1
|
Tao Y, Zeng Y, Zeng R, Gou X, Zhou X, Zhang J, Nhamdriel T, Fan G. The total alkaloids of Berberidis Cortex alleviate type 2 diabetes mellitus by regulating gut microbiota, inflammation and liver gluconeogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118957. [PMID: 39426578 DOI: 10.1016/j.jep.2024.118957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) has become a public health problem worldwide. There is growing interest in finding drugs to treat T2DM from herbal medicine. Berberidis Cortex is a traditional Tibetan herb commonly used in the treatment of T2DM, and alkaloids are its main active components. However, the anti-diabetic mechanisms of the total alkaloids of Berberidis Cortex (TBC) remain unclear. AIM OF THE STUDY The aim of this study was to evaluate the anti-T2DM efficacy of TBC and reveal the mechanisms behind its effects. MATERIALS AND METHODS UPLC-Q-Exactive Orbitrap MS technology was employed to qualitatively identify alkaloid components in TBC. T2DM rat models were induced by high-fat diet combined with streptozotocin, and then treated with different doses of TBC (43.5, 87, 174 mg/kg/d) for 40 days. Biochemical parameters, such as fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glycated serum protein (GSP), homeostatic model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), alongside H&E and PAS staining were used to evaluate the anti-diabetic activity of TBC. More importantly, metagenomics, transcriptomics, targeted metabolomics, and Western blot analysis were integrated to reveal the underlying mechanisms of TBC for T2DM treatment. RESULTS TBC significantly reduced the levels of FBG, OGTT, GSP, HOMA-IR, TC, TG, and LDL-C, and improved the histopathological alterations of pancreatic and liver tissues in T2D rats. It also reduced serum levels of lipopolysaccharide (LPS) and several pro-inflammatory cytokines (IL-6, IL-1β and TNF-α). Gut microbiome analysis by metagenomics proved that TBC could improve gut microbiota dysbiosis, including an increase in some beneficial bacteria (e.g., Bifidobacterium pseudolongum and Lactobacillus acidophilus) and a decrease in some harmful bacteria (e.g., Marvinbryantia and Parabacteroides). Western blot analysis found that TBC significantly up-regulated the expression of three intestinal barrier related tight junction proteins (ZO-1, occludin, and claudin-1), and effectively suppressed several key proteins in the TLR4/MyD88/NF-κB inflammatory cascade, including TLR4, MyD88 and p-NF-κB p65. Moreover, hepatic transcriptomics analysis further revealed the regulatory role of TBC on gluconeogenesis related genes, such as Pgc, and Creb1. Targeted metabolomics and Western blot analysis showed that TBC improved BAs dysregulation in T2DM rats, specifically increasing TCDCA and CA levels, thereby activating several proteins in the FXR/FGF15 signaling axis (i.e., FXR, FGF15 and FGFR4), and then decreased the expression of p-CREB1 and PGC-1α to inhibit liver gluconeogenesis. CONCLUSIONS TBC can significantly improve hyperglycemia, insulin resistance, hyperlipidemia, and inflammation in T2DM rats. The mechanism is related to the regulation of multiple links, including improving gut microbiota dysbiosis, protecting the intestinal barrier by up-regulating the expression of three tight junction proteins, reducing inflammation by inhibiting the LPS/TLR4/MyD88/NF-κB pathway, and inhibiting liver gluconeogenesis by regulating BAs/FXR/FGF15 and CREB1/PGC-1α signaling pathways.
Collapse
Affiliation(s)
- Yiwen Tao
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yujiao Zeng
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Zeng
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoling Gou
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianhua Zhou
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tsedien Nhamdriel
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, 850000, China.
| | - Gang Fan
- School of Ethnic Medicine, School of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Dong DB, Qiao XL, Chen CW, Bao W, Chen CW, Yuan X, Zhang Y. The predictive value of estimated pulse wave velocity (ePWV) combined with BMI for newly diagnosed diabetes. Rev Clin Esp 2024; 224:503-509. [PMID: 38972634 DOI: 10.1016/j.rceng.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
PURPOSE Estimated pulse wave velocity (ePWV) and body mass index (BMI) are significant predictors of new-onset diabetes. This study aims to evaluate the impact and predictive value of combining ePWV and BMI on the incidence of new-onset diabetes. METHODS A secondary analysis was conducted on a cohort study by Rich Healthcare (China), involving 211,833 eligible participants. Logistic regression analysis identified factors influencing diabetes occurrence, while ROC curve analysis assessed the predictive value of ePWV, BMI, and their combination for new-onset diabetes. RESULTS Over a mean follow-up period of 3.12 years, 3,000 men (1.41%) and 1,174 women (0.55%) were diagnosed with diabetes. Logistic regression revealed that BMI, triglycerides, alanine aminotransferase, blood urea nitrogen, creatinine clearance rate, ePWV, and family history of diabetes are high-risk factors for new-onset diabetes. The combination of ePWV and BMI provided a higher area under the ROC curve (0.822) compared to ePWV or BMI alone. CONCLUSION Elevated levels of ePWV and BMI are independent risk factors for new-onset diabetes. Combining these measures enhances predictive accuracy compared to using either indicator alone.
Collapse
Affiliation(s)
- Da Bao Dong
- Department of Nephrology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Li Qiao
- Department of Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Cheng Wen Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Bao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chun Wei Chen
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xiang Yuan
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Zhang
- Department of Nephrology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Siwan E, Wong J, Brooks BA, Shinko D, Baker CJ, Deshpande N, McLennan SV, Twigg SM, Min D. Deep Immune and RNA Profiling Revealed Distinct Circulating CD163+ Monocytes in Diabetes-Related Complications. Int J Mol Sci 2024; 25:10094. [PMID: 39337580 PMCID: PMC11432403 DOI: 10.3390/ijms251810094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
CD163, a scavenger receptor with anti-inflammatory function expressed exclusively on monocytes/macrophages, is dysregulated in cases of diabetes complications. This study aimed to characterize circulating CD163+ monocytes in the presence (D+Comps) or absence (D-Comps) of diabetes-related complications. RNA-sequencing and mass cytometry were conducted on CD163+ monocytes in adults with long-duration diabetes and D+Comps or D-Comps. Out of 10,868 differentially expressed genes identified between D+Comps and D-Comps, 885 were up-regulated and 190 were down-regulated with a ≥ 1.5-fold change. In D+Comps, 'regulation of centrosome cycle' genes were enriched 6.7-fold compared to the reference genome. MIR27A, MIR3648-1, and MIR23A, the most up-regulated and CD200R1, the most down-regulated gene, were detected in D+Comps from the list of 75 'genes of interest'. CD163+ monocytes in D+Comps had a low proportion of recruitment markers CCR5, CD11b, CD11c, CD31, and immune regulation markers CD39 and CD86. A gene-protein network identified down-regulated TLR4 and CD11b as 'hub-nodes'. In conclusion, this study reports novel insights into CD163+ monocyte dysregulation in diabetes-related complications. Enriched centrosome cycle genes and up-regulated miRNAs linked to apoptosis, coupled with down-regulated monocyte activation, recruitment, and immune regulation, suggest functionally distinct CD163+ monocytes in cases of diabetes complications. Further investigation is needed to confirm their role in diabetes-related tissue damage.
Collapse
Affiliation(s)
- Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
| | - Jencia Wong
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;
| | - Belinda A. Brooks
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;
| | - Diana Shinko
- Sydney Cytometry, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Callum J. Baker
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
| | - Nandan Deshpande
- Sydney Informatics Hub, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Susan V. McLennan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
- NSW Health Pathology, Sydney, NSW 2050, Australia
| | - Stephen M. Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW 2006, Australia; (E.S.); (J.W.); (C.J.B.); (S.V.M.); (S.M.T.)
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;
| |
Collapse
|
4
|
Zhou J, Wang Y, Xu R. Association of COVID-19 infection and the risk of new incident diabetes: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1429848. [PMID: 39253580 PMCID: PMC11381376 DOI: 10.3389/fendo.2024.1429848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Background As the world population recovers from the COVID-19 infection, a series of acute sequelae emerge including new incident diabetes. However, the association between COVID-19 infection and new incident diabetes is not fully understood. We purpose to determine the risk of new incident diabetes after COVID-19 infection. Methods PubMed, Embase, and Cochrane Library were used as databases to search for cohort studies published from database inception to February 4, 2024. Two reviewers independently conducted the study screening, data extraction, and risk of bias assessment. A random-effects model was adopted to pool the hazard ratio (HR) with corresponding 95% confidence intervals (CI). Subgroup analysis was conducted to explore the potential influencing factors. Results A total of 20 cohort studies with over 60 million individuals were included. The pooling analysis illustrates the association between COVID-19 infection and an increased risk of new incident diabetes (HR = 1.46; 95% CI: 1.38-1.55). In subgroup analysis, the risk of type 1 diabetes was HR=1.44 (95% CI: 1.13-1.82), and type 2 diabetes was HR=1.47 (95% CI: 1.36-1.59). A slightly higher risk of diabetes was found in males (HR=1.37; 95% CI: 1.30-1.45) than in females (HR=1.29; 95% CI: 1.22-1.365). The risk of incident diabetes is associated with hospitalization: non-hospitalized patients have an HR of 1.16 (95% CI: 1.07-1.26), normal hospitalized patients have an HR of 2.15 (95% CI: 1.33-3.49), and patients receiving intensive care have the highest HR of 2.88 (95% CI: 1.73-4.79). Conclusions COVID-19 infection is associated with an elevated risk of new incident diabetes. Patients ever infected with COVID-19 should be recognized as a high-risk population with diabetes. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42024522050.
Collapse
Affiliation(s)
- Jingye Zhou
- International Medical College, Chongqing Medical University, Chongqing, China
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Yuzhu Wang
- International Medical College, Chongqing Medical University, Chongqing, China
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Ruolan Xu
- International Medical College, Chongqing Medical University, Chongqing, China
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Boadu WIO, Owiredu WKBA, Donkoh ET, Boadu KO, Kwayie AA, Frimpong J, Anto EO, Obirikorang C, Korsah EE, Ansah E, Nyantakyi M, Opoku S, Senu E, Aboagye E. Association of body iron stores and anemia in a Ghanaian type-2 diabetes mellitus population: A multicentered cross-sectional study. Health Sci Rep 2024; 7:e2059. [PMID: 38725560 PMCID: PMC11079434 DOI: 10.1002/hsr2.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
Background and Aims Anemia has been a common comorbidity in most chronic diseases, but has not been well monitored in type 2 diabetes mellitus (T2DM) patients. In this study, we investigated the prevalence of anemia and its nexus with iron stores among T2DM patients in health facilities in the Ashanti Region of Ghana. Methods This multicenter cross-sectional study recruited 213 T2DM out-patients attending the diabetic clinics at the Kumasi South Hospital and St. Michaels Hospital, Jachie Pramso, Ghana, for routine check-ups. Self-reported questionnaires were used to collect sociodemographic, lifestyle, and clinical data from study participants. Blood samples were collected to estimate hematological parameters and iron stores. Mann-Whitney U test was used to assess the difference in hematological parameters and iron stores between anemic and nonanemic patients. All p < 0.05 were considered statistically significant. Results Of the 213 T2DM participants, the prevalence of anemia was 31.9%. More females 145 (68.1%) were registered than males 68 (31.9%). Anemic patients had significantly lower levels of mean cell volume [79.30/fL vs. 82.60/fL, p = 0.001], mean cell hemoglobin [26.60/pg vs. 27.90/pg, p < 0.0001], and mean cell hemoglobin concentration [33.10/g/dL) vs. 33.80/g/dL, p < 0.0001] than those without anemia. Serum levels of ferritin (p = 0.1140), transferrin (p = 0.5070), iron (p = 0.7950), and total iron binding capacity (p = 0.4610) did not differ significantly between T2DM patients with or without anemia. Conclusion Despite the high prevalence of anemia among the T2DM patients in our cohort, patients present with apparently normal iron stores. This unrecognized mild anemia must be frequently monitored among T2DM patients.
Collapse
Affiliation(s)
- Wina I. O. Boadu
- Department of Medical Diagnostics, College of Health Sciences, Faculty of Allied Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - William K. B. A Owiredu
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Health ScienceKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Emmanuel Timmy Donkoh
- Department of Medical Laboratory Science, Centre for Research in Applied BiologyUniversity of Energy and Natural ResourcesSunyaniGhana
| | - Kwame O. Boadu
- Department of Obstetrics and GynaecologyKumasi South HospitalKumasiGhana
| | - Afia A. Kwayie
- Department of Medical Diagnostics, College of Health Sciences, Faculty of Allied Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Joseph Frimpong
- Department of Medical Diagnostics, College of Health Sciences, Faculty of Allied Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Enoch O. Anto
- Department of Medical Diagnostics, College of Health Sciences, Faculty of Allied Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupPerthAustralia
| | - Christian Obirikorang
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Health ScienceKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Emmanuel E. Korsah
- Department of Medical Diagnostics, College of Health Sciences, Faculty of Allied Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Ezekiel Ansah
- Department of Medical Diagnostics, College of Health Sciences, Faculty of Allied Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Michael Nyantakyi
- Department of Medical Diagnostics, College of Health Sciences, Faculty of Allied Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Stephen Opoku
- Department of Medical Diagnostics, College of Health Sciences, Faculty of Allied Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Ebenezer Senu
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Health ScienceKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Elizabeth Aboagye
- Department of Medical Diagnostics, College of Health Sciences, Faculty of Allied Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| |
Collapse
|
6
|
Li X, Chen H. Characteristics of glucolipid metabolism and complications in novel cluster-based diabetes subgroups: a retrospective study. Lipids Health Dis 2023; 22:200. [PMID: 37990237 PMCID: PMC10662503 DOI: 10.1186/s12944-023-01953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Glucolipid metabolism plays an important role in the occurrence and development of diabetes mellitus. However, there is limited research on the characteristics of glucolipid metabolism and complications in different subgroups of newly diagnosed diabetes. This study aimed to investigate the characteristics of glucolipid metabolism and complications in novel cluster-based diabetes subgroups and explore the contributions of different glucolipid metabolism indicators to the occurrence of complications and pancreatic function. METHODS This retrospective study included 547 newly diagnosed type 2 diabetes patients. Age, body mass index (BMI), glycated hemoglobin (HbA1C), homeostasis model assessment-2 beta-cell function (HOMA2-β), and homeostasis model assessment-2 insulin resistance (HOMA2-IR) were used as clustering variables. The participants were divided into 4 groups by k-means cluster analysis. The characteristics of glucolipid indicators and complications in each subgroup were analyzed. Regression analyses were used to evaluate the impact of glucolipid metabolism indicators on complications and pancreatic function. RESULTS Total cholesterol (TC), triglycerides (TG), triglyceride glucose index (TyG), HbA1C, fasting plasma glucose (FPG), and 2-h postprandial plasma glucose (2hPG) were higher in the severe insulin-resistant diabetes (SIRD) and severe insulin-deficient diabetes (SIDD) groups. Fasting insulin (FINS), fasting C-peptide (FCP), 2-h postprandial insulin (2hINS), 2-h postprandial C-peptide (2hCP), and the monocyte-to-high-density lipoprotein cholesterol ratio (MHR) were higher in mild obesity-related diabetes (MOD) and SIRD. 2hCP, FCP, and FINS were positively correlated with HOMA2-β, while FPG, TyG, HbA1C, and TG were negatively correlated with HOMA2-β. FINS, FPG, FCP, and HbA1C were positively correlated with HOMA2-IR, while high-density lipoprotein (HDL) was negatively correlated with HOMA2-IR. FINS (odds ratio (OR),1.043;95% confidence interval (CI) 1.006 ~ 1.081), FCP (OR,2.881;95%CI 2.041 ~ 4.066), and TyG (OR,1.649;95%CI 1.292 ~ 2.104) contributed to increase the risk of nonalcoholic fatty liver disease (NAFLD); 2hINS (OR,1.015;95%CI 1.008 ~ 1.022) contributed to increase the risk of atherosclerotic cardiovascular disease (ASCVD); FCP (OR,1.297;95%CI 1.027 ~ 1.637) significantly increased the risk of chronic kidney disease (CKD). CONCLUSIONS There were differences in the characteristics of glucolipid metabolism as well as complications among different subgroups of newly diagnosed type 2 diabetes. 2hCP, FCP, FINS, FPG, TyG, HbA1C, HDL and TG influenced the function of insulin. FINS, TyG, 2hINS, and FCP were associated with ASCVD, NAFLD, and CKD in newly diagnosed T2DM patients.
Collapse
Affiliation(s)
- Xinrong Li
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu Province, China
| | - Hui Chen
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
7
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
8
|
Siwan E, Parry SN, Williams KH, McGill MJ, Wu T, Wong J, Twigg SM, Min D. Circulating soluble CD163 as a potential biomarker of diabetes complications. J Diabetes Complications 2023; 37:108525. [PMID: 37301062 DOI: 10.1016/j.jdiacomp.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
AIMS To investigate whether soluble CD163 (sCD163) is altered in those with diabetes and various subtypes of complications and non-alcoholic fatty liver disease (NAFLD), and whether it can assess disease complications and severity in people with diabetes. METHODS Adults with diabetes (n = 101) were recruited and assessed for the presence of any complications (D+Comps). Liver steatosis presence was determined by ultrasound and liver stiffness measurement (LSM) by transient elastography. Liver pathology other than non-alcoholic steatohepatitis (NASH) was excluded. Plasma sCD163 was measured by ELISA. RESULTS sCD163 was higher in D+Comps (n = 59) compared to D-comps (n = 42) in those with microvascular complications (n = 56; 1.3-fold), including a 1.4-fold increase in chronic kidney disease (CKD) (n = 42). sCD163 correlated positively with HbA1c and urinary albumin-creatinine ratio and negatively with HDL-c in D+Comps. sCD163 was increased 1.7-fold in those with advanced NASH fibrosis (LSM ≥ 10.3 kPa, n = 19) compared to those without (LSM < 10.3 kPa, n = 80). The AUC-ROC-curve was 0.64 for sCD163 to detect CKD and 0.74 to detect advanced NASH fibrosis. CONCLUSIONS In this study, the elevated circulating sCD163 occurred in people with diabetes who had microvascular complications or advanced NASH fibrosis, suggesting sCD163 may have clinical utility as a biomarker in certain diabetes complications and disease severity in NAFLD.
Collapse
Affiliation(s)
- Elisha Siwan
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Sarah N Parry
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kathryn H Williams
- Nepean Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Margaret J McGill
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Ted Wu
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jencia Wong
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrine Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Wei J, Wang Z, Han T, Chen J, Ou Y, Wei L, Zhu X, Wang K, Yan Z, Han YP, Zheng X. Extracellular vesicle-mediated intercellular and interorgan crosstalk of pancreatic islet in health and diabetes. Front Endocrinol (Lausanne) 2023; 14:1170237. [PMID: 37305058 PMCID: PMC10248434 DOI: 10.3389/fendo.2023.1170237] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease with high mortality and morbidity. Extracellular vesicles (EVs) have emerged as a novel class of signaling molecules, biomarkers and therapeutic agents. EVs-mediated intercellular and interorgan crosstalk of pancreatic islets plays a crucial role in the regulation of insulin secretion of β-cells and insulin action in peripheral insulin target tissues, maintaining glucose homeostasis under physiological conditions, and it's also involved in pathological changes including autoimmune response, insulin resistance and β-cell failure associated with DM. In addition, EVs may serve as biomarkers and therapeutic agents that respectively reflect the status and improve function and viability of pancreatic islets. In this review, we provide an overview of EVs, discuss EVs-mediated intercellular and interorgan crosstalk of pancreatic islet under physiological and diabetic conditions, and summarize the emerging applications of EVs in the diagnosis and treatment of DM. A better understanding of EVs-mediated intercellular and interorgan communication of pancreatic islets will broaden and enrich our knowledge of physiological homeostasis maintenance as well as the development, diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Junlun Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Tingrui Han
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaoting Chen
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Vascular Surgery, University Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Yan
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Chen L, Yang S, Dotzert M, Melling CWJ, Zhang J. Hybrid reduced graphene oxide nanosheets with negative magnetoresistance for the diagnosis of hypoglycemia. J Mater Chem B 2023; 11:998-1007. [PMID: 36621800 DOI: 10.1039/d2tb01927b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Few glucometers are available to easily and quickly measure low blood glucose levels (≤4 mmol L-1) from a small amount of blood samples. Here, a hybrid reduced graphene oxide (rGO)-based magnetoresistance (MR) sensor has been developed to monitor blood glucose levels to quickly detect hypoglycemia. Hybrid rGO nanosheets, incorporating Fe50Co50 nanoparticles onto rGO nanosheets, with an unusual large negative MR (-5.7%) at room temperature under a small magnetic field (9.5 kOe) have been successfully fabricated through a one-pot reaction. To quickly detect the low concentration of glucose in a small amount of blood (1 μL), a two-step process has been further developed by using the "sandwich" structural MR sensor. The results show that the higher the negative MR value of the sensor, the lower the concentration of glucose that can be detected. A linear relationship between the MR and the concentration of the spiked plasma glucose taken from streptozotocin-induced diabetic rats can be found when the concentration of glucose is in the range of 0-6 mmol L-1. The limit of detection (LOD) of this MR glucose sensor is 0.867 mmol L-1. The accuracy of the rGO-based MR sensor is improved in measuring low concentration of plasma glucose as compared to that of a commercialized glucometer. Furthermore, the selectivity of the rGO-based MR sensor has been studied. The results demonstrate that the rGO-based MR sensor is a flexible and sensitive detection platform and specifically suitable for monitoring low concentrations of plasma glucose to prevent from hypoglycemia.
Collapse
Affiliation(s)
- Longyi Chen
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
| | - Songlin Yang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
| | - Michelle Dotzert
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - C W James Melling
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada. .,School of Biomedical Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
11
|
Zulfa VZ, Nasori N, Farahdina U, Firdhaus M, Aziz I, Suprihatin H, Rhomadhoni MN, Rubiyanto A. Highly Sensitive ZnO/Au Nanosquare Arrays Electrode for Glucose Biosensing by Electrochemical and Optical Detection. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020617. [PMID: 36677675 PMCID: PMC9861633 DOI: 10.3390/molecules28020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
The fabrication of a ZnO/Au nanosquare-array electrode was successfully carried out for the detection of glucose concentration in biomedical applications. The fabrication of the ZnO/Au nanosquare array using an ultra-thin alumina mask (UTAM) based on the imprinted anodic aluminum oxide (AAO) template and the direct current (DC) sputtering method was able to produce a very well-ordered nanosquare arrangement with a side size of 300 nm and a thickness of 100 nm. Tests were done to evaluate the performance of the electrode by means of cyclic voltammetry (CV) which showed that the addition of glucose oxidase (GOx) increased the sensitivity of the electrode up to 1180 ± 116 μA mM-1cm-2, compared with its sensitivity prior to the addition of GOx of 188.34 ± 18.70 mA mM-1 cm-2. A iox/ired ratio equal to ~1 between the peaks of redox reactions was obtained for high (hyperglycemia), normal, and low (hypoglycemia) levels of glucose. The ZnO/Au nanosquare-array electrode was 7.54% more sensitive than the ZnO/Au thin-film electrode. Furthermore, finite-difference time-domain (FDTD) simulations and theoretical calculations of the energy density of the electric and magnetic fields produced by the ZnO/Au electrode were carried out and compared to the results of CV. From the results of CV, FDTD simulation, and theoretical calculations, it was confirmed that the ZnO/Au nanosquare array possessed a significant optical absorption and that the quantum effect from the nanosquare array resulted in a higher sensitivity than the thin film.
Collapse
Affiliation(s)
- Vinda Zakiyatuz Zulfa
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
| | - Nasori Nasori
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
- Correspondence:
| | - Ulya Farahdina
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
| | - Miftakhul Firdhaus
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
| | - Ihwanul Aziz
- Research Center for Accelerator Technology, Research Organization of Nuclear Energy, National Research and Innovation Agency (BRIN), Yogyakarta 55281, Indonesia
| | - Hari Suprihatin
- Research Center for Accelerator Technology, Research Organization of Nuclear Energy, National Research and Innovation Agency (BRIN), Yogyakarta 55281, Indonesia
| | | | - Agus Rubiyanto
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
| |
Collapse
|
12
|
Eliasson B, Lyngfelt L, Strömblad SO, Franzén S, Eeg-Olofsson K. The significance of chronic kidney disease, heart failure and cardiovascular disease for mortality in type 1 diabetes: nationwide observational study. Sci Rep 2022; 12:17950. [PMID: 36289275 PMCID: PMC9606313 DOI: 10.1038/s41598-022-22932-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
People with type 1 diabetes have a substantially increased risk of premature death. This nationwide, register-based cohort study evaluated the significance of risk factors and previous cardiovascular disease (CVD), heart failure and chronic kidney disease (CKD), for mortality in type 1 diabetes. Nationwide, longitudinal, register-based cohort study. Patients (n = 36,303) listed in the Swedish National Diabetes Register between January 1 2015 and December 31 2017 were included and followed until December 31, 2018. Data were retrieved from national health registries through each patient's unique identifier, to capture data on clinical characteristics, outcomes, or deaths, to describe mortality rates in risk groups. The mean follow-up time was 3.3 years, with 119,800 patient years of observation and 1127 deaths, corresponding to a crude overall mortality of 0.92% deaths/year. Statistically significant increased risk in multivariate analyzes was found in older age groups, in men, and in underweight or people with normal BMI, high HbA1c or blood pressure. A history of CVD, albuminuria and advanced stages of CKD was associated with an increased risk of mortality. Each combination of these conditions further increased the risk of mortality. These results emphasize the importance of risk factors and cardiovascular and renal diabetes complications. People with a combination of CKD, CVD, and heart failure, exhibit a markedly increased risk of dying prematurely. These findings provide strong arguments for optimized and individualized treatment of these groups of people with type 1 diabetes in clinical everyday life.
Collapse
Affiliation(s)
- Björn Eliasson
- Department of Medicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
- National Diabetes Register, Centre of Registries in Region Western Sweden, Gothenburg, Sweden.
| | - Lovisa Lyngfelt
- Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Stefan Franzén
- Health Metrics, School of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Eeg-Olofsson
- Department of Medicine, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
- National Diabetes Register, Centre of Registries in Region Western Sweden, Gothenburg, Sweden
- Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
13
|
Abou Daher A, Alkhansa S, Azar WS, Rafeh R, Ghadieh HE, Eid AA. Translational Aspects of the Mammalian Target of Rapamycin Complexes in Diabetic Nephropathy. Antioxid Redox Signal 2022; 37:802-819. [PMID: 34544257 DOI: 10.1089/ars.2021.0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite the many efforts put into understanding diabetic nephropathy (DN), direct treatments for DN have yet to be discovered. Understanding the mechanisms behind DN is an essential step in the development of novel therapeutic regimens. The mammalian target of rapamycin (mTOR) pathway has emerged as an important candidate in the quest for drug discovery because of its role in regulating growth, proliferation, as well as protein and lipid metabolism. Recent Advances: Kidney cells have been found to rely on basal autophagy for survival and for conserving kidney integrity. Recent studies have shown that diabetes induces renal autophagy deregulation, leading to kidney injury. Hyper-activation of the mTOR pathway and oxidative stress have been suggested to play a role in diabetes-induced autophagy imbalance. Critical Issues: A detailed understanding of the role of mTOR signaling in diabetes-associated complications is of major importance in the search for a cure. In this review, we provide evidence that mTOR is heavily implicated in diabetes-induced kidney injury. We suggest possible mechanisms through which mTOR exerts its negative effects by increasing insulin resistance, upregulating oxidative stress, and inhibiting autophagy. Future Directions: Both increased oxidative stress and autophagy deregulation are deeply embedded in DN. However, the mechanisms controlling oxidative stress and autophagy are not well understood. Although Akt/mTOR signaling seems to play an important role in oxidative stress and autophagy, further investigation is required to uncover the details of this signaling pathway. Antioxid. Redox Signal. 37, 802-819.
Collapse
Affiliation(s)
- Alaa Abou Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - William S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,Department of Physiology and Biophysics, Georgetown University Medical School, Washington, District of Columbia, USA
| | - Rim Rafeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Hilda E Ghadieh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.,AUB Diabetes, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
14
|
Parmar UM, Jalgaonkar MP, Kulkarni YA, Oza MJ. Autophagy-nutrient sensing pathways in diabetic complications. Pharmacol Res 2022; 184:106408. [PMID: 35988870 DOI: 10.1016/j.phrs.2022.106408] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The incidence of diabetes has been increasing in recent decades which is affecting the population of both, developed and developing countries. Diabetes is associated with micro and macrovascular complications which predominantly result from hyperglycemia and disrupted metabolic pathways. Persistent hyperglycemia leads to increased reactive oxygen species (ROS) generation, formation of misfolded and abnormal proteins, and disruption of normal cellular functioning. The inability to maintain metabolic homeostasis under excessive energy and nutrient input, which induces insulin resistance, is a crucial feature during the transition from obesity to diabetes. According to various study reports, redox alterations, intracellular stress and chronic inflammation responses have all been linked to dysregulated energy metabolism and insulin resistance. Autophagy has been considered a cleansing mechanism to prevent these anomalies and restore cellular homeostasis. However, disrupted autophagy has been linked to the pathogenesis of metabolic disorders such as obesity and diabetes. Recent studies have reported that the regulation of autophagy has a beneficial role against these conditions. When there is plenty of food, nutrient-sensing pathways activate anabolism and storage, but the shortage of food activates homeostatic mechanisms like autophagy, which mobilises internal stockpiles. These nutrient-sensing pathways are well conserved in eukaryotes and are involved in the regulation of autophagy which includes SIRT1, mTOR and AMPK. The current review focuses on the role of SIRT1, mTOR and AMPK in regulating autophagy and suggests autophagy along with these nutrient-sensing pathways as potential therapeutic targets in reducing the progression of various diabetic complications.
Collapse
Affiliation(s)
- Urvi M Parmar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Manjiri P Jalgaonkar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Manisha J Oza
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
15
|
Zhong O, Hu J, Wang J, Tan Y, Hu L, Lei X. Antioxidant for treatment of diabetic complications: A meta-analysis and systematic review. J Biochem Mol Toxicol 2022; 36:e23038. [PMID: 35307907 DOI: 10.1002/jbt.23038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023]
Abstract
Antioxidants may provide a complementary treatment for patients with chronic diseases. Nevertheless, studies that have measured the effects of antioxidant on diabetes complications have provided conflicting results. This study aimed to elucidate the association between antioxidant and diabetic complications and to develop robust evidence for clinical decisions by systematic reviews and meta-analysis. PubMed, Embase, The Cochrane Library, Web of Science, Scopus databases were searched to collect clinical studies related to the efficacy of antioxidants in the treatment of diabetes complications from inception to May 5, 2021. Statistical meta-analyses were performed using the RevMan 5.4 software. Stata16 software was used to detect publication bias. The data of diabetic nephropathy (DN), diabetic nonalcoholic fatty liver disease (NAFLD), and diabetic periodontitis were collected to analyze the effect of antioxidant on diabetes and the above three complications. The meta-analysis results showed that antioxidant treatment was associated with significantly changes in the fasting plasma glucose (FPG) (standardized mean difference [SMD]: - 0.21 [95% confidence interval [CI]: - 0.33, -0.10], p < 0.001), hemoglobin A1c (HbA1c) (MD: - 0.41 [95% CI: - 0.63, -0.18], p < 0.001), total antioxidant capacity (TAC) (SMD: 0.44 [95% CI: 0.24, 0.63], p < 0.001) and malondialdehyde (MDA) (SMD: - 0.82 [95% CI: - 1.24, -0.41], p < 0.001) than the control group. Antioxidant supplements have the potential to treat three complications of diabetes. In conclusion, the meta-analysis results indicate that antioxidant treatment is effective clinically for diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Ou Zhong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jialin Hu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyuan Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongpeng Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
16
|
Tan J, Liu N, Sun P, Tang Y, Qin W. A Proinflammatory Diet May Increase Mortality Risk in Patients with Diabetes Mellitus. Nutrients 2022; 14:nu14102011. [PMID: 35631151 PMCID: PMC9145817 DOI: 10.3390/nu14102011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/05/2023] Open
Abstract
This was an observational study based on the National Health and Nutrition Examination Survey (NHANES) and National Death Index (NDI) 2009–2014 which aimed to validate whether a proinflammatory diet may increase mortality risk in patients with diabetes mellitus. Dietary inflammatory potential was assessed by dietary inflammatory index (DII) based on 24 h dietary recall. Mortality follow-up information was accessed from NDI, which was then merged with NHANES data following the National Center for Health Statistics (NCHS) protocols. For 15,291 participants from the general population, the average DII was 0.37 ± 1.76 and the prevalence rate of diabetes was 13.26%. DII was positively associated with fasting glucose (β = 0.83, 95% CI: 0.30, 1.36, p = 0.0022), glycohemoglobin (β = 0.02, 95% CI: 0.01, 0.03, p = 0.0009), and the risk of diabetes (OR = 1.05, 95% CI: 1.01, 1.09, p = 0.0139). For 1904 participants with diabetes and a median follow-up of 45 person-months, a total of 178 participants with diabetes died from all causes (mortality rate = 9.34%). People with diabetes who adhered to a proinflammatory diet showed a higher risk of all-cause mortality (HR = 1.71, 95%CI: 1.13, 2.58, p = 0.0108). In summary, DII was positively associated with diabetes prevalence and a proinflammatory diet may increase mortality risk in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Jiaxing Tan
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Guoxuexiang Street, Chengdu 610041, China; (J.T.); (Y.T.)
- West China School of Medicine, Sichuan University, Chengdu 610041, China; (N.L.); (P.S.)
| | - Nuozhou Liu
- West China School of Medicine, Sichuan University, Chengdu 610041, China; (N.L.); (P.S.)
| | - Peiyan Sun
- West China School of Medicine, Sichuan University, Chengdu 610041, China; (N.L.); (P.S.)
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Guoxuexiang Street, Chengdu 610041, China; (J.T.); (Y.T.)
- West China School of Medicine, Sichuan University, Chengdu 610041, China; (N.L.); (P.S.)
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Guoxuexiang Street, Chengdu 610041, China; (J.T.); (Y.T.)
- West China School of Medicine, Sichuan University, Chengdu 610041, China; (N.L.); (P.S.)
- Correspondence: ; Tel.: +86-28-85422338; Fax: +86-028-8542-3341
| |
Collapse
|
17
|
Ren Y, Yang M, Wang X, Xu B, Xu Z, Su B. ELAV-like RNA binding protein 1 regulates osteogenesis in diabetic osteoporosis: Involvement of divalent metal transporter 1. Mol Cell Endocrinol 2022; 546:111559. [PMID: 35051552 DOI: 10.1016/j.mce.2022.111559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
Diabetic osteoporosis (DOP) is a complication of diabetes mellitus (DM) and occurs due to alterations in bone metabolism under hyperglycemic condition. ELAV-like RNA binding protein 1 (ELAVL1) is abnormally up-regulated in diabetes-related diseases. Bioinformatics prediction indicates that divalent metal transporter 1 (DMT1) is a potential target of ELAVL1. To explore the role of ELAVL1 and the involvement of ELAVL1/DMT1 axis in DOP, we established a mouse model of DM by administration of high-fat diet and intraperitoneal injection with streptozotocin (STZ). The expression of ELAVL1 and DMT1 was increased in the bone tissues of DM mice. Knockdown of ELAVL1 reduced iron level and oxidative stress, promoted osteogensis, and prevented bone mass loss, thus mitigating DOP in DM mice. In vitro, mouse pre-osteoblast MC3T3-E1 cells were treated with high glucose (25 mM) and ferric ammonium citrate (FAC, 200 μM). The inhibitory effects of ELAVL1 knockdown on iron accumulation and oxidative stress were evidenced in MC3T3-E1 cells. Knockdown of ELAVL1 enhanced osteoblast viability, differentiation and mineralization. Notably, the expression of DMT1 was positively correlated with that of ELAVL1 in vivo and in vitro. Overexpression of DMT1 abolished the effect of ELAVL1 knockdown on the behaviors of MC3T3-E1 cells, suggesting that ELAVL1 might function through regulating DMT1. In conclusion, knockdown of ELAVL1 likely alleviated DOP by inhibiting iron overload and oxidative stress and promoting osteogenesis, and DMT1 might be involved in this process. These findings provide insights into the pathogenesis of DOP and suggest a potential therapeutic target for DOP treatment.
Collapse
Affiliation(s)
- Yuanfei Ren
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China; The First Department of Hand and Foot Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Maowei Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xindong Wang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Buxuan Xu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zerong Xu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Su
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Siwan E, Twigg SM, Min D. Alterations of CD163 expression in the complications of diabetes: A systematic review. J Diabetes Complications 2022; 36:108150. [PMID: 35190247 DOI: 10.1016/j.jdiacomp.2022.108150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
AIMS Diabetes mellitus is a state of chronic low-grade inflammation. Scavenger receptor CD163, expressed on monocyte/macrophage cells with anti-inflammatory functions, has been observed in diabetes complications. This review aimed to systematically survey human studies published until 31st January 2022 for CD163 expression, in particular diabetes complications and additionally to investigate whether CD163 may be implicated as a biomarker of, and mediator in, the progression of diabetes complications. METHODS A systematic literature search undertaken in Scopus, Embase and Medline established 79 papers of relevance. Data extraction and assessment followed the PRISMA workflow. RESULTS Based on specific criteria, 11 studies totalling 821 participants were included in this review. CD163 was quantified in various forms including soluble, cell surface, and mRNA measures. This review found that soluble CD163 was upregulated in diabetes complications in various local body fluids and systemically in plasma or serum and therefore implicated in the progression of those complications. CD163+ cells and mRNA were variably expressed across diabetes complications. CONCLUSIONS CD163 was altered in series of diabetes complications and the circulating sCD163 has potential utility as an inflammation biomarker. The variable expression of CD163 on cell surfaces and its mRNA across different diabetes complications warrants further systematic investigation.
Collapse
Affiliation(s)
- Elisha Siwan
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Jarrete AP, Giollo-Junior LT, Vilela-Martin JF, Novais IP, Delbin MA, Zanesco A. Alterations in pro- and anti-inflammatory mediators are involved in microvascular dysfunction in postmenopausal women with type 2 diabetes mellitus. Braz J Med Biol Res 2022; 55:e11821. [PMID: 35239779 PMCID: PMC8905673 DOI: 10.1590/1414-431x2021e11821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Evidence has shown that women with type 2 diabetes mellitus (T2DM) have a greater
risk of cardiovascular complications compared with men, but this sex difference
is not clearly understood. This study assessed the microvascular function and
circulatory biomarkers in postmenopausal women (PMW) with T2DM compared with
diabetic men and their non-diabetic counterparts. Sixty participants were
divided into nondiabetic PMW, PMW with T2DM, non-diabetic men, and diabetic men.
Microvascular function was assessed using non-invasive equipment
(EndoPAT®) and reported as reactive hyperemia index (RHI).
Anthropometric and cardiovascular parameters were also measured. Two-way ANOVA
was performed using sex (women or men) and T2DM (non-diabetic and diabetic) as
the two factors. RHI impairment (1.97±0.14) was detected in diabetic PMW
compared with women without T2DM (2.5±0.13) accompanied by lower adiponectin
levels (T2DM: 9.3±1.2 and CTL: 13.8±1.8 ug/mL, P<0.05). An increase in the
Nε-carboxymethyllysine (CML), nitrate/nitrite, and C-reactive protein (CRP)
levels were observed in diabetic PMW compared to the other groups. Although a
poor glycemia control was seen in diabetic men, neither RHI nor circulatory
biomarkers were affected by T2DM. Multiple linear regression stratified by sex
and T2DM identified some variables with RHI only in PMW with T2DM: HbA1c
(P=0.003), body mass index (P=0.029), CML (P=0.032), and CRP (P=0.006). Diabetic
PMW were more susceptible to the deleterious effects of hyperglycemia than men,
showing microvascular dysfunction with high levels of pro-inflammatory mediators
(CML and CRP) and a lower adiponectin concentration.
Collapse
Affiliation(s)
- A P Jarrete
- Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - L T Giollo-Junior
- Posto Médico Garrison - 5a Brigada de Cavalaria Blindada, Exército Brasileiro, Ponta Grossa, PR, Brasil
| | - J F Vilela-Martin
- Departamento de Medicina, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brasil
| | - I P Novais
- Departamento de Saúde I, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brasil
| | - M A Delbin
- Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A Zanesco
- Programa de Pós-Graduação em Saúde e Meio-ambiente, Faculdade de Medicina, Universidade Metropolitana de Santos, Santos, SP, Brasil
| |
Collapse
|
20
|
Hua S, Liu Q, Li J, Fan M, Yan K, Ye D. Beta-klotho in type 2 diabetes mellitus: From pathophysiology to therapeutic strategies. Rev Endocr Metab Disord 2021; 22:1091-1109. [PMID: 34120289 DOI: 10.1007/s11154-021-09661-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has become a global health problem with no cure. Despite lifestyle modifications and various pharmaceutical options, the achievement of stable and durable glucose control along with effective prevention of T2DM-related cardiovascular complications remains a challenging task in clinical management. With its selective high abundance in metabolic tissues (adipose tissue, liver, and pancreas), β-Klotho is the essential component of fibroblast growth factor (FGF) receptor complexes. It is essential for high-affinity binding of endocrine FGF19 and FGF21 to evoke the signaling cascade actively involved in homeostatic maintenance of glucose metabolism and energy expenditure. In this Review, we discuss the biological function of β-Klotho in the regulation of glucose metabolism and offer mechanistic insights into its involvement in the pathophysiology of T2DM. We review our current understanding of the endocrine axis comprised of β-Klotho and FGFs (FGF19 and FGF21) and its regulatory effects on glucose metabolism under physiological and T2DM conditions. We also highlight advances in the development and preclinical validation of pharmacological compounds that target β-Klotho and/or the β-Klotho-FGFRs complex for the treatment of T2DM. Given the remarkable advances in this field, we also discuss outstanding research questions and the many challenges in the clinical development of β-Klotho-based therapies.
Collapse
Affiliation(s)
- Shuang Hua
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianying Liu
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jufei Li
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengqi Fan
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of The Ministry of Education, Guangzhou, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
21
|
Rao XS, Cong XX, Gao XK, Shi YP, Shi LJ, Wang JF, Ni CY, He MJ, Xu Y, Yi C, Meng ZX, Liu J, Lin P, Zheng LL, Zhou YT. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death Differ 2021; 28:3214-3234. [PMID: 34045668 PMCID: PMC8630067 DOI: 10.1038/s41418-021-00809-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of glucose homeostasis contributes to insulin resistance and type 2 diabetes. Whilst exercise stimulated activation of AMP-activated protein kinase (AMPK), an important energy sensor, has been highlighted for its potential to promote insulin-stimulated glucose uptake, the underlying mechanisms for this remain largely unknown. Here we found that AMPK positively regulates the activation of Rab5, a small GTPase which is involved in regulating Glut4 translocation, in both myoblasts and skeletal muscles. We further verified that TBC1D17, identified as a potential interacting partner of Rab5 in our recent study, is a novel GTPase activating protein (GAP) of Rab5. TBC1D17-Rab5 axis regulates transport of Glut1, Glut4, and transferrin receptor. TBC1D17 interacts with Rab5 or AMPK via its TBC domain or N-terminal 1-306 region (N-Ter), respectively. Moreover, AMPK phosphorylates the Ser 168 residue of TBC1D17 which matches the predicted AMPK consensus motif. N-Ter of TBC1D17 acts as an inhibitory region by directly interacting with the TBC domain. Ser168 phosphorylation promotes intra-molecular interaction and therefore enhances the auto-inhibition of TBC1D17. Our findings reveal that TBC1D17 acts as a molecular bridge that links AMPK and Rab5 and delineate a previously unappreciated mechanism by which the activation of TBC/RabGAP is regulated.
Collapse
Affiliation(s)
- Xi Sheng Rao
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xia Cong
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiu Kui Gao
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Pu Shi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Jing Shi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Feng Wang
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Yao Ni
- grid.35403.310000 0004 1936 9991The School of Molecular and Cellular Biology, University of Illinois at Urbana Champaign, Urbana, IL USA
| | - Ming Jie He
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- grid.13402.340000 0004 1759 700XDepartment of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuo-Xian Meng
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Zhejiang Provincial Key Laboratory of Pancreatic Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinling Liu
- grid.13402.340000 0004 1759 700XDepartment of Pulmonology, the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Peng Lin
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ling Zheng
- grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ting Zhou
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XZJU-UoE Institute, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
23
|
Olum R, Bongomin F, Kaggwa MM, Andia-Biraro I, Baluku JB. Anemia in diabetes mellitus in Africa: A systematic review and meta-analysis. Diabetes Metab Syndr 2021; 15:102260. [PMID: 34479102 DOI: 10.1016/j.dsx.2021.102260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
AIMS Anemia accelerates chronic complications of diabetes mellitus (DM). We aimed to conduct a systematic review and meta-analysis to estimate the prevalence of anemia among people with DM in Africa. METHODS A search of studies was conducted in the main databases (Medline, EMBASE, Scopus, CINAHL, AJOL and Google Scholar) and the reference lists of selected studies. Observational studies that met the eligibility criteria were included in this meta-analysis. There was no limitation in terms of language. RESULTS We obtained data from 27 eligible studies, including 5913 patients. The pooled prevalence of anemia was 35% (95% CI: 28%-42%, I2 = 97.7%, p < 0.01). In sub-group analysis, the pooled prevalence was higher in people with diabetic foot lesions (56%, 95% CI: 49%-63%, I2 = 51.04%, p = 0.100) than in the general population of people with diabetes (30%, 95% CI: 23%-37%, I2 = 97.6%, p < 0.01). Pooled prevalence rates were also higher in; males than females (34% vs 31%), type II DM than type I DM (35% vs 26%), and in patients with poor glycemic control compared to those with good glycemic control (33% vs. 22%). CONCLUSIONS The prevalence of anemia in DM was high warranting enhanced clinical and public health interventions.
Collapse
Affiliation(s)
- Ronald Olum
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Felix Bongomin
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda.
| | - Mark Mohan Kaggwa
- Department of Psychiatry, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Irene Andia-Biraro
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda; Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | |
Collapse
|
24
|
McKimpson WM, Chen Y, Irving JA, Zheng M, Weinberger J, Tan WLW, Tiang Z, Jagger AM, Chua SC, Pessin JE, Foo RSY, Lomas DA, Kitsis RN. Conversion of the death inhibitor ARC to a killer activates pancreatic β cell death in diabetes. Dev Cell 2021; 56:747-760.e6. [PMID: 33667344 DOI: 10.1016/j.devcel.2021.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 01/06/2023]
Abstract
Loss of insulin-secreting pancreatic β cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains β cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce β cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. β cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by β cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of β cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents β cell death and metabolic abnormalities. These data uncover a pathway for β cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yun Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - James A Irving
- UCL Respiratory Medicine, University College London, London WC1E 6BN, UK; Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, UK
| | - Min Zheng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeremy Weinberger
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wilson Lek Wen Tan
- Cardiovascular Research Institute, National University Health Systems, Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zenia Tiang
- Cardiovascular Research Institute, National University Health Systems, Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Alistair M Jagger
- UCL Respiratory Medicine, University College London, London WC1E 6BN, UK; Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, UK
| | - Streamson C Chua
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roger S-Y Foo
- Cardiovascular Research Institute, National University Health Systems, Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - David A Lomas
- UCL Respiratory Medicine, University College London, London WC1E 6BN, UK; Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, UK
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
25
|
Sun Q, Li T, Li Y, Wei L, Zhang M, Deng S. Bactericidal/Permeability-Increasing Protein Improves Cognitive Impairment in Diabetic Mice via Blockade of the LPS-LBP-TLR4 Signaling Pathway. Front Physiol 2021; 11:718. [PMID: 33643054 PMCID: PMC7905103 DOI: 10.3389/fphys.2020.00718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/29/2020] [Indexed: 01/23/2023] Open
Abstract
Emerging evidence suggests that the bactericidal/permeability-increasing protein (BPI) is involved in the process of cognitive impairment in diabetes. However, its underlying mechanism remains elusive. In this study, we found that BPI affects cognitive impairment due to diabetes through the lipopolysaccharide (LPS)-lipopolysacharide-binding protein (LBP)-toll-like receptor 4 (TLR4) signaling pathway. We examined the expression of BPI, LPS, LBP, CD14, and TLR4 in established mouse models of diabetes induced by high-fat diet (HFD) in combination with streptozotocin (STZ). Diabetic mice were then injected with adeno-associated-virus carrying BPI overexpression vectors and LPS. Fasting blood glucose, plasma insulin, and serum levels of inflammatory factors were examined. Then, glucose tolerance and, insulin resistance tests were used to measure systemic insulin sensitivity. Next, hippocampal tissue injury and cell apoptosis were examined by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. Diabetic mice displayed increased LPS expression and activation of the LPS-CD14-TLR4 signaling pathway. HFD mice following LPS treatment showed significantly increased serum levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and expressions of Bcl-2-associated X protein (Bax) and Aβ but decreased expression of Bcl-2 in hippocampal tissues, as well as enhanced fasting blood glucose, plasma insulin, glucose tolerance, insulin tolerance, cell apoptosis, aggravated hippocampal tissue injury and, ultimately, cognitive impairment. However, overexpression of BPI was able to rescue the aforementioned phenotypes driven by LPS treatment. Taken together, BPI could potentially provide relief from cognitive impairment in diabetic mice by disrupting the LPS-LBP-TLR4 signaling pathway, underscoring a possible alternative therapeutic strategy against the cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Qin Sun
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Tingxin Li
- Health Management Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yamei Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingling Wei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Zhang
- Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shaoping Deng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
26
|
de Oliveira AM, de Freitas AFS, Costa MDDS, Torres MKDS, Castro YADA, Almeida AMR, Paiva PMG, Carvalho BM, Napoleão TH. Pilosocereus gounellei (Cactaceae) stem extract decreases insulin resistance, inflammation, oxidative stress, and cardio-metabolic risk in diet-induced obese mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113327. [PMID: 32871234 DOI: 10.1016/j.jep.2020.113327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/02/2020] [Accepted: 08/25/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pilosocereus gounellei (xique-xique) is a popular cactus from Caatinga, traditionally used to counter inflammatory processes and indicated as a hypoglycemic agent. Previous studies have shown that mice treated orally with saline extract of P. gounellei stem (containing flavonoids and sugars) showed decreased serum lipid levels. AIM OF THE STUDY In this work, we evaluated whether this extract would have beneficial effects against hyperglycemia and inflammatory status related to obesity in mice fed a high-fat diet (HFD). METHODS Obese animals were treated daily per os with the extract (EXT; 125, 250, and 500 mg/kg), metformin (MET; 400 mg/kg), or saline solution (diet-induced obese, DIO) for 21 days. A group of non-obese animals served as the control. We evaluated lipid profile, glucose and insulin tolerance, atherogenic indices, histological alterations, cytokine levels, and oxidative stress in liver, muscle, and adipose tissue. RESULTS At the end of the experiment, mice from EXT groups showed lower body weight and total cholesterol, LDL-cholesterol, and triglycerides compared with the DIO group; in addition, HDL-cholesterol levels and glucose and insulin tolerance were similar to those of the control group. When compared with the DIO group, the extract-treated mice showed reduction in cardiac risk ratio, atherogenic coefficient, atherogenic index of plasma, and Castelli's Risk Index II; decrease in epididymal fat; reduction in steatosis, collagen deposition, and liver inflammation; lower serum levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 6, and monocyte chemoattractant protein-1); inhibited lipid peroxidation; and increased superoxide dismutase levels in liver, muscle, and adipose tissue. CONCLUSION The P. gounellei saline extract was able to improve physiological parameters of obese mice, which highlight the potential of this plant as source of compounds with biotechnological relevance for pharmaceutical industry.
Collapse
Affiliation(s)
- Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Anderson Felipe Soares de Freitas
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Milena Damasceno de Souza Costa
- Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| | - Marília Kalinne da Silva Torres
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil; Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Yasmim Alline de Araújo Castro
- Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| | - Ana Maria Rampeloti Almeida
- Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Bruno Melo Carvalho
- Laboratório de Fisiopatologia Experimental, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
27
|
Thapa B, Suh EH, Parrott D, Khalighinejad P, Sharma G, Chirayil S, Sherry AD. Imaging β-Cell Function Using a Zinc-Responsive MRI Contrast Agent May Identify First Responder Islets. Front Endocrinol (Lausanne) 2021; 12:809867. [PMID: 35173681 PMCID: PMC8842654 DOI: 10.3389/fendo.2021.809867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 01/05/2023] Open
Abstract
An imaging method for detecting β-cell function in real-time in the rodent pancreas could provide new insights into the biological mechanisms involving loss of β-cell function during development of type 2 diabetes and for testing of new drugs designed to modulate insulin secretion. In this study, we used a zinc-responsive MRI contrast agent and an optimized 2D MRI method to show that glucose stimulated insulin and zinc secretion can be detected as functionally active "hot spots" in the tail of the rat pancreas. A comparison of functional images with histological markers show that insulin and zinc secretion does not occur uniformly among all pancreatic islets but rather that some islets respond rapidly to an increase in glucose while others remain silent. Zinc and insulin secretion was shown to be altered in streptozotocin and exenatide treated rats thereby verifying that this simple MRI technique is responsive to changes in β-cell function.
Collapse
Affiliation(s)
- Bibek Thapa
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eul Hyun Suh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Daniel Parrott
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pooyan Khalighinejad
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gaurav Sharma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sara Chirayil
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: A. Dean Sherry, ;
| |
Collapse
|
28
|
Thiem K, van Dierendonck XAMH, Janssen AWM, Boogaard JP, Riksen NP, Tack CJ, Stienstra R. A High Glycemic Burden Relates to Functional and Metabolic Alterations of Human Monocytes in Patients With Type 1 Diabetes. Diabetes 2020; 69:2735-2746. [PMID: 32978233 DOI: 10.2337/db20-0568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022]
Abstract
Diabetes is associated with increased cardiovascular risk and higher occurrence of infections. These complications suggest altered responses of the innate immune system. Recent studies have shown that energy metabolism of monocytes is crucial in determining their functionality. Here we investigate whether monocyte metabolism and function are changed in patients with diabetes and aim to identify diabetes-associated factors driving these alterations. Patients with type 1 diabetes (T1D) (n = 41) and healthy age-, sex-, and BMI-matched control subjects (n = 20) were recruited. Monocytes were isolated from peripheral blood to determine immune functionality, metabolic responses, and transcriptome profiles. Upon ex vivo stimulation with Toll-like receptor (TLR) 4 or TLR-2 agonists, monocytes of patients with T1D secreted lower levels of various cytokines and showed lower glycolytic rates compared with monocytes isolated from matched control subjects. Stratification based on HbA1c levels revealed that lower cytokine secretion was coupled to higher glycolytic rate of monocytes in patients with a higher glycemic burden. Circulating monocytes displayed an enhanced inflammatory gene expression profile associated with high glycemic burden. These results suggest that a high glycemic burden in patients with T1D is related to expression of inflammatory genes of monocytes and is associated with an impaired relationship between metabolism and inflammatory function upon activation.
Collapse
Affiliation(s)
- Kathrin Thiem
- Department of Internal Medicine (463) and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Xanthe A M H van Dierendonck
- Department of Internal Medicine (463) and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Anna W M Janssen
- Department of Internal Medicine (463) and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joline P Boogaard
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine (463) and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cees J Tack
- Department of Internal Medicine (463) and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine (463) and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
29
|
Schoina M, Loutradis C, Theodorakopoulou M, Dimitroulas T, Triantafillidou E, Doumas M, Karagiannis A, Garyfallos A, Papagianni A, Sarafidis P. The presence of diabetes mellitus further impairs structural and functional capillary density in patients with chronic kidney disease. Microcirculation 2020; 28:e12665. [PMID: 33064902 DOI: 10.1111/micc.12665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Endothelial dysfunction has been associated with increased cardiovascular events and overall mortality. Microvascular damage is prevalent both in diabetes mellitus (DM) and chronic kidney disease (CKD). Our aim was to compare microcirculatory function parameters in diabetic and non-diabetic CKD patients via nailfold video-capillaroscopy. METHODS We included 48 diabetic and 48 non-diabetic adult CKD patients. All participants underwent nailfold video-capillaroscopy, during which capillary density was measured at normal conditions (baseline), after a 4-minute arterial occlusion (postocclusive reactive hyperemia), and at the end of a 2-minute venous occlusion (congestion phase). RESULTS Diabetic patients presented significantly lower capillary density during reactive hyperemia (36.3 ± 3.8 vs 38.3 ± 4.3 capillaries/mm2 , P = .022) and at venous congestion (37.8 ± 4.0 vs 39.8 ± 4.2 capillaries/mm2 , P = .015). When stratified according to CKD stages, only in stage 3b capillary density was significantly lower in diabetic compared to non-diabetic subjects at baseline, during postocclusive hyperemia (36.8 ± 2.7 vs 40.0 ± 4.3 capillaries/mm2 , P = .037) and venous congestion (38.3 ± 2.8 vs 41.5 ± 3.5 capillaries/mm2 , P = .022). CONCLUSIONS Capillary density during postocclusive hyperemia and after venous congestion is lower in diabetic compared to non-diabetic CKD patients, a finding indicative that diabetes is an additional factor contributing to microcirculatory structural and functional impairment in CKD. These differences are more prominent in CKD stage 3b.
Collapse
Affiliation(s)
- Maria Schoina
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eva Triantafillidou
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asterios Karagiannis
- Second Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Garyfallos
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
30
|
Ruiz-Hernández A, Cabrera-Becerra S, Vera-Juárez G, Hong E, Fengyang H, Arauz J, Villafaña S. Diabetic nephropathy produces alterations in the tissue expression profile of the orphan receptors GPR149, GPR153, GPR176, TAAR3, TAAR5 and TAAR9 in Wistar rats. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1150-1161. [PMID: 32643557 DOI: 10.1080/15257770.2020.1780437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a debilitating health care problem affecting 382 million people around the world and one of the most common complications is diabetic nephropathy. For this reason, it is important to try to identify new mechanisms that could be involved in diabetes. A new class of receptors has been reported, called orphan receptors because the associated ligand and signaling cascades are unknown. These receptors could be an important source of targets for the treatment of many diseases such as diabetes and its associated complications like diabetic nephropathy. Therefore, the aim of this work was to study expression of the orphan receptors GPR149, GPR153, GPR176, TAAR3, TAAR5 and TAAR9 in the kidney of diabetic rats. We used male Wistar rats at 10-12 weeks of age. Diabetes was induced by a single dose of streptozotocin (60 mg/kg i.p.). After 4 weeks, tissues were obtained, and the expression of the mRNAs was measured by RT-PCR. Our results showed that the orphan receptors are expressed in a different way in the kidney. In conclusion, we suggest that orphan receptors could be involved in the development of diabetic nephropathy.
Collapse
Affiliation(s)
- A Ruiz-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - S Cabrera-Becerra
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - G Vera-Juárez
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - E Hong
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México, México.,Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - H Fengyang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México, México
| | - J Arauz
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - S Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
31
|
Südy R, Schranc Á, Fodor GH, Tolnai J, Babik B, Peták F. Lung volume dependence of respiratory function in rodent models of diabetes mellitus. Respir Res 2020; 21:82. [PMID: 32272932 PMCID: PMC7146915 DOI: 10.1186/s12931-020-01334-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Diabetes mellitus causes the deterioration of smooth muscle cells and interstitial matrix proteins, including collagen. Collagen and smooth muscle cells are abundant in the lungs, but the effect of diabetes on airway function and viscoelastic respiratory tissue mechanics has not been characterized. This study investigated the impact of diabetes on respiratory function, bronchial responsiveness, and gas exchange parameters. Methods Rats were allocated randomly to three groups: a model of type 1 diabetes that received a high dose of streptozotocin (DM1, n = 13); a model of type 2 diabetes that received a low dose of streptozotocin with a high-fat diet (DM2, n = 14); and a control group with no treatment (C, n = 14). Forced oscillations were applied to assess airway resistance (Raw), respiratory tissue damping (G), and elastance (H). The arterial partial pressure of oxygen to the inspired oxygen fraction (PaO2/FiO2) and intrapulmonary shunt fraction (Qs/Qt) were determined from blood gas samples at positive end-expiratory pressures (PEEPs) of 0, 3, and 6 cmH2O. Lung responsiveness to methacholine was also assessed. Collagen fibers in lung tissue were quantified by histology. Results The rats in groups DM1 and DM2 exhibited elevated Raw, G, H, and Qs/Qt, compromised PaO2/FiO2, and diminished airway responsiveness. The severity of adverse tissue mechanical change correlated with excessive lung collagen expression. Increased PEEP normalized the respiratory mechanics, but the gas exchange abnormalities remained. Conclusions These findings indicate that diabetes reduces airway and lung tissue viscoelasticity, resulting in alveolar collapsibility that can be compensated by increasing PEEP. Diabetes also induces persistent alveolo-capillary dysfunction and abnormal adaptation ability of the airways to exogenous constrictor stimuli.
Collapse
Affiliation(s)
- Roberta Südy
- Department of Medical Physics and Informatics, University of Szeged, 9 Koranyi fasor, Szeged, H-6720, Hungary.,Department of Anaesthesiology and Intensive Therapy, University of Szeged, 6 Semmelweis Street, Szeged, H 6725, Hungary
| | - Álmos Schranc
- Department of Medical Physics and Informatics, University of Szeged, 9 Koranyi fasor, Szeged, H-6720, Hungary.,Department of Anaesthesiology and Intensive Therapy, University of Szeged, 6 Semmelweis Street, Szeged, H 6725, Hungary
| | - Gergely H Fodor
- Department of Medical Physics and Informatics, University of Szeged, 9 Koranyi fasor, Szeged, H-6720, Hungary
| | - József Tolnai
- Department of Medical Physics and Informatics, University of Szeged, 9 Koranyi fasor, Szeged, H-6720, Hungary
| | - Barna Babik
- Department of Anaesthesiology and Intensive Therapy, University of Szeged, 6 Semmelweis Street, Szeged, H 6725, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, 9 Koranyi fasor, Szeged, H-6720, Hungary.
| |
Collapse
|
32
|
Wan X, Belanger K, Widen SG, Kuyumcu-Martinez MN, Garg NJ. Genes of the cGMP-PKG-Ca 2+ signaling pathway are alternatively spliced in cardiomyopathy: Role of RBFOX2. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165620. [PMID: 31778749 PMCID: PMC6954967 DOI: 10.1016/j.bbadis.2019.165620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
Aberrations in the cGMP-PKG-Ca2+ pathway are implicated in cardiovascular complications of diverse etiologies, though involved molecular mechanisms are not understood. We performed RNA-Seq analysis to profile global changes in gene expression and exon splicing in Chagas disease (ChD) murine myocardium. Ingenuity-Pathway-Analysis of transcriptome dataset identified 26 differentially expressed genes associated with increased mobilization and cellular levels of Ca2+ in ChD hearts. Mixture-of-isoforms and Enrichr KEGG pathway analyses of the RNA-Seq datasets from ChD (this study) and diabetic (previous study) murine hearts identified alternative splicing (AS) in eleven genes (Arhgef10, Atp2b1, Atp2a3, Cacna1c, Itpr1, Mef2a, Mef2d, Pde2a, Plcb1, Plcb4, and Ppp1r12a) of the cGMP-PKG-Ca2+ pathway in diseased hearts. AS of these genes was validated by an exon exclusion-inclusion assay. Further, Arhgef10, Atp2b1, Mef2a, Mef2d, Plcb1, and Ppp1r12a genes consisted RBFOX2 (RNA-binding protein) binding-site clusters, determined by analyzing the RBFOX2 CLIP-Seq dataset. H9c2 rat heart cells transfected with Rbfox2 (vs. scrambled) siRNA confirmed that expression of Rbfox2 is essential for proper exon splicing of genes of the cGMP-PKG-Ca2+ pathway. We conclude that changes in gene expression may influence the Ca2+ mobilization pathway in ChD, and AS impacts the genes involved in cGMP/PKG/Ca2+ signaling pathway in ChD and diabetes. Our findings suggest that ChD patients with diabetes may be at increased risk of cardiomyopathy and heart failure and provide novel ways to restore cGMP-PKG regulated signaling networks via correcting splicing patterns of key factors using oligonucleotide-based therapies for the treatment of cardiovascular complications.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, 77555-1070, TX, United States of America
| | - KarryAnne Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America.
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, 77555-1070, TX, United States of America; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, 77555, TX, United States of America.
| |
Collapse
|
33
|
Nasrallah R, Zimpelmann J, Robertson SJ, Ghossein J, Thibodeau JF, Kennedy CRJ, Gutsol A, Xiao F, Burger D, Burns KD, Hébert RL. Prostaglandin E2 receptor EP1 (PGE2/EP1) deletion promotes glomerular podocyte and endothelial cell injury in hypertensive TTRhRen mice. J Transl Med 2020; 100:414-425. [PMID: 31527829 DOI: 10.1038/s41374-019-0317-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Prostaglandin E2 receptor EP1 (PGE2/EP1) promotes diabetic renal injury, and EP1 receptor deletion improves hyperfiltration, albuminuria, and fibrosis. The role of EP1 receptors in hypertensive kidney disease (HKD) remains controversial. We examined the contribution of EP1 receptors to HKD. EP1 null (EP1-/-) mice were bred with hypertensive TTRhRen mice (Htn) to evaluate kidney function and injury at 24 weeks. EP1 deletion had no effect on elevation of systolic blood pressure in Htn mice (HtnEP1-/-) but resulted in pronounced albuminuria and reduced FITC-inulin clearance, compared with Htn or wild-type (WT) mice. Ultrastructural injury to podocytes and glomerular endothelium was prominent in HtnEP1-/- mice; including widened subendothelial space, subendothelial lucent zones and focal lifting of endothelium from basement membrane, with focal subendothelial cell debris. Cortex COX2 mRNA was increased by EP1 deletion. Glomerular EP3 mRNA was reduced by EP1 deletion, and EP4 by Htn and EP1 deletion. In WT mice, PGE2 increased chloride reabsorption via EP1 in isolated perfused thick ascending limb (TAL), but PGE2 or EP1 deletion did not affect vasopressin-mediated chloride reabsorption. In WT and Htn mouse inner medullary collecting duct (IMCD), PGE2 inhibited vasopressin-water transport, but not in EP1-/- or HtnEP1-/- mice. Overall, EP1 mediated TAL and IMCD transport in response to PGE2 is unaltered in Htn, and EP1 is protective in HKD.
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Kidney Research Centre, University of Ottawa, 451 Smyth Road, Room 2514, Ottawa, ON, Canada
| | - Joseph Zimpelmann
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Kidney Research Centre, University of Ottawa, 451 Smyth Road, Room 2514, Ottawa, ON, Canada
| | | | - Jamie Ghossein
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Kidney Research Centre, University of Ottawa, 451 Smyth Road, Room 2514, Ottawa, ON, Canada
| | | | - C R J Kennedy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Kidney Research Centre, University of Ottawa, 451 Smyth Road, Room 2514, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Alex Gutsol
- Ottawa Hospital Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Fengxia Xiao
- Ottawa Hospital Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Burger
- Ottawa Hospital Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Kevin D Burns
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Kidney Research Centre, University of Ottawa, 451 Smyth Road, Room 2514, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Kidney Research Centre, University of Ottawa, 451 Smyth Road, Room 2514, Ottawa, ON, Canada.
| |
Collapse
|
34
|
Keindl M, Fedotkina O, du Plessis E, Jain R, Bergum B, Mygind Jensen T, Laustrup Møller C, Falhammar H, Nyström T, Catrina SB, Jörneskog G, Groop L, Eliasson M, Eliasson B, Brismar K, Nilsson PM, Berg TJ, Appel S, Lyssenko V. Increased Plasma Soluble Interleukin-2 Receptor Alpha Levels in Patients With Long-Term Type 1 Diabetes With Vascular Complications Associated With IL2RA and PTPN2 Gene Polymorphisms. Front Endocrinol (Lausanne) 2020; 11:575469. [PMID: 33193091 PMCID: PMC7664831 DOI: 10.3389/fendo.2020.575469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes (T1D) is largely considered an autoimmune disease leading to the destruction of insulin-producing pancreatic β cells. Further, patients with T1D have 3-4-fold increased risk of developing micro- and macrovascular complications. However, the contribution of immune-related factors contributing to these diabetes complications are poorly understood. Individuals with long-term T1D who do not progress to vascular complications offer a great potential to evaluate end-organ protection. The aim of the present study was to investigate the association of inflammatory protein levels with vascular complications (retinopathy, nephropathy, cardiovascular disease) in individuals with long-term T1D compared to individuals who rapidly progressed to complications. We studied a panel of inflammatory markers in plasma of patients with long-term T1D with (n = 81 and 26) and without (n = 313 and 25) vascular complications from two cross-sectional Scandinavian cohorts (PROLONG and DIALONG) using Luminex technology. A subset of PROLONG individuals (n = 61) was screened for circulating immune cells using multicolor flow cytometry. We found that elevated plasma levels of soluble interleukin-2 receptor alpha (sIL-2R) were positively associated with the complication phenotype. Risk carriers of polymorphisms in the IL2RA and PTPN2 gene region had elevated plasma levels of sIL-2R. In addition, cell surface marker analysis revealed a shift from naïve to effector T cells in T1D individuals with vascular complications as compared to those without. In contrast, no difference between the groups was observed either in IL-2R cell surface expression or in regulatory T cell population size. In conclusion, our data indicates that IL2RA and PTPN2 gene variants might increase the risk of developing vascular complications in people with T1D, by affecting sIL-2R plasma levels and potentially lowering T cell responsiveness. Thus, elevated sIL-2R plasma levels may serve as a biomarker in monitoring the risk for developing diabetic complications and thereby improve patient care.
Collapse
Affiliation(s)
- Magdalena Keindl
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- *Correspondence: Valeriya Lyssenko, ; Magdalena Keindl,
| | - Olena Fedotkina
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Elsa du Plessis
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ruchi Jain
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Brith Bergum
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Troels Mygind Jensen
- Research Unit for General Practice & Danish Ageing Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Clinical Epidemiology, Steno Diabetes Center Copenhagen (SDCC), Gentofte, Denmark
| | | | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Division of Internal Medicine, Unit for Diabetes Research, Karolinska Institute, South Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Center for Diabetes, Academica Specialist Centrum, Stockholm, Sweden
| | - Gun Jörneskog
- Karolinska Institute, Department of Clinical Sciences, Danderyd University Hospital, Division of Internal Medicine, Stockholm, Sweden
| | - Leif Groop
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mats Eliasson
- Department of Public Health and Clinical Medicine, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - Björn Eliasson
- Department of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Brismar
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Peter M. Nilsson
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Tore Julsrud Berg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Flow Cytometry Core Facility, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Valeriya Lyssenko
- Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Clinical Science, Lund University Diabetes Centre, Malmö, Sweden
- *Correspondence: Valeriya Lyssenko, ; Magdalena Keindl,
| |
Collapse
|
35
|
Zhuang R, Ge X, Han L, Yu P, Gong X, Meng Q, Zhang Y, Fan H, Zheng L, Liu Z, Zhou X. Gut microbe-generated metabolite trimethylamine N-oxide and the risk of diabetes: A systematic review and dose-response meta-analysis. Obes Rev 2019; 20:883-894. [PMID: 30868721 DOI: 10.1111/obr.12843] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/09/2023]
Abstract
Elevated circulating concentrations of the gut bacteria choline metabolite trimethylamine N-oxide (TMAO) were found in patients with type 2 diabetes mellitus (T2DM). However, whether a high level of TMAO is related to the risk of diabetes has not been studied. We aimed to synthesize the evidence on the relation between TMAO levels and the risk of diabetes mellitus (DM) and to investigate the association further in a dose-response meta-analysis. PubMed, Web of Science, and Scopus databases were searched for studies from inception to June 2018. A total of 12 clinical studies were included in this study, and 15 314 enrolled subjects were included. A meta-analysis of two-class variables and continuous variables were used to obtain pooled effects. Dose-response meta-analysis was used to investigate the dose-response relationship between TMAO concentrations and the risk of DM. Meta-regression and subgroup analyses were applied to identify the source of heterogeneity in this study. High levels of circulating TMAO were associated with an increased risk of DM (odds ratio [OR] = 1.89) using the two-class meta-analysis. Plasma levels of TMAO in patients with diabetes were higher than in subjects without diabetes (standardized mean difference [SMD]: 0.36) using a meta-analysis of continuous variables. The OR for DM prevalence increased by 54% per 5 μmol L-1 increment of plasma TMAO (OR = 1.54) according to the dose-response meta-analysis. This is the first systematic review and meta-analysis to demonstrate a positive dose-dependent association between circulating TMAO levels and increased diabetes risk.
Collapse
Affiliation(s)
- Rulin Zhuang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyu Ge
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Han
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Yu
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xin Gong
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Liang Zheng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Abstract
Diabetes develops due to deficient functional β cell mass, insulin resistance, or both. Yet, various challenges in understanding the mechanisms underlying diabetes development in vivo remain to be overcome owing to the lack of appropriate intravital imaging technologies. To meet these challenges, we have exploited the anterior chamber of the eye (ACE) as a novel imaging site to understand diabetes basics and clinics in vivo. We have developed a technology platform transplanting pancreatic islets into the ACE where they later on can be imaged non-invasively for long time. It turns out that the ACE serves as an optimal imaging site and provides implanted islets with an oxygen-rich milieu and an immune-privileged niche where they undergo optimal engraftment, rich vascularization and dense innervation, preserve organotypic features and live with satisfactory viability and functionality. The ACE technology has led to a series of significant observations. It enables in vivo microscopy of islet cytoarchitecture, function and viability in the physiological context and intravital imaging of a variety of pathological events such as autoimmune insulitis, defects in β cell function and mass and insulin resistance during diabetes development in a real-time manner. Furthermore, application of the ACE technology in humanized mice and non-human primates verifies translational and clinical values of the technology. In this article, we describe the ACE technology in detail, review accumulated knowledge gained by means of the ACE technology and delineate prospective avenues for the ACE technology.
Collapse
|
37
|
Akoumianakis I, Antoniades C. Impaired Vascular Redox Signaling in the Vascular Complications of Obesity and Diabetes Mellitus. Antioxid Redox Signal 2019; 30:333-353. [PMID: 29084432 DOI: 10.1089/ars.2017.7421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Oxidative stress, a crucial regulator of vascular disease pathogenesis, may be involved in the vascular complications of obesity, systemic insulin resistance (IR), and diabetes mellitus (DM). Recent Advances: Excessive production of reactive oxygen species in the vascular wall has been linked with vascular disease pathogenesis. Recent evidence has revealed that vascular redox state is dysregulated in cases of obesity, systemic IR, and DM, potentially participating in the well-known vascular complications of these disease entities. Critical Issues: The detrimental effects of obesity and the metabolic syndrome on vascular biology have been extensively described at a clinical level. Further, vascular oxidative stress has often been associated with the presence of obesity and IR as well as with a variety of detrimental vascular phenotypes. However, the mechanisms of vascular redox state regulation under conditions of obesity and systemic IR, as well as their clinical relevance, are not adequately explored. In addition, the notion of vascular IR, and its relationship with systemic parameters of obesity and systemic IR, is not fully understood. In this review, we present all the important components of vascular redox state and the evidence linking oxidative stress with obesity and IR. Future Directions: Future studies are required to describe the cellular effects and the translational potential of vascular redox state in the context of vascular disease. In addition, further elucidation of the direct vascular effects of obesity and IR is required for better management of the vascular complications of DM.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford , Oxford, United Kingdom
| | | |
Collapse
|
38
|
Belanger K, Nutter CA, Li J, Yu P, Kuyumcu-Martinez MN. A developmentally regulated spliced variant of PTBP1 is upregulated in type 1 diabetic hearts. Biochem Biophys Res Commun 2018; 509:384-389. [PMID: 30594394 DOI: 10.1016/j.bbrc.2018.12.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
Alternative splicing (AS) is dysregulated in Type 1 diabetic (T1D) hearts but mechanisms responsible are unclear. Here, we provide evidence that the RNA binding protein (RBP) PTBP1 is modulated in adult T1D hearts contributing to AS changes. We show that a spliced variant of PTBP1 that is highly expressed in normal newborn mouse hearts is aberrantly expressed in adult T1D mouse hearts. Comparing known PTBP1-target datasets to our T1D mouse transcriptome datasets, we discovered a group of genes with PTBP1 binding sites in their pre-mRNAs that are differentially spliced in T1D mouse hearts. We demonstrated that inducible expression of diabetes-induced PTBP1 spliced variant has less repressive splicing function. Notably, PTBP1 regulates AS of some of its targets antagonistically to RBFOX2. In sum, our results indicate that diabetic conditions disrupt developmental regulation of PTBP1 leading to differential AS of PTBP1 target genes. Identification of PTBP1 and PTBP1-regulated RNA networks can provide RNA-based therapies for the treatment of diabetes cardiac complications.
Collapse
Affiliation(s)
- KarryAnne Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Curtis A Nutter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jin Li
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
39
|
Acharya P, Talahalli RR. Aging and Hyperglycemia Intensify Dyslipidemia-Induced Oxidative Stress and Inflammation in Rats: Assessment of Restorative Potentials of ALA and EPA + DHA. Inflammation 2018; 42:946-952. [DOI: 10.1007/s10753-018-0949-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Tao L, Shi J, Yang X, Yang L, Hua F. The Exosome: a New Player in Diabetic Cardiomyopathy. J Cardiovasc Transl Res 2018; 12:62-67. [PMID: 30251219 DOI: 10.1007/s12265-018-9825-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Diabetic cardiomyopathy (DCM) or diabetes-induced cardiac dysfunction is a direct consequence of uncontrolled metabolic syndrome and occurs worldwide. However, the underlying cellular and molecular mechanisms remain poorly understood. Recently, exosomes have attracted considerable interest for their use as efficient, targeted, and non-immunogenic delivery systems for biological molecules or pharmacotherapies. This review will summarize the fast-developing field of the regulation and function of exosomes in DCM, affording valuable insights and therapeutic opportunities in combatting diabetes-related cardiac disorder for modern human health.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Xiaoyu Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China.
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China.
| |
Collapse
|
41
|
Yang C, Kelaini S, Caines R, Margariti A. RBPs Play Important Roles in Vascular Endothelial Dysfunction Under Diabetic Conditions. Front Physiol 2018; 9:1310. [PMID: 30294283 PMCID: PMC6158626 DOI: 10.3389/fphys.2018.01310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetes is one of the major health care problems worldwide leading to huge suffering and burden to patients and society. Diabetes is also considered as a cardiovascular disorder because of the correlation between diabetes and an increased incidence of cardiovascular disease. Vascular endothelial cell dysfunction is a major mediator of diabetic vascular complications. It has been established that diabetes contributes to significant alteration of the gene expression profile of vascular endothelial cells. Post-transcriptional regulation by RNA binding proteins (RBPs) plays an important role in the alteration of gene expression profile under diabetic conditions. The review focuses on the roles and mechanisms of critical RBPs toward diabetic vascular endothelial dysfunction. Deeper understanding of the post- transcriptional regulation by RBPs could lead to new therapeutic strategies against diabetic manifestation in the future.
Collapse
Affiliation(s)
- Chunbo Yang
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
42
|
Belanger K, Nutter CA, Li J, Tasnim S, Liu P, Yu P, Kuyumcu-Martinez MN. CELF1 contributes to aberrant alternative splicing patterns in the type 1 diabetic heart. Biochem Biophys Res Commun 2018; 503:3205-3211. [PMID: 30158053 DOI: 10.1016/j.bbrc.2018.08.126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Dysregulated alternative splicing (AS) that contributes to diabetes pathogenesis has been identified, but little is known about the RNA binding proteins (RBPs) involved. We have previously found that the RBP CELF1 is upregulated in the diabetic heart; however, it is unclear if CELF1 contributes to diabetes-induced AS changes. Utilizing genome wide approaches, we identified extensive changes in AS patterns in Type 1 diabetic (T1D) mouse hearts. We discovered that many aberrantly spliced genes in T1D hearts have CELF1 binding sites. CELF1-regulated AS affects key genes within signaling pathways relevant to diabetes pathogenesis. Disruption of CELF1 binding sites impairs AS regulation by CELF1. In sum, our results indicate that CELF1 target RNAs are aberrantly spliced in the T1D heart leading to abnormal gene expression. These discoveries pave the way for targeting RBPs and their RNA networks as novel therapies for cardiac complications of diabetes.
Collapse
Affiliation(s)
- KarryAnne Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Curtis A Nutter
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jin Li
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sadia Tasnim
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Peiru Liu
- Ball High School, Galveston, TX, 77555, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Neuroscience,Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
43
|
Yi SA, Lee J, Park JW, Han J, Lee MG, Nam KH, Park JH, Oh H, Ahn SJ, Kim S, Kwon SH, Jo DG, Han JW. S6K1 controls epigenetic plasticity for the expression of pancreatic α/β cell marker genes. J Cell Biochem 2018; 119:6674-6683. [PMID: 29665055 DOI: 10.1002/jcb.26853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
The failure of insulin production by pancreatic β cells is a common hallmark of type 1 diabetes mellitus (T1DM). Because administration of exogenous insulin is associated with diabetes-derived complications, endogenous α to β cell transition can be an attractive alternative. Although decreased β cell size and hypoinsulinaemia have been observed in S6K1-deficient mice, the molecular mechanism underlying the involvement of S6K1 in the transcriptional regulation of insulin remains elusive. Here, we show that the hypoinsulinaemic phenotype of S6K1-deficient mice stems from the dysregulated transcription of a set of genes required for insulin and glucagon production. First, we observed that increased expression of α cell marker genes and decreased expression of β cell marker genes in pancreas tissues from S6K1-deficient mice. Furthermore, S6K1 was highly activated in murine β cell line, βTC6, compared to murine α cell line αTC1. In both α and β cells, active S6K1 promoted the transcription of β cell marker genes, including insulin, whereas S6K1 inhibition increased the transcription of α cell marker genes. Moreover, S6K1 mediated pancreatic gene regulation by modifying two histone marks (activating H3K4me3 and repressing H3K27me3) on gene promoters. These results suggest that S6K1 drives the α to β transition through the epigenetic regulation of cell-specific genes, including insulin and glucagon. This novel role of S6K1 in islet cells provides basic clues to establish therapeutic strategies against T1DM.
Collapse
Affiliation(s)
- Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jieun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong Woo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min Gyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jee Hun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hwamok Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung Jin Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Saetbyul Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
44
|
Nutter CA, Kuyumcu-Martinez MN. Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29280295 DOI: 10.1002/wrna.1459] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022]
Abstract
Diabetes is a debilitating health care problem affecting 422 million people around the world. Diabetic patients suffer from multisystemic complications that can cause mortality and morbidity. Recent advancements in high-throughput next-generation RNA-sequencing and computational algorithms led to the discovery of aberrant posttranscriptional gene regulatory programs in diabetes. However, very little is known about how these regulatory programs are mis-regulated in diabetes. RNA-binding proteins (RBPs) are important regulators of posttranscriptional RNA networks, which are also dysregulated in diabetes. Human genetic studies provide new evidence that polymorphisms and mutations in RBPs are linked to diabetes. Therefore, we will discuss the emerging roles of RBPs in abnormal posttranscriptional gene expression in diabetes. Questions that will be addressed are: Which posttranscriptional mechanisms are disrupted in diabetes? Which RBPs are responsible for such changes under diabetic conditions? How are RBPs altered in diabetes? How does dysregulation of RBPs contribute to diabetes? Can we target RBPs using RNA-based methods to restore gene expression profiles in diabetic patients? Studying the evolving roles of RBPs in diabetes is critical not only for a comprehensive understanding of diabetes pathogenesis but also to design RNA-based therapeutic approaches for diabetic complications. WIREs RNA 2018, 9:e1459. doi: 10.1002/wrna.1459 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas.,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
45
|
Hwang H, Rhim H. Functional significance of O-GlcNAc modification in regulating neuronal properties. Pharmacol Res 2017; 129:295-307. [PMID: 29223644 DOI: 10.1016/j.phrs.2017.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) covalently modify proteins and diversify protein functions. Along with protein phosphorylation, another common PTM is the addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and/or threonine residues. O-GlcNAc modification is similar to phosphorylation in that it occurs to serine and threonine residues and cycles on and off with a similar time scale. However, a striking difference is that the addition and removal of the O-GlcNAc moiety on all substrates are mediated by the two enzymes regardless of proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. O-GlcNAcylation can interact or potentially compete with phosphorylation on serine and threonine residues, and thus serves as an important molecular mechanism to modulate protein functions and activation. However, it has been challenging to address the role of O-GlcNAc modification in regulating protein functions at the molecular level due to the lack of convenient tools to determine the sites and degrees of O-GlcNAcylation. Studies in this field have only begun to expand significantly thanks to the recent advances in detection and manipulation methods such as quantitative proteomics and highly selective small-molecule inhibitors for OGT and OGA. Interestingly, multiple brain regions, especially hippocampus, express high levels of both OGT and OGA, and a number of neuron-specific proteins have been reported to undergo O-GlcNAcylation. This review aims to discuss the recent updates concerning the impacts of O-GlcNAc modification on neuronal functions at multiple levels ranging from intrinsic neuronal properties to synaptic plasticity and animal behaviors.
Collapse
Affiliation(s)
- Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
46
|
Kellow NJ, Coughlan MT, Reid CM. Association between habitual dietary and lifestyle behaviours and skin autofluorescence (SAF), a marker of tissue accumulation of advanced glycation endproducts (AGEs), in healthy adults. Eur J Nutr 2017; 57:2209-2216. [DOI: 10.1007/s00394-017-1495-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 06/25/2017] [Indexed: 01/11/2023]
|
47
|
Sahoo AK, Dash UC, Kanhar S, Mahapatra AK. In vitro biological assessment of Homalium zeylanicum and isolation of lucidenic acid A triterpenoid. Toxicol Rep 2017; 4:274-281. [PMID: 28959649 PMCID: PMC5615128 DOI: 10.1016/j.toxrep.2017.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022] Open
Abstract
Current investigation supports antioxidant, anti-diabetic activities of H. zeylanicum. Current investigation also supports anti-inflammatory activity of H. zeylanicum. The research successfully isolated and analysed structure of lucidenic acid A. Lucidenic acid A reported first time in the bark of H. zeylanicum. Lucidenic acid A produces a significant anti-inflammatory activity.
Homalium zeylanicum (Gardner) Benth. (Flacourtiaceae) is a medicinal plant useful in controlling rheumatism, inflammation and diabetes. The objective of this work evaluates in vitro antioxidant, antidiabetic, and antiinflammatory properties of hydroalcohol extract of bark of H. zeylanicum (HAHZ). It also describes isolation and structure determination of lucidenic acid A, which is the first report in this plant. In order to explain the role of antioxidant principles, DPPH, nitric oxide, hydroxyl, superoxide and metal chelating assays were performed. Antidiabetic and anti-inflammatory activities were investigated by quantifying α-amylase, α-glucosidase and protein denaturation inhibitory activities of HAHZ. Biochemical estimations were performed. The chemical structure of the triterpenoid was elucidated using 1H, 13C NMR and high resolution-MS. IC50 of DPPH, nitric oxide, hydroxyl, superoxide and metal chelating activities were of 36.23 ± 0.27, 40.11 ± 0.32, 35.23 ± 0.57, 43.34 ± 0.22 and 11.54 ± 0.08 μg/mL, respectively. IC50 of α-amylase and α-glucosidase activities were 29.12 ± 0.54, and 18.55 ± 0.15 μg/mL. Total phenolic and total flavonoid contents were recorded at 233.65 mg/g GAE and 172.7 mg/g QE. Regarding kinetic behaviour, HAHZ showed competitive inhibition on α-glucosidase and mixed competitive inhibition on α-amylase. Lucidenic acid A was confirmed by spectroscopic studies. Anti-inflammatory activity of lucidenic acid A was determined by using protein denaturation assay with IC50 13 μg/mL but HAHZ showed 30.34 ± 0.13 μg/mL. Phenols and flavonoids could be attributed to inhibition of intestinal carbohydrases for anti-diabetic activities whereas triterpenoids could be responsible for anti-inflammatory activity of H. zeylanicum.
Collapse
Key Words
- &alpha
- -amylase
- -glucosidase
- Antidiabetic
- Antiinflammatory
- DNS, dinitrosalicylic
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- Diclofenac sodium (PubChem CID: 5018304)
- EDTA (PubChem CID: 6049)
- GAeqv/g, gallic acid equivalents per gram
- HAHZ, hydro alcoholic extract of Homalium zeylanicum
- Homalium zeylanicum
- IC50, half maximal inhibitory concentration
- Lucidenic acid A (PubChem CID: 14109375)
- Lucidenic acid a
- NBT, nitroblue tetrazolium
- NO, Nitric oxide
- NSAIDs, nonsteroidal anti-inflammatory drugs
- OH, hydroxyl
- PBS, phosphate buffer saline
- PMS, phenazine methosulphate
- Queqv/g, Quercetin equivalents per gram
- Quercetin (PubChem CID: 5280343)
- ROS, reactive oxygen species
- Rf, Retardation factor
- SOD, superoxide anion
- TFC, total flavonoid contents
- TLC, thin layer chromatography
- TPC, total phenolic contents
- acarbose (PubChem CID: 41774)
- gallic acid (PubChem CID: 370)
- pNPG, p-nitrophenyl-α-d-glucopyranoside
Collapse
Affiliation(s)
- Atish Kumar Sahoo
- Phytotherapy Research Lab., Medicinal and Aromatic Plant Division, Regional Plant Resource Centre, Forest and Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Umesh Chandra Dash
- Phytotherapy Research Lab., Medicinal and Aromatic Plant Division, Regional Plant Resource Centre, Forest and Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Satish Kanhar
- Phytotherapy Research Lab., Medicinal and Aromatic Plant Division, Regional Plant Resource Centre, Forest and Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Ajay Kumar Mahapatra
- Odisha Forest Development Corp. Ltd., Forest and Environment Department, Govt. of Odisha, A-84, Kharavela Nagar, Bhubaneswar, 751001, India
| |
Collapse
|
48
|
Park JM, Khemtong C, Liu SC, Hurd RE, Spielman DM. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1- 13 C]Alanine. Magn Reson Med 2017; 77:1741-1748. [PMID: 28261868 DOI: 10.1002/mrm.26662] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD+ ]. In this study, we assessed the use of hyperpolarized [1-13 C]alanine and the subsequent detection of the intracellular products of [1-13 C]pyruvate and [1-13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. METHODS Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1-13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. RESULTS In vivo rat liver spectra showed peaks from [1-13 C] alanine and the products of [1-13 C]lactate, [1-13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. CONCLUSION A method to measure in vivo tissue redox using hyperpolarized [1-13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shie-Chau Liu
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ralph E Hurd
- Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
49
|
Wang J, Si X, Shang W, Zhou Z, Strappe P, Blanchard C. Effect of single or combined administration of resistant starch and chitosan oligosaccharides on insulin resistance in rats fed with a high-fat diet. STARCH-STARKE 2016. [DOI: 10.1002/star.201600209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junxuan Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science and Technology; Tianjin P. R. China
| | - Xu Si
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science and Technology; Tianjin P. R. China
| | - Wenting Shang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science and Technology; Tianjin P. R. China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science and Technology; Tianjin P. R. China
- ARC Functional Grains Centre; Charles Sturt University; Wagga Wagga, NSW Australia
| | - Padraig Strappe
- ARC Functional Grains Centre; Charles Sturt University; Wagga Wagga, NSW Australia
| | - Chris Blanchard
- ARC Functional Grains Centre; Charles Sturt University; Wagga Wagga, NSW Australia
| |
Collapse
|
50
|
Differential renal effects of candesartan at high and ultra-high doses in diabetic mice-potential role of the ACE2/AT2R/Mas axis. Biosci Rep 2016; 36:BSR20160344. [PMID: 27612496 PMCID: PMC5091470 DOI: 10.1042/bsr20160344] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022] Open
Abstract
High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin–angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate–high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate–high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes.
Collapse
|