1
|
Qin N, Liu H, Wang X, Liu Y, Chang H, Xia X. Sargassum fusiforme polysaccharides protect mice against Citrobacter rodentium infection via intestinal microbiota-driven microRNA-92a-3p-induced Muc2 production. Int J Biol Macromol 2025; 300:140271. [PMID: 39863236 DOI: 10.1016/j.ijbiomac.2025.140271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Sargassum fusiforme, widely consumed in Asian countries, has been proven to have various biological activities. However, the impacts and mechanisms of Sargassum fusiforme polysaccharides (SFPs) on intestinal bacterial infection are not yet fully understood. Our findings indicate that SFPs pretreatment ameliorates intestinal inflammation by reducing C. rodentium colonization, increasing colon length and levels of IL-10 and IL-22, decreasing IL-1β, IL-6, TNF-α, and IL-17 levels, inhibiting colonic crypt elongation and hyperplasia, and enhancing the intestinal mucosal barrier. The protective effects against intestinal bacterial infection are linked to enhanced clearance of C. rodentium and improvements in the intestinal mucosal barrier and C. rodentium-induced intestinal microbiota dysbiosis. Fecal microbiota transplantation experiments were conducted to evaluate the functional impact of microbiota induced by SFPs. The results suggest that intestinal microbiota modified by SFPs effectively countered C. rodentium infection. In addition, our study identified that miRNA-92a-3p is partially complementary to the 3'-UTR of the Notch1 gene, thereby repressing the Notch1-Hes1 signaling pathway and enhancing Muc2 secretion. Taken together, these findings reveal that SFPs protect mice from C. rodentium infection by activating the miR-92a-3p/Notch1-Hes1 regulatory axis driven by the intestinal microbiota, which stimulates Muc2 production to maintain intestinal barrier homeostasis.
Collapse
Affiliation(s)
- Ningbo Qin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hongxu Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinru Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hong Chang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Li C, Zhou Y, Jiang Y, Yin Z, Weiss HL, Wang Q, Evers BM. miR-27a-3p regulates intestinal cell proliferation and differentiation through Wnt/β-catenin signalling. Cell Prolif 2025; 58:e13757. [PMID: 39329245 PMCID: PMC11839187 DOI: 10.1111/cpr.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Intestinal stem cells differentiate into absorptive enterocytes, characterised by increased brush border enzymes such as intestinal alkaline phosphatase (IAP), making up the majority (95%) of the terminally differentiated cells in the villus. Loss of integrity of the intestinal epithelium plays a key role in inflammatory diseases and gastrointestinal infection. Here, we show that the intestinal microRNA (miR)-27a-3p is an important regulator of intestinal epithelial cell proliferation and enterocyte differentiation. Repression of endogenous miR-27a-3p leads to increased enterocyte differentiation and decreased intestinal epithelial cell proliferation in mouse and human small intestinal organoids. Mechanistically, miR-27a-3p regulates intestinal cell differentiation and proliferation at least in part through the regulation of retinoic acid receptor α (RXRα), a modulator of Wnt/β-catenin signalling. Repression of miR-27a-3p increases the expression of RXRα and concomitantly, decreases the expression of active β-catenin and cyclin D1. In contrast, overexpression of miR-27a-3p mimic decreases the expression of RXRα and increases the expression of active β-catenin and cyclin D1. Moreover, overexpression of the miR-27a-3p mimic results in impaired enterocyte differentiation and increases intestinal epithelial cell proliferation. These alterations were attenuated or blocked by Wnt inhibition. Our study demonstrates an miR-27a-3p/RXRα/Wnt/β-catenin pathway that is important for the maintenance of enterocyte homeostasis in the small intestine.
Collapse
Affiliation(s)
- Chang Li
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Yuning Zhou
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Yinping Jiang
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Zhijie Yin
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Heidi L. Weiss
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
| | - Qingding Wang
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
- Department of SurgeryUniversity of KentuckyLexingtonKentuckyUSA
| | - B. Mark Evers
- Markey Cancer Center, University of KentuckyLexingtonKentuckyUSA
- Department of SurgeryUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
3
|
Wilson AP, Moshal KS, Franca AP, Ramani S, Gallucci R, Chaaban H, Burge KY. Analyzing efficiency of a lentiviral shRNA knockdown system in human enteroids using western blot and flow cytometry. STAR Protoc 2024; 5:103082. [PMID: 38781076 PMCID: PMC11145376 DOI: 10.1016/j.xpro.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Enteroids are in vitro models to study gastrointestinal pathologies and test personalized therapeutics; however, the inherent complexity of enteroids often renders standard gene editing approaches ineffective. Here, we introduce a refined lentiviral transfection protocol, ensuring sufficient lentiviral engagement with enteroids while considering spatiotemporal growth variability throughout the extracellular matrix. Additionally, we highlight a selection process for transduced cells, introduce a protocol to accurately measure transduction efficiency, and explore methodologies to gauge effects of gene knockdown on biological processes.
Collapse
Affiliation(s)
- Adam P Wilson
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Karni S Moshal
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Addison P Franca
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sasirekha Ramani
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Randle Gallucci
- Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Kathryn Y Burge
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
4
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b ubiquitin ligases are essential for intestinal epithelial stem cell maintenance. iScience 2024; 27:109912. [PMID: 38974465 PMCID: PMC11225835 DOI: 10.1016/j.isci.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
Affiliation(s)
- Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C. Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pinaki Mondal
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin T. Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuo Wang
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sicong Li
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D. Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah P. Thayer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
6
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b Ubiquitin Ligases are Essential for Intestinal Epithelial Stem Cell Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541154. [PMID: 37292716 PMCID: PMC10245689 DOI: 10.1101/2023.05.17.541154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Among the signaling pathways that control the stem cell self-renewal and maintenance vs. acquisition of differentiated cell fates, those mediated by receptor tyrosine kinase (RTK) activation are well established as key players. CBL family ubiquitin ligases are negative regulators of RTKs but their physiological roles in regulating stem cell behaviors are unclear. While hematopoietic Cbl/Cblb knockout (KO) leads to a myeloproliferative disease due to expansion and reduced quiescence of hematopoietic stem cells, mammary epithelial KO led to stunted mammary gland development due to mammary stem cell depletion. Here, we examined the impact of inducible Cbl/Cblb double-KO (iDKO) selectively in the Lgr5-defined intestinal stem cell (ISC) compartment. Cbl/Cblb iDKO led to rapid loss of the Lgr5 Hi ISC pool with a concomitant transient expansion of the Lgr5 Lo transit amplifying population. LacZ reporter-based lineage tracing showed increased ISC commitment to differentiation, with propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro , Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single cell RNAseq analysis of organoids revealed Akt-mTOR pathway hyperactivation in iDKO ISCs and progeny cells, and pharmacological inhibition of the Akt-mTOR axis rescued the organoid maintenance and propagation defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
|
7
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H, Liu Q, Chen J, Guli S, Chen X. Orchestration of MUC2 - The key regulatory target of gut barrier and homeostasis: A review. Int J Biol Macromol 2023; 236:123862. [PMID: 36870625 DOI: 10.1016/j.ijbiomac.2023.123862] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The gut mucosa of human is covered by mucus, functioning as a crucial defense line for the intestine against external stimuli and pathogens. Mucin2 (MUC2) is a subtype of secretory mucins generated by goblet cells and is the major macromolecular component of mucus. Currently, there is an increasing interest on the investigations of MUC2, noting that its function is far beyond a maintainer of the mucus barrier. Moreover, numerous gut diseases are associated with dysregulated MUC2 production. Appropriate production level of MUC2 and mucus contributes to gut barrier function and homeostasis. The production of MUC2 is regulated by a series of physiological processes, which are orchestrated by various bioactive molecules, signaling pathways and gut microbiota, etc., forming a complex regulatory network. Incorporating the latest findings, this review provided a comprehensive summary of MUC2, including its structure, significance and secretory process. Furthermore, we also summarized the molecular mechanisms of the regulation of MUC2 production aiming to provide developmental directions for future researches on MUC2, which can act as a potential prognostic indicator and targeted therapeutic manipulation for diseases. Collectively, we elucidated the micro-level mechanisms underlying MUC2-related phenotypes, hoping to offer some constructive guidance for intestinal and overall health of mankind.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qinlingfei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Sitan Guli
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
8
|
Li C, Zhou Y, Wei R, Napier DL, Sengoku T, Alstott MC, Liu J, Wang C, Zaytseva YY, Weiss HL, Wang Q, Evers BM. Glycolytic Regulation of Intestinal Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol 2022; 15:931-947. [PMID: 36584817 PMCID: PMC9971054 DOI: 10.1016/j.jcmgh.2022.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. An imbalance in this highly regimented process within the intestinal crypts is associated with several intestinal pathologies. Although metabolic changes are known to play a pivotal role in cell proliferation and differentiation, how glycolysis contributes to intestinal epithelial homeostasis remains to be defined. METHODS Small intestines were harvested from mice with specific hexokinase 2 (HK2) deletion in the intestinal epithelium or LGR5+ stem cells. Glycolysis was measured using the Seahorse XFe96 analyzer. Expression of phospho-p38 mitogen-activated protein kinase, the transcription factor atonal homolog 1, and intestinal cell differentiation markers lysozyme, mucin 2, and chromogranin A were determined by Western blot, quantitative real-time reverse transcription polymerase chain reaction, or immunofluorescence, and immunohistochemistry staining. RESULTS HK2 is a target gene of Wnt signaling in intestinal epithelium. HK2 knockout or inhibition of glycolysis resulted in increased numbers of Paneth, goblet, and enteroendocrine cells and decreased intestinal stem cell self-renewal. Mechanistically, HK2 knockout resulted in activation of p38 mitogen-activated protein kinase and increased expression of ATOH1; inhibition of p38 mitogen-activated protein kinase signaling attenuated the phenotypes induced by HK2 knockout in intestinal organoids. HK2 knockout significantly decreased glycolysis and lactate production in intestinal organoids; supplementation of lactate or pyruvate reversed the phenotypes induced by HK2 knockout. CONCLUSIONS Our results show that HK2 regulates intestinal stem cell self-renewal and differentiation through p38 mitogen-activated protein kinase/atonal homolog 1 signaling pathway. Our findings demonstrate an essential role for glycolysis in maintenance of intestinal stem cell function.
Collapse
Affiliation(s)
- Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Ruozheng Wei
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Dana L Napier
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Tomoko Sengoku
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | | | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yekaterina Y Zaytseva
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky; Department of Surgery, University of Kentucky, Lexington, Kentucky.
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky; Department of Surgery, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
9
|
Kaur H, Moreau R. Raptor knockdown concurrently increases the electrical resistance and paracellular permeability of Caco-2 cell monolayers. Life Sci 2022; 308:120989. [PMID: 36152680 DOI: 10.1016/j.lfs.2022.120989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
AIMS As a critical regulatory point of nutrient sensing, growth and metabolism, the mechanistic target of rapamycin complex 1 (mTORC1) is poised to influence intestinal homeostasis under basal conditions and in disease state. Intestinal barrier integrity ensures tissue homeostasis by closely regulating the permeability of the epithelium to lumenal contents. The role of mTORC1 in the regulation of intestinal barrier function and permeability remains to be fully elucidated. MATERIALS AND METHODS In this study, we employed lentivirus-mediated knockdown of mTORC1 signaling-associated proteins Raptor (regulatory-associated protein of mTOR) and TSC2 (tuberin) to ascertain the effects of constitutive activation or repression of mTORC1 activity on barrier function in Caco-2 cell monolayers. KEY FINDINGS Results showed that the loss of Raptor concomitantly raised the transepithelial electrical resistance (TEER) and para/transcellular permeability leading to a cell monolayer that is leaky for dextran yet electrically resistant to the movement of ions. Paracellular permeability was linked to the downregulation of tight junction protein expression and enhanced autophagy. Raptor-depleted cells had the highest abundance of myosin binding subunit MYPT1 concomitantly with the lowest abundance of p-MYPT1 (Thr696) and phosphorylated myosin light chain (p-MLC, Ser19) implying that MLC phosphatase activity was increased resulting in MLC relaxation. Although rapamycin suppressed mTORC1 activity and decreased the abundance of tight junction proteins in control cells, rapamycin caused a modest increase of TEER compared to Raptor knockdown. SIGNIFICANCE The study showed that epithelium paracellular permeability of small molecular weight dextran is dissociated from TEER.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
10
|
Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell 2022; 29:1333-1345.e6. [PMID: 36002022 PMCID: PMC9438971 DOI: 10.1016/j.stem.2022.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 12/21/2022]
Abstract
Opposing roles have been proposed for IL-22 in intestinal pathophysiology. We have optimized human small intestinal organoid (hSIO) culturing, constitutively generating all differentiated cell types while maintaining an active stem cell compartment. IL-22 does not promote the expansion of stem cells but rather slows the growth of hSIOs. In hSIOs, IL-22 is required for formation of Paneth cells, the prime producers of intestinal antimicrobial peptides (AMPs). Introduction of inflammatory bowel disease (IBD)-associated loss-of-function mutations in the IL-22 co-receptor gene IL10RB resulted in abolishment of Paneth cells in hSIOs. Moreover, IL-22 induced expression of host defense genes (such as REG1A, REG1B, and DMBT1) in enterocytes, goblet cells, Paneth cells, Tuft cells, and even stem cells. Thus, IL-22 does not directly control the regenerative capacity of crypt stem cells but rather boosts Paneth cell numbers, as well as the expression of AMPs in all cell types.
Collapse
|
11
|
Nauman M, Stanley P. Glycans that regulate Notch signaling in the intestine. Biochem Soc Trans 2022; 50:689-701. [PMID: 35311893 PMCID: PMC9370068 DOI: 10.1042/bst20200782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Intestinal homeostasis is key to the maintenance of good health. The small intestine plays important roles in absorption, digestion, hormonal and immune functions. Crypt base columnar (CBC) stem cells residing at the bottom of crypts are nurtured by Paneth cells, and together create the stem cell niche, the foundation of intestinal homeostasis. CBC stem cells replicate to replenish their number, or differentiate into a variety of epithelial cells with specialized functions. Notch signaling is a cell-cell signaling pathway that regulates both the proliferation and differentiation of CBC stem cells. NOTCH1 and NOTCH2 stimulated by canonical Notch ligands DLL1 and DLL4 mediate Notch signaling in the intestine that, in concert with other signaling pathways including the WNT and BMP pathways, determines cell fates. Importantly, interactions between Notch receptors and canonical Notch ligands are regulated by O-glycans linked to Ser/Thr in epidermal growth factor-like (EGF) repeats of the Notch receptor extracellular domain (NECD). The O-glycans attached to NECD are key regulators of the strength of Notch signaling. Imbalances in Notch signaling result in altered cell fate decisions and may lead to cancer in the intestine. In this review, we summarize the impacts of mutations in Notch pathway members on intestinal development and homeostasis, with a focus on the glycosyltransferases that transfer O-glycans to EGF repeats of NOTCH1, NOTCH2, DLL1 and DLL4.
Collapse
Affiliation(s)
- Mohd Nauman
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, U.S.A
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, U.S.A
| |
Collapse
|
12
|
Gabarre P, Loens C, Tamzali Y, Barrou B, Jaisser F, Tourret J. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. Am J Transplant 2022; 22:1014-1030. [PMID: 34510717 DOI: 10.1111/ajt.16836] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the involvement of the gut microbiota (GM) in human health has expanded exponentially over the last few decades, particularly in the fields of metabolism, inflammation, and immunology. Immunosuppressive treatment (IST) prescribed to solid organ transplant (SOT) recipients produces GM changes that affect these different processes. This review aims at describing the current knowledge of how IST changes the GM. Overall, SOT followed by IST results in persistent changes in the GM, with a consistent increase in proteobacteria including opportunistic pathobionts. In mice, Tacrolimus induces dysbiosis and metabolic disorders, and alters the intestinal barrier. The transfer of the GM from Tacrolimus-treated hosts confers immunosuppressive properties, suggesting a contributory role for the GM in this drug's efficacy. Steroids induce dysbiosis and intestinal barrier alterations, and also seem to depend partly on the GM for their immunosuppressive and metabolic effects. Mycophenolate Mofetil, frequently responsible for digestive side effects such as diarrhea and colitis, is associated with pro-inflammatory dysbiosis and increased endotoxemia. Alemtuzumab, m-TOR inhibitors, and belatacept have shown more marginal impact on the GM. Most of these observations are descriptive. Future studies should explore the underlying mechanism of IST-induced dysbiosis in order to better understand their efficacy and safety characteristics.
Collapse
Affiliation(s)
- Paul Gabarre
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Christopher Loens
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Yanis Tamzali
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Benoit Barrou
- Assistance Publique - Hôpitaux Paris APHP, Medical and Surgical Unit of Kidney Transplantation Unit, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jérôme Tourret
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France.,Assistance Publique - Hôpitaux Paris APHP, Medical and Surgical Unit of Kidney Transplantation Unit, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| |
Collapse
|
13
|
Disturbances of the Gut Microbiota, Sleep Architecture, and mTOR Signaling Pathway in Patients with Severe Obstructive Sleep Apnea-Associated Hypertension. Int J Hypertens 2021; 2021:9877053. [PMID: 34888100 PMCID: PMC8651365 DOI: 10.1155/2021/9877053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Intermittent hypoxia and sleep fragmentation are pathophysiological processes involved in obstructive sleep apnea (OSA) which affect gut microbiota, sleep architecture, and mTOR signaling pathway. However, the involvement of these elements in the pathogenesis mechanism of OSA-associated hypertension remains unclear. Therefore, this study investigated whether the OSA-associated hypertension mechanism is regulated by the gut microbiota and mTOR signaling pathway. Patients were diagnosed by polysomnography; their fecal samples were obtained and analyzed for their microbiome composition by 16S ribosomal RNA pyrosequencing and bioinformatics analysis. Transcript genes on fasting peripheral blood mononuclear cells (PBMCs) were examined using Illumina RNA-sequencing analysis. Totally, we enrolled 60 patients with severe OSA [without hypertension (n = 27) and with hypertension (n = 33)] and 12 controls (neither OSA nor hypertension). Results revealed that severe-OSA patients with hypertension had an altered gut microbiome, decreased short-chain fatty acid-producing bacteria (P < 0.05), and reduced arginine and proline metabolism pathways (P=0.001), compared with controls; also, they had increased stage N1 sleep and reduced stages N2 and N3 sleep accompanied by repeated arousals (P < 0.05). Analysis of PBMCs using the Kyoto Encyclopedia of Genes and Genomes database showed that the mTOR signaling pathway (P=0.006) was the most important differential gene-enriched pathway in severe-OSA patients with hypertension. Our findings extend prior work and suggest a possibility that the regulation of the mTOR signaling pathway is involved in developing OSA-associated hypertension through its interaction with the disturbance of the gut microbiome and sleep architecture.
Collapse
|
14
|
Boby N, Cao X, Ransom A, Pace BT, Mabee C, Shroyer MN, Das A, Didier PJ, Srivastav SK, Porter E, Sha Q, Pahar B. Identification, Characterization, and Transcriptional Reprogramming of Epithelial Stem Cells and Intestinal Enteroids in Simian Immunodeficiency Virus Infected Rhesus Macaques. Front Immunol 2021; 12:769990. [PMID: 34887863 PMCID: PMC8650114 DOI: 10.3389/fimmu.2021.769990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.
Collapse
Affiliation(s)
- Nongthombam Boby
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Alyssa Ransom
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Barcley T Pace
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Christopher Mabee
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Monica N Shroyer
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Sudesh K Srivastav
- Department of Biostatistics, Tulane University, New Orleans, LA, United States
| | - Edith Porter
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.,Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, United States
| |
Collapse
|
15
|
Kaur H, Erickson A, Moreau R. Divergent regulation of inflammatory cytokines by mTORC1 in THP-1-derived macrophages and intestinal epithelial Caco-2 cells. Life Sci 2021; 284:119920. [PMID: 34478760 DOI: 10.1016/j.lfs.2021.119920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022]
Abstract
AIMS The sustained activation of intestinal mechanistic target of rapamycin complex 1 (mTORC1) brought about by repeated mucosal insult or injury has been linked to escalation of gut inflammatory response, which may progress to damage the epithelium if not controlled. This study investigated the role of mTORC1 in the response of macrophage and enterocyte to inflammatory stimuli. MATERIALS AND METHODS We genetically manipulated human THP-1 monocytes and epithelial intestinal Caco-2 cells to generate stable cell lines with baseline, low or high mTORC1 kinase activity. The effects of THP-1 macrophage secretions onto Caco-2 cells were investigated by means of conditioned media transfer experiments. KEY FINDINGS The priming of mTORC1 for activation promoted lipopolysaccharide (LPS)-mediated THP-1 macrophage immune response as evidenced by the stimulation of inflammatory mediators (TNFα, IL-6, IL-8, IL-1β and IL-10). The treatment of THP-1 macrophages with LPS more than the manipulated level of mTORC1 activity of macrophages determined whether cytokine gene expression was induced in Caco-2 cells. LPS carry over was not responsible for the stimulation of Caco-2 cells' cytokine response. Knocking down Raptor in Caco-2 cells or treating Caco-2 cells with rapamycin enhanced Caco-2 TNFα gene expression revealing the anti-inflammatory role of a functional mTORC1 in intestinal epithelial cells exposed to macrophage-derived pro-inflammatory stimuli. SIGNIFICANCE Taken together, mTORC1 differentially impacts the immune responses of THP-1-derived macrophages and Caco-2 epithelial cells when placed in a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Anjeza Erickson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
16
|
Zhang YX, Qu SS, Zhang LH, Gu YY, Chen YH, Huang ZY, Liu MH, Zou W, Jiang J, Chen JQ, Wang YJ, Zhou FH. The Role of Ophiopogonin D in Atherosclerosis: Impact on Lipid Metabolism and Gut Microbiota. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1449-1471. [PMID: 34263719 DOI: 10.1142/s0192415x21500683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gut microbiota has been proven to play an important role in many metabolic diseases and cardiovascular disease, particularly atherosclerosis. Ophiopogonin D (OPD), one of the effective compounds in Ophiopogon japonicus, is considered beneficial to metabolic syndrome and cardiovascular diseases. In this study, we have illuminated the effect of OPD in ApoE knockout (ApoE[Formula: see text] mice on the development of atherosclerosis and gut microbiota. To investigate the potential ability of OPD to alleviate atherosclerosis, 24 eight-week-old male ApoE[Formula: see text] mice (C57BL/6 background) were fed a high-fat diet (HFD) for 12 weeks, and 8 male C57BL/6 mice were fed a normal diet, serving as the control group. ApoE[Formula: see text] mice were randomly divided into the model group, OPD group, and simvastatin group ([Formula: see text]= 8). After treatment for 12 consecutive weeks, the results showed that OPD treatment significantly decreased the plaque formation and levels of serum lipid compared with those in the model group. In addition, OPD improved oral glucose tolerance and insulin resistance as well as reducing hepatocyte steatosis. Further analysis revealed that OPD might attenuate atherosclerosis through inhibiting mTOR phosphorylation and the consequent lipid metabolism signaling pathways mediated by SREBP1 and SCD1 in vivo and in vitro. Furthermore, OPD treatment led to significant structural changes in gut microbiota and fecal metabolites in HFD-fed mice and reduced the relative abundance of Erysipelotrichaceae genera associated with cholesterol metabolism. Collectively, these findings illustrate that OPD could significantly protect against atherosclerosis, which might be associated with the moderation of lipid metabolism and alterations in gut microbiota composition and fecal metabolites.
Collapse
Affiliation(s)
- Ya-Xin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shan-Shan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Li-Hua Zhang
- Department of Gynaecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, P. R. China
| | - Yu-Yan Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yi-Hao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhi-Yong Huang
- Department of Otolaryngology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P. R. China
| | - Meng-Hua Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, P. R. China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jun-Qi Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P. R. China
| | - Yu-Jue Wang
- Department of Laboratory Animal Administration Center, Southern Medical University, Guangzhou 510515, P. R. China
| | - Feng-Hua Zhou
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510920, P. R. China
| |
Collapse
|
17
|
Chaaban H, Burge K, Eckert J, Trammell M, Dyer D, Keshari RS, Silasi R, Regmi G, Lupu C, Good M, McElroy SJ, Lupu F. Acceleration of Small Intestine Development and Remodeling of the Microbiome Following Hyaluronan 35 kDa Treatment in Neonatal Mice. Nutrients 2021; 13:2030. [PMID: 34204790 PMCID: PMC8231646 DOI: 10.3390/nu13062030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
The beneficial effects of human milk suppressing the development of intestinal pathologies such as necrotizing enterocolitis in preterm infants are widely known. Human milk (HM) is rich in a multitude of bioactive factors that play major roles in promoting postnatal maturation, differentiation, and the development of the microbiome. Previous studies showed that HM is rich in hyaluronan (HA) especially in colostrum and early milk. This study aims to determine the role of HA 35 KDa, a HM HA mimic, on intestinal proliferation, differentiation, and the development of the intestinal microbiome. We show that oral HA 35 KDa supplementation for 7 days in mouse pups leads to increased villus length and crypt depth, and increased goblet and Paneth cells, compared to controls. We also show that HA 35 KDa leads to an increased predominance of Clostridiales Ruminococcaceae, Lactobacillales Lactobacillaceae, and Clostridiales Lachnospiraceae. In seeking the mechanisms involved in the changes, bulk RNA seq was performed on samples from the terminal ileum and identified upregulation in several genes essential for cellular growth, proliferation, and survival. Taken together, this study shows that HA 35 KDa supplemented to mouse pups promotes intestinal epithelial cell proliferation, as well as the development of Paneth cells and goblet cell subsets. HA 35 KDa also impacted the intestinal microbiota; the implications of these responses need to be determined.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.)
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - David Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - Ravi S. Keshari
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Girija Regmi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Steven J. McElroy
- Department of Microbiology and Immunology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA;
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.S.K.); (R.S.); (G.R.); (C.L.); (F.L.)
| |
Collapse
|
18
|
Wang Y, Zhou X, Zou K, Chen G, Huang L, Yang F, Pan W, Xu H, Xu Z, Chen H, Chen J, Gong S, Zhou X, Xu W, Zhao J. Monocarboxylate Transporter 4 Triggered Cell Pyroptosis to Aggravate Intestinal Inflammation in Inflammatory Bowel Disease. Front Immunol 2021; 12:644862. [PMID: 34093533 PMCID: PMC8170300 DOI: 10.3389/fimmu.2021.644862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
NLRP3 inflammasome has emerged as a crucial regulator of inflammatory bowel disease (IBD) characterized by a chronic inflammatory disease of the gastrointestinal tract. The expression of MCT4 is significantly increased in intestinal mucosal tissue of IBD, which has been identified to regulate intestinal barrier function. However, the function of MCT4 in cell pyroptosis remained unknown. In this study, we have established a stable cell line with MCT4 overexpression in HT-29 and CaCO2 cells, respectively. Functional analysis revealed that ectopic expression of MCT4 in CaCO2 cells contributed to cell pyroptosis as evidenced by LDH assay, which is largely attributed to Caspase-1-mediated canonical pyroptosis, but not Caspase-4 and Caspase-5, leading to cleave pro-IL-1β and IL-18 into mature form and release mediated by cleaved GSDMD. Mechanically, MCT4 overexpression in HT-29 and CaCO2 cell triggered the phosphorylation of ERK1/2 and NF-κB p65, while inhibition of MCT4 by MCT inhibitor α-Cyano-4-hydroxycinnamic acid (α-CHCA) in HT-29 and CaCO2 cells led to a significant downregulation of ERK1/2 and NF-κB activity. What’s more, blockade of ERK1/2-NF-κB pathway could reverse the promotion effect of MCT4 on IL-1β expression. Importantly, both MCT4 and Caspase-1, GSDMD were significantly increased in patients with IBD, and a positive clinical correlation between MCT4 and Caspase-1 expression was observed (p < 0.001). Taken together, these findings suggested that MCT4 promoted Caspase-1-mediated canonical cell pyroptosis to aggravate intestinal inflammation in intestinal epithelial cells (IECs) through the ERK1/2-NF-κB pathway.
Collapse
Affiliation(s)
- Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Xiaorong Zhou
- Department of Respiratory and Critical Care, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Haikou, China
| | - Guanhua Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fangying Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenxu Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongwei Xu
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Zhaohui Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiayu Chen
- Department of Neonatal Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Lashgari NA, Roudsari NM, Momtaz S, Ghanaatian N, Kohansal P, Farzaei MH, Afshari K, Sahebkar A, Abdolghaffari AH. Targeting Mammalian Target of Rapamycin: Prospects for the Treatment of Inflammatory Bowel Diseases. Curr Med Chem 2021; 28:1605-1624. [PMID: 32364064 DOI: 10.2174/0929867327666200504081503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview of plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Negar Ghanaatian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parichehr Kohansal
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khashayar Afshari
- Experimental Medicine Research Center, Department of pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Kaur H, Moreau R. mTORC1 silencing during intestinal epithelial Caco-2 cell differentiation is mediated by the activation of the AMPK/TSC2 pathway. Biochem Biophys Res Commun 2021; 545:183-188. [PMID: 33561653 DOI: 10.1016/j.bbrc.2021.01.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling is the prototypical pathway regulating protein synthesis and cell proliferation. The level of mTORC1 activity is high in intestinal stem cells located at the base of the crypts and thought to gradually decrease as transit-amplifying cells migrate out of the crypts and differentiate into enterocytes, goblet cells or enteroendocrine cells along the epithelium. The unknown mechanism responsible for the silencing of intestinal epithelium mTORC1 during cell differentiation was investigated in Caco-2 cells, which spontaneously differentiate into enterocytes in standard growth medium. The results show that TSC2, an upstream negative regulator of mTORC1 was central to mTORC1 silencing in differentiated Caco-2 cells. AMPK-mediated activation of TSC2 (Ser1387) and repression of Raptor (Ser792), an essential component of mTORC1, were stimulated in differentiated Caco-2 cells. ERK1/2-mediated repression of TSC2 (Ser664) seen in undifferentiated Caco-2 cells was lifted in differentiated cells. IRS-1-mediated activation of AKT (Thr308) phosphorylation was stimulated in differentiated Caco-2 cells and may be involved in cross-pathway repression of ERK1/2. Additionally, PRAS40 (Thr246) phosphorylation was decreased in differentiated Caco-2 cells compared to undifferentiated cells allowing dephosphorylated PRAS40 to displace Raptor thereby repressing mTORC1 kinase activity.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
21
|
Huang M, Yang L, Jiang N, Dai Q, Li R, Zhou Z, Zhao B, Lin X. Emc3 maintains intestinal homeostasis by preserving secretory lineages. Mucosal Immunol 2021; 14:873-886. [PMID: 33785873 PMCID: PMC8222001 DOI: 10.1038/s41385-021-00399-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023]
Abstract
Intestinal exocrine secretory lineages, including goblet cells and Paneth cells, provide vital innate host defense to pathogens. However, how these cells are specified and maintained to ensure intestinal barrier function remains poorly defined. Here we show that endoplasmic reticulum membrane protein complex subunit 3 (Emc3) is essential for differentiation and function of exocrine secretory lineages. Deletion of Emc3 in intestinal epithelium decreases mucus production by goblet cells and Paneth cell population, along with gut microbial dysbiosis, which result in spontaneous inflammation and increased susceptibility to DSS-induced colitis. Moreover, Emc3 deletion impairs stem cell niche function of Paneth cells, thus resulting in intestinal organoid culture failure. Mechanistically, Emc3 deficiency leads to increased endoplasmic reticulum (ER) stress. Mitigating ER stress with tauroursodeoxycholate acid alleviates secretory dysfunction and restores organoid formation. Our study identifies a dominant role of Emc3 in maintaining intestinal mucosal homeostasis.
Collapse
Affiliation(s)
- Meina Huang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Li Yang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Jiang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quanhui Dai
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runsheng Li
- grid.8547.e0000 0001 0125 2443National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Zhao
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinhua Lin
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Moon Y. Public Database-Driven Insights Into Aging Stress-Associated Defective Gut Barrier With Low SARS-CoV-2 Receptors. Front Med (Lausanne) 2020; 7:606991. [PMID: 33415119 PMCID: PMC7783319 DOI: 10.3389/fmed.2020.606991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
The novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic, and resulted in high case-fatality rate in the elderly. In addition to typical respiratory responses, ~50% of clinical cases include gastrointestinal symptoms such as diarrhea, vomiting, abdominal pain, and persistent fecal shedding of the virus even after its clearance from the pulmonary system. In the present study, we assessed aging-associated gut transcriptomic responses considering the gastrointestinal symptoms contributing to COVID-19 severity. Intestinal expression of SARS-CoV-2 receptors and defense biomarkers decreased with increasing age. Moreover, aging-associated integrated stress responses (ISR) and mTOR-linked cell metabolic stress signals counteracted gut defense biomarkers. However, SARS-CoV-2 receptor expression was positively associated with gut barrier integrity potently via downregulation of the two stress-responsive signals. Gut transcriptome-based mechanistic prediction implicates that high susceptibility to COVID-19 in the elderly with low SARS-CoV-2 receptors is due to aging stress-associated defective gut defense, providing a new avenue for viral entry receptor-independent interventions.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Convergence Medical Sciences, Pusan National University, Yangsan, South Korea
- Graduate Program of Genome Data Sciences, Pusan National University, Yangsan, South Korea
| |
Collapse
|
23
|
Holowatyj AN, Eng C, Wen W, Idrees K, Guo X. Spectrum of Somatic Cancer Gene Variations Among Adults With Appendiceal Cancer by Age at Disease Onset. JAMA Netw Open 2020; 3:e2028644. [PMID: 33295976 PMCID: PMC7726634 DOI: 10.1001/jamanetworkopen.2020.28644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Importance The incidence of appendiceal cancer (AC) is rising, particularly among individuals younger than 50 years (early-onset AC), with unexplained etiologies. The unique spectrum of somatic cancer gene variations among patients with early-onset AC is largely undetermined. Objective To characterize the frequency of somatic variations and genomic patterns among patients with early-onset (age <50 years) vs late-onset (age ≥50 years) AC. Design, Setting, and Participants This cohort study included individuals aged 18 years and older diagnosed with pathologically verified AC. Cases with clinical-grade targeted sequencing data from January 1, 2011, to December 31, 2019, were identified from the international clinicogenomic data-sharing consortium American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE). Data analysis was conducted from May to September 2020. Exposures Age at disease onset. Main Outcomes and Measures Somatic variation prevalence and spectrum in AC patients was determined. Variation comparisons between early-onset and late-onset AC were evaluated using multivariable logistic regression with adjustment for sex, race/ethnicity, histological subtype, sequencing center, and sample type. Results In total 385 individuals (mean [SD] age at diagnosis, 56.0 [12.4] years; 187 [48.6%] men; 306 [79.5%] non-Hispanic White individuals) with AC were included in this study, and 109 patients (28.3%) were diagnosed with early-onset AC. Race/ethnicity differed by age at disease onset; non-Hispanic Black individuals accounted for a larger proportion of early-onset vs late-onset cases (9 of 109 [8.3%] vs 11 of 276 [4.0%]; P = 0.04). Compared with patients aged 50 years or older at diagnosis, patients with early-onset AC had significantly higher odds of presenting with nonsilent variations in PIK3CA, SMAD3, and TSC2 (PIK3CA: odds ratio [OR], 4.58; 95% CI, 1.72-12.21; P = .002; SMAD3: OR, 7.37; 95% CI, 1.24-43.87; P = .03; TSC2: OR, 12.43; 95% CI, 1.03-149.59; P = .047). In contrast, patients with early-onset AC had a 60% decreased odds of presenting with GNAS nonsilent variations compared with patients with late-onset AC (OR, 0.40; 95% CI, 0.21-0.76, P = .006). By histological subtype, young patients with mucinous adenocarcinomas of the appendix had 65% decreased odds of variations in GNAS compared with late-onset cases in adjusted models (OR, 0.35; 95% CI, 0.15-0.79; P = .01). Similarly, patients with early-onset nonmucinous appendiceal adenocarcinomas had 72% decreased odds of presenting with GNAS variations vs late-onset cases, although these findings did not reach significance (OR, 0.28; 95% CI, 0.07-1.14; P = .08). GNAS and TP53 variations were mutually exclusive in ACs among early-onset and late-onset cases (P < .05). Conclusions and Relevance In the study, AC diagnosed among younger individuals harbored a distinct genomic landscape compared with AC diagnosed among older individuals. Development of therapeutic modalities that target these unique molecular features may yield clinical implications specifically for younger patients.
Collapse
Affiliation(s)
- Andreana N. Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Cathy Eng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Wanqing Wen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kamran Idrees
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xingyi Guo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
24
|
Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 2020; 22:39-53. [PMID: 32958874 DOI: 10.1038/s41580-020-0278-0] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
Intestinal stem cells at the bottom of crypts fuel the rapid renewal of the different cell types that constitute a multitasking tissue. The intestinal epithelium facilitates selective uptake of nutrients while acting as a barrier for hostile luminal contents. Recent discoveries have revealed that the lineage plasticity of committed cells - combined with redundant sources of niche signals - enables the epithelium to efficiently repair tissue damage. New approaches such as single-cell transcriptomics and the use of organoid models have led to the identification of the signals that guide fate specification of stem cell progeny into the six intestinal cell lineages. These cell types display context-dependent functionality and can adapt to different requirements over their lifetime, as dictated by their microenvironment. These new insights into stem cell regulation and fate specification could aid the development of therapies that exploit the regenerative capacity and functionality of the gut.
Collapse
|
25
|
Wei G, Gao N, Chen J, Fan L, Zeng Z, Gao G, Li L, Fang G, Hu K, Pang X, Fan HY, Clevers H, Liu M, Zhang X, Li D. Erk and MAPK signaling is essential for intestinal development through Wnt pathway modulation. Development 2020; 147:dev.185678. [PMID: 32747435 DOI: 10.1242/dev.185678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Homeostasis of intestinal stem cells (ISCs) is maintained by the orchestration of niche factors and intrinsic signaling networks. Here, we have found that deletion of Erk1 and Erk2 (Erk1/2) in intestinal epithelial cells at embryonic stages resulted in an unexpected increase in cell proliferation and migration, expansion of ISCs, and formation of polyp-like structures, leading to postnatal death. Deficiency of epithelial Erk1/2 results in defects in secretory cell differentiation as well as impaired mesenchymal cell proliferation and maturation. Deletion of Erk1/2 strongly activated Wnt signaling through both cell-autonomous and non-autonomous mechanisms. In epithelial cells, Erk1/2 depletion resulted in loss of feedback regulation, leading to Ras/Raf cascade activation that transactivated Akt activity to stimulate the mTor and Wnt/β-catenin pathways. Moreover, Erk1/2 deficiency reduced the levels of Indian hedgehog and the expression of downstream pathway components, including mesenchymal Bmp4 - a Wnt suppressor in intestines. Inhibition of mTor signaling by rapamycin partially rescued Erk1/2 depletion-induced intestinal defects and significantly prolonged the lifespan of mutant mice. These data demonstrate that Erk/Mapk signaling functions as a key modulator of Wnt signaling through coordination of epithelial-mesenchymal interactions during intestinal development.
Collapse
Affiliation(s)
- Gaigai Wei
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Na Gao
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwei Chen
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lingling Fan
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiyang Zeng
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ganglong Gao
- Fengxian Hospital affiliated to Southern Medical University, Shanghai 201499, China
| | - Liang Li
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Guojiu Fang
- Fengxian Hospital affiliated to Southern Medical University, Shanghai 201499, China
| | - Kewen Hu
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueli Zhang
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China .,Fengxian Hospital affiliated to Southern Medical University, Shanghai 201499, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Joint Research Center for Translational Medicine, ECNU-Fengxian Hospital, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
26
|
Mei X, Gu M, Li M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther 2020. [PMID: 32787930 DOI: 10.1186/s13287‐020‐01857‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Paneth cells (PCs) are located at the bottom of small intestinal crypts and play an important role in maintaining the stability of the intestinal tract. Previous studies reported on how PCs shape the intestinal microbiota or the response to the immune system. Recent studies have determined that PCs play an important role in the regulation of the homeostasis of intestinal epithelial cells. PCs can regulate the function and homeostasis of intestinal stem cells through several mechanisms. On the one hand, under pathological conditions, PCs can be dedifferentiated into stem cells to promote the repair of intestinal tissues. On the other hand, PCs can regulate stem cell proliferation by secreting a variety of hormones (such as wnt3a) or metabolic intermediates. In addition, we summarise key signalling pathways that affect PC differentiation and mutual effect with intestinal stem cells. In this review, we introduce the diverse functions of PCs in the intestine.
Collapse
Affiliation(s)
- Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
27
|
Mei X, Gu M, Li M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther 2020; 11:349. [PMID: 32787930 PMCID: PMC7425583 DOI: 10.1186/s13287-020-01857-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Paneth cells (PCs) are located at the bottom of small intestinal crypts and play an important role in maintaining the stability of the intestinal tract. Previous studies reported on how PCs shape the intestinal microbiota or the response to the immune system. Recent studies have determined that PCs play an important role in the regulation of the homeostasis of intestinal epithelial cells. PCs can regulate the function and homeostasis of intestinal stem cells through several mechanisms. On the one hand, under pathological conditions, PCs can be dedifferentiated into stem cells to promote the repair of intestinal tissues. On the other hand, PCs can regulate stem cell proliferation by secreting a variety of hormones (such as wnt3a) or metabolic intermediates. In addition, we summarise key signalling pathways that affect PC differentiation and mutual effect with intestinal stem cells. In this review, we introduce the diverse functions of PCs in the intestine.
Collapse
Affiliation(s)
- Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
28
|
Maltseva D, Raygorodskaya M, Knyazev E, Zgoda V, Tikhonova O, Zaidi S, Nikulin S, Baranova A, Turchinovich A, Rodin S, Tonevitsky A. Knockdown of the α5 laminin chain affects differentiation of colorectal cancer cells and their sensitivity to chemotherapy. Biochimie 2020; 174:107-116. [PMID: 32334043 DOI: 10.1016/j.biochi.2020.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
The interaction of tumor cells with the extracellular matrix (ECM) may affect the rate of cancer progression and metastasis. One of the major components of ECM are laminins, the heterotrimeric glycoproteins consisting of α-, β-, and γ-chains (αβγ). Laminins interact with their cell surface receptors and, thus, regulate multiple cellular processes. In this work, we demonstrate that shRNA-mediated knockdown of the α5 laminin chain results in Wnt- and mTORC1-dependent partial dedifferentiation of colorectal cancer cells. Furthermore, we showed that this dedifferentiation involved activation of ER-stress signaling, pathway promoting the sensitivity of cells to 5-fluorouracil.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia; Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.
| | - Maria Raygorodskaya
- Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya str. 10, 119121, Moscow, Russia
| | - Olga Tikhonova
- Institute of Biomedical Chemistry, Pogodinskaya str. 10, 119121, Moscow, Russia
| | - Shan Zaidi
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700, Dolgoprudny, Russia
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA; Moscow Institute of Physics and Technology, Institutskiy per. 9, 141700, Dolgoprudny, Russia; Research Center of Medical Genetics, Moskvorechye str. 1, 115522, Moscow, Russia
| | | | - Sergey Rodin
- Department of Surgical Sciences, Ångström Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Myasnitskaya str. 13/4, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russia; Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, 115088, Moscow, Russia.
| |
Collapse
|
29
|
Kim JH, Ahn JB, Kim DH, Kim S, Ma HW, Che X, Seo DH, Kim TI, Kim WH, Cheon JH, Kim SW. Glutathione S-transferase theta 1 protects against colitis through goblet cell differentiation via interleukin-22. FASEB J 2020; 34:3289-3304. [PMID: 31916636 DOI: 10.1096/fj.201902421r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023]
Abstract
The enzyme glutathione S-transferase theta 1 (GSTT1) is involved in detoxifying chemicals, including reactive oxygen species (ROS). Here, we provide a significant insight into the role of GSTT1 in inflammatory bowel disease (IBD). We identified decreased expression of GSTT1 in inflamed colons from IBD patients compared to controls. We intrarectally or intraperitoneally delivered Gstt1 gene to mice with dextran sodium sulfate (DSS)-induced colitis and noted attenuation of colitis through gene transfer of Gstt1 via an IL-22 dependent pathway. Downregulation of GSTT1 by pathogen-associated molecular patterns (PAMPs) of microbes reduced innate defense responses and goblet cell differentiation. The GSTT1 mutation in intestinal epithelial cells (IECs) and IBD patients decreased its dimerization, which was connected to insufficient phosphorylation of signal transducer and activator of transcription-3 and p38/mitogen-activated protein kinase by their common activator, IL-22. GSTT1 ameliorated colitis and contributed as a modulator of goblet cells through sensing pathogens and host immune responses. Its mutations are linked to chronic intestinal inflammation due to its insufficient dimerization. Our results provide new insights into GSTT1 mutations that are linked to chronic intestinal inflammation due to its insufficient dimerization and their functional consequences in IBDs.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Bum Ahn
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Da Hye Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Soochan Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Woo Ma
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Xiumei Che
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Hyuk Seo
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Il Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Li C, Zhou Y, Rychahou P, Weiss HL, Lee EY, Perry CL, Barrett TA, Wang Q, Evers BM. SIRT2 Contributes to the Regulation of Intestinal Cell Proliferation and Differentiation. Cell Mol Gastroenterol Hepatol 2020; 10:43-57. [PMID: 31954883 PMCID: PMC7210478 DOI: 10.1016/j.jcmgh.2020.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. Disruption of this homeostasis is associated with disorders such as inflammatory bowel disease (IBD). We investigated the role of Sirtuin 2 (SIRT2), a NAD-dependent protein deacetylase, in intestinal epithelial cell (IEC) proliferation and differentiation and the mechanism by which SIRT2 contributes to maintenance of intestinal cell homeostasis. METHODS IECs were collected from SIRT2-deficient mice and patients with IBD. Expression of SIRT2, differentiation markers (mucin2, intestinal alkaline phosphatase, villin, Na,K-ATPase, and lysozyme) and Wnt target genes (EPHB2, AXIN2, and cyclin D1) was determined by western blot, real-time RT-PCR, or immunohistochemical (IHC) staining. IECs were treated with TNF or transfected with siRNA targeting SIRT2. Proliferation was determined by villus height and crypt depth, and Ki67 and cyclin D1 IHC staining. For studies using organoids, intestinal crypts were isolated. RESULTS Increased SIRT2 expression was localized to the more differentiated region of the intestine. In contrast, SIRT2 deficiency impaired proliferation and differentiation and altered stemness in the small intestinal epithelium ex vivo and in vivo. SIRT2-deficient mice showed decreased intestinal enterocyte and goblet cell differentiation but increased the Paneth cell lineage and increased proliferation of IECs. Moreover, we found that SIRT2 inhibits Wnt/β-catenin signaling, which critically regulates IEC proliferation and differentiation. Consistent with a distinct role for SIRT2 in maintenance of gut homeostasis, intestinal mucosa from IBD patients exhibited decreased SIRT2 expression. CONCLUSION We demonstrate that SIRT2, which is decreased in intestinal tissues from IBD patients, regulates Wnt-β-catenin signaling and is important for maintenance of IEC proliferation and differentiation.
Collapse
Affiliation(s)
- Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Eun Y. Lee
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Courtney L. Perry
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Terrence A. Barrett
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky,Qingding Wang, PhD, Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536-0293. fax: (859) 323-2074.
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky,Correspondence Address correspondence to: B. Mark Evers, MD, Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536-0293. fax: (859) 323-2074.
| |
Collapse
|
31
|
von Frieling J, Roeder T. Factors that affect the translation of dietary restriction into a longer life. IUBMB Life 2019; 72:814-824. [PMID: 31889425 DOI: 10.1002/iub.2224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Nutritional interventions, such as dietary or calorie restriction, are known to have a variety of health-promoting effects. The most impressive are the direct effects on life expectancy, which have been reproduced in many animal models. A variety of dietary restriction protocols have been described, which differ either in their macronutrient composition or in the time window for consumption. Mechanistically, the effects of dietary restriction are mediated mainly through signaling pathways that have central roles in the maintenance of cellular energy balance. Among these, target of rapamycin and insulin signaling appear to be the most important. Such nutritional interventions can have their effects in two different ways: either by direct interaction with the metabolism of the host organism, or by modulating the composition and performance of its endogenous microbiome. Various dietary restriction regimens have been identified that significantly alter the microbiome and thus profoundly modulate host metabolism. This review aims to discuss the mechanisms by which dietary restriction can affect life expectancy, and in particular the role of the microbiome.
Collapse
Affiliation(s)
- Jakob von Frieling
- Department of Zoology, Molecular Physiology, Kiel University, Kiel, Germany
| | - Thomas Roeder
- Department of Zoology, Molecular Physiology, Kiel University, Kiel, Germany.,DZL, German Center for Lung Research, ARCN, Kiel, Germany
| |
Collapse
|
32
|
Jochems PG, van Bergenhenegouwen J, van Genderen AM, Eis ST, Wilod Versprille LJ, Wichers HJ, Jeurink PV, Garssen J, Masereeuw R. Development and validation of bioengineered intestinal tubules for translational research aimed at safety and efficacy testing of drugs and nutrients. Toxicol In Vitro 2019; 60:1-11. [DOI: 10.1016/j.tiv.2019.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/02/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023]
|
33
|
Zhu M, Qin YC, Gao CQ, Yan HC, Li XG, Wang XQ. Extracellular Glutamate-Induced mTORC1 Activation via the IR/IRS/PI3K/Akt Pathway Enhances the Expansion of Porcine Intestinal Stem Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9510-9521. [PMID: 31382738 DOI: 10.1021/acs.jafc.9b03626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glutamate (Glu) is a critical nutritional regulator of intestinal epithelial homeostasis. In addition, intestinal stem cells (ISCs) at crypt bases are known to play important roles in maintaining the renewal and homeostasis of the intestinal epithelium, and the aspects of communication between Glu and ISCs are still unknown. Here, we identify Glu and mammalian target of rapamycin complex 1 (mTORC1) as essential regulators of ISC expansion. The results showed that extracellular Glu promoted ISC expansion, indicated by increased intestinal organoid forming efficiency and budding efficiency as well as cell proliferation marker Ki67 immunofluorescence and differentiation marker Keratin 20 (KRT20) expression. Moreover, the insulin receptor (IR) mediating phosphorylation of the insulin receptor substrate (IRS) and downstream signaling phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was involved in this response in ISCs. As expected, Glu-induced mTORC1 signaling activation was observed in the intestinal porcine enterocyte cell line (IPEC-J2), and Glu activated the PI3K/Akt/mTORC1 pathway. Accordingly, PI3K inhibition partially suppressed Glu-induced mTORC1 activation. In addition, Glu increased the phosphorylation levels of IR and IRS, and inhibiting IR downregulated the IRS/PI3K/Akt pathway. Collectively, our findings first indicate that extracellular Glu activates mTORC1 via the IR/IRS/PI3K/Akt pathway and stimulates ISC expansion, providing a new perspective for regulating the growth and health of the intestinal epithelium.
Collapse
Affiliation(s)
- Min Zhu
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| | - Ying-Chao Qin
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| | - Chun-Qi Gao
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| | - Hui-Chao Yan
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , China
| | - Xiu-Qi Wang
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| |
Collapse
|
34
|
Kaur H, Moreau R. Role of mTORC1 in intestinal epithelial repair and tumorigenesis. Cell Mol Life Sci 2019; 76:2525-2546. [PMID: 30944973 PMCID: PMC11105546 DOI: 10.1007/s00018-019-03085-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
mTORC1 signaling is the prototypical pathway regulating protein synthesis and cell proliferation. mTORC1 is active in stem cells located at the base of intestinal crypts but silenced as transit-amplifying cells differentiate into enterocytes or secretory cells along the epithelium. After an insult or injury, self-limiting and controlled activation of mTORC1 is critical for the renewal and repair of intestinal epithelium. mTORC1 promotes epithelial cell renewal by driving cryptic stem cell division, and epithelial cell repair by supporting the dedifferentiation and proliferation of enterocytes or secretory cells. Under repeated insult or injury, mTORC1 becomes constitutively active, triggering an irreversible return to stemness, cell division, proliferation, and inflammation among dedifferentiated epithelial cells. Epithelium-derived cytokines promulgate inflammation within the lamina propria, which in turn releases inflammatory factors that act back on the epithelium where undamaged intestinal epithelial cells participate in the pervading state of inflammation and become susceptible to tumorigenesis.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
35
|
SETIAWAN JAJAR, KOTANI TAKENORI, KONNO TASUKU, SAITO YASUYUKI, MURATA YOJI, NODA TETSUO, MATOZAKI TAKASHI. Regulation of Small Intestinal Epithelial Homeostasis by Tsc2-mTORC1 Signaling. THE KOBE JOURNAL OF MEDICAL SCIENCES 2019; 64:E200-E209. [PMID: 31327863 PMCID: PMC6668652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 06/10/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1), a protein complex containing the serine/threonine kinase mTOR, integrates various growth stimulating signals. mTORC1 is expressed in intestinal epithelial cells (IECs), whereas the physiological roles of this protein complex in homeostasis of IECs remain virtually unknown. We here generated mice, in which tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, was specifically ablated in IECs (Tsc2 CKO mice). Ablation of Tsc2 enhanced the phosphorylation of mTORC1 downstream molecules such as ribosomal S6 protein and 4E-BP1 in IECs. Tsc2 CKO mice manifested the enhanced proliferative activity of IECs in intestinal crypts as well as the promoted migration of these cells along the crypt-villus axis. The mutant mice also manifested the increased apoptotic rate of IECs as well as the increased ectopic Paneth cells, which are one of the major differentiated IECs. In addition, in vitro study showed that ablation of Tsc2 promoted the development of intestinal organoids without epidermal growth factor, while mTORC1 inhibitor, rapamycin, diminished this phenotype. Our results thus suggest that Tsc2-mTORC1 signaling regulates the proliferation, migration, and positioning of IECs, and thereby contributes to the proper regulation of intestinal homeostasis.
Collapse
Affiliation(s)
- JAJAR SETIAWAN
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - TAKENORI KOTANI
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TASUKU KONNO
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YASUYUKI SAITO
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOJI MURATA
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TETSUO NODA
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - TAKASHI MATOZAKI
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
36
|
Zhou JY, Huang DG, Qin YC, Li XG, Gao CQ, Yan HC, Wang XQ. mTORC1 signaling activation increases intestinal stem cell activity and promotes epithelial cell proliferation. J Cell Physiol 2019; 234:19028-19038. [PMID: 30937902 DOI: 10.1002/jcp.28542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
Abstract
The crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU+ and Ki67+ cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased. Additionally, heat exposure decreased enteroid expansion and budding efficiency, as well as induced apoptosis after 48 hr; however, no significant difference was observed in the apoptosis ratio after 24 hr. In the process of heat exposure, the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway was significantly inhibited in both IPEC-J2 cells and enteroids. Correspondingly, treatment of IPEC-J2 and enteroids with the mTORC1 agonist MHY1485 at 41°C significantly attenuated the inhibition of proliferation and protein synthesis, increased the ISC activity, and promoted expansion and budding of enteroid. In summary, we conclude that the mTORC1 signaling pathway regulates intestinal epithelial cell and stem cell activity during heat exposure-induced injury.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Deng-Gui Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying-Chao Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Chun-Qi Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui-Chao Yan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Banerjee A, McKinley ET, von Moltke J, Coffey RJ, Lau KS. Interpreting heterogeneity in intestinal tuft cell structure and function. J Clin Invest 2018; 128:1711-1719. [PMID: 29714721 DOI: 10.1172/jci120330] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.
Collapse
Affiliation(s)
- Amrita Banerjee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Kaur H, He B, Zhang C, Rodriguez E, Hage DS, Moreau R. Piperine potentiates curcumin-mediated repression of mTORC1 signaling in human intestinal epithelial cells: implications for the inhibition of protein synthesis and TNFα signaling. J Nutr Biochem 2018; 57:276-286. [PMID: 29800814 DOI: 10.1016/j.jnutbio.2018.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Persistent activation of the mechanistic target of rapamycin complex 1 (mTORC1) is linked to sustained inflammation and progression of colorectal cancer. Widely available dietary phenolics, curcumin and piperine are purported to have antiinflammatory and anticarcinogenic activities through yet-to-be-delineated multitarget mechanisms. Piperine is also known to increase the bioavailability of dietary components, including curcumin. The objective of the study was to determine whether curcumin and piperine have individual and combined effects in the setting of gut inflammation by regulating mTORC1 in human intestinal epithelial cells. Results show that curcumin repressed (a) mTORC1 activity (measured as changes in the phosphorylation state of p70 ribosomal protein S6 kinase B1 and 40S ribosomal protein S6) in a dose-dependent manner (2.5-20 μM, P<.007) and (b) synthesis of nascent proteins. Piperine inhibited mTORC1 activity albeit at comparatively higher concentrations than curcumin. The combination of curcumin + piperine further repressed mTORC1 signaling (P<.02). Mechanistically, curcumin may repress mTORC1 by preventing TSC2 degradation, the conserved inhibitor of mTORC1. Results also show that a functional mTORC1 was required for the transcription of TNFα as Raptor knockdown abrogated TNFα gene expression. Curcumin, piperine and their combination inhibited TNFα gene expression at baseline but failed to do so under conditions of mTORC1 hyperactivation. TNF∝-induced cyclooxygenase-2 expression was repressed by curcumin or curcumin + piperine at baseline and high mTORC1 levels. We conclude that curcumin and piperine, either alone or in combination, have the potential to down-regulate mTORC1 signaling in the intestinal epithelium with implications for tumorigenesis and inflammation.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bo He
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chenhua Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Elliott Rodriguez
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Régis Moreau
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
39
|
Lyons J, Ghazi PC, Starchenko A, Tovaglieri A, Baldwin KR, Poulin EJ, Gierut JJ, Genetti C, Yajnik V, Breault DT, Lauffenburger DA, Haigis KM. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol 2018; 16:e2002417. [PMID: 29596476 PMCID: PMC5892915 DOI: 10.1371/journal.pbio.2002417] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2018] [Accepted: 03/02/2018] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition driven by loss of homeostasis between the mucosal immune system, the commensal gut microbiota, and the intestinal epithelium. Our goal is to understand how these components of the intestinal ecosystem cooperate to control homeostasis. By combining quantitative measures of epithelial hyperplasia and immune infiltration with multivariate analysis of inter- and intracellular signaling, we identified epithelial mammalian target of rapamycin (mTOR) signaling as a potential driver of inflammation in a mouse model of colitis. A kinetic analysis of mTOR inhibition revealed that the pathway regulates epithelial differentiation, which in turn controls the cytokine milieu of the colon. Consistent with our in vivo analysis, we found that cytokine expression of organoids grown ex vivo, in the absence of bacteria and immune cells, was dependent on differentiation state. Our study suggests that proper differentiation of epithelial cells is an important feature of colonic homeostasis because of its effect on the secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Jesse Lyons
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Phaedra C. Ghazi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alina Starchenko
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alessio Tovaglieri
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Katherine R. Baldwin
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatric Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Emily J. Poulin
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica J. Gierut
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Casie Genetti
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vijay Yajnik
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- Harvard Digestive Disease Center, Boston, Massachusetts, United States of America
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kevin M. Haigis
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Digestive Disease Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Noureldein MH, Eid AA. Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction. Microb Pathog 2018; 118:98-104. [PMID: 29548696 DOI: 10.1016/j.micpath.2018.03.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 02/08/2023]
Abstract
The gut microbiota plays a substantial role in regulating the host metabolic and immune functions. Dysbiosis, resulting from disruption of gut microbiota, predisposes many morbid pathologies like obesity and its associated comorbidities, diabetes and inflammatory conditions including some types of cancer. There are numerous proposed signaling pathways through which alterations in gut microbiota and its metabolites can disturb the host's normal physiological functions. Interestingly, many of these processes happen to be controlled by the mammalian target of rapamycin (mTOR). The mTOR pathway responds to environmental changes and regulates accordingly many intracellular processes such as transcription, translation, cell growth, cytoskeletal organization and autophagy. In this review, we aim to highlight the cross-talk between the gut microbiota and the mTOR pathway and discuss how this emerging field of research gives a beautiful insight into how the mentioned cross-talk impacts the body's homeostasis thus leading to undesirable complications including obesity, diabetes, colon and pancreatic cancer, immune system malfunctioning and ageing. Although there are a limited number of studies investigating the crosstalk between the gut microbiota and the mTOR pathway, the results obtained so far are enough to elucidate the key role of the mTOR signaling in microbiota-associated metabolic and immune regulations.
Collapse
Affiliation(s)
- Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
41
|
Allaire JM, Morampudi V, Crowley SM, Stahl M, Yu H, Bhullar K, Knodler LA, Bressler B, Jacobson K, Vallance BA. Frontline defenders: goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G360-G377. [PMID: 29122749 PMCID: PMC5899238 DOI: 10.1152/ajpgi.00181.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Goblet cells (GCs) are the predominant secretory epithelial cells lining the luminal surface of the mammalian gastrointestinal (GI) tract. Best known for their apical release of mucin 2 (Muc2), which is critical for the formation of the intestinal mucus barrier, GCs have often been overlooked for their active contributions to intestinal protection and host defense. In part, this oversight reflects the limited tools available to study their function but also because GCs have long been viewed as relatively passive players in promoting intestinal homeostasis and host defense. In light of recent studies, this perspective has shifted, as current evidence suggests that Muc2 as well as other GC mediators are actively released into the lumen to defend the host when the GI tract is challenged by noxious stimuli. The ability of GCs to sense and respond to danger signals, such as bacterial pathogens, has recently been linked to inflammasome signaling, potentially intrinsic to the GCs themselves. Moreover, further work suggests that GCs release Muc2, as well as other mediators, to modulate the composition of the gut microbiome, leading to both the expansion as well as the depletion of specific gut microbes. This review will focus on the mechanisms by which GCs actively defend the host from noxious stimuli, as well as describe advanced technologies and new approaches by which their responses can be addressed. Taken together, we will highlight current insights into this understudied, yet critical, aspect of intestinal mucosal protection and its role in promoting gut defense and homeostasis.
Collapse
Affiliation(s)
- Joannie M. Allaire
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vijay Morampudi
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shauna M. Crowley
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Stahl
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongbing Yu
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirandeep Bhullar
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leigh A. Knodler
- 2Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Brian Bressler
- 3Division of Gastroenterology, Department of Medicine, St. Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A. Vallance
- 1Division of Gastroenterology, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Souza AL, Fiorini Aguiar SL, Gonçalves Miranda MC, Lemos L, Freitas Guimaraes MA, Reis DS, Vieira Barros PA, Veloso ES, Carvalho TG, Ribeiro FM, Ferreira E, Cara DC, Gomes-Santos AC, Faria AMC. Consumption of Diet Containing Free Amino Acids Exacerbates Colitis in Mice. Front Immunol 2017; 8:1587. [PMID: 29209321 PMCID: PMC5701921 DOI: 10.3389/fimmu.2017.01587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 11/03/2017] [Indexed: 12/25/2022] Open
Abstract
Dietary proteins can influence the maturation of the immune system, particularly the gut-associated lymphoid tissue, when consumed from weaning to adulthood. Moreover, replacement of dietary proteins by amino acids at weaning has been shown to impair the generation of regulatory T cells in the gut as well as immune activities such as protective response to infection, induction of oral and nasal tolerance as well as allergic responses. Polymeric and elemental diets are used in the clinical practice, but the specific role of intact proteins and free amino acids during the intestinal inflammation are not known. It is plausible that these two dietary nitrogen sources would yield distinct immunological outcomes since proteins are recognized by the immune system as antigens and amino acids do not bind to antigen-recognition receptors but instead to intracellular receptors such as mammalian target of rapamycin (mTOR). In this study, our aim was to evaluate the effects of consumption of an amino acid-containing diet (AA diet) versus a control protein-containing diet in adult mice at steady state and during colitis development. We showed that consumption of a AA diet by adult mature mice lead to various immunological changes including decrease in the production of serum IgG as well as increase in the levels of IL-6, IL-17A, TGF-β, and IL-10 in the small and large intestines. It also led to changes in the intestinal morphology, to increase in intestinal permeability, in the number of total and activated CD4+ T cells in the small intestine as well as in the frequency of proliferating cells in the colon. Moreover, consumption of AA diet during and prior to development of dextran sodium sulfate-induced colitis exacerbated gut inflammation. Administration of rapamycin during AA diet consumption prevented colitis exacerbation suggesting that mTOR activation was involved in the effects triggered by the AA diet. Therefore, our study suggests that different outcomes can result from the use of diets containing either intact proteins or free amino acids such as elemental, semielemental, and polymeric diets during intestinal inflammation. These results may contribute to the design of nutritional therapeutic intervention for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Adna Luciana Souza
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | - Sarah Leão Fiorini Aguiar
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luisa Lemos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniela Silva Reis
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Emerson Soares Veloso
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabiola Mara Ribeiro
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Enio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Gomes-Santos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro Universitário UNA, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
43
|
Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. PLoS One 2017; 12:e0187515. [PMID: 29107964 PMCID: PMC5673181 DOI: 10.1371/journal.pone.0187515] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023] Open
Abstract
Consumption of a typical Western diet is a risk factor for several disorders. Metabolic syndrome is the most common disease associated with intake of excess fat. However, the incidence of inflammatory bowel disease is also greater in subjects consuming a Western diet, although the mechanism of this phenomenon is not clearly understood. We examined the morphological and functional changes of the intestine, the first site contacting dietary fat, in mice fed a high-fat diet (HFD) inducing obesity. Paneth cell area and production of antimicrobial peptides by Paneth cells were decreased in HFD-fed mice. Goblet cell number and secretion of mucin by goblet cells were also decreased, while intestinal permeability was increased in HFD-fed mice. HFD-fed mice were more susceptible to experimental colitis, and exhibited severe colonic inflammation, accompanied by the expansion of selected pathobionts such as Atopobium sp. and Proteobacteria. Fecal microbiota transplantation transferred the susceptibility to DSS-colitis, and antibiotic treatment abrogated colitis progression. These data suggest that an experimental HFD-induced Paneth cell dysfunction and subsequent intestinal dysbiosis characterized by pathobiont expansion can be predisposing factors to the development of inflammatory bowel disease.
Collapse
|
44
|
Jensen SR, Schoof EM, Wheeler SE, Hvid H, Ahnfelt-Rønne J, Hansen BF, Nishimura E, Olsen GS, Kislinger T, Brubaker PL. Quantitative Proteomics of Intestinal Mucosa From Male Mice Lacking Intestinal Epithelial Insulin Receptors. Endocrinology 2017; 158:2470-2485. [PMID: 28591806 DOI: 10.1210/en.2017-00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
The goal of the present study was to determine whether loss of the insulin receptor alters the molecular landscape of the intestinal mucosa, using intestinal-epithelial insulin receptor knockout (IE-irKO) mice and both genetic (IRfl/fl and Villin-cre) controls. Quantitative proteomic analysis by liquid chromatography mass spectrometry was applied to jejunal and colonic mucosa from mice fed a normal chow diet and mice fed a Western diet (WD). Jejunal mucosa from IE-irKO mice demonstrated alterations in all intestinal cell lineages: Paneth, goblet, absorptive, and enteroendocrine cells. Only goblet and absorptive cells were affected in the colon. Also, a marked effect of WD consumption was found on the gut proteome. A substantial reduction was detected in Paneth cell proteins with antimicrobial activity, including lysozyme C-1, angiogenin-4, cryptdin-related sequence 1C-3 and -2, α-defensin 17, and intelectin-1a. The key protein expressed by goblet cells, mucin-2, was also reduced in the IE-irKO mice. Proteins involved in lipid metabolism, including aldose reductase-related protein 1, 15-hydroxyprostaglandin dehydrogenase, apolipoprotein A-II, and pyruvate dehydrogenase kinase isozyme 4, were increased in the mucosa of WD-fed IE-irKO mice compared with controls. In contrast, expression of the nutrient-responsive gut hormones, glucose-dependent insulinotropic polypeptide and neurotensin, was reduced in the jejunal mucosa of IE-irKO mice, and the expression of proteins of the P-type adenosine triphosphatases and the solute carrier-transporter family was reduced in the colon of WD-fed IE-irKO mice. In conclusion, IE-irKO mice display a distinct molecular phenotype, suggesting a biological role of insulin and its receptor in determining differentiated cell specificity in the intestinal epithelium.
Collapse
Affiliation(s)
- Stina Rikke Jensen
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | - Erwin M Schoof
- Princess Margaret Hospital Cancer Centre, University Health Network, Ontario M5G 2M9, Canada
| | - Sarah E Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Henning Hvid
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | | | - Bo Falck Hansen
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | - Erica Nishimura
- Metabolic Disease Research, Novo Nordisk A/S, Måløv DK-2760, Denmark
| | | | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
45
|
Phosphorylated mTOR Expression Profiles in Human Normal and Carcinoma Tissues. DISEASE MARKERS 2017; 2017:1397063. [PMID: 28831205 PMCID: PMC5555007 DOI: 10.1155/2017/1397063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 11/18/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a key controller of cell growth and proliferation in normal tissues and solid tumors. In the present study, an immunohistochemical analysis of the expression pattern of phosphorylated mTOR (p-mTOR) was performed in human normal fetal and adult tissues and various carcinoma tissues. p-mTOR expression showed tissue and cell type specificity in normal and cancer tissues. In normal fetal and adult tissues, p-mTOR staining was observed in the intestinal crypt, intrahepatic bile ductule, pancreatic duct, distal nephron of the kidney, umbrella cell of urothelium, mesothelial cell, and choroid plexus. In cancer tissues, p-mTOR expression was higher in adenocarcinoma than in other types of cancers, in metastatic cancer than in primary cancer, and in the forefront of the infiltrating cancer cells. These results suggest that p-mTOR is implicated not only in cell proliferation but also in tubular morphogenesis in normal and cancer tissues. In addition, mTOR activation appears to be associated with cancer cell invasion and migration in solid tumors.
Collapse
|
46
|
mTORC1 promotes proliferation of immature Schwann cells and myelin growth of differentiated Schwann cells. Proc Natl Acad Sci U S A 2017; 114:E4261-E4270. [PMID: 28484008 PMCID: PMC5448230 DOI: 10.1073/pnas.1620761114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The myelination of axons in peripheral nerves requires precisely coordinated proliferation and differentiation of Schwann cells (SCs). We found that the activity of the mechanistic target of rapamycin complex 1 (mTORC1), a key signaling hub for the regulation of cellular growth and proliferation, is progressively extinguished as SCs differentiate during nerve development. To study the effects of different levels of sustained mTORC1 hyperactivity in the SC lineage, we disrupted negative regulators of mTORC1, including TSC2 or TSC1, in developing SCs of mutant mice. Surprisingly, the phenotypes ranged from arrested myelination in nerve development to focal hypermyelination in adulthood, depending on the level and timing of mTORC1 hyperactivity. For example, mice lacking TSC2 in developing SCs displayed hyperproliferation of undifferentiated SCs incompatible with normal myelination. However, these defects and myelination could be rescued by pharmacological mTORC1 inhibition. The subsequent reconstitution of SC mTORC1 hyperactivity in adult animals resulted in focal hypermyelination. Together our data suggest a model in which high mTORC1 activity promotes proliferation of immature SCs and antagonizes SC differentiation during nerve development. Down-regulation of mTORC1 activity is required for terminal SC differentiation and subsequent initiation of myelination. In distinction to this developmental role, excessive SC mTORC1 activity stimulates myelin growth, even overgrowth, in adulthood. Thus, our work delineates two distinct functions of mTORC1 in the SC lineage essential for proper nerve development and myelination. Moreover, our studies show that SCs retain their plasticity to myelinate and remodel myelin via mTORC1 throughout life.
Collapse
|
47
|
Hulst M, Jansman A, Wijers I, Hoekman A, Vastenhouw S, van Krimpen M, Smits M, Schokker D. Enrichment of in vivo transcription data from dietary intervention studies with in vitro data provides improved insight into gene regulation mechanisms in the intestinal mucosa. GENES AND NUTRITION 2017; 12:11. [PMID: 28413565 PMCID: PMC5390468 DOI: 10.1186/s12263-017-0559-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/28/2017] [Indexed: 12/30/2022]
Abstract
Background Gene expression profiles of intestinal mucosa of chickens and pigs fed over long-term periods (days/weeks) with a diet rich in rye and a diet supplemented with zinc, respectively, or of chickens after a one-day amoxicillin treatment of chickens, were recorded recently. Such dietary interventions are frequently used to modulate animal performance or therapeutically for monogastric livestock. In this study, changes in gene expression induced by these three interventions in cultured “Intestinal Porcine Epithelial Cells” (IPEC-J2) recorded after a short-term period of 2 and 6 hours, were compared to the in vivo gene expression profiles in order to evaluate the capability of this in vitro bioassay in predicting in vivo responses. Methods Lists of response genes were analysed with bioinformatics programs to identify common biological pathways induced in vivo as well as in vitro. Furthermore, overlapping genes and pathways were evaluated for possible involvement in the biological processes induced in vivo by datamining and consulting literature. Results For all three interventions, only a limited number of identical genes and a few common biological processes/pathways were found to be affected by the respective interventions. However, several enterocyte-specific regulatory and secreted effector proteins that responded in vitro could be related to processes regulated in vivo, i.e. processes related to mineral absorption, (epithelial) cell adherence and tight junction formation for zinc, microtubule and cytoskeleton integrity for amoxicillin, and cell-cycle progression and mucus production for rye. Conclusions Short-term gene expression responses to dietary interventions as measured in the in vitro bioassay have a low predictability for long-term responses as measured in the intestinal mucosa in vivo. The short-term responses of a set regulatory and effector genes, as measured in this bioassay, however, provided additional insight into how specific processes in piglets and broilers may be modulated by “early” signalling molecules produced by enterocytes. The relevance of this set of regulatory/effector genes and cognate biological processes for zinc deficiency and supplementation, gluten allergy (rye), and amoxicillin administration in humans is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0559-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcel Hulst
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands.,Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Alfons Jansman
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Ilonka Wijers
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| | - Arjan Hoekman
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| | - Stéphanie Vastenhouw
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Marinus van Krimpen
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Mari Smits
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands.,Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Dirkjan Schokker
- Animal Breeding and Genomics Centre, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
48
|
Liu TC, Naito T, Liu Z, VanDussen KL, Haritunians T, Li D, Endo K, Kawai Y, Nagasaki M, Kinouchi Y, McGovern DP, Shimosegawa T, Kakuta Y, Stappenbeck TS. LRRK2 but not ATG16L1 is associated with Paneth cell defect in Japanese Crohn's disease patients. JCI Insight 2017; 2:e91917. [PMID: 28352666 DOI: 10.1172/jci.insight.91917] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND. Morphological patterns of Paneth cells are a prognostic biomarker in Western Crohn's disease (CD) patients, and are associated with autophagy-associated ATG16L1 and NOD2 variants. We hypothesized that genetic determinants of Paneth cell phenotype in other ethnic CD cohorts are distinct but also involved in autophagy. METHODS. We performed a hypothesis-driven analysis of 56 single nucleotide polymorphisms (SNPs) associated with CD susceptibility or known to affect Paneth cell function in 110 Japanese CD patients who underwent ileal resection. We subsequently performed a genome-wide association analysis. Paneth cell phenotype was determined by defensin-5 immunofluorescence. Selected genotype-Paneth cell defect correlations were compared to a Western CD cohort (n = 164). RESULTS. The average percentage of abnormal Paneth cells in Japanese CD was similar to Western CD (P = 0.87), and abnormal Paneth cell phenotype was also associated with early recurrence (P = 0.013). In contrast to Western CD, ATG16L1 T300A was not associated with Paneth cell defect in Japanese CD (P = 0.20). Among the 56 selected SNPs, only LRRK2 M2397T showed significant association with Paneth cell defect (P = 3.62 × 10-4), whereas in the Western CD cohort it was not (P = 0.76). Pathway analysis of LRRK2 and other candidate genes with P less than 5 × 10-4 showed connections with known CD susceptibility genes and links to autophagy and TNF-α networks. CONCLUSIONS. We found dichotomous effects of ATG16L1 and LRRK2 on Paneth cell defect between Japanese and Western CD. Genes affecting Paneth cell phenotype in Japanese CD were also associated with autophagy. Paneth cell phenotype also predicted prognosis in Japanese CD. FUNDING. Helmsley Charitable Trust, Doris Duke Foundation (grant 2014103), Japan Society for the Promotion of Science (KAKENHI grants JP15H04805 and JP15K15284), Crohn's and Colitis Foundation grant 274415, NIH (grants 1R56DK095820, K01DK109081, and UL1 TR000448).
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zhenqiu Liu
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Talin Haritunians
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dalin Li
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Katsuya Endo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoshitaka Kinouchi
- Health Administration Center, Center for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Dermot Pb McGovern
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
49
|
Barron L, Sun RC, Aladegbami B, Erwin CR, Warner BW, Guo J. Intestinal Epithelial-Specific mTORC1 Activation Enhances Intestinal Adaptation After Small Bowel Resection. Cell Mol Gastroenterol Hepatol 2016; 3:231-244. [PMID: 28275690 PMCID: PMC5331783 DOI: 10.1016/j.jcmgh.2016.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/18/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Intestinal adaptation is a compensatory response to the massive loss of small intestine after surgical resection. We investigated the role of intestinal epithelial cell-specific mammalian target of rapamycin complex 1 (i-mTORC1) in intestinal adaptation after massive small bowel resection (SBR). METHODS We performed 50% proximal SBR on mice to study adaptation. To manipulate i-mTORC1 activity, Villin-CreER transgenic mice were crossed with tuberous sclerosis complex (TSC)1flox/flox or Raptorflox/flox mice to inducibly activate or inactivate i-mTORC1 activity with tamoxifen. Western blot was used to confirm the activity of mTORC1. Crypt depth and villus height were measured to score adaptation. Immunohistochemistry was used to investigate differentiation and rates of crypt proliferation. RESULTS After SBR, mice treated with systemic rapamycin showed diminished structural adaptation, blunted crypt cell proliferation, and significant body weight loss. Activating i-mTORC1 via TSC1 deletion induced larger hyperproliferative crypts and disorganized Paneth cells without a significant change in villus height. After SBR, ablating TSC1 in intestinal epithelium induced a robust villus growth with much stronger crypt cell proliferation, but similar body weight recovery. Acute inactivation of i-mTORC1 through deletion of Raptor did not change crypt cell proliferation or mucosa structure, but significantly reduced lysozyme/matrix metalloproteinase-7-positive Paneth cell and goblet cell numbers, with increased enteroendocrine cells. Surprisingly, ablation of intestinal epithelial cell-specific Raptor after SBR did not affect adaptation or crypt proliferation, but dramatically reduced body weight recovery after surgery. CONCLUSIONS Systemic, but not intestinal-specific, mTORC1 is important for normal adaptation responses to SBR. Although not required, forced enterocyte mTORC1 signaling after resection causes an enhanced adaptive response.
Collapse
Key Words
- Differentiation
- EGF, epidermal growth factor
- IHC, immunohistochemistry
- MMP, matrix metalloproteinase
- PCR, polymerase chain reaction
- Raptor
- S6K, S6 kinase
- SBR, small bowel resection
- TAM, tamoxifen
- TSC, tuberous sclerosis complex
- TSC1
- WT, wild type
- i-TSC-/-, intestinal epithelial cell–specific tuberous sclerosis complex 1 null mice
- mTOR, mammalian target of rapamycin
- mTORC, mammalian target of rapamycin complex
- p-HH3, phosphorylated histone H3
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Guo
- Correspondence Address correspondence to: Jun Guo, PhD, BJC Institute of Health Room 7118, 425 South Euclid Avenue, St. Louis, Missouri 63110. fax: (314) 747–0610.BJC Institute of Health Room 7118425 South Euclid AvenueSt. LouisMissouri 63110
| |
Collapse
|
50
|
Ketogenesis contributes to intestinal cell differentiation. Cell Death Differ 2016; 24:458-468. [PMID: 27935584 DOI: 10.1038/cdd.2016.142] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/18/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023] Open
Abstract
The intestinal epithelium undergoes a continual process of proliferation, differentiation and apoptosis. Previously, we have shown that the PI3K/Akt/mTOR pathway has a critical role in intestinal homeostasis. However, the downstream targets mediating the effects of mTOR in intestinal cells are not known. Here, we show that the ketone body β-hydroxybutyrate (βHB), an endogenous inhibitor of histone deacetylases (HDACs) induces intestinal cell differentiation as noted by the increased expression of differentiation markers (Mucin2 (MUC2), lysozyme, IAP, sucrase-isomaltase, KRT20, villin, Caudal-related homeobox transcription factor 2 (CDX2) and p21Waf1). Conversely, knockdown of the ketogenic mitochondrial enzyme hydroxymethylglutaryl CoA synthase 2 (HMGCS2) attenuated spontaneous differentiation in the human colon cancer cell line Caco-2. Overexpression of HMGCS2, which we found is localized specifically in the more differentiated portions of the intestinal mucosa, increased the expression of CDX2, thus further suggesting the contributory role of HMGCS2 in intestinal differentiation. In addition, mice fed a ketogenic diet demonstrated increased differentiation of intestinal cells as noted by an increase in the enterocyte, goblet and Paneth cell lineages. Moreover, we showed that either knockdown of mTOR or inhibition of mTORC1 with rapamycin increases the expression of HMGCS2 in intestinal cells in vitro and in vivo, suggesting a possible cross-talk between mTOR and HMGCS2/βHB signaling in intestinal cells. In contrast, treatment of intestinal cells with βHB or feeding mice with a ketogenic diet inhibits mTOR signaling in intestinal cells. Together, we provide evidence showing that HMGCS2/βHB contributes to intestinal cell differentiation. Our results suggest that mTOR acts cooperatively with HMGCS2/βHB to maintain intestinal homeostasis.
Collapse
|