1
|
Liu Q, Long JE. Insight into the Life Cycle of Enterovirus-A71. Viruses 2025; 17:181. [PMID: 40006936 PMCID: PMC11861800 DOI: 10.3390/v17020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Human enterovirus 71 (EV-A71), a member of the Picornaviridae family, is predominantly associated with hand, foot, and mouth disease in infants and young children. Additionally, EV-A71 can cause severe neurological complications, including aseptic meningitis, brainstem encephalitis, and fatalities. The molecular mechanisms underlying these symptoms are complex and involve the viral tissue tropism, evasion from the host immune responses, induction of the programmed cell death, and cytokine storms. This review article delves into the EV-A71 life cycle, with a particular emphasis on recent advancements in understanding the virion structure, tissue tropism, and the interplay between the virus and host regulatory networks during replication. The comprehensive review is expected to contribute to our understanding of EV-A71 pathogenesis and inform the development of antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jian-Er Long
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Chio CC, Chien JC, Chan HW, Huang HI. Overview of the Trending Enteric Viruses and Their Pathogenesis in Intestinal Epithelial Cell Infection. Biomedicines 2024; 12:2773. [PMID: 39767680 PMCID: PMC11672972 DOI: 10.3390/biomedicines12122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Enteric virus infection is a major public health issue worldwide. Enteric viruses have become epidemic infectious diseases in several countries. Enteric viruses primarily infect the gastrointestinal tract and complete their life cycle in intestinal epithelial cells. These viruses are transmitted via the fecal-oral route through contaminated food, water, or person to person and cause similar common symptoms, including vomiting, abdominal pain, and diarrhea. Diarrheal disease is the third leading cause of death in children under five years of age, accounting for approximately 1.7 billion cases and 443,832 deaths annually in this age group. Additionally, some enteric viruses can invade other tissues, leading to severe conditions and even death. The pathogenic mechanisms of enteric viruses are also unclear. In this review, we organized the research on trending enteric virus infections, including rotavirus, norovirus, adenovirus, Enterovirus-A71, Coxsackievirus A6, and Echovirus 11. Furthermore, we discuss the gastrointestinal effects and pathogenic mechanisms of SARS-CoV-2 in intestinal epithelial cells, given the gastrointestinal symptoms observed during the COVID-19 pandemic. We conducted a literature review on their pathogenic mechanisms, which serves as a guide for formulating future treatment strategies for enteric virus infections.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Jou-Chun Chien
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 33305, Taiwan
| |
Collapse
|
3
|
Ishemgulova A, Mukhamedova L, Trebichalská Z, Rájecká V, Payne P, Šmerdová L, Moravcová J, Hrebík D, Buchta D, Škubník K, Füzik T, Vaňáčová Š, Nováček J, Plevka P. Endosome rupture enables enteroviruses from the family Picornaviridae to infect cells. Commun Biol 2024; 7:1465. [PMID: 39511383 PMCID: PMC11543853 DOI: 10.1038/s42003-024-07147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Membrane penetration by non-enveloped viruses is diverse and generally not well understood. Enteroviruses, one of the largest groups of non-enveloped viruses, cause diseases ranging from the common cold to life-threatening encephalitis. Enteroviruses enter cells by receptor-mediated endocytosis. However, how enterovirus particles or RNA genomes cross the endosome membrane into the cytoplasm remains unknown. Here we used cryo-electron tomography of infected cells to show that endosomes containing enteroviruses deform, rupture, and release the virus particles into the cytoplasm. Blocking endosome acidification with bafilomycin A1 reduced the number of particles that released their genomes, but did not prevent them from reaching the cytoplasm. Inhibiting post-endocytic membrane remodeling with wiskostatin promoted abortive enterovirus genome release in endosomes. The rupture of endosomes also occurs in control cells and after the endocytosis of very low-density lipoprotein. In summary, our results show that cellular membrane remodeling disrupts enterovirus-containing endosomes and thus releases the virus particles into the cytoplasm to initiate infection. Since the studied enteroviruses employ different receptors for cell entry but are delivered into the cytoplasm by cell-mediated endosome disruption, it is likely that most if not all enteroviruses, and probably numerous other viruses from the family Picornaviridae, can utilize endosome rupture to infect cells.
Collapse
Affiliation(s)
- Aygul Ishemgulova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Liya Mukhamedova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Zuzana Trebichalská
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Veronika Rájecká
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavel Payne
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Lenka Šmerdová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jana Moravcová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Buchta
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
4
|
Wang X, Qian J, Mi Y, Li Y, Cao Y, Qiao K. Correlations of PSGL-1 VNTR polymorphism with the susceptibility to severe HFMD associated with EV-71 and the immune status after infection. Virol J 2024; 21:187. [PMID: 39148126 PMCID: PMC11328417 DOI: 10.1186/s12985-024-02461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Enterovirus 71 (EV-71) has strong neurotropism, and it is the main pathogen causing severe hand, foot, and mouth disease (HFMD). In clinical observations, significant differences were observed in the severity and prognosis of HFMD among children who were also infected with EV-71. Genetic differences among individuals could be one of the important causes of differences in susceptibility to EV-71-induced HFMD. As P-selectin glycoprotein ligand-1 (PSGL-1) is an important receptor of EV-71, the correlation between single-nucleotide polymorphisms (SNPs) in PSGL-1 and the susceptibility to severe HFMD following EV-71 infection is worth studying. Given the role of PSGL-1 in immunity, the correlations between PSGL-1 SNPs and the immune status after EV-71 infection are also worth studying. Meanwhile, PSGL-1 variable number of tandem repeats (VNTR) represents a research hotspot in cardiovascular and cerebrovascular diseases, but PSGL-1 VNTR polymorphism has not been investigated in HFMD caused by EV-71 infection. In this study, specific gene fragments were amplified by polymerase chain reaction, and PSGL-1 VNTR sequences were genotyped using an automatic nucleic acid analyzer. The correlations of PSGL-1 VNTR polymorphism with the susceptibility to EV-71-associated severe HFMD and the post-infection immune status were analyzed. The PSGL-1 VNTR A allele was identified as a susceptible SNP for severe HFMD. The risk of severe HFMD was higher for AA + AB genotype carriers than for BB genotype carriers. The counts of peripheral blood lymphocyte subsets were lower in AA + AB genotype carries than in BB genotype carries. In conclusion, PSGL-1 VNTR polymorphism is associated with the susceptibility to EV-71-induced severe HFMD and the immune status after infection. PSGL-1 VNTR might play a certain role in the pathogenesis of severe cases.
Collapse
Affiliation(s)
- Xia Wang
- Tianjin Second People's Hospital, Tianjin, 300192, China
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China
| | - Jing Qian
- Tianjin Second People's Hospital, Tianjin, 300192, China
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China
| | - Yuqiang Mi
- Tianjin Second People's Hospital, Tianjin, 300192, China.
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China.
| | - Ying Li
- Tianjin Second People's Hospital, Tianjin, 300192, China.
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China.
| | - Yu Cao
- Tianjin Second People's Hospital, Tianjin, 300192, China
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China
| | - Kunyan Qiao
- Tianjin Second People's Hospital, Tianjin, 300192, China
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, 300192, China
| |
Collapse
|
5
|
Zhang X, Yin Z, Zhang J, Guo H, Li J, Nie X, Wang S, Zhang L. Enterovirus 71 Activates Plasmacytoid Dendritic Cell-Dependent PSGL-1 Binding Independent of Productive Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1782-1790. [PMID: 38629901 PMCID: PMC11102030 DOI: 10.4049/jimmunol.2300407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/20/2024] [Indexed: 05/20/2024]
Abstract
Enterovirus 71 (EV71) is a significant causative agent of hand, foot, and mouth disease, with potential serious neurologic complications or fatal outcomes. The lack of effective treatments for EV71 infection is attributed to its elusive pathogenicity. Our study reveals that human plasmacytoid dendritic cells (pDCs), the main type I IFN-producing cells, selectively express scavenger receptor class B, member 2 (SCARB2) and P-selectin glycoprotein ligand 1 (PSGL-1), crucial cellular receptors for EV71. Some strains of EV71 can replicate within pDCs and stimulate IFN-α production. The activation of pDCs by EV71 is hindered by Abs to PSGL-1 and soluble PSGL-1, whereas Abs to SCARB2 and soluble SCARB2 have a less pronounced effect. Our data suggest that only strains binding to PSGL-1, more commonly found in severe cases, can replicate in pDCs and induce IFN-α secretion, highlighting the importance of PSGL-1 in these processes. Furthermore, IFN-α secretion by pDCs can be triggered by EV71 or UV-inactivated EV71 virions, indicating that productive infection is not necessary for pDC activation. These findings provide new insights into the interaction between EV71 and pDCs, suggesting that pDC activation could potentially mitigate the severity of EV71-related diseases.
Collapse
Affiliation(s)
- Xuyuan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhao Yin
- Department of Cardiology, Strategic Support Force Characteristic Medical Center, The Chinese People’s Liberation Army, Beijing, China
| | - Jialong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Nie
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shouli Wang
- Department of Cardiology, Strategic Support Force Characteristic Medical Center, The Chinese People’s Liberation Army, Beijing, China
| | - Liguo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Xia Z, Wang H, Chen W, Wang A, Cao Z. Scorpion Venom Antimicrobial Peptide Derivative BmKn2-T5 Inhibits Enterovirus 71 in the Early Stages of the Viral Life Cycle In Vitro. Biomolecules 2024; 14:545. [PMID: 38785952 PMCID: PMC11117539 DOI: 10.3390/biom14050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Enterovirus 71 (EV71), a typical representative of unenveloped RNA viruses, is the main pathogenic factor responsible for hand, foot, and mouth disease (HFMD) in infants. This disease seriously threatens the health and lives of humans worldwide, especially in the Asia-Pacific region. Numerous animal antimicrobial peptides have been found with protective functions against viruses, bacteria, fungi, parasites, and other pathogens, but there are few studies on the use of scorpion-derived antimicrobial peptides against unenveloped viruses. Here, we investigated the antiviral activities of scorpion venom antimicrobial peptide BmKn2 and five derivatives, finding that BmKn2 and its derivative BmKn2-T5 exhibit a significant inhibitory effect on EV71. Although both peptides exhibit characteristics typical of amphiphilic α-helices in terms of their secondary structure, BmKn2-T5 displayed lower cellular cytotoxicity than BmKn2. BmKn2-T5 was further found to inhibit EV71 in a dose-dependent manner in vitro. Moreover, time-of-drug-addition experiments showed that BmKn2-T5 mainly restricts EV71, but not its virion or replication, at the early stages of the viral cycle. Interestingly, BmKn2-T5 was also found to suppress the replication of the enveloped viruses DENV, ZIKV, and HSV-1 in the early stages of the viral cycle, which suggests they may share a common early infection step with EV71. Together, the results of our study identified that the scorpion-derived antimicrobial peptide BmKn2-T5 showed valuable antiviral properties against EV71 in vitro, but also against other enveloped viruses, making it a potential new candidate therapeutic molecule.
Collapse
Affiliation(s)
- Zhiqiang Xia
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
| | - Huijuan Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Weilie Chen
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510060, China;
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - Zhijian Cao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
| |
Collapse
|
7
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
8
|
Feferbaum-Leite S, Santos IA, Grosche VR, da Silva GCD, Jardim ACG. Insights into enterovirus a-71 antiviral development: from natural sources to synthetic nanoparticles. Arch Microbiol 2023; 205:334. [PMID: 37730918 DOI: 10.1007/s00203-023-03660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Enteroviruses are pathogens responsible for several diseases, being enterovirus A71 (EVA71) the second leading cause of hand, foot, and mouth disease (HFMD), especially in Asia-Pacific countries. HFMD is mostly common in infants and children, with mild symptoms. However, the disease can result in severe nervous system disorders in children as well as in immunosuppressed adults. The virus is highly contagious, and its transmission occurs via fecal-oral, oropharyngeal secretions, and fomites. The EVA71 burdens the healthy systems and economies around the world, however, up to date, there is no antiviral approved to treat infected individuals and the existent vaccines are not available or approved to be used worldwide. In this context, an extensive literature research was conducted to describe and summarize the recent advances in natural and/or synthetic compounds with antiviral activity against EVA71. The summarized data presented here might simply encourage the future studies in EVA71 antiviral development, by encouraging further research encompassing these compounds or even the application of the techniques and technologies to improve or produce new antiviral molecules.
Collapse
Affiliation(s)
- Shiraz Feferbaum-Leite
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil
| | | | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
10
|
Behzadi A, imani S, Deravi N, Mohammad Taheri Z, mohammadian F, moraveji Z, Shavysi S, Mostafaloo M, Soleimani Hadidi F, Nanbakhsh S, Olangian-Tehrani S, Marabi MH, behshood P, Poudineh M, Kheirandish A, Keylani K, Behfarnia P. Antiviral Potential of Melissa officinalis L.: A Literature Review. Nutr Metab Insights 2023; 16:11786388221146683. [PMID: 36655201 PMCID: PMC9841880 DOI: 10.1177/11786388221146683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/05/2022] [Indexed: 01/13/2023] Open
Abstract
The use of synthetic drugs has increased in recent years; however, herbal medicine is yet more trusted among a huge population worldwide; This could be due to minimal side effects, affordable prices, and traditional beliefs. Lemongrass (Melissa officinalis) has been widely used for reducing stress and anxiety, increasing appetite and sleep, reducing pain, healing wounds, and treating poisonous insect bites and bee stings for a long time. Today, research has shown that this plant can also fight viruses including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Herpes Simplex Virus (HSV), and Human Immunodeficiency Virus (HIV) through various mechanisms such as inhibiting HSV-1 from binding to host cell, inhibiting HSV-1 replication during the post-adsorption or inhibiting main protease and spike protein of SARS-CoV-2, furthermore, be effective in treating related diseases. This Review investigated the antiviral properties of Melissa officinalis and its effect on viral diseases. More in vitro and in vivo studies are needed to determine Melissa officinaliss underlying mechanism, and more randomized controlled trials should be done to identify its effect in humans. Also, due to the usefulness and lack of side effects, it can be used more as a complementary medicine.
Collapse
Affiliation(s)
- Amirhossein Behzadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Sadegh imani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - fatemeh mohammadian
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - zahra moraveji
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sepideh Shavysi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Motahareh Mostafaloo
- School of Nursing and Midwifery, Iran University of Medical Science, Tehran, Iran
| | - Fateme Soleimani Hadidi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Nanbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Sepehr Olangian-Tehrani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Mohammad Hesam Marabi
- Student Research Committee, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa behshood
- Department of Microbiology, Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Isfahan, Iran
| | | | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Behfarnia
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses 2022; 14:v14102190. [PMID: 36298746 PMCID: PMC9609926 DOI: 10.3390/v14102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroviruses are members of the Picornaviridae family consisting of human enterovirus groups A, B, C, and D as well as nonhuman enteroviruses. Human enterovirus type 71 (EV71) has emerged as a major cause of viral encephalitis, known as hand, foot, and mouth disease (HFMD), in children worldwide, especially in the Asia-Pacific region. EV71 and coxsackievirus A16 are the two viruses responsible for HFMD which are members of group A enteroviruses. The identified EV71 receptors provide useful information for understanding viral replication and tissue tropism. Host factors interact with the internal ribosome entry site (IRES) of EV71 to regulate viral translation. However, the specific molecular features of the respective viral genome that determine virulence remain unclear. Although a vaccine is currently approved, there is no effective therapy for treating EV71-infected patients. Therefore, understanding the host-pathogen interaction could provide knowledge in viral pathogenesis and further benefits to anti-viral therapy development. The aim of this study was to investigate the latest findings about the interaction of viral ligands with the host receptors as well as the activation of immunerelated signaling pathways for innate immunity and the involvement of different cytokines and chemokines during host-pathogen interaction. The study also examined the roles of viral proteins, mainly 2A and 3C protease, interferons production and their inhibitory effects.
Collapse
|
12
|
Zhong M, Wang H, Yan H, Wu S, Wang K, Yang L, Cui B, Wu M, Li Y. Effects and mechanism of Aβ 1-42 on EV-A71 replication. Virol J 2022; 19:151. [PMID: 36127711 PMCID: PMC9485788 DOI: 10.1186/s12985-022-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background β-Amyloid (Aβ) protein is a pivotal pathogenetic factor in Alzheimer’s disease (AD). However, increasing evidence suggests that the brain has to continuously produce excessive Aβ to efficaciously prevent pathogenic micro-organism infections, which induces and accelerates the disease process of AD. Meanwhile, Aβ exhibits activity against herpes simplex virus type 1 (HSV-1) and influenza A virus (IAV) replication, but not against other neurotropic viruses. Enterovirus A71 (EV-A71) is the most important neurotropic enterovirus in the post-polio era. Given the limitation of existing research on the relationship between Aβ and other virus infections, this study aimed to investigate the potent activity of Aβ on EV-A71 infection and extended the potential function of Aβ in other unenveloped viruses may be linked to Alzheimer's disease or infectious neurological diseases. Methods Aβ peptides 1–42 are a major pathological factor of senile plaques in Alzheimer’s disease (AD). Thus, we utilized Aβ1–42 as a test subject to perform our study. The production of monomer Aβ1–42 and their high-molecular oligomer accumulations in neural cells were detected by immunofluorescence assay, ELISA, or Western blot assay. The inhibitory activity of Aβ1–42 peptides against EV-A71 in vitro was detected by Western blot analysis or qRT-PCR. The mechanism of Aβ1–42 against EV-A71 replication was analyzed by time-of-addition assay, attachment inhibition assay, pre-attachment inhibition analysis, viral-penetration inhibition assay, TEM analysis of virus agglutination, and pull-down assay. Results We found that EV-A71 infection induced Aβ production and accumulation in SH-SY5Y cells. We also revealed for the first time that Aβ1–42 efficiently inhibited the RNA level of EV-A71 VP1, and the protein levels of VP1, VP2, and nonstructural protein 3AB in SH-SY5Y, Vero, and human rhabdomyosarcoma (RD) cells. Mechanistically, we demonstrated that Aβ1–42 primarily targeted the early stage of EV-A71 entry to inhibit virus replication by binding virus capsid protein VP1 or scavenger receptor class B member 2. Moreover, Aβ1–42 formed non-enveloped EV-A71 particle aggregates within a certain period and bound to the capsid protein VP1, which partially caused Aβ1–42 to prevent viruses from infecting cells. Conclusions Our findings unveiled that Aβ1–42 effectively inhibited nonenveloped EV-A71 by targeting the early phase of an EV-A71 life cycle, thereby extending the potential function of Aβ in other non-envelope viruses linked to infectious neurological diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01882-3.
Collapse
Affiliation(s)
- Ming Zhong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan xili, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan xili, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan xili, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan xili, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan xili, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lu Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan xili, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Boming Cui
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan xili, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengyuan Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan xili, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan xili, Beijing, 100050, China. .,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
13
|
Abstract
Enterovirus 70 (EV70) is a human pathogen belonging to the family Picornaviridae. EV70 is transmitted by eye secretions and causes acute hemorrhagic conjunctivitis, a serious eye disease. Despite the severity of the disease caused by EV70, its structure is unknown. Here, we present the structures of the EV70 virion, altered particle, and empty capsid determined by cryo-electron microscopy. The capsid of EV70 is composed of the subunits VP1, VP2, VP3, and VP4. The partially collapsed hydrophobic pocket located in VP1 of the EV70 virion is not occupied by a pocket factor, which is commonly present in other enteroviruses. Nevertheless, we show that the pocket can be targeted by the antiviral compounds WIN51711 and pleconaril, which block virus infection. The inhibitors prevent genome release by stabilizing EV70 particles. Knowledge of the structures of complexes of EV70 with inhibitors will enable the development of capsid-binding therapeutics against this virus. IMPORTANCE Globally distributed enterovirus 70 (EV70) causes local outbreaks of acute hemorrhagic conjunctivitis. The discharge from infected eyes enables the high-efficiency transmission of EV70 in overcrowded areas with low hygienic standards. Currently, only symptomatic treatments are available. We determined the structures of EV70 in its native form, the genome release intermediate, and the empty capsid resulting from genome release. Furthermore, we elucidated the structures of EV70 in complex with two inhibitors that block virus infection, and we describe the mechanism of their binding to the virus capsid. These results enable the development of therapeutics against EV70.
Collapse
|
14
|
Kinobe R, Wiyatno A, Artika IM, Safari D. Insight into the Enterovirus A71: A review. Rev Med Virol 2022; 32:e2361. [PMID: 35510476 DOI: 10.1002/rmv.2361] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Enterovirus A71 is a major causative pathogen of hand, foot and mouth disease. It has become a global public health threat, and is especially important for infants and young children in the Asian-Pacific countries. The enterovirus A71 is a non-enveloped virus of the Picornaviridae family having a single-stranded positive-sense RNA genome of about 7.4 kb which encodes the structural and nonstructural proteins. Currently there are no US FDA-approved vaccines or antiviral therapy available against enterovirus A71 infection. Although enterovirus A71 vaccines have been licenced in China, clinically approved vaccines for widespread vaccination programs are lacking. Substantial progress has recently been achieved on understanding the structure and function of enterovirus A71 proteins together with information on the viral genetic diversity and geographic distribution. The present review is intended to provide an overview on our current understanding of the molecular biology and epidemiology of enterovirus A71 which will aid the development of vaccines, therapeutics and other control strategies so as to bolster the preparedness for future enterovirus A71 outbreaks.
Collapse
Affiliation(s)
- Robert Kinobe
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Ageng Wiyatno
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.,Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
15
|
Xu Z, Tang Q, Xu T, Cai Y, Lei P, Chen Y, Zou W, Dong C, Lan K, Wu S, Zhou HB. Discovery of aminothiazole derivatives as novel human enterovirus A71 capsid protein inhibitors. Bioorg Chem 2022; 122:105683. [DOI: 10.1016/j.bioorg.2022.105683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
|
16
|
Structure and antiviral activity of a pectic polysaccharide from the root of Sanguisorba officinalis against enterovirus 71 in vitro/vivo. Carbohydr Polym 2022; 281:119057. [DOI: 10.1016/j.carbpol.2021.119057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/22/2022]
|
17
|
3,4-Dicaffeoylquinic Acid from the Medicinal Plant Ilex kaushue Disrupts the Interaction Between the Five-Fold Axis of Enterovirus A-71 and the Heparan Sulfate Receptor. J Virol 2022; 96:e0054221. [PMID: 35319229 DOI: 10.1128/jvi.00542-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While infections by enterovirus A71 (EV-A71) are generally self-limiting, they can occasionally lead to serious neurological complications and death. No licensed therapies against EV-A71 currently exist. Using anti-virus-induced cytopathic effect assays, 3,4-dicaffeoylquinic acid (3,4-DCQA) from Ilex kaushue extracts was found to exert significant anti-EV-A71 activity, with a broad inhibitory spectrum against different EV-A71 genotypes. Time-of-drug-addition assays revealed that 3,4-DCQA affects the initial phase (entry step) of EV-A71 infection by directly targeting viral particles and disrupting viral attachment to host cells. Using resistant virus selection experiments, we found that 3,4-DCQA targets the glutamic acid residue at position 98 (E98) and the proline residue at position 246 (P246) in the 5-fold axis located within the VP1 structural protein. Recombinant viruses harboring the two mutations were resistant to 3,4-DCQA-elicited inhibition of virus attachment and penetration into human rhabdomyosarcoma (RD) cells. Finally, we showed that 3,4-DCQA specifically inhibited the attachment of EV-A71 to the host receptor heparan sulfate (HS), but not to the scavenger receptor class B member 2 (SCARB2) and P-selectin glycoprotein ligand-1 (PSGL1). Molecular docking analysis confirmed that 3,4-DCQA targets the 5-fold axis to form a stable structure with the E98 and P246 residues through noncovalent and van der Waals interactions. The targeting of E98 and P246 by 3,4-DCQA was found to be specific; accordingly, HS binding of viruses carrying the K242A or K244A mutations in the 5-fold axis was successfully inhibited by 3,4-DCQA.The clinical utility of 3,4-DCQA in the prevention or treatment of EV-A71 infections warrants further scrutiny. IMPORTANCE The canyon region and the 5-fold axis of the EV-A71 viral particle located within the VP1 protein mediate the interaction of the virus with host surface receptors. The three most extensively investigated cellular receptors for EV-A71 include SCARB2, PSGL1, and cell surface heparan sulfate. In the current study, a RD cell-based anti-cytopathic effect assay was used to investigate the potential broad spectrum inhibitory activity of 3,4-DCQA against different EV-A71 strains. Mechanistically, we demonstrate that 3,4-DCQA disrupts the interaction between the 5-fold axis of EV-A71 and its heparan sulfate receptor; however, no effect was seen on the SCARB2 or PSGL1 receptors. Taken together, our findings show that this natural product may pave the way to novel anti-EV-A71 therapeutic strategies.
Collapse
|
18
|
Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol 2022; 12:815020. [PMID: 35126371 PMCID: PMC8810822 DOI: 10.3389/fimmu.2021.815020] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid rafts, also known as microdomains, are important components of cell membranes and are enriched in cholesterol, glycophospholipids and receptors. They are involved in various essential cellular processes, including endocytosis, exocytosis and cellular signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate and egress. However, lipid rafts also play an important role in initiating antimicrobial responses by sensing pathogens via clustered pathogen-sensing receptors and triggering downstream signaling events such as programmed cell death or cytokine production for pathogen clearance. In this review, we discuss how both host and pathogens use lipid rafts and associated proteins in an arms race to survive. Special attention is given to the involvement of the major vault protein, the main constituent of a ribonucleoprotein complex, which is enriched in lipid rafts upon infection with vaccinia virus.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| | - Erik A. C. Wiemer
- Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| |
Collapse
|
19
|
Li Y, Huang R, Chen L, Li Y, Li Y, Liao L, He L, Zhu Z, Wang Y. Characterization of SR-B2a and SR-B2b genes and their ability to promote GCRV infection in grass carp (Ctenopharyngodon idellus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104202. [PMID: 34246624 DOI: 10.1016/j.dci.2021.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Scavenger receptor class B type 2 (SR-B2) is a pattern recognition receptor involved in innate immunity in mammals; however, the immunological function of SR-Bs in fish remains unclear. In this study, the full-length cDNA sequences of SR-B2a and SR-B2b from grass carp (Ctenopharyngodon idellus) were cloned and designated as CiSR-B2a and CiSR-B2b. Multiple alignments and phylogenetic analyses deduced that CiSR-B2a and CiSR-B2b had the highest evolutionary conservation and were closely related to the zebrafish (Danio rerio) homologs, DrSR-B2a and DrSR-B2b, respectively. Both CiSR-B2a and CiSR-B2b were expressed in all the tested tissues, with the highest expression levels found in the hepatopancreas. In Ctenopharyngodon idellus kidney cells (CIK), CiSR-B2a and CiSR-B2b were mainly located in the cytoplasm, and a small amount located on the plasma membrane. After challenge with Grass Carp Reovirus (GCRV), the expression of CiSR-B2a and CiSR-B2b were significantly upregulated in the spleen (about 10.27 and 27.19 times higher than that at 0 day, p < 0.01). With CiSR-B2a or CiSR-B2b overexpressed in CIK, the relative copy number of GCRV in the cells was both significantly increased compared to that in the control group, indicating that CiSR-B2a and CiSR-B2b may be important proteins during the infection processes of GCRV.
Collapse
Affiliation(s)
- Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
20
|
Ke X, Li C, Luo D, Wang T, Liu Y, Tan Z, Du M, He Z, Wang H, Zheng Z, Zhang Y. Metabolic labeling of enterovirus 71 with quantum dots for the study of virus receptor usage. J Nanobiotechnology 2021; 19:295. [PMID: 34583708 PMCID: PMC8477995 DOI: 10.1186/s12951-021-01046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
Fluorescent labeling and dynamic tracking is a powerful tool for exploring virus infection mechanisms. However, for small-sized viruses, virus tracking studies are usually hindered by a lack of appropriate labeling methods that do not dampen virus yield or infectivity. Here, we report a universal strategy for labeling viruses with chemical dyes and Quantum dots (QDs). Enterovirus 71 (EV71) was produced in a cell line that stably expresses a mutant methionyl-tRNA synthetase (MetRS), which can charge azidonorleucine (ANL) to the methionine sites of viral proteins during translation. Then, the ANL-containing virus was easily labeled with DBCO-AF647 and DBCO-QDs. The labeled virus shows sufficient yield and no obvious decrease in infectivity and can be used for imaging the virus entry process. Using the labeled EV71, different functions of scavenger receptor class B, member 2 (SCARB2), and heparan sulfate (HS) in EV71 infection were comparatively studied. The cell entry process of a strong HS-binding EV71 strain was investigated by real-time dynamic visualization of EV71-QDs in living cells. Taken together, our study described a universal biocompatible virus labeling method, visualized the dynamic viral entry process, and reported details of the receptor usage of EV71.
Collapse
Affiliation(s)
- Xianliang Ke
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chunjie Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dan Luo
- Department of Gastroenterology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430015, Wuhan, China
| | - Ting Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430100, China
| | - Yan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhongyuan Tan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mingyuan Du
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yuan Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
21
|
O'Neal AJ, Hanson MR. The Enterovirus Theory of Disease Etiology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Critical Review. Front Med (Lausanne) 2021; 8:688486. [PMID: 34222292 PMCID: PMC8253308 DOI: 10.3389/fmed.2021.688486] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, multi-system disease whose etiological basis has not been established. Enteroviruses (EVs) as a cause of ME/CFS have sometimes been proposed, as they are known agents of acute respiratory and gastrointestinal infections that may persist in secondary infection sites, including the central nervous system, muscle, and heart. To date, the body of research that has investigated enterovirus infections in relation to ME/CFS supports an increased prevalence of chronic or persistent enteroviral infections in ME/CFS patient cohorts than in healthy individuals. Nevertheless, inconsistent results have fueled a decline in related studies over the past two decades. This review covers the aspects of ME/CFS pathophysiology that are consistent with a chronic enterovirus infection and critically reviews methodologies and approaches used in past EV-related ME/CFS studies. We describe the prior sample types that were interrogated, the methods used and the limitations to the approaches that were chosen. We conclude that there is considerable evidence that prior outbreaks of ME/CFS were caused by one or more enterovirus groups. Furthermore, we find that the methods used in prior studies were inadequate to rule out the presence of chronic enteroviral infections in individuals with ME/CFS. Given the possibility that such infections could be contributing to morbidity and preventing recovery, further studies of appropriate biological samples with the latest molecular methods are urgently needed.
Collapse
Affiliation(s)
- Adam J O'Neal
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
22
|
Diarimalala RO, Hu M, Wei Y, Hu K. Recent advances of enterovirus 71
3
C
p
r
o
targeting Inhibitors. Virol J 2020; 17:173. [PMID: 33176821 PMCID: PMC7657364 DOI: 10.1186/s12985-020-01430-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
With CA16, enterovirus-71 is the causative agent of hand foot and mouth disease (HFMD) which occurs mostly in children under 5 years-old and responsible of several outbreaks since a decade. Most of the time, HFMD is a mild disease but can progress to severe complications such as meningitis, brain stem encephalitis, acute flaccid paralysis (AFP) and even death; EV71 has been identified in all severe cases. Therefore, it is actually one of the most public health issues that threatens children's life.3 C p r o is a protease which plays important functions in EV71 infection. To date, a lot of3 C p r o inhibitors have been tested but none of them has been approved yet. Therefore, a drug screening is still an utmost importance in order to treat and/or prevent EV71 infections. This work highlights the EV71 life cycle,3 C p r o functions and3 C p r o inhibitors recently screened. It permits to well understand all mechanisms about3 C p r o and consequently allow further development of drugs targeting3 C p r o . Thus, this review is helpful for screening of more new3 C p r o inhibitors or for designing analogues of well known3 C p r o inhibitors in order to improve its antiviral activity.
Collapse
Affiliation(s)
- Rominah Onintsoa Diarimalala
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Meichun Hu
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Yanhong Wei
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Kanghong Hu
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| |
Collapse
|
23
|
Haddad C, Davila-Calderon J, Tolbert BS. Integrated approaches to reveal mechanisms by which RNA viruses reprogram the cellular environment. Methods 2020; 183:50-56. [PMID: 32622045 PMCID: PMC7329689 DOI: 10.1016/j.ymeth.2020.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
RNA viruses are major threats to global society and mass outbreaks can cause long-lasting damage to international economies. RNA and related retro viruses represent a large and diverse family that contribute to the onset of human diseases such as AIDS; certain cancers like T cell lymphoma; severe acute respiratory illnesses as seen with COVID-19; and others. The hallmark of this viral family is the storage of genetic material in the form of RNA, and upon infecting host cells, their RNA genomes reprogram the cellular environment to favor productive viral replication. RNA is a multifunctional biomolecule that not only stores and transmits heritable information, but it also has the capacity to catalyze complex biochemical reactions. It is therefore no surprise that RNA viruses use this functional diversity to their advantage to sustain chronic or lifelong infections. Efforts to subvert RNA viruses therefore requires a deep understanding of the mechanisms by which these pathogens usurp cellular machinery. Here, we briefly summarize several experimental techniques that individually inform on key physicochemical features of viral RNA genomes and their interactions with proteins. Each of these techniques provide important vantage points to understand the complexities of virus-host interactions, but we attempt to make the case that by integrating these and similar methods, more vivid descriptions of how viruses reprogram the cellular environment emerges. These vivid descriptions should expedite the identification of novel therapeutic targets.
Collapse
|
24
|
Lin YL, Shih C, Cheng PY, Chin CL, Liou AT, Lee PY, Chiang BL. A Polysaccharide Purified From Ganoderma lucidum Acts as a Potent Mucosal Adjuvant That Promotes Protective Immunity Against the Lethal Challenge With Enterovirus A71. Front Immunol 2020; 11:561758. [PMID: 33117346 PMCID: PMC7550786 DOI: 10.3389/fimmu.2020.561758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
Enterovirus A71 (EV-A71), the pathogen responsible for the seasonal hand-foot-and-mouth epidemics, can cause significant mortality in infants and young children. The vaccine against EV-A71 could potentially prevent virus-induced neurological complications and mortalities occurring due to the high risk of poliomyelitis-like paralysis and fatal encephalitis. It is known that polysaccharide purified from Ganoderma lucidum (PS-G) can effectively modulate immune function. Here, we used PS-G as an adjuvant with the EV-A71 mucosal vaccine and studied its effects. Our data showed that PS-G-adjuvanted EV-A71 generated significantly better IgA and IgG in the serum, saliva, nasal wash, bronchoalveolar lavage fluid (BALF), and feces. More importantly, these antibodies could neutralize the infectivity of EV-A71 (C2 genotype) and cross-neutralize the B4, B5, and C4 genotypes of EV-A71. In addition, more EV-A71-specific IgA- and IgG- secreting cells were observed with the used of a combination of EV-A71 and PS-G. Furthermore, T-cell proliferative responses and IFN-γ and IL-17 secretions levels were notably increased in splenocytes when the EV-A71 vaccine contained PS-G. We also found that levels of IFN-γ and IL-17 released in Peyer's patch cells were significantly increased in EV-A71, after it was combined with PS-G. We further demonstrated that both CD4+ and CD8+ T cells were able to generate IFN-γ and IL-17 in the spleen. An easy-accessed model of hybrid hSCARB2+/+/stat-1-/- mice was used for EV-A71 infection and pathogenesis. We infected the mouse model with EV-A71, which was premixed with mouse sera immunized with the EV-A71 vaccine with or without PS-G. Indeed, in the EV-A71 + PS-G group, the levels of VP1-specific RNA sequences in the brain, spinal cord, and muscle decreased significantly. Finally, hSCARB2-Tg mice immunized via the intranasal route with the PS-G-adjuvanted EV-A71 vaccine resisted a subsequent lethal oral EV-A71 challenge. Taken together, these results demonstrated that PS-G could potentially be used as an adjuvant for the EV-A71 mucosal vaccine.
Collapse
Affiliation(s)
- Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiaho Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yun Cheng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Li Chin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - An-Ting Liou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yi Lee
- Good Health Food Co., Ltd., Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
A Single Mutation in the VP1 Gene of Enterovirus 71 Enhances Viral Binding to Heparan Sulfate and Impairs Viral Pathogenicity in Mice. Viruses 2020; 12:v12080883. [PMID: 32823486 PMCID: PMC7472116 DOI: 10.3390/v12080883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative pathogen of human hand, foot, and mouth disease (hHFMD) and has evolved to use various cellular receptors for infection. However, the relationship between receptor preference and EV71 virulence has not been fully revealed. By using reverse genetics, we identified that a single E98K mutation in VP1 is responsible for rapid viral replication in vitro. The E98K mutation enhanced binding of EV71-GZCII to cells in a heparan sulfate (HS)-dependent manner, and it attenuated the virulence of EV71-GZCII in BALB/c mice, indicating that the HS-binding property is negatively associated with viral virulence. HS is widely expressed in vascular endothelial cells in different mouse tissues, and weak colocalization of HS with scavenger receptor B2 (SCARB2) was detected. The cGZCII-98K virus bound more efficiently to mouse tissue homogenates, and the cGZCII-98K virus titers in mouse tissues and blood were much lower than the cGZCII virus titers. Together, these findings suggest that the enhanced adsorption of the cGZCII-98K virus, which likely occurs through HS, is unable to support the efficient replication of EV71 in vivo. Our study confirmed the role of HS-binding sites in EV71 infection and highlighted the importance of the HS receptor in EV71 pathogenesis.
Collapse
|
26
|
Chen BS, Lee HC, Lee KM, Gong YN, Shih SR. Enterovirus and Encephalitis. Front Microbiol 2020; 11:261. [PMID: 32153545 PMCID: PMC7044131 DOI: 10.3389/fmicb.2020.00261] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Enterovirus-induced infection of the central nervous system (CNS) results in acute inflammation of the brain (encephalitis) and constitutes a significant global burden to human health. These viruses are thought to be highly cytolytic, therefore normal brain function could be greatly compromised following enteroviral infection of the CNS. A further layer of complexity is added by evidence showing that some enteroviruses may establish a persistent infection within the CNS and eventually lead to pathogenesis of certain neurodegenerative disorders. Interestingly, enterovirus encephalitis is particularly common among young children, suggesting a potential causal link between the development of the neuroimmune system and enteroviral neuroinvasion. Although the CNS involvement in enterovirus infections is a relatively rare complication, it represents a serious underlying cause of mortality. Here we review a selection of enteroviruses that infect the CNS and discuss recent advances in the characterization of these enteroviruses with regard to their routes of CNS infection, tropism, virulence, and immune responses.
Collapse
Affiliation(s)
- Bo-Shiun Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hou-Chen Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
27
|
Wang F, Pan H, Yao X, He H, Liu L, Luo Y, Zhou H, Zheng M, Zhang R, Ma Y, Cai L. Bioorthogonal Metabolic Labeling Utilizing Protein Biosynthesis for Dynamic Visualization of Nonenveloped Enterovirus 71 Infection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3363-3370. [PMID: 31845579 DOI: 10.1021/acsami.9b17412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioorthogonal metabolic labeling through the endogenous cellular metabolic pathways (e.g., phospholipid and sugar) is a promising approach for effectively labeling live viruses. However, it remains a big challenge to label nonenveloped viruses due to lack of host-derived envelopes. Herein, a novel bioorthogonal labeling strategy is developed utilizing protein synthesis pathway to label and trace nonenveloped viruses. The results show that l-azidohomoalanine (Aha), an azido derivative of methionine, is more effective than azido sugars to introduce azido motifs into viral capsid proteins by substituting methionine residues during viral protein biosynthesis and assembly. The azide-modified EV71 (N3-EV71) particles are then effectively labeled with dibenzocyclooctyl (DBCO)-functionalized fluorescence probes through an in situ bioorthogonal reaction with well-preserved viral infectivity. Dual-labeled imaging clearly clarifies that EV71 virions primarily bind to scavenger receptors and are internalized through clathrin-mediated endocytosis. The viral particles are then transported into early and late endosomes where viral RNA is released in a low-pH dependent manner at about 70 min postinfection. These results first reveal viral trafficking and uncoating mechanisms, which may shed light on the pathogenesis of EV71 infection and contribute to antiviral drug discovery.
Collapse
Affiliation(s)
- Fangfang Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xiangjie Yao
- Shenzhen Centre for Disease Control and Prevention , Shenzhen 518100 , P. R. China
| | - Huamei He
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yingmei Luo
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Haimei Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | - Renli Zhang
- Shenzhen Centre for Disease Control and Prevention , Shenzhen 518100 , P. R. China
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
- HRYZ Biotech Co. , Shenzhen 518057 , P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| |
Collapse
|
28
|
Lin CJ, Chang L, Chu HW, Lin HJ, Chang PC, Wang RYL, Unnikrishnan B, Mao JY, Chen SY, Huang CC. High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902641. [PMID: 31468672 DOI: 10.1002/smll.201902641] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/03/2019] [Indexed: 05/19/2023]
Abstract
It is demonstrated that carbon quantum dots derived from curcumin (Cur-CQDs) through one-step dry heating are effective antiviral agents against enterovirus 71 (EV71). The surface properties of Cur-CQDs, as well as their antiviral activity, are highly dependent on the heating temperature during synthesis. The one-step heating of curcumin at 180 °C preserves many of the moieties of polymeric curcumin on the surfaces of the as-synthesized Cur-CQDs, resulting in superior antiviral characteristics. It is proposed that curcumin undergoes a series of structural changes through dehydration, polymerization, and carbonization to form core-shell CQDs whose surfaces remain a pyrolytic curcumin-like polymer, boosting the antiviral activity. The results reveal that curcumin possesses insignificant inhibitory activity against EV71 infection in RD cells [half-maximal effective concentration (EC50 ) >200 µg mL-1 ] but exhibits high cytotoxicity toward RD cells (half-maximal cytotoxic concentration (CC50 ) <13 µg mL-1 ). The EC50 (0.2 µg mL-1 ) and CC50 (452.2 µg mL-1 ) of Cur-CQDs are >1000-fold lower and >34-fold higher, respectively, than those of curcumin, demonstrating their far superior antiviral capabilities and high biocompatibility. In vivo, intraperitoneal administration of Cur-CQDs significantly decreases mortality and provides protection against virus-induced hind-limb paralysis in new-born mice challenged with a lethal dose of EV71.
Collapse
Affiliation(s)
- Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Lung Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
- Department of Pediatrics, Mackay Memorial Hospital and Mackay Junior College of Medicine, Nursing and Management, Taipei, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Robert Y L Wang
- Department of Biomedical Sciences and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taoyuan, 33305, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Shiow-Yi Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
29
|
Chen SL, Liu YG, Zhou YT, Zhao P, Ren H, Xiao M, Zhu YZ, Qi ZT. Endophilin-A2-mediated endocytic pathway is critical for enterovirus 71 entry into caco-2 cells. Emerg Microbes Infect 2019; 8:773-786. [PMID: 31132962 PMCID: PMC6542187 DOI: 10.1080/22221751.2019.1618686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enterovirus 71 (EV71) is typically transmitted by the oral-faecal route and initiates infection upon crossing the intestinal mucosa. Our limited understanding of the mechanisms by which it crosses the intestinal mucosa has hampered the development of effective therapeutic options. Here, using an RNA interference screen combined with chemical inhibitors or the overexpression of dominant negative proteins, we found that EV71 entry into Caco-2 cells, a polarized human intestinal epithelial cell line, does not involve clathrin- and caveolae-dependent endocytic pathways or macropinocytosis but requires GTP-binding protein dynamin 2 and cytoskeleton remodelling. The use of siRNAs targeting endophilin family members revealed that endophlin-A2 is essential for the uptake of EV71 particles by Caco-2 cells. Subcellular analysis revealed that internalized EV71 virions largely colocalized with endophilin-A2 at cytomembrane ruffles and in the perinuclear area. Combined with viral entry kinetics, these data suggest that EV71 enters Caco-2 cells mainly via an endophilin-A2-mediated endocytic (EME) pathway. Finally, we showed that internalized EV71 virions were transported to endosomal sorting complex required for transport (ESCRT)-related multivesicular bodies (MVBs). These data provide attractive therapeutic targets to block EV71 infection.
Collapse
Affiliation(s)
- Sheng-Lin Chen
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China.,b General Hospital of the Tibet Military Area Command , Tibet , People's Republic of China
| | - Yan-Gang Liu
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| | - Yong-Tao Zhou
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China.,c Company 7, Department of Clinical Medicine , Second Military Medical University Shanghai , People's Republic of China
| | - Ping Zhao
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| | - Hao Ren
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| | - Man Xiao
- b General Hospital of the Tibet Military Area Command , Tibet , People's Republic of China
| | - Yong-Zhe Zhu
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| | - Zhong-Tian Qi
- a Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense , Second Military Medical University Shanghai , People's Republic of China
| |
Collapse
|
30
|
Abstract
The genus Enterovirus (EV) of the family Picornaviridae includes poliovirus, coxsackieviruses, echoviruses, numbered enteroviruses and rhinoviruses. These diverse viruses cause a variety of diseases, including non-specific febrile illness, hand-foot-and-mouth disease, neonatal sepsis-like disease, encephalitis, paralysis and respiratory diseases. In recent years, several non-polio enteroviruses (NPEVs) have emerged as serious public health concerns. These include EV-A71, which has caused epidemics of hand-foot-and-mouth disease in Southeast Asia, and EV-D68, which recently caused a large outbreak of severe lower respiratory tract disease in North America. Infections with these viruses are associated with severe neurological complications. For decades, most research has focused on poliovirus, but in recent years, our knowledge of NPEVs has increased considerably. In this Review, we summarize recent insights from enterovirus research with a special emphasis on NPEVs. We discuss virion structures, host-receptor interactions, viral uncoating and the recent discovery of a universal enterovirus host factor that is involved in viral genome release. Moreover, we briefly explain the mechanisms of viral genome replication, virion assembly and virion release, and describe potential targets for antiviral therapy. We reflect on how these recent discoveries may help the development of antiviral therapies and vaccines.
Collapse
|
31
|
Wen X, Sun D, Guo J, Elgner F, Wang M, Hildt E, Cheng A. Multifunctionality of structural proteins in the enterovirus life cycle. Future Microbiol 2019; 14:1147-1157. [PMID: 31368347 DOI: 10.2217/fmb-2019-0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Members of the genus Enterovirus have a significant effect on human health, especially in infants and children. Since the viral genome has limited coding capacity, Enteroviruses subvert a range of cellular processes for viral infection via the interaction of viral proteins and numerous cellular factors. Intriguingly, the capsid-receptor interaction plays a crucial role in viral entry and has significant implications in viral pathogenesis. Moreover, interactions between structural proteins and host factors occur directly or indirectly in multiple steps of viral replication. In this review, we focus on the current understanding of the multifunctionality of structural proteins in the viral life cycle, which may constitute valuable targets for antiviral and therapeutic interventions.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.,Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jinlong Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| |
Collapse
|
32
|
Hsp27 Responds to and Facilitates Enterovirus A71 Replication by Enhancing Viral Internal Ribosome Entry Site-Mediated Translation. J Virol 2019; 93:JVI.02322-18. [PMID: 30814282 PMCID: PMC6475798 DOI: 10.1128/jvi.02322-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target. Enterovirus 71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease (HFMD) and fatal neurological diseases, and no effective treatment is available. Characterization of key host factors is important for understanding its pathogenesis and developing antiviral drugs. Here we report that Hsp27 is one of the most upregulated proteins in response to EV-A71 infection, as revealed by two-dimensional gel electrophoresis-based proteomics studies. Depletion of Hsp27 by small interfering RNA or CRISPR/Cas9-mediated knockout significantly inhibited viral replication, protein expression, and reproduction, while restoration of Hsp27 restored such virus activities. Furthermore, we show that Hsp27 plays a crucial role in regulating viral internal ribosome entry site (IRES) activities by two different mechanisms. Hsp27 markedly promoted 2Apro-mediated eukaryotic initiation factor 4G cleavage, an important process for selecting and initiating IRES-mediated translation. hnRNP A1 is a key IRES trans-acting factor (ITAF) for enhancing IRES-mediated translation. Surprisingly, knockout of Hsp27 differentially blocked hnRNP A1 but not FBP1 translocation from the nucleus to the cytoplasm and therefore abolished the hnRNP A1 interaction with IRES. Most importantly, the Hsp27 inhibitor 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), a compound isolated from a traditional Chinese herb, significantly protected against cytopathic effects and inhibited EV-A71 infection. Collectively, our results demonstrate new functions of Hsp27 in facilitating virus infection and provide novel options for combating EV-A71 infection by targeting Hsp27. IMPORTANCE Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target.
Collapse
|
33
|
Xie Y, Li H, Qi X, Ma Y, Yang B, Zhang S, Chang H, Yin X, Li Z. Immunogenicity and protective efficacy of a novel foot-and-mouth disease virus empty-capsid-like particle with improved acid stability. Vaccine 2019; 37:2016-2025. [PMID: 30808570 DOI: 10.1016/j.vaccine.2019.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 11/30/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects cloven-hoofed animal species. The FMDV capsid is highly acid labile and viral particles lose their immunogenicity when they disassemble at mildly acidic pHs. The viral capsid of FMDV serotype O is more sensitive than those of other serotypes, making it more difficult to acquire enough empty-capsid-like particles in the acidic insect cell environment for research. In this study, novel FMDV mutants with increased acid resistance were isolated using BHK-21 cell cultured under low-pH conditions. Amino acid substitutions Q25R, K41E, and N85A in the VP1 capsid protein and K154Q in the VP3 capsid protein were detected in all six mutants. Based on these amino acid replacements, empty-capsid-like particles of FMDV serotype O, which were resistant to the acid-induced dissociation of the capsid into pentameric subunits, were produced in insect cells. We characterized the protective immunity induced by these acid-resistant empty capsid particles. Significant humoral and cellular immune responses were elicited in mice after immunization with the acid-resistant empty capsid particles. The acid-resistant empty-capsid-like particles also induced strong neutralizing antibodies in guinea pigs and protected all the guinea pigs from FMDV challenge. Our results suggest that these acid-resistant empty-capsid-like particles have potential utility as a vaccine against serotype O FMDV infection.
Collapse
Affiliation(s)
- Yinli Xie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haitao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shumin Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China
| | - Zhiyong Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, Gansu, China.
| |
Collapse
|
34
|
Woodman A, Lee KM, Janissen R, Gong YN, Dekker NH, Shih SR, Cameron CE. Predicting Intraserotypic Recombination in Enterovirus 71. J Virol 2019; 93:e02057-18. [PMID: 30487277 PMCID: PMC6364027 DOI: 10.1128/jvi.02057-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023] Open
Abstract
Enteroviruses are well known for their ability to cause neurological damage and paralysis. The model enterovirus is poliovirus (PV), the causative agent of poliomyelitis, a condition characterized by acute flaccid paralysis. A related virus, enterovirus 71 (EV-A71), causes similar clinical outcomes in recurrent outbreaks throughout Asia. Retrospective phylogenetic analysis has shown that recombination between circulating strains of EV-A71 produces the outbreak-associated strains which exhibit increased virulence and/or transmissibility. While studies on the mechanism(s) of recombination in PV are ongoing in several laboratories, little is known about factors that influence recombination in EV-A71. We have developed a cell-based assay to study recombination of EV-A71 based upon previously reported assays for poliovirus recombination. Our results show that (i) EV-A71 strain type and RNA sequence diversity impacts recombination frequency in a predictable manner that mimics the observations found in nature; (ii) recombination is primarily a replicative process mediated by the RNA-dependent RNA polymerase; (iii) a mutation shown to reduce recombination in PV (L420A) similarly reduces EV-A71 recombination, suggesting conservation in mechanism(s); and (iv) sequencing of intraserotypic recombinant genomes indicates that template switching occurs by a mechanism that may require some sequence homology at the recombination junction and that the triggers for template switching may be sequence independent. The development of this recombination assay will permit further investigation on the interplay between replication, recombination and disease.IMPORTANCE Recombination is a mechanism that contributes to genetic diversity. We describe the first assay to study EV-A71 recombination. Results from this assay mimic what is observed in nature and can be used by others to predict future recombination events within the enterovirus species A group. In addition, our results highlight the central role played by the viral RNA-dependent RNA polymerase (RdRp) in the recombination process. Further, our results show that changes to a conserved residue in the RdRp from different species groups have a similar impact on viable recombinant virus yields, which is indicative of conservation in mechanism.
Collapse
Affiliation(s)
- Andrew Woodman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
35
|
Coxsackievirus A10 atomic structure facilitating the discovery of a broad-spectrum inhibitor against human enteroviruses. Cell Discov 2019; 5:4. [PMID: 30652025 PMCID: PMC6331555 DOI: 10.1038/s41421-018-0073-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/21/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) belongs to the Enterovirus species A and is a causative agent of hand, foot, and mouth disease. Here we present cryo-EM structures of CV-A10 mature virion and native empty particle (NEP) at 2.84 and 3.12 Å, respectively. Our CV-A10 mature virion structure reveals a density corresponding to a lipidic pocket factor of 18 carbon atoms in the hydrophobic pocket formed within viral protein 1. By structure-guided high-throughput drug screening and subsequent verification in cell-based infection-inhibition assays, we identified four compounds that inhibited CV-A10 infection in vitro. These compounds represent a new class of anti-enteroviral drug leads. Notably, one of the compounds, ICA135, also exerted broad-spectrum inhibitory effects on a number of representative viruses from all four species (A–D) of human enteroviruses. Our findings should facilitate the development of broadly effective drugs and vaccines for enterovirus infections.
Collapse
|
36
|
Toll-Like Receptor 3 Is Involved in Detection of Enterovirus A71 Infection and Targeted by Viral 2A Protease. Viruses 2018; 10:v10120689. [PMID: 30563052 PMCID: PMC6315976 DOI: 10.3390/v10120689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) has emerged as a major pathogen causing hand, foot, and mouth disease, as well as neurological disorders. The host immune response affects the outcomes of EV-A71 infection, leading to either resolution or disease progression. However, the mechanisms of how the mammalian innate immune system detects EV-A71 infection to elicit antiviral immunity remain elusive. Here, we report that the Toll-like receptor 3 (TLR3) is a key viral RNA sensor for sensing EV-A71 infection to trigger antiviral immunity. Expression of TLR3 in HEK293 cells enabled the cells to sense EV-A71 infection, leading to type I, IFN-mediated antiviral immunity. Viral double-stranded RNA derived from EV-A71 infection was a key ligand for TLR3 detection. Silencing of TLR3 in mouse and human primary immune cells impaired the activation of IFN-β upon EV-A71 infection, thus reinforcing the importance of the TLR3 pathway in defending against EV-A71 infection. Our results further demonstrated that TLR3 was a target of EV-A71 infection. EV-A71 protease 2A was implicated in the downregulation of TLR3. Together, our results not only demonstrate the importance of the TLR3 pathway in response to EV-A71 infection, but also reveal the involvement of EV-A71 protease 2A in subverting TLR3-mediated antiviral defenses.
Collapse
|
37
|
Yeung ML, Jia L, Yip CCY, Chan JFW, Teng JLL, Chan KH, Cai JP, Zhang C, Zhang AJ, Wong WM, Kok KH, Lau SKP, Woo PCY, Lo JYC, Jin DY, Shih SR, Yuen KY. Human tryptophanyl-tRNA synthetase is an IFN-γ-inducible entry factor for Enterovirus. J Clin Invest 2018; 128:5163-5177. [PMID: 30153112 DOI: 10.1172/jci99411] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Enterovirus A71 (EV-A71) receptors that have been identified to date cannot fully explain the pathogenesis of EV-A71, which is an important global cause of hand, foot, and mouth disease and life-threatening encephalitis. We identified an IFN-γ-inducible EV-A71 cellular entry factor, human tryptophanyl-tRNA synthetase (hWARS), using genome-wide RNAi library screening. The importance of hWARS in mediating virus entry and infectivity was confirmed by virus attachment, in vitro pulldown, antibody/antigen blocking, and CRISPR/Cas9-mediated deletion. Hyperexpression and plasma membrane translocation of hWARS were observed in IFN-γ-treated semipermissive (human neuronal NT2) and cDNA-transfected nonpermissive (mouse fibroblast L929) cells, resulting in their sensitization to EV-A71 infection. Our hWARS-transduced mouse infection model showed pathological changes similar to those seen in patients with severe EV-A71 infection. Expression of hWARS is also required for productive infection by other human enteroviruses, including the clinically important coxsackievirus A16 (CV-A16) and EV-D68. This is the first report to our knowledge on the discovery of an entry factor, hWARS, that can be induced by IFN-γ for EV-A71 infection. Given that we detected high levels of IFN-γ in patients with severe EV-A71 infection, our findings extend the knowledge of the pathogenicity of EV-A71 in relation to entry factor expression upon IFN-γ stimulation and the therapeutic options for treating severe EV-A71-associated complications.
Collapse
Affiliation(s)
- Man Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lilong Jia
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Cyril C Y Yip
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jade L L Teng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chaoyu Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna J Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wan-Man Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kin-Hang Kok
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janice Y C Lo
- Public Health Laboratory Centre, Department of Health, Hong Kong Special Administrative Region, China
| | - Dong-Yan Jin
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infection, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region, China.,University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Tseligka ED, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, Meylan P, Huang S, Constant S, Tapparel C. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog 2018; 14:e1007190. [PMID: 30075025 PMCID: PMC6093697 DOI: 10.1371/journal.ppat.1007190] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 08/15/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Enterovirus 71 (EV71) causes hand, foot and mouth disease, a mild and self-limited illness that is sometimes associated with severe neurological complications. EV71 neurotropic determinants remain ill-defined to date. We previously identified a mutation in the VP1 capsid protein (L97R) that was acquired over the course of a disseminated infection in an immunocompromised host. The mutation was absent in the respiratory tract but was present in the gut (as a mixed population) and in blood and cerebrospinal fluid (as a dominant species). In this study, we demonstrated that this mutation does not alter the dependence of EV71 on the human scavenger receptor class B2 (SCARB2), while it enables the virus to bind to the heparan sulfate (HS) attachment receptor and modifies viral tropism in cell lines and in respiratory, intestinal and neural tissues. Variants with VP197L or VP197R were able to replicate to high levels in intestinal and neural tissues and, to a lesser extent, in respiratory tissues, but their preferred entry site (from the luminal or basal tissue side) differed in respiratory and intestinal tissues and correlated with HS expression levels. These data account for the viral populations sequenced from the patient's respiratory and intestinal samples and suggest that improved dissemination, resulting from an acquired ability to bind HS, rather than specific neurotropism determinants, enabled the virus to reach and infect the central nervous system. Finally, we showed that iota-carrageenan, a highly sulfated polysaccharide, efficiently blocks the replication of HS-dependent variants in cells and 2D neural cultures. Overall, the results of this study emphasize the importance of HS binding in EV71 pathogenesis and open new avenues for the development of antiviral molecules that may prevent this virus's dissemination.
Collapse
Affiliation(s)
- Eirini D. Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Komla Sobo
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Luc Stoppini
- Tissue Engineering Laboratory, HES-SO/University of Applied Sciences, Geneva, Western Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Fabien Abdul
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Pascal Meylan
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
39
|
VP1 Amino Acid Residue 145 of Enterovirus 71 Is a Key Residue for Its Receptor Attachment and Resistance to Neutralizing Antibody during Cynomolgus Monkey Infection. J Virol 2018; 92:JVI.00682-18. [PMID: 29848582 DOI: 10.1128/jvi.00682-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/18/2018] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and sometimes causes severe or fatal neurological complications. The amino acid at VP1-145 determines the virological characteristics of EV71. Viruses with glutamic acid (E) at VP1-145 (VP1-145E) are virulent in neonatal mice and transgenic mice expressing human scavenger receptor B2, whereas those with glutamine (Q) or glycine (G) are not. However, the contribution of this variation to pathogenesis in humans is not fully understood. We compared the virulence of VP1-145E and VP1-145G viruses of Isehara and C7/Osaka backgrounds in cynomolgus monkeys. VP1-145E, but not VP1-145G, viruses induced neurological symptoms. VP1-145E viruses were frequently detected in the tissues of infected monkeys. VP1-145G viruses were detected less frequently and disappeared quickly. Instead, mutants that had a G-to-E mutation at VP1-145 emerged, suggesting that VP1-145E viruses have a replication advantage in the monkeys. This is consistent with our hypothesis proposed in the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18) that the VP1-145G virus is attenuated due to its adsorption by heparan sulfate. Monkeys infected with both viruses produced neutralizing antibodies before the onset of the disease. Interestingly, VP1-145E viruses were more resistant to neutralizing antibodies than VP1-145G viruses in vitro A small amount of neutralizing antibody raised in the early phase of infection may not be sufficient to block the dissemination of VP1-145E viruses. The different resistance of the VP1-145 variants to neutralizing antibodies may be one of the reasons for the difference in virulence.IMPORTANCE The contribution of VP1-145 variants in humans is not fully understood. In some studies, VP1-145G/Q viruses were isolated more frequently from severely affected patients than from mildly affected patients, suggesting that VP1-145G/Q viruses are more virulent. In the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18), we showed that VP1-145E viruses are more virulent than VP1-145G viruses in human SCARB2 transgenic mice. Heparan sulfate acts as a decoy to specifically trap the VP1-145G viruses and leads to abortive infection. Here, we demonstrated that VP1-145G was attenuated in cynomolgus monkeys, suggesting that this hypothesis is also true in a nonhuman primate model. VP1-145E viruses, but not VP1-145G viruses, were highly resistant to neutralizing antibodies. We propose the difference in resistance against neutralizing antibodies as another mechanism of EV71 virulence. In summary, VP1-145 contributes to virulence determination by controlling attachment receptor usage and antibody sensitivity.
Collapse
|
40
|
Lin YL, Chow YH, Huang LM, Hsieh SM, Cheng PY, Hu KC, Chiang BL. A CpG-adjuvanted intranasal enterovirus 71 vaccine elicits mucosal and systemic immune responses and protects human SCARB2-transgenic mice against lethal challenge. Sci Rep 2018; 8:10713. [PMID: 30013088 PMCID: PMC6048030 DOI: 10.1038/s41598-018-28281-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Enterovirus 71 (EV71) is an aetiological agent responsible for seasonal epidemics of hand-foot-and-mouth disease, which causes considerable mortality among young children. Mucosal vaccines can efficiently induce secretory IgA at mucosal surfaces and thereby prevent or limit infection at the site of virus entry. CpG oligodeoxynucleotides (ODNs), which resemble bacterial DNA, can induce the innate immune response through activation of Toll-like receptor 9. Here, we used CpG ODNs as adjuvants to investigate an EV71 mucosal vaccine in mice. In the EV71 + CpG group, the EV71-specific IgG and IgA titres in the serum, nasal wash, bronchoalveolar lavage fluid, and faeces were substantially higher than those in the EV71- and phosphate-buffered saline-treated groups. Moreover, the number of EV71-specific IgG- and IgA-producing cells was also higher in the EV71 + CpG group. Furthermore, T-cell proliferative responses and interleukin-17 secretion were markedly increased when CpG-adjuvanted EV71 was delivered intranasally. More importantly, the induced antibodies neutralised infection by EV71 of the C2 genotype and crossneutralised infection by EV71 of the B4 and B5 genotypes. Lastly, human scavenger receptor class B, member 2-transgenic mice intranasally immunised with the CpG-adjuvanted EV71 vaccine resisted a subsequent lethal challenge with EV71, indicating that CpG was an effective intranasal adjuvant for EV71 mucosal-vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Bronchoalveolar Lavage Fluid/immunology
- Disease Models, Animal
- Enterovirus A, Human/immunology
- Enterovirus A, Human/pathogenicity
- Female
- Hand, Foot and Mouth Disease/blood
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/virology
- Humans
- Immunity, Mucosal
- Immunogenicity, Vaccine
- Lysosomal Membrane Proteins/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Receptors, Scavenger/genetics
- Treatment Outcome
- Vaccines, Inactivated
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Min Hsieh
- Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Yun Cheng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chieh Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
41
|
van der Grein SG, Defourny KAY, Slot EFJ, Nolte-'t Hoen ENM. Intricate relationships between naked viruses and extracellular vesicles in the crosstalk between pathogen and host. Semin Immunopathol 2018; 40:491-504. [PMID: 29789863 PMCID: PMC6208671 DOI: 10.1007/s00281-018-0678-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
It is a long-standing paradigm in the field of virology that naked viruses cause lysis of infected cells to release progeny virus. However, recent data indicate that naked virus types of the Picornaviridae and Hepeviridae families can also leave cells via an alternative route involving enclosure in fully host-derived lipid bilayers. The resulting particles resemble extracellular vesicles (EV), which are 50 nm–1 μm vesicles released by all cells. These EV contain lipids, proteins, and RNA, and generally serve as vehicles for intercellular communication in various (patho)physiological processes. EV can act as carriers of naked viruses and as invisibility cloaks to evade immune attacks. However, the exact combination of virions and host-derived molecules determines how these virus-containing EV affect spread of infection and/or triggering of antiviral immune responses. An underexposed aspect in this research area is that infected cells likely release multiple types of virus-induced and constitutively released EV with unique molecular composition and function. In this review, we identify virus-, cell-, and environment-specific factors that shape the EV population released by naked virus-infected cells. In addition, current findings on the formation and molecular composition of EV induced by different virus types will be compared and placed in the context of the widely proven heterogeneity of EV populations and biases caused by different EV isolation methodologies. Close interactions between the fields of EV biology and virology will help to further delineate the intricate relationship between EV and naked viruses and its relevance for viral life cycles and outcomes of viral infections.
Collapse
Affiliation(s)
- Susanne G van der Grein
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kyra A Y Defourny
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Erik F J Slot
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
42
|
Chang CK, Wu SR, Chen YC, Lee KJ, Chung NH, Lu YJ, Yu SL, Liu CC, Chow YH. Mutations in VP1 and 5'-UTR affect enterovirus 71 virulence. Sci Rep 2018; 8:6688. [PMID: 29703921 PMCID: PMC5923339 DOI: 10.1038/s41598-018-25091-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/16/2018] [Indexed: 11/27/2022] Open
Abstract
Enterovirus 71 (EV71) is a major cause of hand, foot and mouth disease (HFMD). The current EV71 propagating in Vero (EV-V) or sub-passaged in RD (EV-R) cells was used as a pathogen. Interestingly, EV-R exhibited differential virulence; challenging human scavenger receptor class B2-expressing (hSCARB2-Tg) mice with EV71 revealed that EV-V was more virulent than EV-R: 100% of mice that received lethal amounts of EV-V died, while all the mice that received EV-R survived. Severe pathogenesis correlated with viral burdens and proinflammatory cytokine levels were observed in EV-V-challenged mice, but controversy in EV-R-challenged mice. Consensus sequence analysis revealed EV-R rapidly acquired complete mutations at E145G and S241L and partial mutations at V146I of VP1, and acquired a T to C substitution at nucleotide 494 of the 5'-UTR. EV-R exhibited higher binding affinity for another EV71 receptor, human P-selectin glycoprotein ligand-1 (hPSGL-1), than EV-V. Both EV71s exhibited no significant difference in binding to hSCARB2. The molecular modelling indicate that these mutations might influence EV71 engagement with PSGL-1 and in vivo virulence.
Collapse
Affiliation(s)
- Ching-Kun Chang
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chin Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Kuen-Jin Lee
- Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Nai-Hsiang Chung
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ju Lu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Shu-Ling Yu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan.
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
43
|
Yuan M, Yan J, Xun J, Chen C, Zhang Y, Wang M, Chu W, Song Z, Hu Y, Zhang S, Zhang X. Enhanced human enterovirus 71 infection by endocytosis inhibitors reveals multiple entry pathways by enterovirus causing hand-foot-and-mouth diseases. Virol J 2018; 15:1. [PMID: 29298696 PMCID: PMC5751926 DOI: 10.1186/s12985-017-0913-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Background Human enterovirus 71 (EV71) was previously known to enter cells through clathrin or caveolar mediated endocytic pathways. However, we observed chlorpromazine (CPZ) or dynasore (DNS), which inhibit clathrin and dynamin mediated endocytosis, did not suppress EV71 cell entry in particular cell types. So the current knowledge of entry mechanisms by EV71 is not complete. Methods Viral infection was examined by flow cytometry or end-point dilution assays. Viral entry was monitored by immunofluorescence or pseudoviral infections. Various inhibitors were utilized for manipulating endocytic pathways. Cellular proteins were knockdown by siRNA. Results CPZ and DNS did not inhibit but rather enhance viral infection in A549 cells, while they inhibited infections in other cells tested. We further found CPZ did not affect EV71 binding to target cells and failed to affect viral translation and replication, but enhanced viral entry in A549 cells. Immunofluorescence microscopy further confirmed this increased entry. Using siRNA experiment, we found that the enhancement of EV71 infection by CPZ did not require the components of clathrin mediated endocytosis. Finally, CPZ also enhanced infection by Coxackivirus A16 in A549 cells. Conclusions CPZ and DNS, previously reported as EV71 entry inhibitors, may rather lead to increased viral infection in particular cell types. CPZ and DNS increased viral entry and not other steps of viral life cycles. Therefore, our study indicated an unknown dynamin-independent entry pathway utilized by enteroviruses that cause Hand-Foot-and-Mouth Diseases. Electronic supplementary material The online version of this article (10.1186/s12985-017-0913-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meichun Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingjing Yan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingna Xun
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chong Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuling Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqi Chu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunwen Hu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,Key Laboratory of Medical Molecular Virology of Ministries of Education/Health, Institute of Medical Microbiology, Shanghai Medical College of Fudan University, Shanghai, China. .,Department of Scientific Research, Shanghai Emerging and Re-emerging infectious Diseases Institute, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, People's Republic of China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,Department of Scientific Research, Shanghai Emerging and Re-emerging infectious Diseases Institute, 2901 Caolang Road, Jin-Shan District, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
44
|
Leonor Fernandes Saraiva JP, Zubiria-Barrera C, Klassert TE, Lautenbach MJ, Blaess M, Claus RA, Slevogt H, König R. Combination of Classifiers Identifies Fungal-Specific Activation of Lysosome Genes in Human Monocytes. Front Microbiol 2017; 8:2366. [PMID: 29238336 PMCID: PMC5712586 DOI: 10.3389/fmicb.2017.02366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Blood stream infections can be caused by several pathogens such as viruses, fungi and bacteria and can cause severe clinical complications including sepsis. Delivery of appropriate and quick treatment is mandatory. However, it requires a rapid identification of the invading pathogen. The current gold standard for pathogen identification relies on blood cultures and these methods require a long time to gain the needed diagnosis. The use of in situ experiments attempts to identify pathogen specific immune responses but these often lead to heterogeneous biomarkers due to the high variability in methods and materials used. Using gene expression profiles for machine learning is a developing approach to discriminate between types of infection, but also shows a high degree of inconsistency. To produce consistent gene signatures, capable of discriminating fungal from bacterial infection, we have employed Support Vector Machines (SVMs) based on Mixed Integer Linear Programming (MILP). Combining classifiers by joint optimization constraining them to the same set of discriminating features increased the consistency of our biomarker list independently of leukocyte-type or experimental setup. Our gene signature showed an enrichment of genes of the lysosome pathway which was not uncovered by the use of independent classifiers. Moreover, our results suggest that the lysosome genes are specifically induced in monocytes. Real time qPCR of the identified lysosome-related genes confirmed the distinct gene expression increase in monocytes during fungal infections. Concluding, our combined classifier approach presented increased consistency and was able to "unmask" signaling pathways of less-present immune cells in the used datasets.
Collapse
Affiliation(s)
- João P Leonor Fernandes Saraiva
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | | | | | - Markus Blaess
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf A Claus
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Rainer König
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
45
|
Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP. Immunopathogenesis and Virus-Host Interactions of Enterovirus 71 in Patients with Hand, Foot and Mouth Disease. Front Microbiol 2017; 8:2249. [PMID: 29238324 PMCID: PMC5713468 DOI: 10.3389/fmicb.2017.02249] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host-viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions.
Collapse
Affiliation(s)
- Jonathan A. Cox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Julian A. Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Samarahan, Malaysia
- Department of Paediatrics, Sarawak General Hospital, Kuching, Malaysia
| | - Lisa F. P. Ng
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| |
Collapse
|
46
|
Chen SG, Leu YL, Cheng ML, Ting SC, Liu CC, Wang SD, Yang CH, Hung CY, Sakurai H, Chen KH, Ho HY. Anti-enterovirus 71 activities of Melissa officinalis extract and its biologically active constituent rosmarinic acid. Sci Rep 2017; 7:12264. [PMID: 28947773 PMCID: PMC5613005 DOI: 10.1038/s41598-017-12388-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023] Open
Abstract
Enterovirus 71 (EV71) infection is endemic in the Asia-Pacific region. No specific antiviral drug has been available to treat EV71 infection. Melissa officinalis (MO) is a medicinal plant with long history of usage in the European and Middle East. We investigated whether an aqueous solution of concentrated methanolic extract (MOM) possesses antiviral activity. MOM inhibited plaque formation, cytopathic effect, and viral protein synthesis in EV71-infected cells. Using spectral techniques, we identified rosmarinic acid (RA) as a biologically active constituent of MOM. RA reduced viral attachment and entry; cleavage of eukaryotic translation initiation factor 4 G (eIF4G); reactive oxygen species (ROS) generation; and translocation of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) from nucleus to cytoplasm. It alleviated EV71-induced hyperphosphorylation of p38 kinase and EPS15. RA is likely to suppress ROS-mediated p38 kinase activation, and such downstream molecular events as hnRNP A1 translocation and EPS15-regulated membrane trafficking in EV71-infected cells. These findings suggest that MO and its constituent RA possess anti-EV71 activities, and may serve as a candidate drug for therapeutic and prophylactic uses against EV71 infection.
Collapse
Affiliation(s)
- Sin-Guang Chen
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Metabolomics Core Laboratory, Chang Gung University, Guishan, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
| | - Siew Chin Ting
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Hung Yang
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Cheng-Yu Hung
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Metabolomics Core Laboratory, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Hung-Yao Ho
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan.
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
47
|
Zhang X, Yang P, Wang N, Zhang J, Li J, Guo H, Yin X, Rao Z, Wang X, Zhang L. The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection. Protein Cell 2017; 8:590-600. [PMID: 28447294 PMCID: PMC5546930 DOI: 10.1007/s13238-017-0405-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/16/2017] [Indexed: 12/02/2022] Open
Abstract
Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Binding Sites
- Cell Line
- Crystallography, X-Ray
- Enterovirus A, Human/drug effects
- Enterovirus A, Human/genetics
- Enterovirus A, Human/growth & development
- Enterovirus A, Human/immunology
- Fibroblasts/drug effects
- Fibroblasts/virology
- Gene Expression
- HEK293 Cells
- Humans
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Lysosomal Membrane Proteins/chemistry
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/immunology
- Mice
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Scavenger/chemistry
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sf9 Cells
- Spodoptera
- Thermodynamics
Collapse
Affiliation(s)
- Xuyuan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Yang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialong Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingyun Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangyun Yin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
48
|
Feng C, Fu Y, Chen D, Wang H, Su A, Zhang L, Chang L, Zheng N, Wu Z. miR-127-5p negatively regulates enterovirus 71 replication by directly targeting SCARB2. FEBS Open Bio 2017; 7:747-758. [PMID: 28593131 PMCID: PMC5458453 DOI: 10.1002/2211-5463.12197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/27/2016] [Accepted: 01/16/2017] [Indexed: 12/27/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand‐foot‐and‐mouth disease in young children and can cause severe cerebral and pulmonary complications and even fatality. This study aimed at elucidating whether and how EV71 infection is regulated by a cellular microRNA, miR‐127‐5p. We found that miR‐127‐5p can downregulate the expression of SCARB2, a main receptor of EV71, by targeting two potential sites in its 3′ UTR region and inhibit EV71 infection. Meanwhile, miR‐127‐5p expression was upregulated during EV71 infection. Notably, transfecting cells with miR‐127‐5p mimics led to a significant decrease in viral replication, while inhibition of endogenous miR‐127‐5p facilitated viral replication. Furthermore, our evidence showed that miR‐127‐5p did not affect postentry viral replication. Taken together, these results indicated that miR‐127‐5p inhibited EV71 replication by targeting the SCARB2 mRNA.
Collapse
Affiliation(s)
- Chunhong Feng
- Center for Public Health Research Medical School Nanjing University China.,School of life sciences Nanjing University China
| | - Yuxuan Fu
- Center for Public Health Research Medical School Nanjing University China
| | - Deyan Chen
- Center for Public Health Research Medical School Nanjing University China
| | - Huanru Wang
- Center for Public Health Research Medical School Nanjing University China
| | - Airong Su
- Center for Public Health Research Medical School Nanjing University China
| | - Li Zhang
- Center for Public Health Research Medical School Nanjing University China
| | - Liang Chang
- Center for Public Health Research Medical School Nanjing University China
| | - Nan Zheng
- Center for Public Health Research Medical School Nanjing University China.,State Key Lab of Analytical Chemistry for Life Science Nanjing University China.,Medical School and Jiangsu Key Laboratory of Molecular Medicine Nanjing University China
| | - Zhiwei Wu
- Center for Public Health Research Medical School Nanjing University China.,State Key Lab of Analytical Chemistry for Life Science Nanjing University China.,Medical School and Jiangsu Key Laboratory of Molecular Medicine Nanjing University China
| |
Collapse
|
49
|
Gunaseelan S, Chu JJH. Identifying novel antiviral targets against enterovirus 71: where are we? Future Virol 2017. [DOI: 10.2217/fvl-2016-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human enterovirus 71 (HEV71) has been considered as an essential human pathogen, which causes hand, foot and mouth disease in young children. Several HEV71 outbreaks have been observed in many Asia-Pacific countries for the past two decades with significant fatalities. However, there are no competent vaccines or antivirals against HEV71 infection to date. Thus, it is of critical priority to delve into the search for anti-HEV71 agents. Prior to this, there is a need to gain knowledge about the distinct targets of HEV71 that are available and that have been exploited for antiviral therapy. This review aims to provide a better understanding of HEV71 virology and feature potential antivirals for progressive clinical development with respect to their elucidated mechanistic actions.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06–05, Singapore 138673
| |
Collapse
|
50
|
Squamous epitheliotropism of Enterovirus A71 in human epidermis and oral mucosa. Sci Rep 2017; 7:45069. [PMID: 28322333 PMCID: PMC5359612 DOI: 10.1038/srep45069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/16/2017] [Indexed: 12/31/2022] Open
Abstract
Hand-foot-and-mouth disease is a self-limiting paediatric infectious disease commonly caused by Enterovirus A71 (Genus: Enterovirus, Family: Picornaviridae). Typical lesions in and around the hands, feet, oral cavity and other places may rarely be complicated by acute flaccid paralysis and acute encephalomyelitis. Although virus is readily cultured from skin vesicles and oral secretions, the cellular target/s of Enterovirus A71 in human skin and oral mucosa are unknown. In Enterovirus A71-infected human skin and oral mucosa organotypic cultures derived from the prepuce and lip biopsies, focal viral antigens and viral RNA were localized to cytoplasm of epidermal and mucosal squamous cells as early as 2 days post-infection. Viral antigens/RNA were associated with cytoplasmic vacuolation and cellular necrosis. Infected primary prepuce epidermal keratinocyte cultures showed cytopathic effects with concomitant detection of viral antigens from 2 days post-infection. Supernatant and/or tissue homogenates from prepuce skin organotypic cultures and primary prepuce keratinocyte cultures showed viral titres consistent with active viral replication. Our data strongly support Enterovirus A71 squamous epitheliotropism in the human epidermis and oral mucosa, and suggest that these organs are important primary and/or secondary viral replication sites that contribute significantly to oral and cutaneous viral shedding resulting in person-to-person transmission, and viraemia, which could lead to neuroinvasion.
Collapse
|