1
|
Cheloni G, Karagkouni D, Pita-Juarez Y, Torres D, Kanata E, Liegel J, Avigan Z, Saldarriaga I, Chedid G, Rallis K, Miles B, Tiwari G, Kim J, Mattie M, Rosenblatt J, Vlachos IS, Avigan D. Durable response to CAR T is associated with elevated activation and clonotypic expansion of the cytotoxic native T cell repertoire. Nat Commun 2025; 16:4819. [PMID: 40410132 PMCID: PMC12102275 DOI: 10.1038/s41467-025-59904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 05/02/2025] [Indexed: 05/25/2025] Open
Abstract
While Chimeric Antigen Receptor (CAR) T cell therapy may result in durable remissions in recurrent large B cell lymphoma, persistence is limited and the mechanisms underlying long-term response are not fully elucidated. Using longitudinal single-cell immunoprofiling, here we compare the immune landscape in durable remission versus early relapse patients following CD19 CAR T cell infusion in the NCT02348216 (ZUMA-1) trial. Four weeks post-infusion, both cohorts demonstrate low circulating CAR T cells. We observe that long-term remission is associated with elevated native cytotoxic and proinflammatory effector cells, and post-infusion clonotypic expansion of effector memory T cells. Conversely, early relapse is associated with impaired NK cell cytotoxicity and elevated immunoregulatory cells, potentially dampening native T cell activation. Thus, we suggest that durable remission to CAR T is associated with a distinct T cell signature and pattern of clonotypic expansion within the native T cell compartment post-therapy, consistent with their contribution to the maintenance of response.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Lymphocyte Activation/immunology
- Antigens, CD19/immunology
- Killer Cells, Natural/immunology
- Male
- Female
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Middle Aged
- Receptors, Antigen, T-Cell
- Remission Induction
Collapse
Affiliation(s)
- Giulia Cheloni
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dimitra Karagkouni
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yered Pita-Juarez
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniela Torres
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eleni Kanata
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jessica Liegel
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zachary Avigan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isabella Saldarriaga
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Georges Chedid
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kathrine Rallis
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | - Jenny Kim
- Kite, a Gilead Company, Santa Monica, CA, USA
| | - Mike Mattie
- Kite, a Gilead Company, Santa Monica, CA, USA
| | - Jacalyn Rosenblatt
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ioannis S Vlachos
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| | - David Avigan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ahn M, Na Y, Choi H, Lee S, Lee J, Park SA, Jeun SS, Na K. Photoimmuno-Lure Nanoplatform for Enhancing T Cell Expansion in Glioblastoma via Synergistic Treatment of Photodynamic Therapy and Immune Checkpoint Inhibition. Adv Healthc Mater 2025:e2500880. [PMID: 40395101 DOI: 10.1002/adhm.202500880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/07/2025] [Indexed: 05/22/2025]
Abstract
The immunosuppressive tumor microenvironment (TME) of glioblastoma (GBM) limits the efficacy of immune checkpoint inhibitors (ICI), primarily due to the absence of cytotoxic T (Tc) cells. In this study, a photoimmuno-lure nanoplatform is presented that combines amphiphilic photosensitizers (PSs) with Atezolizumab leading to the modulation of the TME of GBM and improvement of the therapeutic efficacy through synergistic photodynamic therapy (PDT). The amphiphilic PSs exhibited four-fold higher GBM specificity, superior photostability, and enhanced singlet oxygen generation efficiency (1O2ΦΔ: 0.92) compared to conventional PSs. In in vitro GBM cell lines, amphiphilic PSs increased immune activation cytokines and improved ICI responsiveness compared to single ICI treatment. In addition, similar results are acquired in a GBM 3D spheroid model, showing significantly elevated Tc cell activation. In orthotopic in vivo GBM model, the nanoplatform achieved a 100% survival rate for up to 60 days. Immunological analysis revealed each 2.36-fold, 4.19-fold increase in activated dendritic cells and Tc cells respectively, and significant reductions in MDSCs (0.48-fold) and regulatory T cells (0.5-fold). As a result, this study demonstrates the potential of the synergistic photoimmuno-lure nanoplatform as a clinical solution to overcome the immunosuppressive TME of GBM and activate innate and adaptive immunity for effective treatment.
Collapse
Affiliation(s)
- Minji Ahn
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Radiology, Feinburg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yuhyun Na
- NBR incorporation, BI 205, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Hani Choi
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Sanghee Lee
- Department of Radiology, Feinburg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jangsu Lee
- Department of Biomedical Science, Institute of Cell and Gene Therapy, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
3
|
Jeng LB, Shih FY, Liao YW, Shyu WC, Teng CF. Hypoxic tumor cell line lysate-pulsed dendritic cell vaccine exhibits better therapeutic effects on hepatocellular carcinoma. Br J Cancer 2025; 132:837-848. [PMID: 40050434 PMCID: PMC12041587 DOI: 10.1038/s41416-025-02975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/03/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Dendritic cell (DC) vaccine is a promising immunotherapy for hepatocellular carcinoma (HCC) via triggering antigen-specific anti-tumor immunity. Hypoxia contributes to higher level and broader spectrum of antigen expression in tumor cells. METHODS This study aims to compare immunological activity and therapeutic efficacy between hypoxic and normoxic HCC cell line lysate-pulsed DC vaccines. RESULTS The results showed that hypoxic HCC cell line lysate-pulsed DC vaccines exhibited a stronger activity in producing interleukin-12 and promoting T cell proliferation and cytotoxicity in vitro. In HCC mice, hypoxic HCC cell line lysate-pulsed DC vaccines displayed a better efficacy in improving survival time and tumor volume and inducing intratumoral cytotoxic T cell infiltration and activation as well as tumor cell apoptosis. Adenylate kinase 4-derived antigens were important for hypoxic HCC cell line lysate-pulsed DC vaccine-elicited T cell killing. CONCLUSIONS In conclusion, this study demonstrated hypoxic HCC cell line lysate-pulsed DC vaccine as a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan, ROC
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan, ROC
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan, ROC
- School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Fu-Ying Shih
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, Taiwan, ROC
| | - Yu-Wen Liao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
- Translational Medicine Research Center, China Medical University Hospital, Taichung, 404, Taiwan, ROC
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, ROC
- Department of Occupational Therapy, Asia University, Taichung, Taiwan, ROC
| | - Chiao-Fang Teng
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan, ROC.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC.
- Master Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
4
|
Zhao Z, Cutmore LC, Baleeiro RB, Hartlebury JJ, Brown N, Chard-Dunmall L, Lemoine N, Wang Y, Marshall JF. The Combination of Oncolytic Virus and Antibody Blockade of TGF-β Enhances the Efficacy of αvβ6-Targeting CAR T Cells Against Pancreatic Cancer in an Immunocompetent Model. Cancers (Basel) 2025; 17:1534. [PMID: 40361460 PMCID: PMC12070938 DOI: 10.3390/cancers17091534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES CAR T cell therapy, as a rapidly advancing immuno-oncology modality, has achieved significant success in the treatment of leukaemia and lymphoma. However, its application in solid tumours remains limited. The challenges include the heterogeneity of tumours, local immunosuppression, poor trafficking and infiltration, life-threatening toxicity and the lack of precise representative immunocompetent research models. Considering its typically dense and immunosuppressive tumour microenvironment (TME) and early metastasis, pancreatic ductal adenocarcinoma (PDAC) was employed as a model to address the challenges that hinder CAR T cell therapies against solid tumours and to expand immunotherapeutic options for advanced disease. METHODS A novel murine A20FMDV2 (A20) CAR T cell targeting integrin αvβ6 (mA20CART) was developed, demonstrating efficient and specific on-target cytotoxicity. The mA20CART cell as a monotherapy for orthotopic pancreatic cancer in an immunocompetent model demonstrated modest efficacy. Therefore, a novel triple therapy regimen, combining mA20CART cells with oncolytic vaccinia virus encoding IL-21 and a TGF-β-blocking antibody was evaluated in vivo. RESULTS The triple therapy improved overall survival, improved the safety profile of the CAR T cell therapy, attenuated metastasis and enhanced T cell infiltration. Notably, the potency of mA20CART was dependent on IL-2 supplementation. CONCLUSIONS This study presents an αvβ6-targeting murine CAR T cell, offering a novel approach to developing CAR T cell technologies for solid tumours and a potential adjuvant therapy for pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yaohe Wang
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Z.Z.); (L.C.C.); (R.B.B.); (J.J.H.); (N.B.); (L.C.-D.); (N.L.)
| | - John F. Marshall
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Z.Z.); (L.C.C.); (R.B.B.); (J.J.H.); (N.B.); (L.C.-D.); (N.L.)
| |
Collapse
|
5
|
Duan C, Lin W, Zhang M, Xue B, Sun W, Jin Y, Zhang X, Guo H, Yuan Q, Yu M, Liu Q, Wang N, Wang H, Wu H, Wang S. Nardostachys jatamansi Extract and Nardosinone Exert Neuroprotective Effects by Suppressing Glucose Metabolic Reprogramming and Modulating T Cell Infiltration. Cells 2025; 14:644. [PMID: 40358168 PMCID: PMC12071694 DOI: 10.3390/cells14090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. This study investigated the effects of ethyl acetate extract (NJ-1A) from N. jatamansi and its active constituent nardosinone on neuroinflammatory mediator release, glucose metabolic reprogramming, and T cell migration using both in vitro and in vivo experimental models. METHODS Lipopolysaccharide(LPS)-induced BV-2 microglial cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced male C57BL/6N mouse chronic model of Parkinson's disease were applied. RESULTS Both NJ-1A and Nar could significantly suppress LPS-induced production of M1 pro-inflammatory factors or markers in microglia and could inhibit the glycolytic process and promote oxidative phosphorylation via the AKT/mTOR signaling pathway. Furthermore, they exhibited the capacity to attenuate chemokine release from activated microglia, consequently reducing T cell migration. In vivo experiments revealed that NJ-1A and Nar effectively inhibited microglial activation, diminished T cell infiltration, and mitigated the loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra of MPTP-induced mice. CONCLUSIONS NJ-1A and nardosinone exert neuroprotective effects through the modulation of microglial polarization states, regulation of metabolic reprogramming, and suppression of T cell infiltration.
Collapse
Affiliation(s)
- Congyan Duan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Weifang Lin
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Mingjie Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Bianxia Xue
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (B.X.); (H.G.); (Q.Y.)
| | - Wangjie Sun
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Yang Jin
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Xiaoxu Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Hong Guo
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (B.X.); (H.G.); (Q.Y.)
| | - Qing Yuan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (B.X.); (H.G.); (Q.Y.)
| | - Mingyu Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Qi Liu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Naixuan Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| | - Honghua Wu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (B.X.); (H.G.); (Q.Y.)
| | - Shaoxia Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai Dist., Tianjin 301617, China; (C.D.); (W.L.); (M.Z.); (W.S.); (Y.J.); (X.Z.); (M.Y.); (Q.L.); (N.W.); (H.W.)
| |
Collapse
|
6
|
Pati NB, Jin Y, Kumar S, Kyte JA, Ciosk R. Thermal potentiation improves IFN-γ production but not cytotoxicity in human CAR-T cells. BMC Res Notes 2025; 18:192. [PMID: 40270044 PMCID: PMC12020131 DOI: 10.1186/s13104-025-07249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE Body temperature plays an important role in cancer, with febrile temperature generally associated with improved cancer resistance. In murine models, this resistance has been linked to the cytotoxic T cells, whose differentiation into cancer-killing effector cells is poor at lower but robust at elevated temperatures. If conserved, temperature-mediated potentiation of patient-derived T cells could be implemented to improve the existing cancer treatments, including the chimeric antigen receptor T-cell therapy (CAR T-cell therapy). Here, we tested this possibility using human STEAP1 CAR-T cells developed to target prostate cancer. RESULTS In mice, transient exposure to febrile temperature (39-40 ºC) increases the production of IFN-γ and the cancer-killing ability of CD8 + T cells. Using a similar temperature treatment, we observed elevated levels of IFN-γ also in the human CAR-T cells. However, these cells displayed no improvement in their ability to kill cancer cells. Although we cannot discount the possibility that alternative protocols might lead to other outcomes, our findings suggest that incorporating thermal potentiation into existing protocols of CAR-T cell therapy may be more complicated than anticipated.
Collapse
Affiliation(s)
- Niladri Bhusan Pati
- Department of Biosciences, University of Oslo, Oslo, Norway
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Yixin Jin
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Suman Kumar
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway.
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.
| | - Rafal Ciosk
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Li X, Pan L, Li W, Liu B, Xiao C, Chew V, Zhang X, Long W, Ginhoux F, Loscalzo J, Buggert M, Zhang X, Sheng R, Wang Z. Deciphering immune predictors of immunotherapy response: A multiomics approach at the pan-cancer level. Cell Rep Med 2025; 6:101992. [PMID: 40054456 PMCID: PMC12047473 DOI: 10.1016/j.xcrm.2025.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 04/18/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has transformed cancer treatment, yet many patients fail to respond. Employing single-cell multiomics, we unveil T cell dynamics influencing ICB response across 480 pan-cancer and 27 normal tissue samples. We identify four immunotherapy response-associated T cells (IRATs) linked to responsiveness or resistance and analyze their pseudotemporal patterns, regulatory mechanisms, and T cell receptor clonal expansion profiles specific to each response. Notably, transforming growth factor β1 (TGF-β1)+ CD4+ and Temra CD8+ T cells negatively correlate with therapy response, in stark contrast to the positive response associated with CXCL13+ CD4+ and CD8+ T cells. Validation with a cohort of 23 colorectal cancer (CRC) samples confirms the significant impact of TGF-β1+ CD4+ and CXCL13+ CD4+ and CD8+ T cells on ICB efficacy. Our study highlights the effectiveness of single-cell multiomics in pinpointing immune markers predictive of immunotherapy outcomes, providing an important resource for crafting targeted immunotherapies for successful ICB treatment across cancers.
Collapse
Affiliation(s)
- Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Solna, Sweden.
| | - Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Sweden
| | - Weiyuan Li
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China; Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Bingyang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-Duke NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Wang Long
- Department of Pathology, Nihon University, Tokyo 102-0074, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore; Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire 114 rue Edouard Vaillant, 94800 Villejuif, France; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China.
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110819, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China.
| | - Zhenning Wang
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
8
|
Hu X, Yu F, Peng M, Yang Z, Ouyang Y, Zhang Z, Zhao W, Yi X, Hu H, Huang X, Wang L. Exploring causal relationship between 41 inflammatory cytokines and marginal zone lymphoma: A bidirectional Mendelian randomization study. Open Med (Wars) 2025; 20:20251171. [PMID: 40292253 PMCID: PMC12032980 DOI: 10.1515/med-2025-1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Purpose Marginal zone lymphoma (MZL) is a rare subtype of non-Hodgkin lymphoma, and its diagnosis primarily relies on pathological biopsy. The study aims to investigate the causal relationships between 41 inflammatory cytokines and MZL using a two-sample bidirectional Mendelian randomization (MR) approach, providing new insights and methodologies for rapid differential diagnosis and treatment strategies. Methods Causal associations between 41 inflammatory cytokines and MZL were examined using genetic variant data from two large-scale genome-wide association studies. The inverse variance weighting method was employed, and multiple sensitivity analyses, including MR-Egger, weighted median, simple model, and weighted model methods, were conducted to strengthen the robustness of the findings. Results Elevated levels of MIG and IL-10 were associated with an increased risk of MZL (MIG: OR = 1.57, p = 0.035; IL-10: OR = 1.69, p = 0.021), while higher B-NGF levels exhibited a protective effect (OR = 0.46, p = 0.027). Reverse MR analysis revealed a negative correlation between MZL and IFN-γ levels (OR = 0.97, p = 0.015). Conclusions MIG, IL-10, B-NGF, and IFN-γ are potential biomarkers and therapeutic targets for MZL. IFN-γ likely acts as a downstream molecule in MZL pathogenesis, offering novel insights into MZL-related research, clinical diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Xinhang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhi Yang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yifan Ouyang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhe Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Wangcheng Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xuyang Yi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Huali Hu
- Department of Thoracic Surgery, Hunan Rehabilitation Hospital, Changsha, 410000, China
| | - Xingchun Huang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Thoracic Surgery Research Laboratory, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| |
Collapse
|
9
|
Klimek L, Becker S, Haxel B, Cuevas M, Huber P, Chaker A, Pfaar O, Laudien M, Beutner C, Hagemann J, Förster-Ruhrmann U, Olze H, Ernst BP, Beule A, Rudack C, Hoffmann AS, Betz C, Gröger M. [Different immunological types of CRSwNP in the context of the new European EAACI nomenclature : Part 1: Hypersensitivity reactions of type IVa-c as a correlate to T1, T2, and T3 endotypes]. HNO 2025:10.1007/s00106-025-01600-9. [PMID: 40198352 DOI: 10.1007/s00106-025-01600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) affects up to 11% of the population in Europe and the USA, making it one of the most common chronic diseases. The classification of immunological endotypes, particularly the T2 endotype, is gaining increasing importance. This classification is based on the Coombs and Gell hypersensitivity model, which categorizes cell-mediated type IV reactions into T1, T2, and T3 endotypes. In chronic rhinosinusitis with nasal polyps (CRSwNP), genetic and epigenetic alterations in the mucosal immune system play a key role. Identifying specific endotypes helps to better understand the heterogeneity of the disease and develop tailored treatment approaches. This paper aims to systematize the underlying immunological mechanisms and highlight their relevance for diagnosis and therapy. METHODS The European Academy of Allergy and Clinical Immunology (EAACI) recently published an updated nomenclature for immunological hypersensitivity reactions. The original Coombs and Gell classification of antibody-mediated reactions (type I-III) has been expanded. Cell-mediated reactions now include: type IVa (T1) → Th1-dominated reactions; type IVb (T2) → Th2-dominated reactions; type IVc (T3) → Th17-dominated reactions. These new insights into T1, T2, and T3 signaling pathways form the basis of this study. Additional mechanisms such as epithelial barrier defects (type V), chemical reactions (type VI), and metabolism-related immune dysregulations (type VII) are addressed separately. RESULTS Endotyping reveals distinct regional differences: The T2 (Th2-high) endotype, predominant in Europe, North and South America, and Australia, is characterized by elevated Th2 cytokines (IL‑4, IL‑5, IL-13) and eosinophilic inflammation. The T1 (Th1-high) endotype shows dominant interferon-gamma activity and non-eosinophilic, mainly neutrophilic inflammation. The T3 (Th17-high) endotype is defined by increased IL-17 presence and can occur in both eosinophilic and non-eosinophilic CRSwNP. CONCLUSION In CRSwNP patients, all three hyperreactivity endotypes (T1, T2, T3) can occur individually or in combination. The T2 endotype is the most common in Europe. Targeted endotyping enables differentiated treatment approaches and novel therapeutic options.
Collapse
Affiliation(s)
- L Klimek
- Zentrum für Rhinologie und Allergologie, Wiesbaden, Deutschland
| | - S Becker
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsmedizin Tübingen, Tübingen, Deutschland
| | - B Haxel
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsmedizin Mainz, Mainz, Deutschland
| | - M Cuevas
- Klinik und Poliklinik für HNO-Heilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Deutschland
| | - P Huber
- Klinik und Poliklinik für Hals-Nasen- Ohrenheilkunde, Klinikum der Ludwig-Maximilians-Universität, München, Deutschland
| | - A Chaker
- TUM School of Medicine and Health, Klinikum rechts der Isar, HNO-Klinik und Zentrum für Allergie und Umwelt, Technische Universität München, München, Deutschland
| | - O Pfaar
- Klinik für Hals‑, Nasen-und Ohrenheilkunde, Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg, Marburg, Deutschland
| | - M Laudien
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Kiel, Kiel, Deutschland
| | - C Beutner
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - J Hagemann
- Zentrum für Rhinologie und Allergologie, Wiesbaden, Deutschland
| | - U Förster-Ruhrmann
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Charité, Berlin, Deutschland
| | - H Olze
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Charité, Berlin, Deutschland
| | - B P Ernst
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsmedizin Frankfurt/M, Frankfurt/M, Deutschland
| | - A Beule
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Münster, Münster, Deutschland
| | - C Rudack
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Münster, Münster, Deutschland
| | - A S Hoffmann
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum UKE, Hamburg, Deutschland
| | - C Betz
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum UKE, Hamburg, Deutschland
| | - M Gröger
- Klinik und Poliklinik für Hals-Nasen- Ohrenheilkunde, Klinikum der Ludwig-Maximilians-Universität, München, Deutschland.
| |
Collapse
|
10
|
Lin Y, Yang L, Li Y, Dou S, Zhang Z, Zhou Q. CD4+CD25- T-Cell-Secreted IFN-γ Promotes Corneal Nerve Degeneration in Diabetic Mice. Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 40192636 PMCID: PMC11980951 DOI: 10.1167/iovs.66.4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose This study aimed to explore the relationship between corneal nerve degeneration and elevated dendritic cells (DCs) in diabetic keratopathy. Methods Corneas from diabetic and healthy mice were analyzed using single-cell RNA sequencing. Corneal nerve density and DC and T-cell infiltration were quantified through whole-mount corneal staining. Freshly isolated mouse trigeminal ganglion (TG) neurons were co-cultured with immature DCs, mature DCs, activated CD8+ T cells, and CD4+CD25- T cells. TG neurite outgrowth was assessed to identify potential effector cells driving corneal nerve degeneration. In addition, interferon-gamma (IFN-γ) and blocking antibodies were used to evaluate their effects on TG neurite outgrowth and corneal nerve degeneration in mice. Results Compared with age-matched healthy mice, diabetic mice exhibited a significant reduction in corneal nerve density and sensitivity, along with increased infiltration of DCs, CD4+ T cells, and CD8+ T cells. In vitro co-culture experiments revealed that CD4+CD25- T cells, rather than DCs and CD8+ T cells, significantly inhibited TG neurite outgrowth. Among cytokines, elevated IFN-γ in diabetic corneas impaired TG neurite outgrowth and induced corneal nerve degeneration, whereas IL-4 and IL-17 had no such effect. Blocking IFN-γ alleviated CD4+CD25- T-cell-induced inhibition of TG neurite outgrowth and corneal nerve degeneration in diabetic mice. Conclusions CD4+CD25- T cells, but not DCs or CD8+ T cells, contribute to corneal nerve degeneration in diabetic mice, a process partially mediated by IFN-γ.
Collapse
Affiliation(s)
- Yujing Lin
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|
11
|
Mendes-Monteiro L, Viejo-Borbolla A. Using structure-function information from IFN-γ-binding proteins and biased agonists to uncouple immunostimulatory and immunosuppressive activities. Trends Immunol 2025; 46:284-294. [PMID: 40102163 DOI: 10.1016/j.it.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
IFN-γ is a pleiotropic antiviral cytokine that coordinates innate and adaptive immune responses and induces both immunostimulatory and immunosuppressive activities, limiting its use in the clinic. Due to its antiviral role, several viruses express proteins that bind IFN-γ, blocking its interaction with the IFN-γ receptor (IFNGR). However, varicella zoster virus glycoprotein C binds IFN-γ and induces the expression of a subset of specific ISGs, similar to biased IFN-γ agonists generated based on the crystal structure of the IFN-γ - IFNGR complex. Here, we propose using structural and mechanistic information from viral proteins and biased agonists to design novel IFN-γ agonists that fine-tune IFN-γ - IFNGR activity, reducing the immunosuppressive and toxic effects of this cytokine.
Collapse
Affiliation(s)
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany; RESIST, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
12
|
Chou CL, Lin CY, Li WS, Lee SW, Yang CC, Tian YF, Shiue YL, Tsai HH, Lai HY. Low CXCL11 expression is indicative of poor prognosis in rectal cancer patients undergoing preoperative chemoradiotherapy: a retrospective cohort study. Virchows Arch 2025; 486:803-815. [PMID: 39592484 PMCID: PMC12018498 DOI: 10.1007/s00428-024-03974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION Neoadjuvant concurrent chemoradiotherapy (CCRT) is routinely used before surgery in patients with locally advanced rectal cancer to reduce tumor size and decrease the risk of local recurrence. However, the disease-specific survival has not improved in most cases due to distant metastases. In selected individuals exhibiting a clinical complete response, non-operative management may be allowed; however, those who presented no or little response tend to have an inferior prognosis. Consequently, refined molecular characterization could aid in predicting which patients would benefit from neoadjuvant chemoradiotherapy. METHODS The mRNA level (by transcriptomic profiling) and protein expression (by immunohistochemical staining) of C-X-C motif chemokine ligand 11 (CXCL11) were integrated to predict neoadjuvant chemoradiotherapy efficacy. For survival analysis, clinicopathological features and CXCL11 immunoreactivity that were statistically significant in univariate analysis were included in multivariate analysis using the Cox proportional hazards regression model. RESULTS We identified that the CXCL11 level exhibits the most significant downregulation among neoadjuvant chemoradiotherapy non-responders. Using tumor samples from our rectal cancer cohort (n = 343) with immunohistochemistry validation, we demonstrated that low CXCL11 immunoexpression shows significant correlations with advanced disease and positive lymph nodes both prior to and following CCRT (all p < 0.001), vascular and perineural invasion (p < 0.001 and p = 0.006), and poor response to CCRT (p < 0.001). Moreover, low CXCL11 immunoexpression was an independent adverse prognostic factor significantly associated with patient survival. Additionally, we further identified pyroptotic cell death as an unrevealed role of CXCL11 in rectal cancer through bioinformatic analysis. CONCLUSION CXCL11 expression may serve as an early predictor of clinical outcomes and aid in therapeutic decision-making by identifying individuals likely to respond to neoadjuvant chemoradiotherapy in rectal cancer.
Collapse
Affiliation(s)
- Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Cheng-Yi Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
- Department of Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Sung-Wei Lee
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, 736, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, 710, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, 717, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hsin-Hwa Tsai
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
13
|
Samidurai M, Chennakesavan K, Sarkar S, Malovic E, Nguyen HM, Singh L, Kumar A, Ealy A, Janarthanam C, Palanisamy BN, Kondru N, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Zhang H, Wulff H, Kanthasamy A. KCa3.1 Contributes to Neuroinflammation and Nigral Dopaminergic Neurodegeneration in Experimental models of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643982. [PMID: 40166152 PMCID: PMC11956954 DOI: 10.1101/2025.03.18.643982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chronic neuroinflammation and misfolded α-synuclein (αSyn) have been identified as key pathological correlates driving Parkinson's disease (PD) pathogenesis; however, the contribution of ion channels to microglia activation in the context of α-synucleinopathy remains elusive. Herein, we show that KCa3.1, a calcium-activated potassium channel, is robustly upregulated within microglia in multiple preclinical models of PD and, most importantly, in human PD and dementia with Lewy bodies (DLB) brains. Pharmacological inhibition of KCa3.1 via senicapoc or TRAM-34 inhibits KCa3.1 channel activity and the associated reactive microglial phenotype in response to aggregated αSyn, as well as ameliorates of PD like pathology in diverse PD mouse models. Additionally, proteomic and transcriptomic profiling of microglia revealed that senicapoc ameliorates aggregated αSyn-induced, inflammation-associated pathways and dysregulated metabolism in primary microglial cells. Mechanistically, FYN kinase in a STAT1 dependent manner regulates KCa3.1 mediated the microglial reactive activation phenotype after α-synucleinopathy. Moreover, reduced neuroinflammation and subsequent PD-like neuropathology were observed in SYN AAV inoculated KCa3.1 knockout mice. Together, these findings suggest that KCa3.1 inhibition represents a novel therapeutic strategy for treating patients with PD and related α-synucleinopathies.
Collapse
|
14
|
Tran VTA, Zhu X, Jamsranjav A, Lee LP, Cho H. Escherichia Coli K1-colibactin meningitis induces microglial NLRP3/IL-18 exacerbating H3K4me3-synucleinopathy in human inflammatory gut-brain axis. Commun Biol 2025; 8:382. [PMID: 40050667 PMCID: PMC11885818 DOI: 10.1038/s42003-025-07787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Escherichia coli K1 (E. coli K1) meningitis early occurs in the gastrointestinal and causes severe damage to the central nervous system, including lifelong neurological complications in survivors. However, the cellular mechanism by which E. coli K1 may cause neuropathies is not well understood due to the lack of relevant human multi-organ models for studying multifaceted systemic inflammation across the gut-brain axis. Here, we reconstruct a multicellular model of the human gut-brain axis to identify the neuropathogenic mechanism driven by E. coli K1-colibactin meningitis. We observed that E. coli K1-genotoxic colibactin induced intestinal and peripheral interleukin 6, causing the blood-brain barrier injury and endothelial inflammation via the p38/p65 pathways. Serpin-E1 from the damaged cerebral endothelia induces reactive astrocytes to release IFN-γ, which reduces microglial phagocytosis of E. coli K1 and exacerbates detrimental neuroinflammation via NLRP3/IL-18 axis. Microglial IL-18 elevates neuronal reactive oxidative stress that worsens DNA double-strand breaks in E. coli K1-infected neurons, leading to H3K4 trimethylation and phosphorylation of alpha-synuclein. Our findings suggest therapeutic strategies for post-bacterial meningitis treatment to potentially prevent the initiation of synucleinopathy.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Xiaohui Zhu
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Ariunzaya Jamsranjav
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P Lee
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, USA.
| | - Hansang Cho
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Intelligent Healthcare Medicine, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
15
|
Li N, Huang L, Zhang B, Zhu W, Dai W, Li S, Xu H. The mechanism of different orexin/hypocretin neuronal projections in wakefulness and sleep. Brain Res 2025; 1850:149408. [PMID: 39706239 DOI: 10.1016/j.brainres.2024.149408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Since the discovery of orexin/hypocretin, numerous studies have accumulated evidence demonstrating its key role in various aspects of neuromodulation, including addiction, motivation, and arousal. This paper focuses on the projection of orexin neurons to specific target brain regions through distinct neural pathways to regulate sleep and arousal. We provide a detailed discussion of the projection mechanisms of orexin neurons to downstream neurons, particularly emphasizing their activation of monoaminergic and cholinergic neurons associated with arousal. Additionally, we briefly explore the immune response and inflammatory factors linked to the loss of orexin neurons. Our findings underscore the significance of understanding specific neural projections in the generation and maintenance of arousal, which could guide advancements in neuroscience and lead to new therapeutic opportunities for treating insomnia or narcolepsy.
Collapse
Affiliation(s)
- Nanxi Li
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lishan Huang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Zhang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenwen Zhu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University.
| | - Houping Xu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
16
|
Li B, Tan Y, Lei JH, Deng M, Yu X, Wang X, Lei LM, He L, Deng C, Dai Y. Alkaline Adjuvant Regulates Proteolytic Activity of Macrophages for Antigen Cross-Presentation and Potentiates Radioimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416690. [PMID: 39935046 PMCID: PMC11938008 DOI: 10.1002/adma.202416690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Failures of radiotherapy (RT) in adaptive antitumor immunomodulation often associate with recruited tissue-repairing macrophages. Although training these macrophages to phagocytose post-RT cancer cells reverses their protumoral performance, engulfed tumor antigens are severely underrated. In fact, regulating the processing and presentation of tumor antigens, a key determinant of tumor immunogenicity, can fundamentally affect adaptive immune responses. Here it is reported that a simple Alum-like adjuvant (MgAl-based hydrotalcite, bLDH) improves radioimmunotherapy via inducing antigen cross-presentation by macrophages, independent of phenotypes. It is identified that cytidine monophosphate guanosine oligodeoxynucleotide engenders macrophages to phagocytose irradiated cancer cells. However, as semiprofessional antigen-presenting cells, macrophages possess powerful proteolytic function that is detrimental to antigen presentation. The administration of alkaline bLDH intriguingly relieves the activity of phagolysosomal proteases with acidic pH optima by preventing phagosomal acidification resulting from the vacuolar-type ATPase proton pump. The adjuvant-modulated phagolysosomes thus limit antigen degradation and enhance tumor antigen cross-presentation over tenfold. To examine from an in vivo breast tumor model, trained macrophages successfully cross-prime antigen-specific CD8+ T cells and curb RT-associated metastasis. The findings propose to pay close attention to the effect of adjuvants on precision immunotherapy and highlight the positive contribution of cross-presenting macrophages in radioimmunotherapy.
Collapse
Affiliation(s)
- Bei Li
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Yan Tan
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Josh Haipeng Lei
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Min Deng
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Xinwang Yu
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Xinyi Wang
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Lek Man Lei
- Department of Electromechanical EngineeringFaculty of Science and TechnologyUniversity of MacauMacau SAR999078China
| | - Lin He
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Chu‐Xia Deng
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| |
Collapse
|
17
|
Lingel H, Fischer L, Remstedt S, Kuropka B, Philipsen L, Han I, Sander JE, Freund C, Arra A, Brunner-Weinzierl MC. SLAMF7 (CD319) on activated CD8 + T cells transduces environmental cues to initiate cytotoxic effector cell responses. Cell Death Differ 2025; 32:561-572. [PMID: 39390117 PMCID: PMC11893764 DOI: 10.1038/s41418-024-01399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
CD8+ T-cell responses are meticulously orchestrated processes regulated by intercellular receptor:ligand interactions. These interactions critically control the dynamics of CD8+ T-cell populations that is crucial to overcome threats such as viral infections or cancer. Yet, the mechanisms governing these dynamics remain incompletely elucidated. Here, we identified a hitherto unknown T-cell referred function of the self-ligating surface receptor SLAMF7 (CD319) on CD8+ T cells during initiation of cytotoxic T-cell responses. According to its cytotoxicity related expression on T effector cells, we found that CD8+ T cells could utilize SLAMF7 to transduce environmental cues into cellular interactions and information exchange. Indeed, SLAMF7 facilitated a dose-dependent formation of stable homotypic contacts that ultimately resulted in stable cell-contacts, quorum populations and commitment to expansion and differentiation. Using pull-down assays and network analyses, we identified novel SLAMF7-binding intracellular signaling molecules including the CRK, CRKL, and Nck adaptors, which are involved in T-cell contact formation and may mediate SLAMF7 functions in sensing and adhesion. Hence, providing SLAMF7 signals during antigen recognition of CD8+ T cells enhanced their overall magnitude, particularly in responses towards low-affinity antigens, resulting in a significant boost in their proliferation and cytotoxic capacity. Overall, we have identified and characterized a potent initiator of the cytotoxic T lymphocyte response program and revealed advanced mechanisms to improve CD8+ T-cell response decisions against weak viral or tumor-associated antigens, thereby strengthening our defense against such adversaries.
Collapse
Affiliation(s)
- Holger Lingel
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Laura Fischer
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sven Remstedt
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lars Philipsen
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Multi-parametric bioimaging and cytometry (MPBIC) core facility, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Cellular and Molecular Immunology, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Irina Han
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jan-Erik Sander
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Aditya Arra
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C Brunner-Weinzierl
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
18
|
Kornuta CA, Bidart JE, Soria I, Quattrocchi V, Gammella M, Tribulatti MV, Campetella O, Prato CA, Carabelli J, Cheuquepán FA, Hecker YP, Moore PD, Zamorano PI, Langellotti CA. Galectin-8 and GEL01 as potential adjuvants to enhance the immune response induced by a DNA vaccine against bovine alphaherpesvirus Type-1. Virology 2025; 604:110402. [PMID: 39854916 DOI: 10.1016/j.virol.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Bovine alphaherpesvirus-1 (BoAHV-1) causes several symptoms in cattle, leading to significant costs for the livestock industry. In this study, we used a plasmid encoding a secreted form of BoAHV-1 glycoprotein D (pCIgD) as a DNA vaccine. To enhance the potency of the pCIgD vaccine, we used Montanide™ GEL01 PR (GEL01) and introduced Galectin-8 (Gal-8), a lectin considered a novel adjuvant due to its immunostimulatory effects, into the formulation. Animals were vaccinated with pCIgD, pCIgD with Gal-8 (pCIgD-Gal-8), pCIgD with Gal-8 and GEL01 (pCIgD-Gal-8-GEL01), or the control plasmid pCIneo. The immune response was first assessed in a mouse model and then in bovines. The results showed that combining Gal-8 and GEL01 with pCIgD modulated immune responses at both the humoral and cellular levels in both animal models. This study evaluates the efficacy of a DNA vaccine with Gal-8 and GEL01 as potential adjuvants to enhance immune protection against BoAHV-1.
Collapse
Affiliation(s)
- Claudia Alejandra Kornuta
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Juan Esteban Bidart
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - María Virginia Tribulatti
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Oscar Campetella
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Cecilia Arahí Prato
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Julieta Carabelli
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Felipe Andrés Cheuquepán
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS (INTA-CONICET), Balcarce, Argentina
| | - Yanina Paola Hecker
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS (INTA-CONICET), Balcarce, Argentina
| | - Prando Dadin Moore
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS (INTA-CONICET), Balcarce, Argentina
| | - Patricia Inés Zamorano
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia Ana Langellotti
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Liu SY, Hsu CL, Yang SF, Lee HS, Sheu JC, Weng MT. Intratumoral administration of poly-ICLC enhances the antitumor effects of anti-PD-1. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2025; 32:139-150. [PMID: 39538381 DOI: 10.1002/jhbp.12088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors are effective to treat hepatocellular carcinoma (HCC) yet only successful in a small part of patients. This study aimed to investigate whether poly-ICLC, an immune stimulant, can enhance the antitumor effects of anti-PD-1 on mouse HCC. METHODS We established two syngeneic HCC mouse models with BNL cells in BALB/c mice and Hep-55.1 C cells in C57BL/6 J mice. Mice with subcutaneous HCC tumors received one of five treatments: control, anti-PD-1, intratumoral (IT) poly-ICLC, anti-PD-1 plus intramuscular (IM) poly-ICLC, or anti-PD-1 plus IT poly-ICLC. Tumor volumes were measured, CD8+ T lymphocytes in tumors and spleen were analyzed, and interferon-γ activity was assessed by ELISpot. Immune cell types and abundance were evaluated with NanoString nCounter IO360 panels. RESULTS Cotreatment with poly-ICLC significantly enhanced the antitumor effects of anti-PD-1, with IT administration being more effective than IM. IT poly-ICLC also induced more significant CD8+ T cell infiltration and interferon-γ activity in the tumor and spleen, and more upregulation of both interferon-γ and M1 macrophage signals in the tumor microenvironment while downregulating several cancer-promoting pathways. CONCLUSIONS Combination therapy with poly-ICLC, especially through IT route, and anti-PD-1 provides significantly greater antitumor effects than anti-PD-1 monotherapy in syngeneic mouse models of HCC.
Collapse
Affiliation(s)
- Shin-Yun Liu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Feng Yang
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Hsuan-Shu Lee
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| |
Collapse
|
20
|
Chang TH, Ho PC. Interferon-driven Metabolic Reprogramming and Tumor Microenvironment Remodeling. Immune Netw 2025; 25:e8. [PMID: 40078784 PMCID: PMC11896656 DOI: 10.4110/in.2025.25.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
IFNs play a critical role in cancer biology, including impacting tumor cell behavior and instructing the tumor microenvironment (TME). IFNs recently have been shown to reprogram tumor metabolism through distinct mechanisms. Furthermore, IFNs shape the TME by modulating immune cell infiltration and function, contributing to the intricate interaction between the tumor and stromal cells. This review summarizes the effects of IFNs on metabolic reprogramming and their impacts on the function of immune cells within the TME, with a particular focus on the dual roles of IFNs in mediating both anti-tumor and pro-tumor immune responses. Understanding the significance of IFNs-mediated processes aids to advise future therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Tzu-Hsuan Chang
- Department of Fundamental Oncology, University of Lausanne, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, 1015 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
You JF, Lee CC, Lee YS, Chern YJ, Liao CK, Hsu HC. Prognostic significance of perioperative circulating CD56 bright NK cell and recovery of NK cell activity in patients with colorectal cancer undergoing radical surgery. Transl Oncol 2025; 52:102198. [PMID: 39657310 PMCID: PMC11683267 DOI: 10.1016/j.tranon.2024.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Natural killer (NK) cell activity (NKA) is downregulated in patients with colorectal cancer (CRC), and its dysfunction is possibly associated with increased risk of recurrence. However, its role in prognosis of CRC remains unclear. Prior research has shown that surgical stress can suppress NKA. This study explores the relationship between NK cell/NKA and clinicopathological factors during the perioperative period in patients with CRC. METHODS We prospectively enrolled 45 patients with CRC. Venous blood samples were collected preoperatively and on postoperative day 3 (POD3) and 30 (POD30). NKA was assessed by measuring the plasma levels of NK cell-secreted IFN-γ. RESULTS NKA was significantly reduced on POD3 compared with baseline levels before surgery but showed significant recovery by POD30. NKA on POD30 was considerably higher in patients with advanced disease stages or one or more high-risk preoperative factors. Additionally, a higher NKA recovery in patients with advanced stage exhibited improved recurrence-free survival (RFS) and progression-free survival (PFS) (hazards ratio (HR): 0.2442). Furthermore, an increased percentage of CD56bright NK cells and a higher CD56bright/CD56dim NK cell ratio postoperatively on POD30 were associated with better RFS/PFS (HR: 0.2732, P = 0.0433 and HR: 0.2193, P = 0.024, respectively). CONCLUSIONS Our findings indicate that a notable postoperative increase in CD56bright NK cells on POD30, both in percentage and ratio, correlates with a more favorable prognosis in CRC patients. Additionally, higher recovery rates of NKA in patients with advanced stages may offer potential applications in risk stratification and the development of treatment strategies for CRC.
Collapse
Affiliation(s)
- Jeng-Fu You
- Department of Colon and Rectal Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chi Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Yih-Jong Chern
- Department of Colon and Rectal Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Kai Liao
- Department of Colon and Rectal Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chih Hsu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Hematology-Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2025; 36:91-117. [PMID: 39240134 PMCID: PMC11717358 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B. Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C. Y. Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J. Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L. Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
23
|
Zhao Z, Fetse J, Mamani UF, Guo Y, Li Y, Patel P, Liu Y, Lin CY, Li Y, Mustafa B, Cheng K. Development of a peptide-based tumor-activated checkpoint inhibitor for cancer immunotherapy. Acta Biomater 2025; 193:484-497. [PMID: 39716541 PMCID: PMC11788053 DOI: 10.1016/j.actbio.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction. The peptide was modified with a PEG chain through a novel matrix metalloproteinase-2 (MMP-2)-specific cleavage linker. The modified TR3 peptide self-assembles into a micelle-like nanoparticle (TR3-M-NP), which remains inactive and unable to block the PD-1/PD-L1 interaction in its native form. However, upon cleavage by MMP-2 in tumors, it releases the active peptide. The TR3-M-NP5k nanoparticle was specifically activated in tumors through enzyme-mediated cleavage, leading to the inhibition of tumor growth and extended survival compared to control groups. In summary, TR3-M-NP shows great potential as a tumor-responsive immunotherapy agent with reduced toxicities. STATEMENT OF SIGNIFICANCE: In this study, we developed a bioactive peptide-based checkpoint inhibitor that is active only in tumors and not in normal tissues, thereby potentially avoiding immune-related adverse effects. We discovered a short anti-PD-L1 peptide, TR3, that blocks the PD-1/PD-L1 interaction. We chemically modified the TR3 peptide to self-assemble into a micelle-like nanoparticle (TR3-M-NP), which itself cannot block the PD-1/PD-L1 interaction but releases the active TR3 peptide in tumors upon cleavage by MMP-2. In contrast, the nanoparticle is randomly degraded in normal tissues into peptides fragments that cannot block the PD-1/PD-L1 interaction. Upon intraperitoneal injection, TR3-M-NP5k was activated specifically in tumors through enzyme cleavage, leading to the inhibition of tumor growth and extended survival compared to the control groups. In summary, TR3-M-NP holds significant promise as a tumor-responsive immunotherapy agent with reduced toxicities. The bioactive platform has the potential to be used for other types of checkpoint inhibitor.
Collapse
Affiliation(s)
- Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yuhan Guo
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Pratikkumar Patel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yongren Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Bahaa Mustafa
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
24
|
Lee S, Kim EW, Lee HR, Lim SU, Jung CK, Kang YJ, Jung GA, Oh IH. Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD). Int J Mol Sci 2025; 26:847. [PMID: 39859561 PMCID: PMC11766046 DOI: 10.3390/ijms26020847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
The immune-modulatory effects of mesenchymal stromal cells (MSCs) are widely used to treat inflammatory disorders, with indoleamine 2,4-dioxygenase-1 (IDO-1) playing a pivotal role in suppressing stimulated T-cell proliferation. Taking that three-dimensional (3D) cultures enhance MSCs' anti-inflammatory properties compared with two-dimensional (2D) cultures, the differentially expressed miRNAs were examined. Thus, we identified hsa-miR-4662a-5p (miR-4662a) as a key inducer of IDO-1 via its suppression of bridging integrator-1 (BIN-1), a negative regulator of the IDO-1 gene. The IDO-1-inducing potential of miR-4662a was conserved across primary MSCs from various donors and sources but exhibited variability. Notably, iPSC-derived MSCs (iMSCs) demonstrated superior IDO-1 induction and immune-modulatory efficacy compared with their donor-matched primary MSCs. Accordingly, iMSCs expressing miR-4662a (4662a/iMSC) exhibited stronger suppressive effects on T-cell proliferation and more potent suppressive effects on graft-versus-host disease (GVHD), improving survival rates and reducing tissue damage in the liver and gut. Our results point to the therapeutic potential of standardized, off-the-shelf 4662a/iMSC as a robust immune-modulating cell therapy for GVHD.
Collapse
Affiliation(s)
- Susie Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eung-Won Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| | - Sun-Ung Lim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| | - Chan Kwon Jung
- Department of Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Young-Ju Kang
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| | - Gyung-Ah Jung
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
25
|
Ding X, Zhang L, Fan M, Li L. Network-based transfer of pan-cancer immunotherapy responses to guide breast cancer prognosis. NPJ Syst Biol Appl 2025; 11:4. [PMID: 39788975 PMCID: PMC11720706 DOI: 10.1038/s41540-024-00486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Breast cancer prognosis is complicated by tumor heterogeneity. Traditional methods focus on cancer-specific gene signatures, but cross-cancer strategies that provide deeper insights into tumor homogeneity are rarely used. Immunotherapy, particularly immune checkpoint inhibitors, results from variable responses across cancers, offering valuable prognostic insights. We introduced a network-based transfer (NBT) of pan-cancer immunotherapy responses to enhance breast cancer prognosis using node embedding and heat diffusion algorithms, identifying gene signatures netNE and netHD. Our results showed that netHD and netNE outperformed seven established breast cancer signatures in prognostic metrics, with netHD excelling. All nine gene signatures were grouped into three clusters, with netHD and netNE enriching the immune-related interferon-gamma pathway. Stratifying TCGA patients into two groups based on netHD revealed significant immunological differences and variations in 20 of 50 cancer hallmarks, emphasizing immune-related markers. This approach leverages pan-cancer insights to enhance breast cancer prognosis, facilitating insight transfer and improving tumor homogeneity understanding.Abstract graph of network-based insights translating pan-cancer immunotherapy responses to breast cancer prognosis. This abstract graph illustrates the conceptual framework for transferring immunotherapy response insights from pan-cancer studies to breast cancer prognosis. It highlights the integration of PPI networks to bridge genetic data and clinical phenotypes. The network-based method facilitates the identification of prognostic gene signatures in breast cancer by leveraging immunotherapy response information, providing a novel perspective on tumor homogeneity and its implications for clinical outcomes.
Collapse
Affiliation(s)
- Xiaobao Ding
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, China
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
| | - Lin Zhang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China.
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China.
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China.
| |
Collapse
|
26
|
Jeon SY, Shin HS, Lee H, Lee JO, Kim YS. The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells. Anim Cells Syst (Seoul) 2025; 29:46-56. [PMID: 39777022 PMCID: PMC11703469 DOI: 10.1080/19768354.2024.2442393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas. The tumor cells expressing sIFNγ and mbIFNγ/Fas showed slower growth rates compared to the mock-transfected cells. Furthermore, the tumorigenicity of the CT26 cells expressing mbIFNγ/Fas was significantly lower than that of cells expressing sIFNγ or the mock control. Remarkably, about 85% of the mice injected with the mbIFNγ/Fas-expressing tumors remained tumor-free for over two months. Mice that rejected mbIFNγ/Fas-expressing tumors developed systemic anti-tumor immunity against CT26 cells, which was characterized by enhanced levels of CD4+ and CD8+ T cells, as well as natural killer (NK) cells. Interestingly, splenocytes activated with the mbIFNγ/Fas-expressing tumors exhibited higher cytotoxicity than those activated with tumor cells expressing sIFNγ. These findings suggest that expressing the mbIFNγ/Fas chimera in tumor cells could be a promising strategy for developing whole tumor cell vaccines or gene therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Seo Yeon Jeon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| | - Hee-Su Shin
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| | - Hayyoung Lee
- Department of Life Sciences and Postech Biotech Center, POSTECH, Pohang, Korea
| | - Jie-Oh Lee
- Department of Life Sciences and Institute of Membrane Proteins, POSTECH, Pohang, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea
| |
Collapse
|
27
|
Shi Y, McKenery A, Dolan M, Mastri M, Hill JW, Dommer A, Benzekry S, Long M, Abrams SI, Puzanov I, Ebos JML. Acquired resistance to PD-L1 inhibition enhances a type I IFN-regulated secretory program in tumors. EMBO Rep 2025; 26:521-559. [PMID: 39663510 PMCID: PMC11772817 DOI: 10.1038/s44319-024-00333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors 'rewires' tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.
Collapse
Affiliation(s)
- Yuhao Shi
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Amber McKenery
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Melissa Dolan
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - James W Hill
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, USA
| | - Adam Dommer
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Sebastien Benzekry
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis-Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Faculté de Pharmacie, Aix-Marseille University, Marseille, France
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - John M L Ebos
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
28
|
Müller CB, Tümmler LM, Reyer H, Viergutz T, Kuhla B. Interactions between rumen epithelium-associated microbiota and host immunological and metabolic adaptations in response to different milk replacer feeding intensities in dairy calves. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:287-300. [PMID: 39640544 PMCID: PMC11617301 DOI: 10.1016/j.aninu.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/06/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024]
Abstract
The milk replacer feeding regime in dairy calves has a great impact on metabolic and immunological functioning and affects animal welfare and lifetime performance. The feeding regime influences the rumen microbial composition, and epithelium-associated microbes may interact with the immune system of the host. We examined the correlations between blood leukocyte counts and the rumen epithelium-associated microbiome in dairy calves fed 2 different milk replacer feeding intensities and if these factors related to metabolic traits. Fourteen newborn female dairy calves were allocated to a group receiving either 10% (n = 7) or 20% (n = 7) milk replacer of their body weight (on average 41 kg) and provided ad libitum access to grass hay and concentrate pellets. At 3 weeks of life, all calves were fitted with a rumen cannula. Calves were weaned at 12 weeks of life and received a total mixed ration for ad libitum intake. Pre- (8-10 weeks of life) and post-weaning (21-23 weeks of life), methane production was measured in respiration chambers, and rumen epithelium and blood were sampled for 16S rRNA sequencing and leukocyte analyses, respectively. Pre-weaning, the reduced milk replacer feeding intensity was accompanied with higher concentrate intake but lower growth performance (P < 0.001), a higher abundance of amylolytic and lower abundance of cellulolytic epimural microbes. The group fed a low milk replacer intensity had also greater portions of monocytes (P = 0.031), CD8+ (P < 0.001), and CD14+ (P = 0.044) leukocytes, suggesting elevated inflammatory conditions. Correlations between CD8+ T cells and rumen methanogens, Ruminococcaceae, and Lachnospiraceae were recorded, but these were not consistent throughout maturation. Post-weaning, differences in feed intake and rumen microbial composition converged among milk replacer groups, while differences in growth performance (P = 0.040) and CD8+ cells (P < 0.001) were still present. In conclusion, a reduced milk replacer feeding intensity in dairy calves compromised growth performance and immunity and this effect persisted in the long-term. Significant correlations between the proportion of leukocytes and distinct epimural microbe taxa indicated an interplay between rumen epimural colonization and immune functioning of the host. However, further research is required addressing this interplay between rumen epimural microbes and immune functioning in dairy calves.
Collapse
Affiliation(s)
| | | | - Henry Reyer
- Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Torsten Viergutz
- Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Björn Kuhla
- Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
29
|
Wang N, Wang C, Wei C, Chen M, Gao Y, Zhang Y, Wang T. Constructing the cGAMP-Aluminum Nanoparticles as a Vaccine Adjuvant-Delivery System (VADS) for Developing the Efficient Pulmonary COVID-19 Subunit Vaccines. Adv Healthc Mater 2024; 13:e2401650. [PMID: 39319481 DOI: 10.1002/adhm.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The cGAMP-aluminum nanoparticles (CAN) are engineered as a vaccine adjuvant-delivery system to carry mixed RBD (receptor-binding domain) of the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variant for developing bivalent pulmonary coronavirus disease 2019 (COVID-19) vaccines (biRBD-CAN). High phosphophilicity/adsorptivity made intrapulmonary CAN instantly form the pulmonary ingredient-coated CAN (piCAN) to possess biomimetic features enhancing biocompatibility. In vitro biRBD-CAN sparked APCs (antigen-presenting cells) to mature and make extra reactive oxygen species, engendered lysosome escape effects and enhanced proteasome activities. Through activating the intracellular stimulator of interferon genes (STING) and nucleotide-binding domain and leucine-rich repeat and pyrin domain containing proteins 3 (NALP3) inflammasome pathways to exert synergy between cGAMP and AN, biRBD-CAN stimulated APCs to secret cytokines favoring mixed Th1/Th2 immunoresponses. Mice bearing twice intrapulmonary biRBD-CAN produced high levels of mucosal antibodies, the long-lasting systemic antibodies, and potent cytotoxic T lymphocytes which efficiently erased cells displaying cognate epitopes. Notably, biRBD-CAN existed in mouse lungs and different lymph nodes for at least 48 h, unveiling their sustained immunostimulatory activity as the main mechanism underlying the long-lasting immunity and memory. Hamsters bearing twice intrapulmonary biRBD-CAN developed high resistance to pseudoviral challenges performed using different recombinant strains including the ones with distinct SARS-CoV-2-spike mutations. Thus, biRBD-CAN as a broad-spectrum pulmonary COVID-19 vaccine candidate may provide a tool for controlling the emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 420 Jade Road, Hefei, Anhui Province, 230601, China
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Can Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
- Department of Pharmacy, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Lianyungang, Jiangsu Province, 222006, China
| | - Chunliu Wei
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuhao Gao
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuxi Zhang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| |
Collapse
|
30
|
Zhang Z, Yu C, Chen Z, Hou P, Sun J, Yang C, Tian Y, Yang Z, Yang Y, Shang S. Holstein × Montbéliarde-sired F1 generation crossbred female calves have an increased cellular immune response potential compared with purebred Holsteins. Vet Q 2024; 44:1-10. [PMID: 39625805 PMCID: PMC11616738 DOI: 10.1080/01652176.2024.2435982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/06/2024] Open
Abstract
It is well known that crossbreds show many advantages over purebreds in improving calf health traits, but the immunological factors responsible for this heterosis remain largely unclear. The objective of this study was to compare the cellular immune responses and antibodies of Holstein (HO) and Montbéliarde-sired × Holstein (MH) F1 generation female calves, and investigate the effects of crossbreeding on the immunity. Fifty three-month-old healthy female calves (25 HO, 25 MH) were selected meticulously in a farm with the same criteria. Subsequently, complete blood count, flow cytometric analysis of T cell subsets and intracellular IFN-γ production, as well as indirect ELISA analysis of antibodies were performed in order to determine the immune profiles of the two groups of calves. We found that MH calves had higher percentage and number of CD4+ and CD8+ T cells than HO calves in the peripheral blood (p < 0.05), with higher MFI of CD44 on CD4+ and CD8+ T cells (p < 0.05). When stimulated by PMA and Ionomycin, the CD4+ and CD8+ T cells from MH calves secreted more IFN-γ than that of HO calves (p < 0.01). These results suggested that some immunological traits have been improved in MH calves, which may be an important cause of heterosis in crossbred animals.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chen Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hou
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou, China
| | - Jie Sun
- Shenzhen Academy of Inspection and Quarantine Sciences, Shenzhen, China
| | - Chunhua Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Yu Tian
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Shaobin Shang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
31
|
Kapetanovic E, Weber CR, Bruand M, Pöschl D, Kucharczyk J, Hirth E, Dietsche C, Khan R, Wagner B, Belli O, Vazquez-Lombardi R, Castellanos-Rueda R, Di Roberto RB, Kalinka K, Raess L, Ly K, Rai S, Dittrich PS, Platt RJ, Oricchio E, Reddy ST. Engineered allogeneic T cells decoupling T-cell-receptor and CD3 signalling enhance the antitumour activity of bispecific antibodies. Nat Biomed Eng 2024; 8:1665-1681. [PMID: 39322719 PMCID: PMC11668682 DOI: 10.1038/s41551-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2024] [Indexed: 09/27/2024]
Abstract
Bispecific antibodies (biAbs) used in cancer immunotherapies rely on functional autologous T cells, which are often damaged and depleted in patients with haematological malignancies and in other immunocompromised patients. The adoptive transfer of allogeneic T cells from healthy donors can enhance the efficacy of biAbs, but donor T cells binding to host-cell antigens cause an unwanted alloreactive response. Here we show that allogeneic T cells engineered with a T-cell receptor that does not convert antigen binding into cluster of differentiation 3 (CD3) signalling decouples antigen-mediated T-cell activation from T-cell cytotoxicity while preserving the surface expression of the T-cell-receptor-CD3 signalling complex as well as biAb-mediated CD3 signalling and T-cell activation. In mice with CD19+ tumour xenografts, treatment with the engineered human cells in combination with blinatumomab (a clinically approved biAb) led to the recognition and clearance of tumour cells in the absence of detectable alloreactivity. Our findings support the development of immunotherapies combining biAbs and 'off-the-shelf' allogeneic T cells.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Animals
- Humans
- CD3 Complex/immunology
- CD3 Complex/metabolism
- T-Lymphocytes/immunology
- Signal Transduction/drug effects
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Lymphocyte Activation/immunology
- Lymphocyte Activation/drug effects
- Cell Line, Tumor
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cell Engineering/methods
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Xenograft Model Antitumor Assays
- Allogeneic Cells/immunology
Collapse
Affiliation(s)
- Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marine Bruand
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Daniel Pöschl
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jakub Kucharczyk
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisabeth Hirth
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Claudius Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Riyaz Khan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Raphael B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Kalinka
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Luca Raess
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Ly
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shivam Rai
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
32
|
Ruffenach G, Medzikovic L, Aryan L, Sun W, Lertpanit L, O'Connor E, Dehghanitafti A, Hatamnejad MR, Li M, Reddy ST, Eghbali M. Intestinal IFNα4 promotes 15-HETE diet-induced pulmonary hypertension. Respir Res 2024; 25:419. [PMID: 39609844 PMCID: PMC11606228 DOI: 10.1186/s12931-024-03046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVES Pulmonary arterial hypertension (PAH) is characterized by the remodeling of the pulmonary vascular bed leading to elevation of the pulmonary arterial pressure. Oxidized fatty acids, such as hydroxyeicosatetraenoic acids (HETEs), play a critical role in PAH. We have previously established that dietary supplementation of 15-HETE is sufficient to cause PH in mice, suggesting a role for the gut-lung axis. However, the mechanisms are not known. APPROACH Analysis of RNA-seq data obtained from the lungs and intestines of mice on 15-HETE diet together with transcriptomic data from PAH patient lungs identified IFN inducible protein 44 (IFI44) as the only gene significantly upregulated in mice and humans. We demonstrate that IFI44 is also significantly increased in PBMCs from PAH patients. In mice, 15-HETE diet enhances IFI44 and its inducer IFN⍺4 expression sequentially in the intestine first and then in the lungs. IFI44 expression in PAH is highly correlated with expression of Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL), which is upregulated in CD8 cells in PH lungs of both mice and humans. We show that IFNα4 produced by intestinal epithelial cells facilitates IFI44 expression in CD8 cells. Finally, we demonstrate that IFN receptor 1-KO in mice do not develop PH on 15-HETE diet. In addition, silencing IFI44 expression in the lungs of mice on 15-HETE diet prevents the development of PH and is associated with significantly lower expression of IFI44 and TRAIL in CD8 cells in the lungs. CONCLUSION Our data reveal a novel gut-lung axis driven by 15-HETE in PH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| | - Lejla Medzikovic
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Laila Aryan
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Wasila Sun
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Long Lertpanit
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-7115, USA
| | - Ellen O'Connor
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-7115, USA
| | - Ateyeh Dehghanitafti
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Min Li
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, CHS BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
33
|
Hwang SH, Yang Y, Jung JH, Kim JW, Kim Y. Stearoyl-CoA desaturase in CD4 + T cells suppresses tumor growth through activation of the CXCR3/CXCL11 axis in CD8 + T cells. Cell Biosci 2024; 14:137. [PMID: 39543650 PMCID: PMC11566202 DOI: 10.1186/s13578-024-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Within the tumor microenvironment, altered lipid metabolism promotes cancer cell malignancy by activating oncogenic cascades; however, impact of lipid metabolism in CD4+ tumor-infiltrating lymphocytes (TILs) remains poorly understood. Here, we elucidated that role of stearoyl-CoA desaturase (SCD) increased by treatment with cancer-associated fibroblast (CAF) supernatant in CD4+ T cells on their subset differentiation and activity of CD8+ T cells. RESULTS In our study, we observed that CD4+ TILs had higher lipid droplet content than CD4+ splenic T cells. In tumor tissue, CAF-derived supernatant provided fatty acids to CD4+ TILs, which increased the expression of SCD and oleic acid (OA) content. Increased SCD expression by OA treatment enhanced the levels of Th1 cell markers TBX21, interleukin-2, and interferon-γ. However, SCD inhibition upregulated the expression of regulatory T (Treg) cell markers, FOXP3 and transforming growth factor-β. Comparative fatty acid analysis of genetically engineered Jurkat cells revealed that OA level was significantly higher in SCD-overexpressing cells. Overexpression of SCD increased expression of Th1 cell markers, while treatment with OA enhanced the transcriptional level of TBX21 in Jurkat cells. In contrast, palmitic acid which is higher in SCD-KO cells than other subclones enhanced the expression of Treg cell markers through upregulation of mitochondrial superoxide. Furthermore, SCD increased the secretion of the C-X-C motif chemokine ligand 11 (CXCL11) from CD4+ T cells. The binding of CXCL11 to CXCR3 on CD8+ T cells augmented their cytotoxic activity. In a mouse tumor model, the suppressive effect of CD8+ T cells on tumor growth was dependent on CXCR3 expression. CONCLUSION These findings illustrate that SCD not only orchestrates the differentiation of T helper cells, but also promotes the antitumor activity of CD8+ T cells, suggesting its function in adverse tumor microenvironments.
Collapse
Affiliation(s)
- Sung-Hyun Hwang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- BK21 Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Yeseul Yang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jae-Ha Jung
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, Korea
| | - Yongbaek Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
34
|
Gaimari A, De Lucia A, Nicolini F, Mazzotti L, Maltoni R, Rughi G, Zurlo M, Marchesini M, Juan M, Parras D, Cerchione C, Martinelli G, Bravaccini S, Tettamanti S, Pasetto A, Pasini L, Magnoni C, Gazzola L, Borges de Souza P, Mazza M. Significant Advancements and Evolutions in Chimeric Antigen Receptor Design. Int J Mol Sci 2024; 25:12201. [PMID: 39596267 PMCID: PMC11595069 DOI: 10.3390/ijms252212201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells are genetically engineered T cells with synthetic receptors capable of recognising and targeting tumour-specific or tumour-associated antigens. By leveraging the intrinsic cytotoxicity of T cells and enhancing their tumour-targeting specificity, CAR-T cell therapy holds immense potential in achieving long-term remission for cancer patients. However, challenges such as antigen escape and cytokine release syndrome underscore the need for the continued optimisation and refinement of CAR-T cell therapy. Here, we report on the challenges of CAR-T cell therapies and on the efforts focused on innovative CAR design, on diverse therapeutic strategies, and on future directions for this emerging and fast-growing field. The review highlights the significant advances and changes in CAR-T cell therapy, focusing on the design and function of CAR constructs, systematically categorising the different CARs based on their structures and concepts to guide researchers interested in ACT through an ever-changing and complex scenario. UNIVERSAL CARs, engineered to recognise multiple tumour antigens simultaneously, DUAL CARs, and SUPRA CARs are some of the most advanced instances. Non-molecular variant categories including CARs capable of secreting enzymes, such as catalase to reduce oxidative stress in situ, and heparanase to promote infiltration by degrading the extracellular matrix, are also explained. Additionally, we report on CARs influenced or activated by external stimuli like light, heat, oxygen, or nanomaterials. Those strategies and improved CAR constructs in combination with further genetic engineering through CRISPR/Cas9- and TALEN-based approaches for genome editing will pave the way for successful clinical applications that today are just starting to scratch the surface. The frontier lies in bringing those approaches into clinical assessment, aiming for more regulated, safer, and effective CAR-T therapies for cancer patients.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Genetic Engineering
Collapse
Affiliation(s)
- Anna Gaimari
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Anna De Lucia
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Fabio Nicolini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Lucia Mazzotti
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Roberta Maltoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanna Rughi
- Centro Trial Oncoematologico, Department of “Onco-Ematologia e Terapia Cellulare e Genica Bambino” Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Matteo Zurlo
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Matteo Marchesini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Manel Juan
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, 08036 Barcelona, Spain;
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Claudio Cerchione
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanni Martinelli
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Sara Bravaccini
- Faculty of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, 20900 Monza, Italy;
| | | | - Luigi Pasini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Chiara Magnoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Luca Gazzola
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Patricia Borges de Souza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Massimiliano Mazza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| |
Collapse
|
35
|
Sargsian A, Koutsoumpou X, Girmatsion H, Egil C, Buttiens K, Luci CR, Soenen SJ, Manshian BB. Silver nanoparticle induced immunogenic cell death can improve immunotherapy. J Nanobiotechnology 2024; 22:691. [PMID: 39523339 PMCID: PMC11552147 DOI: 10.1186/s12951-024-02951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer immunotherapy is often hindered by an immunosuppressive tumor microenvironment (TME). Various strategies are being evaluated to shift the TME from an immunologically 'cold' to 'hot' tumor and hereby improve current immune checkpoint blockades (ICB). One particular hot topic is the use of combination therapies. Here, we set out to screen a variety of metallic nanoparticles and explored their in vitro toxicity against a series of tumor and non-tumor cell lines. For silver nanoparticles, we also explored the effects of core size and surface chemistry on cytotoxicity. Ag-citrate-5 nm nanoparticles were found to induce high cytotoxicity in Renca cells through excessive generation of reactive oxygen species (ROS) and significantly increased cytokine production. The induced toxicity resulted in a shift of the immunogenic cell death (ICD) marker calreticulin to the cell surface in vitro and in vivo. Subcutaneous Renca tumors were treated with anti-PD1 or in combination with Ag-citrate-5 nm. The combination group resulted in significant reduction in tumor size, increased necrosis, and immune cell infiltration at the tumor site. Inhibition of cytotoxic CD8 + T cells confirmed the involvement of these cells in the observed therapeutic effects. Our results suggest that Ag-citrate-5 nm is able to promote immune cell influx and increase tumor responsiveness to ICB therapies.
Collapse
Affiliation(s)
- Ara Sargsian
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Hermon Girmatsion
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Can Egil
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Kiana Buttiens
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Bella B Manshian
- NanoHealth and Optical Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Dhall A, Patiyal S, Raghava GPS. A hybrid method for discovering interferon-gamma inducing peptides in human and mouse. Sci Rep 2024; 14:26859. [PMID: 39501025 PMCID: PMC11538504 DOI: 10.1038/s41598-024-77957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Interferon-gamma (IFN-γ) is a versatile pleiotropic cytokine essential for both innate and adaptive immune responses. It exhibits both pro-inflammatory and anti-inflammatory properties, making it a promising therapeutic candidate for treating various infectious diseases and cancers. We present IFNepitope2, a host-specific technique to annotate IFN-γ inducing peptides, it is an updated version of IFNepitope introduced by Dhanda et al. In this study, dataset used for developing prediction method contain experimentally validated 25,492 and 7983 IFN-γ inducing peptides in human and mouse host, respectively. In initial phase, machine learning techniques have been exploited to develop classification model using wide range of peptide features. Further, to improve machine learning based models or alignment free models, we explore potential of similarity-based technique BLAST. Finally, a hybrid model has been developed that combine best machine learning based model with BLAST. In most of the case, models based on extra tree perform better than other machine learning techniques. In case of peptide features, compositional feature particularly dipeptide composition performs better than one-hot encoding or binary profile. Our best machine learning based models achieved AUROC 0.89 and 0.83 for human and mouse host, respectively. The hybrid model achieved the AUROC 0.90 and 0.85 for human and mouse host, respectively. All models have been evaluated on an independent/validation dataset not used for training or testing these models. Newly developed method performs better than existing method on independent dataset. The major objective of this study is to predict, design and scan IFN-γ inducing peptides, thus server/software have been developed ( https://webs.iiitd.edu.in/raghava/ifnepitope2/ ). This method is also available as standalone at https://github.com/raghavagps/ifnepitope2 and python package index at https://pypi.org/project/ifnepitope2/ .
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India.
| |
Collapse
|
37
|
Panico C, Felicetta A, Kunderfranco P, Cremonesi M, Salvarani N, Carullo P, Colombo F, Idini A, Passaretti M, Doro R, Rubino M, Villaschi A, Da Rin G, Peano C, Kallikourdis M, Greco CM, Condorelli G. Single-Cell RNA Sequencing Reveals Metabolic Stress-Dependent Activation of Cardiac Macrophages in a Model of Dyslipidemia-Induced Diastolic Dysfunction. Circulation 2024; 150:1517-1532. [PMID: 38126199 DOI: 10.1161/circulationaha.122.062984] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Metabolic distress is often associated with heart failure with preserved ejection fraction (HFpEF) and represents a therapeutic challenge. Metabolism-induced systemic inflammation links comorbidities with HFpEF. How metabolic changes affect myocardial inflammation in the context of HFpEF is not known. METHODS We found that ApoE knockout mice fed a Western diet recapitulate many features of HFpEF. Single-cell RNA sequencing was used for expression analysis of CD45+ cardiac cells to evaluate the involvement of inflammation in diastolic dysfunction. We focused bioinformatics analysis on macrophages, obtaining high-resolution identification of subsets of these cells in the heart, enabling us to study the outcomes of metabolic distress on the cardiac macrophage infiltrate and to identify a macrophage-to-cardiomyocyte regulatory axis. To test whether a clinically relevant sodium glucose cotransporter-2 inhibitor could ameliorate the cardiac immune infiltrate profile in our model, mice were randomized to receive the sodium glucose cotransporter-2 inhibitor dapagliflozin or vehicle for 8 weeks. RESULTS ApoE knockout mice fed a Western diet presented with reduced diastolic function, reduced exercise tolerance, and increased pulmonary congestion associated with cardiac lipid overload and reduced polyunsaturated fatty acids. The main immune cell types infiltrating the heart included 4 subpopulations of resident and monocyte-derived macrophages, determining a proinflammatory profile exclusively in ApoE knockout-Western diet mice. Lipid overload had a direct effect on inflammatory gene activation in macrophages, mediated through endoplasmic reticulum stress pathways. Investigation of the macrophage-to-cardiomyocyte regulatory axis revealed the potential effects on cardiomyocytes of multiple inflammatory cytokines secreted by macrophages, affecting pathways such as hypertrophy, fibrosis, and autophagy. Finally, we describe an anti-inflammatory effect of sodium glucose cotransporter-2 inhibition in this model. CONCLUSIONS Using single-cell RNA sequencing in a model of diastolic dysfunction driven by hyperlipidemia, we have determined the effects of metabolic distress on cardiac inflammatory cells, in particular on macrophages, and suggest sodium glucose cotransporter-2 inhibitors as potential therapeutic agents for the targeting of a specific phenotype of HFpEF.
Collapse
Affiliation(s)
- Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Arianna Felicetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Paolo Kunderfranco
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Marco Cremonesi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Nicolò Salvarani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Pierluigi Carullo
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Federico Colombo
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Alessandra Idini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Mauro Passaretti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Riccardo Doro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Marcello Rubino
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Alessandro Villaschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Giorgio Da Rin
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| |
Collapse
|
38
|
Magro CM, Crowson N, Kalomeris T, Nuovo G. Pyoderma Gangrenosum Associated With Iatrogenic Interleukin 17A Blockade: A Report of Two Cases and a Review of the Literature. J Cutan Pathol 2024. [PMID: 39462244 DOI: 10.1111/cup.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Pyoderma gangrenosum (PG) is a rare necrotizing neutrophilic dermatosis driven by monokines and cytokines elaborated by monocytes and autoreactive T cells, respectively. Th1-mediated autoimmune disorders and myeloproliferative disease are among the potential disease associations. More recently, certain medications were implicated, including TNF-alpha inhibitors, rituximab, and IL-17A inhibitors, such as secukinumab, where the development of PG is held to represent a cutaneous immune adverse effect. We present two patients who developed an autoinflammatory syndrome resembling PG in the setting of drug therapy with agents exhibiting an IL-17A inhibitory effect. The drugs were erunumab in one and secukinumab in the other. One patient received the anti-calcitonin gene-related peptide targeted therapy, erenumab, for migraine prophylaxis. While this drug has not been previously implicated in the development of PG, it can cause IL-17A blockade. The other patient was on secukinumab, a monoclonal antibody that selectively targets IL-17A. We documented a microenvironment enriched in IL-17A, emphasizing that the blockade impacts the functionality of the receptor as opposed to a quantitative reduction in IL-17A production by T cells. Qualitative functional IL-17A blockade could result in a paradoxical increase in IL-23, a pro-inflammatory cytokine that may contribute to the influx of neutrophils pathogenetically implicated in PG.
Collapse
Affiliation(s)
- Cynthia M Magro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Neil Crowson
- Department of Dermatology, University of Oklahoma and Pathology Laboratory Associates, Tulsa, Oklahoma, USA
- Department of Surgery, University of Oklahoma and Pathology Laboratory Associates, Tulsa, Oklahoma, USA
| | - Taylor Kalomeris
- Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medicine, New York, New York, USA
| | - Gerard Nuovo
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, USA
| |
Collapse
|
39
|
Huang CG, Hsieh MJ, Wu YC, Huang PW, Lin YJ, Tsao KC, Shih SR, Lee LA. Influence of Donor-Specific Characteristics on Cytokine Responses in H3N2 Influenza A Virus Infection: New Insights from an Ex Vivo Model. Int J Mol Sci 2024; 25:10941. [PMID: 39456722 PMCID: PMC11507259 DOI: 10.3390/ijms252010941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza A virus (IAV) is known for causing seasonal epidemics ranging from flu to more severe outcomes like pneumonia, cytokine storms, and acute respiratory distress syndrome. The innate immune response and inflammasome activation play pivotal roles in sensing, preventing, and clearing the infection, as well as in the potential exacerbation of disease progression. This study examines the complex relationships between donor-specific characteristics and cytokine responses during H3N2 IAV infection using an ex vivo model. At 24 h post infection in 31 human lung explant tissue samples, key cytokines such as interleukin (IL)-6, IL-10, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) were upregulated. Interestingly, a history of lung cancer did not impact the acute immune response. However, cigarette smoking and programmed death-ligand 1 (PD-L1) expression on macrophages significantly increased IL-2 levels. Conversely, age inversely affected IL-4 levels, and diabetes mellitus negatively influenced IL-6 levels. Additionally, both diabetes mellitus and programmed cell death protein 1 (PD-1) expression on CD3+/CD4+ T cells negatively impacted TNF-α levels, while body mass index was inversely associated with IFN-γ production. Toll-like receptor 2 (TLR2) expression emerged as crucial in mediating acute innate and adaptive immune responses. These findings highlight the intricate interplay between individual physiological traits and immune responses during influenza infection, underscoring the importance of tailored and personalized approaches in IAV treatment and prevention.
Collapse
Affiliation(s)
- Chung-Guei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ming-Ju Hsieh
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (M.-J.H.); (Y.-C.W.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Cheng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (M.-J.H.); (Y.-C.W.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- School of Medicine, College of Life Science and Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Po-Wei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
| | - Ya-Jhu Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shin-Ru Shih
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (C.-G.H.); (P.-W.H.); (Y.-J.L.); (K.-C.T.); (S.-R.S.)
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Ang Lee
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- School of Medicine, College of Life Science and Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305, Taiwan
| |
Collapse
|
40
|
Xue D, Hu S, Zheng R, Luo H, Ren X. Tumor-infiltrating B cells: Their dual mechanistic roles in the tumor microenvironment. Biomed Pharmacother 2024; 179:117436. [PMID: 39270540 DOI: 10.1016/j.biopha.2024.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
The occurrence and development of tumors are closely associated with abnormalities in the immune system's structure and function, with tumor immunotherapy being intricately linked to the tumor microenvironment (TME). Early studies on lymphocytes within the TME primarily concentrated on T cells. However, as research has advanced, the multifaceted roles of tumor-infiltrating B cells (TIL-Bs) in tumor immunity, encompassing both anti-tumor and pro-tumor effects, have garnered increasing attention. This paper explored the composition of the TME and the biological characteristics of TIL-Bs, investigating the dual roles within the TME to offer new insights and strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Demin Xue
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaozhen Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Runchen Zheng
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huidan Luo
- Department of Pulmonology, Hechi Hospital of Traditional Chinese Medicine, Guangxi 547000, China
| | - Xi Ren
- Department of Oncology II, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
41
|
Collins TJC, Morgan PK, Man K, Lancaster GI, Murphy AJ. The influence of metabolic disorders on adaptive immunity. Cell Mol Immunol 2024; 21:1109-1119. [PMID: 39134802 PMCID: PMC11442657 DOI: 10.1038/s41423-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
The immune system plays a crucial role in protecting the body from invading pathogens and maintaining tissue homoeostasis. Maintaining homoeostatic lipid metabolism is an important aspect of efficient immune cell function and when disrupted immune cell function is impaired. There are numerous metabolic diseases whereby systemic lipid metabolism and cellular function is impaired. In the context of metabolic disorders, chronic inflammation is suggested to be a major contributor to disease progression. A major contributor to tissue dysfunction in metabolic disease is ectopic lipid deposition, which is generally caused by diet and genetic factors. Thus, we propose the idea, that similar to tissue and organ damage in metabolic disorders, excessive accumulation of lipid in immune cells promotes a dysfunctional immune system (beyond the classical foam cell) and contributes to disease pathology. Herein, we review the evidence that lipid accumulation through diet can modulate the production and function of immune cells by altering cellular lipid content. This can impact immune cell signalling, activation, migration, and death, ultimately affecting key aspects of the immune system such as neutralising pathogens, antigen presentation, effector cell activation and resolving inflammation.
Collapse
Affiliation(s)
- Thomas J C Collins
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Pooranee K Morgan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kevin Man
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Graeme I Lancaster
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
42
|
Ludin A, Stirtz GL, Tal A, Nirmal AJ, Besson N, Jones SM, Pfaff KL, Manos M, Liu S, Barrera I, Gong Q, Rodrigues CP, Sahu A, Jerison E, Alessi JV, Ricciuti B, Richardson DS, Weiss JD, Moreau HM, Stanhope ME, Afeyan AB, Sefton J, McCall WD, Formato E, Yang S, Zhou Y, van Konijnenburg DPH, Cole HL, Cordova M, Deng L, Rajadhyaksha M, Quake SR, Awad MM, Chen F, Sorger PK, Hodi FS, Rodig SJ, Murphy GF, Zon LI. Craters on the melanoma surface facilitate tumor-immune interactions and demonstrate pathologic response to checkpoint blockade in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613595. [PMID: 39345527 PMCID: PMC11429731 DOI: 10.1101/2024.09.18.613595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Immunotherapy leads to cancer eradication despite the tumor's immunosuppressive environment. Here, we used extended long-term in-vivo imaging and high-resolution spatial transcriptomics of endogenous melanoma in zebrafish, and multiplex imaging of human melanoma, to identify domains that facilitate immune response during immunotherapy. We identified crater-shaped pockets at the margins of zebrafish and human melanoma, rich with beta-2 microglobulin (B2M) and antigen recognition molecules. The craters harbor the highest density of CD8+ T cells in the tumor. In zebrafish, CD8+ T cells formed prolonged interactions with melanoma cells within craters, characteristic of antigen recognition. Following immunostimulatory treatment, the craters enlarged and became the major site of activated CD8+ T cell accumulation and tumor killing that was B2M dependent. In humans, craters predicted immune response to ICB therapy, showing response better than high T cell infiltration. This marks craters as potential new diagnostic tool for immunotherapy success and targets to enhance ICB response.
Collapse
Affiliation(s)
- Aya Ludin
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
- These authors contributed equally
| | - Georgia L. Stirtz
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- These authors contributed equally
| | - Asaf Tal
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Ajit J. Nirmal
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard; Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
| | - Naomi Besson
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie M. Jones
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Manos
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sophia Liu
- Biophysics Program, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Irving Barrera
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qiyu Gong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cecilia Pessoa Rodrigues
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Aditi Sahu
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Elizabeth Jerison
- Department of Physics, University of Chicago, Chicago, IL 60637, USA, Institute for Biophysical Dynamics, and James Franck Institute
| | - Joao V. Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Douglas S. Richardson
- Harvard Center for Biological Imaging, Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA, USA
| | - Jodi D. Weiss
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Hadley M. Moreau
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Meredith E. Stanhope
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Alexander B. Afeyan
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - James Sefton
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Wyatt D. McCall
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Emily Formato
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | | | - Hannah L. Cole
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Miguel Cordova
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Liang Deng
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Milind Rajadhyaksha
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Stephen R. Quake
- Department of Bioengineering and Applied sciences, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fei Chen
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter K. Sorger
- Ludwig Center at Harvard; Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
| | - F. Stephen Hodi
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Parker Institute for Cancer Immunotherapy
| | - Scott J. Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
- Howard Hughes Medical Institute, Harvard medical school; Boston MA, USA
| |
Collapse
|
43
|
Mir TM, Shamim K, Zhang J, Khan SI, Tripathi SK, Khan IA, Marshall GD, Ashfaq MK, Pugh ND. Immulina® mitigates the development of illness when administered during the prodromal period of influenza viral infection in mice (Part 2). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155778. [PMID: 38876006 PMCID: PMC11335448 DOI: 10.1016/j.phymed.2024.155778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Immulina®, a dietary supplement derived from Limnospira (formerly Arthrospira), is being investigated as a potential agent to increase antiviral resilience. In our recently published manuscript, we described the effects of Immulina® on influenza when taken daily, beginning before infection (prophylaxis) or after the onset of clinical symptoms of viral illness (therapeutic). However, the benefit of Immulina® in infected individuals before the manifestation of any symptoms (prodromal) has not been investigated yet. PURPOSE To evaluate Immulina®'s potential use to increase the host antiviral immune response using a prodromal therapy regime. STUDY DESIGN The efficacy of Immulina® extract was evaluated in rodents using a prodromal protocol (test material administered prior to the emergence of viral illness symptoms). METHODS Immulina® (25, 50 and 100 mg/kg body weight) was orally administered to both genders of mice, 2 h following influenza A viral infection, and continued daily for 14 days. RESULTS Compared to the infected control mice, animals fed Immulina® exhibited statistically significant reduction in the emergence of various physical symptoms of viral-induced illness and decreased viral RNA levels. The effects are likely mediated through the host immune system since the level of various cytokines (IL-6 and IFN-γ) were significantly increased in lung tissue. CONCLUSION This study, together with our previous paper, indicate that Immulina® was most effective at enhancing immune antiviral resilience if administered before or soon after initial infection. The data generated can be used to guide additional research using human subjects.
Collapse
Affiliation(s)
- Tahir M. Mir
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
| | - Kashif Shamim
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
| | - Jin Zhang
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
| | - Shabana I. Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
| | - Siddharth K. Tripathi
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
| | - Gailen D. Marshall
- Department of Medicine, University of Mississippi Medical Center, Jackson MS 39216, USA
| | - Mohammad K. Ashfaq
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
| | - Nirmal D. Pugh
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University MS 38677, USA
| |
Collapse
|
44
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
45
|
Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural Killer cells at the frontline in the fight against cancer. Cell Death Dis 2024; 15:614. [PMID: 39179536 PMCID: PMC11343846 DOI: 10.1038/s41419-024-06976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Natural Killer (NK) cells are innate immune cells that play a pivotal role as first line defenders in the anti-tumor response. To prevent tumor development, NK cells are searching for abnormal cells within the body and appear to be key players in immunosurveillance. Upon recognition of abnormal cells, NK cells will become activated to destroy them. In order to fulfill their anti-tumoral function, they rely on the secretion of lytic granules, expression of death receptors and production of cytokines. Additionally, NK cells interact with other cells in the tumor microenvironment. In this review, we will first focus on NK cells' activation and cytotoxicity mechanisms as well as NK cells behavior during serial killing. Lastly, we will review NK cells' crosstalk with the other immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Mannon Geindreau
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Mélanie Bruchard
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France.
- University of Bourgogne Franche-Comté, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France.
| |
Collapse
|
46
|
Bido S, Nannoni M, Muggeo S, Gambarè D, Ruffini G, Bellini E, Passeri L, Iaia S, Luoni M, Provinciali M, Giannelli SG, Giannese F, Lazarevic D, Gregori S, Broccoli V. Microglia-specific IL-10 gene delivery inhibits neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease. Sci Transl Med 2024; 16:eadm8563. [PMID: 39167665 DOI: 10.1126/scitranslmed.adm8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/23/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Neuroinflammation plays a key role in exacerbating dopaminergic neuron (DAN) loss in Parkinson's disease (PD). However, it remains unresolved how to effectively normalize this immune response given the complex interplay between the innate and adaptive immune responses occurring within a scarcely accessible organ like the brain. In this study, we uncovered a consistent correlation between neuroinflammation, brain parenchymal lymphocytes, and DAN loss among several commonly used mouse models of PD generated by a variety of pathological triggers. We validated a viral therapeutic approach for the microglia-specific expression of interleukin 10 (IL-10) to selectively mitigate the excessive inflammatory response. We found that this approach induced a local nigral IL-10 release that alleviated DAN loss in mice overexpressing the human SNCA gene in the substantia nigra. Single-cell transcriptomics revealed that IL-10 induced the emergence of a molecularly distinct microglial cell state, enriched in markers of cell activation with enhanced expression of prophagocytic pathways. IL-10 promoted microglial phagocytotic and clearance activities in vitro and reduced αSYN aggregate burden in the nigral area in mice overexpressing SNCA. Furthermore, IL-10 stimulated the differentiation of CD4+ T lymphocytes into active T regulatory cells and promoted inhibitory characteristics in CD8+ T cells. In summary, our results show that local and microglia-specific IL-10 transduction elicited strong immunomodulation in the nigral tissue with enhanced suppression of lymphocyte toxicity that was associated with DAN survival. These results offer insights into the therapeutic benefits of IL-10 and showcase a promising gene delivery approach that could minimize undesired side effects.
Collapse
Affiliation(s)
- Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Melania Nannoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diana Gambarè
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgia Ruffini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Iaia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Martino Provinciali
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Gea Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Giannese
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
47
|
Gholami A. Cancer stem cell-derived exosomes in CD8 + T cell exhaustion. Int Immunopharmacol 2024; 137:112509. [PMID: 38889509 DOI: 10.1016/j.intimp.2024.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Tumor-derived extracellular vesicles (EVs) are one of the most important ways of intercellular communication and signaling. Cancer stem cells (CSCs) secrete EVs to modulate immune checkpoint molecules and evade immune surveillance. Activated CD8+ T cells known as cytotoxic T lymphocytes (CTLs) are the most powerful anti-cancer adaptive cells. Their activity is compromised upon encountering cells and signaling within the tumor microenvironment (TME), resulting in hyporesponsiveness called exhaustion. CSC-derived exosomes express programmed death ligand-1 (PD-L1) and upregulate programmed death-1 (PD-1) on CD8+ T cells to promote their exhaustion. PD-L1 expression on tumor-derived exosomes appears to be induced by CSC-derived exosomes containing transforming growth factor (TGF)-β. Tenascin-C is another constituent of CSC exosomes that acts on mammalian target of rapamycin (mTOR) signaling in T cells. Glycolysis is a metabolic event promoted by the inducing effect of CSC-derived exosomes on hypoxia-inducible factor-1α (HIF-1α). CSC interaction with CD8+ T cells is even more complex as the CSC-derived exosomes contain Notch1 to stimulate stemness in non-tumor cells, and the inducible effect of Notch1 on PD-1 promotes CD8+ T cell exhaustion. CSC exosome targeting has not been extensively studied yet. Advances in the field will open up new therapeutic windows and shape the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Amir Gholami
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
48
|
Szymura SJ, Wang L, Zhang T, Cha SC, Song J, Dong Z, Anderson A, Oh E, Lee V, Wang Z, Parshottam S, Rao S, Olsem JB, Crumpton BN, Lee HC, Manasanch EE, Neelapu S, Kwak LW, Thomas SK. Personalized neoantigen vaccines as early intervention in untreated patients with lymphoplasmacytic lymphoma: a non-randomized phase 1 trial. Nat Commun 2024; 15:6874. [PMID: 39128904 PMCID: PMC11317512 DOI: 10.1038/s41467-024-50880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade lymphoma with no standard therapy. Nine asymptomatic patients treated with a first-in-human, neoantigen DNA vaccine experienced no dose limiting toxicities (primary endpoint, NCT01209871). All patients achieve stable disease or better, with one minor response, and median time to progression of 72+ months. Post-vaccine single-cell transcriptomics reveal dichotomous antitumor responses, with reduced tumor B-cells (tracked by unique B cell receptor) and their survival pathways, but no change in clonal plasma cells. Downregulation of human leukocyte antigen (HLA) class II molecules and paradoxical upregulation of insulin-like growth factor (IGF) by the latter suggest resistance mechanisms. Vaccine therapy activates and expands bone marrow T-cell clonotypes, and functional neoantigen-specific responses (secondary endpoint), but not co-inhibitory pathways or Treg, and reduces protumoral signaling by myeloid cells, suggesting favorable perturbation of the tumor immune microenvironment. Future strategies may require combinations of vaccines with agents targeting plasma cell subpopulations, or blockade of IGF-1 signaling or myeloid cell checkpoints.
Collapse
Affiliation(s)
- Szymon J Szymura
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Tiantian Zhang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Soung-Chul Cha
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Division of Hematopathology, Department of Pathology, City of Hope, Duarte, CA, USA
| | - Zhenyuan Dong
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Anderson
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Elizabeth Oh
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Vincent Lee
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Zhe Wang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Sapna Parshottam
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jasper B Olsem
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Brandon N Crumpton
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Larry W Kwak
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA.
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Kitelinger LE, Thim EA, Zipkowitz SY, Price RJ, Bullock TNJ. Tissue- and Temporal-Dependent Dynamics of Myeloablation in Response to Gemcitabine Chemotherapy. Cells 2024; 13:1317. [PMID: 39195207 PMCID: PMC11352862 DOI: 10.3390/cells13161317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
For triple-negative breast cancer (TNBC), the most aggressive subset of breast cancer, immune cell infiltrates have prognostic implications. The presence of myeloid-derived suppressor cells supports tumor progression, while tumor-infiltrating lymphocytes (TILs) correlate with improved survival and responsiveness to immunotherapy. Manipulating the abundance of these populations may enhance tumor immunity. Gemcitabine (GEM), a clinically employed chemotherapeutic, is reported to be systemically myeloablative, and thus it is a potentially useful adjunct therapy for promoting anti-tumor immunity. However, knowledge about the immunological effects of GEM intratumorally is limited. Thus, we directly compared the impact of systemic GEM on immune cell presence and functionality in the tumor microenvironment (TME) to its effects in the periphery. We found that GEM is not myeloablative in the TME; rather, we observed sustained, significant reductions in TILs and dendritic cells-crucial components in initiating an adaptive immune response. We also performed bulk-RNA sequencing to identify immunological alterations transcriptionally induced by GEM. While we found evidence of upregulation in the interferon-gamma (IFN-γ) response pathway, we determined that GEM-mediated growth control is not dependent on IFN-γ. Overall, our findings yield new insights into the tissue- and temporal-dependent immune ablative effects of GEM, contrasting the paradigm that this therapy is specifically myeloablative.
Collapse
Affiliation(s)
- Lydia E. Kitelinger
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; (L.E.K.); (S.Y.Z.)
| | - Eric A. Thim
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Sarah Y. Zipkowitz
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; (L.E.K.); (S.Y.Z.)
| | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Timothy N. J. Bullock
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; (L.E.K.); (S.Y.Z.)
| |
Collapse
|
50
|
Zhong MZ, Xu MN, Zheng SQ, Cheng SQ, Zeng K, Huang XW. Manipulating host secreted protein gene expression: an indirect approach by HPV11/16 E6/E7 to suppress PBMC cytokine secretion. Virol J 2024; 21:172. [PMID: 39095779 PMCID: PMC11295672 DOI: 10.1186/s12985-024-02432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
Human papillomavirus (HPV) 11/16 E6/E7 proteins have been recognized to be pivotal in viral pathogenesis. This study sought to uncover the potential mechanisms of how HPV11/16 E6/E7-transfected keratinocytes inhibit cytokine secretion in peripheral blood mononuclear cells (PBMC). Upon co-culturing HPV11/16 E6/E7-transfected keratinocytes with PBMC in a non-contact manner, we observed a marked decrease in various cytokines secreted by PBMC. To determine if this suppression was mediated by specific common secreted factors, we conducted transcriptomic sequencing on these transfected cells. This analysis identified 53 common differentially secreted genes in all four HPV-transfected cells. Bioinformatics analysis demonstrated these genes were predominantly involved in immune regulation. Results from quantitative PCR (qPCR) and an extensive literature review suggested the downregulation of 12 genes (ACE2, BMP3, BPIFB1, CLU, CST6, CTF1, HMGB2, MMP12, PDGFA, RNASE7, SULF2, TGM2), and upregulation of 7 genes (CCL17, CCL22, FBLN1, PLAU, S100A7, S100A8, S100A9), may be crucial in modulating tumor immunity and combating pathogenic infections, with genes S100A8 and S100A9, and IL-17 signaling pathway being particularly noteworthy. Thus, HPV11/16 E6/E7 proteins may inhibit cytokine secretion of immune cells by altering the expression of host-secreted genes. Further exploration of these genes may yield new insights into the complex dynamics of HPV infection.
Collapse
Affiliation(s)
- Mei-Zhen Zhong
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei-Nian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Qi Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Qiong Cheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiao-Wen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|