1
|
Cavaco MM, Gaspar P, do Amaral Vieira R, Ribeiro F, Graca L. Heterogeneity of T follicular regulatory cells: exploring their expanding ontogeny and differentiation pathways. Immunol Cell Biol 2025. [PMID: 40386909 DOI: 10.1111/imcb.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 05/20/2025]
Abstract
T follicular regulatory (Tfr) cells have emerged as key mediators in controlling germinal center (GC) responses, preventing excessive immune activation and preserving self-tolerance. Initially thought to originate solely from thymic T regulatory cells (tTregs), recent findings reveal a more complex picture involving multiple differentiation pathways contributing to their heterogeneity. The natural route of differentiation comprises the most abundant subset, which originates from tTregs and retains the expression of CD25 (CD25+ nTfr), before transitioning into a more mature CD25-negative state within the GC (CD25- nTfr). Conversely, the induced route (iTfr) includes Tfr cells that arise alongside nTfr cells but originate from peripheral Tregs or CD25-expressing Tfh cells, in addition to a late-GC subset (late Tfr) that emerges through the expression of FoxP3 by Tfh cells. The identification of circulating Tfr cells (cTfr) in peripheral blood, especially useful for studying immune dysregulation in humans, provides insights into their systemic roles and potential as biomarkers for immune dysfunction in different clinical scenarios. While it becomes evident that Tfr cells exhibit a heterogeneous nature, a deeper understanding of their distinct subsets could pave the way for targeted immunomodulatory strategies in the development of novel vaccines and therapeutics. This review provides a comprehensive overview of Tfr cell diversity, exploring their ontogeny, functional roles, and impact on immune homeostasis and disease.
Collapse
Affiliation(s)
- Maria Miguel Cavaco
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Gaspar
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Hospital Santa Maria, Unidade Local de Saúde Santa Maria, Lisbon, Portugal
| | - Rui do Amaral Vieira
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Ribeiro
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Luis Graca
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Nelson CS, Podestà MA, Gempler MG, Lee JM, Batty CJ, Mathenge PG, Sainju A, Chang MR, Ke H, Chandrakar P, Bechu E, Richardson S, Cavazzoni CB, Tullius SG, Abdi R, Ghebremichael M, Haigis MC, Marasco WA, Sage PT. The inflammaging microenvironment induces dysfunctional rewiring of Tfh cell differentiation. JCI Insight 2025; 10:e187271. [PMID: 40036082 PMCID: PMC12016926 DOI: 10.1172/jci.insight.187271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Humoral immunity is orchestrated by follicular helper T (Tfh) cells, which promote cognate B cells to produce high-affinity, protective antibodies. In aged individuals, humoral immunity after vaccination is diminished despite the presence of Tfh cells, suggesting defects after initial Tfh cell formation. In this study, we utilized both murine and human systems to investigate how aging alters Tfh cell differentiation after influenza vaccination. We found that young Tfh cells underwent progressive differentiation after influenza vaccination, culminating in clonal expansion of effector-like cells in both draining lymph nodes and blood. In aging, early stages of Tfh cell development occurred normally. However, aging rewired the later stages of development in Tfh cells, resulting in a transcriptional program reflective of cellular senescence, sustained pro-inflammatory cytokine production, and metabolic reprogramming. We investigated the extent to which this rewiring of aged Tfh cells is due to the age-associated inflammatory ("inflammaging") microenvironment and found that this setting was sufficient to both block the transition of Tfh cells to a post-effector resting state and skew Tfh cells toward the age-rewired state. Together, these data suggest that aging dampens humoral immunity by cytokine-mediated rewiring of late effector Tfh cell differentiation into an activated, yet less functional, cellular state.
Collapse
Affiliation(s)
- Cody S. Nelson
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Manuel A. Podestà
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
- Unit of Nephrology, Dialysis, and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maya G. Gempler
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Jeong-Mi Lee
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Cole J. Batty
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peterson G. Mathenge
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Asra Sainju
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew R. Chang
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Pragya Chandrakar
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Elsa Bechu
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Sierra Richardson
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Abdi
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Musie Ghebremichael
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne A. Marasco
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peter T. Sage
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| |
Collapse
|
3
|
Gutierrez AH, Terry FE, Rosenberg AS, Martin WD, De Groot AS. Regulatory T cell epitope content in human antibodies decreases during maturation. Front Immunol 2025; 16:1535826. [PMID: 40313951 PMCID: PMC12043479 DOI: 10.3389/fimmu.2025.1535826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/24/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Antibody maturation in the lymphoid follicle produces antibodies with improved binding affinity. This process requires iterative rounds of mutation and B cell expansion, supported by T cells that recognize epitopes presented on the B cell's MHC-II. In this comprehensive antibody repertoire analysis, we find that established regulatory T cell epitopes (Tregitopes) decline in maturing antibody sequences as somatic hypermutation (SHM) increases, but potential T effector epitopes do not decline. A previous analysis of B cell receptor (BCR)-derived HLA-DR epitopes present in memory antibody repertoires from seven healthy human donors revealed a decrease in donor-specific epitope content with SHM. Moreover, T cell epitope depletion was associated with class-switching and long-term secretion of antibody into serum. Significant depletion of high-affinity germline-encoded epitopes in high SHM sequences was also observed, but the predicted phenotype of T cells responding to the BCR-derived epitopes (regulatory vs. effector) was not previously evaluated. Methods In this follow-on study, we screened a different set of four donor repertoires to investigate the dynamics of donor-specific HLA-DR T cell epitopes and three subsets of T cell epitope content: previously validated T cell epitopes recognized by thymus-derived Tregs (Tregitopes), potentially tolerated T cell epitopes, and potential effector T cell epitopes. Results Our results show that Tregitope content reduction is correlated with SHM, suggesting that Tregitopes are removed during maturation. Moreover, T cell epitopes that are likely to be tolerated or tolerogenic were also removed with SHM progression. In contrast, potential T effector epitope content increased with SHM. Tregitope depletion occurred in multiple V-gene pair combinations and was the most frequent T cell epitope change. Furthermore, Tregitope content in IgA and IgG sequences was lower and had greater negative correlation with SHM than IgM, indicating that Tregitope removal is likely associated with class-switching. Tregitope depletion was also associated with maturation to plasmablasts. In vitro, representative Tregitopes inhibited CD4+ T cell proliferation. Mutations introduced by SHM altered Tregitope HLA-DR binding affinities. Discussion The correlation of Tregitope depletion with increasing SHM implies that the activity of thymus-derived Treg cells in immune responses to antibodies is diminished with SHM, maturation, and isotype switching, supporting the generation of anti-idiotype responses.
Collapse
|
4
|
Ninomiya T, Kemmotsu N, Mukohara F, Magari M, Miyamoto A, Ueda Y, Ishino T, Nagasaki J, Fujiwara T, Yamamoto H, Hayashi H, Tachibana K, Ishida J, Otani Y, Tanaka S, Toyooka S, Okamoto I, Togashi Y. Myeloid Cells Induce Infiltration and Activation of B Cells and CD4+ T Follicular Helper Cells to Sensitize Brain Metastases to Combination Immunotherapy. Cancer Res 2025; 85:1082-1096. [PMID: 39804971 DOI: 10.1158/0008-5472.can-24-2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/23/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Brain metastasis is a poor prognostic factor in patients with cancer. Despite showing efficacy in many extracranial tumors, immunotherapy with anti-PD-1 mAb or anti-CTLA4 mAb seems to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti-PD-1 and anti-CTLA4 mAbs has a potent antitumor effect on brain metastasis, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies. In this study, we analyzed the tumor-infiltrating lymphocytes in murine models of brain metastasis that responded to anti-CTLA4 and anti-PD-1 mAbs. Activated CD4+ T follicular helper (TFH) cells with high CTLA4 expression characteristically infiltrated the intracranial TME, which were activated by combination anti-CTLA4 and anti-PD-1 treatment. The loss of TFH cells suppressed the additive effect of CTLA4 blockade on anti-PD-1 mAb. B-cell-activating factor belonging to the TNF family (BAFF) and a proliferation-inducing ligand (APRIL) produced by abundant myeloid cells, particularly CD80hiCD206lo proinflammatory M1-like macrophages, in the intracranial TME induced B-cell and TFH-cell infiltration and activation. Furthermore, the intracranial TME of patients with non-small cell lung cancer featured TFH- and B-cell infiltration as tertiary lymphoid structures. Together, these findings provide insights into the immune cell cross-talk in the intracranial TME that facilitates an additive antitumor effect of CTLA4 blockade with anti-PD-1 treatment, supporting the potential of a combination immunotherapeutic strategy for brain metastases. Significance: B-cell and CD4+ T follicular helper cell activation via BAFF/APRIL from abundant myeloid cells in the intracranial tumor microenvironment enables a combinatorial effect of CTLA4 and PD-1 blockade in brain metastases.
Collapse
Affiliation(s)
- Toshifumi Ninomiya
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Kemmotsu
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Fumiaki Mukohara
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Ai Miyamoto
- Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Youki Ueda
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takamasa Ishino
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Joji Nagasaki
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetaka Yamamoto
- Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kota Tachibana
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shota Tanaka
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
- Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
5
|
He P, He C, Wu F, Ou Y, Luo S, Zhang Y, Chang Y, Guo Z, Tang X, Zhao Y, Xu Y, Wang H, Bai S, Du G, Sun X. Microneedle-delivered adeno-associated virus vaccine amplified anti-viral immunity by improving antigen-presenting cells infection. J Control Release 2025; 379:1045-1057. [PMID: 39875077 DOI: 10.1016/j.jconrel.2025.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Adeno-associated viruses (AAV) have significant potential as vaccine carriers due to their excellent biosafety and efficient antigen gene delivery. However, most AAV vaccines show limited capacity to transduce antigen-presenting cells (APCs) following intramuscular injection which may cause inadequate cellular immune responses and undesired side effects due to transducing other tissues or cells. Herein, we developed a soluble microneedle patch for targeting the AAV vaccines to the epidermal and dermal APCs. To preserve the biological activity of the AAV vaccine, the microneedles were fabricated via an optimized two-step low-temperature strategy and using 20 % trehalose as a protective agent. AAV serotype 8, which expresses the trimeric receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AAV8-RBD), remained 100 % biological activity after being loaded into the microneedles (MN-A8R). Upon a single-dose vaccination on the dorsal skin of mice, MN-A8R efficiently recruited APCs to the vaccination site and improved AAV8-RBD infection in APCs. Furthermore, MN-A8R prompted an increased formation of germinal centers in the draining lymph nodes. Compared to hypodermic needle-mediated intradermal injection, MN-A8R induced significantly stronger cellular immune responses and long-lasting, high-quality neutralizing antibodies. Importantly, MN-A8R demonstrated more comprehensive and robust cross-protection against three common SARS-CoV-2 pseudoviruses for at least six months. Our findings highlight the use of optimized polymeric microneedles for preserving AAV vaccine biological activity and enhancing the AAV vaccine efficacy by up-regulating APC infection.
Collapse
Affiliation(s)
- Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fuhua Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yangsen Ou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongshun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Chang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanhao Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Sivakumar S, Jainarayanan A, Arbe-Barnes E, Sharma PK, Leathlobhair MN, Amin S, Reiss DJ, Heij L, Hegde S, Magen A, Tucci F, Sun B, Wu S, Anand NM, Slawinski H, Revale S, Nassiri I, Webber J, Hoeltzel GD, Frampton AE, Wiltberger G, Neumann U, Charlton P, Spiers L, Elliott T, Wang M, Couto S, Lila T, Sivakumar PV, Ratushny AV, Middleton MR, Peppa D, Fairfax B, Merad M, Dustin ML, Abu-Shah E, Bashford-Rogers R. Distinct immune cell infiltration patterns in pancreatic ductal adenocarcinoma (PDAC) exhibit divergent immune cell selection and immunosuppressive mechanisms. Nat Commun 2025; 16:1397. [PMID: 39915477 PMCID: PMC11802853 DOI: 10.1038/s41467-024-55424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Pancreatic ductal adenocarcinoma has a dismal prognosis. A comprehensive analysis of single-cell multi-omic data from matched tumour-infiltrated CD45+ cells and peripheral blood in 12 patients, and two published datasets, reveals a complex immune infiltrate. Patients have either a myeloid-enriched or adaptive-enriched tumour microenvironment. Adaptive immune cell-enriched is intrinsically linked with highly distinct B and T cell clonal selection, diversification, and differentiation. Using TCR data, we see the largest clonal expansions in CD8 effector memory, senescent cells, and highly activated regulatory T cells which are induced within the tumour from naïve cells. We identify pathways that potentially lead to a suppressive microenvironment, including investigational targets TIGIT/PVR and SIRPA/CD47. Analysis of patients from the APACT clinical trial shows that myeloid enrichment had a shorter overall survival compared to those with adaptive cell enrichment. Strategies for rationale therapeutic development in this disease include boosting of B cell responses, targeting immunosuppressive macrophages, and specific Treg cell depletion approaches.
Collapse
Affiliation(s)
- Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK.
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK.
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Ashwin Jainarayanan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK
- Institute of Developmental and Regenerative Medicine (IDRM), Old Road Campus, Old Rd, Roosevelt Dr, Headington, University of Oxford, Oxford, OX3 7TY, UK
| | - Edward Arbe-Barnes
- Oxford University Clinical Academic Graduate School, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- UCL Institute of Immunity & Transplantation, The Pears Building, Pond Street, London, NW3 2PP, UK
| | | | - Maire Ni Leathlobhair
- Department of Microbiology, Trinity College, Dublin, Ireland
- Oxford Big Data Institute, Old Road Campus, University of Oxford, Oxford, OX3 7LF, UK
| | - Sakina Amin
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Lara Heij
- GROW School for Oncology and Developmental Biology, Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Samarth Hegde
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Assaf Magen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Felicia Tucci
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
- Oxford Cancer Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Shihong Wu
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
- Oxford Cancer Centre, Oxford, UK
| | | | - Hubert Slawinski
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Santiago Revale
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Isar Nassiri
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathon Webber
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK
| | - Gerard D Hoeltzel
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | - Adam E Frampton
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Daphne Jackson Road, Guildford, GU2 7WG, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford, GU2 7XX, UK
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, GU2 7WG, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Georg Wiltberger
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Ulf Neumann
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
- Department of Surgery Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Philip Charlton
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Laura Spiers
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Tim Elliott
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maria Wang
- Bristol-Myers Squibb, Seattle, Seattle, WA, USA
| | - Suzana Couto
- Neomorph, Inc., 5590 Morehouse Dr, San Diego, CA, USA
| | - Thomas Lila
- Bristol-Myers Squibb, Seattle, Seattle, WA, USA
| | | | | | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Dimitra Peppa
- UCL Institute of Immunity & Transplantation, The Pears Building, Pond Street, London, NW3 2PP, UK
- Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford, OX3 7BN, UK
| | - Benjamin Fairfax
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK.
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK.
| | - Rachael Bashford-Rogers
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK.
- Oxford Cancer Centre, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Aubin AM, Vdovenko D, Collin R, Balmer L, Coderre L, Morahan G, Lombard-Vadnais F, Lesage S. Variations in the germinal center response revealed by genetically diverse mouse strains. Immunol Cell Biol 2024; 102:935-948. [PMID: 39318030 DOI: 10.1111/imcb.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The humoral response is complex and involves multiple cellular populations and signaling pathways. Bacterial and viral infections, as well as immunization regimens, can trigger this type of response, promoting the formation of microanatomical cellular structures called germinal centers (GCs). GCs formed in secondary lymphoid organs support the differentiation of high-affinity plasma cells and memory B cells. There is growing evidence that the quality of the humoral response is influenced by genetic variants. Using 12 genetically divergent mouse strains, we assessed the impact of genetics on GC cellular traits. At steady state, in the spleen, lymph nodes and Peyer's patches, we quantified GC B cells, plasma cells and follicular helper T cells. These traits were also quantified in the spleen of mice following immunization with a foreign antigen, namely, sheep red blood cells, in addition to the number and size of GCs. We observed both strain- and organ-specific variations in cell type abundance, as well as for GC number and size. Moreover, we find that some of these traits are highly heritable. Importantly, the results of this study inform on the impact of genetic diversity in shaping the GC response and identify the traits that are the most impacted by genetic background.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Daria Vdovenko
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Roxanne Collin
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Lois Balmer
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- School of Medical and Health Science, Edith Cowan University, Perth, WA, Australia
| | - Lise Coderre
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Sylvie Lesage
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Fahlquist-Hagert C, Wittenborn TR, Pedersen MK, Jensen L, Degn SE. T-follicular regulatory cells expand to control germinal center plasma cell output but fail to curb autoreactivity. iScience 2024; 27:110887. [PMID: 39319261 PMCID: PMC11417334 DOI: 10.1016/j.isci.2024.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Autoantibodies generated in germinal centers (GCs) contribute to the pathogenesis of autoimmune diseases. GCs are controlled by specialized FoxP3+ T-follicular regulatory cells (Tfr), but their role in established autoimmunity is unclear. We generated autoimmune bone marrow chimeras in which Tfr could be specifically ablated by diphtheria toxin. Furthermore, we tracked the clonal persistence and evolution of Tfr populations using Confetti reporters. Ablation of Tfr caused increased early plasma cell output, but longer-term ablation did not increase plasma cell levels beyond those of Tfr-sufficient controls, suggesting that Tfr fail to contain chronic autoreactive GC responses. In agreement, Tfr were robustly induced in early autoreactive GCs but then waned. Moreover, we observed polyclonal Tfr expansion when ablating part of the Tfr subset. Hence, under homeostatic conditions, a polyclonal population of Tfr operates to control autoreactivity by limiting the output of plasma cells from GCs, but in chronic autoimmunity, this mechanism fails.
Collapse
Affiliation(s)
- Cecilia Fahlquist-Hagert
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Thomas Rea Wittenborn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mattias Krogh Pedersen
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Lisbeth Jensen
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Søren Egedal Degn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
10
|
Rodriguez S, Alizadeh M, Lamaison C, Saintamand A, Monvoisin C, Jean R, Deleurme L, Martin-Subero JI, Pangault C, Cogné M, Amé-Thomas P, Tarte K. Follicular lymphoma regulatory T-cell origin and function. Front Immunol 2024; 15:1391404. [PMID: 38799444 PMCID: PMC11116630 DOI: 10.3389/fimmu.2024.1391404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Follicular Lymphoma (FL) results from the malignant transformation of germinal center (GC) B cells. FL B cells display recurrent and diverse genetic alterations, some of them favoring their direct interaction with their cell microenvironment, including follicular helper T cells (Tfh). Although FL-Tfh key role is well-documented, the impact of their regulatory counterpart, the follicular regulatory T cell (Tfr) compartment, is still sparse. Methods The aim of this study was to characterize FL-Tfr phenotype by cytometry, gene expression profile, FL-Tfr origin by transcriptomic analysis, and functionality by in vitro assays. Results CD4+CXCR5+CD25hiICOS+ FL-Tfr displayed a regulatory program that is close to classical regulatory T cell (Treg) program, at the transcriptomic and methylome levels. Accordingly, Tfr imprinting stigmata were found on FL-Tfh and FL-B cells, compared to their physiological counterparts. In addition, FL-Tfr co-culture with autologous FL-Tfh or cytotoxic FL-CD8+ T cells inhibited their proliferation in vitro. Finally, although FL-Tfr shared many characteristics with Treg, TCR sequencing analyses demonstrated that part of them derived from precursors shared with FL-Tfh. Discussion Altogether, these findings uncover the role and origin of a Tfr subset in FL niche and may be useful for lymphomagenesis knowledge and therapeutic management.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Mehdi Alizadeh
- Service Recherche, Etablissement Français du Sang, Rennes, France
| | - Claire Lamaison
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Alexis Saintamand
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Céline Monvoisin
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Rachel Jean
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Laurent Deleurme
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Univ Rennes, CNRS, INSERM, BIOSIT (BIOlogie, Santé, Innovation Technologique de Rennes) – Unité Mixte de Service 34 80, Rennes, France
| | - Jose Ignacio Martin-Subero
- Departamento de Anatomía Patológica, Farmacología y Microbiología, Universitat de Barcelona, Barcelona, Spain
| | - Céline Pangault
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Michel Cogné
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Patricia Amé-Thomas
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Karin Tarte
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Suivi Immunologique des Thérapeutiques Innovantes (SITI) Laboratory, Centre Hospitalier Universitaire Rennes, Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
11
|
Ribeiro F, Graca L. T follicular regulatory cells keep B cell-directed autoreactivity in check. Cell Res 2024; 34:339-340. [PMID: 38443560 PMCID: PMC11061273 DOI: 10.1038/s41422-024-00941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- Filipa Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Luis Graca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
12
|
Song J, Wang H, Wang ZZ, Guo CL, Xiang WX, Li JX, Wang ZC, Zhong JX, Huang K, Schleimer RP, Yao Y, Liu Z. Aberrant follicular regulatory T cells associate with immunoglobulin hyperproduction in nasal polyps with ectopic lymphoid tissues. J Allergy Clin Immunol 2024; 153:1025-1039. [PMID: 38072196 PMCID: PMC11152195 DOI: 10.1016/j.jaci.2023.11.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Ectopic lymphoid tissues (eLTs) and associated follicular helper T (TFH) cells contribute to local immunoglobulin hyperproduction in nasal polyps (NPs). Follicular regulatory T (TFR) cells in secondary lymphoid organs counteract TFH cells and suppress immunoglobulin production; however, the presence and function of TFR cells in eLTs in peripheral diseased tissues remain poorly understood. OBJECTIVE We sought to investigate the presence, phenotype, and function of TFR cells in NPs. METHODS The presence, abundance, and phenotype of TFR cells in NPs were examined using single-cell RNA sequencing, immunofluorescence staining, and flow cytometry. Sorted polyp and circulating T-cell subsets were cocultured with autologous circulating naïve B cells, and cytokine and immunoglobulin production were measured by ELISA. RESULTS TFR cells were primarily localized within eLTs in NPs. TFR cell frequency and TFR cell/TFH cell ratio were decreased in NPs with eLTs compared with NPs without eLTs and control inferior turbinate tissues. TFR cells displayed an overlapping phenotype with TFH cells and FOXP3+ regulatory T cells in NPs. Polyp TFR cells had reduced CTLA-4 expression and decreased capacity to inhibit TFH cell-induced immunoglobulin production compared with their counterpart in blood and tonsils. Blocking CTLA-4 abolished the suppressive effect of TFR cells. Lower vitamin D receptor expression was observed on polyp TFR cells compared with TFR cells in blood and tonsils. Vitamin D treatment upregulated CTLA-4 expression on polyp TFR cells and restored their suppressive function in vitro. CONCLUSIONS Polyp TFR cells in eLTs have decreased CLTA-4 and vitamin D receptor expression and impaired capacity to suppress TFH cell-induced immunoglobulin production, which can be reversed by vitamin D treatment in vitro.
Collapse
Affiliation(s)
- Jia Song
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Hai Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Zhe-Zheng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Cui-Lian Guo
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Wen-Xuan Xiang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Xian Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Zhi-Chao Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Ji-Xin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Lin Y, Wan Z, Liu B, Yao J, Li T, Yang F, Sui J, Zhao Y, Liu W, Zhou X, Wang J, Qi H. B cell-reactive triad of B cells, follicular helper and regulatory T cells at homeostasis. Cell Res 2024; 34:295-308. [PMID: 38326478 PMCID: PMC10978943 DOI: 10.1038/s41422-024-00929-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Autoreactive B cells are silenced through receptor editing, clonal deletion and anergy induction. Additional autoreactive B cells are ignorant because of physical segregation from their cognate autoantigen. Unexpectedly, we find that follicular B cell-derived autoantigen, including cell surface molecules such as FcγRIIB, is a class of homeostatic autoantigen that can induce spontaneous germinal centers (GCs) and B cell-reactive autoantibodies in non-autoimmune animals with intact T and B cell repertoires. These B cell-reactive B cells form GCs in a manner dependent on spontaneous follicular helper T (TFH) cells, which preferentially recognize B cell-derived autoantigen, and in a manner constrained by spontaneous follicular regulatory T (TFR) cells, which also carry specificities for B cell-derived autoantigen. B cell-reactive GC cells are continuously generated and, following immunization or infection, become intermixed with foreign antigen-induced GCs. Production of plasma cells and antibodies derived from B cell-reactive GC cells are markedly enhanced by viral infection, potentially increasing the chance for autoimmunity. Consequently, immune homeostasis in healthy animals not only involves classical tolerance of silencing and ignoring autoreactive B cells but also entails a reactive equilibrium attained by a spontaneous B cell-reactive triad of B cells, TFH cells and TFR cells.
Collapse
Affiliation(s)
- Yihan Lin
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zurong Wan
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Weill Cornell Medical College, Cornell University, Ithaca, NY, USA
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jiacheng Yao
- Changping Laboratory, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianqi Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Fang Yang
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| | - Yongshan Zhao
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wanli Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuyu Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianbin Wang
- Changping Laboratory, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Changping Laboratory, Beijing, China.
- New Cornerstone Science Laboratory, School of Medicine, Tsinghua University, Beijing, China.
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
14
|
Akama-Garren EH, Yin X, Prestwood TR, Ma M, Utz PJ, Carroll MC. T cell help shapes B cell tolerance. Sci Immunol 2024; 9:eadj7029. [PMID: 38363829 PMCID: PMC11095409 DOI: 10.1126/sciimmunol.adj7029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/29/2023] [Indexed: 02/18/2024]
Abstract
T cell help is a crucial component of the normal humoral immune response, yet whether it promotes or restrains autoreactive B cell responses remains unclear. Here, we observe that autoreactive germinal centers require T cell help for their formation and persistence. Using retrogenic chimeras transduced with candidate TCRs, we demonstrate that a follicular T cell repertoire restricted to a single autoreactive TCR, but not a foreign antigen-specific TCR, is sufficient to initiate autoreactive germinal centers. Follicular T cell specificity influences the breadth of epitope spreading by regulating wild-type B cell entry into autoreactive germinal centers. These results demonstrate that TCR-dependent T cell help can promote loss of B cell tolerance and that epitope spreading is determined by TCR specificity.
Collapse
Affiliation(s)
- Elliot H. Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Xihui Yin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tyler R. Prestwood
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J. Utz
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C. Carroll
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Sokolova S, Grigorova IL. Follicular regulatory T cell subsets in mice and humans: origins, antigen specificity and function. Int Immunol 2023; 35:583-594. [PMID: 37549239 DOI: 10.1093/intimm/dxad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
Follicular regulatory T (Tfr) cells play various roles in immune responses, contributing to both positive and negative regulation of foreign antigen-specific B cell responses, control over autoreactive antibody responses and autoimmunity, and B cell class-switching to IgE and allergy development. Studies conducted on mice uncovered various subsets of CXCR5+FoxP3+CD4+ Tfr cells that could differently contribute to immune regulation. Moreover, recent studies of human Tfr cells revealed similar complexity with various subsets of follicular T cells of different origins and immunosuppressive and/or immunostimulatory characteristics. In this review we will overview and compare Tfr subsets currently identified in mice and humans and will discuss their origins and antigen specificity, as well as potential modes of action and contribution to the control of the autoimmune and allergic reactions.
Collapse
Affiliation(s)
- Sophia Sokolova
- Division of Molecular Technology, Institute of Translational Medicine, Pirogov National Research Medical University, Moscow, 117513, Russia
| | - Irina L Grigorova
- Division of Molecular Technology, Institute of Translational Medicine, Pirogov National Research Medical University, Moscow, 117513, Russia
- Department of Microbiology and Immunology, Michigan Medicine University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Higashi K, Oda S, Fujii M, Nishida F, Matsumoto H, Morise J, Oka S, Nonaka M. Construction of a T7 phage random peptide library by combining seamless cloning with in vitro translation. J Biochem 2023; 175:85-93. [PMID: 37795834 DOI: 10.1093/jb/mvad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
T7 phage libraries displaying random peptides are powerful tools for screening peptide sequences that bind to various target molecules. The T7 phage system has the advantage of less biased peptide distribution compared to the M13 phage system. However, the construction of T7 phage DNA is challenging due to its long 36 kb linear DNA. Furthermore, the diversity of the libraries depends strongly on the efficiency of commercially available packaging extracts. To address these issues, we examined the combination of seamless cloning with cell-free translation systems. Seamless cloning technologies have been widely used to construct short circular plasmid DNA, and several recent studies showed that cell-free translation can achieve more diverse phage packaging. In this study, we combined these techniques to construct four libraries (CX7C, CX9C, CX11C and CX13C) with different random regions lengths. The libraries thus obtained all showed diversity > 109 plaque forming units (pfu). Evaluating our libraries with an anti-FLAG monoclonal antibody yielded the correct epitope sequence. The results indicate that our libraries are useful for screening peptide epitopes against antibodies. These findings suggest that our system can efficiently construct T7 phage libraries with greater diversity than previous systems.
Collapse
Affiliation(s)
- Katsuaki Higashi
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sakiho Oda
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mai Fujii
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fumiya Nishida
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hayato Matsumoto
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Motohiro Nonaka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
17
|
Spasevska I, Sharma A, Steen CB, Josefsson SE, Blaker YN, Kolstad A, Rustad EH, Meyer S, Isaksen K, Chellappa S, Kushekhar K, Beiske K, Førsund MS, Spetalen S, Holte H, Østenstad B, Brodtkorb M, Kimby E, Olweus J, Taskén K, Newman AM, Lorenz S, Smeland EB, Alizadeh AA, Huse K, Myklebust JH. Diversity of intratumoral regulatory T cells in B-cell non-Hodgkin lymphoma. Blood Adv 2023; 7:7216-7230. [PMID: 37695745 PMCID: PMC10698546 DOI: 10.1182/bloodadvances.2023010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Tumor-infiltrating regulatory T cells (Tregs) contribute to an immunosuppressive tumor microenvironment. Despite extensive studies, the prognostic impact of tumor-infiltrating Tregs in B-cell non-Hodgkin lymphomas (B-NHLs) remains unclear. Emerging studies suggest substantial heterogeneity in the phenotypes and suppressive capacities of Tregs, emphasizing the importance of understanding Treg diversity and the need for additional markers to identify highly suppressive Tregs. Here, we applied single-cell RNA sequencing and T-cell receptor sequencing combined with high-dimensional cytometry to decipher the heterogeneity of intratumoral Tregs in diffuse large B-cell lymphoma and follicular lymphoma (FL), compared with that in nonmalignant tonsillar tissue. We identified 3 distinct transcriptional states of Tregs: resting, activated, and unconventional LAG3+FOXP3- Tregs. Activated Tregs were enriched in B-NHL tumors, coexpressed several checkpoint receptors, and had stronger immunosuppressive activity compared with resting Tregs. In FL, activated Tregs were found in closer proximity to CD4+ and CD8+ T cells than other cell types. Furthermore, we used a computational approach to develop unique gene signature matrices, which were used to enumerate each Treg subset in cohorts with bulk gene expression data. In 2 independent FL cohorts, activated Tregs was the major subset, and high abundance was associated with adverse outcome. This study demonstrates that Tregs infiltrating B-NHL tumors are transcriptionally and functionally diverse. Highly immunosuppressive activated Tregs were enriched in tumor tissue but absent in the peripheral blood. Our data suggest that a deeper understanding of Treg heterogeneity in B-NHL could open new paths for rational drug design, facilitating selective targeting to improve antitumor immunity.
Collapse
Affiliation(s)
- Ivana Spasevska
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Chloé B. Steen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Division of Oncology, Stanford University School of Medicine, Stanford, CA
| | - Sarah E. Josefsson
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
| | - Yngvild N. Blaker
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
| | - Arne Kolstad
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Department of Oncology, Innlandet Hospital Trust, Lillehammer, Norway
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Even H. Rustad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Saskia Meyer
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Kathrine Isaksen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Stalin Chellappa
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kushi Kushekhar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
| | - Klaus Beiske
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Division of Cancer Medicine, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mette S. Førsund
- Division of Cancer Medicine, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Signe Spetalen
- Division of Cancer Medicine, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Harald Holte
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Bjørn Østenstad
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Marianne Brodtkorb
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Eva Kimby
- Department of Hematology, Karolinska Institute, Stockholm, Sweden
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
| | - Aaron M. Newman
- Division of Oncology, Stanford University School of Medicine, Stanford, CA
- Divisions of Hematology & Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Susanne Lorenz
- Department of Core Facilities, Geonomics Core Facility, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Erlend B. Smeland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ash A. Alizadeh
- Division of Oncology, Stanford University School of Medicine, Stanford, CA
- Divisions of Hematology & Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - June H. Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Sun SR, Yao Y, Liu Z. Effects of allergen immunotherapy on follicular regulatory T cells. Curr Opin Allergy Clin Immunol 2023; 23:507-513. [PMID: 37712561 DOI: 10.1097/aci.0000000000000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Emerging evidence indicating that the dysfunction of T follicular regulatory (T FR ) cells contributes to excessive immunoglobulin E (IgE) production and the development of allergic diseases. Conversely, allergen immunotherapy (AIT) modulates T FR cells abundance and function to promote immune tolerance. This review focus on the role of T FR cells in allergic diseases and AIT, with the objective of providing novel insights into the mechanisms underlying immune tolerance of AIT and proposing the potential targeting of T FR cells in the context of allergic diseases. RECENT FINDINGS Numerous studies have consistently demonstrated that T FR cells play a pivotal role in the inhibition of class switch recombination to IgE in both humans and specific murine models. This suppression is attributed to the actions of neuritin and IL-10 secreted by T FR cells, which exert direct and indirect effects on B cells. In patients with allergic rhinitis, reduced frequencies of circulating or tonsillar T FR cells have been reported, along with impaired functionality in suppressing IgE production. AIT, whether administered subcutaneously or sublingually, reinstates the frequency and functionality of T FR cells in allergic rhinitis patients, accompanied by changes of the chromatin accessibility of T FR cells. The increase in T FR cell frequency following AIT is associated with the amelioration of clinical symptoms. SUMMARY T FR cells exert an inhibitory effect on IgE production and demonstrate a correlation with the clinical efficacy of AIT in patients with allergic rhinitis, suggesting T FR cells hold promise as a therapeutic target for allergic diseases and potential biomarker for AIT.
Collapse
Affiliation(s)
- Shi-Ran Sun
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Clinical Research Center for Nasal Inflammatory Diseases
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Clinical Research Center for Nasal Inflammatory Diseases
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Dudreuilh C, Basu S, Shaw O, Burton H, Mamode N, Harris F, Tree T, Nedyalko P, Terranova-Barberio M, Lombardi G, Scottà C, Dorling A. Highly sensitised individuals present a distinct Treg signature compared to unsensitised individuals on haemodialysis. FRONTIERS IN TRANSPLANTATION 2023; 2:1165320. [PMID: 38993845 PMCID: PMC11235238 DOI: 10.3389/frtra.2023.1165320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Highly sensitised (HS) patients represent up to 30% of patients on the kidney transplant waiting list. When they are transplanted, they have a high risk of acute/chronic rejection and long-term allograft loss. Regulatory T cells (Tregs) (CD4+CD25hiCD127lo) are T cells involved in the suppression of immune alloresponses. A particular subset, called T follicular regulatory T cells (Tfr, CXCR5+Bcl-6+), is involved in regulating interactions between T effectors and B cells within the germinal centre and can be found in peripheral blood. Therefore, we wanted to identify specific subsets of Tregs in the peripheral blood of HS individuals. Methods We recruited prospectively healthy volunteers (HV) (n = 9), non-sensitised patients on haemodialysis (HD) (n = 9) and HS individuals, all of whom were on haemodialysis (n = 15). Results We compared the Treg phenotypes of HV, HD and HS. HS patients had more CD161+ Tregs (p = 0.02) and more CD45RA-CCR7- T effectors (Teffs) (p = 0.04, memory Teffs able to home to the germinal centre) compared to HVs. HS patients had more Bcl-6+ Tregs (p < 0.05), fewer Th1-like Tregs, more Th2-like Tregs (p < 0.001) and more CD161+ (p < 0.05) Tregs compared to HD patients. This population has been described to be highly suppressive. HD had a deficiency in a Th17-like CD161+ effector Treg cluster (cluster iii., CCR6+CCR4+CXCR3- CD39+CD15s+ICOS-CCR7-CD161+) (p < 0.05). Discussion This is the first study presenting a deep Treg phenotype in HS patients. We confirmed that HS patients had more of a Th17-like CD161+ effector Treg from population III (CD4+CD25hiCD127loCD45RA-) compared to non-sensitised patients on HD. The clinical relevance of this highly suppressive Tregs population remains to be determined in the context of transplantation.
Collapse
Affiliation(s)
- C. Dudreuilh
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - S. Basu
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - O. Shaw
- Synnovis Clinical Transplantation Laboratory, Guy’s Hospital, London, United Kingdom
| | - H. Burton
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - N. Mamode
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - F. Harris
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
| | - T. Tree
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
| | - P. Nedyalko
- NIHR Guy’s and St Thomas’ Biomedical Research Centre at Guy’s and St Thomas NHS Foundation Trust, St Thomas’ Hospital, London, United Kingdom
| | - M. Terranova-Barberio
- NIHR Guy’s and St Thomas’ Biomedical Research Centre at Guy’s and St Thomas NHS Foundation Trust, St Thomas’ Hospital, London, United Kingdom
| | - G. Lombardi
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
| | - C. Scottà
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
| | - A. Dorling
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
20
|
Schips M, Mitra T, Bandyopadhyay A, Meyer-Hermann M. Suppressive might of a few: T follicular regulatory cells impede auto-reactivity despite being outnumbered in the germinal centres. Front Immunol 2023; 14:1253704. [PMID: 37818361 PMCID: PMC10561256 DOI: 10.3389/fimmu.2023.1253704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
The selection of high-affinity B cells and the production of high-affinity antibodies are mediated by T follicular helper cells (Tfhs) within germinal centres (GCs). Therein, somatic hypermutation and selection enhance B cell affinity but risk the emergence of self-reactive B cell clones. Despite being outnumbered compared to their helper counterpart, the ablation of T follicular regulatory cells (Tfrs) results in enhanced dissemination of self-reactive antibody-secreting cells (ASCs). The specific mechanisms by which Tfrs exert their regulatory action on self-reactive B cells are largely unknown. We developed computer simulations to investigate how Tfrs regulate either selection or differentiation of B cells to prevent auto-reactivity. We observed that Tfr-induced apoptosis of self-reactive B cells during the selection phase impedes self-reactivity with physiological Tfr numbers, especially when Tfrs can access centrocyte-enriched GC areas. While this aided in selecting non-self-reactive B cells by restraining competition, higher Tfr numbers distracted non-self-reactive B cells from receiving survival signals from Tfhs. Thus, the location and number of Tfrs must be regulated to circumvent such Tfr distraction and avoid disrupting GC evolution. In contrast, when Tfrs regulate differentiation of selected centrocytes by promoting recycling to the dark zone phenotype of self-reactive GC resident pre-plasma cells (GCPCs), higher Tfr numbers were required to impede the circulation of self-reactive ASCs (s-ASCs). On the other hand, Tfr-engagement with GCPCs and subsequent apoptosis of s-ASCs can control self-reactivity with low Tfr numbers, but does not confer selection advantage to non-self-reactive B cells. The simulations predict that to restrict auto-reactivity, natural redemption of self-reactive B cells is insufficient and that Tfrs should increase the mutation probability of self-reactive B cells.
Collapse
Affiliation(s)
- Marta Schips
- Department of Systems Immunology, Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZI), Braunschweig, Germany
| | - Tanmay Mitra
- Department of Systems Immunology, Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZI), Braunschweig, Germany
| | - Arnab Bandyopadhyay
- Department of Systems Immunology, Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZI), Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZI), Braunschweig, Germany
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universitat Braunschweig, Braunschweig, Germany
| |
Collapse
|
21
|
Chen Q, Dent AL. Nonbinary Roles for T Follicular Helper Cells and T Follicular Regulatory Cells in the Germinal Center Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:15-22. [PMID: 37339403 DOI: 10.4049/jimmunol.2200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 06/22/2023]
Abstract
Development of high-affinity Abs in the germinal center (GC) is dependent on a specialized subset of T cells called "T follicular helper" (TFH) cells that help select Ag-specific B cells. A second T cell subset, T follicular regulatory (TFR) cells, can act as repressors of the GC and Ab response but can also provide a helper function for GC B cells in some contexts. Recent studies showed that, apart from their traditional helper role, TFH cells can also act as repressors of the Ab response, particularly for IgE responses. We review how both TFH and TFR cells express helper and repressor factors that coordinately regulate the Ab response and how the line between these two subsets is less clear than initially thought. Thus, TFH and TFR cells are interconnected and have "nonbinary" functions. However, many questions remain about how these critical cells control the Ab response.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
22
|
Cao Y, Hou Y, Zhao L, Huang Y, Liu G. New insights into follicular regulatory T cells in the intestinal and tumor microenvironments. J Cell Physiol 2023. [PMID: 37210730 DOI: 10.1002/jcp.31039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Follicular regulatory T (Tfr) cells are a novel and unique subset of effector regulatory T (Treg) cells that are located in germinal centers (GCs). Tfr cells express transcription profiles that are characteristic of both follicular helper T (Tfh) cells and Treg cells and negatively regulate GC reactions, including Tfh cell activation and cytokine production, class switch recombination and B cell activation. Evidence also shows that Tfr cells have specific characteristics in different local immune microenvironments. This review focuses on the regulation of Tfr cell differentiation and function in unique local immune microenvironments, including the intestine and tumor.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
23
|
Abstract
The coevolution of multiple specialized T follicular regulatory cell subsets has led to fine-tuning of human germinal center responses in providing optimal antibody production and preventing events leading to autoimmunity (see the related Research Article by Le Coz et al.).
Collapse
Affiliation(s)
- Luis Graca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Lisbon Academic Medical Center, Universidade de Lisboa, Lisboa, Portugal
| | - Johanne Jacobsen
- Department of Immunology, Oslo University Hospital, 0424, Oslo, Norway
| | - Saumya Kumar
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
24
|
Le Coz C, Oldridge DA, Herati RS, De Luna N, Garifallou J, Cruz Cabrera E, Belman JP, Pueschl D, Silva LV, Knox AVC, Reid W, Yoon S, Zur KB, Handler SD, Hakonarson H, Wherry EJ, Gonzalez M, Romberg N. Human T follicular helper clones seed the germinal center-resident regulatory pool. Sci Immunol 2023; 8:eade8162. [PMID: 37027481 PMCID: PMC10329285 DOI: 10.1126/sciimmunol.ade8162] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
The mechanisms by which FOXP3+ T follicular regulatory (Tfr) cells simultaneously steer antibody formation toward microbe or vaccine recognition and away from self-reactivity remain incompletely understood. To explore underappreciated heterogeneity in human Tfr cell development, function, and localization, we used paired TCRVA/TCRVB sequencing to distinguish tonsillar Tfr cells that are clonally related to natural regulatory T cells (nTfr) from those likely induced from T follicular helper (Tfh) cells (iTfr). The proteins iTfr and nTfr cells differentially expressed were used to pinpoint their in situ locations via multiplex microscopy and establish their divergent functional roles. In silico analyses and in vitro tonsil organoid tracking models corroborated the existence of separate Treg-to-nTfr and Tfh-to-iTfr developmental trajectories. Our results identify human iTfr cells as a distinct CD38+, germinal center-resident, Tfh-descended subset that gains suppressive function while retaining the capacity to help B cells, whereas CD38- nTfr cells are elite suppressors primarily localized in follicular mantles. Interventions differentially targeting specific Tfr cell subsets may provide therapeutic opportunities to boost immunity or more precisely treat autoimmune diseases.
Collapse
Affiliation(s)
- Carole Le Coz
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Derek A. Oldridge
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Ramin S. Herati
- Department of Medicine, NYU Grossman School of Medicine, New York, NY
| | - Nina De Luna
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James Garifallou
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Emylette Cruz Cabrera
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jonathan P Belman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana Pueschl
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luisa V. Silva
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ainsley V. C. Knox
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Whitney Reid
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Samuel Yoon
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Karen B. Zur
- Pediatric Otolaryngology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Otolaryngology: Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Steven D. Handler
- Pediatric Otolaryngology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Otolaryngology: Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Gonzalez
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Neil Romberg
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
25
|
Kudryavtsev I, Zinchenko Y, Starshinova A, Serebriakova M, Malkova A, Akisheva T, Kudlay D, Glushkova A, Yablonskiy P, Shoenfeld Y. Circulating Regulatory T Cell Subsets in Patients with Sarcoidosis. Diagnostics (Basel) 2023; 13:1378. [PMID: 37189479 PMCID: PMC10137313 DOI: 10.3390/diagnostics13081378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Over recent years, many researchers have supported the autoimmune theory of sarcoidosis. The presence of uncontrolled inflammatory response on local and system levels in patients with sarcoidosis did not define that the immunoregulatory mechanisms could be affected. The aim of this study was to evaluate the distribution and the disturbance circulating Treg cell subsets in the peripheral blood in patients with sarcoidosis. MATERIALS AND METHODS A prospective comparative study was performed in 2016-2018 (34 patients with sarcoidosis (men (67.6%), women (32.3%)) were examined). Healthy subjects-the control group (n = 40). The diagnosis of pulmonary sarcoidosis was performed according to the standard criteria. We used two ten-color combinations of antibodies for Treg immunophenotyping. The first one contained CD39-FITC, CD127-PE, CCR4-PE/Dazzle™ 594, CD25-PC5.5, CD161-PC7, CD4-APC, CD8-APC-AF700, CD3-APC/Cy7, HLA-DR-PacBlue, and CD45 RA-BV 510™, while the second consisted of CXCR3-Alexa Fluor 488, CD25-РЕ, CXCR5-РЕ/Dazzle™ 594, CCR4-PerСP/Сy5.5, CCR6-РЕ/Cy7, CD4-АPC, CD8 АPC-AF700, CD3-АPC/Cy7, CCR7-BV 421, and CD45 RA-BV 510. The flow cytometry data were analyzed by using Kaluza software v2.3. A statistical analysis was performed with Statistica 7.0 and GraphPad Prism 8 software packages. RESULTS OF THE STUDY Primarily, we found that patients with sarcoidosis had decreased absolute numbers of Treg cells in circulation. We noted that the level of CCR7-expressing Tregs decreased in patients with sarcoidosis vs. the control group (65.55% (60.08; 70.60) vs. 76.93% (69.59; 79.86) with p < 0.001). We noticed that the relative numbers of CD45RA-CCR7+ Tregs decreased in patients with sarcoidosis (27.11% vs. 35.43%, p < 0.001), while the frequency of CD45 RA-CCR7- and CD45RA+ CCR7- Tregs increased compared to the control group (33.3% vs. 22.73% and 0.76% vs. 0.51% with p < 0.001 and p = 0.028, respectively). CXCR3-expressing Treg cell subsets-Th1-like CCR60078CXCR3+ Tregs and Th17.1-like CCR6+ CXCR3+ Tregs-significantly increased in patients with sarcoidosis vs. the control group (14.4% vs. 10.5% with p < 0.01 and 27.9% vs. 22.8% with p < 0.01, respectively). Furthermore, the levels of peripheral blood EM Th17-like Tregs significantly decreased in the sarcoidosis group vs. the control group (36.38% vs. 46.70% with p < 0.001). Finally, we found that CXCR5 expression was increased in CM Tregs cell subsets in patients with sarcoidosis. CONCLUSIONS Our data indicated a decrease in circulating Tregs absolute numbers and several alterations in Treg cell subsets. Moreover, our results highlight the presence of increased levels of CM CXCR5+ follicular Tregs in the periphery that could be linked with the imbalance of follicular Th cell subsets and alterations in B cell, based on the immune response. The balance between the two functionally distinct Treg cell populations-Th1-like and Th17-like Tregs-could be used in sarcoidosis diagnosis and the determination of prognosis and disease outcomes. Furthermore, we want to declare that analysis of Treg numbers of phenotypes could fully characterize their functional activity in peripherally inflamed tissues.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Yulia Zinchenko
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, 194064 St. Petersburg, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Maria Serebriakova
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Anna Malkova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Akisheva
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Dmitriy Kudlay
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
- Institute of Immunology, 115552 Moscow, Russia
| | - Anzhela Glushkova
- Bekhterev National Research Medical Center for Psychiatry and Neurology, 19201 St. Petersburg, Russia
| | - Piotr Yablonskiy
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, 194064 St. Petersburg, Russia
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yehuda Shoenfeld
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, 199034 St. Petersburg, Russia
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer 5265601, Israel
| |
Collapse
|
26
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:1130. [PMID: 37189748 PMCID: PMC10135912 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease's origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a "double-edged sword" in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| |
Collapse
|
27
|
Panneton V, Mindt BC, Bouklouch Y, Bouchard A, Mohammaei S, Chang J, Diamantopoulos N, Witalis M, Li J, Stancescu A, Bradley JE, Randall TD, Fritz JH, Suh WK. ICOS costimulation is indispensable for the differentiation of T follicular regulatory cells. Life Sci Alliance 2023; 6:e202201615. [PMID: 36754569 PMCID: PMC9909462 DOI: 10.26508/lsa.202201615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
ICOS is a T-cell costimulatory receptor critical for Tfh cell generation and function. However, the role of ICOS in Tfr cell differentiation remains unclear. Using Foxp3-Cre-mediated ICOS knockout (ICOS FC) mice, we show that ICOS deficiency in Treg-lineage cells drastically reduces the number of Tfr cells during GC reactions but has a minimal impact on conventional Treg cells. Single-cell transcriptome analysis of Foxp3+ cells at an early stage of the GC reaction suggests that ICOS normally inhibits Klf2 expression to promote follicular features including Bcl6 up-regulation. Furthermore, ICOS costimulation promotes nuclear localization of NFAT2, a known driver of CXCR5 expression. Notably, ICOS FC mice had an unaltered overall GC B-cell output but showed signs of expanded autoreactive B cells along with elevated autoantibody titers. Thus, our study demonstrates that ICOS costimulation is critical for Tfr cell differentiation and highlights the importance of Tfr cells in maintaining humoral immune tolerance during GC reactions.
Collapse
Affiliation(s)
- Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Quebec, Canada
| | | | - Antoine Bouchard
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Saba Mohammaei
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Quebec, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Nikoletta Diamantopoulos
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | - Mariko Witalis
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Joanna Li
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | | | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Quebec, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Quebec, Canada
| |
Collapse
|
28
|
Ke F, Benet ZL, Maz MP, Liu J, Dent AL, Kahlenberg JM, Grigorova IL. Germinal center B cells that acquire nuclear proteins are specifically suppressed by follicular regulatory T cells. eLife 2023; 12:e83908. [PMID: 36862132 PMCID: PMC9981149 DOI: 10.7554/elife.83908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Follicular regulatory T cells (Tfr) restrict development of autoantibodies and autoimmunity while supporting high-affinity foreign antigen-specific humoral response. However, whether Tfr can directly repress germinal center (GC) B cells that acquire autoantigens is unclear. Moreover, TCR specificity of Tfr to self-antigens is not known. Our study suggests that nuclear proteins contain antigens specific to Tfr. Targeting of these proteins to antigen-specific B cells in mice triggers rapid accumulation of Tfr with immunosuppressive characteristics. Tfr then exert negative regulation of GC B cells with predominant inhibition of the nuclear protein-acquiring GC B cells, suggesting an important role of direct cognate Tfr-GC B cells interactions for the control of effector B cell response.
Collapse
Affiliation(s)
- Fang Ke
- Department of Microbiology and Immunology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Zachary L Benet
- Department of Microbiology and Immunology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Mitra P Maz
- Department of Internal Medicine, Division of Rheumatology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Jianhua Liu
- Department of Internal Medicine, Division of Rheumatology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolisUnited States
| | - Joanne Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Irina L Grigorova
- Department of Microbiology and Immunology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
29
|
Betzler AC, Ushmorov A, Brunner C. The transcriptional program during germinal center reaction - a close view at GC B cells, Tfh cells and Tfr cells. Front Immunol 2023; 14:1125503. [PMID: 36817488 PMCID: PMC9936310 DOI: 10.3389/fimmu.2023.1125503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The germinal center (GC) reaction is a key process during an adaptive immune response to T cell specific antigens. GCs are specialized structures within secondary lymphoid organs, in which B cell proliferation, somatic hypermutation and antibody affinity maturation occur. As a result, high affinity antibody secreting plasma cells and memory B cells are generated. An effective GC response needs interaction between multiple cell types. Besides reticular cells and follicular dendritic cells, particularly B cells, T follicular helper (Tfh) cells as well as T follicular regulatory (Tfr) cells are a key player during the GC reaction. Whereas Tfh cells provide help to GC B cells in selection processes, Tfr cells, a specialized subset of regulatory T cells (Tregs), are able to suppress the GC reaction maintaining the balance between immune activation and tolerance. The formation and function of GCs is regulated by a complex network of signals and molecules at multiple levels. In this review, we highlight recent developments in GC biology by focusing on the transcriptional program regulating the GC reaction. This review focuses on the transcriptional co-activator BOB.1/OBF.1, whose important role for GC B, Tfh and Tfr cell differentiation became increasingly clear in recent years. Moreover, we outline how deregulation of the GC transcriptional program can drive lymphomagenesis.
Collapse
Affiliation(s)
- Annika C. Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Alexey Ushmorov
- Ulm University, Institute of Physiological Chemistry, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany,*Correspondence: Cornelia Brunner,
| |
Collapse
|
30
|
Rodrigues PM, Sousa LG, Perrod C, Maceiras AR, Ferreirinha P, Pombinho R, Romera-Cárdenas G, Gomez-Lazaro M, Senkara M, Pistolic J, Cabanes D, Klein L, Saftig P, Alves NL. LAMP2 regulates autophagy in the thymic epithelium and thymic stroma-dependent CD4 T cell development. Autophagy 2023; 19:426-439. [PMID: 35535798 PMCID: PMC9851248 DOI: 10.1080/15548627.2022.2074105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Within the thymus, thymic epithelial cells (TECs) provide dedicated thymic stroma microenvironments for T cell development. Because TEC functionality is sensitive to aging and cytoablative therapies, unraveling the molecular elements that coordinate their thymopoietic role has fundamental and clinical implications. Particularly, the selection of CD4 T cells depends on interactions between TCRs expressed on T cell precursors and self-peptides:MHC II complexes presented by cortical TECs (cTECs). Although the macroautophagy/autophagy-lysosomal protein degradation pathway is implicated in CD4 T cell selection, the molecular mechanism that controls the generation of selecting MHC II ligands remains elusive. LAMP2 (lysosomal-associated membrane protein 2) is a well-recognized mediator of autolysosome (AL) maturation. We showed that LAMP2 is highly expressed in cTECs. Notably, genetic inactivation of Lamp2 in thymic stromal cells specifically impaired the development of CD4 T cells that completed positive selection, without misdirecting MHC II-restricted cells into the CD8 lineage. Mechanistically, defects in autophagy in lamp2-deficient cTECs were linked to alterations in MHC II processing, which was associated with a marked reduction in CD4 TCR repertoire diversity selected within the lamp2-deficient thymic stroma. Together, our findings suggest that LAMP2 interconnects the autophagy-lysosomal axis and the processing of selecting self-peptides:MHC II complexes in cTECs, underling its implications for the generation of a broad CD4 TCR repertoire.Abbreviations: AIRE: autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal dystrophy); AL: autolysosome; AP: autophagosome; Baf-A1: bafilomycin A1; B2M: beta-2 microglobulin; CTSL: cathepsin L; CD74/Ii: CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated); CFSE: carboxyfluorescein succinimidyl ester; CFU: colony-forming unit; CLIP: class II-associated invariant chain peptides; cTECs: cortical TECs dKO: double knockout; DN: double negative; DP: double positive; ENPEP/LY51: glutamyl aminopeptidase; FOXP3: forkhead box; P3 IFNG/IFNγ: interferon gamma; IKZF2/HELIOS: IKAROS family zinc finger 2; IL2RA/CD25: interleukin 2 receptor, alpha chain; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; LIP: lymphopenia-induced proliferation; Lm: Listeria monocytogenes; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MHC: major histocompatibility complex; mTECs: medullary TECs; PRSS16/TSSP: protease, serine 16 (thymus); SELL/CD62L: selectin, lymphocyte; SP: single positive; TCR: T cell receptor; TCRB: T cell receptor beta chain; TECs: thymic epithelial cells; UEA-1: Ulex europaeus agglutinin-1; WT: wild-type.
Collapse
Affiliation(s)
- Pedro M. Rodrigues
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Laura G. Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular, Porto, Portugal,Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Chiara Perrod
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Ana R. Maceiras
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro Ferreirinha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita Pombinho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Gema Romera-Cárdenas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - María Gomez-Lazaro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Instituto de Engenharia Biomédica, Porto, Portugal
| | - Meryem Senkara
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Kiel, Germany
| | - Jelena Pistolic
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Ludger Klein
- Faculty of Medicine, LMU Munich, Planegg-Martinsried, Institute for Immunology, Biomedical Center Munich, Munich, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Kiel, Germany
| | - Nuno L. Alves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Instituto de Biologia Molecular e Celular, Porto, Portugal,CONTACT Nuno L. Alves Instituto de Investigação e Inovação em Saúde (i3S), Rua Alfredo Allen, 208, Porto4200-135, Portugal
| |
Collapse
|
31
|
Zahran AM, Abdel-Rahim MH, Nasif KA, Hussein S, Hafez R, Ahmad AB, Saad K, Elhoufey A, Hussein HAM, Thabet AA, El-Badawy O. Association of follicular helper T and follicular regulatory T cells with severity and hyperglycemia in hospitalized COVID-19 patients. Virulence 2022; 13:569-577. [PMID: 35286241 PMCID: PMC8928811 DOI: 10.1080/21505594.2022.2047506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/23/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023] Open
Abstract
We aimed to determine the levels of follicular helper T (Tfh) and follicular regulatory T (Tfr) cells in COVID-19 patients and determine whether their levels correlated with disease severity and presence of hyperglycemia. This study was carried out in 34 hospitalized COVID-19 patients and 20 healthy controls. Levels of total circulating Tfh, inducible T-cell costimulator (ICOS)+ activated Tfh, and Tfr cells were assessed in all participants by flow cytometry. Total CD4+CXCR5+ Tfh cells and ICOS+Foxp3-activated Tfh cells increased and ICOS+Foxp3+ Tfr cells decreased in COVID-19 patients, especially in diabetic patients and those with severe disease. Activated ICOS+ Tfh cells were directly correlated with lactate dehydrogenase, D-dimer, ferritin, and respiratory rate and inversely correlated with the partial pressure of carbon dioxide. COVID-19 is associated with marked activation of Tfh cells and a profound drop in Tfr cells, especially in severe and diabetic patients. Future studies on expanded cohorts of patients are needed to clarify the relationship between SARS-CoV-2 and acute-onset diabetes.
Collapse
Affiliation(s)
- Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mona H. Abdel-Rahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khalid A. Nasif
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
- Department Clinical Biochemistry, College of Medicine, King Khalid University,Abha, Saudi Arabia
| | - Safinaz Hussein
- Department of Internal Medicine, Clinical Hematology Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rania Hafez
- Department of Internal Medicine, Clinical Hematology Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmad Bahieldeen Ahmad
- Department of Internal Medicine, Critical Care Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, Saudi Arabia
| | - Hosni A. M. Hussein
- Department of Microbiology, Faculty of Science, Al Azhar University, Assiut 71524, Egypt
| | - Ali A. Thabet
- Department of Zoology, Faculty of Science, Al Azhar University, Assiut 71524, Egypt
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
32
|
Ollerton MT, Folkvord JM, La Mantia A, Parry DA, Meditz AL, McCarter MD, D’Aquila R, Connick E. Follicular regulatory T cells eliminate HIV-1-infected follicular helper T cells in an IL-2 concentration dependent manner. Front Immunol 2022; 13:878273. [PMID: 36420277 PMCID: PMC9676968 DOI: 10.3389/fimmu.2022.878273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Follicular helper CD4+ T cells (TFH) are highly permissive to HIV and major foci of virus expression in both untreated and treated infection. Follicular regulatory CD4+ T cells (TFR) limit TFH numbers and function in vitro and in vivo. We evaluated the hypothesis that TFR suppress HIV replication in TFH using a well-established model of ex vivo HIV infection that employs tonsil cells from HIV uninfected individuals spinoculated with CXCR4- and CCR5-tropic HIV-GFP reporter viruses. Both CXCR4 and CCR5-tropic HIV replication were reduced in TFH cultured with TFR as compared to controls. Blocking antibodies to CD39, CTLA-4, IL-10, and TGF-beta failed to reverse suppression of HIV replication by TFR, and there were no sex differences in TFR suppressive activity. TFR reduced viability of TFH and even more so reduced HIV infected TFH as assessed by total and integrated HIV DNA. Exogenous IL-2 enhanced TFH viability and particularly numbers of GFP+ TFH in a concentration dependent manner. TFR reduced productively infected TFH at low and moderate IL-2 concentrations, and this was associated with decreases in extracellular IL-2. Both IL-2 expressing cells and larger numbers of FoxP3+CD4+ cells were detected in follicles and germinal centers of lymph nodes of people living with HIV. TFR may deplete TFH in vivo through restriction of IL-2 and thereby contribute to decay of HIV expressing cells in B cell follicles during HIV infection.
Collapse
Affiliation(s)
- Matthew T. Ollerton
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| | - Joy M. Folkvord
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| | | | - David A. Parry
- Department of Otolaryngology, University of Arizona, Tucson, AZ, United States
| | - Amie L. Meditz
- Department of Medicine, Division of Infectious Diseases, University of Colorado, Aurora, CO, United States
| | - Martin D. McCarter
- Department of Surgery, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, United States
| | - Richard T. D’Aquila
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elizabeth Connick
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
33
|
Tan D, Yin W, Guan F, Zeng W, Lee P, Candotti F, James LK, Saraiva Camara NO, Haeryfar SM, Chen Y, Benlagha K, Shi LZ, Lei J, Gong Q, Liu Z, Liu C. B cell-T cell interplay in immune regulation: A focus on follicular regulatory T and regulatory B cell functions. Front Cell Dev Biol 2022; 10:991840. [PMID: 36211467 PMCID: PMC9537379 DOI: 10.3389/fcell.2022.991840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
B cells are the core components of humoral immunity. A mature B cell can serve in multiple capacities, including antibody production, antigen presentation, and regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells (Tregs) are key players in sustaining immune tolerance and keeping inflammation in check. Mounting evidence suggests complex communications between B cells and Tregs. In this review, we summarize the yin-yang regulatory relationships between B cells and Tregs mainly from the perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs). We discuss the regulatory effects of Tfr cells on B cell proliferation and the germinal center response. Additionally, we review the indispensable role of B cells in ensuring homeostatic Treg survival and describe the function of Bregs in promoting Treg responses. Finally, we introduce a new subset of Tregs, termed Treg-of-B cells, which are induced by B cells, lake the expression of FoxP3 but still own immunomodulatory effects. In this article, we also enumerate a sequence of research from clinical patients and experimental models to clarify the role of Tfr cells in germinal centers and the role of convention B cells and Bregs to Tregs in the context of different diseases. This review offers an updated overview of immunoregulatory networks and unveils potential targets for therapeutic interventions against cancer, autoimmune diseases and allograft rejection.
Collapse
Affiliation(s)
- Diaoyi Tan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Louisa K James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Lewis Zhichang Shi
- Department of Radiation Oncology University of Alabama at Birmingham School of Medicine (UAB-SOM) UAB Comprehensive Cancer Center, Jinzhou, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Quan Gong
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jinzhou, China
- Department of Immunology, School of Medicine, Yangtze University, Jinzhou, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| |
Collapse
|
34
|
Shlesinger D, Hong KL, Shammas G, Page N, Sandu I, Agrafiotis A, Kreiner V, Fonta N, Vincenti I, Wagner I, Piccinno M, Mariotte A, Klimek B, Dizerens R, Manero-Carranza M, Kuhn R, Ehling R, Frei L, Khodaverdi K, Panetti C, Joller N, Oxenius A, Merkler D, Reddy ST, Yermanos A. Single-cell immune repertoire sequencing of B and T cells in murine models of infection and autoimmunity. Genes Immun 2022; 23:183-195. [PMID: 36028771 PMCID: PMC9519453 DOI: 10.1038/s41435-022-00180-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Adaptive immune repertoires are composed by the ensemble of B and T-cell receptors within an individual, reflecting both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Here, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following lymphocytic choriomeningitis virus (LCMV) infection, CD8+ T cells with binding specificity restricted to two distinct LCMV peptides, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis. We could relate clonal expansion, germline gene usage, and clonal convergence to cell phenotypes spanning activation, memory, naive, antibody secretion, T-cell inflation, and regulation. Together, this dataset provides a resource for immunologists that can be integrated with future single-cell immune repertoire and transcriptome sequencing datasets.
Collapse
Affiliation(s)
- Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ghazal Shammas
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Victor Kreiner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alexandre Mariotte
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Raphael Dizerens
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Lester Frei
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Keywan Khodaverdi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Camilla Panetti
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Nicole Joller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Yu D, Walker LSK, Liu Z, Linterman MA, Li Z. Targeting T FH cells in human diseases and vaccination: rationale and practice. Nat Immunol 2022; 23:1157-1168. [PMID: 35817844 DOI: 10.1038/s41590-022-01253-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.
Collapse
Affiliation(s)
- Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia. .,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
36
|
Mahlobo B, Laher F, Smidt W, Ogunshola F, Khaba T, Nkosi T, Mbatha A, Ngubane T, Dong K, Jajbhay I, Pansegrouw J, Ndhlovu ZM. The impact of HIV infection on the frequencies, function, spatial localization and heterogeneity of T follicular regulatory cells (TFRs) within human lymph nodes. BMC Immunol 2022; 23:34. [PMID: 35778692 PMCID: PMC9250173 DOI: 10.1186/s12865-022-00508-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND HIV eradication efforts have been unsuccessful partly due to virus persistence in immune sanctuary sites such as germinal centres within lymph node (LN) tissues. Recent evidence suggests that LNs harbour a novel subset of regulatory T cells, termed follicular regulatory T cells (TFRs), but their role in HIV pathogenesis is not fully elucidated. RESULTS Paired excisional LN and peripheral blood samples obtained from 20 HIV-uninfected and 31 HIV-infected treated and 7 chronic untreated, were used to determine if and how HIV infection modulate frequencies, function and spatial localization of TFRs within LN tissues. Imaging studies showed that most TFRs are localized in extra-follicular regions. Co-culture assays showed TFRs suppression of TFH help to B cells. Importantly, epigenetic and transcriptional studies identified DPP4 and FCRL3 as novel phenotypic markers that define four functionally distinct TFR subpopulations in human LNs regardless of HIV status. Imaging studies confirmed the regulatory phenotype of DPP4+TFRs. CONCLUSION Together these studies describe TFRs dynamic changes during HIV infection and reveal previously underappreciated TFR heterogeneity within human LNs.
Collapse
Affiliation(s)
- Bongiwe Mahlobo
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Faatima Laher
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Werner Smidt
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
| | - Trevor Khaba
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Krista Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
| | - Ismail Jajbhay
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Johan Pansegrouw
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
37
|
Bastow CR, Kara EE, Tyllis TS, Vinuesa CG, McColl SR, Comerford I. TFR Cells Express Functional CCR6 But It Is Dispensable for Their Development and Localization During Splenic Humoral Immune Responses. Front Immunol 2022; 13:873586. [PMID: 35812408 PMCID: PMC9257258 DOI: 10.3389/fimmu.2022.873586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Follicular T cells including T follicular helper (TFH) and T follicular regulatory (TFR) cells are essential in supporting and regulating the quality of antibody responses that develop in the germinal centre (GC). Follicular T cell migration during the propagation of antibody responses is largely attributed to the chemokine receptor CXCR5, however CXCR5 is reportedly redundant in migratory events prior to formation of the GC, and CXCR5-deficient TFH and TFR cells are still capable of localizing to GCs. Here we comprehensively assess chemokine receptor expression by follicular T cells during a model humoral immune response in the spleen. In addition to the known follicular T cell chemokine receptors Cxcr5 and Cxcr4, we show that follicular T cells express high levels of Ccr6, Ccr2 and Cxcr3 transcripts and we identify functional expression of CCR6 protein by both TFH and TFR cells. Notably, a greater proportion of TFR cells expressed CCR6 compared to TFH cells and gating on CCR6+CXCR5hiPD-1hi T cells strongly enriched for TFR cells. Examination of Ccr6-/- mice revealed that CCR6 is not essential for development of the GC response in the spleen, and mixed bone marrow chimera experiments found no evidence for an intrinsic requirement for CCR6 in TFR cell development or localisation during splenic humoral responses. These findings point towards multiple functionally redundant chemotactic signals regulating T cell localisation in the GC.
Collapse
Affiliation(s)
- Cameron R. Bastow
- Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Ervin E. Kara
- Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Timona S. Tyllis
- Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Carola G. Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Shaun R. McColl
- Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Iain Comerford,
| |
Collapse
|
38
|
Kumar P, Balakrishnan S, Surendra Lele S, Setty S, Dhingra S, Epstein AL, Prabhakar BS. Restoration of Follicular T Regulatory/Helper Cell Balance by OX40L-JAG1 Cotreatment Suppresses Lupus Nephritis in NZBWF1/j Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2467-2481. [PMID: 35470257 DOI: 10.4049/jimmunol.2200057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Class-switched antinuclear autoantibodies produced by T follicular helper (TFH) cell-dependent germinal center (GC) B cell response play an essential pathogenic role in lupus nephritis (LN). The role of T follicular regulatory (TFR) cells, an effector subset of CD4+Foxp3+ T regulatory cells (Tregs), which are specialized in suppressing TFH-GC response and Ab production, remains elusive in LN. Contrasting reports have shown increased/reduced circulating TFR cells in human lupus that might not accurately reflect their presence in the GCs of relevant lymphoid organs. In this study, we report a progressive reduction in TFR cells and decreased TFR/TFH ratio despite increased Tregs in the renal lymph nodes of NZBWF1/j mice, which correlated with increased GC-B cells and proteinuria onset. Cotreatment with soluble OX40L and Jagged-1 (JAG1) proteins increased Tregs, TFR cells, and TFR/TFH ratio, with a concomitant reduction in TFH cells, GC B cells, and anti-dsDNA IgG Ab levels, and suppressed LN onset. Mechanistic studies showed attenuated TFH functions and diminished GC events such as somatic hypermutation and isotype class-switching in OX40L-JAG1-treated mice. RNA sequencing studies revealed inhibition of hypoxia-inducible factor 1-α (HIF-1a) and STAT3 signaling in T conventional cells from OX40L-JAG1-treated mice, which are critical for the glycolytic flux and differentiation into TFH cell lineage. Therefore, the increased TFR/TFH ratio seen in OX40L-JAG1-treated mice could involve both impaired differentiation of TFH cells from T conventional cells and expansion of TFR cells. We show a key role for GC-TFR/TFH imbalance in LN pathogenesis and how restoring homeostatic balance can suppress LN.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Sivasangari Balakrishnan
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Swarali Surendra Lele
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Suman Setty
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL; and
| | - Shaurya Dhingra
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Alan L Epstein
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL;
| |
Collapse
|
39
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Houser CL, Lawrence BP. The Aryl Hydrocarbon Receptor Modulates T Follicular Helper Cell Responses to Influenza Virus Infection in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2319-2330. [PMID: 35444027 PMCID: PMC9117429 DOI: 10.4049/jimmunol.2100936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/28/2022] [Indexed: 05/17/2023]
Abstract
T follicular helper (Tfh) cells support Ab responses and are a critical component of adaptive immune responses to respiratory viral infections. Tfh cells are regulated by a network of signaling pathways that are controlled, in part, by transcription factors. The aryl hydrocarbon receptor (AHR) is an environment-sensing transcription factor that modulates many aspects of adaptive immunity by binding a range of small molecules. However, the contribution of AHR signaling to Tfh cell differentiation and function is not known. In this article, we report that AHR activation by three different agonists reduced the frequency of Tfh cells during primary infection of C57BL/6 mice with influenza A virus (IAV). Further, using the high-affinity and AHR-specific agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin, we show that AHR activation reduced Tfh cell differentiation and T cell-dependent B cell responses. Using conditional AHR knockout mice, we demonstrated that alterations of Tfh cells and T cell-dependent B cell responses after AHR activation required the AHR in T cells. AHR activation reduced the number of T follicular regulatory (Tfr) cells; however, the ratio of Tfr to Tfh cells was amplified. These alterations to Tfh and Tfr cells during IAV infection corresponded with differences in expression of BCL6 and FOXP3 in CD4+ T cells and required the AHR to have a functional DNA-binding domain. Overall, these findings support that the AHR modulates Tfh cells during viral infection, which has broad-reaching consequences for understanding how environmental factors contribute to variation in immune defenses against infectious pathogens, such as influenza and severe acute respiratory syndrome coronavirus.
Collapse
Affiliation(s)
- Cassandra L Houser
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY; and
| | - B Paige Lawrence
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY; and
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
41
|
Sakowska J, Arcimowicz Ł, Jankowiak M, Papak I, Markiewicz A, Dziubek K, Kurkowiak M, Kote S, Kaźmierczak-Siedlecka K, Połom K, Marek-Trzonkowska N, Trzonkowski P. Autoimmunity and Cancer-Two Sides of the Same Coin. Front Immunol 2022; 13:793234. [PMID: 35634292 PMCID: PMC9140757 DOI: 10.3389/fimmu.2022.793234] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune disease results from the immune response against self-antigens, while cancer develops when the immune system does not respond to malignant cells. Thus, for years, autoimmunity and cancer have been considered as two separate fields of research that do not have a lot in common. However, the discovery of immune checkpoints and the development of anti-cancer drugs targeting PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways proved that studying autoimmune diseases can be extremely helpful in the development of novel anti-cancer drugs. Therefore, autoimmunity and cancer seem to be just two sides of the same coin. In the current review, we broadly discuss how various regulatory cell populations, effector molecules, genetic predisposition, and environmental factors contribute to the loss of self-tolerance in autoimmunity or tolerance induction to cancer. With the current paper, we also aim to convince the readers that the pathways involved in cancer and autoimmune disease development consist of similar molecular players working in opposite directions. Therefore, a deep understanding of the two sides of immune tolerance is crucial for the proper designing of novel and selective immunotherapies.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Martyna Jankowiak
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
42
|
Ribeiro F, Perucha E, Graca L. T follicular cells: the regulators of germinal centre homeostasis. Immunol Lett 2022; 244:1-11. [DOI: 10.1016/j.imlet.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
43
|
Zhao C, Wu X, Chen J, Qian G. The therapeutic effect of IL-21 combined with IFN-γ inducing CD4 +CXCR5 +CD57 +T cells differentiation on hepatocellular carcinoma. J Adv Res 2022; 36:89-99. [PMID: 35127167 PMCID: PMC8799868 DOI: 10.1016/j.jare.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/30/2021] [Accepted: 05/30/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Liver cancer is a malignant tumor with high incidence and short survival time. In order to increase the cure rate and disease-free survival rate of liver cancer, it is necessary to seek effective treatment methods. Objectives The objective of this study is to evaluate the therapeutic effects of IL-21 and IFN-γ inducing the formation of CD4+CXCR5+CD57+T cells on liver cancer. Methods The methods of analyze the relationship between CD4+CXCR5+CD57+T cells and the survival time of hepatocellular carcinoma (HCC), and study the effect of IL-21 combined with IFN-γ in inducing stem cells to differentiate into CD4+CXCR5+CD57+T cells. The effects of IL-21 combined with IFN-γ induced CD4+CXCR5+CD57+T cells on liver cancer were studied through animal experiments, and the regulatory mechanism, and the effect of hepatitis B virus (HBV) on it. Results The study found that the number of CD4+CXCR5+CD57+T cells in serum of liver cancer patients with prolonged survival time increased significantly, the expression of CD4, CD57, and CXCR5 in the tumor microenvironment increased, and the serum IL-21 and IFN-γ concentrations increased. IL-21 and IFN-γ induce stem cells to differentiate into CD4+CXCR5+CD57+T cells and induce HepG2 cells apoptosis. HBV leads to a decrease in the number of CD4+CXCR5+CD57+T cells and a chronic inflammatory response. Treg cells can regulate CD4+CXCR5+CD57+T cells. IL-21 combined with IFN-γ induced an increase in the number of CD4+CXCR5+CD57+T cells in hepatocarcinoma-bearing mice, which has an inhibitory effect on H22 liver cancer. Conclusion The conclusion of the study is that IL-21 combined with IFN-γ induces stem cells to differentiate into CD4+CXCR5+CD57+T cells, Treg can control the increase in their number, and HBV can cause their number to decrease, which can control the growth of liver cancer.
Collapse
Affiliation(s)
- Changlin Zhao
- School of Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Xianlin Wu
- The First Affiliated Hospital, Jinan University, Guangzhou 510632,China
| | - Jia Chen
- School of Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Guoqiang Qian
- School of Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|
44
|
Hu M, Sallusto F. Assessment of the TCR Repertoire of Human Circulating T Follicular Helper Cells. Methods Mol Biol 2022; 2380:149-163. [PMID: 34802129 DOI: 10.1007/978-1-0716-1736-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Every T cell clone has its unique T cell receptor that results from somatic recombination of V(D)J genes in developing T cells. This process leads to a highly diverse TCR repertoire of naïve T cells, which is selected, upon antigenic recognition, to form the repertoires of effector and memory T cells. The advent of next-generation sequencing (NGS) technology allows for the high-throughput analysis of the TCR repertoires in the different T cell populations. TFH cells, since their initial discovery in human tonsils and in mouse lymphoid organs, have become the subject of intense investigations due to their essential role in regulating B cell responses and the process of antibody affinity maturation. Circulating follicular helper T cells (cTFH) are considered a helper T cell linage in the blood that to some extent relates with bona fide TFH cells in the germinal centers of secondary lymphoid organs. Due to the limited access to the secondary lymphoid organs, cTFH have become a more accessible immunological readout. The assessment of the TCR repertoires of TFH and of cTFH cells is of both fundamental and clinical importance being instrumental to define the linage relationship of cTFH with other T cell subsets and to monitor response to infections or vaccination or disease states. In this chapter, we will provide detailed methods for isolation of antigen-specific cTFH cells in vitro and subsequent protocols for the high-throughput TCR sequencing, followed by repertoire data analysis.
Collapse
Affiliation(s)
- Mengyun Hu
- Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland.
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| | - Federica Sallusto
- Institute for Research in Biomedicine, Bellinzona, Università della Svizzera Italiana, Lugano, Switzerland
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
45
|
Aloulou M, Fazilleau N. The Use of Peptide-MHCII Tetramers to Identify Antigen-Specific T Follicular Helper and T Follicular Regulatory Cells. Methods Mol Biol 2022; 2380:141-147. [PMID: 34802128 DOI: 10.1007/978-1-0716-1736-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Characterization and counting of the different immune cell subpopulations are largely used in order to predict the quality of vaccination or the progression of diseases. As such, flow cytometry is a valuable technology to perform an exact cartography of the immune cell subsets. In the context of B-cell responses, specialized structures emerge in B-follicles of second lymphoid organs where B-cells "undergo maturation processes under the guidance of specific T-cells, follicular helper T-cells, and follicular regulatory T-cells. Thus, tracking these cell types is of high interest, especially in the context of protein vaccination. In this purpose, we describe here, how we can track antigen-specific follicular helper T-cells and follicular regulatory T-cells by flow cytometry after protein vaccination in nonmodified wild-type mice, which ultimately provides a comprehensive way to better understand the function of these particular cells in vivo.
Collapse
Affiliation(s)
- Meryem Aloulou
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Institut National de la Santé et de la Recherche (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulpouse III Paul-Sabatier, Toulouse, France
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Institut National de la Santé et de la Recherche (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulpouse III Paul-Sabatier, Toulouse, France.
| |
Collapse
|
46
|
DiToro D, Basu R. Emerging Complexity in CD4 +T Lineage Programming and Its Implications in Colorectal Cancer. Front Immunol 2021; 12:694833. [PMID: 34489941 PMCID: PMC8417887 DOI: 10.3389/fimmu.2021.694833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The intestinal immune system has the difficult task of protecting a large environmentally exposed single layer of epithelium from pathogens without allowing inappropriate inflammatory responses. Unmitigated inflammation drives multiple pathologies, including the development of colorectal cancer. CD4+T cells mediate both the suppression and promotion of intestinal inflammation. They comprise an array of phenotypically and functionally distinct subsets tailored to a specific inflammatory context. This diversity of form and function is relevant to a broad array of pathologic and physiologic processes. The heterogeneity underlying both effector and regulatory T helper cell responses to colorectal cancer, and its impact on disease progression, is reviewed herein. Importantly, T cell responses are dynamic; they exhibit both quantitative and qualitative changes as the inflammatory context shifts. Recent evidence outlines the role of CD4+T cells in colorectal cancer responses and suggests possible mechanisms driving qualitative alterations in anti-cancer immune responses. The heterogeneity of T cells in colorectal cancer, as well as the manner and mechanism by which they change, offer an abundance of opportunities for more specific, and likely effective, interventional strategies.
Collapse
Affiliation(s)
- Daniel DiToro
- Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH MIT and Harvard, Cambridge, MA, United States
| | - Rajatava Basu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
47
|
Jacobsen JT, Hu W, R Castro TB, Solem S, Galante A, Lin Z, Allon SJ, Mesin L, Bilate AM, Schiepers A, Shalek AK, Rudensky AY, Victora GD. Expression of Foxp3 by T follicular helper cells in end-stage germinal centers. Science 2021; 373:eabe5146. [PMID: 34437125 PMCID: PMC9007630 DOI: 10.1126/science.abe5146] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Germinal centers (GCs) are the site of immunoglobulin somatic hypermutation and affinity maturation, processes essential to an effective antibody response. The formation of GCs has been studied in detail, but less is known about what leads to their regression and eventual termination, factors that ultimately limit the extent to which antibodies mature within a single reaction. We show that contraction of immunization-induced GCs is immediately preceded by an acute surge in GC-resident Foxp3+ T cells, attributed at least partly to up-regulation of the transcription factor Foxp3 by T follicular helper (TFH) cells. Ectopic expression of Foxp3 in TFH cells is sufficient to decrease GC size, implicating the natural up-regulation of Foxp3 by TFH cells as a potential regulator of GC lifetimes.
Collapse
Affiliation(s)
- Johanne T Jacobsen
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| | - Wei Hu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ludwig Center for Cancer Immunotherapy, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Sigrid Solem
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Alice Galante
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Zeran Lin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Samuel J Allon
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Alex K Shalek
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Immunology Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ludwig Center for Cancer Immunotherapy, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
48
|
Chong AS, Sage PT, Alegre ML. Regulation of Alloantibody Responses. Front Cell Dev Biol 2021; 9:706171. [PMID: 34307385 PMCID: PMC8297544 DOI: 10.3389/fcell.2021.706171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The control of alloimmunity is essential to the success of organ transplantation. Upon alloantigen encounter, naïve alloreactive T cells not only differentiate into effector cells that can reject the graft, but also into T follicular helper (Tfh) cells that promote the differentiation of alloreactive B cells that produce donor-specific antibodies (DSA). B cells can exacerbate the rejection process through antibody effector functions and/or B cell antigen-presenting functions. These responses can be limited by immune suppressive mechanisms mediated by T regulatory (Treg) cells, T follicular regulatory (Tfr) cells, B regulatory (Breg) cells and a newly described tolerance-induced B (TIB) cell population that has the ability to suppress de novo B cells in an antigen-specific manner. Transplantation tolerance following costimulation blockade has revealed mechanisms of tolerance that control alloreactive T cells through intrinsic and extrinsic mechanisms, but also inhibit alloreactive B cells. Thus, the control of both arms of adaptive immunity might result in more robust tolerance, one that may withstand more severe inflammatory challenges. Here, we review new findings on the control of B cells and alloantibody production in the context of transplant rejection and tolerance.
Collapse
Affiliation(s)
- Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
49
|
Basto AP, Graca L. Regulation of antibody responses against self and foreign antigens by Tfr cells: implications for vaccine development. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab012. [PMID: 36845568 PMCID: PMC9914583 DOI: 10.1093/oxfimm/iqab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
The production of antibodies can constitute a powerful protective mechanism against infection, but antibodies can also participate in autoimmunity and allergic responses. Recent advances in the understanding of the regulation of germinal centres (GC), the sites where B cells acquire the ability to produce high-affinity antibodies, offered new prospects for the modulation of antibody production in autoimmunity and vaccination. The process of B cell affinity maturation and isotype switching requires signals from T follicular helper (Tfh) cells. In addition, Foxp3+ T follicular regulatory (Tfr) cells represent the regulatory counterpart of Tfh in the GC reaction. Tfr cells were identified one decade ago and since then it has become clear their role in controlling the emergence of autoreactive B cell clones following infection and immunization. At the same time, Tfr cells are essential for fine-tuning important features of the humoral response directed to foreign antigens that are critical in vaccination. However, this regulation is complex and several aspects of Tfr cell biology are yet to be disclosed. Here, we review the current knowledge about the regulation of antibody responses against self and foreign antigens by Tfr cells and its implications for the future rational design of safer and more effective vaccines.
Collapse
Affiliation(s)
- Afonso P Basto
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Luis Graca
- Correspondence address. Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal. Tel: +351 217999411; Fax: +351 217999412: E-mail:
| |
Collapse
|
50
|
Lu Y, Craft J. T Follicular Regulatory Cells: Choreographers of Productive Germinal Center Responses. Front Immunol 2021; 12:679909. [PMID: 34177925 PMCID: PMC8222975 DOI: 10.3389/fimmu.2021.679909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
T follicular regulatory cells, or Tfr cells, are a discernable population of regulatory T (Treg) cells that migrate to the B cell follicle and germinal center (GC) upon immune challenge. These cells express the transcription factor Bcl6, the master regulator required for development and differentiation of T follicular helper cells, and are among a group of previously described Treg cells that use T helper cell–associated transcription factors to adapt their regulatory function to diverse milieus for maintenance of immune homeostasis. While there is consensus that Tfr cells control B-cell autoreactivity, it has been unclear whether they regulate productive, antigen-specific GC responses. Accordingly, understanding the regulatory balancing that Tfr cells play in maintenance of B-cell tolerance while optimizing productive humoral immunity is crucial for vaccine-design strategies. To this end, we discuss recent evidence that Tfr cells promote humoral immunity and memory following viral infections, fitting with the accepted role of Treg cells in maintaining homeostasis with promotion of productive immunity, while mitigating that which is potentially pathological. We also propose models in which Tfr cells regulate antigen-specific B cell responses.
Collapse
Affiliation(s)
- Yisi Lu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Joe Craft
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States.,Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|