ConA) and cytochalasin D triggered proMMP-2 activation and cell death in U87 glioma cells. ConA decreased G6PT gene expression, an event that was also observed in cells overexpressing the full-length recombinant MT1-MMP protein. Overexpression of a membrane-bound catalytically active but cytoplasmic domain-deleted MT1-MMP was unable to downregulate G6PT gene expression or to trigger necrosis. Gene silencing of MT1-MMP with small interfering RNA prevented proMMP-2 activation and induced G6PT gene expression. ConA inhibited Akt phosphorylation, whereas overexpression of recombinant G6PT rescued the cells from ConA-induced proMMP-2 activation and increased Akt phosphorylation. Altogether, new functions of MT1-MMP in cell death signaling may be linked to those of G6PT. Our study indicates a molecular signaling axis regulating the invasive phenotype of brain tumor cells and highlights a new "bioswitch" function for G6PT in cell survival.
Collapse
Affiliation(s)
- Anissa Belkaid
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Quebec, Canada
| | - Simon Fortier
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Quebec, Canada
| | - Jian Cao
- Department of Medicine, State University of New York, Stony Brook, NY 11794, USA
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Quebec, Canada
| |
Collapse
|
20
|
Currie JC, Fortier S, Sina A, Galipeau J, Cao J, Annabi B. MT1-MMP down-regulates the glucose 6-phosphate transporter expression in marrow stromal cells: a molecular link between pro-MMP-2 activation, chemotaxis, and cell survival. J Biol Chem 2007; 282:8142-8149. [PMID: 17229722 DOI: 10.1074/jbc.m610894200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bone marrow-derived stromal cells (BMSC) are avidly recruited by experimental vascularizing tumors, which implies that they must respond to tumor-derived growth factor cues. In fact, BMSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in pro-MMP-2 activation and in degradation of the extracellular matrix (ECM). Given that impaired chemotaxis was recently observed in bone marrow cells isolated from a glucose 6-phosphate transporter-deficient (G6PT-/-) mouse model, we sought to investigate the potential MT1-MMP/G6PT signaling axis in BMSC. We show that MT1-MMP-mediated activation of pro-MMP-2 by concanavalin A (ConA) correlated with an increase in the sub-G1 cell cycle phase as well as with cell necrosis, indicative of a decrease in BMSC survival. BMSC isolated from Egr-1-/- mouse or MT1-MMP gene silencing in BMSC with small interfering RNA (siMT1-MMP) antagonized both the ConA-mediated activation of pro-MMP-2 and the induction of cell necrosis. Overexpression of recombinant full-length MT1-MMP triggered necrosis and this was signaled through the cytoplasmic domain of MT1-MMP. ConA inhibited both the gene and protein expression of G6PT, while overexpression of recombinant G6PT inhibited MT1-MMP-mediated pro-MMP-2 activation but could not rescue BMSC from ConA-induced cell necrosis. Cell chemotaxis in response to the tumorigenic growth factor sphingosine 1-phosphate was significantly abrogated in siMT1-MMP BMSC and in chlorogenic acid-treated BMSC. Altogether, we provide evidence for an MT1-MMP/G6PT signaling axis that regulates BMSC survival, ECM degradation, and mobilization. This may lead to optimized clinical applications that use BMSC as a platform for the systemic delivery of therapeutic or anti-cancer recombinant proteins in vivo.
Collapse
Affiliation(s)
- Jean-Christophe Currie
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Québec H3C 3P8, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Ngameni B, Touaibia M, Patnam R, Belkaid A, Sonna P, Ngadjui BT, Annabi B, Roy R. Inhibition of MMP-2 secretion from brain tumor cells suggests chemopreventive properties of a furanocoumarin glycoside and of chalcones isolated from the twigs of Dorstenia turbinata. PHYTOCHEMISTRY 2006; 67:2573-2579. [PMID: 17070879 DOI: 10.1016/j.phytochem.2006.09.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/22/2006] [Accepted: 09/18/2006] [Indexed: 05/12/2023]
Abstract
A furanocoumarin glycoside new named turbinatocoumarin (1) was isolated from the twigs of Dorstenia turbinata. The structure of turbinatocoumarin (1) was assigned as 5-methoxy-3-[3-(beta-glucopyranosyloxy)-2-hydroxy-3-methylbutyl]psoralen by means of spectroscopic analysis. Known compounds have also been isolated from this genus and identified as (2'S, 3'R)-3'-hydroxymarmesin (2), 5-methoxy-3-(3-methyl-2,3-dihydroxybutyl)psoralen (3), psoralen (4), kanzonol C (5) which was isolated for the first time from this genus, 4-hydroxylonchocarpin (6), umbelliferone, 4-hydroxy-3-methoxybenzaldehyde and 4-methoxyphenol. As part of our continuing search for potential naturally-occurring antitumor drug candidates, the inhibition of matrix metalloproteinase (MMP)-2 secretion from brain tumor-derived glioblastoma cells by the isolated compounds 1, 3, 5, and 6 was evaluated by zymography and compared to the documented naturally-occurring MMP secretion inhibitors chlorogenic acid (CHL) and epigallocatechin-3-gallate (EGCg). Among the compounds tested, the inhibiting MMP secretion concentrations ranged from 0.025 to 250 microM with up to 80% inhibition. The inhibitory activities of compounds 5 and 6 were found comparable to the common reference compounds CHL and EGCg. This suggests that alternate sources can be explored and exploited for the availability of chemopreventive molecules.
Collapse
Affiliation(s)
- Bathelemy Ngameni
- Département de Chimie, Université du Québec à Montréal, Montreal, 2101 Jeanne-Mance, CP 8888, Succ., Centre-ville, Quebec, Canada H3C 3P8
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Desrosiers RR, Rivard ME, Grundy PE, Annabi B. Decrease in LDL receptor-related protein expression and function correlates with advanced stages of Wilms tumors. Pediatr Blood Cancer 2006; 46:40-49. [PMID: 16106426 DOI: 10.1002/pbc.20566] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The molecular processes responsible for the invasive phenotype of pediatric Wilms tumors (WT) are poorly understood. A candidate WT suppressor gene (WT1) has been found mutated in a number of these pediatric kidney tumors. However, the disruption of normal WT1 protein function cannot solely explain WT growth. The aim of the present study is to identify new molecular players that regulate the invasive character of WT. PROCEDURE Fresh frozen samples from 45 renal tumors of Wilms were obtained from the National Wilms Tumor Study Group's Biological Samples Bank. Gelatin zymography, Western blotting, and immunodetection were used to compare tissue biopsies originating from the infiltrating (stage III), metastatic (stage IV), and anaplastic phenotype of Wilms tumors (WT). RESULTS The expression of the low-density lipoprotein receptor-related protein (LRP) diminished in stage IV and anaplastic WT. Moreover, the expression of RAP, an LRP intracellular chaperone, was also decreased. The diminished expression of LRP and RAP correlated with increased levels of several known extracellular ligands that LRP usually recycles from the extracellular matrix (ECM) environment, including PAI-1, MMP-9, and TIMP-1. The proteolytic processing of MT1-MMP, a functional regulator of LRP, also correlated with the WT invasive phenotype. CONCLUSIONS The low expression of LRP, whose function is regulated by MT1-MMP and whose activity in recycling ECM-associated proteolytic enzymes becomes drastically diminished in advanced stages of WT, may in part explain the acquired invasive potential of the developing WT pediatric cancer.
Collapse
Affiliation(s)
- Richard R Desrosiers
- Département de Chimie-Biochimie, Université du Québec à Montréal, Québec, Canada
| | | | | | | |
Collapse
|
23
|
Lafleur MA, Mercuri FA, Ruangpanit N, Seiki M, Sato H, Thompson EW. Type I collagen abrogates the clathrin-mediated internalization of membrane type 1 matrix metalloproteinase (MT1-MMP) via the MT1-MMP hemopexin domain. J Biol Chem 2005; 281:6826-40. [PMID: 16407177 DOI: 10.1074/jbc.m513084200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I collagen (Col I)-stimulated matrix metalloproteinase-2 (MMP-2) activation via membrane type 1 MMP (MT1-MMP) involves both a transcriptional increase in MT1-MMP expression and a nontranscriptional response mediated by preexisting MT1-MMP. In order to identify which MT1-MMP domains were required for the nontranscriptional response, MCF-7 cells that lack endogenous MT1-MMP were transfected with either wild type or domain mutant MT1-MMP constructs. We observed that mutant constructs lacking the MT1-MMP cytoplasmic tail were able to activate MMP-2 in response to Col I but not a construct lacking the MT1-MMP hemopexin domain. Col I did not alter total MT1-MMP protein levels; nor did it appear to directly induce MT1-MMP oligomerization. Col I did, however, redistribute preexisting MT1-MMP to the cell periphery compared with unstimulated cells that displayed a more diffuse staining pattern. In addition, Col I blocked the internalization of MT1-MMP in a dynamin-dependent manner via clathrin-coated pit-mediated endocytosis. This mechanism of impaired internalization is different from that reported for concanavalin A, since it is not mediated by the cytoplasmic tail of MT1-MMP but rather by the hemopexin domain. In summary, upon Col I binding to its cell surface receptor, MT1-MMP internalization via clathrin-coated pit-mediated endocytosis is impaired through interactions with the hemopexin domain, thereby regulating its function and ability to activate MMP-2.
Collapse
Affiliation(s)
- Marc A Lafleur
- VBCRC Invasion and Metastasis Group, St. Vincent's Institute, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Spiers JP, Kelso EJ, Siah WF, Edge G, Song G, McDermott BJ, Hennessy M. Alterations in vascular matrix metalloproteinase due to ageing and chronic hypertension: effects of endothelin receptor blockade. J Hypertens 2005; 23:1717-24. [PMID: 16093917 DOI: 10.1097/01.hjh.0000176787.04753.ee] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the effects of age and dual endothelin (ET)A/ETB receptor antagonism (bosentan) on aortic matrix metalloproteinase (MMP) abundance and tissue inhibitor of metalloproteinase (TIMP) expression in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). METHODS Male SHR and control WKY rats were randomly assigned to receive placebo or bosentan (100 mg/kg per day) for 3 months. Animals were killed under terminal anaesthesia at either 20 weeks (adult) or 17-20 months (senescent). Aortic gelatinase activity was determined by zymography, whereas MT-1 MMP and TIMP-1 expression were assessed by immunoblotting. RESULTS In WKY rats, aortic MMP-2 but not proMMP-2 activity was 3.6-fold higher (P < 0.02) in the senescent compared with the adult group. TIMP-1 (twofold) and MT-1 MMP (3.8-fold) expression increased (P < 0.05) with age in the WKY groups. Short-term hypertension (adult SHR versus adult WKY) increased MMP-2 to 74.7 +/- 14.1 from 18.9 +/- 3.5 arbitrary units (AU) (P = 0.0012), but did not alter proMMP-2 activity. This increased further on progression to chronic hypertension (117.4 +/- 12.2 versus 74.7 +/- 14.1 AU; P < 0.02). Bosentan decreased MMP-2 (78.9 +/- 3.8 versus 117.4 +/- 12.2 AU; P = 0.014) and proMMP-2 activity (P < 0.006) in the senescent SHR group. CONCLUSION Ageing and the development/progression of hypertension are associated with increased MMP-2 activity in the aorta, which is consistent with ongoing remodelling of the vasculature. However, the underlying mechanisms regulating MMP-2 abundance in ageing and hypertension appear to be divergent, as MT-1 MMP expression is differentially altered. Dual ETA/ETB receptor antagonism did not alter the age-dependent increase in aortic MMP activity in normotensive rats. However, bosentan decreased pro and active MMP-2 activity in senescent SHR rats, indicating that ET modulates late events in vascular remodelling in hypertension.
Collapse
MESH Headings
- Aging
- Animals
- Antihypertensive Agents/pharmacology
- Aorta, Thoracic/enzymology
- Blotting, Western
- Bosentan
- Endothelin A Receptor Antagonists
- Endothelin B Receptor Antagonists
- Endothelin Receptor Antagonists
- Endothelium, Vascular/enzymology
- Enzyme Precursors/metabolism
- Gelatinases/metabolism
- Hypertension/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinases/metabolism
- Metalloendopeptidases/metabolism
- Microscopy, Fluorescence
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Endothelin A/genetics
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/metabolism
- Receptors, Endothelin/genetics
- Receptors, Endothelin/metabolism
- Reference Standards
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- James P Spiers
- Department of Pharmacology and Therapeutics, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, James's Street, Dublin 8, Ireland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Béliveau R. Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 2004; 279:52132-40. [PMID: 15466865 DOI: 10.1074/jbc.m409617200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have recently shown that stimulation of endothelial cells with vascular endothelial growth factor (VEGF) induces dissociation of caveolin-1 from the VEGFR-2 receptor, followed by Src family kinase-dependent tyrosine phosphorylation of the protein (Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., and Beliveau, R. (2003) Mol. Biol. Cell 14, 334-347). In this study, we provide evidence that the VEGF-dependent tyrosine phosphorylation of caveolin-1 induces interaction of the protein with the membrane-type 1 matrix metalloproteinase (MT1-MMP). This interaction requires the phosphorylation of caveolin-1 on tyrosine 14 by members of the Src family of protein kinases, such as Src and Fyn, because it is completely abolished by expression of a catalytically inactive Src mutant or by site-directed mutagenesis of tyrosine 14 of caveolin-1. Most interestingly, the association of MT1-MMP with phosphorylated caveolin-1 induced the recruitment of Src and a concomitant inhibition of the kinase activity of the enzyme, suggesting that this complex may be involved in the negative regulation of Src activity. The association of MT1-MMP with phosphorylated caveolin-1 occurs in caveolae membranes and involves the cytoplasmic domain of MT1-MMP because it was markedly reduced by mutation of Cys574 and Val582 residues of the cytoplasmic tail of the enzyme. Most interestingly, the reduction of the interaction between MT1-MMP and caveolin-1 by using these mutants also decreases MT1-MMP-dependent cell locomotion. Overall these results indicate that MT1-MMP associates with tyrosine-phosphorylated caveolin-1 and that this complex may play an important role in MT1-MMP regulation and function.
Collapse
Affiliation(s)
- Lyne Labrecque
- Laboratoire de Médecine Moléculaire, Hôpital Ste-Justine-Université du Québec à Montréal, Centre de Cancérologie Charles-Bruneau, 3175 Chemin Côte-Ste-Catherine, Montréal, Québec H3T 1C5
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- J Jeffrey Alexander
- MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109, USA.
| |
Collapse
|
27
|
Osenkowski P, Toth M, Fridman R. Processing, shedding, and endocytosis of membrane type 1‐matrix metalloproteinase (MT1‐MMP). J Cell Physiol 2004; 200:2-10. [PMID: 15137052 DOI: 10.1002/jcp.20064] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are multidomain zinc-dependent proteolytic enzymes that play pivotal roles in many normal and pathological processes. Some members of the MMP family are anchored to the plasma membrane via specialized domains and thus are perfectly suited for pericellular proteolysis. Membrane-anchoring also confers the membrane type-MMPs (MT-MMPs) a unique and complex array of regulatory processes that endow cells with the ability to control MT-MMP-dependent proteolytic activity independently of the levels of endogenous protease inhibitors. Emerging evidence indicates that mechanisms as diverse as autocatalytic processing, ectodomain shedding, homodimerization and internalization can all contribute to the modulation of MT-MMP activity on the cell surface. How these distinct processes interact to attain the optimal level of enzyme activity in a particular setting and the molecular signals that trigger them constitute a new paradigm in MMP regulation. This review will discuss the recent findings concerning these diverse regulatory mechanisms in the context of MT1-MMP (MMP-14).
Collapse
Affiliation(s)
- Pamela Osenkowski
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
28
|
Lohmann C, Krischke M, Wegener J, Galla HJ. Tyrosine phosphatase inhibition induces loss of blood–brain barrier integrity by matrix metalloproteinase-dependent and -independent pathways. Brain Res 2004; 995:184-96. [PMID: 14672808 DOI: 10.1016/j.brainres.2003.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Tight junctions between endothelial cells of brain capillaries form the structural basis of the blood-brain barrier (BBB), which controls the exchange of molecules between blood and CNS. Regulation of cellular barrier permeability is a vital and complex process involving intracellular signalling and rearrangement of tight junction proteins. We have analysed the impact of tyrosine phosphatase inhibition on tight junction proteins and endothelial barrier integrity in a primary cell culture model based on porcine brain capillary endothelial cells (PBCEC) that closely mimics the BBB in vitro. The tyrosine phosphatase inhibitor phenylarsine oxide (PAO) induced increased matrix metalloproteinase (MMP) activity, which was paralleled by severe disruption of cell-cell contacts and proteolysis of the tight junction protein occludin. ZO-1 and claudin-5 were not affected. Under these conditions, the transendothelial electrical resistance (TEER) was markedly reduced. PAO-induced occludin proteolysis could be prevented by different MMP inhibitors. Pervanadate (PV) reduced the TEER similar to PAO, but did not increase MMP activity. Cell-cell contacts of PV-treated cells appeared unaffected, and occludin proteolysis did not occur. Our results suggest that tyrosine phosphatase inhibition can influence barrier properties independent of, but also correlated to MMPs. Evidence is given for a role of MMPs in endothelial tight junction regulation at the BBB in particular and probably at tight junctions (TJs) in general.
Collapse
Affiliation(s)
- Christina Lohmann
- Institut fuer Biochemie, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | | | | | | |
Collapse
|
29
|
Langlois S, Gingras D, Béliveau R. Membrane type 1-matrix metalloproteinase (MT1-MMP) cooperates with sphingosine 1-phosphate to induce endothelial cell migration and morphogenic differentiation. Blood 2003; 103:3020-8. [PMID: 15070679 DOI: 10.1182/blood-2003-08-2968] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) has been suggested to play an important role in angiogenesis, but the mechanisms involved remain incompletely understood. Using an in vitro model of angiogenesis in which cell migration of bovine aortic endothelial cells (BAECs) and their morphogenic differentiation into capillary-like structures on Matrigel are induced by overexpression of MT1-MMP, we show that the platelet-derived bioactive lipid sphingosine 1-phosphate (S1P) is the predominant serum factor essential for MT1-MMP-dependent migration and morphogenic differentiation activities. In the presence of S1P, MT1-MMP-dependent cell migration and morphogenic differentiation were inhibited by pertussis toxin, suggesting the involvement of Gi-protein-coupled receptor-mediated signaling. Accordingly, cotransfection of BAECs with MT1-MMP and a constitutively active Galphai2 (Q205L) mutant increased cell migration and morphogenic differentiation, whereas treatment of BAECs overexpressing MT1-MMP with antisense oligonucleotides directed against S1P1 and S1P3, the predominant S1P receptors, significantly inhibited both processes. These results demonstrate that MT1-MMP-induced migration and morphogenic differentiation involve the cooperation of the enzyme with platelet-derived bioactive lipids through S1P-mediated activation of Galphai-coupled S1P1 and S1P3 receptors. Given the important contribution of platelets to tumor angiogenesis, the stimulation of endothelial MT1-MMP function by S1P may thus constitute an important molecular event linking hemostasis to angiogenesis.
Collapse
MESH Headings
- Animals
- Cattle
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Humans
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/antagonists & inhibitors
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Neovascularization, Physiologic
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Lysophospholipid
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Sphingosine/pharmacology
- Vascular Endothelial Growth Factor A/pharmacology
Collapse
Affiliation(s)
- Stéphanie Langlois
- Laboratoire de Médecine Moléculaire Ste-Justine-Université du Québec à Montréal, Centre de Cancérologie Charles-Bruneau, Hôpital Ste-Justine et Université du Québec à Montréal, Montréal, QC, Canada
| | | | | |
Collapse
|
30
|
|
31
|
Laplante A, Liu D, Demeule M, Annabi B, Murphy GF, Daloze P, Chen H, Béliveau R. Modulation of matrix gelatinases and metalloproteinase-activating process in acute kidney rejection. Transpl Int 2003; 16:262-269. [PMID: 12730807 DOI: 10.1111/j.1432-2277.2003.tb00297.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2002] [Revised: 07/08/2002] [Accepted: 08/23/2002] [Indexed: 08/01/2023]
Abstract
Changes in matrix metalloproteinase (MMP) activities would contribute to the accumulation of extracellular matrix during acute kidney allograft rejection. MMP-2 and MMP-9 and other gelatinolytic activities were examined in the rejected graft and the urine of a rat model of acute kidney rejection (orthotopic allotransplantation from a Buffalo donor to a Wistar-Furth recipient) by either zymography or fluorescence assay. MMP-2, membrane type 1 (MT1)-MMP, and tissue inhibitor of metalloproteinase (TIMP)-2 were also examined by immunodetection. The proMMP-2 activity and protein level increased in the graft during rejection when compared with normal Buffalo kidney, whereas activated MMP-2 decreased. TIMP-2 protein levels were markedly decreased and MT1-MMP proteolytic fragments (44-40 kDa) were undetectable. This suggests an altered MT1-MMP-dependent processing of proMMP-2 into active MMP-2 due to a diminished TIMP-2 level in acute kidney rejection. In the urine the overall gelatinolytic activity decreased considerably, although activity associated with an as yet unidentified 78-kDa protein appeared 6 days after transplantation.
Collapse
Affiliation(s)
- Alain Laplante
- Laboratory of Molecular Medicine, UQAM-Sainte-Justine Hospital, C.P. 8888, Succursale Centre-Ville Montreal, Quebec, H3C 3P8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Haseneen NA, Vaday GG, Zucker S, Foda HD. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol 2003; 284:L541-7. [PMID: 12456388 DOI: 10.1152/ajplung.00290.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.
Collapse
MESH Headings
- Antigens, CD
- Antigens, Neoplasm
- Antineoplastic Agents/pharmacology
- Basigin
- Blotting, Western
- Cell Line
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Enzyme Activation/physiology
- Enzyme Induction/physiology
- Enzyme Inhibitors/pharmacology
- Humans
- Lung/blood supply
- Matrix Metalloproteinase 1/genetics
- Matrix Metalloproteinase 1/metabolism
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 3/analysis
- Matrix Metalloproteinase Inhibitors
- Matrix Metalloproteinases, Membrane-Associated
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Organic Chemicals
- Periodicity
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Mechanical
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Tissue Inhibitor of Metalloproteinase-2/metabolism
Collapse
Affiliation(s)
- Nadia A Haseneen
- Department of Medicine and Research, Northport Veterans Affairs Medical Center, Northport, NY 11768, USA
| | | | | | | |
Collapse
|
33
|
Ailenberg M, Silverman M. Cytochalasin D disruption of actin filaments in 3T3 cells produces an anti-apoptotic response by activating gelatinase A extracellularly and initiating intracellular survival signals. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:249-58. [PMID: 12581869 DOI: 10.1016/s0167-4889(02)00395-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Disruption of actin filaments affects multiple cell functions including motility, signal transduction and cell division, ultimately culminating in cell death. Although this is the usual sequence of events, we have made the interesting observation that disruption of actin filaments by the potent toxin cytochalasin D (Cyto D) causes one cell type, mouse mesangial cells (MMC), to undergo apoptosis, while in another cell type (NIH 3T3), it has the opposite effect, resulting in production of survival signals. The purpose of this study was to investigate the molecular basis for these observed differences. In the present communication, we demonstrate that exposure to Cyto D induces the pro-apoptotic pathways, p38 and stress-activated protein kinase (SAPK)/jun amino-terminal kinase (JNK), in both cell types. However, in 3T3, but not MMC, the extracellular signal regulated kinase (ERK) 1/2 pathway is protected from inhibition following treatment with Cyto D-leading to phosphorylation of Bclxi/Bcl 2-associated death promoter (BAD). Inhibition of Cyto D-induced secretion and activation of gelatinase A in 3T3 cells reverses the production of survival signals by Cyto-D. To investigate this effect further we employed CS-1 cells, a well-characterized melanoma cell line that lacks integrin beta3, and also does not secrete gelatinase A. Co-transfection of CS-1 cells with integrin beta3 and a gelatinase A transgene, which enables the cells to secrete constituitively active gelatinase A, enhances CS-1 cell survival signals. Together, our findings suggest that extracellularly activated gelatinase A, through interaction with integrin alphaVbeta3, elicits survival signals mediated through ERK 1/2 that override activation of p38 and SAPK/JNK stress pathways.
Collapse
Affiliation(s)
- Menachem Ailenberg
- CIHR Group in Membrane Biology, Department of Medicine, Room 7207, Medical Science Building, University of Toronto, M5S 1A8, Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Zucker S, Hymowitz M, Conner CE, DiYanni EA, Cao J. Rapid trafficking of membrane type 1-matrix metalloproteinase to the cell surface regulates progelatinase a activation. J Transl Med 2002; 82:1673-84. [PMID: 12480917 DOI: 10.1097/01.lab.0000041713.74852.2a] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Pericellular matrix degradation during cancer invasion and inflammation is dependent on activation of progelatinase A by membrane type 1-matrix metalloproteinase (MT1-MMP); a stoichiometric concentration of tissue inhibitor of metalloproteinase-2 (TIMP-2) is required. Activation of progelatinase A has generally been considered to be a slow process occurring as a result of enhanced expression of MT1-MMP. We herein report that ConA treatment of HT1080 fibrosarcoma cells is followed by MT1-MMP-induced activation of progelatinase A on the cell surface within 1 hour. Cell surface biotinylation, immunohistochemistry, and (125)I-labeled TIMP-2 binding to cell surface MT1-MMP were used to characterize the appearance and function of MT1-MMP on the plasma membrane. Treatment of HT1080 cells with ConA resulted in increased specific binding of (125)I-labeled TIMP-2 to cell surface receptors within 5 minutes. TIMP-2 binds almost exclusively to activated MT1-MMP on the surface of HT1080 cells. MT1-MMP function at the cell surface was also accelerated by treatment of cells with cytochalasin D, an inhibitor of actin filaments, PMA, a stimulator of protein kinase C, and bafilomycin A(1), an inhibitor of lysosome/endosome function. A functional pool of intracellular MT1-MMP available for trafficking to the cell surface was demonstrated by repetitive ConA stimulation. ConA-induced expression of MT1-MMP mRNA (Northern blot analysis) in HT1080 cells was a delayed event (>6 hours). These data suggest that presynthesized MT1-MMP is sorted to a transient storage compartment (trans-Golgi network/endosomes), where it is available for rapid trafficking to the plasma membrane and cell surface proteolytic activity.
Collapse
Affiliation(s)
- Stanley Zucker
- Department of Research, Veterans Affairs Medical Center, Northport, New York, 11768, USA.
| | | | | | | | | |
Collapse
|
35
|
Alexander JS, Elrod JW. Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation. J Anat 2002; 200:561-74. [PMID: 12162724 PMCID: PMC1570742 DOI: 10.1046/j.1469-7580.2002.00057.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2002] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial permeability is maintained by the regulated apposition of adherens and tight junctional proteins whose organization is controlled by several pharmacological and physiological mediators. Endothelial permeability changes are associated with: (1) the spatial redistribution of surface cadherins and occludin, (2) stabilization of focal adhesive bonds and (3) the progressive activation of matrix metalloproteinases (MMPs). In response to peroxide, histamine and EDTA, endothelial cells sequester VE-cadherin and alter its cytoskeletal binding. Simultaneously, these mediators enhance focal adhesion to the substratum. Oxidants, cytokines and pharmacological mediators also trigger the activation of matrix metalloproteinases (MMPs) in a cytoskeleton and tyrosine phosphorylation dependent manner to degrade occludin, a well-characterized tight junction element. These related in vitro phenomena appear to co-operate during inflammation, to increase endothelial permeability, structurally stabilize cells while also remodelling cell junctions and substratum.
Collapse
Affiliation(s)
- J S Alexander
- Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, LA 71130, USA.
| | | |
Collapse
|
36
|
Rivera-Marrero CA, Schuyler W, Roser S, Ritzenthaler JD, Newburn SA, Roman J. M. tuberculosis induction of matrix metalloproteinase-9: the role of mannose and receptor-mediated mechanisms. Am J Physiol Lung Cell Mol Physiol 2002; 282:L546-55. [PMID: 11839551 DOI: 10.1152/ajplung.00175.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection induces the expression of matrix metalloproteinase-9 (MMP-9) in mouse lungs. In cultured human monocytic cells, Mtb bacilli and the cell wall glycolipid lipoarabinomannan (LAM) stimulate high levels of MMP-9 activity. Here, we explore the cellular mechanisms involved in the induction of MMP-9 by Mtb. We show that infection of THP-1 cells with Mtb caused a fivefold increase in MMP-9 mRNA that was associated with increased MMP-9 activity. MMP-9 induction was dependent on microtubule polymerization and protein kinase activation and was associated with increased DNA binding by the transcription factor activator protein-1 (AP-1), which appeared to be important for MMP-9 expression. We then explored the surface molecules potentially involved in Mtb induction of MMP-9, focusing on ligands of the mannose and beta-glucan receptors. MMP-9 activity was induced by the mannose receptor ligands mannan, zymosan, and LAM, whereas the beta-glucan receptor ligand laminarin was not effective. The most active inducers of MMP-9 activity were the particulate ligand zymosan and LAM. Pretreatment of cells with an anti-mannose receptor monoclonal antibody, but not anti-complement receptor 3, decreased the induction of MMP-9 activity by Mtb bacilli. Together, these results suggest that MMP-9 induction by Mtb occurs by receptor-mediated signaling mechanisms involving the binding of mannosylated ligands to mannose receptors, the modulation by cytoskeletal elements such as microtubules, the activation of protein kinases, and transcriptional activation by AP-1.
Collapse
Affiliation(s)
- Carlos A Rivera-Marrero
- Pulmonary and Critical Care Division, Department of Medicine, Atlanta Veterans Affairs Medical Center and Emory University School of Medicine, Atlanta, Georgia 30033, USA
| | | | | | | | | | | |
Collapse
|
37
|
Annabi B, Shédid D, Ghosn P, Kenigsberg RL, Desrosiers RR, Bojanowski MW, Beaulieu E, Nassif E, Moumdjian R, Béliveau R. Differential regulation of matrix metalloproteinase activities in abdominal aortic aneurysms. J Vasc Surg 2002; 35:539-546. [PMID: 11877705 DOI: 10.1067/mva.2002.121124] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The increased synthesis of matrix metalloproteinases (MMPs) by aortic smooth muscle cells (SMCs) is thought to be involved in the etiopathogenesis of abdominal aortic aneurysms (AAAs), but the functional regulation and the activation states of these MMPs remain unclear. In this study, we assessed the expression levels and the functional regulation of several MMPs in the pathogenesis of AAAs. METHODS Human healthy aorta and AAA specimens were homogenized, and the proteolytic activities of MMP-2 and MMP-9 and of the macrophage metalloelastase (MMP-12) were assessed with zymography. Protein expression of MMP-1, MMP-12, membrane-type 1 MMP (MT1-MMP), tissue inhibitor of MMP 1 (TIMP-1), TIMP-2, TIMP-3, alpha-actin, and beta-actin was analyzed with electrophoresis on sodium dodecyl sulfate gels and immunoblotting. RESULTS MMP-1, MMP-9, and MMP-12 zymogen levels and proteolytic activities were increased in AAAs when compared with healthy aorta. A severe reduction in alpha-actin--positive vascular SMCs was observed in all the AAA specimens and was correlated with an increase in TIMP-3 but not TIMP-1 or TIMP-2 potential activities. Although pro--MMP-2 activity was decreased, the extent of activated MMP-2 remained unaffected in the AAAs. In accordance with this result, a highly activated MT1-MMP form was also observed in AAAs. CONCLUSION These data suggest that chronic aortic wall inflammation is mediated by macrophage infiltration, which may account for the destruction of medial elastin, as reflected by SMC down regulation, through increased levels of active MMP-1 and MMP-12. Moreover, altered MT1-MMP proteolytic turnover and differential regulation of TIMP expression in AAAs suggest that tight regulatory mechanisms are involved in the molecular regulation of MMP activation processes in the pathogenesis of AAAs.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire de Médecine Moléculaire, Centre de Cancérologie Charles-Bruneau, Hôpital Sainte-Justine-UQAM, Montreal, PQ, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Annabi B, Lachambre MP, Bousquet-Gagnon N, Page M, Gingras D, Beliveau R. Green tea polyphenol (-)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:209-220. [PMID: 11853893 DOI: 10.1016/s0167-4889(01)00187-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have recently shown that green tea polyphenols, and especially (-)-epigallocatechin 3-gallate (EGCg), acted as potent inhibitors of matrix metalloproteinase activities as well as of proMMP-2 activation (M. Demeule, M. Brossard, M. Page, D. Gingras, R. Beliveau, Biochim. Biophys. Acta 1478 (2000)). In the present work, we sought to examine the involvement of MT1-MMP in the EGCg-induced inhibition of proMMP-2 activation. The incubation of U-87 glioblastoma cells in the presence of concanavalin A or cytochalasin D, two potent activators of MT1-MMP, resulted in proMMP-2 activation that was correlated with the cell surface proteolytic processing of MT1-MMP to its inactive 43 kDa form. Addition of EGCg strongly inhibited the MT1-MMP-dependent proMMP-2 activation. The inhibitory effect of EGCg on MT1-MMP was also demonstrated by the down-regulation of MT1-MMP transcript levels and by the inhibition of MT1-MMP-driven cell migration of transfected COS-7 cells. These observations suggest that this catechin may act at both the MT1-MMP gene and protein expression levels. In addition, treatment of cells with non-cytotoxic doses of EGCg significantly reduced the amount of secreted proMMP-2, and led to a concomitant increase in intracellular levels of that protein. This effect was similar to that observed using well-characterized secretion inhibitors such as brefeldin A and manumycin, suggesting that EGCg could also potentially act on intracellular secretory pathways. Taken together, these results indicate that EGCg targets multiple MMP-mediated cellular events in cancer cells and provides a new mechanism for the anticancer properties of that molecule.
Collapse
Affiliation(s)
- Borhane Annabi
- Centre de Cancérologie Charles-Bruneau, Hôpital Ste-Justine et Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, H3C 3P8, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Gingras D, Bousquet-Gagnon N, Langlois S, Lachambre MP, Annabi B, Béliveau R. Activation of the extracellular signal-regulated protein kinase (ERK) cascade by membrane-type-1 matrix metalloproteinase (MT1-MMP). FEBS Lett 2001; 507:231-236. [PMID: 11684104 DOI: 10.1016/s0014-5793(01)02985-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanisms underlying membrane-type-1 matrix metalloproteinase (MT1-MMP)-dependent induction of cell migration were investigated. Overexpression of MT1-MMP induced a marked increase in cell migration, this increase being dependent on the presence of the cytoplasmic domain of the protein. MT1-MMP-dependent migration was inhibited by a mitogen-activated protein kinase kinase 1 inhibitor, suggesting the involvement of the extracellular signal-regulated protein kinase (ERK) cascade in the induction of migration. Accordingly, MT1-MMP overexpression induced the activation of ERK, this process being also dependent on the presence of its cytoplasmic domain. MT1-MMP-induced activation of both migration and ERK required the catalytic activity of the enzyme as well as attachment of the cells to matrix proteins. The MT1-MMP-dependent activation of ERK was correlated with the activation of transcription through the serum response element, whereas other promoters were unaffected. Taken together, these results indicate that MT1-MMP trigger important changes in cellular signal transduction events, leading to cell migration and to gene transcription, and that these signals possibly originate from the cytoplasmic domain of the protein.
Collapse
Affiliation(s)
- D Gingras
- Laboratoire de Médecine Moléculaire Ste-Justine-UQAM, Centre de Cancérologie Charles-Bruneau, Hôpital Ste-Justine et Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, QC, Canada H3C 3P8
| | | | | | | | | | | |
Collapse
|
40
|
Annabi B, Pilorget A, Bousquet-Gagnon N, Gingras D, Béliveau R. Calmodulin inhibitors trigger the proteolytic processing of membrane type-1 matrix metalloproteinase, but not its shedding in glioblastoma cells. Biochem J 2001; 359:325-333. [PMID: 11583578 PMCID: PMC1222150 DOI: 10.1042/0264-6021:3590325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Most transmembrane proteins are subjected to limited proteolysis by cellular proteases, and stimulation of cleavage of membrane proteins by calmodulin (CaM) inhibitors was recently shown. The present study investigated the ability of several CaM inhibitors to induce the proteolytic cleavage of the membrane type-1 matrix metalloproteinase (MT1-MMP) from the cell surface of highly invasive U-87 glioblastoma cells. Although no shedding of a soluble MT1-MMP form was induced by CaM inhibitors in the conditioned media, we showed that these inhibitors induced MT1-MMP proteolytic processing to the 43 kDa membrane-bound inactive form that was not correlated with an increase in proMMP-2 activation but rather with an increase in tissue inhibitor of MMPs (TIMP)-2 expression levels. Moreover, this proteolytic processing was sensitive to marimastat suggesting the involvement of MMPs. Interestingly, CaM inhibitors antagonized concanavalin A- and cytochalasin D-induced proMMP-2 activation, and affected the cytoskeletal actin organization resulting in the loss of migratory potential of U-87 glioblastoma cells. Cytoplasmic tail-truncated MT1-MMP constructs expressed in COS-7 cells were also affected by CaM inhibitors suggesting that these inhibitors stimulated MT1-MMP proteolytic processing by mechanisms independent of the CaM-substrate interaction. We also propose that TIMP-2 acts as a negative regulator of MT1-MMP-dependent activities promoted by the action of CaM inhibitors in U-87 glioblastoma cells.
Collapse
Affiliation(s)
- B Annabi
- Centre de Cancérologie Charles-Bruneau, Hôpital Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Québec, Canada H3T 1C5
| | | | | | | | | |
Collapse
|
41
|
Annabi B, Lachambre M, Bousquet-Gagnon N, Pagé M, Gingras D, Béliveau R. Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem J 2001; 353:547-553. [PMID: 11171051 PMCID: PMC1221600 DOI: 10.1042/0264-6021:3530547] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-associated MMP that has been recently reported to have a central role in tumour cell invasion. Here we report that both the native and overexpressed recombinant forms of MT1-MMP are highly enriched in low-density Triton X-100-insoluble membrane domains that contain the caveolar marker protein caveolin 1. Moreover, the MT1-MMP-dependent activation of proMMP-2 induced by concanavalin A and cytochalasin D was correlated with the processing of MT1-MMP to its proteolytically inactive 43 kDa fragment in U-87 glioblastoma and HT-1080 fibrosarcoma tumour cell lines; this processing was also preferentially observed within the caveolar fraction. Interestingly, whereas the expression of caveolin 1 had no effect on the MT1-MMP-dependent activation of proMMP-2, its co-expression with MT1-MMP antagonized the MT1-MMP-increased migratory potential of COS-7 cells. Taken together, our results provide evidence that MT1-MMP is preferentially compartmentalized and proteolytically processed in caveolae of cancer cells. The inhibition of MT1-MMP-dependent cell migration by caveolin 1 also suggests that the localization of MT1-MMP to caveolin-enriched domains might have an important function in the control of its enzymic activity.
Collapse
Affiliation(s)
- B Annabi
- Laboratoire de Médecine Moléculaire, Hôpital Sainte-Justine et Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | | | |
Collapse
|