1
|
Wong ACP, Lau SKP, Woo PCY. Bats as a mixing vessel for generation of novel coronaviruses: Co-circulation and co-infection of coronaviruses and other viruses. Virology 2025; 604:110426. [PMID: 39922026 DOI: 10.1016/j.virol.2025.110426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Bats are the hosts of a wide variety of coronaviruses (CoVs) of the genera Alphacoronavirus and Betacoronavirus. The presence of more than one CoV species or strain in a single bat species greatly enhances the chance of genetic exchange among the CoVs, mainly through homologous recombination, and hence enhance the generation of novel CoV species or strains that may adapt to human or other animals and result in future epidemics. In this article, we review the evidence for co-circulation and/or co-infection of two or more CoVs in the same bat species, including co-infection with different strains of a CoV, co-circulation/co-infection of different alphaCoVs or betaCoVs, and co-circulation/co-infection of alphaCoVs and betaCoVs together. With next-generation sequencing, there has been a recent explosion of such discoveries. It is anticipated that countless more similar findings will be made in the near future.
Collapse
Affiliation(s)
- Antonio C P Wong
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Susanna K P Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China.
| | - Patrick C Y Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China; Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Cheng L, Rui Y, Wang Y, Chen S, Su J, Yu XF. A glimpse into viral warfare: decoding the intriguing role of highly pathogenic coronavirus proteins in apoptosis regulation. J Biomed Sci 2024; 31:70. [PMID: 39003473 PMCID: PMC11245872 DOI: 10.1186/s12929-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.
Collapse
Affiliation(s)
- Leyi Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shiqi Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
3
|
Chiu KHY, Sridhar S, Yuen KY. Preparation for the next pandemic: challenges in strengthening surveillance. Emerg Microbes Infect 2023; 12:2240441. [PMID: 37474466 PMCID: PMC10478602 DOI: 10.1080/22221751.2023.2240441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
The devastating Coronavirus Disease 2019 (COVID-19) pandemic indicates that early detection of candidates with pandemic potential is vital. However, comprehensive metagenomic sequencing of the total microbiome is not practical due to the astronomical and rapidly evolving numbers and species of micro-organisms. Analysis of previous pandemics suggests that an increase in human-animal interactions, changes in animal and arthropod distribution due to climate change and deforestation, continuous mutations and interspecies jumping of RNA viruses, and frequent travels are important factors driving pandemic emergence. Besides measures mitigating these factors, surveillance at human-animal interfaces targeting animals with unusual tolerance to viral infections, sick heathcare workers, and workers at high biosafety level laboratories is crucial. Surveillance of sick travellers is important when alerted by an early warning system of a suspected outbreak due to unknown agents. These samples should be screened by multiplex nucleic acid amplification and subsequent unbiased next-generation sequencing. Novel viruses should be isolated in routine cell cultures, complemented by organoid cultures, and then tested in animal models for interspecies transmission potential. Potential agents are candidates for designing rapid diagnostics, therapeutics, and vaccines. For early detection of outbreaks, there are advantages in using event-based surveillance and artificial intelligence (AI), but high background noise and censorship are possible drawbacks. These systems are likely useful if they channel reliable information from frontline healthcare or veterinary workers and large international gatherings. Furthermore, sufficient regulation of high biosafety level laboratories, and stockpiling of broad spectrum antiviral drugs, vaccines, and personal protective equipment are indicated for pandemic preparedness.
Collapse
Affiliation(s)
- Kelvin Hei-Yeung Chiu
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China
| | - Siddharth Sridhar
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
4
|
Wells HL, Bonavita CM, Navarrete-Macias I, Vilchez B, Rasmussen AL, Anthony SJ. The coronavirus recombination pathway. Cell Host Microbe 2023; 31:874-889. [PMID: 37321171 PMCID: PMC10265781 DOI: 10.1016/j.chom.2023.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Recombination is thought to be a mechanism that facilitates cross-species transmission in coronaviruses, thus acting as a driver of coronavirus spillover and emergence. Despite its significance, the mechanism of recombination is poorly understood, limiting our potential to estimate the risk of novel recombinant coronaviruses emerging in the future. As a tool for understanding recombination, here, we outline a framework of the recombination pathway for coronaviruses. We review existing literature on coronavirus recombination, including comparisons of naturally observed recombinant genomes as well as in vitro experiments, and place the findings into the recombination pathway framework. We highlight gaps in our understanding of coronavirus recombination illustrated by the framework and outline how further experimental research is critical for disentangling the molecular mechanism of recombination from external environmental pressures. Finally, we describe how an increased understanding of the mechanism of recombination can inform pandemic predictive intelligence, with a retrospective emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Heather L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA; Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| | - Cassandra M Bonavita
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Blake Vilchez
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
5
|
Bandyopadhyay SS, Halder AK, Saha S, Chatterjee P, Nasipuri M, Basu S. Assessment of GO-Based Protein Interaction Affinities in the Large-Scale Human-Coronavirus Family Interactome. Vaccines (Basel) 2023; 11:549. [PMID: 36992133 PMCID: PMC10059867 DOI: 10.3390/vaccines11030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that replicates itself via interacting with the host proteins. As a result, identifying virus and host protein-protein interactions could help researchers better understand the virus disease transmission behavior and identify possible COVID-19 drugs. The International Committee on Virus Taxonomy has determined that nCoV is genetically 89% compared to the SARS-CoV epidemic in 2003. This paper focuses on assessing the host-pathogen protein interaction affinity of the coronavirus family, having 44 different variants. In light of these considerations, a GO-semantic scoring function is provided based on Gene Ontology (GO) graphs for determining the binding affinity of any two proteins at the organism level. Based on the availability of the GO annotation of the proteins, 11 viral variants, viz., SARS-CoV-2, SARS, MERS, Bat coronavirus HKU3, Bat coronavirus Rp3/2004, Bat coronavirus HKU5, Murine coronavirus, Bovine coronavirus, Rat coronavirus, Bat coronavirus HKU4, Bat coronavirus 133/2005, are considered from 44 viral variants. The fuzzy scoring function of the entire host-pathogen network has been processed with ~180 million potential interactions generated from 19,281 host proteins and around 242 viral proteins. ~4.5 million potential level one host-pathogen interactions are computed based on the estimated interaction affinity threshold. The resulting host-pathogen interactome is also validated with state-of-the-art experimental networks. The study has also been extended further toward the drug-repurposing study by analyzing the FDA-listed COVID drugs.
Collapse
Affiliation(s)
- Soumyendu Sekhar Bandyopadhyay
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
- Department of Computer Science and Engineering, School of Engineering and Technology, Adamas University, Kolkata 700126, India
| | - Anup Kumar Halder
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Sovan Saha
- Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), Techno Main Salt Lake, Sector V, Kolkata 700091, India
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata 700152, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
6
|
Speranskaya AS, Artiushin IV, Samoilov AE, Korneenko EV, Khabudaev KV, Ilina EN, Yusefovich AP, Safonova MV, Dolgova AS, Gladkikh AS, Dedkov VG, Daszak P. Identification and Genetic Characterization of MERS-Related Coronavirus Isolated from Nathusius' Pipistrelle ( Pipistrellus nathusii) near Zvenigorod (Moscow Region, Russia). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3702. [PMID: 36834395 PMCID: PMC9965006 DOI: 10.3390/ijerph20043702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Being diverse and widely distributed globally, bats are a known reservoir of a series of emerging zoonotic viruses. We studied fecal viromes of twenty-six bats captured in 2015 in the Moscow Region and found 13 of 26 (50%) samples to be coronavirus positive. Of P. nathusii (the Nathusius' pipistrelle), 3 of 6 samples were carriers of a novel MERS-related betacoronavirus. We sequenced and assembled the complete genome of this betacoronavirus and named it MOW-BatCoV strain 15-22. Whole genome phylogenetic analysis suggests that MOW-BatCoV/15-22 falls into a distinct subclade closely related to human and camel MERS-CoV. Unexpectedly, the phylogenetic analysis of the novel MOW-BatCoV/15-22 spike gene showed the closest similarity to CoVs from Erinaceus europaeus (European hedgehog). We suppose MOW-BatCoV could have arisen as a result of recombination between ancestral viruses of bats and hedgehogs. Molecular docking analysis of MOW-BatCoV/15-22 spike glycoprotein binding to DPP4 receptors of different mammals predicted the highest binding ability with DPP4 of the Myotis brandtii bat (docking score -320.15) and the E. europaeus (docking score -294.51). Hedgehogs are widely kept as pets and are commonly found in areas of human habitation. As this novel bat-CoV is likely capable of infecting hedgehogs, we suggest hedgehogs can act as intermediate hosts between bats and humans for other bat-CoVs.
Collapse
Affiliation(s)
- Anna S. Speranskaya
- Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 117246 Moscow, Russia
- Central Research Institute for Epidemiology, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 111123 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ilia V. Artiushin
- Biological Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Andrei E. Samoilov
- Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 117246 Moscow, Russia
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia
| | - Elena V. Korneenko
- Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 117246 Moscow, Russia
| | - Kirill V. Khabudaev
- Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 117246 Moscow, Russia
| | - Elena N. Ilina
- Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 117246 Moscow, Russia
| | | | - Marina V. Safonova
- Department of Particularly Dangerous Diseases, Anti-Plague Center, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 127490 Moscow, Russia
| | - Anna S. Dolgova
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia
| | - Anna S. Gladkikh
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia
| | - Vladimir G. Dedkov
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | | |
Collapse
|
7
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
8
|
Murakami S, Kitamura T, Matsugo H, Yamamoto T, Mineshita K, Sakuyama M, Sasaki R, Takenaka-Uema A, Horimoto T. Detection and genetic characterization of bat MERS-related coronaviruses in Japan. Transbound Emerg Dis 2022; 69:3388-3396. [PMID: 36057949 DOI: 10.1111/tbed.14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 02/04/2023]
Abstract
Betacoronaviruses, containing sarbecoviruses such as severe acute respiratory syndrome coronaviruses (SARS-CoV) and merbecovirus such as Middle East respiratory syndrome coronavirus (MERS-CoV), caused three human outbreaks in the past 2 decades; in particular, SARS-CoV-2 has caused the coronavirus disease 2019 pandemic. Since the ancestor of betacoronaviruses originated from wild bats, unidentified bat betacoronaviruses are presumed to be transmitted to humans in the future. In this study, we detected novel bat merbecoviruses from Vespertilio sinensis and Eptesicus japonensis, belonging to the family Vespertilionidae, in Japan. We found that these merbecoviruses were phylogenetically most closely related to the those previously detected in China. Alignment of the predicted receptor-binding motif on the spike proteins indicated that the Japanese bat merbecoviruses did not possess the specific amino acid residues that could be responsible for binding of MERS-CoV to the human dipeptidyl peptidase-4 receptor, which is unlikely to infect humans. This study demonstrated that bat merbecoviruses are widely conserved in multiple bat species of Vespertilionidae in East Asia, emphasizing the need for extensive epidemiological and biological studies on bat betacoronaviruses to facilitate the risk assessment of their spillover potential to humans.
Collapse
Affiliation(s)
- Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoya Kitamura
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,African Swine Fever Unit, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tokyo, Japan
| | - Hiromichi Matsugo
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Ko Mineshita
- NPO Corporation Association of Bat Conservation, Iwate, Japan
| | - Muneki Sakuyama
- NPO Corporation Association of Bat Conservation, Iwate, Japan
| | - Reiko Sasaki
- NPO Corporation Association of Bat Conservation, Iwate, Japan
| | - Akiko Takenaka-Uema
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Horimoto
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Enjuanes L, Sola I, Zúñiga S, Honrubia JM, Bello-Pérez M, Sanz-Bravo A, González-Miranda E, Hurtado-Tamayo J, Requena-Platek R, Wang L, Muñoz-Santos D, Sánchez CM, Esteban A, Ripoll-Gómez J. Nature of viruses and pandemics: Coronaviruses. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:151-158. [PMID: 35966177 PMCID: PMC9359481 DOI: 10.1016/j.crimmu.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses (CoVs) have the largest genome among RNA viruses and store large amounts of information without genome integration as they replicate in the cell cytoplasm. The replication of the virus is a continuous process, whereas the transcription of the subgenomic mRNAs is a discontinuous one, involving a template switch, which resembles a high frequency recombination mechanism that may favor virus genome variability. The origin of the three deadly human CoVs SARS-CoV, MERS-CoV and SARS-CoV-2 are zoonotic events. SARS-CoV-2 has incorporated in its spike protein a furine proteolytic site that facilitates the activation of the virus in any tissue, making this CoV strain highly polytropic and pathogenic. Using MERS-CoV as a model, a propagation-deficient RNA replicon was generated by removing E protein gene (essential for viral morphogenesis and involved in virulence), and accessory genes 3, 4a, 4b and 5 (responsible for antagonism of the innate immune response) to attenuate the virus: MERS-CoV-Δ[3,4a,4b,5,E]. This RNA replicon is strongly attenuated and elicits sterilizing protection after a single immunization in transgenic mice with the receptor for MERS-CoV, making it a promising vaccine candidate for this virus and an interesting platform for vector-based vaccine development. A strategy could be developed for the design of RNA replicon vaccines for other human pathogenic coronaviruses.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Sonia Zúñiga
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - José M. Honrubia
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Melissa Bello-Pérez
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Alejandro Sanz-Bravo
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Ezequiel González-Miranda
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Jesús Hurtado-Tamayo
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Ricardo Requena-Platek
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Li Wang
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Carlos M. Sánchez
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Ana Esteban
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| |
Collapse
|
10
|
Shi W, Shi M, Que TC, Cui XM, Ye RZ, Xia LY, Hou X, Zheng JJ, Jia N, Xie X, Wu WC, He MH, Wang HF, Wei YJ, Wu AQ, Zhang SF, Pan YS, Chen PY, Wang Q, Li SS, Zhong YL, Li YJ, Tan LH, Zhao L, Jiang JF, Hu YL, Cao WC. Trafficked Malayan pangolins contain viral pathogens of humans. Nat Microbiol 2022; 7:1259-1269. [PMID: 35918420 PMCID: PMC9352580 DOI: 10.1038/s41564-022-01181-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/21/2022] [Indexed: 12/03/2022]
Abstract
Pangolins are the most trafficked wild animal in the world according to the World Wildlife Fund. The discovery of SARS-CoV-2-related coronaviruses in Malayan pangolins has piqued interest in the viromes of these wild, scaly-skinned mammals. We sequenced the viromes of 161 pangolins that were smuggled into China and assembled 28 vertebrate-associated viruses, 21 of which have not been previously reported in vertebrates. We named 16 members of Hunnivirus, Pestivirus and Copiparvovirus pangolin-associated viruses. We report that the l-protein has been lost from all hunniviruses identified in pangolins. Sequences of four human-associated viruses were detected in pangolin viromes, including respiratory syncytial virus, Orthopneumovirus, RotavirusA and Mammalian orthoreovirus. The genomic sequences of five mammal-associated and three tick-associated viruses were also present. Notably, a coronavirus related to HKU4-CoV, which was originally found in bats, was identified. The presence of these viruses in smuggled pangolins identifies these mammals as a potential source of emergent pathogenic viruses. Multiple pathogenic viruses are identified in a large set of pangolins, which shows that trading pangolins for scales or flesh may increase the risk of emergence of viral infections.
Collapse
Affiliation(s)
- Wenqiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Teng-Cheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Jia-Jing Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xing Xie
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Wei-Chen Wu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Mei-Hong He
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Hui-Feng Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yong-Jie Wei
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Ai-Qiong Wu
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Sheng-Feng Zhang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Pan-Yu Chen
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Shou-Sheng Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Yan-Li Zhong
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Ying-Jiao Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Luo-Hao Tan
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China. .,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China.
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P. R. China. .,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, P. R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China. .,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China. .,Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China.
| |
Collapse
|
11
|
Kettenburg G, Kistler A, Ranaivoson HC, Ahyong V, Andrianiaina A, Andry S, DeRisi JL, Gentles A, Raharinosy V, Randriambolamanantsoa TH, Ravelomanantsoa NAF, Tato CM, Dussart P, Heraud JM, Brook CE. Full Genome Nobecovirus Sequences From Malagasy Fruit Bats Define a Unique Evolutionary History for This Coronavirus Clade. Front Public Health 2022; 10:786060. [PMID: 35223729 PMCID: PMC8873168 DOI: 10.3389/fpubh.2022.786060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Bats are natural reservoirs for both Alpha- and Betacoronaviruses and the hypothesized original hosts of five of seven known zoonotic coronaviruses. To date, the vast majority of bat coronavirus research has been concentrated in Asia, though coronaviruses are globally distributed; indeed, SARS-CoV and SARS-CoV-2-related Betacoronaviruses in the subgenus Sarbecovirus have been identified circulating in Rhinolophid bats in both Africa and Europe, despite the relative dearth of surveillance in these regions. As part of a long-term study examining the dynamics of potentially zoonotic viruses in three species of endemic Madagascar fruit bat (Pteropus rufus, Eidolon dupreanum, Rousettus madagascariensis), we carried out metagenomic Next Generation Sequencing (mNGS) on urine, throat, and fecal samples obtained from wild-caught individuals. We report detection of RNA derived from Betacoronavirus subgenus Nobecovirus in fecal samples from all three species and describe full genome sequences of novel Nobecoviruses in P. rufus and R. madagascariensis. Phylogenetic analysis indicates the existence of five distinct Nobecovirus clades, one of which is defined by the highly divergent ancestral sequence reported here from P. rufus bats. Madagascar Nobecoviruses derived from P. rufus and R. madagascariensis demonstrate, respectively, Asian and African phylogeographic origins, mirroring those of their fruit bat hosts. Bootscan recombination analysis indicates significant selection has taken place in the spike, nucleocapsid, and NS7 accessory protein regions of the genome for viruses derived from both bat hosts. Madagascar offers a unique phylogeographic nexus of bats and viruses with both Asian and African phylogeographic origins, providing opportunities for unprecedented mixing of viral groups and, potentially, recombination. As fruit bats are handled and consumed widely across Madagascar for subsistence, understanding the landscape of potentially zoonotic coronavirus circulation is essential for mitigation of future zoonotic threats.
Collapse
Affiliation(s)
- Gwenddolen Kettenburg
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Hafaliana Christian Ranaivoson
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Angelo Andrianiaina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Santino Andry
- Department of Entomology, University of Antananarivo, Antananarivo, Madagascar
| | | | - Anecia Gentles
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| | | | | | | | | | - Philippe Dussart
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Jean-Michel Heraud
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
|
13
|
Li D, Gong XQ, Xiao X, Han HJ, Yu H, Li ZM, Yan LN, Gu XL, Duan SH, Xue-jieYu. MERS-related CoVs in hedgehogs from Hubei Province, China. One Health 2021; 13:100332. [PMID: 34604493 PMCID: PMC8464353 DOI: 10.1016/j.onehlt.2021.100332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The emerging coronavirus diseases such as COVID-19, MERS, and SARS indicated that animal coronaviruses (CoVs) spillover to humans are a huge threat to public health. Therefore, we needed to understand the CoVs carried by various animals. Wild hedgehogs were collected from rural areas in Wuhan and Xianning cities in Hubei Province for analysis of CoVs. PCR results showed that 5 out of 51 (9.8%) hedgehogs (Erinaceus amurensis) were positive to CoVs in Hubei Province with 3 samples from Wuhan City and 2 samples from Xianning City. Phylogenetic analysis based on the partial sequence of RNA-dependent RNA polymerase showed that the CoVs from hedgehogs are classified into Merbecovirus of the genus Betacoronavirus; the hedgehog CoVs formed a phylogenetic sister cluster with human MERS-CoVs and bat MERS-related CoVs. Among the 12 most critical residues of receptor binding domain in MERS-CoV for binding human Dipeptidyl peptidase 4, 3 residuals were conserved between the hedgehog MERS-related CoV obtained in this study and the human MERS-CoV. We concluded that hedgehogs from Hubei Province carried MERS-related CoVs, indicating that hedgehogs might be important in the evolution and transmission of MERS-CoVs, and continuous surveillance of CoVs in hedgehogs was important.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-qing Gong
- Double First-class Construction Office, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Xiao
- Lab Animal Research Center, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Hui-ju Han
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hao Yu
- Department of Neuroscience, Cell Biology, and Anatomy, 301 University Blvd, Galveston, TX 77555, United States of America
| | - Ze-min Li
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Li-na Yan
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-lan Gu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shu-hui Duan
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xue-jieYu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Wong ACP, Lau SKP, Woo PCY. Interspecies Jumping of Bat Coronaviruses. Viruses 2021; 13:2188. [PMID: 34834994 PMCID: PMC8620431 DOI: 10.3390/v13112188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
In the last two decades, several coronavirus (CoV) interspecies jumping events have occurred between bats and other animals/humans, leading to major epidemics/pandemics and high fatalities. The SARS epidemic in 2002/2003 had a ~10% fatality. The discovery of SARS-related CoVs in horseshoe bats and civets and genomic studies have confirmed bat-to-civet-to-human transmission. The MERS epidemic that emerged in 2012 had a ~35% mortality, with dromedaries as the reservoir. Although CoVs with the same genome organization (e.g., Tylonycteris BatCoV HKU4 and Pipistrellus BatCoV HKU5) were also detected in bats, there is still a phylogenetic gap between these bat CoVs and MERS-CoV. In 2016, 10 years after the discovery of Rhinolophus BatCoV HKU2 in Chinese horseshoe bats, fatal swine disease outbreaks caused by this virus were reported in southern China. In late 2019, an outbreak of pneumonia emerged in Wuhan, China, and rapidly spread globally, leading to >4,000,000 fatalities so far. Although the genome of SARS-CoV-2 is highly similar to that of SARS-CoV, patient zero and the original source of the pandemic are still unknown. To protect humans from future public health threats, measures should be taken to monitor and reduce the chance of interspecies jumping events, either occurring naturally or through recombineering experiments.
Collapse
Affiliation(s)
| | - Susanna K. P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Patrick C. Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|
15
|
Gutiérrez-Álvarez J, Honrubia JM, Sanz-Bravo A, González-Miranda E, Fernández-Delgado R, Rejas MT, Zúñiga S, Sola I, Enjuanes L. Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proc Natl Acad Sci U S A 2021; 118:e2111075118. [PMID: 34686605 PMCID: PMC8639359 DOI: 10.1073/pnas.2111075118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Defective Viruses/genetics
- Defective Viruses/immunology
- Female
- Gene Deletion
- Genes, env
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- RNA, Viral/administration & dosage
- RNA, Viral/genetics
- RNA, Viral/immunology
- Replicon
- Vaccines, DNA
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- J Gutiérrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - J M Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - A Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - E González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - R Fernández-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - M T Rejas
- Electron Microscopy Service, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - S Zúñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - I Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain;
| |
Collapse
|
16
|
Lee SY, Chung CU, Park JS, Kim YJ, Kim YS, Na EJ, Kim Y, Oem JK. Genetic diversity of bat coronaviruses and comparative genetic analysis of MERS-related coronaviruses in South Korea. Transbound Emerg Dis 2021; 69:e463-e472. [PMID: 34536059 DOI: 10.1111/tbed.14324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/17/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023]
Abstract
Bats have been identified as a natural reservoir of several potentially zoonotic viruses, including Lyssavirus, Ebola virus, Marburg virus, Hendra virus, Nipah virus, as well as severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus (CoV). Here, we performed a molecular epidemiological investigation of South Korean bat viruses. Genetic comparative analysis was performed on the spike glycoprotein gene of the detected MERS-related CoVs. Among 1640 samples (348 oral swabs, 1199 faecal samples, 83 urine samples and 10 bat carcass) collected across 24 South Korean provinces during 2017-2019, CoV was detected in 82 samples (75 faeces and seven oral swab samples) from 11 provinces. Surveillance over the 3 years during which samples were collected revealed significantly higher CoV detection rates between spring and autumn, and a high detection rate in Vespertillionidae and Rhinolophidae bats. Our phylogenetic analysis shows that Korean bat CoVs are genetically diverse regardless of their spatiotemporal distribution and their host species, and that the discovered bat CoVs belong to various subgenera within the Alpha- and Betacoronavirus genera. Twenty detected MERS-related CoVs belonging to the genus Betacoronavirus were similar to the Ia io bat CoV NL140422 and NL13845 strains. A comprehensive genetic analysis of two Korean bat MERS-related CoV spike receptor binding domain (RBDs) (176 and 267 strains) showed that the 18 critical residues that are involved in interactions with the human DPP4 receptor are most similar to the NL13845 strain, which is known to not bind with hDPP4. A deeper analysis of the interfacing residues in the Korean bat MERS-related CoVs RBD-hDPP4 complexes showed that the Korean bat CoVs has fewer polar contacts than the NL13845 strain. Although further study will be needed, these results suggest that Korean bat MERS-related CoVs are unlikely to bind with hDPP4. Nevertheless, these findings highlight the need for continuous monitoring to identifying the origin of new infectious diseases, specifically mutant CoV.
Collapse
Affiliation(s)
- Sook-Young Lee
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Chul-Un Chung
- Department of Life Science, Dongguk University, Gyeongju, Republic of Korea
| | - Jun Soo Park
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Yoon Ji Kim
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Young-Sik Kim
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Eun-Jee Na
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - YongKwan Kim
- Wildlife Disease Response Team, National Institution of Wildlife Disease Control and Prevention, Gwangju, Republic of Korea
| | - Jae-Ku Oem
- Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
17
|
Seifi T, Reza Kamali A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. MEDICINE IN DRUG DISCOVERY 2021; 11:100099. [PMID: 34056572 PMCID: PMC8151376 DOI: 10.1016/j.medidd.2021.100099] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 has been one of the most challenging global epidemics of modern times with a large number of casualties combined with economic hardships across the world. Considering that there is still no definitive cure for the recent viral crisis, this article provides a review of nanomaterials with antiviral activity, with an emphasis on graphene and its derivatives, including graphene oxide, reduced graphene oxide and graphene quantum dots. The possible interactions between surfaces of such nanostructured materials with coronaviruses are discussed. The antiviral mechanisms of graphene materials can be related to events such as the inactivation of virus and/or the host cell receptor, electrostatic trapping and physico-chemical destruction of viral species. These effects can be enhanced by functionalization and/or decoration of carbons with species that enhances graphene-virus interactions. The low-cost and large-scale preparation of graphene materials with enhanced antiviral performances is an interesting research direction to be explored.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
18
|
Tang Y, Sun J, Pan H, Yao F, Yuan Y, Zeng M, Ye G, Yang G, Zheng B, Fan J, Pan Y, Zhao Z, Guo S, Liu Y, Liao F, Duan Y, Jiao X, Li Y. Aberrant cytokine expression in COVID-19 patients: Associations between cytokines and disease severity. Cytokine 2021; 143:155523. [PMID: 33840589 PMCID: PMC8011640 DOI: 10.1016/j.cyto.2021.155523] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/12/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023]
Abstract
Cytokines play pleiotropic, antagonistic, and collaborative in viral disease. The high morbidity and mortality of coronavirus disease 2019 (COVID-19) make it a significant threat to global public health. Elucidating its pathogenesis is essential to finding effective therapy. A retrospective study was conducted on 71 patients hospitalized with COVID-19. Data on cytokines, T lymphocytes, and other clinical and laboratory characteristics were collected from patients with variable disease severity. The effects of cytokines on the overall survival (OS) and event-free survival (EFS) of patients were analyzed. The critically severe and severe patients had higher infection indexes and significant multiple organ function abnormalities than the mild patients (P < 0.05). IL-6 and IL-10 were significantly higher in the critically severe patients than in the severe and mild patients (P < 0.05). IL-6 and IL-10 were closely associated with white blood cells, neutrophils, T lymphocyte subsets, D-D dimer, blood urea nitrogen, complement C1q, procalcitonin C-reactive protein. Moreover, the IL-6 and IL-10 levels were closely correlated to dyspnea and dizziness (P < 0.05). The patients with higher IL-10 levels had shorter OS than the group with lower levels (P < 0.05). The older patients with higher levels of single IL-6 or IL-10 tended to have shorter EFS (P < 0.05), while the patients who had more elevated IL-6 and IL-10 had shorter OS (P < 0.05). The Cox proportional hazard model revealed that IL-6 was the independent factor affecting EFS. IL-6 and IL-10 play crucial roles in COVID-19 prognosis.
Collapse
Affiliation(s)
- Yueting Tang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Jiayu Sun
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Huaqin Pan
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67813517, China.
| | - Fen Yao
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Yumeng Yuan
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Mi Zeng
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Guangming Ye
- Center for Clinical Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Gui Yang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Bokun Zheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Junli Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Yunbao Pan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Ziwu Zhao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Shuang Guo
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Yinjuan Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Fanlu Liao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Yongwei Duan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Xiaoyang Jiao
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| |
Collapse
|
19
|
Chen SC, Olsthoorn RCL, Yu CH. Structural phylogenetic analysis reveals lineage-specific RNA repetitive structural motifs in all coronaviruses and associated variations in SARS-CoV-2. Virus Evol 2021; 7:veab021. [PMID: 34141447 PMCID: PMC8206606 DOI: 10.1093/ve/veab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many single-stranded (ss) RNA viruses, the cis-acting packaging signal that confers selectivity genome packaging usually encompasses short structured RNA repeats. These structural units, termed repetitive structural motifs (RSMs), potentially mediate capsid assembly by specific RNA–protein interactions. However, general knowledge of the conservation and/or the diversity of RSMs in the positive-sense ssRNA coronaviruses (CoVs) is limited. By performing structural phylogenetic analysis, we identified a variety of RSMs in nearly all CoV genomic RNAs, which are exclusively located in the 5′-untranslated regions (UTRs) and/or in the inter-domain regions of poly-protein 1ab coding sequences in a lineage-specific manner. In all alpha- and beta-CoVs, except for Embecovirus spp, two to four copies of 5′-gUUYCGUc-3′ RSMs displaying conserved hexa-loop sequences were generally identified in Stem-loop 5 (SL5) located in the 5′-UTRs of genomic RNAs. In Embecovirus spp., however, two to eight copies of 5′-agc-3′/guAAu RSMs were found in the coding regions of non-structural protein (NSP) 3 and/or NSP15 in open reading frame (ORF) 1ab. In gamma- and delta-CoVs, other types of RSMs were found in several clustered structural elements in 5′-UTRs and/or ORF1ab. The identification of RSM-encompassing structural elements in all CoVs suggests that these RNA elements play fundamental roles in the life cycle of CoVs. In the recently emerged SARS-CoV-2, beta-CoV-specific RSMs are also found in its SL5, displaying two copies of 5′-gUUUCGUc-3′ motifs. However, multiple sequence alignment reveals that the majority of SARS-CoV-2 possesses a variant RSM harboring SL5b C241U, and intriguingly, several variations in the coding sequences of viral proteins, such as Nsp12 P323L, S protein D614G, and N protein R203K-G204R, are concurrently found with such variant RSM. In conclusion, the comprehensive exploration for RSMs reveals phylogenetic insights into the RNA structural elements in CoVs as a whole and provides a new perspective on variations currently found in SARS-CoV-2.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - René C L Olsthoorn
- Department of Supramolecular Biomaterials Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden,The Netherlands
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
20
|
Xu J, Xue Y, Zhou R, Shi PY, Li H, Zhou J. Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Med Res Rev 2021; 41:1375-1426. [PMID: 33277927 PMCID: PMC8044022 DOI: 10.1002/med.21763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
In the past two decades, three highly pathogenic human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, and, recently, SARS-CoV-2, have caused pandemics of severe acute respiratory diseases with alarming morbidity and mortality. Due to the lack of specific anti-CoV therapies, the ongoing pandemic of coronavirus disease 2019 (COVID-19) poses a great challenge to clinical management and highlights an urgent need for effective interventions. Drug repurposing is a rapid and feasible strategy to identify effective drugs for combating this deadly infection. In this review, we summarize the therapeutic CoV targets, focus on the existing small molecule drugs that have the potential to be repurposed for existing and emerging CoV infections of the future, and discuss the clinical progress of developing small molecule drugs for COVID-19.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
21
|
Zhang Y, Gargan S, Lu Y, Stevenson NJ. An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses 2021; 13:560. [PMID: 33810391 PMCID: PMC8066579 DOI: 10.3390/v13040560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a large family of zoonotic RNA viruses, whose infection can lead to mild or lethal respiratory tract disease. Severe Acute Respiratory Syndrome-Coronavirus-1 (SARS-CoV-1) first emerged in Guangdong, China in 2002 and spread to 29 countries, infecting 8089 individuals and causing 774 deaths. In 2012, Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) emerged in Saudi Arabia and has spread to 27 countries, with a mortality rate of ~34%. In 2019, SARS-CoV-2 emerged and has spread to 220 countries, infecting over 100,000,000 people and causing more than 2,000,000 deaths to date. These three human coronaviruses cause diseases of varying severity. Most people develop mild, common cold-like symptoms, while some develop acute respiratory distress syndrome (ARDS). The success of all viruses, including coronaviruses, relies on their evolved abilities to evade and modulate the host anti-viral and pro-inflammatory immune responses. However, we still do not fully understand the transmission, phylogeny, epidemiology, and pathogenesis of MERS-CoV and SARS-CoV-1 and -2. Despite the rapid application of a range of therapies for SARS-CoV-2, such as convalescent plasma, remdesivir, hydroxychloroquine and type I interferon, no fully effective treatment has been determined. Remarkably, COVID-19 vaccine research and development have produced several offerings that are now been administered worldwide. Here, we summarise an up-to-date understanding of epidemiology, immunomodulation and ongoing anti-viral and immunosuppressive treatment strategies. Indeed, understanding the interplay between coronaviruses and the anti-viral immune response is crucial to identifying novel targets for therapeutic intervention, which may even prove invaluable for the control of future emerging coronavirus.
Collapse
Affiliation(s)
- Yamei Zhang
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
| | - Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
- Viral Immunology Group, Royal College of Surgeons in Ireland—Medical University of Bahrain, Adliya 15503, Bahrain
| |
Collapse
|
22
|
Frutos R, Serra-Cobo J, Pinault L, Lopez Roig M, Devaux CA. Emergence of Bat-Related Betacoronaviruses: Hazard and Risks. Front Microbiol 2021; 12:591535. [PMID: 33790874 PMCID: PMC8005542 DOI: 10.3389/fmicb.2021.591535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, with more than 111 million reported cases and 2,500,000 deaths worldwide (mortality rate currently estimated at 2.2%), is a stark reminder that coronaviruses (CoV)-induced diseases remain a major threat to humanity. COVID-19 is only the latest case of betacoronavirus (β-CoV) epidemics/pandemics. In the last 20 years, two deadly CoV epidemics, Severe Acute Respiratory Syndrome (SARS; fatality rate 9.6%) and Middle East Respiratory Syndrome (MERS; fatality rate 34.7%), plus the emergence of HCoV-HKU1 which causes the winter common cold (fatality rate 0.5%), were already a source of public health concern. Betacoronaviruses can also be a threat for livestock, as evidenced by the Swine Acute Diarrhea Syndrome (SADS) epizootic in pigs. These repeated outbreaks of β-CoV-induced diseases raise the question of the dynamic of propagation of this group of viruses in wildlife and human ecosystems. SARS-CoV, SARS-CoV-2, and HCoV-HKU1 emerged in Asia, strongly suggesting the existence of a regional hot spot for emergence. However, there might be other regional hot spots, as seen with MERS-CoV, which emerged in the Arabian Peninsula. β-CoVs responsible for human respiratory infections are closely related to bat-borne viruses. Bats are present worldwide and their level of infection with CoVs is very high on all continents. However, there is as yet no evidence of direct bat-to-human coronavirus infection. Transmission of β-CoV to humans is considered to occur accidentally through contact with susceptible intermediate animal species. This zoonotic emergence is a complex process involving not only bats, wildlife and natural ecosystems, but also many anthropogenic and societal aspects. Here, we try to understand why only few hot spots of β-CoV emergence have been identified despite worldwide bats and bat-borne β-CoV distribution. In this work, we analyze and compare the natural and anthropogenic environments associated with the emergence of β-CoV and outline conserved features likely to create favorable conditions for a new epidemic. We suggest monitoring South and East Africa as well as South America as these regions bring together many of the conditions that could make them future hot spots.
Collapse
Affiliation(s)
- Roger Frutos
- Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR 17, Intertryp, Montpellier, France.,Institut d'Électronique et des Systèmes, UMR 5214, Université de Montpellier-CNRS, Montpellier, France
| | - Jordi Serra-Cobo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Biodiversity Research Institute, Barcelona, Spain
| | - Lucile Pinault
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Marc Lopez Roig
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Biodiversity Research Institute, Barcelona, Spain
| | - Christian A Devaux
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
23
|
Abdelghany TM, Ganash M, Bakri MM, Qanash H, Al-Rajhi AMH, Elhussieny NI. SARS-CoV-2, the other face to SARS-CoV and MERS-CoV: Future predictions. Biomed J 2021; 44:86-93. [PMID: 33602634 PMCID: PMC7603957 DOI: 10.1016/j.bj.2020.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) outbreak is proving to be an unprecedented disaster that lays its dark shadow on global health, economics and personal freedom. Severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS) epidemics provide scientific data that is useful in better understanding and resolution of COVID-19. Similarities among SARS-CoV, MERS-CoV and SARS-CoV-2 have been investigated in the light of available data. SARS-CoV, MERS-CoV and SARS-CoV-2 evolved in bats and have positive-sense RNA genomes of 27.9 kb, 30.1 kb and 29.9 kb, respectively. Molecular and serological tools used for diagnosis of SARS and MERS patients resemble COVID-19 diagnostic tools. Stability and longevity data of SARS and MERS epidemics contribute in the current pandemic precaution policies. Trials to produce vaccines for SARS-CoV and MERS-CoV failed, therefore different strategies were employed for SARS-CoV2 vaccines production and during the past period antiviral agents, Convalescent plasma and monoclonal antibodies provide potential treatments for sever patients. The mortality rate caused by the SARS-CoV and MERS-CoV reached 15% and 37%, respectively. The first declarations about mortality rate of SARS-CoV-2 was around 2-4% but now this rate differed globally and reached more than 13% in some countries. A realistic COVID-19 outbreak scenario suggest that the pandemic might last for three years with fluctuation in the number of infected cases, unless vaccination process goes faster and/or antiviral drug is discovered.
Collapse
Affiliation(s)
- T M Abdelghany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Magdah Ganash
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marwah M Bakri
- University College, Al-Ardah, Jazan University, Jazan, Saudi Arabia
| | - Husam Qanash
- Clinical Laboratory Science Department, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Aisha M H Al-Rajhi
- Biology Department, Faculty of Science, Princess Nora Bent Abdularahman University, Riyadh, Saudi Arabia
| | - Nadeem I Elhussieny
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt; Institute of Environmental Biology and Biotechnology, University of Applied Sciences, Bremen, Germany; Life Sciences and Chemistry Department, Jacobs University Bremen GmbH, Bremen, Germany
| |
Collapse
|
24
|
Niu X, Hou YJ, Jung K, Kong F, Saif LJ, Wang Q. Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses 2021; 13:122. [PMID: 33477379 PMCID: PMC7829776 DOI: 10.3390/v13010122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) strain OH-FD22 infects poultry and shares high nucleotide identity with sparrow-origin deltacoronaviruses (SpDCoV) ISU73347 and HKU17 strains. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from these SpDCoVs would alter the host and tissue tropism of PDCoV. First, an infectious cDNA clone of PDCoV OH-FD22 strain (icPDCoV) was generated and used to construct chimeric icPDCoVs harboring the S protein of HKU17 (icPDCoV-SHKU17) or the RBD of ISU73347 (icPDCoV-RBDISU). To evaluate their pathogenesis, neonatal gnotobiotic pigs were inoculated orally/oronasally with the recombinant viruses or PDCoV OH-FD22. All pigs inoculated with icPDCoV or OH-FD22 developed severe diarrhea and shed viral RNA at moderate-high levels (7.62-10.56 log10 copies/mL) in feces, and low-moderate levels in nasal swabs (4.92-8.48 log10 copies/mL). No pigs in the icPDCoV-SHKU17 and icPDCoV-RBDISU groups showed clinical signs. Interestingly, low-moderate levels (5.07-7.06 log10 copies/mL) of nasal but not fecal viral RNA shedding were detected transiently at 1-4 days post-inoculation in 40% (2/5) of icPDCoV-SHKU17- and 50% (1/2) of icPDCoV-RBDISU-inoculated pigs. These results confirm that PDCoV infected both the upper respiratory and intestinal tracts of pigs. The chimeric viruses displayed an attenuated phenotype with the loss of tropism for the pig intestine. The SpDCoV S protein and RBD reduced viral replication in pigs, suggesting limited potential for cross-species spillover upon initial passage.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yixuan J. Hou
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Fanzhi Kong
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Isolation of MERS-related coronavirus from lesser bamboo bats that uses DPP4 and infects human-DPP4-transgenic mice. Nat Commun 2021; 12:216. [PMID: 33431849 PMCID: PMC7801609 DOI: 10.1038/s41467-020-20458-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
While a number of human coronaviruses are believed to be originated from ancestral viruses in bats, it remains unclear if bat coronaviruses are ready to cause direct bat-to-human transmission. Here, we report the isolation of a MERS-related coronavirus, Tylonycteris-bat-CoV-HKU4, from lesser bamboo bats. Tylonycteris-bat-CoV-HKU4 replicates efficiently in human colorectal adenocarcinoma and hepatocarcinoma cells with cytopathic effects, and can utilize human-dipeptidyl-peptidase-4 and dromedary camel-dipeptidyl-peptidase-4 as the receptors for cell entry. Flow cytometry, co-immunoprecipitation and surface plasmon resonance assays show that Tylonycteris-bat-CoV-HKU4-receptor-binding-domain can bind human-dipeptidyl-peptidase-4, dromedary camel-dipeptidyl-peptidase-4, and Tylonycteris pachypus-dipeptidyl-peptidase-4. Tylonycteris-bat-CoV-HKU4 can infect human-dipeptidyl-peptidase-4-transgenic mice by intranasal inoculation with self-limiting disease. Positive virus and inflammatory changes were detected in lungs and brains of infected mice, associated with suppression of antiviral cytokines and activation of proinflammatory cytokines and chemokines. The results suggest that MERS-related bat coronaviruses may overcome species barrier by utilizing dipeptidyl-peptidase-4 and potentially emerge in humans by direct bat-to-human transmission. Several human coronaviruses (CoV) have been proposed to emerge from bats but evidence of direct bat-to-human transmission is slim. In this work, the authors isolate a MERS-related CoV strain directly from bats and show that it infects target cells in vitro and engineered mice through the human DDP4 receptor.
Collapse
|
26
|
The zoonotic potential of bat-borne coronaviruses. Emerg Top Life Sci 2020; 4:353-369. [PMID: 33258903 DOI: 10.1042/etls20200097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Seven zoonoses - human infections of animal origin - have emerged from the Coronaviridae family in the past century, including three viruses responsible for significant human mortality (SARS-CoV, MERS-CoV, and SARS-CoV-2) in the past twenty years alone. These three viruses, in addition to two older CoV zoonoses (HCoV-229E and HCoV-NL63) are believed to be originally derived from wild bat reservoir species. We review the molecular biology of the bat-derived Alpha- and Betacoronavirus genera, highlighting features that contribute to their potential for cross-species emergence, including the use of well-conserved mammalian host cell machinery for cell entry and a unique capacity for adaptation to novel host environments after host switching. The adaptive capacity of coronaviruses largely results from their large genomes, which reduce the risk of deleterious mutational errors and facilitate range-expanding recombination events by offering heightened redundancy in essential genetic material. Large CoV genomes are made possible by the unique proofreading capacity encoded for their RNA-dependent polymerase. We find that bat-borne SARS-related coronaviruses in the subgenus Sarbecovirus, the source clade for SARS-CoV and SARS-CoV-2, present a particularly poignant pandemic threat, due to the extraordinary viral genetic diversity represented among several sympatric species of their horseshoe bat hosts. To date, Sarbecovirus surveillance has been almost entirely restricted to China. More vigorous field research efforts tracking the circulation of Sarbecoviruses specifically and Betacoronaviruses more generally is needed across a broader global range if we are to avoid future repeats of the COVID-19 pandemic.
Collapse
|
27
|
Zhao X, Ding Y, Du J, Fan Y. 2020 update on human coronaviruses: One health, one world. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020; 8:100043. [PMID: 33521622 PMCID: PMC7836940 DOI: 10.1016/j.medntd.2020.100043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
Since human coronavirus (HCoVs) was first described in the 1960s, seven strains of respiratory human coronaviruses have emerged and caused human infections. After the emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), a pneumonia outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has represented a pandemic threat to global public health in the 21st century. Without effectively prophylactic and therapeutic strategies including vaccines and antiviral drugs, these three coronaviruses have caused severe respiratory syndrome and high case-fatality rates around the world. In this review, we detail the emergence event, origin and reservoirs of all HCoVs, compare the differences with regard to structure and receptor usage, and summarize therapeutic strategies for COVID-19 that cause severe pneumonia and global pandemic.
Collapse
Affiliation(s)
- Xinbin Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yuecheng Ding
- School of Public Health, Peking University, Beijing, 100871, China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| |
Collapse
|
28
|
Gaudreault NN, Trujillo JD, Carossino M, Meekins DA, Morozov I, Madden DW, Indran SV, Bold D, Balaraman V, Kwon T, Artiaga BL, Cool K, García-Sastre A, Ma W, Wilson WC, Henningson J, Balasuriya UBR, Richt JA. SARS-CoV-2 infection, disease and transmission in domestic cats. Emerg Microbes Infect 2020; 9:2322-2332. [PMID: 33028154 PMCID: PMC7594869 DOI: 10.1080/22221751.2020.1833687] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease 2019 (COVID-19) and responsible for the current pandemic. Recent SARS-CoV-2 susceptibility studies in cats show that the virus can replicate in these companion animals and transmit to other cats. Here, we present an in-depth study of SARS-CoV-2 infection, disease and transmission in domestic cats. Cats were challenged with SARS-CoV-2 via intranasal and oral routes. One day post challenge (DPC), two sentinel cats were introduced. Animals were monitored for clinical signs, clinicopathological abnormalities and viral shedding. Postmortem examinations were performed at 4, 7 and 21 DPC. Viral RNA was not detected in blood but transiently in nasal, oropharyngeal and rectal swabs and bronchoalveolar lavage fluid as well as various tissues. Tracheobronchoadenitis of submucosal glands with the presence of viral RNA and antigen was observed in airways of the infected cats. Serology showed that both, principals and sentinels, developed antibodies to SARS-CoV-2. All animals were clinically asymptomatic during the course of the study and capable of transmitting SARS-CoV-2 to sentinels. The results of this study are critical for understanding the clinical course of SARS-CoV-2 in a naturally susceptible host species, and for risk assessment.
Collapse
Affiliation(s)
- Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Sabarish V. Indran
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Bianca Libanori Artiaga
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - William C. Wilson
- Arthropod Borne Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
29
|
Masood N, Malik SS, Raja MN, Mubarik S, Yu C. Unraveling the Epidemiology, Geographical Distribution, and Genomic Evolution of Potentially Lethal Coronaviruses (SARS, MERS, and SARS CoV-2). Front Cell Infect Microbiol 2020; 10:499. [PMID: 32974224 PMCID: PMC7481402 DOI: 10.3389/fcimb.2020.00499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
SARS CoV appeared in 2003 in China, transmitted from bats to humans via eating infected animals. It affected 8,096 humans with a death rate of 11% affecting 21 countries. The receptor binding domain (RBD) in S protein of this virus gets attached with the ACE2 receptors present on human cells. MERS CoV was first reported in 2012 in Middle East, originated from bat and transmitted to humans through camels. MERS CoV has a fatality rate of 35% and last case reported was in 2017 making a total of 1,879 cases worldwide. DPP4 expressed on human cells is the main attaching site for RBD in S protein of MERS CoV. Folding of RBD plays a crucial role in its pathogenesis. Virus causing COVID-19 was named as SARS CoV-2 due its homology with SARS CoV that emerged in 2003. It has become a pandemic affecting nearly 200 countries in just 3 months' time with a death rate of 2-3% currently. The new virus is fast spreading, but it utilizes the same RBD and ACE2 receptors along with furin present in human cells. The lessons learned from the SARS and MERS epidemics are the best social weapons to face and fight against this novel global threat.
Collapse
Affiliation(s)
- Nosheen Masood
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | | | | | - Sumaira Mubarik
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Wong LYR, Ye ZW, Lui PY, Zheng X, Yuan S, Zhu L, Fung SY, Yuen KS, Siu KL, Yeung ML, Cai Z, Woo PCY, Yuen KY, Chan CP, Jin DY. Middle East Respiratory Syndrome Coronavirus ORF8b Accessory Protein Suppresses Type I IFN Expression by Impeding HSP70-Dependent Activation of IRF3 Kinase IKKε. THE JOURNAL OF IMMUNOLOGY 2020; 205:1564-1579. [PMID: 32747502 DOI: 10.4049/jimmunol.1901489] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus causing severe disease and mortality. MERS-CoV infection failed to elicit robust IFN response, suggesting that the virus might have evolved strategies to evade host innate immune surveillance. In this study, we identified and characterized type I IFN antagonism of MERS-CoV open reading frame (ORF) 8b accessory protein. ORF8b was abundantly expressed in MERS-CoV-infected Huh-7 cells. When ectopically expressed, ORF8b inhibited IRF3-mediated IFN-β expression induced by Sendai virus and poly(I:C). ORF8b was found to act at a step upstream of IRF3 to impede the interaction between IRF3 kinase IKKε and chaperone protein HSP70, which is required for the activation of IKKε and IRF3. An infection study using recombinant wild-type and ORF8b-deficient MERS-CoV further confirmed the suppressive role of ORF8b in type I IFN induction and its disruption of the colocalization of HSP70 with IKKε. Ectopic expression of HSP70 relieved suppression of IFN-β expression by ORF8b in an IKKε-dependent manner. Enhancement of IFN-β induction in cells infected with ORF8b-deficient virus was erased when HSP70 was depleted. Taken together, HSP70 chaperone is important for IKKε activation, and MERS-CoV ORF8b suppresses type I IFN expression by competing with IKKε for interaction with HSP70.
Collapse
Affiliation(s)
- Lok-Yin Roy Wong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zi-Wei Ye
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Pak-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xuyang Zheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Man-Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Patrick Chiu-Yat Woo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong;
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong;
| |
Collapse
|
31
|
Paskey AC, Ng JHJ, Rice GK, Chia WN, Philipson CW, Foo RJ, Cer RZ, Long KA, Lueder MR, Lim XF, Frey KG, Hamilton T, Anderson DE, Laing ED, Mendenhall IH, Smith GJ, Wang LF, Bishop-Lilly KA. Detection of Recombinant Rousettus Bat Coronavirus GCCDC1 in Lesser Dawn Bats ( Eonycteris spelaea) in Singapore. Viruses 2020; 12:E539. [PMID: 32422932 PMCID: PMC7291116 DOI: 10.3390/v12050539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Rousettus bat coronavirus GCCDC1 (RoBat-CoV GCCDC1) is a cross-family recombinant coronavirus that has previously only been reported in wild-caught bats in Yúnnan, China. We report the persistence of a related strain in a captive colony of lesser dawn bats captured in Singapore. Genomic evidence of the virus was detected using targeted enrichment sequencing, and further investigated using deeper, unbiased high throughput sequencing. RoBat-CoV GCCDC1 Singapore shared 96.52% similarity with RoBat-CoV GCCDC1 356 (NC_030886) at the nucleotide level, and had a high prevalence in the captive bat colony. It was detected at five out of six sampling time points across the course of 18 months. A partial segment 1 from an ancestral Pteropine orthoreovirus, p10, makes up the recombinant portion of the virus, which shares high similarity with previously reported RoBat-CoV GCCDC1 strains that were detected in Yúnnan, China. RoBat-CoV GCCDC1 is an intriguing, cross-family recombinant virus, with a geographical range that expands farther than was previously known. The discovery of RoBat-CoV GCCDC1 in Singapore indicates that this recombinant coronavirus exists in a broad geographical range, and can persist in bat colonies long-term.
Collapse
Affiliation(s)
- Adrian C. Paskey
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA; (A.C.P.); (E.D.L.)
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702 USA; (G.K.R.); (C.W.P.); (R.Z.C.); (K.A.L.); (M.R.L.); (K.G.F.); (T.H.)
- Leidos, Reston, VA 20190, USA
| | - Justin H. J. Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (J.H.J.N.); (W.N.C.); (R.J.H.F.); (X.F.L.); (D.E.A.); (I.H.M.); (G.J.S.); (L.-F.W.)
| | - Gregory K. Rice
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702 USA; (G.K.R.); (C.W.P.); (R.Z.C.); (K.A.L.); (M.R.L.); (K.G.F.); (T.H.)
- Leidos, Reston, VA 20190, USA
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (J.H.J.N.); (W.N.C.); (R.J.H.F.); (X.F.L.); (D.E.A.); (I.H.M.); (G.J.S.); (L.-F.W.)
| | - Casandra W. Philipson
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702 USA; (G.K.R.); (C.W.P.); (R.Z.C.); (K.A.L.); (M.R.L.); (K.G.F.); (T.H.)
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060 USA
| | - Randy J.H. Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (J.H.J.N.); (W.N.C.); (R.J.H.F.); (X.F.L.); (D.E.A.); (I.H.M.); (G.J.S.); (L.-F.W.)
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702 USA; (G.K.R.); (C.W.P.); (R.Z.C.); (K.A.L.); (M.R.L.); (K.G.F.); (T.H.)
- Leidos, Reston, VA 20190, USA
| | - Kyle A. Long
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702 USA; (G.K.R.); (C.W.P.); (R.Z.C.); (K.A.L.); (M.R.L.); (K.G.F.); (T.H.)
- Leidos, Reston, VA 20190, USA
| | - Matthew R. Lueder
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702 USA; (G.K.R.); (C.W.P.); (R.Z.C.); (K.A.L.); (M.R.L.); (K.G.F.); (T.H.)
- Leidos, Reston, VA 20190, USA
| | - Xiao Fang Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (J.H.J.N.); (W.N.C.); (R.J.H.F.); (X.F.L.); (D.E.A.); (I.H.M.); (G.J.S.); (L.-F.W.)
| | - Kenneth G. Frey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702 USA; (G.K.R.); (C.W.P.); (R.Z.C.); (K.A.L.); (M.R.L.); (K.G.F.); (T.H.)
| | - Theron Hamilton
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702 USA; (G.K.R.); (C.W.P.); (R.Z.C.); (K.A.L.); (M.R.L.); (K.G.F.); (T.H.)
| | - Danielle E. Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (J.H.J.N.); (W.N.C.); (R.J.H.F.); (X.F.L.); (D.E.A.); (I.H.M.); (G.J.S.); (L.-F.W.)
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA; (A.C.P.); (E.D.L.)
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (J.H.J.N.); (W.N.C.); (R.J.H.F.); (X.F.L.); (D.E.A.); (I.H.M.); (G.J.S.); (L.-F.W.)
| | - Gavin J. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (J.H.J.N.); (W.N.C.); (R.J.H.F.); (X.F.L.); (D.E.A.); (I.H.M.); (G.J.S.); (L.-F.W.)
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (J.H.J.N.); (W.N.C.); (R.J.H.F.); (X.F.L.); (D.E.A.); (I.H.M.); (G.J.S.); (L.-F.W.)
| | - Kimberly A. Bishop-Lilly
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA; (A.C.P.); (E.D.L.)
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702 USA; (G.K.R.); (C.W.P.); (R.Z.C.); (K.A.L.); (M.R.L.); (K.G.F.); (T.H.)
| |
Collapse
|
32
|
Letko M, Miazgowicz K, McMinn R, Seifert SN, Sola I, Enjuanes L, Carmody A, van Doremalen N, Munster V. Adaptive Evolution of MERS-CoV to Species Variation in DPP4. Cell Rep 2019; 24:1730-1737. [PMID: 30110630 PMCID: PMC7104223 DOI: 10.1016/j.celrep.2018.07.045] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) likely originated in bats and passed to humans through dromedary camels; however, the genetic mechanisms underlying cross-species adaptation remain poorly understood. Variation in the host receptor, dipeptidyl peptidase 4 (DPP4), can block the interaction with the MERS-CoV spike protein and form a species barrier to infection. To better understand the species adaptability of MERS-CoV, we identified a suboptimal species-derived variant of DPP4 to study viral adaption. Passaging virus on cells expressing this DPP4 variant led to accumulation of mutations in the viral spike which increased replication. Parallel passages revealed distinct paths of viral adaptation to the same DPP4 variant. Structural analysis and functional assays showed that these mutations enhanced viral entry with suboptimal DPP4 by altering the surface charge of spike. These findings demonstrate that MERS-CoV spike can utilize multiple paths to rapidly adapt to novel species variation in DPP4.
Collapse
MESH Headings
- Adaptation, Physiological
- Amino Acid Sequence
- Animals
- Binding Sites
- Biological Coevolution
- Chiroptera
- Chlorocebus aethiops
- Cricetulus
- Dipeptidyl Peptidase 4/chemistry
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl Peptidase 4/metabolism
- Gene Expression
- Host Specificity
- Host-Pathogen Interactions/genetics
- Humans
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/metabolism
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Vero Cells
- Virus Internalization
Collapse
Affiliation(s)
- Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Kerri Miazgowicz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Rebekah McMinn
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Stephanie N Seifert
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
33
|
Chen YN, Hsu HC, Wang SW, Lien HC, Lu HT, Peng SK. Entry of Scotophilus Bat Coronavirus-512 and Severe Acute Respiratory Syndrome Coronavirus in Human and Multiple Animal Cells. Pathogens 2019; 8:pathogens8040259. [PMID: 31766704 PMCID: PMC6963420 DOI: 10.3390/pathogens8040259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Bats are natural reservoirs of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV). Scotophilus bat CoV-512 demonstrates potential for cross-species transmission because its viral RNA and specific antibodies have been detected in three bat species of Taiwan. Understanding the cell tropism of Scotophilus bat CoV-512 is the first step for studying the mechanism of cross-species transmission. In this study, a lentivirus-based pseudovirus was produced using the spike (S) protein of Scotophilus bat CoV-512 or SARS-CoV as a surface protein to test the interaction between coronaviral S protein and its cell receptor on 11 different cells. Susceptible cells expressed red fluorescence protein (RFP) after the entry of RFP-bound green fluorescence protein (GFP)-fused S protein of Scotophilus bat CoV-512 (RFP-Sco-S-eGFP) or RFP-SARS-S pseudovirus, and firefly luciferase (FLuc) activity expressed by cells infected with FLuc-Sco-S-eGFP or FLuc-SARS-S pseudovirus was quantified. Scotophilus bat CoV-512 pseudovirus had significantly higher entry efficiencies in Madin Darby dog kidney epithelial cells (MDCK), black flying fox brain cells (Pabr), and rat small intestine epithelial cells (IEC-6). SARS-CoV pseudovirus had significantly higher entry efficiencies in human embryonic kidney epithelial cells (HEK-293T), pig kidney epithelial cells (PK15), and MDCK cells. These findings demonstrated that Scotophilus bat CoV-512 had a broad host range for cross-species transmission like SARS-CoV.
Collapse
|
34
|
Identification of a Novel Betacoronavirus ( Merbecovirus) in Amur Hedgehogs from China. Viruses 2019; 11:v11110980. [PMID: 31653070 PMCID: PMC6893546 DOI: 10.3390/v11110980] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
While dromedaries are the immediate animal source of Middle East Respiratory Syndrome (MERS) epidemic, viruses related to MERS coronavirus (MERS-CoV) have also been found in bats as well as hedgehogs. To elucidate the evolution of MERS-CoV-related viruses and their interspecies transmission pathway, samples were collected from different mammals in China. A novel coronavirus related to MERS-CoV, Erinaceus amurensis hedgehog coronavirus HKU31 (Ea-HedCoV HKU31), was identified from two Amur hedgehogs. Genome analysis supported that Ea-HedCoV HKU31 represents a novel species under Merbecovirus, being most closely related to Erinaceus CoV from European hedgehogs in Germany, with 79.6% genome sequence identity. Compared to other members of Merbecovirus, Ea-HedCoV HKU31 possessed unique non-structural proteins and putative cleavage sites at ORF1ab. Phylogenetic analysis showed that Ea-HedCoV HKU31 and BetaCoV Erinaceus/VMC/DEU/2012 were closely related to NeoCoV and BatCoV PREDICT from African bats in the spike region, suggesting that the latter bat viruses have arisen from recombination between CoVs from hedgehogs and bats. The predicted HKU31 receptor-binding domain (RBD) possessed only one out of 12 critical amino acid residues for binding to human dipeptidyl peptidase 4 (hDPP4), the MERS-CoV receptor. The structural modeling of the HKU31-RBD-hDPP4 binding interphase compared to that of MERS-CoV and Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) suggested that HKU31-RBD is unlikely to bind to hDPP4. Our findings support that hedgehogs are an important reservoir of Merbecovirus, with evidence of recombination with viruses from bats. Further investigations in bats, hedgehogs and related animals are warranted to understand the evolution of MERS-CoV-related viruses.
Collapse
|
35
|
Affiliation(s)
- Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Lau SKP, Zhang L, Luk HKH, Xiong L, Peng X, Li KSM, He X, Zhao PSH, Fan RYY, Wong ACP, Ahmed SS, Cai JP, Chan JFW, Sun Y, Jin D, Chen H, Lau TCK, Kok RKH, Li W, Yuen KY, Woo PCY. Receptor Usage of a Novel Bat Lineage C Betacoronavirus Reveals Evolution of Middle East Respiratory Syndrome-Related Coronavirus Spike Proteins for Human Dipeptidyl Peptidase 4 Binding. J Infect Dis 2019; 218:197-207. [PMID: 29346682 PMCID: PMC7107427 DOI: 10.1093/infdis/jiy018] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023] Open
Abstract
Although bats are known to harbor Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses, the role of bats in the evolutionary origin and pathway remains obscure. We identified a novel MERS-CoV-related betacoronavirus, Hp-BatCoV HKU25, from Chinese pipistrelle bats. Although it is closely related to MERS-CoV in most genome regions, its spike protein occupies a phylogenetic position between that of Ty-BatCoV HKU4 and Pi-BatCoV HKU5. Because Ty-BatCoV HKU4 but not Pi-BatCoV HKU5 can use the MERS-CoV receptor human dipeptidyl peptidase 4 (hDPP4) for cell entry, we tested the ability of Hp-BatCoV HKU25 to bind and use hDPP4. The HKU25-receptor binding domain (RBD) can bind to hDPP4 protein and hDPP4-expressing cells, but it does so with lower efficiency than that of MERS-RBD. Pseudovirus assays showed that HKU25-spike can use hDPP4 for entry to hDPP4-expressing cells, although with lower efficiency than that of MERS-spike and HKU4-spike. Our findings support a bat origin of MERS-CoV and suggest that bat CoV spike proteins may have evolved in a stepwise manner for binding to hDPP4.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, and Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Hayes K H Luk
- Department of Microbiology The University of Hong Kong, China
| | - Lifeng Xiong
- Department of Microbiology The University of Hong Kong, China
| | - Xingwen Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, and Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Kenneth S M Li
- Department of Microbiology The University of Hong Kong, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, and Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | | | - Rachel Y Y Fan
- Department of Microbiology The University of Hong Kong, China
| | | | | | - Jian-Piao Cai
- Department of Microbiology The University of Hong Kong, China
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Dongyan Jin
- School of Biomedical Sciences, The University of Hong Kong, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Terrence C K Lau
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Raven K H Kok
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| |
Collapse
|
37
|
Xu J, Jia W, Wang P, Zhang S, Shi X, Wang X, Zhang L. Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg Microbes Infect 2019; 8:841-856. [PMID: 31169078 PMCID: PMC6567157 DOI: 10.1080/22221751.2019.1624482] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) has spread through 27 countries and infected more than 2,200 people since its first outbreak in Saudi Arabia in 2012. The high fatality rate (35.4%) of this novel coronavirus and its persistent wide spread infectiousness in animal reservoirs have generated tremendous global public health concern. However, no licensed therapeutic agents or vaccines against MERS-CoV are currently available and only a limited few have entered clinical trials. Among all the potential targets of MERS-CoV, the spike glycoprotein (S) has been the most well-studied due to its critical role in mediating viral entry and in inducing a protective antibody response in infected individuals. The most notable studies include the recent discoveries of monoclonal antibodies and development of candidate vaccines against the S glycoprotein. Structural characterization of MERS-CoV S protein bound with these monoclonal antibodies has provided insights into the mechanisms of humoral immune responses against MERS-CoV infection. The current review aims to highlight these developments and discuss possible hurdles and strategies to translate these discoveries into ultimate medical interventions against MERS-CoV infection.
Collapse
Affiliation(s)
- Jiuyang Xu
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Wenxu Jia
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Pengfei Wang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Senyan Zhang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Xuanling Shi
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Xinquan Wang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Linqi Zhang
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| |
Collapse
|
38
|
A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication. J Virol 2019; 93:JVI.00197-19. [PMID: 31142674 PMCID: PMC6675885 DOI: 10.1128/jvi.00197-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/21/2019] [Indexed: 02/08/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) initially emerged in 2012 and has since been responsible for over 2,300 infections, with a case fatality ratio of approximately 35%. We have used the highly characterized model system of Saccharomyces cerevisiae to investigate novel functional interactions between viral proteins and eukaryotic cells that may provide new avenues for antiviral intervention. We identify a functional link between the MERS-CoV ORF4a proteins and the YDL042C/SIR2 yeast gene. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in mammalian cells. Viral proteins must intimately interact with the host cell machinery during virus replication. Here, we used the yeast Saccharomyces cerevisiae as a system to identify novel functional interactions between viral proteins and eukaryotic cells. Our work demonstrates that when the Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a accessory gene is expressed in yeast it causes a slow-growth phenotype. ORF4a has been characterized as an interferon antagonist in mammalian cells, and yet yeast lack an interferon system, suggesting further interactions between ORF4a and eukaryotic cells. Using the slow-growth phenotype as a reporter of ORF4a function, we utilized the yeast knockout library collection to perform a suppressor screen where we identified the YDL042C/SIR2 yeast gene as a suppressor of ORF4a function. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We found that when SIRT1 was inhibited by either chemical or genetic manipulation, there was reduced MERS-CoV replication, suggesting that SIRT1 is a proviral factor for MERS-CoV. Moreover, ORF4a inhibited SIRT1-mediated modulation of NF-κB signaling, demonstrating a functional link between ORF4a and SIRT1 in mammalian cells. Overall, the data presented here demonstrate the utility of yeast studies for identifying genetic interactions between viral proteins and eukaryotic cells. We also demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in cells. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) initially emerged in 2012 and has since been responsible for over 2,300 infections, with a case fatality ratio of approximately 35%. We have used the highly characterized model system of Saccharomyces cerevisiae to investigate novel functional interactions between viral proteins and eukaryotic cells that may provide new avenues for antiviral intervention. We identify a functional link between the MERS-CoV ORF4a proteins and the YDL042C/SIR2 yeast gene. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in mammalian cells.
Collapse
|
39
|
Lau SKP, Wong ACP, Zhang L, Luk HKH, Kwok JSL, Ahmed SS, Cai JP, Zhao PSH, Teng JLL, Tsui SKW, Yuen KY, Woo PCY. Novel Bat Alphacoronaviruses in Southern China Support Chinese Horseshoe Bats as an Important Reservoir for Potential Novel Coronaviruses. Viruses 2019; 11:v11050423. [PMID: 31067830 PMCID: PMC6563315 DOI: 10.3390/v11050423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
While bats are increasingly recognized as a source of coronavirus epidemics, the diversity and emergence potential of bat coronaviruses remains to be fully understood. Among 1779 bat samples collected in China, diverse coronaviruses were detected in 32 samples from five different bat species by RT-PCR. Two novel alphacoronaviruses, Rhinolophus sinicus bat coronavirus HKU32 (Rs-BatCoV HKU32) and Tylonycteris robustula bat coronavirus HKU33 (Tr-BatCoV HKU33), were discovered from Chinese horseshoe bats in Hong Kong and greater bamboo bats in Guizhou Province, respectively. Genome analyses showed that Rs-BatCoV HKU32 is closely related to BatCoV HKU10 and related viruses from diverse bat families, whereas Tr-BatCoV HKU33 is closely related to BtNv-AlphaCoV and similar viruses exclusively from bats of Vespertilionidae family. The close relatedness of Rs-BatCoV HKU32 to BatCoV HKU10 which was also detected in Pomona roundleaf bats from the same country park suggests that these viruses may have the tendency of infecting genetically distant bat populations of close geographical proximity with subsequent genetic divergence. Moreover, the presence of SARSr-CoV ORF7a-like protein in Rs-BatCoV HKU32 suggests a common evolutionary origin of this accessory protein with SARS-CoV, also from Chinese horseshoe bats, an apparent reservoir for coronavirus epidemics. The emergence potential of Rs-BatCoV HKU32 should be explored.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Antonio C P Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Libao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510000, China.
| | - Hayes K H Luk
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jamie S L Kwok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Syed S Ahmed
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Pyrear S H Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jade L L Teng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Stephen K W Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
40
|
Xia S, Yan L, Xu W, Agrawal AS, Algaissi A, Tseng CTK, Wang Q, Du L, Tan W, Wilson IA, Jiang S, Yang B, Lu L. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. SCIENCE ADVANCES 2019; 5:eaav4580. [PMID: 30989115 PMCID: PMC6457931 DOI: 10.1126/sciadv.aav4580] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/14/2019] [Indexed: 05/07/2023]
Abstract
Continuously emerging highly pathogenic human coronaviruses (HCoVs) remain a major threat to human health, as illustrated in past SARS-CoV and MERS-CoV outbreaks. The development of a drug with broad-spectrum HCoV inhibitory activity would address this urgent unmet medical need. Although previous studies have suggested that the HR1 of HCoV spike (S) protein is an important target site for inhibition against specific HCoVs, whether this conserved region could serve as a target for the development of broad-spectrum pan-CoV inhibitor remains controversial. Here, we found that peptide OC43-HR2P, derived from the HR2 domain of HCoV-OC43, exhibited broad fusion inhibitory activity against multiple HCoVs. EK1, the optimized form of OC43-HR2P, showed substantially improved pan-CoV fusion inhibitory activity and pharmaceutical properties. Crystal structures indicated that EK1 can form a stable six-helix bundle structure with both short α-HCoV and long β-HCoV HR1s, further supporting the role of HR1 region as a viable pan-CoV target site.
Collapse
Affiliation(s)
- Shuai Xia
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Lei Yan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Anurodh Shankar Agrawal
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Wenjie Tan
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ian A. Wilson
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC206, La Jolla, CA 92037, USA
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| |
Collapse
|
41
|
Abd El-Rahim WM, Abdel Azeiz AZ, Moawad H, Sadowsky MJ. Identification and characterization of two peroxidases from Lichtheimia corymbifera. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Wong ACP, Li X, Lau SKP, Woo PCY. Global Epidemiology of Bat Coronaviruses. Viruses 2019; 11:E174. [PMID: 30791586 PMCID: PMC6409556 DOI: 10.3390/v11020174] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Bats are a unique group of mammals of the order Chiroptera. They are highly diversified and are the group of mammals with the second largest number of species. Such highly diversified cell types and receptors facilitate them to be potential hosts of a large variety of viruses. Bats are the only group of mammals capable of sustained flight, which enables them to disseminate the viruses they harbor and enhance the chance of interspecies transmission. This article aims at reviewing the various aspects of the global epidemiology of bat coronaviruses (CoVs). Before the SARS epidemic, bats were not known to be hosts for CoVs. In the last 15 years, bats have been found to be hosts of >30 CoVs with complete genomes sequenced, and many more if those without genome sequences are included. Among the four CoV genera, only alphaCoVs and betaCoVs have been found in bats. As a whole, both alphaCoVs and betaCoVs have been detected from bats in Asia, Europe, Africa, North and South America and Australasia; but alphaCoVs seem to be more widespread than betaCoVs, and their detection rate is also higher. For betaCoVs, only those from subgenera Sarbecovirus, Merbecovirus, Nobecovirus and Hibecovirus have been detected in bats. Most notably, horseshoe bats are the reservoir of SARS-CoV, and several betaCoVs from subgenus Merbecovirus are closely related to MERS-CoV. In addition to the interactions among various bat species themselves, bat⁻animal and bat⁻human interactions, such as the presence of live bats in wildlife wet markets and restaurants in Southern China, are important for interspecies transmission of CoVs and may lead to devastating global outbreaks.
Collapse
Affiliation(s)
- Antonio C P Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Xin Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
43
|
Bats and Coronaviruses. Viruses 2019; 11:v11010041. [PMID: 30634396 PMCID: PMC6356540 DOI: 10.3390/v11010041] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Bats are speculated to be reservoirs of several emerging viruses including coronaviruses (CoVs) that cause serious disease in humans and agricultural animals. These include CoVs that cause severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), porcine epidemic diarrhea (PED) and severe acute diarrhea syndrome (SADS). Bats that are naturally infected or experimentally infected do not demonstrate clinical signs of disease. These observations have allowed researchers to speculate that bats are the likely reservoirs or ancestral hosts for several CoVs. In this review, we follow the CoV outbreaks that are speculated to have originated in bats. We review studies that have allowed researchers to identify unique adaptation in bats that may allow them to harbor CoVs without severe disease. We speculate about future studies that are critical to identify how bats can harbor multiple strains of CoVs and factors that enable these viruses to “jump” from bats to other mammals. We hope that this review will enable readers to identify gaps in knowledge that currently exist and initiate a dialogue amongst bat researchers to share resources to overcome present limitations.
Collapse
|
44
|
Kasem S, Qasim I, Al-Hufofi A, Hashim O, Alkarar A, Abu-Obeida A, Gaafer A, Elfadil A, Zaki A, Al-Romaihi A, Babekr N, El-Harby N, Hussien R, Al-Sahaf A, Al-Doweriej A, Bayoumi F, Poon LLM, Chu DKW, Peiris M, Perera RAPM. Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia. J Infect Public Health 2017; 11:331-338. [PMID: 28993171 PMCID: PMC7102853 DOI: 10.1016/j.jiph.2017.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/22/2017] [Accepted: 09/09/2017] [Indexed: 12/20/2022] Open
Abstract
Background Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerged coronavirus that is associated with a severe respiratory disease in humans in the Middle East. The epidemiological profiles of the MERS-CoV infections suggest zoonotic transmission from an animal reservoir to humans. Methods This study was designed to investigate animal herds associated with Middle East respiratory syndrome (MERS)-infected patients in Saudi Arabia, during the last three years (2014–2016). Nasal swabs and serum samples from 584 dromedary camels, 39 sheep, 51 goats, and 2 cattle were collected. Nasal samples from camels, sheep, goats, and cattle were examined by real-time reverse-transcription PCR (RT-PCR) to detect MERS-CoV RNA, and the Anti-MERS ELISA assay was performed to detect camel humeral immune response (IgG) to MERS-CoV S1 antigen infection. The complete genome sequencing of ten MERS-CoV camel isolates and phylogenetic analysis was performed. Results The data indicated that seventy-five dromedary camels were positive for MERS-CoV RNA; the virus was not detected in sheep, goats, and cattle. MERS-CoV RNA from infected camels was not detected beyond 2 weeks after the first positive result was detected in nasal swabs obtained from infected camels. Anti-MERS ELISA assays showed that 70.9% of camels related to human cases had antibodies to MERS-CoV. The full genome sequences of the ten MERS-CoV camel isolates were identical to their corresponding patients and were grouped together within the larger MERS-CoV sequences cluster for human and camel isolates reported form the Arabian Peninsula. Conclusions These findings indicate that camels are a significant reservoir for the maintenance of MERS-CoVs, and they are an important source of human infection with MERS.
Collapse
Affiliation(s)
- Samy Kasem
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Kafrelsheikh 33516, Egypt.
| | - Ibraheem Qasim
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Al-Hufofi
- Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Osman Hashim
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Alkarar
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Abu-Obeida
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Albagir Gaafer
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Abdelhamid Elfadil
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ahmed Zaki
- Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ahmed Al-Romaihi
- Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Nasereldeen Babekr
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Nadr El-Harby
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Raed Hussien
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Al-Sahaf
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Al-Doweriej
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Faisal Bayoumi
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Leo L M Poon
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Daniel K W Chu
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Malik Peiris
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Ranawaka A P M Perera
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Chen Z, Bao L, Chen C, Zou T, Xue Y, Li F, Lv Q, Gu S, Gao X, Cui S, Wang J, Qin C, Jin Q. Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset. J Infect Dis 2017; 215:1807-1815. [PMID: 28472421 PMCID: PMC7107363 DOI: 10.1093/infdis/jix209] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infection in humans is highly lethal, with a fatality rate of 35%. New prophylactic and therapeutic strategies to combat human infections are urgently needed. We isolated a fully human neutralizing antibody, MCA1, from a human survivor. The antibody recognizes the receptor-binding domain of MERS-CoV S glycoprotein and interferes with the interaction between viral S and the human cellular receptor human dipeptidyl peptidase 4 (DPP4). To our knowledge, this study is the first to report a human neutralizing monoclonal antibody that completely inhibits MERS-CoV replication in common marmosets. Monotherapy with MCA1 represents a potential alternative treatment for human infections with MERS-CoV worthy of evaluation in clinical settings.
Collapse
Affiliation(s)
- Zhe Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Linlin Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases
| | - Cong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Tingting Zou
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan
| | - Ying Xue
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases
| | - Qi Lv
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases
| | - Songzhi Gu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases
| | - Xiaopan Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
46
|
Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, Hicks AL, Joly DO, Wolfe ND, Daszak P, Karesh W, Lipkin WI, Morse SS, Mazet JAK, Goldstein T. Global patterns in coronavirus diversity. Virus Evol 2017. [PMID: 28630747 PMCID: PMC5467638 DOI: 10.1093/ve/vex012] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Since the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrom Coronavirus (MERS-CoV) it has become increasingly clear that bats are important reservoirs of CoVs. Despite this, only 6% of all CoV sequences in GenBank are from bats. The remaining 94% largely consist of known pathogens of public health or agricultural significance, indicating that current research effort is heavily biased towards describing known diseases rather than the ‘pre-emergent’ diversity in bats. Our study addresses this critical gap, and focuses on resource poor countries where the risk of zoonotic emergence is believed to be highest. We surveyed the diversity of CoVs in multiple host taxa from twenty countries to explore the factors driving viral diversity at a global scale. We identified sequences representing 100 discrete phylogenetic clusters, ninety-one of which were found in bats, and used ecological and epidemiologic analyses to show that patterns of CoV diversity correlate with those of bat diversity. This cements bats as the major evolutionary reservoirs and ecological drivers of CoV diversity. Co-phylogenetic reconciliation analysis was also used to show that host switching has contributed to CoV evolution, and a preliminary analysis suggests that regional variation exists in the dynamics of this process. Overall our study represents a model for exploring global viral diversity and advances our fundamental understanding of CoV biodiversity and the potential risk factors associated with zoonotic emergence.
Collapse
Affiliation(s)
- Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA.,EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - Christine K Johnson
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Denise J Greig
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sarah Kramer
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Heather Wells
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Allison L Hicks
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Damien O Joly
- Metabiota, Inc. One Sutter, Suite 600, San Francisco, CA 94104, USA.,Wildlife Conservation Society, New York, NY 10460, USA
| | - Nathan D Wolfe
- Metabiota, Inc. One Sutter, Suite 600, San Francisco, CA 94104, USA
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - William Karesh
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - W I Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Stephen S Morse
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | | | - Jonna A K Mazet
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tracey Goldstein
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
47
|
Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus. mBio 2017; 8:mBio.00373-17. [PMID: 28377531 PMCID: PMC5380844 DOI: 10.1128/mbio.00373-17] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolutionary origins of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) are unknown. Current evidence suggests that insectivorous bats are likely to be the original source, as several 2c CoVs have been described from various species in the family Vespertilionidae Here, we describe a MERS-like CoV identified from a Pipistrellus cf. hesperidus bat sampled in Uganda (strain PREDICT/PDF-2180), further supporting the hypothesis that bats are the evolutionary source of MERS-CoV. Phylogenetic analysis showed that PREDICT/PDF-2180 is closely related to MERS-CoV across much of its genome, consistent with a common ancestry; however, the spike protein was highly divergent (46% amino acid identity), suggesting that the two viruses may have different receptor binding properties. Indeed, several amino acid substitutions were identified in key binding residues that were predicted to block PREDICT/PDF-2180 from attaching to the MERS-CoV DPP4 receptor. To experimentally test this hypothesis, an infectious MERS-CoV clone expressing the PREDICT/PDF-2180 spike protein was generated. Recombinant viruses derived from the clone were replication competent but unable to spread and establish new infections in Vero cells or primary human airway epithelial cells. Our findings suggest that PREDICT/PDF-2180 is unlikely to pose a zoonotic threat. Recombination in the S1 subunit of the spike gene was identified as the primary mechanism driving variation in the spike phenotype and was likely one of the critical steps in the evolution and emergence of MERS-CoV in humans.IMPORTANCE Global surveillance efforts for undiscovered viruses are an important component of pandemic prevention initiatives. These surveys can be useful for finding novel viruses and for gaining insights into the ecological and evolutionary factors driving viral diversity; however, finding a viral sequence is not sufficient to determine whether it can infect people (i.e., poses a zoonotic threat). Here, we investigated the specific zoonotic risk of a MERS-like coronavirus (PREDICT/PDF-2180) identified in a bat from Uganda and showed that, despite being closely related to MERS-CoV, it is unlikely to pose a threat to humans. We suggest that this approach constitutes an appropriate strategy for beginning to determine the zoonotic potential of wildlife viruses. By showing that PREDICT/PDF-2180 does not infect cells that express the functional receptor for MERS-CoV, we further show that recombination was likely to be the critical step that allowed MERS to emerge in humans.
Collapse
|
48
|
Chung H, Lee N, Seo JA, Kim YS. Comparative analysis of nonvolatile and volatile metabolites in Lichtheimia ramosa cultivated in different growth media. Biosci Biotechnol Biochem 2017; 81:565-572. [DOI: 10.1080/09168451.2016.1256756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Lichtheimia ramosa is one of the predominant filamentous fungi in Korean traditional nuruk. The nonvolatile and volatile metabolites of L. ramosa cultivated in three growth media: complete medium (CM), potato dextrose broth (PDB), and sabouraud dextrose broth (SDB), were investigated and compared. Among nonvolatile metabolites, serine, lysine, and ornithine increased in CM and PDB cultivated with L. ramosa during the exponential phase. In addition, glucose level increased in CM whereas decreased in PDB and SDB. The major volatile metabolites in the extract samples were acetic acid, ethanol, 3-methyl-2-buten-1-ol, 2-phenylethanol, ethylacetate, 2-furaldehyde, 5-(hydroxymethyl)-2-furaldehyde, 2,3-dihydro-3,5,-dihydroxy-6-methyl-4H-pyran-4-one, and α-humulene. In particular, the levels of volatile metabolites related to makgeolli (e.g., acetic acid, ethanol, and ethyl acetate) were highest in extracts cultivated in CM. On the other hand, the level of 2-phenylethanol was relatively higher in PDB and SDB, possibly due to there being more phenylalanine present in the biomass sample in media.
Collapse
Affiliation(s)
- Hyun Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - NaKyeom Lee
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
49
|
Chan JFW, Sridhar S, Yip CCY, Lau SKP, Woo PCY. The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic. J Microbiol 2017; 55:172-182. [PMID: 28243939 PMCID: PMC7090747 DOI: 10.1007/s12275-017-7026-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Rapidly emerging infectious disease outbreaks place a great strain on laboratories to develop and implement sensitive and specific diagnostic tests for patient management and infection control in a timely manner. Furthermore, laboratories also play a role in real-time zoonotic, environmental, and epidemiological investigations to identify the ultimate source of the epidemic, facilitating measures to eventually control the outbreak. Each assay modality has unique pros and cons; therefore, incorporation of a battery of tests using traditional culture-based, molecular and serological diagnostics into diagnostic algorithms is often required. As such, laboratories face challenges in assay development, test evaluation, and subsequent quality assurance. In this review, we describe the different testing modalities available for the ongoing Middle East respiratory syndrome (MERS) epidemic including cell culture, nucleic acid amplification, antigen detection, and antibody detection assays. Applications of such tests in both acute clinical and epidemiological investigation settings are highlighted. Using the MERS epidemic as an example, we illustrate the various challenges faced by laboratories in test development and implementation in the setting of a rapidly emerging infectious disease. Future directions in the diagnosis of MERS and other emerging infectious disease investigations are also highlighted.
Collapse
Affiliation(s)
- Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, P. R. China.
| |
Collapse
|
50
|
Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, Hicks AL, Joly DO, Wolfe ND, Daszak P, Karesh W, Lipkin WI, Morse SS, Mazet JAK, Goldstein T. Global patterns in coronavirus diversity. Virus Evol 2017; 3:vex012. [PMID: 28630747 DOI: 10.1093/ve] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Since the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrom Coronavirus (MERS-CoV) it has become increasingly clear that bats are important reservoirs of CoVs. Despite this, only 6% of all CoV sequences in GenBank are from bats. The remaining 94% largely consist of known pathogens of public health or agricultural significance, indicating that current research effort is heavily biased towards describing known diseases rather than the 'pre-emergent' diversity in bats. Our study addresses this critical gap, and focuses on resource poor countries where the risk of zoonotic emergence is believed to be highest. We surveyed the diversity of CoVs in multiple host taxa from twenty countries to explore the factors driving viral diversity at a global scale. We identified sequences representing 100 discrete phylogenetic clusters, ninety-one of which were found in bats, and used ecological and epidemiologic analyses to show that patterns of CoV diversity correlate with those of bat diversity. This cements bats as the major evolutionary reservoirs and ecological drivers of CoV diversity. Co-phylogenetic reconciliation analysis was also used to show that host switching has contributed to CoV evolution, and a preliminary analysis suggests that regional variation exists in the dynamics of this process. Overall our study represents a model for exploring global viral diversity and advances our fundamental understanding of CoV biodiversity and the potential risk factors associated with zoonotic emergence.
Collapse
Affiliation(s)
- Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - Christine K Johnson
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Denise J Greig
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sarah Kramer
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Heather Wells
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Allison L Hicks
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Damien O Joly
- Metabiota, Inc. One Sutter, Suite 600, San Francisco, CA 94104, USA
- Wildlife Conservation Society, New York, NY 10460, USA
| | - Nathan D Wolfe
- Metabiota, Inc. One Sutter, Suite 600, San Francisco, CA 94104, USA
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - William Karesh
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - W I Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Stephen S Morse
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Jonna A K Mazet
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tracey Goldstein
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|