1
|
He J, Illingworth H, Ullrich S, Ghosh P, Ton J, Jackson CJ, Nitsche C. Synthesis, screening and validation of cysteine-reactive fragments as chikungunya virus protease inhibitors. Bioorg Med Chem Lett 2025; 122:130176. [PMID: 40081602 DOI: 10.1016/j.bmcl.2025.130176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Alphaviruses like the Chikungunya virus cause severe outbreaks; however, no specific treatments are available. Their viral replication depends on the nsP2 cysteine protease, a promising but underexplored target for drug discovery. In this study, we report a covalent fragment screening against Chikungunya virus nsP2 protease, resulting in the identification of three inhibitors that can serve as starting points for future drug development. Careful validation proved indispensable in eliminating false-positive hits from a Förster resonance energy transfer (FRET)-based inhibition assay, wherein interference was caused by the inner filter effect between the fluorescent substrate and coloured compounds. Jump-dilution experiments accompanied by reactivity studies with cysteine and the recombinant protein indicate covalent inhibition via thia-Michael addition. We further demonstrate cross-inhibition of the related alphavirus nsP2 protease from Sindbis virus. The study provides early insights into nsP2 inhibition by electrophilic fragments featuring non-promiscuous N-arylacrylamides, thus advancing the search for antivirals targeting Chikungunya and other alphaviruses of concern.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Henry Illingworth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jennifer Ton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
2
|
Gonçalves WA, de Sousa CDF, Teixeira MM, Souza DG. A brief overview of chikungunya-related pain. Eur J Pharmacol 2025; 994:177322. [PMID: 39892450 DOI: 10.1016/j.ejphar.2025.177322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Pain is an important symptom associated with the arboviral disease caused by the Chikungunya virus (CHIKV). For a significant number of patients, this symptom can persist for months or even years, negatively affecting their quality of life. Unfortunately, pharmacological options for this condition are limited and only partially effective, as the underlying mechanisms associated with CHIKV-induced pain are still poorly understood. The re-emergence of CHIKV has led to new outbreaks, and the expected high prevalence of pain in these global events requires new scientific advances to find more effective solutions. Here we review the main aspects of pain caused by CHIKV infection, such as the anatomy of the affected sites, the prevalence and management of this symptom, the diversity of possible cellular and molecular mechanisms, and finally highlight a promising meningeal pathway to elucidate the mechanisms involved in the unsolved problem of CHIKV-associated pain.
Collapse
Affiliation(s)
- William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Carla Daiane Ferreira de Sousa
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany.
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Daniele G Souza
- Laboratório Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Ngwe Tun MM, Mutua MM, Inoue S, Takamatsu Y, Kaneko S, Urano T, Muthugala R, Fernando L, Hapugoda M, Gunawardene Y, Morita K. Molecular and serological evidence of chikungunya virus among dengue suspected patients in Sri Lanka. J Infect Public Health 2025; 18:102709. [PMID: 40068344 DOI: 10.1016/j.jiph.2025.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV), transmitted by Aedes mosquitoes, causes significant morbidity characterized by acute febrile illness to chronic and permanent disability in some patients. Despite its potential for severe long-term effects, surveillance for CHIKV remains limited, especially in dengue-endemic region like Sri Lanka. To address the gap in surveillance, this study aimed to determine the prevalence of CHIKV among patients suspected of dengue fever during the 2017-2019 DENV outbreak in Sri Lanka. METHODS Serum samples were collected from 295 patients at Kandy National Hospital and 300 patients at Negombo Hospitals, presenting with dengue-like symptoms such as fever, rash, and arthralgia. We performed quantitative real-time RT-PCR (RT-qPCR) to detect the CHIKV genome and conducted serological tests for anti-CHIKV IgM and IgG antibodies on all samples. Serology-positive samples were further validated with neutralization assays to confirm CHIKV-specific antibodies. RESULTS The prevalence of recent CHIKV infection (IgM or RT-qPCR positive) was 2.4 % and 7.0 %, while past CHIKV infection (IgG-positive) was 16.3 % and 12.3 % with neutralizing antibody (NAb) in Kandy and Negombo Hospitals, respectively. All IgG-positive samples exhibited NAb with titers of 10 or higher. The NAb geometric mean titer in the Kandy and Negombo areas does not show a significant difference. In the Kandy area, the majority of CHIKV infections occurred in young adults aged 13-24 years, accounting for 57.1 % of recent infections and 52.1 % of past infections. CONCLUSION CHIKV circulates alongside DENV outbreaks, with a higher prevalence of recent infections in Negombo compared to Kandy, while past infections are more common in Kandy than in Negombo. Neutralization assays confirmed the presence of CHIKV-specific antibodies, emphasizing the need for enhanced surveillance for proper patient care and management. These findings underscore the importance of public health interventions, including surveillance programs and vaccine development, to mitigate the burden of CHIKV in Sri Lanka.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 693-8501, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan.
| | - Maurine Mumo Mutua
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Graduate School of Health, Kenya Medical Research Institute, Nairobi, Kenya
| | - Shingo Inoue
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Satoshi Kaneko
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 693-8501, Japan
| | | | - Lakkumar Fernando
- Centre for Clinical Management of Dengue & Dengue Haemorrhagic Fever, District General Hospital, Negombo, Sri Lanka
| | - Menaka Hapugoda
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Ragama 11010, Sri Lanka
| | - Yins Gunawardene
- Centre for Clinical Management of Dengue & Dengue Haemorrhagic Fever, District General Hospital, Negombo, Sri Lanka
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 693-8501, Japan; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; DEJIMA Infectious Disease Research Alliance, Nagasaki University, Japan.
| |
Collapse
|
4
|
Cheong DHJ, Yi B, Wong YH, Chu JJH. The Current Progress in the Quest for Vaccines Against the Semliki Forest Virus Complex. Med Res Rev 2025; 45:947-967. [PMID: 39757142 DOI: 10.1002/med.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
The Semliki Forest virus (SFV) complex comprises of arboviruses that are transmitted by arthropod vectors and cause acute febrile illness in humans. In the last seven decades, re-emergence of these viruses has resulted in numerous outbreaks globally, affecting regions including Africa, Americas, Asia, Europe and the Caribbean. These viruses are transmitted to humans by the bite of infected mosquitoes. Symptoms of infection include high fever, severe joint pain, skin rash, muscle pain and headache. Fatal cases were reported, and mortality rate increased during the epidemic of these viruses. There is therefore a need to control the spread of these emerging arboviruses. Given that vaccination is one of the most effective ways to protect populations against viral outbreaks, efforts have been made to develop and test potential vaccine candidates. However, there are still no licensed vaccines available against the medically important viruses in the SFV complex. This review first summarizes the current knowledge of the SFV complex disease pathogenesis. Next, seven strategies that have been applied in vaccine development against these viruses are reviewed, indicating the immune response and efficacies of these vaccine candidates in in vivo models of infection. Finally, the more promising candidates that have entered clinical trials are discussed and insights into the future development of vaccines for viruses of the SFV complex are given.
Collapse
Affiliation(s)
- Dorothy Hui Juan Cheong
- Department of Microbiology and Immunology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Bowen Yi
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yi Hao Wong
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore CIty, Singapore
| |
Collapse
|
5
|
Berrueta M, Ciapponi A, Mazzoni A, Ballivian J, Bardach A, Sambade JM, Brizuela M, Stegelman K, Comandé D, Parker EPK, Stergachis A, Xiong X, Munoz FM, Buekens PM. Safety, immunogenicity, and effectiveness of chikungunya vaccines in pregnant persons, children, and adolescents: a protocol for a living systematic review and meta-analysis. Reprod Health 2025; 22:56. [PMID: 40251607 PMCID: PMC12008916 DOI: 10.1186/s12978-025-02004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/27/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Chikungunya virus significantly impacts public health, primarily affecting regions in Africa and the Americas (predominantly Latin America and the Caribbean). Despite the global spread of the virus and its clinical manifestations and complications in vulnerable populations such as children and pregnant persons, no widely available vaccine is currently available. With recent advancements in vaccine development, there is a need to systematically evaluate the emerging evidence on the safety, immunogenicity, and efficacy of chikungunya vaccine candidates. This protocol outlines a living systematic review designed to continuously assess the growing research on chikungunya vaccines, focusing on diverse populations, including children and pregnant persons. We aim to provide up-to-date evidence to inform public health decisions and vaccine recommendations as new data is available. METHODS Our objective is to carry out a living systematic review and meta-analysis through biweekly searches in medical databases and clinical trial registries, aiming to identify relevant chikungunya vaccines studies on pregnant individuals, children, and adolescents. Pairs of reviewers will independently screen studies, extract data, and assess the risk of bias. Clinical trials, quasi-experimental studies, and observational studies, including case reports, will be considered for inclusion. Main outcomes will include the safety, efficacy, and effectiveness of chikungunya vaccines in pregnant individuals (including neonatal outcomes), as well as in children and adolescents. Reactogenicity and immunogenicity will be considered as secondary outcomes. Paired meta-analyses, incorporating predefined subgroup and sensitivity analyses, will be performed. Evidence certainty will be assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. DISCUSSION This living systematic review and meta-analysis will continuously assess the safety, immunogenicity, and effectiveness of chikungunya vaccines in pregnant persons, children, and adolescents. Given the significant disease burden and potential complications in these populations, synthesizing emerging evidence is crucial for guiding immunization policies and clinical recommendations. By maintaining an updated analysis, this review will provide timely insights for public health agencies, researchers, and clinicians involved in vaccine implementation and maternal-child health. STUDY REGISTRATION Two protocols were registered in the International Prospective Register of Systematic Reviews database, CRD42024514513 and CRD42024516754.
Collapse
Affiliation(s)
- Mabel Berrueta
- Instituto de Efectividad Clínica y Sanitaria (IECS), Dr. Emilio Ravignani 2024 (C1414CPV), Buenos Aires, Argentina
| | - Agustín Ciapponi
- Instituto de Efectividad Clínica y Sanitaria (IECS), Dr. Emilio Ravignani 2024 (C1414CPV), Buenos Aires, Argentina.
| | - Agustina Mazzoni
- Instituto de Efectividad Clínica y Sanitaria (IECS), Dr. Emilio Ravignani 2024 (C1414CPV), Buenos Aires, Argentina
| | - Jamile Ballivian
- Instituto de Efectividad Clínica y Sanitaria (IECS), Dr. Emilio Ravignani 2024 (C1414CPV), Buenos Aires, Argentina
| | - Ariel Bardach
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
| | - Juan M Sambade
- Instituto de Efectividad Clínica y Sanitaria (IECS), Dr. Emilio Ravignani 2024 (C1414CPV), Buenos Aires, Argentina
| | - Martin Brizuela
- Instituto de Efectividad Clínica y Sanitaria (IECS), Dr. Emilio Ravignani 2024 (C1414CPV), Buenos Aires, Argentina
| | - Katharina Stegelman
- Instituto de Efectividad Clínica y Sanitaria (IECS), Dr. Emilio Ravignani 2024 (C1414CPV), Buenos Aires, Argentina
| | - Daniel Comandé
- Instituto de Efectividad Clínica y Sanitaria (IECS), Dr. Emilio Ravignani 2024 (C1414CPV), Buenos Aires, Argentina
| | - Edward P K Parker
- Department for Infectious Disease Epidemiology and International Health, London School of Hygiene and Tropical Medicine , London, WC1E 7HT, UK
| | - Andy Stergachis
- School of Pharmacy and School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Flor M Munoz
- Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin St, Houston, TX, 77030, USA
| | - Pierre M Buekens
- Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| |
Collapse
|
6
|
Micheleto JPC, Melo KA, Veloso FCS, Kassar SB, Oliveira MJC. Risk factors for mortality in patients with chikungunya: A systematic review and meta-analysis. Trop Med Int Health 2025; 30:235-245. [PMID: 39894663 DOI: 10.1111/tmi.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Chikungunya fever is a debilitating arthritic disease that can lead to atypical severe complications and sometimes be fatal. The risk factors for fatal outcomes of chikungunya fever have not been thoroughly studied. This systematic review and meta-analysis aimed to identify mortality risk factors in patients with chikungunya. These findings will aid clinicians in targeting high-risk groups with severe chikungunya for timely interventions, ultimately improving patient outcomes. OBJECTIVE The objective of this study is to identify mortality risk factors in patients with chikungunya. METHODS We conducted a systematic review and meta-analysis by searching the MEDLINE, Embase, Cochrane, BVS, BDTD and OpenGrey databases to identify eligible observational studies on patients with chikungunya. These studies analysed mortality risk factors, providing adjusted risk measures along with their corresponding confidence intervals (CIs). We estimated the pooled weighted mean difference and 95% CIs using a random-effects model, and the methodological quality was assessed using the Newcastle-Ottawa Scale. RESULTS Our search yielded a total of 334 records. After removing duplicates, we screened 275 records, reviewed 31 full articles and included seven studies in the systematic review and four in the meta-analysis, with a total of 220,215 patients and 908 fatal cases. Diabetes Mellitus (OR = 2.86, 95% CI 1.75-4.69), hypertension (OR = 3.10, 95% CI 2.02-4.77), age ≥ 60 years (OR = 19.49, 95% CI 1.98-191.88), chronic kidney disease (OR = 5.81, 95% CI 1.30-25.99), male sex (OR = 2.07, 95% CI 1.71-2.51) and vomiting (OR = 2.18, 95% CI 1.75-2.73) are significantly and positively associated with mortality in chikungunya. CONCLUSION Elderly men with chronic diseases have a higher risk of death from chikungunya; therefore, they deserve more careful evaluation.
Collapse
Affiliation(s)
| | - Karin Araujo Melo
- Graduate Program in Medical Sciences, Medical School, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Samir Buainain Kassar
- Graduate Program in Medical Sciences, Medical School, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
7
|
Liu X, Ren X, Ren X, Zhang J, Hua M, Sui C, Liu Z, Luo F, Ran S, Li X, Cui L, Yang J. Discovery of a New Class of Thiazolidin-4-one-Based Inhibitors of Human Dihydroorotate Dehydrogenase: Biological Activity Evaluation, Molecular Docking, and Molecular Dynamics. ACS OMEGA 2025; 10:12393-12402. [PMID: 40191330 PMCID: PMC11966315 DOI: 10.1021/acsomega.4c11459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025]
Abstract
The continuous outbreak of various viruses reminds us to prepare broad-spectrum antiviral drugs. Human dihydroorotate dehydrogenase (hDHODH) inhibitor exhibits broad-spectrum antiviral effects. In order to explore the novel type of human dihydroorotate dehydrogenase inhibitor (hDHODHi), we have optimized, designed, and synthesized 17 compounds and conducted biological activity evaluation, molecular docking, and molecular dynamics studies. The results of biological activity evaluation showed that compounds 10 and 16 exhibited submicromolar inhibitory activity, with IC50 values of 0.188 ± 0.004 and 0.593 ± 0.012 μM, respectively. Molecular docking studies showed that compounds 10 and 16 were in good agreement with the hDHODH activity pocket and interacted well with amino acid residues. Compared to the cocrystallized structure of the brequinar analogue complex, inhibitors 10 and 16 increased their direct interaction with Ala55. In addition, molecular dynamics studies showed that inhibitors 10 and 16 have strong affinity for proteins, and their complexes are stable, which confirms the significant inhibitory effect of inhibitors 10 and 16 on hDHODH in vitro. Through analysis, it was found that the carboxyl group and para introduced fluorine atoms in R 1, as well as the naphthalene in R 2, are key factors in improving activity. This conclusion provides help for further research into hDHODH inhibitors in the future. This study has promoted the significance of the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Xiaoyong Liu
- Chongqing
Chemical Industry Vocational College, Chongqing 400020, China
| | - Xiaoli Ren
- Chongqing
Chemical Industry Vocational College, Chongqing 400020, China
| | - Xiaoping Ren
- Chongqing
Chemical Industry Vocational College, Chongqing 400020, China
| | - Ji Zhang
- Chongqing
Chemical Industry Vocational College, Chongqing 400020, China
| | - Miao Hua
- Chongqing
Experimental School, Chongqing 400020, China
| | - Chaoya Sui
- Chongqing
Chemical Industry Vocational College, Chongqing 400020, China
| | - Zhonghong Liu
- Chongqing
Chemical Industry Vocational College, Chongqing 400020, China
| | - Fen Luo
- Chongqing
Chemical Industry Vocational College, Chongqing 400020, China
| | - Sha Ran
- School
of Pharmacy and Bioengineering, Chongqing
University of Technology, Chongqing 400020, China
| | - Xiangbi Li
- Chongqing
Auleon Biologicals Co., Ltd., Chongqing 400020, China
| | - Lisha Cui
- Chongqing
Chemical Industry Vocational College, Chongqing 400020, China
| | - Junxia Yang
- Chongqing
Chemical Industry Vocational College, Chongqing 400020, China
| |
Collapse
|
8
|
Suzuki Y. Application of reverse genetics system to Chikungunya virus study. Virology 2025; 605:110465. [PMID: 40043635 DOI: 10.1016/j.virol.2025.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Chikungunya virus (CHIKV) is an enveloped RNA virus of the Togaviridae family that causes Chikungunya fever, characterized by fever, myalgia, and arthralgia. Although the mortality rate attributed to CHIKV infection is low, the risk of severe disease increases in young children, the elderly, and people with medical conditions. Given the significant impact of these clinical manifestations, an effective regimen for the treatment of CHIKV infection is needed. The reverse genetics system, an approach to generate a complete virus from cloned cDNA, has been widely used to characterize the replication and pathogenicity of medically important viruses. In particular, the implementation of reverse genetics allows researchers to manipulate the viral genome in vitro, contributing to the development of vaccines and antivirals. This review will present the status of the application of the reverse genetics system to advance knowledge of the biological aspects of CHIKV and summarize how this technology is being used to establish preventive and therapeutic measures against CHIKV infection.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
| |
Collapse
|
9
|
Almulhim M, Ghasemian A, Memariani M, Karami F, Yassen ASA, Alexiou A, Papadakis M, Batiha GES. Drug repositioning as a promising approach for the eradication of emerging and re-emerging viral agents. Mol Divers 2025:10.1007/s11030-025-11131-8. [PMID: 40100484 DOI: 10.1007/s11030-025-11131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/08/2025] [Indexed: 03/20/2025]
Abstract
The global impact of emerging and re-emerging viral agents during epidemics and pandemics leads to serious health and economic burdens. Among the major emerging or re-emerging viruses include SARS-CoV-2, Ebola virus (EBOV), Monkeypox virus (Mpox), Hepatitis viruses, Zika virus, Avian flu, Influenza virus, Chikungunya virus (CHIKV), Dengue fever virus (DENV), West Nile virus, Rhabdovirus, Sandfly fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, and Rift Valley fever virus (RVFV). A comprehensive literature search was performed to identify existing studies, clinical trials, and reviews that discuss drug repositioning strategies for the treatment of emerging and re-emerging viral infections using databases, such as PubMed, Scholar Google, Scopus, and Web of Science. By utilizing drug repositioning, pharmaceutical companies can take advantage of a cost-effective, accelerated, and effective strategy, which in turn leads to the discovery of innovative treatment options for patients. In light of antiviral drug resistance and the high costs of developing novel antivirals, drug repositioning holds great promise for more rapid substitution of approved drugs. Main repositioned drugs have included chloroquine, ivermectin, dexamethasone, Baricitinib, tocilizumab, Mab114 (Ebanga™), ZMapp (pharming), Artesunate, imiquimod, saquinavir, capmatinib, naldemedine, Trametinib, statins, celecoxib, naproxen, metformin, ruxolitinib, nitazoxanide, gemcitabine, Dorzolamide, Midodrine, Diltiazem, zinc acetate, suramin, 5-fluorouracil, quinine, minocycline, trifluoperazine, paracetamol, berbamine, Nifedipine, and chlorpromazine. This succinct review will delve into the topic of repositioned drugs that have been utilized to combat emerging and re-emerging viral pathogens.
Collapse
Affiliation(s)
- Marwa Almulhim
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mojtaba Memariani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Karami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Asmaa S A Yassen
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
10
|
Berger A, Chandre F, Cornelie S, Paupy C. Controlling Aedes mosquitoes using densovirus-based biolarvicides: Current status and prospects. J Invertebr Pathol 2025; 211:108314. [PMID: 40086790 DOI: 10.1016/j.jip.2025.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Aedes albopictus and Aedes aegypti are the main vectors of emerging arboviruses, such as dengue, chikungunya and Zika viruses. Entomopathogenic viruses, such as densoviruses, might represent more environmentally friendly control methods. Densoviruses are single-stranded DNA viruses belonging to the Parvoviridae family and three species are known to infect mosquitoes: Protoambidensovirus dipteran, Brevihamaparvovirus dipteran 1, and Brevihamaparvovirus dipteran 2. Densoviruses belonging to the Brevihamaparvovirus dipteran 1 and Brevihamaparvovirus dipteran 2 species could be candidates for innovative vector control strategies to limit mosquito-borne diseases. The objective of this review was to analyse the current state of knowledge on mosquito-infecting densoviruses (updated classification/taxonomy, host range, distribution, ecology, co-infection effects, unanswered questions) in view of their use as a biocontrol tool against Aedes mosquitoes.
Collapse
Affiliation(s)
- Audric Berger
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France.
| | - Fabrice Chandre
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France
| | - Sylvie Cornelie
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France
| | - Christophe Paupy
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France.
| |
Collapse
|
11
|
Chamberlain J, Dowall SD, Smith J, Pearson G, Graham V, Raynes J, Hewson R. Attenuation of Chikungunya Virus by a Single Amino Acid Substitution in the nsP1 Component of a Non-Structural Polyprotein. Viruses 2025; 17:281. [PMID: 40007036 PMCID: PMC11860493 DOI: 10.3390/v17020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that, since its re-emergence in 2004, has become recognised as a major public health concern throughout many tropical and sub-tropical regions of the world. Amongst the insights gained from studies on other alphaviruses, several key determinants of virulence have been identified, including one present at the P3 position in the nsP1/nsP2 cleavage domain of the S.A.AR86 Sindbis (SINV) strain. This strain is associated with neurovirulence in adult mice; however, when a threonine-to-isoleucine substitution is engineered at this P3 position, an attenuated phenotype results. A reverse genetics system was developed to evaluate the phenotype that resulted from the substitution of alanine, present at the P3 position in the wild-type CHIKV clone, with valine. The A533V-mutant CHIKV induced milder disease symptoms in the C57BL/6 mouse model than the wild-type virus, in terms of severity of inflammation, length of viraemic period, and histological changes. Furthermore, the induction of type I IFN occurred more rapidly in both CHIKV-infected cell cultures and the mouse model with the mutant CHIKV.
Collapse
Affiliation(s)
- John Chamberlain
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - Stuart D. Dowall
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - Jack Smith
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - Geoff Pearson
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - Victoria Graham
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
| | - John Raynes
- Faculty Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Roger Hewson
- UK Health Security Agency (UK), Porton Down, Salisbury SP4 0JG, UK
- Faculty Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
12
|
Martin CK, Wan JJ, Yin P, Morrison TE, Messer WB, Rivera-Amill V, Lai JR, Grau N, Rey FA, Couderc T, Lecuit M, Kielian M. The alphavirus determinants of intercellular long extension formation. mBio 2025; 16:e0198624. [PMID: 39699169 PMCID: PMC11796390 DOI: 10.1128/mbio.01986-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
The alphavirus chikungunya virus (CHIKV) is a serious human pathogen that can cause large-scale epidemics characterized by fever and joint pain and often resulting in chronic arthritis. Infection by alphaviruses including CHIKV and the closely related Semliki Forest virus (SFV) can induce the formation of filopodia-like intercellular long extensions (ILEs). ILEs emanate from an infected cell, stably attach to a neighboring cell, and mediate cell-to-cell viral transmission that is resistant to neutralizing antibodies. However, our mechanistic understanding of ILE formation is limited, and the potential contribution of ILEs to CHIKV virulence or human CHIKV infection is unknown. Here, we used well-characterized virus mutants and monoclonal antibodies with known epitopes to dissect the virus requirements for ILE formation. Our results showed that both the viral E2 and E1 envelope proteins were required for ILE formation, while viral proteins 6K and transframe, and cytoplasmic nucleocapsid formation were dispensable. A subset of CHIKV monoclonal antibodies reduced ILE formation by masking specific regions particularly on the E2 A domain. Studies of the viral proteins from different CHIKV strains showed that ILE formation is conserved across the four major CHIKV lineages. Sera from convalescent human CHIKV patients inhibited ILE formation in cell culture, providing the first evidence for ILE inhibitory antibody production during human CHIKV infections.IMPORTANCEChikungunya virus (CHIKV) infections can cause severe fever and long-lasting joint pain in humans. CHIKV is disseminated by mosquitoes and is now found world-wide, including in the Americas, Asia, and Africa. In cultured cells, CHIKV can induce the formation of long intercellular extensions that can transmit virus to another cell. However, our understanding of the formation of extensions and their importance in human CHIKV infection is limited. We here identified viral protein requirements for extension formation. We demonstrated that specific monoclonal antibodies against the virus envelope proteins or sera from human CHIKV patients can inhibit extension formation. Our data highlight the importance of evaluation of extension formation in the context of human CHIKV infection.
Collapse
Affiliation(s)
- Caroline K. Martin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Judy J. Wan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - William B. Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nina Grau
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Félix A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Thérèse Couderc
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, Paris, France
- Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
13
|
Chantasrisawad N, Boonyasuppayakorn S, Anugulruengkitt S, Puthanakit T. Characterization of Clinical and Biologic Manifestations of Chikungunya Among Children in an Urban Area, Thailand: A Retrospective Cohort Study. Pediatr Infect Dis J 2025; 44:e60-e62. [PMID: 39230282 DOI: 10.1097/inf.0000000000004542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chikungunya virus (CHIKV), transmitted by Aedes mosquitoes, has reemerged in Southeast Asia since 2019. A retrospective review of CHIKV cases was conducted. Children commonly presented with high-grade fever, rash, arthralgia, and lymphopenia. Neurological manifestations or shock occurred in 20% of hospitalized children. These findings indicate the need for increased vigilance for CHIKV alongside dengue in travelers from Southeast Asia with suspected mosquito-borne viral infections.
Collapse
Affiliation(s)
- Napaporn Chantasrisawad
- From the Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence for Pediatric Infectious Diseases and Vaccines
- Department of Pediatrics
| | - Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Thanyawee Puthanakit
- Center of Excellence for Pediatric Infectious Diseases and Vaccines
- Department of Pediatrics
| |
Collapse
|
14
|
Santiago RA, Bavaresco SPP, Citrangulo SG, Medronho RDA, Sampaio V, Costa AJL. Clinical manifestations associated with the chronic phase of Chikungunya Fever: A systematic review of prevalence. PLoS Negl Trop Dis 2025; 19:e0012810. [PMID: 39899618 PMCID: PMC11825093 DOI: 10.1371/journal.pntd.0012810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 02/13/2025] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
INTRODUCTION The aim of this systematic review of prevalence is to observe and discuss the clinical manifestations of Chikungunya Virus disease in its chronic phase. METHODS To be eligible, the observational studies should accompany the individuals for at least six months. The research was conducted using electronic databases MEDLINE and EMBASE. The methodological quality was evaluated using the "Joanna Briggs Institute's critical appraisal checklist for studies reporting prevalence data" tool. RESULTS The search has found 175 articles. The application of the inclusion criteria defined a total of 29 selected studies. From the included studies, only one did not present arthralgia as a prevalent symptom in the chronic phase. Other signs and symptoms observed were: fatigue; sleep disorders; myalgia; skin lesions; depression; digestive disorders. CONCLUSION Because it is an often incapacitating symptom, arthralgia can affect the individuals' quality of life, with implications in their social and work life. Since the chronic phase is common in infected individuals, all levels of health care should be prepared to monitor, in the medium to long term, the patients affected by this condition.
Collapse
Affiliation(s)
- Raphael Augusto Santiago
- Institute of Studies in Collective Health, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | | | - Sheyla Goulart Citrangulo
- Institute of Studies in Collective Health, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Roberto de Andrade Medronho
- Institute of Studies in Collective Health, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Vanderson Sampaio
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, State of Amazonas, Brazil
| | - Antônio José Leal Costa
- Institute of Studies in Collective Health, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Pastor F, Delphin M, Lucifora J, Verrier ER. [Non-alphabetic viral hepatitis]. Med Sci (Paris) 2025; 41:145-153. [PMID: 40028952 DOI: 10.1051/medsci/2025010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
The liver is the target of various viruses that can cause significant damage, impair function and potentially threaten a patient's life. While the "alphabetic" hepatitis viruses A, B, C, D, and E are well-characterized, and their impact on liver function well-documented, many emerging and re-emerging viruses, some of which are considered by the WHO to be potential pandemic threats, also infect the liver. In this review, we describe the current state of knowledge regarding liver infections caused by major non-alphabetic hepatotropic viruses and their effects on liver functions.
Collapse
Affiliation(s)
- Florentin Pastor
- CIRI, Centre international de recherche en infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Julie Lucifora
- CIRI, Centre international de recherche en infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, ITM UMR_S1110, Strasbourg, France
| |
Collapse
|
16
|
Adib AA, Karim MM. Design of therapeutic siRNAs for potential application to infection with chikungunya virus. Heliyon 2025; 11:e41824. [PMID: 39897885 PMCID: PMC11782961 DOI: 10.1016/j.heliyon.2025.e41824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Emergence of the Chikungunya virus (CHIKV) is a new threat in the world. The disastrous effect of this virus and the unavailability of specific drugs complicated the control and management of the disease. The development of a siRNA-based drug using multiple computational tools could be a way out as one of its therapeutics. Currently, very few siRNAs against CHIKV have been computationally designed and published. Here, we considered various parts of the CHIKV genome encoding different essential protein-coding genes for designing siRNAs with a view to silencing them, thereby rendering the virus inactive. Seven potential primary siRNAs were constructed, of which, five are hereafter recommended to be used as a therapeutic tool against the virus.
Collapse
Affiliation(s)
- Ahmed Ahsan Adib
- Department of Microbiology, University of Dhaka, Dhaka, 1100, Bangladesh
| | | |
Collapse
|
17
|
Salomão NG, Araújo L, de Souza LJ, Luiza Young A, Basílio-de-Oliveira C, Basílio-de-Oliveira RP, de Carvalho JJ, Nunes PCG, da Silva Amorim JF, Barbosa DVDS, Paes MV, Rabelo K, Dos Santos F. Chikungunya virus infection in the skin: histopathology and cutaneous immunological response. Front Microbiol 2025; 16:1497354. [PMID: 39935638 PMCID: PMC11811090 DOI: 10.3389/fmicb.2025.1497354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Alphavirus chikungunya virus (CHIKV) is an arbovirus, belonging to the Togaviridae family. The disease caused by CHIKV generally evolves with spontaneous resolution in a few weeks; however, progression to a chronic disease may occur. The most common symptoms are fever, myalgia, and arthralgia; however, skin manifestations may occur in 40 to 80% of infected individuals. Morbilliform and maculopapular erythematous eruptions, vesiculobullous lesions, generalized erythema, maculopapular eruption and skin peeling, hypermelanosis, painful oral lesions, and urticarial lesions have been reported. Usually, these manifestations disappear, but they can become sequelae. Since the skin is the first line of defense against CHIKV infection, in this study, we aimed to investigate the immunohistopathological aspects of the skin of infected individuals during the acute phase of the disease by performing histopathological and ultrastructural analysis, detection and quantification of the viral genome, detection of viral antigen and immune cells, and cytokines/chemokines' characterization. The main histopathological findings were perivascular and inflammatory infiltrates, blood capillary ectasia, and interstitial edema. The immunohistochemistry revealed CHIKV antigen in the epidermis, endothelial cells, fibroblasts, and macrophages in the reticular and papillary dermis; inflammatory cells infiltrate; arrector pili muscle; sweat and sebaceous glands; and hair follicle. Moreover, inflammatory infiltrates were composed of lymphocytes (CD4+ and CD8+) and macrophages (CD68+) in the dermis and perivascular infiltrate. TNF-α, IL-6, RANTES, and VEGFR2 were expressed in the epidermis, blood vessels, sweat glands, and migrating cells. Loss of contact among adjacent keratinocytes, epidermis presenting necrotic cells, and fibroblasts with dilated cisternae in the endoplasmic reticulum and mitochondria with few cristae was observed by transmission electron microscopy. Studies involving skin immunopathogenesis during CHIKV infection are still scarce; therefore, the findings presented here can contribute to a better understanding of the disease immunopathogenesis.
Collapse
Affiliation(s)
- Natália Gedeão Salomão
- Laboratório das Interações Vírus-Hospedeiros, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
| | - Luciana Araújo
- Departamento de Anatomia Patológica, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | | | - Carlos Basílio-de-Oliveira
- Departamento de Anatomia Patológica, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | - Jorge José de Carvalho
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Priscilla Conrado Guerra Nunes
- Laboratório das Interações Vírus-Hospedeiros, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Marciano Viana Paes
- Laboratório das Interações Vírus-Hospedeiros, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
| | - Kíssila Rabelo
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Flavia Dos Santos
- Laboratório das Interações Vírus-Hospedeiros, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Qu J, Schinkel M, Chiggiato L, Rosendo Machado S, Overheul GJ, Miesen P, van Rij RP. The Hsf1-sHsp cascade has pan-antiviral activity in mosquito cells. Commun Biol 2025; 8:123. [PMID: 39863754 PMCID: PMC11762766 DOI: 10.1038/s42003-024-07435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito. This Hsf1-sHsp cascade acts as an early response against chikungunya virus infection and shows pan-antiviral activity against chikungunya, Sindbis, and dengue virus as well as the insect-specific Agua Salud alphavirus in Ae. aegypti cells and against chikungunya virus and O'nyong-nyong virus in Aedes albopictus and Anopheles gambiae cells, respectively. Our comprehensive in vitro data suggest that Hsf1 could serve as a promising target for the development of novel intervention strategies to limit arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa Chiggiato
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samara Rosendo Machado
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Xin J, Song X, Zheng H, Li W, Qin Y, Wang W, Zhang H, Peng G. Exploring the antiviral potential of shikimic acid against Chikungunya virus through network pharmacology, molecular docking, and in vitro experiments. Front Vet Sci 2025; 12:1524812. [PMID: 39917312 PMCID: PMC11799295 DOI: 10.3389/fvets.2025.1524812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus that can lead to chronic arthritis and significantly diminish the quality of life of patients. Given the expanding global prevalence of CHIKV and the absence of specific antiviral therapies, there is an urgent need to explore effective treatment options. This study aimed to evaluate the antiviral effects of shikimic acid (SA) against CHIKV through a combination of network pharmacology, molecular docking, and in vitro assays. Network pharmacology analysis identified 26 potential targets through which SA could inhibit CHIKV, including key pathogenic targets such as TNF, IL-6, and MAPK3. This hypothesis was further supported by molecular docking. The molecular docking analysis revealed that SA could interact with multiple CHIKV-related targets, including EGF, with vina scores generally lower than -6, indicating a high propensity for stable complex formation. The results also suggested that SA could potentially disrupt the IL-17 signaling pathway by engaging with various targets to form complexes. In vitro experiments confirmed that SA significantly enhanced the viability of 293T and BHK-21 cells infected with CHIKV by ~25% and reduced viral load by over 20% at concentrations ranging from 1,000 to 31.25 μM. Additionally, SA was found to markedly downregulate the expression of CHIKV-related attachment factors ACTG1, TSPAN9, and TIM-1 in 293T cells infected with CHIKV. Furthermore, RT-qPCR analysis demonstrated that SA effectively decreased the expression of NFKB1, PTGS2, RELA, and EGF related to the IL-17 signaling pathway. In conclusion, these findings indicate that SA is a promising candidate for developing treatment strategies targeting CHIKV with good clinical application value.
Collapse
Affiliation(s)
- Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Haohong Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenjing Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuyang Qin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Wang
- Institute of Virology, Wenzhou University, Wenzhou, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Lopez AD, Whyms S, Luker HA, Galvan CJ, Holguin FO, Hansen IA. Repellency of Essential Oils and Plant-Derived Compounds Against Aedes aegypti Mosquitoes. INSECTS 2025; 16:51. [PMID: 39859632 PMCID: PMC11765945 DOI: 10.3390/insects16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Plant-based oils have a long history of use as insect repellents. In an earlier study, we showed that in a 10% concentration, geraniol, 2-phenylethl propionate, and the plant-based essential oils clove and cinnamon effectively protected from mosquito bites for over 60 min. To expand on this study, we reanalyzed our GC-MS data to identify the short organic constituents of these oils. We then used an arm-in-cage assay to test the repellency of different concentrations and combinations of these oils and pure compounds. We found a sigmoidal relationship between the complete protection time from mosquito bites and the concentration of these oils. The complete protection times we recorded for combinations of these oils suggest an absence of additive effects. The results of this study can inform the development of novel, effective, and plant-based insect repellents.
Collapse
Affiliation(s)
- April D. Lopez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (A.D.L.); (H.A.L.)
| | - Sophie Whyms
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2 Dublin, Ireland;
| | - Hailey A. Luker
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (A.D.L.); (H.A.L.)
| | - Claudia J. Galvan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (C.J.G.); (F.O.H.)
| | - F. Omar Holguin
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (C.J.G.); (F.O.H.)
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (A.D.L.); (H.A.L.)
| |
Collapse
|
21
|
Karki D, LaPointe AT, Isom C, Thomas M, Sokoloski KJ. Mechanistic insights into Sindbis virus infection: noncapped genomic RNAs enhance the translation of capped genomic RNAs to promote viral infectivity. Nucleic Acids Res 2025; 53:gkae1230. [PMID: 39660624 PMCID: PMC11724270 DOI: 10.1093/nar/gkae1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Alphaviruses are globally distributed, vector-borne RNA viruses with high outbreak potential and no clinical interventions, posing a significant global health threat. Previously, the production and packaging of both viral capped and noncapped genomic RNAs (cgRNA and ncgRNA) during infection was reported. Studies have linked ncgRNA production to viral infectivity and pathogenesis, but its precise role remains unclear. To define the benefits of ncgRNAs, pure populations of capped and noncapped Sindbis virus (SINV) gRNAs were synthesized and transfected into host cells. The data showed that mixtures of cgRNAs and ncgRNAs had higher infectivity compared to pure cgRNAs, with mixtures containing low cgRNA proportions exceeding linear infectivity expectations. This enhancement depended on co-delivery of cgRNAs and ncgRNAs to the same cell and required the noncapped RNAs to be viral in origin. Contrary to the initial hypothesis that the ncgRNAs serve as replication templates, the cgRNAs were preferentially replicated. Further analysis revealed that viral gene expression, viral RNA (vRNA) synthesis and particle production were enhanced in the presence of ncgRNAs, which function to promote cgRNA translation early in infection. Our findings highlight the importance of ncgRNAs in alphaviral infection, showing they enhance cgRNA functions and significantly contribute to viral infectivity.
Collapse
Affiliation(s)
- Deepa Karki
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Autumn T LaPointe
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Cierra Isom
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Milton Thomas
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
22
|
Turner EA, Clark SD, Peña-García VH, Christofferson RC. Investigating the Effects of Microclimate on Arboviral Kinetics in Aedes aegypti. Pathogens 2024; 13:1105. [PMID: 39770364 PMCID: PMC11728849 DOI: 10.3390/pathogens13121105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Aedes aegypti are indoor-dwelling vectors of many arboviruses, including Zika (ZIKV) and chikungunya (CHIKV). The dynamics of these viruses within the mosquito are known to be temperature-dependent, and models that address risk and predictions of the transmission efficiency and patterns typically use meteorological temperature data. These data do not differentiate the temperatures experienced by mosquitoes in different microclimates, such as indoor vs. outdoor. Using temperature data collected from Neiva Colombia, we investigated the impact of two microclimate temperature profiles on ZIKV and CHIKV infection dynamics in Ae. aegypti. We found that the vector mortality was not significantly impacted by the difference in temperature profiles. Further, we found that the infection and dissemination rates were largely unaffected, with only ZIKV experiencing a significant increase in infection at outdoor temperatures at 21 days post-infection (dpi). Further, there was a significant increase in viral titers in the abdomens of ZIKV-infected mosquitoes at 21 dpi. With CHIKV, there was a significant titer difference in the abdomens of mosquitoes at both 7 and 14 dpi. While there were differences in vector infection kinetics that were not statistically significant, we developed a simple stochastic SEIR-SEI model to determine if the observed differences might translate to notable differences in simulated outbreaks. With ZIKV, while the probability of secondary transmission was high (>90%) under both microenvironmental scenarios, there was often only one secondary case. However, CHIKV differences between microenvironments were more prominent. With over 90% probability of secondary transmission, at indoor conditions, the peak of transmission was higher (over 850 cases) compared to the outdoor conditions (<350 cases). Further, the time-to-peak for indoor was 130 days compared to 217 days for outdoor scenarios. Further investigations into microenvironmental conditions, including temperature, may be key to increasing our understanding of the nuances of CHIKV and ZIKV vectorial capacity, epidemiology, and risk assessment, especially as it affects other aspects of transmission, such as biting rate. Overall, it is critical to understand the variability of how extrinsic factors affect transmission systems, and these data add to the growing catalog of knowledge of how temperature affects arboviral systems.
Collapse
Affiliation(s)
- Erik A Turner
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Samantha D Clark
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Víctor Hugo Peña-García
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
23
|
Resck MEB, Câmara DCP, dos Santos FB, dos Santos JPC, Alto BW, Honório NA. Spatial-temporal distribution of chikungunya virus in Brazil: a review on the circulating viral genotypes and Aedes ( Stegomyia) albopictus as a potential vector. Front Public Health 2024; 12:1496021. [PMID: 39722706 PMCID: PMC11668782 DOI: 10.3389/fpubh.2024.1496021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is mainly transmitted by the invasive mosquito Aedes (Stegomyia) aegypti in tropical and subtropical regions worldwide. However, genetic adaptations of the virus to the peri domestic mosquito vector Aedes (Stegomyia) albopictus has resulted in enhanced vector competence and associated epidemics and may contribute to further geographic expansion of CHIKV. However, evidence-based data on the relative role of Ae. albopictus in CHIKV transmission dynamics are scarce, especially in regions where Ae. aegypti is the main vector, such as in Brazil. Here, we review the CHIKV genotypes circulating in Brazil, spatial and temporal distribution of Chikungunya cases in Brazil, and susceptibility to infection and transmission (i.e., vector competence) of Ae. albopictus for CHIKV to better understand its relative contribution to the virus transmission dynamics.
Collapse
Affiliation(s)
| | - Daniel Cardoso Portela Câmara
- Programa de Computação Científica, Fundação Oswaldo Cruz - PROCC, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Flávia Barreto dos Santos
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | | | - Barry Wilmer Alto
- Florida Medical Entomology Laboratory-FMEL, University of Florida, Vero Beach, FL, United States
| | - Nildimar Alves Honório
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Maurer G, Buerger V, Larcher-Senn J, Erlsbacher F, Dubischar K, Eder-Lingelbach S, Jaramillo JC. Pooled safety evaluation for a new single-shot live-attenuated chikungunya vaccine†. J Travel Med 2024; 31:taae133. [PMID: 39400050 DOI: 10.1093/jtm/taae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Chikungunya disease, caused by chikungunya virus (CHIKV), is associated with substantial morbidity, including debilitating CHIKV-related arthralgia. METHODS Three clinical trials of a CHIKV vaccine (VLA1553, IXCHIQ®) were conducted in the USA: a Phase 1 dose-finding trial, a pivotal Phase 3 trial and a Phase 3 lot-to-lot consistency trial. Participants were healthy adults (≥18 years) and received a single intramuscular dose of VLA1553 (3520 participants) or placebo (1033 participants). Solicited injection site and systemic adverse events (AEs) (10-14 days post-vaccination), unsolicited AEs (28 and 180 days post-vaccination), AEs of special interest (AESIs) (28 days post-vaccination), medically attended AEs (MAAEs), serious AEs (SAEs) (180 days post-vaccination) and pregnancies were evaluated. Safety data were pooled, and analyses were descriptive. RESULTS Overall, 63.7% of participants receiving VLA1553 experienced AEs (44.7% for placebo) that were generally mild. Solicited injection-site AEs, solicited systemic AEs and unsolicited (Day 29) AEs were reported by 15.5, 50.9 and 22.7% of participants who received VLA1553 and 11.1, 26.9 and 13.4% who received placebo. Arthralgia was reported by 16.7% of participants who received VLA1553 and 4.8% of participants who received placebo; none required medical attention. MAAEs, AESIs and SAEs were reported by 12.4, 0.3 and 1.5% of participants who received VLA1553 and 11.3, 0.1 and 0.8% of participants who received placebo. Protocol-defined AESIs were mild and short-lived, and two VLA1553-related SAEs resolved without sequelae. There were no clinically important differences in AE incidence based on age or medical history and no VLA1553-related adverse pregnancy outcomes. There were three deaths (two in the VLA1553 group and one in the placebo group); none was vaccine-related. CONCLUSIONS A single dose of VLA1553 presented with an excellent local tolerability profile and overall safety in line with that expected for a live-attenuated vaccine. The safety profile was comparable in participants aged 18-64 years and ≥65 years.
Collapse
Affiliation(s)
- Gabriele Maurer
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | - Vera Buerger
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | - Julian Larcher-Senn
- Assign Data Management and Biostatistics GmbH, Stadlweg 23, 6020 Innsbruck, Austria
| | - Florian Erlsbacher
- Assign Data Management and Biostatistics GmbH, Stadlweg 23, 6020 Innsbruck, Austria
| | - Katrin Dubischar
- Valneva Austria GmbH, Campus Vienna Biocenter 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
25
|
Ning X, Xia B, Wang J, Gao R, Ren H. Host-adaptive mutations in Chikungunya virus genome. Virulence 2024; 15:2401985. [PMID: 39263937 PMCID: PMC11404619 DOI: 10.1080/21505594.2024.2401985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF), and its primary vectors are the mosquitoes Aedes aegypti and Aedes albopictus. CHIKV was initially endemic to Africa but has spread globally in recent years and affected millions of people. According to a risk assessment by the World Health Organization, CHIKV has the potential seriously impact public health. A growing body of research suggests that mutations in the CHIKV gene that enhance viral fitness in the host are contributing to the expansion of the global CHIKF epidemic. In this article, we review the host-adapted gene mutations in CHIKV under natural evolution and laboratory transmission conditions, which can help improve our understanding of the adaptive evolution of CHIKV and provide a basis for monitoring and early warning of future CHIKV outbreaks.
Collapse
Affiliation(s)
- Xinhang Ning
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, People’s Republic of China
| | - Binghui Xia
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, People’s Republic of China
| | - Jiaqi Wang
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, People’s Republic of China
| | - Rong Gao
- Department of Respiratory Medicine, The People’s Liberation Army Joint Logistic Support Force 943 Hospital, Wuwei, Gansu, People’s Republic of China
| | - Hao Ren
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
26
|
Gajurel K, Dhakal R, Deresinski S. Arbovirus in Solid Organ Transplants: A Narrative Review of the Literature. Viruses 2024; 16:1778. [PMID: 39599892 PMCID: PMC11599096 DOI: 10.3390/v16111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The incidence of arbovirus infections has increased in recent decades. Other than dengue, chikungunya, and West Nile viruses, the data on arbovirus in solid organ transplant (SOT) are limited to case reports, and infections in renal transplant recipients account for most of the reported cases. Dengue and West Nile infections seem to be more severe with higher mortality in SOT patients than in the general population. Acute kidney injury is more frequent in patients with dengue and chikungunya although persistent arthralgia with the latter is less frequent. There is no clear relationship between arboviral infection and acute cellular rejection. Pre-transplant screening of donors should be implemented during increased arboviral activity but, despite donor screening and negative donor nucleic acid amplification test (NAT), donor derived infection can occur. NAT may be transiently positive. IgM tests lack specificity, and neutralizing antibody assays are more specific but not readily available. Other tests, such as immunohistochemistry, antigen tests, PCR, metagenomic assays, and viral culture, can also be performed. There are a few vaccines available against some arboviruses, but live vaccines should be avoided. Treatment is largely supportive. More data on arboviral infection in SOT are needed to understand its epidemiology and clinical course.
Collapse
Affiliation(s)
- Kiran Gajurel
- Division of Infectious Diseases, Carolinas Medical Center, Atrium Health, Charlotte, NC 28204, USA
| | | | - Stan Deresinski
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
27
|
de Oliveira-Neto JT, Souza JDP, Rodrigues D, Machado MR, Alves JV, Barros PR, Bressan AF, Silva JF, Costa TJ, Costa RM, Bonaventura D, de Arruda-Neto E, Tostes RC, Abrão EP. Acute Chikungunya Infection Induces Vascular Dysfunction by Directly Disrupting Redox Signaling in Endothelial Cells. Cells 2024; 13:1770. [PMID: 39513877 PMCID: PMC11544861 DOI: 10.3390/cells13211770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Chikungunya virus (CHIKV) infection is characterized by febrile illness, severe joint pain, myalgia, and cardiovascular complications. Given that CHIKV stimulates reactive oxygen species (ROS) and pro- and anti-inflammatory cytokines, events that disrupt vascular homeostasis, we hypothesized that CHIKV induces arterial dysfunction by directly impacting redox-related mechanisms in vascular cells. Wild-type (WT) and iNOS knockout (iNOS-/-) mice were administered either CHIKV (1.0 × 106 PFU/µL) or Mock vehicle via the intracaudal route. In vivo, CHIKV infection induced vascular dysfunction (assessed by a wire myograph), decreased systolic blood pressure (tail-cuff plethysmography), increased IL-6 and IFN-γ, but not TNF-α levels (determined by ELISA), and increased protein content by Western blot. Marked contractile hyporesponsiveness to phenylephrine was observed 48 h post-infection, which was restored by endothelium removal. L-NAME, 1400W, Tiron, and iNOS gene deletion prevented phenylephrine hyporesponsiveness. CHIKV infection increased vascular nitrite concentration (Griess reaction) and superoxide anion (O2•-) generation (lucigenin chemiluminescence), and decreased hydrogen peroxide (H2O2, by Amplex Red) levels 48 h post-infection, alongside increased TBARS levels. In vitro, CHIKV infected endothelial cells (EA.hy926) and upregulated ICAM-1 and iNOS protein expression (determined by Western blot). These data support the conclusion that CHIKV-induced alterations in vascular ROS/NF-kB/iNOS/NO signaling potentially contribute to cardiovascular events associated with Chikungunya infection.
Collapse
Affiliation(s)
- José Teles de Oliveira-Neto
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Juliano de P. Souza
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Mirele R. Machado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Juliano V. Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
- Academic Unit of Health Sciences, Federal University of Jatai, Jataí 75804-068, Brazil
| | - Paula R. Barros
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
- Institute of Biomedical Sciences, University of Sao Paulo, Ribeirão Preto 05508-000, Brazil
| | - Alecsander F. Bressan
- Department of Basic Health Sciences, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 79070-900, Brazil
| | - Josiane F. Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Tiago J. Costa
- Institute of Biomedical Sciences, University of Sao Paulo, Ribeirão Preto 05508-000, Brazil
| | - Rafael M. Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
- Academic Unit of Health Sciences, Federal University of Jatai, Jataí 75804-068, Brazil
| | - Daniella Bonaventura
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Eurico de Arruda-Neto
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
| | - Emiliana P. Abrão
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto 14040-900, Brazil
- Master’s Education Institute President Antonio Carlos (IMEPAC), Araguari 38025-440, Brazil
| |
Collapse
|
28
|
Feng Y, Garcia R, Rojas-Carabali W, Cifuentes-González C, Putera I, Li J, La Distia Nora R, Mahendradas P, Gupta V, de-la-Torre A, Agrawal R. Viral Anterior Uveitis: A Practical and Comprehensive Review of Diagnosis and Treatment. Ocul Immunol Inflamm 2024; 32:1804-1818. [PMID: 37862684 DOI: 10.1080/09273948.2023.2271077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Anterior uveitis is the most common type of uveitis worldwide. The etiologies of anterior uveitis can be divided into infectious and non-infectious (idiopathic, autoimmune, autoinflammatory, trauma, and others). The viral pathogens most commonly associated with infectious anterior uveitis include Herpes Simplex Virus, Varicella-Zoster Virus, Cytomegalovirus, and Rubella Virus. Other emerging causes of viral anterior uveitis are West Nile Virus, Human-Immunodeficiency Virus, Epstein-Barr Virus, Parechovirus, Dengue Virus, Chikungunya Virus, and Human Herpesvirus type 6,7, and 8. Early recognition allows prompt management and mitigates its potential ocular complications. This article provides an updated literature review of the epidemiology, clinical manifestations, diagnostic tools, and treatment options for viral anterior uveitis.
Collapse
Affiliation(s)
- Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Eye Center, Peking University Third Hospital, Beijing, China
| | - Ruby Garcia
- Reno School of Medicine, University of Nevada, Reno, Nebraska, USA
| | - William Rojas-Carabali
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Carlos Cifuentes-González
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Ikhwanuliman Putera
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jingyi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Eye Center, Peking University Third Hospital, Beijing, China
| | - Rina La Distia Nora
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | | | - Vishali Gupta
- Advanced Eye Centre, Post- Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Alejandra de-la-Torre
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Rupesh Agrawal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
- Singapore Eye Research Institute, The Academia, Singapore, Singapore
- Department of Ophthalmology and Visual Sciences, Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
29
|
Dutra JIS, de Souza MC, Lins CAA, de Medeiros ACQ. Impact of chronic illness caused by chikungunya fever on quality of life and functionality. EINSTEIN-SAO PAULO 2024; 22:eAO0562. [PMID: 39356940 PMCID: PMC11461011 DOI: 10.31744/einstein_journal/2024ao0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Chikungunya fever compromises the functionality and quality of life in the affected individuals, even one year after the acute phase of the disease. Chronically affected people experience direct impairment in performing daily activities, along with a risk of developing other morbidities. BACKGROUND ◼ Even after a year, chikungunya fever-affected people experience damage to their physical and mental health. BACKGROUND ◼ Positive screening for depression risk was 13.5 times more likely in chronically affected. BACKGROUND ◼ Patients with chronic chikungunya fever had a 76 times higher risk of walking impairments. OBJECTIVE To evaluate the impact of chronic illness caused by chikungunya fever on the quality of life and functionality of affected individuals. METHODS A cross-sectional and comparative study was conducted in which two groups were investigated: a Chikungunya Group comprising 25 patients with chronic fever screened after 1 year of illness via a telephonic survey, and a Healthy Group comprising 25 healthy individuals matched for sex and age by face-to-face interview. The Stanford HAQ 20-Item Disability Scale (HAQ) and the Short Form Health Survey (SF-12) questionnaires were administered to both groups. Generalized Linear Models, Pearson χ2 tests, and odds ratios were used to evaluate the test results. RESULTS Significant differences in functional capacity and quality of life were observed between the Chikungunya and Healthy Groups. The chance of some impairment in functionality was also much higher in the Chikungunya Group in four of the HAQ categories, especially in the "walking" category (adjusted OR= 109.40). Further, the Chikungunya Group had a higher chance of presenting a below-average score in the mental component summary of the SF-12 (adjusted OR= 16.20) and of being positive in depression risk screening (adjusted OR= 34.57). CONCLUSION Even one year after the acute phase, chikungunya fever can compromise the functionality and quality of life in affected individuals, with direct impairment in performing daily activities. Studies and therapeutic plans for chikungunya fever should consider the long-term impacts of this disease.
Collapse
Affiliation(s)
- Jéssica Isabelle Santos Dutra
- Universidade Federal do Rio Grande do NorteFaculdade de Ciências da Saúde do TrairiSanta CruzRNBrazilFaculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN, Brazil.
| | - Marcelo Cardoso de Souza
- Universidade Federal do Rio Grande do NorteDepartment of PhysiotherapyNatalRNBrazilDepartment of Physiotherapy, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Caio Alano Almeida Lins
- Universidade Federal do Rio Grande do NorteFaculdade de Ciências da Saúde do TrairiSanta CruzRNBrazilFaculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN, Brazil.
| | - Anna Cecília Queiroz de Medeiros
- Universidade Federal do Rio Grande do NorteFaculdade de Ciências da Saúde do TrairiSanta CruzRNBrazilFaculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN, Brazil.
| |
Collapse
|
30
|
Kim K, Moon SY, Kim S, Ouh IO, Lee Y, Lim H. Immunogenicity Analysis of Chikungunya Virus DNA Vaccine Based on Mutated Putative N-Linked Glycosylation Sites of the Envelope Protein. Vaccines (Basel) 2024; 12:1097. [PMID: 39460264 PMCID: PMC11511311 DOI: 10.3390/vaccines12101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Chikungunya fever is a mosquito-borne infectious disease caused by the chikungunya virus (CHIKV). Recently, CHIKV has spread rapidly worldwide, raising global concerns. However, there is only one approved vaccine is available to prevent CHIKV infection; therefore, different platform vaccines development is a public health priority. The CHIKV genome encodes four non-structural polyproteins (nsP1-4) and one structural polyprotein (capsid, envelope 3, envelope 2, 6 K, and envelope 1). Previous studies have shown that N-linked glycans in viral proteins play important roles in regulating immune responses. Accordingly, in this study, we designed four CHIKV DNA vaccine candidates with mutated N-glycosylation sites in the full-length E and E I/II proteins. Our results indicated that immunization of mice with the vaccine elevated the cytokines levels, including IFN-γ, associated with T cell immune response. Furthermore, the truncated E protein with a deleted E III domain (E I/II) exhibited better immunogenicity than the full-length E protein, and N-linked glycosylation of E I/II protein induced a higher cell-mediated immune response. Overall, our study demonstrates that N-linked glycosylation of the E I/II proteins of CHIKV significantly enhances cell-mediated immune responses, laying the foundation for the development of potential vaccination strategies against CHIKV.
Collapse
Affiliation(s)
| | | | | | | | | | - Heeji Lim
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea; (K.K.); (S.Y.M.); (S.K.); (I.-O.O.); (Y.L.)
| |
Collapse
|
31
|
Wu X, Liu G, Chang Y, Zheng M, Liu L, Xia X, Feng Y. Rapid and sensitive detection of chikungunya virus using one-tube, reverse transcription, semi-nested multi-enzyme isothermal rapid amplification, and lateral flow dipstick assays. J Clin Microbiol 2024; 62:e0038324. [PMID: 39140738 PMCID: PMC11389142 DOI: 10.1128/jcm.00383-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Chikungunya fever is an acute infectious disease caused by chikungunya virus (CHIKV), which is transmitted by Aedes mosquitoes. Simple, rapid, and sensitive detection of CHIKV is critical for its prevention and spread. To address this issue, we combined one-tube, reverse transcription semi-nested, multi-enzyme isothermal rapid amplification, and lateral flow dipstick strips assay to detect CHIKV RNA. The study used a 318-bp gene fragment of CHIKV NSP4 as the target of the assay. This method of amplification takes 30 min for two-step amplification at 39°C. The dilution of amplification products was added to the LFD strip with results visible to the naked eye after 10 min. The method has a sensitivity of 1 copy/μL for the detection of CHIKV RNA, which is 100-fold higher than the conventional reverse transcription-multi-enzyme isothermal rapid amplification and 10-fold higher than the reverse transcription quantitative PCR (RT-qPCR) method. In addition, the method demonstrated good specificity and a better detection rate (85.7%, 18 of 21) than RT-qPCR (80.9%, 17 of 21) in clinically confirmed patient plasma samples. Thus, the rapid CHIKV RNA assay developed in this study will be an important tool for the rapid and accurate screening of patients for chikungunya fever. IMPORTANCE This study presents a new one-tube, reverse transcription semi-nested, multi-enzyme isothermal rapid amplification assay combined with lateral flow dipstick strips for the detection of CHIKV. This technique significantly improves sensitivity and outperforms RT-qPCR for the detection of CHIKV, especially in samples with low viral loads. It is also significantly faster than conventional RT-qPCR and does not require special equipment or a standard PCR laboratory. The combination of the isothermal amplification technology developed in this study with point-of-care molecular testing offers the potential for rapid, on-site, low-cost molecular diagnosis of CHIKV.
Collapse
Affiliation(s)
- Xinlin Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Gaowen Liu
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Yingchao Chang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Mengyuan Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Xueshan Xia
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
32
|
Castro EF, Álvarez DE. New Highly Selective Antivirals for Chikungunya Virus identified from the Screening of a Drug-Like Compound Library. Curr Microbiol 2024; 81:343. [PMID: 39227496 DOI: 10.1007/s00284-024-03874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Chikungunya fever is a mosquito-borne disease caused by Chikungunya virus (CHIKV). Treatment of CHIKV infections is currently supportive and does not limit viral replication or symptoms of persistent chronic arthritis. Although there are multiple compounds reported as antivirals active against CHIKV in vitro, there are still no effective and safe antivirals. Thus, active research aims at the identification of new chemical structures with antiviral activity. Here, we report the screen of the Pandemic Response Box library of small molecules against a fully infectious CHIKV reporter virus. Our screening approach successfully identified previously reported CHIKV antiviral compounds within this library and further expanded potentially active hits, supporting the use of reporter-virus-based assays in high-throughput screening format as a reliable tool for antiviral drug discovery. Four molecules were identified as potential drug candidates against CHIKV: MMV1634402 (Brilacidin) and MMV102270 (Diphyllin), which were previously shown to present broad-spectrum antiviral activities, in addition to MMV1578574 (Eravacycline), and the antifungal MMV689401 (Fluopicolide), for which their antiviral potential is uncovered here.
Collapse
Affiliation(s)
- Eliana F Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.
| | - Diego E Álvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| |
Collapse
|
33
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
34
|
Brito RMDM, de Melo MF, Fernandes JV, Valverde JG, Matta Guedes PM, de Araújo JMG, Nascimento MSL. Acute Chikungunya Virus Infection Triggers a Diverse Range of T Helper Lymphocyte Profiles. Viruses 2024; 16:1387. [PMID: 39339863 PMCID: PMC11437511 DOI: 10.3390/v16091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus causing acute febrile illness with severe joint pain, often leading to chronic arthralgia. This study investigated the adaptive immune responses during the early stages of symptomatic acute CHIKV infection, focusing on the transcription factors and cytokines linked to Th1, Th2, Th17, and Treg cells. Thirty-six individuals were enrolled: nine healthy controls and 27 CHIKV-positive patients confirmed by qRT-PCR. Blood samples were analyzed for the mRNA expression of transcription factors (Tbet, GATA3, FoxP3, STAT3, RORγt) and cytokines (IFN-γ, IL-4, IL-17, IL-22, TGF-β, IL-10). The results showed the significant upregulation of Tbet, GATA3, FoxP3, STAT3, and RORγt in CHIKV-positive patients, with RORγt displaying the highest increase. Correspondingly, cytokines IFN-γ, IL-4, IL-17, and IL-22 were upregulated, while TGF-β was downregulated. Principal component analysis (PCA) confirmed the distinct immune profiles between CHIKV-positive and healthy individuals. A correlation analysis indicated that higher Tbet expression correlated with a lower viral load, whereas FoxP3 and TGF-β were associated with higher viral loads. Our study sheds light on the intricate immune responses during acute CHIKV infection, characterized by a mixed Th1, Th2, Th17, and Treg response profile. These results emphasize the complex interplay between different adaptive immune responses and how they may contribute to the pathogenesis of Chikungunya fever.
Collapse
Affiliation(s)
| | - Marília Farias de Melo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Joanna Gardel Valverde
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
35
|
Zheng X, He Y, Xia B, Tang W, Zhang C, Wang D, Tang H, Zhao P, Peng H, Liu Y. Etravirine Prevents West Nile Virus and Chikungunya Virus Infection Both In Vitro and In Vivo by Inhibiting Viral Replication. Pharmaceutics 2024; 16:1111. [PMID: 39339151 PMCID: PMC11435157 DOI: 10.3390/pharmaceutics16091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Diseases transmitted by arthropod-borne viruses such as West Nile virus (WNV) and chikungunya virus (CHIKV) pose threat to global public health. Unfortunately, to date, there is no available approved drug for severe symptoms caused by both viruses. It has been reported that reverse transcriptase inhibitors can effectively inhibit RNA polymerase activity of RNA viruses. We screened the anti-WNV activity of the FDA-approved reverse transcriptase inhibitor library and found that 4 out of 27 compounds showed significant antiviral activity. Among the candidates, etravirine markedly inhibited WNV infection in both Huh 7 and SH-SY5Y cells. Further assays revealed that etravirine inhibited the infection of multiple arboviruses, including yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), and CHIKV. A deeper study at the phase of action showed that the drug works primarily during the viral replication process. This was supported by the strong interaction potential between etravirine and the RNA-dependent RNA polymerase (RdRp) of WNV and alphaviruses, as evaluated using molecular docking. In vivo, etravirine significantly rescued mice from WNV infection-induced weight loss, severe neurological symptoms, and death, as well as reduced the viral load and inflammatory cytokines in target tissues. Etravirine showed antiviral effects in both arthrophlogosis and lethal mouse models of CHIKV infection. This study revealed that etravirine is an effective anti-WNV and CHIKV arbovirus agent both in vitro and in vivo due to the inhibition of viral replication, providing promising candidates for clinical application.
Collapse
Affiliation(s)
- Xu Zheng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Yanhua He
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Binghui Xia
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Wanda Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Congcong Zhang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Dawei Wang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Hailin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Haoran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Yangang Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
36
|
Liu Y, Xu M, Xia B, Qiao Z, He Y, Liu Y, Pan Z, Zhang C, Peng H, Liang X, Zhao P, Tang H, Zheng X. Nifuroxazide Prevents Chikungunya Virus Infection Both In Vitro and In Vivo via Suppressing Viral Replication. Viruses 2024; 16:1322. [PMID: 39205296 PMCID: PMC11360488 DOI: 10.3390/v16081322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging arbovirus causing disease on a global scale, and the potential for its epidemics remains high. CHIKV has caused millions of cases and heavy economic burdens around the world, while there are no available approved antiviral therapies to date. In this study, nifuroxazide, an FDA-approved antibiotic for acute diarrhea or colitis, was found to significantly inhibit a variety of arboviruses, although its antiviral activity varied among different target cell types. Nifuroxazide exhibited relatively high inhibitory efficiency in yellow fever virus (YFV) infection of the hepatoma cell line Huh7, tick-borne encephalitis virus (TBEV) and west nile virus (WNV) infection of the vascular endothelial cell line HUVEC, and CHIKV infection of both Huh7 cells and HUVECs, while it barely affected the viral invasion of neurons. Further systematic studies on the action stage of nifuroxazide showed that nifuroxazide mainly inhibited in the viral replication stage. In vivo, nifuroxazide significantly reduced the viral load in muscles and protected mice from CHIKV-induced footpad swelling, an inflammation injury within the arthrosis of infected mice. These results suggest that nifuroxazide has a potential clinical application as an antiviral drug, such as in the treatment of CHIKV infection.
Collapse
Affiliation(s)
- Yangang Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Mingxiao Xu
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai 200433, China
| | - Binghui Xia
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Zhuoyue Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Yanhua He
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Yan Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Zhendong Pan
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Congcong Zhang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Haoran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Xuesong Liang
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai 200433, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Hailin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Xu Zheng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
37
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
38
|
Girard J, Le Bihan O, Lai-Kee-Him J, Girleanu M, Bernard E, Castellarin C, Chee M, Neyret A, Spehner D, Holy X, Favier AL, Briant L, Bron P. In situ fate of Chikungunya virus replication organelles. J Virol 2024; 98:e0036824. [PMID: 38940586 PMCID: PMC11265437 DOI: 10.1128/jvi.00368-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for an acute musculoskeletal disease in humans. Replication of the viral RNA genome occurs in specialized membranous replication organelles (ROs) or spherules, which contain the viral replication complex. Initially generated by RNA synthesis-associated plasma membrane deformation, alphavirus ROs are generally rapidly endocytosed to produce type I cytopathic vacuoles (CPV-I), from which nascent RNAs are extruded for cytoplasmic translation. By contrast, CHIKV ROs are poorly internalized, raising the question of their fate and functionality at the late stage of infection. Here, using in situ cryogenic-electron microscopy approaches, we investigate the outcome of CHIKV ROs and associated replication machinery in infected human cells. We evidence the late persistence of CHIKV ROs at the plasma membrane with a crowned protein complex at the spherule neck similar to the recently resolved replication complex. The unexpectedly heterogeneous and large diameter of these compartments suggests a continuous, dynamic growth of these organelles beyond the replication of a single RNA genome. Ultrastructural analysis of surrounding cytoplasmic regions supports that outgrown CHIKV ROs remain dynamically active in viral RNA synthesis and export to the cell cytosol for protein translation. Interestingly, rare ROs with a homogeneous diameter are also marginally internalized in CPV-I near honeycomb-like arrangements of unknown function, which are absent in uninfected controls, thereby suggesting a temporal regulation of this internalization. Altogether, this study sheds new light on the dynamic pattern of CHIKV ROs and associated viral replication at the interface with cell membranes in infected cells.IMPORTANCEThe Chikungunya virus (CHIKV) is a positive-stranded RNA virus that requires specialized membranous replication organelles (ROs) for its genome replication. Our knowledge of this viral cycle stage is still incomplete, notably regarding the fate and functional dynamics of CHIKV ROs in infected cells. Here, we show that CHIKV ROs are maintained at the plasma membrane beyond the first viral cycle, continuing to grow and be dynamically active both in viral RNA replication and in its export to the cell cytosol, where translation occurs in proximity to ROs. This contrasts with the homogeneous diameter of ROs during internalization in cytoplasmic vacuoles, which are often associated with honeycomb-like arrangements of unknown function, suggesting a regulated mechanism. This study sheds new light on the dynamics and fate of CHIKV ROs in human cells and, consequently, on our understanding of the Chikungunya viral cycle.
Collapse
Affiliation(s)
- Justine Girard
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Olivier Le Bihan
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Joséphine Lai-Kee-Him
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Maria Girleanu
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Eric Bernard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Cedric Castellarin
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Matthew Chee
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Aymeric Neyret
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Danièle Spehner
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Xavier Holy
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Anne-Laure Favier
- Institut de Recherche Biomédicale des Armées (IRBA), Ministère des armées, Brétigny-sur-Orge, France
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Bron
- Centre de Biologie Structurale (CBS), Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
39
|
Ng WH, Amaral K, Javelle E, Mahalingam S. Chronic chikungunya disease (CCD): clinical insights, immunopathogenesis and therapeutic perspectives. QJM 2024; 117:489-494. [PMID: 38377410 PMCID: PMC11290245 DOI: 10.1093/qjmed/hcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Chikungunya virus, an arthropod-borne pathogen is recognized by the World Health Organization as a top priority Emerging Infectious Disease and is ranked fourth in public health needs according to the Coalition for Epidemic Preparedness Innovations. Despite its substantial impact, as evidenced by an annual estimate of 120 274 disability-adjusted life years, our understanding of the chronic aspects of chikungunya disease remains limited. This review focuses on chronic chikungunya disease, emphasizing its clinical manifestations, immunopathogenesis, therapeutic options and disease burden.
Collapse
Affiliation(s)
- W H Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - K Amaral
- Department of Health Sciences, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - E Javelle
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France
- Unit of Infectious Diseases and Tropical Medicine, IHU Méditerranée Infection, Marseille, France
- Service de Pathologie Infectieuse et Tropicale, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - S Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
40
|
Silveira-Freitas JEP, Campagnolo ML, dos Santos Cortez M, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. Long chikungunya? An overview to immunopathology of persistent arthralgia. World J Virol 2024; 13:89985. [PMID: 38984075 PMCID: PMC11229846 DOI: 10.5501/wjv.v13.i2.89985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 06/24/2024] Open
Abstract
Chikungunya fever (CF) is caused by an arbovirus whose manifestations are extremely diverse, and it has evolved with significant severity in recent years. The clinical signs triggered by the Chikungunya virus are similar to those of other arboviruses. Generally, fever starts abruptly and reaches high levels, followed by severe polyarthralgia and myalgia, as well as an erythematous or petechial maculopapular rash, varying in severity and extent. Around 40% to 60% of affected individuals report persistent arthralgia, which can last from months to years. The symptoms of CF mainly represent the tissue tropism of the virus rather than the immunopathogenesis triggered by the host's immune system. The main mechanisms associated with arthralgia have been linked to an increase in T helper type 17 cells and a consequent increase in receptor activator of nuclear factor kappa-Β ligand and bone resorption. This review suggests that persistent arthralgia results from the presence of viral antigens post-infection and the constant activation of signaling lymphocytic activation molecule family member 7 in synovial macrophages, leading to local infiltration of CD4+ T cells, which sustains the inflammatory process in the joints through the secretion of pro-inflammatory cytokines. The term "long chikungunya" was used in this review to refer to persistent arthralgia since, due to its manifestation over long periods after the end of the viral infection, this clinical condition seems to be characterized more as a sequel than as a symptom, given that there is no active infection involved.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa de Pós-graduação em Biotecnologia, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| |
Collapse
|
41
|
Rama K, de Roo AM, Louwsma T, Hofstra HS, Gurgel do Amaral GS, Vondeling GT, Postma MJ, Freriks RD. Clinical outcomes of chikungunya: A systematic literature review and meta-analysis. PLoS Negl Trop Dis 2024; 18:e0012254. [PMID: 38848443 PMCID: PMC11189168 DOI: 10.1371/journal.pntd.0012254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/20/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Chikungunya is a viral disease caused by a mosquito-borne alphavirus. The acute phase of the disease includes symptoms such as fever and arthralgia and lasts 7-10 days. However, debilitating symptoms can persist for months or years. Despite the substantial impact of this disease, a comprehensive assessment of its clinical picture is currently lacking. METHODS We conducted a systematic literature review on the clinical manifestations of chikungunya, their prevalence and duration, and related hospitalization. Embase and MEDLINE were searched with no time restrictions. Subsequently, meta-analyses were conducted to quantify pooled estimates on clinical outcomes, the symptomatic rate, the mortality rate, and the hospitalization rate. The pooling of effects was conducted using the inverse-variance weighting methods and generalized linear mixed effects models, with measures of heterogeneity reported. RESULTS The systematic literature review identified 316 articles. Out of the 28 outcomes of interest, we were able to conduct 11 meta-analyses. The most prevalent symptoms during the acute phase included arthralgia in 90% of cases (95% CI: 83-94%), and fever in 88% of cases (95% CI: 85-90%). Upon employing broader inclusion criteria, the overall symptomatic rate was 75% (95% CI: 63-84%), the chronicity rate was 44% (95% CI: 31-57%), and the mortality rate was 0.3% (95% CI: 0.1-0.7%). The heterogeneity between subpopulations was more than 92% for most outcomes. We were not able to estimate all predefined outcomes, highlighting the existing data gap. CONCLUSION Chikungunya is an emerging public health concern. Consequently, a thorough understanding of the clinical burden of this disease is necessary. Our study highlighted the substantial clinical burden of chikungunya in the acute phase and a potentially long-lasting chronic phase. Understanding this enables health authorities and healthcare professionals to effectively recognize and address the associated symptoms and raise awareness in society.
Collapse
Affiliation(s)
- Kris Rama
- Asc Academics B.V., Groningen, Netherlands
| | - Adrianne M. de Roo
- Valneva Austria GmbH, Vienna, Austria
- Department of Health Sciences, University Medical Center Groningen, Groningen, Netherlands
| | - Timon Louwsma
- Asc Academics B.V., Groningen, Netherlands
- Department of Health Sciences, University Medical Center Groningen, Groningen, Netherlands
| | | | | | | | - Maarten J. Postma
- Department of Health Sciences, University Medical Center Groningen, Groningen, Netherlands
- Department of Economics, Econometrics & Finance, University of Groningen, Faculty of Economics & Business, Groningen, The Netherlands
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Division of Pharmacology and Therapy, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Roel D. Freriks
- Asc Academics B.V., Groningen, Netherlands
- Department of Health Sciences, University Medical Center Groningen, Groningen, Netherlands
- Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| |
Collapse
|
42
|
Xu C, Chen Y, Zhu G, Wu H, Jiang Q, Zhang R, Yu B, Fang L, Wu Z. A Portable, Integrated, Sample-In Result-Out Nucleic Acid Diagnostic Device for Rapid and Sensitive Chikungunya Virus Detection. MICROMACHINES 2024; 15:663. [PMID: 38793236 PMCID: PMC11123350 DOI: 10.3390/mi15050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Chikungunya virus, a mosquito-borne virus that causes epidemics, is often misdiagnosed due to symptom similarities with other arboviruses. Here, a portable and integrated nucleic acid-based diagnostic device, which combines reverse transcription-loop-mediated isothermal amplification and lateral-flow detection, was developed. The device is simple to use, precise, equipment-free, and highly sensitive, enabling rapid chikungunya virus identification. The result can be obtained by the naked eye within 40 min. The assay can effectively distinguish chikungunya virus from dengue virus, Japanese encephalitis virus, Zika virus, and yellow fever virus with high specificity and sensitivity as low as 598.46 copies mL-1. It has many benefits for the community screening and monitoring of chikungunya virus in resource-limited areas because of its effectiveness and simplicity. The platform has great potential for the rapid nucleic acid detection of other viruses.
Collapse
Affiliation(s)
- Changping Xu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yalin Chen
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guiying Zhu
- Shanghai Sci-Tech InnoCenter for Infection & Immunity, Shanghai 200030, China
| | - Huan Wu
- Ustar Biotechnologies (Hangzhou) Ltd., Hangzhou 310051, China
| | - Qi Jiang
- Ustar Biotechnologies (Hangzhou) Ltd., Hangzhou 310051, China
| | - Rui Zhang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Beibei Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
43
|
Liao X, Xin J, Yu Z, Yan W, Li C, Cao L, Zhang H, Wang W. Unlocking the antiviral potential of rosmarinic acid against chikungunya virus via IL-17 signaling pathway. Front Cell Infect Microbiol 2024; 14:1396279. [PMID: 38800832 PMCID: PMC11127627 DOI: 10.3389/fcimb.2024.1396279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Background The Chikungunya virus is an Alphavirus that belongs to the Togaviridae family and is primarily transmitted by mosquitoes. It causes acute infection characterized by fever, headache, and arthralgia. Some patients also experience persistent chronic osteoarthritis-like symptoms. Dedicated antiviral treatments are currently unavailable for CHIKV. This study aims to explore the potential anti-CHIKV effect of rosmarinic acid using network pharmacology. Methods This study employed network pharmacology to predict and verify the molecular targets and pathways associated with ROSA in the context of CHIKV. The analysis outcomes were further validated using molecular docking and in vitro experiments. Results The analysis of CHIKV targets using the Kyoto Encyclopedia of Genes and Genomes and MCODE identified IL-17 as an important pathogenic pathway in CHIKV infection. Among the 30 targets of ROSA against CHIKV, nearly half were found to be involved in the IL-17 signaling pathway. This suggests that ROSA may help the host in resisting CHIKV invasion by modulating this pathway. Molecular docking validation results showed that ROSA can stably bind to 10 core targets out of the 30 identified targets. In an in vitro CHIKV infection model developed using 293T cells, treatment with 60 μM ROSA significantly improved the survival rate of infected cells, inhibited 50% CHIKV proliferation after CHIKV infection, and reduced the expression of TNF-α in the IL-17 signaling pathway. Conclusion This study provides the first confirmation of the efficacy of ROSA in suppressing CHIKV infection through the IL-17 signaling pathway. The findings warrant further investigation to facilitate the development of ROSA as a potential treatment for CHIKV infection.
Collapse
Affiliation(s)
- Xinfei Liao
- Wenzhou Polytechnic, Wenzhou, Zhejiang, China
| | - Jialiang Xin
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Ziping Yu
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Weiming Yan
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Liang Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Wei Wang
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
44
|
Gonzales Y Tucker RD, Addepalli A. Fever and Rash. Emerg Med Clin North Am 2024; 42:303-334. [PMID: 38641393 DOI: 10.1016/j.emc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Infectious causes of fever and rash pose a diagnostic challenge for the emergency provider. It is often difficult to discern rashes associated with rapidly progressive and life-threatening infections from benign exanthems, which comprise the majority of rashes seen in the emergency department. Physicians must also consider serious noninfectious causes of fever and rash. A correct diagnosis depends on an exhaustive history and head-to-toe skin examination as most emergent causes of fever and rash remain clinical diagnoses. A provisional diagnosis and immediate treatment with antimicrobials and supportive care are usually required prior to the return of confirmatory laboratory testing.
Collapse
Affiliation(s)
- Richard Diego Gonzales Y Tucker
- Department of Emergency Medicine, University of California San Francisco, Box 0209, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Emergency Medicine, Alameda Health System - Wilma Chan Highland Hospital, 1411 E 31st Street, Oakland, CA 94602, USA.
| | - Aravind Addepalli
- Department of Emergency Medicine, University of California San Francisco, Box 0209, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Leandro AS, Chiba de Castro WA, Garey MV, Maciel-de-Freitas R. Spatial analysis of dengue transmission in an endemic city in Brazil reveals high spatial structuring on local dengue transmission dynamics. Sci Rep 2024; 14:8930. [PMID: 38637572 PMCID: PMC11026424 DOI: 10.1038/s41598-024-59537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
In the last decades, dengue has become one of the most widespread mosquito-borne arboviruses in the world, with an increasing incidence in tropical and temperate regions. The mosquito Aedes aegypti is the dengue primary vector and is more abundant in highly urbanized areas. Traditional vector control methods have showing limited efficacy in sustaining mosquito population at low levels to prevent dengue virus outbreaks. Considering disease transmission is not evenly distributed in the territory, one perspective to enhance vector control efficacy relies on identifying the areas that concentrate arbovirus transmission within an endemic city, i.e., the hotspots. Herein, we used a 13-month timescale during the SARS-Cov-2 pandemic and its forced reduction in human mobility and social isolation to investigate the spatiotemporal association between dengue transmission in children and entomological indexes based on adult Ae. aegypti trapping. Dengue cases and the indexes Trap Positive Index (TPI) and Adult Density Index (ADI) varied seasonally, as expected: more than 51% of cases were notified on the first 2 months of the study, and higher infestation was observed in warmer months. The Moran's Eigenvector Maps (MEM) and Generalized Linear Models (GLM) revealed a strong large-scale spatial structuring in the positive dengue cases, with an unexpected negative correlation between dengue transmission and ADI. Overall, the global model and the purely spatial model presented a better fit to data. Our results show high spatial structure and low correlation between entomological and epidemiological data in Foz do Iguaçu dengue transmission dynamics, suggesting the role of human mobility might be overestimated and that other factors not evaluated herein could be playing a significant role in governing dengue transmission.
Collapse
Affiliation(s)
- André S Leandro
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Centro de Controle de Zoonoses, Secretaria Municipal de Saúde de Foz do Iguaçu, Foz do Iguaçu, Brazil
| | | | | | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
- Department of Arbovirology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
46
|
de Souza WM, Fumagalli MJ, de Lima STS, Parise PL, Carvalho DCM, Hernandez C, de Jesus R, Delafiori J, Candido DS, Carregari VC, Muraro SP, Souza GF, Simões Mello LM, Claro IM, Díaz Y, Kato RB, Trentin LN, Costa CHS, Maximo ACBM, Cavalcante KF, Fiuza TS, Viana VAF, Melo MEL, Ferraz CPM, Silva DB, Duarte LMF, Barbosa PP, Amorim MR, Judice CC, Toledo-Teixeira DA, Ramundo MS, Aguilar PV, Araújo ELL, Costa FTM, Cerqueira-Silva T, Khouri R, Boaventura VS, Figueiredo LTM, Fang R, Moreno B, López-Vergès S, Mello LP, Skaf MS, Catharino RR, Granja F, Martins-de-Souza D, Plante JA, Plante KS, Sabino EC, Diamond MS, Eugenin E, Proença-Módena JL, Faria NR, Weaver SC. Pathophysiology of chikungunya virus infection associated with fatal outcomes. Cell Host Microbe 2024; 32:606-622.e8. [PMID: 38479396 PMCID: PMC11018361 DOI: 10.1016/j.chom.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/08/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes acute, subacute, and chronic human arthritogenic diseases and, in rare instances, can lead to neurological complications and death. Here, we combined epidemiological, virological, histopathological, cytokine, molecular dynamics, metabolomic, proteomic, and genomic analyses to investigate viral and host factors that contribute to chikungunya-associated (CHIK) death. Our results indicate that CHIK deaths are associated with multi-organ infection, central nervous system damage, and elevated serum levels of pro-inflammatory cytokines and chemokines compared with survivors. The histopathologic, metabolite, and proteomic signatures of CHIK deaths reveal hemodynamic disorders and dysregulated immune responses. The CHIKV East-Central-South-African lineage infecting our study population causes both fatal and survival cases. Additionally, CHIKV infection impairs the integrity of the blood-brain barrier, as evidenced by an increase in permeability and altered tight junction protein expression. Overall, our findings improve the understanding of CHIK pathophysiology and the causes of fatal infections.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA; Global Virus Network, Baltimore, MD, USA.
| | - Marcilio J Fumagalli
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Shirlene T S de Lima
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Ceará, Brazil; Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Pierina L Parise
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Deyse C M Carvalho
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Cristian Hernandez
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Darlan S Candido
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Victor C Carregari
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Stefanie P Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela F Souza
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Ingra M Claro
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Yamilka Díaz
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama, Panama
| | - Rodrigo B Kato
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas N Trentin
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Clauber H S Costa
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Tayna S Fiuza
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Ceará, Brazil; Programa de Pós Graduação em Bioinformática, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Vânia A F Viana
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Débora B Silva
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Ceará, Brazil
| | | | - Priscilla P Barbosa
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Mariene R Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Carla C Judice
- Laboratory of Tropical Diseases, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Daniel A Toledo-Teixeira
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Mariana S Ramundo
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Patricia V Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Emerson L L Araújo
- Coordenação Geral de Atenção às Doenças Transmissíveis na Atenção Primária, Departamento de Gestão ao cuidado Integral, Secretaria de Atenção Primária à Saúde, Ministério da Saúde, Brasília, Brazil
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Thiago Cerqueira-Silva
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Bahia, Brazil; Fundação Oswaldo Cruz, Instituto Gonçalo Muniz, Laboratório de Medicina e Saúde Pública de Precisão, Salvador, Bahia, Brazil
| | - Ricardo Khouri
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Bahia, Brazil; Fundação Oswaldo Cruz, Instituto Gonçalo Muniz, Laboratório de Medicina e Saúde Pública de Precisão, Salvador, Bahia, Brazil
| | - Viviane S Boaventura
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Bahia, Brazil; Fundação Oswaldo Cruz, Instituto Gonçalo Muniz, Laboratório de Medicina e Saúde Pública de Precisão, Salvador, Bahia, Brazil; Hospital Santa Izabel, Santa Casa de Misericórdia da Bahia, Serviço de Otorrinolaringologia, Salvador, Bahia, Brazil
| | - Luiz Tadeu M Figueiredo
- Virology Research Centre, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Brechla Moreno
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama, Panama
| | - Sandra López-Vergès
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama, Panama; Sistema Nacional de Investigación from SENACYT, Panama, Panama
| | | | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Biodiversity Research Centre, Federal University of Roraima, Boa Vista, Roraima, Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; D'Or Institute for Research and Education, São Paulo, São Paulo, Brazil; Experimental Medicine Research Cluster, University of Campinas, Campinas, São Paulo, Brazil
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Ester C Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Eliseo Eugenin
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - José Luiz Proença-Módena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA; Global Virus Network, Baltimore, MD, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
47
|
de Freitas A, Rezende F, de Mendonça S, Baldon L, Silva E, Ferreira F, Almeida J, Amadou S, Marçal B, Comini S, Rocha M, Fritsch H, Santos E, Leite T, Giovanetti M, Alcantara LCJ, Moreira L, Ferreira A. The High Capacity of Brazilian Aedes aegypti Populations to Transmit a Locally Circulating Lineage of Chikungunya Virus. Viruses 2024; 16:575. [PMID: 38675917 PMCID: PMC11053879 DOI: 10.3390/v16040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of chikungunya has dramatically surged worldwide in recent decades, imposing an expanding burden on public health. In recent years, South America, particularly Brazil, has experienced outbreaks that have ravaged populations following the rapid dissemination of the chikungunya virus (CHIKV), which was first detected in 2014. The primary vector for CHIKV transmission is the urban mosquito species Aedes aegypti, which is highly prevalent throughout Brazil. However, the impact of the locally circulating CHIKV genotypes and specific combinations of local mosquito populations on vector competence remains unexplored. Here, we experimentally analyzed and compared the infectivity and transmissibility of the CHIKV-ECSA lineage recently isolated in Brazil among four Ae. aegypti populations collected from different regions of the country. When exposed to CHIKV-infected AG129 mice for blood feeding, all the mosquito populations displayed high infection rates and dissemination efficiency. Furthermore, we observed that all the populations were highly efficient in transmitting CHIKV to a vertebrate host (naïve AG129 mice) as early as eight days post-infection. These results demonstrate the high capacity of Brazilian Ae. aegypti populations to transmit the locally circulating CHIKV-ECSA lineage. This observation could help to explain the high prevalence of the CHIKV-ECSA lineage over the Asian lineage, which was also detected in Brazil in 2014. However, further studies comparing both lineages are necessary to gain a better understanding of the vector's importance in the epidemiology of CHIKV in the Americas.
Collapse
Affiliation(s)
- Amanda de Freitas
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Fernanda Rezende
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Silvana de Mendonça
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Lívia Baldon
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Emanuel Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil; (E.S.); (F.F.); (J.A.); (S.A.); (E.S.); (T.L.)
| | - Flávia Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil; (E.S.); (F.F.); (J.A.); (S.A.); (E.S.); (T.L.)
| | - João Almeida
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil; (E.S.); (F.F.); (J.A.); (S.A.); (E.S.); (T.L.)
| | - Siad Amadou
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil; (E.S.); (F.F.); (J.A.); (S.A.); (E.S.); (T.L.)
| | - Bruno Marçal
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Sara Comini
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Marcele Rocha
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Hegger Fritsch
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Ellen Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil; (E.S.); (F.F.); (J.A.); (S.A.); (E.S.); (T.L.)
| | - Thiago Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil; (E.S.); (F.F.); (J.A.); (S.A.); (E.S.); (T.L.)
| | - Marta Giovanetti
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
- Department of Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Luiz Carlos Junior Alcantara
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Luciano Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| | - Alvaro Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (A.d.F.); (F.R.); (S.d.M.); (L.B.); (B.M.); (S.C.); (M.R.); (H.F.); (M.G.); (L.C.J.A.); (L.M.)
| |
Collapse
|
48
|
Tretyakova I, Joh J, Gearon M, Kraenzle J, Goedeker S, Pignataro A, Alejandro B, Lukashevich IS, Chung D, Pushko P. Live-attenuated CHIKV vaccine with rearranged genome replicates in vitro and induces immune response in mice. PLoS Negl Trop Dis 2024; 18:e0012120. [PMID: 38648230 PMCID: PMC11075892 DOI: 10.1371/journal.pntd.0012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/07/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. CHIKV is considered a priority pathogen by CEPI and WHO. Despite recent approval of a live-attenuated CHIKV vaccine, development of additional vaccines is warranted due to the worldwide outbreaks of CHIKV. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo. Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. Attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for general safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.
Collapse
Affiliation(s)
| | - Joongho Joh
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Mary Gearon
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jennifer Kraenzle
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Sidney Goedeker
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Ava Pignataro
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Brian Alejandro
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Donghoon Chung
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Peter Pushko
- Medigen, Inc., Frederick, Maryland, United States of America
| |
Collapse
|
49
|
Sagar R, Raghavendhar S, Jain V, Khan N, Chandele A, Patel AK, Kaja M, Ray P, Kapoor N. Viremia and clinical manifestations in acute febrile patients of Chikungunya infection during the 2016 CHIKV outbreak in Delhi, India. INFECTIOUS MEDICINE 2024; 3:100088. [PMID: 38444748 PMCID: PMC10914418 DOI: 10.1016/j.imj.2024.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Background Chikungunya virus (CHIKV) is an infectious agent that caused several outbreaks among different countries and affected approximately 1.3 million Indian populations. It is transmitted by Aedes mosquito-either A. albopictus or A. aegypti. Generally, the clinical manifestations of CHIKV infection involve high-grade fever, joint pain, skin rashes, headache, and myalgia. The present study aims to investigate the relationship between the CHIKV virus load and clinical symptoms of the CHIKV infection so that better patient management can be done in the background of the CHIKV outbreak as there is no licensed anti-viral drug and approved vaccines available against CHIKV. Methods CHIKV RTPCR positive samples (n = 18) (Acute febrile patients having D.O.F ≤ 7 days) were taken for the quantification of CHIKV viremia by Real-Time PCR. Clinical features of the febrile patients were recorded during the collection of blood samples. Results The log mean virus load of 18 RT-PCR-positive samples was 1.3 × 106 copies/mL (1.21 × 103-2.33 × 108 copies/mL). Among the observed clinical features, the log mean virus load (CHIKV) of the patients without skin rash is higher than in the patients with skin rash (6.61 vs 5.5, P = 0.0435). Conclusion The conclusion of the study was that the patients with skin rashes had lower viral load and those without skin rashes had higher viral load.
Collapse
Affiliation(s)
- Rohit Sagar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
- Department of Life Sciences, School of Sciences, IGNOU, New Delhi 110068, India
| | - Siva Raghavendhar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Vineet Jain
- HAH Centenary Hospital, Jamia Hamdard, New Delhi 110062, India
| | - Naushad Khan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, ICGEB, New Delhi 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Murali Kaja
- ICGEB-Emory Vaccine Center, ICGEB, New Delhi 110067, India
- Department of Pediatrics, Emory University School of Medicine, 30322 Atlanta, GA, USA
| | - Pratima Ray
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Neera Kapoor
- Department of Life Sciences, School of Sciences, IGNOU, New Delhi 110068, India
| |
Collapse
|
50
|
Mehta D, Chaudhary S, Sunil S. Oxidative stress governs mosquito innate immune signalling to reduce chikungunya virus infection in Aedes-derived cells. J Gen Virol 2024; 105. [PMID: 38488850 DOI: 10.1099/jgv.0.001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Arboviruses such as chikungunya, dengue and zika viruses cause debilitating diseases in humans. The principal vector species that transmits these viruses is the Aedes mosquito. Lack of substantial knowledge of the vector species hinders the advancement of strategies for controlling the spread of arboviruses. To supplement our information on mosquitoes' responses to virus infection, we utilized Aedes aegypti-derived Aag2 cells to study changes at the transcriptional level during infection with chikungunya virus (CHIKV). We observed that genes belonging to the redox pathway were significantly differentially regulated. Upon quantifying reactive oxygen species (ROS) in the cells during viral infection, we further discovered that ROS levels are considerably higher during the early hours of infection; however, as the infection progresses, an increase in antioxidant gene expression suppresses the oxidative stress in cells. Our study also suggests that ROS is a critical regulator of viral replication in cells and inhibits intracellular and extracellular viral replication by promoting the Rel2-mediated Imd immune signalling pathway. In conclusion, our study provides evidence for a regulatory role of oxidative stress in infected Aedes-derived cells.
Collapse
Affiliation(s)
- Divya Mehta
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sakshi Chaudhary
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|