1
|
Leon AE, Fleming-Davies AE, Adelman JS, Hawley DM. Pathogen priming alters host transmission potential and predictors of transmissibility in a wild songbird species. mSphere 2025; 10:e0088624. [PMID: 40062847 PMCID: PMC12039224 DOI: 10.1128/msphere.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Pathogen reinfections occur widely, but the extent to which reinfected hosts contribute to ongoing transmission is often unknown despite its implications for host-pathogen dynamics. House finches (Haemorhous mexicanus) acquire partial protection from initial exposure to the bacterial pathogen Mycoplasma gallisepticum (MG), with hosts readily reinfected with homologous or heterologous strains on short timescales. However, the extent to which reinfected hosts contribute to MG transmission has not been tested. We used three pathogen priming treatments-none, intermediate (repeated low-dose priming), or high (single high-dose priming)-to test how prior pathogen priming alters the likelihood of transmission to a cagemate during index bird reinfection with a homologous or heterologous MG strain. Relative to unprimed control hosts, the highest priming level strongly reduced maximum pathogen loads and transmission success of index birds during reinfections. Reinfections with the heterologous strain, previously shown to be more virulent and transmissible than the homologous strain used, resulted in higher pathogen loads within high-primed index birds and showed higher overall transmission success regardless of host priming treatment. This suggests that inherent differences in strain transmissibility are maintained in primed hosts, leading to the potential for ongoing transmission during reinfections. Finally, among individuals, transmission was most likely from hosts harboring higher within-host pathogen loads. However, associations between disease severity and transmission probability were dependent on a given bird's priming treatment. Overall, our results indicate that reinfections can result in ongoing transmission, particularly where reinfections result from a highly transmissible strain, with potential implications for virulence evolution.IMPORTANCEAs COVID-19 dramatically illustrated, humans and other animals can become infected with the same pathogen multiple times. Because individuals already have defenses against pathogens that their immune systems encountered before, reinfections are likely less contagious to others, but this is rarely directly tested. We used a songbird species and two strains of its common bacterial pathogen to study how contagious hosts are when their immune systems have some degree of prior experience with a pathogen. We found that reinfected hosts are not as contagious as initially infected ones. However, the more transmissible of the two strains, which also causes more harm to its hosts, was able to multiply more readily than the other strain within reinfected hosts and was more contagious in both reinfected and first-infected hosts. This suggests that reinfections might favor more harmful pathogen strains that are better able to overcome immune defenses.
Collapse
Affiliation(s)
- A. E. Leon
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - J. S. Adelman
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - D. M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Föderl-Höbenreich E, Izadi S, Hofacker L, Kienzl NF, Castilho A, Strasser R, Tarrés-Freixas F, Cantero G, Roca N, Pérez M, Lorca-Oró C, Usai C, Segalés J, Vergara-Alert J, Mach L, Zatloukal K. An ACE2-Fc decoy produced in glycoengineered plants neutralizes ancestral and newly emerging SARS-CoV-2 variants and demonstrates therapeutic efficacy in hamsters. Sci Rep 2025; 15:11307. [PMID: 40175560 PMCID: PMC11965572 DOI: 10.1038/s41598-025-95494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Newly emerging SARS-CoV-2 variants of concern (VOCs) continue to drive COVID-19 waves and are typically associated with immune escape and increased resistance to current therapeutics including monoclonal antibodies. By contrast, VOCs still display strong binding to the host cell receptor ACE2. Consistent with these properties, we have now found that a soluble ACE2-Fc decoy produced in glycoengineered plants effectively neutralizes different SARS-CoV-2 isolates and exhibits even increased potency against VOCs as compared to an ancestral virus strain. In a golden Syrian hamster model, therapeutic intranasal delivery of ACE2-Fc effectively reduced weight loss and SARS-CoV-2 replication in the lungs when administered 24 h post-inoculation. This protective effect was not observed upon treatment of the infected animals with a non-binding ACE2-Fc mutant, demonstrating that the plant-derived ACE2-Fc decoy interferes specifically with the attachment of the virus to host cells. The results obtained provide support for further development of decoy-based antiviral approaches by plant molecular pharming.
Collapse
Affiliation(s)
| | - Shiva Izadi
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Lara Hofacker
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Nikolaus F Kienzl
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Alexandra Castilho
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Richard Strasser
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Ferran Tarrés-Freixas
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Guillermo Cantero
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Núria Roca
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Mònica Pérez
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Cristina Lorca-Oró
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Carla Usai
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Lukas Mach
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria.
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
3
|
Piano Mortari E, Ferrucci F, Zografaki I, Carsetti R, Pacelli L. T and B cell responses in different immunization scenarios for COVID-19: a narrative review. Front Immunol 2025; 16:1535014. [PMID: 40170841 PMCID: PMC11959168 DOI: 10.3389/fimmu.2025.1535014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/25/2025] [Indexed: 04/03/2025] Open
Abstract
Vaccines against COVID-19 have high efficacy and low rates of adverse events. However, none of the available vaccines provide sterilizing immunity, and reinfections remain possible. This review aims to summarize the immunological responses elicited by different immunization strategies, examining the roles of homologous and heterologous vaccination and hybrid immunity. Homologous vaccination regimens exhibit considerable variation in immune responses depending on the vaccine platform, particularly concerning antibody titers, B cell activation, and T cell responses. mRNA vaccines, such as mRNA-1273 and BNT162b2, consistently generate higher and more durable levels of neutralizing antibodies and memory B cells compared to adenovirus-based vaccines like Ad26.COV2.S and ChAdOx1. The combination of two distinct vaccine platforms, each targeting different immune pathways, seems to be more effective in promoting long-lasting B cell responses and potent T cell responses. The high heterogeneity of the available studies, the different dosing schemes, the succession of new variants, and the subjects' immunological background do not allow for a definitive conclusion. Overall, heterologous vaccination strategies, combining sequentially viral vector and mRNA may deliver a more balanced and robust humoral and cellular immune response compared to homologous regimens. Hybrid immunity, which arises from SARS-CoV-2 infection preceded or followed by vaccination produces markedly stronger immune responses than either vaccination or infection alone. The immune response to SARS-CoV-2 variants of concern varies depending on both the vaccine platform and prior infection status. Hybrid immunity leads to a broader antibody repertoire, providing enhanced neutralization of variants of concern. Heterologous vaccination and hybrid immunity may provide further opportunities to enhance immune responses, offering broader protection and greater durability of immunity. However, from all-cause mortality, symptomatic or severe COVID, and serious adverse events at present it is not possible to infer different effects between homologous and heterologous schemes. Next-generation vaccines could involve tweaks to these designs or changes to delivery mechanisms that might improve performance.
Collapse
Affiliation(s)
- Eva Piano Mortari
- B Lymphocytes Unit, Bambino Gesù Children’s Hospital, istituto di ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | | | - Irini Zografaki
- mRNA & Antivirals Medical & Scientific Affairs International Developed Markets, Pfizer, Athens, Greece
| | - Rita Carsetti
- B Lymphocytes Unit, Bambino Gesù Children’s Hospital, istituto di ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Luciano Pacelli
- Medical Department, Internal Medicine, Pfizer s.r.l., Rome, Italy
| |
Collapse
|
4
|
Wu Q, Wu H, Hu Y, Zheng X, Chang F, Liu Y, Pan Z, Wang Q, Tang F, Qian J, Li Y, Huang B, Chen K, Xu J, Wang Y, Xie X, Zhao P, Wu X, Qu X, Li YP. Immune evasion of Omicron variants JN.1, KP.2, and KP.3 to the polyclonal and monoclonal antibodies from COVID-19 convalescents and vaccine recipients. Antiviral Res 2025; 235:106092. [PMID: 39864525 DOI: 10.1016/j.antiviral.2025.106092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The Omicron BA.2.86 subvariants, JN.1, KP.2, and KP.3, have become predominant globally, raising concerns about their immune evasion from vaccines and monoclonal antibody (mAb) treatments. These variants harbor more receptor-binding domain (RBD) mutations than the XBB and EG.5 sub-lineages, which are already known to compromise vaccine and therapeutic efficacy. We evaluated sera from individuals vaccinated with inactivated vaccines, with or without breakthrough infections, as well as COVID-19 convalescents. Our results showed a substantial decrease in serum neutralizing activity against the JN.1, KP.2, XBB.1.5, and EG.5.1 variants compared to BA.2. Additionally, we developed 19 neutralizing antibodies from memory B cells, with some retaining efficacy against earlier Omicron variants. However, potency was notably diminished against newer subvariants like BF.7, BQ.1, XBB.1.5, and BA.2.86. Of mAbs, those isolated from COVID-19 convalescents, particularly SA-3, exhibited exceptional potency across ten variants from BA.2 to KP.2, with IC50 values ranging from 0.006 to 2.546 μg/mL. However, SA-3 had lost neutralizing activity against the KP.3 due to the Q493E mutation, but the KP.3 became susceptible to neutralization by the other mAb, SA-6. In contrast, SA-6 was unable to neutralize KP.2 because of the presence of R346T mutation. Our findings underscore the importance of continuous surveillance of viral evolution and the need for updated vaccines and therapeutics to combat the ongoing evolution of SARS-CoV-2, particularly in the context of emerging variants that escape both vaccine-induced immunity and monoclonal antibody treatments.
Collapse
Affiliation(s)
- Qian Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Hairuo Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yabin Hu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China; Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou 423000, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhendong Pan
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, Shaoyang 422099, China; Xinning Country People's Hospital, Shaoyang 422099, China
| | - Fei Tang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Qian
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuezhou Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Huang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Keqiu Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Xu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - You Wang
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China
| | - Xiangping Xie
- The Central Hospital of Shaoyang, Shaoyang 422099, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, Hengyang Medical School, University of South China, No. 30, Jiefang Road, Shigu District, Hengyang 421000, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, Hengyang 421001, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Brennecke B, Civili B, Sabale PM, Barluenga S, Meyer B, Winssinger N. Self-assembled proteomimetic (SAP) with antibody-like binding from short PNA-peptide conjugates. Proc Natl Acad Sci U S A 2025; 122:e2412850122. [PMID: 39951509 PMCID: PMC11848287 DOI: 10.1073/pnas.2412850122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
Affinity proteins based on a three-helix bundle (affibodies, alphabodies, and computationally de novo designed ones) have been shown to be a general platform to discover binders with properties reminiscent of antibodies, combining high target specificity with affinities reaching well below the nanomolar. Herein, we report a strategy, coined self-assembled proteomimetic (SAP), to mimic such three-helix bundle architecture with a hybridization-enforced two-helix coiled coil that is obtained by templated native chemical ligation (T-NCL) of PNA-peptide conjugates. This SAP strategy stands out by its synthetic accessibility, reducing the length on the longest synthetic peptide to less than 30 amino acids which is readily attainable by standard SPPS methodologies. We show that the T-NCL dramatically accelerates the ligation, enabling this chemistry to proceed in a combinatorial fashion at low micromolar concentrations. We demonstrate that small combinatorial libraries of SAPs can be prepared in one operation and used directly in affinity selections against a target of interest with an LC-MS analysis of the fittest binders. Moreover, we show that the underlying design paradigm is functional for SAPs based on structurally distinct three-helix peptides aimed at different therapeutic targets, namely HER2 and spike's RBD, reaching picomolar affinities. We further illustrate that the affinity of the SAP can be allosterically regulated using a toehold displacement of the hybridizing PNAs to disrupt the coiled coil stabilization. Finally, we show that an RBD-targeting SAP effectively inhibits viral entry of SARS-CoV-2 with an IC50 of 2.8 nM.
Collapse
Affiliation(s)
- Benjamin Brennecke
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| | - Beatrice Civili
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| | - Pramod M. Sabale
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| | - Benjamin Meyer
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva1211, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva1211, Switzerland
| |
Collapse
|
6
|
Oluka GK, Sembera J, Katende JS, Ankunda V, Kato L, Kurshan A, Graham C, Seow J, Doores KJ, Malim MH, Fox JM, Kaleebu P, Serwanga J. Long-Term Immune Consequences of Initial SARS-CoV-2 A.23.1 Exposure: A Longitudinal Study of Antibody Responses and Cross-Neutralization in a Ugandan Cohort. Vaccines (Basel) 2025; 13:143. [PMID: 40006690 PMCID: PMC11860332 DOI: 10.3390/vaccines13020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Background: This study assessed the long-term dynamics of neutralizing antibodies in a Ugandan cohort primarily exposed to the A.23.1 SARS-CoV-2 variant, examining how this shaped immune breadth and potency against diverse strains following infection and prototype-based vaccination. Methods: We conducted a 427-day retrospective analysis of 41 participants across multiple SARS-CoV-2 waves, assessing binding and neutralizing antibody responses using in-house ELISA and pseudotyped virus neutralization assays. We quantified immune responses to key SARS-CoV-2 variants, A.23.1, D614G, Delta, and BA.4, capturing evolving immunity across the pandemic. Results: Neutralizing antibody titers against A.23.1 remained significantly higher than those against D614G, Delta, and BA.4, highlighting the solid immune memory following A.23.1 infection. Consistently lower titers were observed for BA.4 across all time points, aligning with its strong immune-evasion capability. Correlations between neutralizing titers and spike-directed IgG (S-IgG) concentrations were significantly stronger for A.23.1 than for D614G, with no correlation for BA.4. ChAdOx1-S vaccination substantially elevated the neutralizing titers across all variants, most notably BA.4, highlighting the essential role of vaccination in boosting immunity, even in individuals with initially low titers. Conclusions: Initial exposure to the A.23.1 variant triggered potent immune responses, shaping neutralizing antibody dynamics during subsequent exposures. These findings highlight the importance of accounting for early viral exposures in vaccine development and public health planning. The distinctly lower immune response to BA.4 highlights the need for continuous antigenic monitoring and timely vaccine updates for protection against emerging variants. Vaccination remains essential for reinforcing and sustaining immunity against evolving variants.
Collapse
Affiliation(s)
- Gerald Kevin Oluka
- Viral Pathogens Research Theme, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI & LSHTM) Research Unit, Entebbe 26, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe 26, Uganda
| | - Jackson Sembera
- Department of Immunology, Uganda Virus Research Institute, Entebbe 26, Uganda
| | - Joseph Ssebwana Katende
- Viral Pathogens Research Theme, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI & LSHTM) Research Unit, Entebbe 26, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe 26, Uganda
| | - Violet Ankunda
- Viral Pathogens Research Theme, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI & LSHTM) Research Unit, Entebbe 26, Uganda
| | - Laban Kato
- Viral Pathogens Research Theme, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI & LSHTM) Research Unit, Entebbe 26, Uganda
| | - Ashwini Kurshan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Julie M. Fox
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Pontiano Kaleebu
- Viral Pathogens Research Theme, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI & LSHTM) Research Unit, Entebbe 26, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe 26, Uganda
| | - Jennifer Serwanga
- Viral Pathogens Research Theme, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI & LSHTM) Research Unit, Entebbe 26, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe 26, Uganda
| |
Collapse
|
7
|
Zhang S, Kong X, Zhen Q, Wei Y, Shi C, Ding S, Chen L, Dong C, Tian H, Li C, Zhou L, Zhang Y, Zhu F, Hu J, Bao C, Jin H, Xu K, Zhu L. Dynamic Changes and Trends of SARS-CoV-2 Antibodies Induced by Infection and Vaccination Across Multiple Time Points. J Med Virol 2025; 97:e70161. [PMID: 39780477 PMCID: PMC11711922 DOI: 10.1002/jmv.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
As the COVID-19 pandemic continues, increasingly complex vaccination and infection histories have made it urgent to investigate the antibody dynamics in populations with hybrid immunity. This study aimed to explore the multi-time-point dynamics of SARS-CoV-2 IgG antibody levels in a community-based population in Jiangsu Province, China, following the Omicron BA.5 wave, as well as the long-term persistence of IgG antibodies nearly 2 years postinfection. A total of 2737 participants across Jiangsu Province were followed up at three different time points over a 6-month period (December 2022-June 2023). Additionally, a cross-sectional serological survey was conducted in October 2024, involving 230 participants to assess long-term antibody persistence. We used generalized additive models to fit antibody dynamics curves, generalized linear mixed models to explore factors influencing antibody levels, and Kaplan-Meier survival analysis to estimate cumulative seroreversion rates. Our findings revealed that, following the large-scale Omicron BA.5 infections, over 85% of the population initially exhibited seropositive IgG levels. Older individuals (> 65 years) had significantly lower antibody levels and faster rates of decline compared to younger participants. Booster immunization reduced the risk of seroreversion by 59.79% (95% CI: 29.63%-76.46%), while individuals with multiple infections experienced slower antibody decay. In the cross-sectional survey conducted 22 months postinfection, the IgG seropositivity rate remained high, exceeding 98%, indicating sustained immunity at the population level. This study provides valuable insights into the dynamics and persistence of IgG antibody levels following large-scale infection. The results underscore the importance of tailored booster immunization strategies to sustain long-term immunity, especially in vulnerable groups like the elderly. Additionally, ongoing serological monitoring is essential for assessing population immunity and informing future vaccination strategies.
Collapse
Affiliation(s)
- Shihan Zhang
- Department of Epidemiology and Health Statistics, School of Public HealthSoutheast UniversityNanjingChina
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingChina
| | - Xiaoxiao Kong
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Qian Zhen
- Department of Acute Infectious Disease Control and PreventionChangzhou Center for Disease Control and PreventionChangzhouChina
| | - Ye Wei
- Department of Acute Infectious Disease Control and PreventionNantong Center for Disease Control and PreventionNantongChina
| | - Chao Shi
- Department of Acute Infectious Disease Control and PreventionWuxi Center for Disease Control and PreventionWuxiChina
| | - Songning Ding
- Department of Acute Infectious Disease Control and PreventionNanjing Center for Disease Control and PreventionNanjingChina
| | - Liling Chen
- Department of Acute Infectious Disease Control and PreventionSuzhou Center for Disease Control and PreventionSuzhouChina
| | - Chen Dong
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Hua Tian
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Chuchu Li
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Lu Zhou
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Yazhen Zhang
- Department of Epidemiology and Health Statistics, School of Public HealthSoutheast UniversityNanjingChina
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingChina
| | - Fengcai Zhu
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Jianli Hu
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Changjun Bao
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public HealthSoutheast UniversityNanjingChina
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingChina
| | - Ke Xu
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Liguo Zhu
- Department of Acute Infectious Disease Control and PreventionJiangsu Provincial Center for Disease Control and PreventionNanjingChina
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic MicrobiologyJiangsu Provincial Center for Disease Control and PreventionNanjingChina
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious DiseasesJiangsuChina
| |
Collapse
|
8
|
Parua P, Ghosh S, Jana K, Seth A, Debnath B, Rout SK, Sarangi MK, Dash R, Halder J, Rajwar TK, Pradhan D, Rai VK, Dash P, Das C, Kar B, Ghosh G, Rath G. Therapeutic Potential of Neutralizing Monoclonal Antibodies (nMAbs) against SARS-CoV-2 Omicron Variant. Curr Pharm Des 2025; 31:753-773. [PMID: 39543801 DOI: 10.2174/0113816128334441241108050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The COVID-19 pandemic has spurred significant endeavors to devise treatments to combat SARS-CoV-2. A limited array of small-molecule antiviral drugs, specifically monoclonal antibodies and interferon therapy, have been sanctioned to treat COVID-19. These treatments typically necessitate administration within ten days of symptom onset. There have been reported reductions in the effectiveness of these medications due to mutations in non-structural protein genes, particularly against Omicron subvariants. This underscores the pressing requirement for healthcare systems to continually monitor pathogen variability and its impact on the efficacy of prevention and treatments. AIM This review aimed to comprehend the therapeutic benefits and recent progress of nMAbs for preventing and treating the Omicron variant of SARS-CoV-2. RESULTS AND DISCUSSION Neutralizing monoclonal antibodies (nMAbs) provide a treatment avenue for severely affected individuals, especially those at high risk for whom vaccination is not viable. With their specific epitope affinity, they pose no significant risk of severe adverse effects. The degree of reduction in neutralization varies significantly across different monoclonal antibodies and variant combinations. For instance, Sotrovimab maintained its neutralization effectiveness against Omicron BA.1, but exhibited diminished efficacy against BA.2, BA.4, BA.5, and BA.2.12.1. CONCLUSION Bebtelovimab has been observed to preserve its efficacy against all subtypes of the Omicron variant. Subsequently, WKS13, mAb-39, 19n01, F61-d2 cocktail, etc., have become effective. This review has highlighted the therapeutic implications of nMAbs in SARS-CoV-2 Omicron treatment and the progress of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Pijus Parua
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Somnath Ghosh
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Koushik Jana
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Arnab Seth
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Biplab Debnath
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal-711316, India
| | - Saroj Kumar Rout
- LNK International, Inc., Hauppauge, New York-11788, United States
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow-226024, Uttar Pradesh, India
| | - Rasmita Dash
- Department of Pharmaceutics, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar-752050, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Priyanka Dash
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
9
|
Jia T, Wang F, Chen Y, Liao G, Xu Q, Chen J, Wu J, Li N, Wang L, Yuan L, Wang D, Xie Q, Luo C, Luo H, Wang Y, Chen Y, Shu Y. Expanded immune imprinting and neutralization spectrum by hybrid immunization following breakthrough infections with SARS-CoV-2 variants after three-dose vaccination. J Infect 2024; 89:106362. [PMID: 39608577 DOI: 10.1016/j.jinf.2024.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Despite vaccination, SARS-CoV-2 evolution leads to breakthrough infections and reinfections worldwide. Knowledge of hybrid immunization is crucial for future broad-spectrum SARS-CoV-2 vaccines. METHODS In this study, we investigated neutralizing antibodies (nAbs) against the SARS-CoV-2 ancestral virus (wild-type [WT]), pre-Omicron VOCs, Omicron subvariants, and SARS-CoV-1 using plasma collected from four distinct cohorts: individuals who received three doses of BBIBP-CorV/CoronaVac vaccines, those who experienced BA.5 breakthrough infections, those with XBB breakthrough infections, and those with BA.5-XBB consecutive infections following three-dose vaccination. FINDINGS Following Omicron breakthrough infections, the levels of nAbs against WT and pre-Omicron VOCs were higher due to immune imprinting established by WT-based vaccination, in comparison to nAbs against Omicron variants. Interestingly, the XBB breakthrough infections elicited a broader neutralization spectrum against SARS-CoV-2 variants compared to the BA.5 breakthrough infections. This observation suggests that the XBB variant demonstrates superior immunogenicity relative to BA.5. Notably, hybrid immunization of BA.5 breakthrough infections after WT vaccination led to additional immune imprinting, resulting in a broadened neutralization profile against both WT and BA.5 variants in BA.5-XBB consecutive infections. However, the duration of nAbs was shorter in these reinfections compared to the breakthrough infections. Additionally, the expanded immune imprinting from previous WT vaccination and BA.5 breakthrough infections account for the enhanced plasma neutralization immunodominance observed in the antigenic cartography for BA.5-XBB consecutive infections. INTERPRETATION Overall, we demonstrated a persistent and expanded effect of immune imprinting from prior SARS-CoV-2 exposures. Thus, future vaccines should specifically address the latest variants, and booster shots should be given at a longer interval after the previous infection or vaccination.
Collapse
Affiliation(s)
- Tingting Jia
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fuxiang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yihao Chen
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiuyi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiamin Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dongli Wang
- Guangming District Center for Disease Control and Prevention, Shenzhen, PR China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Sun Yat-sen University, Shenzhen, PR China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, PR China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China.
| |
Collapse
|
10
|
Wang W, Bhushan G, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Pollett SD, Mitre E, Katzelnick LC, Weiss CD. Human and hamster sera correlate well in identifying antigenic drift among SARS-CoV-2 variants, including JN.1. J Virol 2024; 98:e0094824. [PMID: 39365051 DOI: 10.1128/jvi.00948-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024] Open
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with fivefold to sixfold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a fivefold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.IMPORTANCEUpdates to COVID-19 vaccine antigens depend on assessing how much vaccine antigens differ antigenically from newer SARS-CoV-2 variants. Human sera from single variant infections are ideal for discriminating antigenic differences among variants, but such primary infection sera are now rare due to high population immunity. It remains unclear whether sera from experimentally infected animals could substitute for human sera for antigenic assessments. This report shows that neutralization titers of variant-matched human and hamster primary infection sera correlate well and recognize variants similarly, indicating that hamster sera can be a proxy for human sera for antigenic assessments. We further show that human sera following an XBB.1.5 booster vaccine broadly neutralized XBB sub-lineage variants but titers were fivefold lower against the more recent JN.1 variant. These findings support updating the current COVID-19 vaccine variant composition and developing a framework for assessing antigenic differences in future variants using hamster primary infection sera.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhuanand Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Tony T Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
11
|
Wu J, Jiang M, Li J, Hu X, Long Q, Song S, Ye H, He Y, Ma X, Yu W, Chen X, Zhao L, Wu F, Chen X, Zheng J, Wang M, Zheng B, Yang S, Bu L, Chen Q, Li K, Zheng Y, Gao Z. Heterogeneity of SARS-CoV-2 immune responses after the nationwide Omicron wave in China. Microbiol Spectr 2024; 12:e0111724. [PMID: 39287459 PMCID: PMC11536994 DOI: 10.1128/spectrum.01117-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
It remains unclear how previous infections and vaccinations influenced and shaped heterogeneous immune responses against Omicron and its variants in diverse populations in China. After the national wave of Omicron in early 2023, we evaluated serum levels of neutralizing antibodies (nAbs) against Omicron (B.1.1.529) and its variants (BA.5, BF.7, and CH1.1) in 33 COVID-19 convalescents and 40 uninfected vaccinees, using vesicular stomatitis virus-based pseudovirus neutralizing assay. In addition, we followed 34 Delta convalescent patients to compare their immune responses against Omicron before (late 2021) and after the Omicron wave (early 2023). NAbs at the acute phase of the disease were investigated in 50 Omicron inpatients, including 24 vaccinated and 26 unvaccinated patients. Among them, nasal mucosal IgA levels were measured in 42 subjects. Compared to vaccination, breakthrough infections significantly increased the breadth and magnitude of serum nAbs and mucosal IgA levels against Omicron variants. Exposure to Omicron but not Delta elicited stronger pan-Omicron responses. In Omicron inpatients, nAbs continued to rise as vaccination doses increased. However, in both vaccinees and convalescents, a fourth dose vaccination did not elicit higher nAbs against Omicron. Furthermore, nAbs against Omicron variants lasted longer than nAbs against WT SARS-CoV-2. Breakthrough infections of Omicron variants elicited specific immune responses against Omicron compared to vaccination and Delta infection. Although repeated vaccination revealed limited impacts on serum nAbs, populations at high risk of hospitalization may still benefit from continued vaccination.IMPORTANCEThe study described the specific humoral immunity against Omicron and its variants (BA.5, BF.7, and CH1.1) in diverse populations, including Delta-positive convalescent patients, Omicron-infected patients with a previous or current confirmed Delta infection, Omicron-positive patients, and healthy controls. In addition, we followed Delta convalescents for 1 year to evaluate the effect of a booster vaccine, breakthrough infection, and reinfection. Nasal mucosal IgA levels against SARS-CoV-2 were also examined. The findings of this study demonstrated the varied responses of individuals in different states following the outbreak of Omicron, highlighting the potential advantages of ongoing immunization for groups that are more vulnerable and have a greater likelihood of being hospitalized.
Collapse
Affiliation(s)
- Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mingzheng Jiang
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoyi Hu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Xi Chen
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Fangfang Wu
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoyong Chen
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jianshi Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Minghui Wang
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Binghan Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuoqi Yang
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Department of Thoracic Surgery, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Liang Bu
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Department of Thoracic Surgery, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qin Chen
- Department of Cardiovascular Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ke Li
- Department of Critical Care Medicine, School of Medicine, Xiamen University, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
12
|
Leon A, Fleming-Davies A, Adelman J, Hawley D. Pathogen priming alters host transmission potential and predictors of transmissibility in a wild songbird species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619473. [PMID: 39484552 PMCID: PMC11526880 DOI: 10.1101/2024.10.21.619473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pathogen reinfections occur widely, but the extent to which reinfected hosts contribute to ongoing transmission is often unknown despite its implications for host-pathogen dynamics. House finches (Haemorhous mexicanus) acquire partial protection from initial exposure to the bacterial pathogen Mycoplasma gallisepticum (MG), with hosts readily reinfected with homologous or heterologous strains on short timescales. However, the extent to which reinfected hosts contribute to MG transmission has not been tested. We used three pathogen priming treatments- none, intermediate (repeated low-dose priming), or high (single high-dose priming)-to test how prior pathogen priming alters the likelihood of transmission to a cagemate during index bird reinfection with a homologous or heterologous MG strain. Relative to unprimed control hosts, the highest priming level strongly reduced maximum pathogen loads and transmission success of index birds during reinfections. Reinfections with the heterologous strain, previously shown to be more virulent and transmissible than the homologous strain used, resulted in higher pathogen loads within high-primed index birds, and showed higher overall transmission success regardless of host priming treatment. This suggests that inherent differences in strain transmissibility are maintained in primed hosts, leading to the potential for ongoing transmission during reinfections. Finally, among individuals, transmission was most likely from hosts harboring higher within-host pathogen loads, while associations between disease severity and transmission probability were dependent on a given bird's priming treatment. Overall, our results indicate that reinfections can result in ongoing transmission, particularly where reinfections result from heterologous and highly transmissible strains, with key implications for virulence evolution.
Collapse
Affiliation(s)
- A.E. Leon
- Department of Biological Sciences, Virginia Tech
| | | | - J.S. Adelman
- Department of Biological Sciences, University of Memphis
| | - D.M. Hawley
- Department of Biological Sciences, Virginia Tech
| |
Collapse
|
13
|
Martinez EJ, Chang WC, Chen WH, Hajduczki A, Thomas PV, Jensen JL, Choe M, Sankhala RS, Peterson CE, Rees PA, Kimner J, Soman S, Kuklis C, Mendez-Rivera L, Dussupt V, King J, Corbett C, Mayer SV, Fernandes A, Murzello K, Cookenham T, Hvizdos J, Kummer L, Hart T, Lanzer K, Gambacurta J, Reagan M, Duso D, Vasan S, Collins ND, Michael NL, Krebs SJ, Gromowski GD, Modjarrad K, Kaundinya J, Joyce MG. SARS-CoV-2 ferritin nanoparticle vaccines produce hyperimmune equine sera with broad sarbecovirus activity. iScience 2024; 27:110624. [PMID: 39351195 PMCID: PMC11440237 DOI: 10.1016/j.isci.2024.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern (VoC) and the threat of future zoonotic sarbecovirus spillover emphasizes the need for broadly protective next-generation vaccines and therapeutics. We utilized SARS-CoV-2 spike ferritin nanoparticle (SpFN), and SARS-CoV-2 receptor binding domain ferritin nanoparticle (RFN) immunogens, in an equine model to elicit hyperimmune sera and evaluated its sarbecovirus neutralization and protection capacity. Immunized animals rapidly elicited sera with the potent neutralization of SARS-CoV-2 VoC, and SARS-CoV-1 pseudoviruses, and potent binding against receptor binding domains from sarbecovirus clades 1b, 1a, 2, 3, and 4. Purified equine polyclonal IgG provided protection against Omicron XBB.1.5 virus in the K18-hACE2 transgenic mouse model. These results suggest that SARS-CoV-2-based nanoparticle vaccines can rapidly produce a broad and protective sarbecovirus response in the equine model and that equine serum has therapeutic potential against emerging SARS-CoV-2 VoC and diverse sarbecoviruses, presenting a possible alternative or supplement to monoclonal antibody immunotherapies.
Collapse
Affiliation(s)
- Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jordan Kimner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vincent Dussupt
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Courtney Corbett
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
14
|
Mühlemann B, Trimpert J, Walper F, Schmidt ML, Jansen J, Schroeder S, Jeworowski LM, Beheim-Schwarzbach J, Bleicker T, Niemeyer D, Richter A, Adler JM, Vidal RM, Langner C, Vladimirova D, Wilks SH, Smith DJ, Voß M, Paltzow L, Martínez Christophersen C, Rose R, Krumbholz A, Jones TC, Corman VM, Drosten C. Antigenic cartography using variant-specific hamster sera reveals substantial antigenic variation among Omicron subvariants. Proc Natl Acad Sci U S A 2024; 121:e2310917121. [PMID: 39078681 PMCID: PMC11317614 DOI: 10.1073/pnas.2310917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has developed substantial antigenic variability. As the majority of the population now has pre-existing immunity due to infection or vaccination, the use of experimentally generated animal immune sera can be valuable for measuring antigenic differences between virus variants. Here, we immunized Syrian hamsters by two successive infections with one of nine SARS-CoV-2 variants. Their sera were titrated against 16 SARS-CoV-2 variants, and the resulting titers were visualized using antigenic cartography. The antigenic map shows a condensed cluster containing all pre-Omicron variants (D614G, Alpha, Delta, Beta, Mu, and an engineered B.1+E484K variant) and considerably more diversity among a selected panel of Omicron subvariants (BA.1, BA.2, BA.4/BA.5, the BA.5 descendants BF.7 and BQ.1.18, the BA.2.75 descendant BN.1.3.1, the BA.2-derived recombinants XBB.2 and EG.5.1, and the BA.2.86 descendant JN.1). Some Omicron subvariants were as antigenically distinct from each other as the wildtype is from the Omicron BA.1 variant. Compared to titers measured in human sera, titers in hamster sera are of higher magnitude, show less fold change, and result in a more compact antigenic map topology. The results highlight the potential of sera from hamsters for the continued antigenic characterization of SARS-CoV-2.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Felix Walper
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Marie L. Schmidt
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jenny Jansen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Simon Schroeder
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Lara M. Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Anja Richter
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
| | - Julia M. Adler
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | | | - Christine Langner
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Daria Vladimirova
- Institut für Virologie, Freie Universität Berlin, Berlin14163, Germany
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Mathias Voß
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Lea Paltzow
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | | | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel24105, Germany
- Labor Dr. Krause und Kollegen Medizinisches Versorgungszentrum GmbH, Kiel24106, Germany
| | - Terry C. Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CambridgeCB2 3EJ, United Kingdom
| | - Victor M. Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
- Labor Berlin–Charité Vivantes GmbH, Berlin13353, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin10117, Germany
- German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin10117, Germany
| |
Collapse
|
15
|
Gütlin Y, Albertos Torres D, Gensch A, Schlotterbeck AK, Stöger L, Heller S, Infanti L, Barut GT, Thiel V, Leuzinger K, Hirsch HH, Buser A, Egli A. Anti-SARS-CoV-2 total immunoglobulin and neutralising antibody responses in healthy blood donors throughout the COVID-19 pandemic: a longitudinal observational study. Swiss Med Wkly 2024; 154:3408. [PMID: 39137369 DOI: 10.57187/s.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
INTRODUCTION Quantifying antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and neutralising antibodies may help to understand protection at the individual and population levels. Determination of neutralising antibodies using classical virus neutralisation tests (VNT) is considered the gold standard, but they are costly and time-intensive. Enzyme-linked immunosorbent assay (ELISA)-based surrogate VNTs (sVNT) or anti-SARS-CoV-2 spike protein receptor binding domain immunoglobulins (anti-S-RBD Ig) may be suitable alternatives to VNTs. We aimed to (a) explore the correlations between anti-S-RBD Ig, VNT, and sVNT measurements and (b) describe humoral immunity against SARS-CoV-2 after vaccination, natural infection, and vaccine breakthrough infection in healthy blood donors. METHODS We measured total anti-SARS-CoV-2 Ig in 5714 serum samples from 2748 healthy individuals visiting the Swiss Red Cross Blood Donation Centre in Basel from 03/2020 to 04/2022. We used the Elecsys® Anti-SARS-CoV-2 immunoassay (Roche) against the N- and S-receptor binding domain (RBD) proteins. In a subset of 548 samples from 123 donors, we conducted sVNTs against the Wuhan wild-type SARS-CoV-2 (SARS-CoV-2 Neutralizing Antibodies Detection Kit; Adipogen™). In 100 samples from 40 donors, we correlated sVNT and VNTs against the wild-type (D614G WU1) virus. Surveys were sent to the blood donors to collect data on their SARS-CoV-2 infection and vaccination status. Using this data, donors were categorised as "vaccination only", "infection before vaccination", "post-vaccine breakthrough infection", and "natural infection only". RESULTS Our longitudinal observation study cohort consisted of 50.7% males with a median age of 31 years (range 18-75 y). Anti-SARS-CoV-2 N protein positivity rates per month indicate 57.1% (88/154) of the cohort was infected up to 04/2022. No differences in seropositivity were found between sexes, age groups, blood types (AB0 or RhD), and cytomegalovirus serostatus. We observed a high correlation between anti-S-RBD Ig and inhibition percentage (Spearman's ρ = 0.92, Kendall's τ = 0.77, p <0.0001). We determined the sensitivity and specificity for the manufacturers' thresholds for detecting virus-neutralising effects and computed the "best" cut-off based on our real-world data. We categorised 722/1138 (63.5%) donors as vaccination only (82.3%), post-vaccine breakthrough infection (7.8%), infection before vaccination (5.8%), and natural infection only (4.2%). We observed a lower inhibition percentage in the natural infection-only group than in all other vaccinated groups. The infection before vaccination group had higher anti-S-RBD Ig titres after the first vaccine dose than the other vaccinated groups. CONCLUSION In total, 57.1% of healthy blood donors were infected with SARS-CoV-2, but natural infection without evidence of vaccination seems to result in substantially lower neutralising antibody levels. An estimate of antibody neutralisation may be helpful to assess reinfection risk. Total anti-S-RBD Ig correlates with surrogate virus neutralisation test results, a surrogate for neutralisation; therefore, we suggest that total anti-S-RBD Ig may estimate the level of neutralising antibodies. The threshold for protection from an unfavourable clinical outcome must be evaluated in prospective clinical cohorts.
Collapse
Affiliation(s)
- Yukino Gütlin
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Diana Albertos Torres
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexander Gensch
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Laurent Stöger
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stefanie Heller
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service Swiss Red Cross, Basel, Switzerland
| | - Güliz Tuba Barut
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | | | - Hans H Hirsch
- Clinical Virology, University Hospital Basel, Basel, Switzerland
| | - Andreas Buser
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
16
|
Mühlemann B, Wilks SH, Baracco L, Bekliz M, Carreño JM, Corman VM, Davis-Gardner ME, Dejnirattisai W, Diamond MS, Douek DC, Drosten C, Eckerle I, Edara VV, Ellis M, Fouchier RAM, Frieman M, Godbole S, Haagmans B, Halfmann PJ, Henry AR, Jones TC, Katzelnick LC, Kawaoka Y, Kimpel J, Krammer F, Lai L, Liu C, Lusvarghi S, Meyer B, Mongkolsapaya J, Montefiori DC, Mykytyn A, Netzl A, Pollett S, Rössler A, Screaton GR, Shen X, Sigal A, Simon V, Subramanian R, Supasa P, Suthar MS, Türeli S, Wang W, Weiss CD, Smith DJ. Comparative analysis of SARS-CoV-2 neutralization titers reveals consistency between human and animal model serum and across assays. Sci Transl Med 2024; 16:eadl1722. [PMID: 38748773 DOI: 10.1126/scitranslmed.adl1722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/11/2024] [Indexed: 08/31/2024]
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Lauren Baracco
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Meriem Bekliz
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok 10700, Thailand
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabella Eckerle
- Department of Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, CH-1211, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, CH-1211 Geneva, Switzerland
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bart Haagmans
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Benjamin Meyer
- Centre of Vaccinology, Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7BN, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, 3015 Rotterdam, Netherlands
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Carol D Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
17
|
Astakhova EA, Morozov AA, Vavilova JD, Filatov AV. Antigenic Cartography of SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:862-871. [PMID: 38880647 DOI: 10.1134/s0006297924050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 06/18/2024]
Abstract
Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.
Collapse
Affiliation(s)
- Ekaterina A Astakhova
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia.
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey A Morozov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Julia D Vavilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander V Filatov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
18
|
Antia A, Alvarado DM, Zeng Q, Casorla-Perez LA, Davis DL, Sonnek NM, Ciorba MA, Ding S. SARS-CoV-2 Omicron BA.1 Variant Infection of Human Colon Epithelial Cells. Viruses 2024; 16:634. [PMID: 38675974 PMCID: PMC11055019 DOI: 10.3390/v16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - David M. Alvarado
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - Luis A. Casorla-Perez
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Deanna L. Davis
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Naomi M. Sonnek
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Matthew A. Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| |
Collapse
|
19
|
Wang W, Bhushan GL, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Mitre E, Pollett SD, Katzelnick LC, Weiss CD. Antigenic cartography using hamster sera identifies SARS-CoV-2 JN.1 evasion seen in human XBB.1.5 booster sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588359. [PMID: 38712124 PMCID: PMC11071293 DOI: 10.1101/2024.04.05.588359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali L. Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B. Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhu Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A. Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J. Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Tony T. Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D. Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
20
|
Ny Mioramalala DJ, Ratovoson R, Tagnouokam-Ngoupo PA, Abessolo Abessolo H, Mindimi Nkodo JM, Bouting Mayaka G, Tsoungui Atangana PC, Randrianarisaona F, Pélembi P, Nzoumbou-Boko R, Coti-Reckoundji CSG, Manirakiza A, Rahantamalala A, Randremanana RV, Tejiokem MC, Schoenhals M. SARS-CoV-2 Neutralizing Antibodies in Three African Countries Following Multiple Distinct Immune Challenges. Vaccines (Basel) 2024; 12:363. [PMID: 38675745 PMCID: PMC11054809 DOI: 10.3390/vaccines12040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has affected Madagascar, Cameroon, and the Central African Republic (CAR), with each experiencing multiple waves by mid-2022. This study aimed to evaluate immunity against SARS-CoV-2 strains Wuhan (W) and BA.2 (BA.2) among healthcare workers (HCWs) in these countries, focusing on vaccination and natural infection effects. METHODS HCWs' serum samples were analyzed for neutralizing antibodies (nAbs) against W and BA.2 variants, with statistical analyses comparing responses between countries and vaccination statuses. RESULTS Madagascar showed significantly higher nAb titers against both strains compared to CAR and Cameroon. Vaccination notably increased nAb levels against W by 2.6-fold in CAR and 1.8-fold in Madagascar, and against BA.2 by 1.6-fold in Madagascar and 1.5-fold in CAR. However, in Cameroon, there was no significant difference in nAb levels between vaccinated and unvaccinated groups. CONCLUSION This study highlights the complex relationship between natural and vaccine-induced immunity, emphasizing the importance of assessing immunity in regions with varied epidemic experiences and low vaccination rates.
Collapse
Affiliation(s)
- Diary Juliannie Ny Mioramalala
- Institut Pasteur of Madagascar, Immunology of Infectious Diseases, Antananarivo 101, Madagascar; (D.J.N.M.); (F.R.); (A.R.)
| | - Rila Ratovoson
- Institut Pasteur of Madagascar, Epidemiology and Clinical Research, Antananarivo 101, Madagascar; (R.R.); (R.V.R.)
| | - Paul Alain Tagnouokam-Ngoupo
- Centre Pasteur du Cameroon, Epidemiology and Public Health, Yaoundé P.O. Box 1274, Cameroon; (P.A.T.-N.); (M.C.T.)
| | | | | | | | | | - Fanirisoa Randrianarisaona
- Institut Pasteur of Madagascar, Immunology of Infectious Diseases, Antananarivo 101, Madagascar; (D.J.N.M.); (F.R.); (A.R.)
| | - Pulchérie Pélembi
- Institut Pasteur of Bangui, Epidemiology, Bangui P.O. Box 923, Central African Republic; (P.P.); (R.N.-B.); (C.S.G.C.-R.); (A.M.)
| | - Romaric Nzoumbou-Boko
- Institut Pasteur of Bangui, Epidemiology, Bangui P.O. Box 923, Central African Republic; (P.P.); (R.N.-B.); (C.S.G.C.-R.); (A.M.)
| | | | - Alexandre Manirakiza
- Institut Pasteur of Bangui, Epidemiology, Bangui P.O. Box 923, Central African Republic; (P.P.); (R.N.-B.); (C.S.G.C.-R.); (A.M.)
| | - Anjanirina Rahantamalala
- Institut Pasteur of Madagascar, Immunology of Infectious Diseases, Antananarivo 101, Madagascar; (D.J.N.M.); (F.R.); (A.R.)
| | - Rindra Vatosoa Randremanana
- Institut Pasteur of Madagascar, Epidemiology and Clinical Research, Antananarivo 101, Madagascar; (R.R.); (R.V.R.)
| | - Mathurin Cyrille Tejiokem
- Centre Pasteur du Cameroon, Epidemiology and Public Health, Yaoundé P.O. Box 1274, Cameroon; (P.A.T.-N.); (M.C.T.)
| | - Matthieu Schoenhals
- Institut Pasteur of Madagascar, Immunology of Infectious Diseases, Antananarivo 101, Madagascar; (D.J.N.M.); (F.R.); (A.R.)
| |
Collapse
|
21
|
Teixeira DG, Rodrigues-Neto JF, da Cunha DCS, Jeronimo SMB. Understanding SARS-CoV-2 spike glycoprotein clusters and their impact on immunity of the population from Rio Grande do Norte, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105556. [PMID: 38242186 DOI: 10.1016/j.meegid.2024.105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
SARS-CoV-2 genome underwent mutations since it started circulating within the human population. The aim of this study was to understand the fluctuation of the spike clusters concomitant to the population immunity either due to natural infection and/or vaccination in a state of Brazil that had both high rate of natural infection and vaccination coverage. A total of 1725 SARS-CoV-2 sequences from the state of Rio Grande do Norte, Brazil, were retrieved from GISAID and subjected to cluster analysis. Immunoinformatics were used to predict T- and B-cell epitopes, followed by simulation to estimate either pro- or anti-inflammatory responses and to correlate with circulating variants. From March 2020 to June 2022, the state of Rio Grande do Norte reported 579,931 COVID-19 cases with a 1.4% fatality rate across the three major waves: May-Sept 2020, Feb-Aug 2021, and Jan-Mar 2022. Cluster 0 variants (wild type strain, Zeta) were prevalent in the first wave and Delta (AY.*), which circulated in Brazil in the latter half of 2021, featuring fewer unique epitopes. Cluster 1 (Gamma (P.1 + P.1.*)) dominated the first half of 2021. Late 2021 had two new clusters, Cluster 2 (Omicron, (B.1.1.529 + BA.*)), and Cluster 3 (BA.*) with the most unique epitopes, in addition to Cluster 4 (Delta sub lineages) which emerged in the second half of 2021 with fewer unique epitopes. Cluster 1 epitopes showed a high pro-inflammatory propensity, while others exhibited a balanced cytokine induction. The clustering method effectively identified Spike groups that may contribute to immune evasion and clinical presentation, and explain in part the clinical outcome.
Collapse
Affiliation(s)
- Diego Gomes Teixeira
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Firmino Rodrigues-Neto
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Caicó, Rio Grande do Norte, Brazil
| | - Dayse Caroline Severiano da Cunha
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Selma Maria Bezerra Jeronimo
- Instituto de Medicina Tropical do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Departmento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande Norte, Natal, Rio Grande do Norte, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
22
|
Metzdorf K, Jacobsen H, Kim Y, Teixeira Alves LG, Kulkarni U, Eschke K, Chaudhry MZ, Hoffmann M, Bertoglio F, Ruschig M, Hust M, Cokarić Brdovčak M, Materljan J, Šustić M, Krmpotić A, Jonjić S, Widera M, Ciesek S, Pöhlmann S, Landthaler M, Čičin-Šain L. A single-dose MCMV-based vaccine elicits long-lasting immune protection in mice against distinct SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.11.25.517953. [PMID: 36482969 PMCID: PMC9727759 DOI: 10.1101/2022.11.25.517953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Current vaccines against COVID-19 elicit immune responses that are overall strong but wane rapidly. As a consequence, the necessary booster shots have led to vaccine fatigue. Hence, vaccines that would provide lasting protection against COVID-19 are needed, but are still unavailable. Cytomegaloviruses (CMV) elicit lasting and uniquely strong immune responses. Used as vaccine vectors, they may be attractive tools that obviate the need for boosters. Therefore, we tested the murine CMV (MCMV) as a vaccine vector against COVID-19 in relevant preclinical models of immunization and challenge. We have previously developed a recombinant murine CMV (MCMV) vaccine vector expressing the spike protein of the ancestral SARS-CoV-2 (MCMVS). In this study, we show that the MCMVS elicits a robust and lasting protection in young and aged mice. Notably, S-specific humoral and cellular immunity was not only maintained but even increased over a period of at least 6 months. During that time, antibody avidity continuously increased and expanded in breadth, resulting in neutralization of genetically distant variants, like Omicron BA.1. A single dose of MCMVS conferred rapid virus clearance upon challenge. Moreover, MCMVS vaccination controlled two immune-evading variants of concern (VoCs), the Beta (B.1.135) and the Omicron (BA.1) variants. Thus, CMV vectors provide unique advantages over other vaccine technologies, eliciting broadly reactive and long-lasting immune responses against COVID-19.
Collapse
Affiliation(s)
- Kristin Metzdorf
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Henning Jacobsen
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yeonsu Kim
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kathrin Eschke
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maximilian Ruschig
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Jelena Materljan
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marko Šustić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- German Centre for Infection Research (DZIF), External partner site Frankfurt, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CiiM), a joint venture of HZI and MHH, Hannover, Germany
| |
Collapse
|
23
|
Abela IA, Schwarzmüller M, Ulyte A, Radtke T, Haile SR, Ammann P, Raineri A, Rueegg S, Epp S, Berger C, Böni J, Manrique A, Audigé A, Huber M, Schreiber PW, Scheier T, Fehr J, Weber J, Rusert P, Günthard HF, Kouyos RD, Puhan MA, Kriemler S, Trkola A, Pasin C. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024; 15:e0272223. [PMID: 38270455 PMCID: PMC10865973 DOI: 10.1128/mbio.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Numerous clinical parameters link to severe coronavirus disease 2019, but factors that prevent symptomatic disease remain unknown. We investigated the impact of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and endemic human coronavirus (HCoV) antibody responses on symptoms in a longitudinal children cohort (n = 2,917) and a cross-sectional cohort including children and adults (n = 882), all first exposed to SARS-CoV-2 (March 2020 to March 2021) in Switzerland. Saliva (n = 4,993) and plasma (n = 7,486) antibody reactivity to the four HCoVs (subunit S1 [S1]) and SARS-CoV-2 (S1, receptor binding domain, subunit S2 [S2], nucleocapsid protein) was determined along with neutralizing activity against SARS-CoV-2 Wuhan, Alpha, Delta, and Omicron (BA.2) in a subset of individuals. Inferred recent SARS-CoV-2 infection was associated with a strong correlation between mucosal and systemic SARS-CoV-2 anti-spike responses. Individuals with pre-existing HCoV-S1 reactivity exhibited significantly higher antibody responses to SARS-CoV-2 in both plasma (IgG regression coefficients = 0.20, 95% CI = [0.09, 0.32], P < 0.001) and saliva (IgG regression coefficient = 0.60, 95% CI = [0.088, 1.11], P = 0.025). Saliva neutralization activity was modest but surprisingly broad, retaining activity against Wuhan (median NT50 = 32.0, 1Q-3Q = [16.4, 50.2]), Alpha (median NT50 = 34.9, 1Q-3Q = [26.0, 46.6]), and Delta (median NT50 = 28.0, 1Q-3Q = [19.9, 41.7]). In line with a rapid mucosal defense triggered by cross-reactive HCoV immunity, asymptomatic individuals presented with higher pre-existing HCoV-S1 activity in plasma (IgG HKU1, odds ratio [OR] = 0.53, 95% CI = [0.29,0.97], P = 0.038) and saliva (total HCoV, OR = 0.55, 95% CI = [0.33, 0.91], P = 0.019) and higher SARS-CoV-2 reactivity in saliva (IgG S2 fold change = 1.26, 95% CI = [1.03, 1.54], P = 0.030). By investigating the systemic and mucosal immune responses to SARS-CoV-2 and HCoVs in a population without prior exposure to SARS-CoV-2 or vaccination, we identified specific antibody reactivities associated with lack of symptom development.IMPORTANCEKnowledge of the interplay between human coronavirus (HCoV) immunity and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is critical to understanding the coexistence of current endemic coronaviruses and to building knowledge potential future zoonotic coronavirus transmissions. This study, which retrospectively analyzed a large cohort of individuals first exposed to SARS-CoV-2 in Switzerland in 2020-2021, revealed several key findings. Pre-existing HCoV immunity, particularly mucosal antibody responses, played a significant role in improving SARS-CoV-2 immune response upon infection and reducing symptoms development. Mucosal neutralizing activity against SARS-CoV-2, although low in magnitude, retained activity against SARS-CoV-2 variants underlining the importance of maintaining local mucosal immunity to SARS-CoV-2. While the cross-protective effect of HCoV immunity was not sufficient to block infection by SARS-CoV-2, the present study revealed a remarkable impact on limiting symptomatic disease. These findings support the feasibility of generating pan-protective coronavirus vaccines by inducing potent mucosal immune responses.
Collapse
Affiliation(s)
- Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Priska Ammann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Amapola Manrique
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| |
Collapse
|
24
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
25
|
Fröberg J, Koomen VJCH, van der Gaast-de Jongh CE, Philipsen R, GeurtsvanKessel CH, de Vries RD, Baas MC, van der Molen RG, de Jonge MI, Hilbrands LB, Huynen MA, Diavatopoulos DA. Primary Exposure to SARS-CoV-2 via Infection or Vaccination Determines Mucosal Antibody-Dependent ACE2 Binding Inhibition. J Infect Dis 2024; 229:137-146. [PMID: 37675756 PMCID: PMC10786246 DOI: 10.1093/infdis/jiad385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Mucosal antibodies play a critical role in preventing SARS-CoV-2 infections or reinfections by blocking the interaction of the receptor-binding domain (RBD) with the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. In this study, we investigated the difference between the mucosal antibody response after primary infection and vaccination. METHODS We assessed longitudinal changes in the quantity and capacity of nasal antibodies to neutralize the interaction of RBD with the ACE2 receptor using the spike protein and RBD from ancestral SARS-CoV-2 (Wuhan-Hu-1), as well as the RBD from the Delta and Omicron variants. RESULTS Significantly higher mucosal IgA concentrations were detected postinfection vs postvaccination, while vaccination induced higher IgG concentrations. However, ACE2-inhibiting activity did not differ between the cohorts. Regarding whether IgA or IgG drove ACE2 inhibition, infection-induced binding inhibition was driven by both isotypes, while postvaccination binding inhibition was mainly driven by IgG. CONCLUSIONS Our study provides new insights into the relationship between antibody isotypes and neutralization by using a sensitive and high-throughput ACE2 binding inhibition assay. Key differences are highlighted between vaccination and infection at the mucosal level, showing that despite differences in the response quantity, postinfection and postvaccination ACE2 binding inhibition capacity did not differ.
Collapse
Affiliation(s)
- Janeri Fröberg
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
- Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | - Vera J C H Koomen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
- Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
- Department of Nephrology, Radboud University Medical Center, Nijmegen
| | | | - Ria Philipsen
- Radboud Technology Center Clinical Studies, Radboud University Medical Center, Nijmegen
| | | | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam
| | - Marije C Baas
- Department of Nephrology, Radboud University Medical Center, Nijmegen
| | - Renate G van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
- Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen
| | - Martijn A Huynen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dimitri A Diavatopoulos
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
- Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| |
Collapse
|
26
|
Essaidi-Laziosi M, Pérez-Rodríguez FJ, Alvarez C, Sattonnet-Roche P, Torriani G, Bekliz M, Adea K, Lenk M, Suliman T, Preiser W, Müller MA, Drosten C, Kaiser L, Eckerle I. Distinct phenotype of SARS-CoV-2 Omicron BA.1 in human primary cells but no increased host range in cell lines of putative mammalian reservoir species. Virus Res 2024; 339:199255. [PMID: 38389324 PMCID: PMC10652112 DOI: 10.1016/j.virusres.2023.199255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2's genetic plasticity has led to several variants of concern (VOCs). Here we studied replicative capacity for seven SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, and Omicron BA.1) in primary reconstituted airway epithelia (HAE) and lung-derived cell lines. Furthermore, to investigate the host range of Delta and Omicron compared to ancestral SARS-CoV-2, we assessed replication in 17 cell lines from 11 non-primate mammalian species, including bats, rodents, insectivores and carnivores. Only Omicron's phenotype differed in vitro, with rapid but short replication and efficient production of infectious virus in nasal HAEs, in contrast to other VOCs, but not in lung cell lines. No increased infection efficiency for other species was observed, but Delta and Omicron infection efficiency was increased in A549 cells. Notably replication in A549 and Calu3 cells was lower than in nasal HAE. Our results suggest better adaptation of VOCs towards humans, without an extended host range, and may be relevant to the search for the putative intermediate host and reservoirs prior to the pandemic.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Francisco J Pérez-Rodríguez
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Catia Alvarez
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Pascale Sattonnet-Roche
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Giulia Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Matthias Lenk
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tasnim Suliman
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Medical Virology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Marcel A Müller
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland.
| |
Collapse
|
27
|
Puhach O, Bellon M, Adea K, Bekliz M, Hosszu-Fellous K, Sattonnet P, Hulo N, Kaiser L, Eckerle I, Meyer B. SARS-CoV-2 convalescence and hybrid immunity elicits mucosal immune responses. EBioMedicine 2023; 98:104893. [PMID: 38035462 PMCID: PMC10755109 DOI: 10.1016/j.ebiom.2023.104893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Mucosal antibodies play a key role in the protection against SARS-CoV-2 infection in the upper respiratory tract, and potentially in limiting virus replication and therefore onward transmission. While systemic immunity to SARS-CoV-2 is well understood, we have a limited understanding about the antibodies present on the nasal mucosal surfaces. METHODS In this study, we evaluated SARS-CoV-2 mucosal antibodies following previous infection, vaccination, or a combination of both. Paired nasal fluid and serum samples were collected from 143 individuals, which include convalescent, vaccinated, or breakthrough infections. FINDINGS We detected a high correlation between IgG responses in serum and nasal fluids, which were higher in both compartments in vaccinated compared to convalescent participants. Contrary, nasal and systemic SARS-CoV-2 IgA responses were weakly correlated, indicating a compartmentalization between the local and systemic IgA responses. SARS-CoV-2 secretory component IgA (s-IgA) antibodies, present exclusively on mucosal surfaces, were detected in the nasal fluid only in a minority of vaccinated subjects and were significantly higher in previously infected individuals. Depletion of IgA antibodies in nasal fluids resulted in a tremendous reduction of neutralization activity against SARS-CoV-2, indicating that IgA is the crucial contributor to neutralization in the nasal mucosa. Neutralization against SARS-CoV-2 was higher in the mucosa of subjects with previous SARS-CoV-2 infections compared to vaccinated participants. INTERPRETATION In summary, we demonstrate that currently available vaccines elicit strong systemic antibody responses, but SARS-CoV-2 infection generates higher titers of binding and neutralizing mucosal antibodies. Our results support the importance to develop SARS-CoV-2 vaccines that elicit mucosal antibodies. FUNDING The work was funded by the COVID-19 National Research Program 78 (grant number 198412) of the Swiss National Science Foundation.
Collapse
Affiliation(s)
- Olha Puhach
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Mathilde Bellon
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kenneth Adea
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Krisztina Hosszu-Fellous
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pascale Sattonnet
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Isabella Eckerle
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Benjamin Meyer
- Department of Pathology and Immunology, Centre of Vaccinology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
28
|
Kenny G, O'Reilly S, Wrigley Kelly N, Negi R, Gaillard C, Alalwan D, Saini G, Alrawahneh T, Francois N, Angeliadis M, Garcia Leon AA, Tinago W, Feeney ER, Cotter AG, de Barra E, Yousif O, Horgan M, Doran P, Stemler J, Koehler P, Cox RJ, O'Shea D, Olesen OF, Landay A, Hogan AE, Lelievre JD, Gautier V, Cornely OA, Mallon PWG. Distinct receptor binding domain IgG thresholds predict protective host immunity across SARS-CoV-2 variants and time. Nat Commun 2023; 14:7015. [PMID: 37919289 PMCID: PMC10622572 DOI: 10.1038/s41467-023-42717-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
SARS-CoV-2 neutralising antibodies provide protection against COVID-19. Evidence from early vaccine trials suggested binding antibody thresholds could serve as surrogate markers of neutralising capacity, but whether these thresholds predict sufficient neutralising capacity against variants of concern (VOCs), and whether this is impacted by vaccine or infection history remains unclear. Here we analyse individuals recovered from, vaccinated or with hybrid immunity against SARS-CoV-2. An NT50 ≥ 100 IU confers protection in vaccine trials, however, as VOC induce a reduction in NT50, we use NT50 ≥ 1000 IU as a cut off for WT NT50 that would retain neutralisation against VOC. In unvaccinated convalescent participants, a receptor binding domain (RBD) IgG of 456 BAU/mL predicts an NT50 against WT of 1000 IU with an accuracy of 80% (95%CI 73-86%). This threshold maintains accuracy in determining loss of protective immunity against VOC in two vaccinated cohorts. It predicts an NT50 < 100 IU against Beta with an accuracy of 80% (95%CI 67-89%) in 2 vaccine dose recipients. In booster vaccine recipients with a history of COVID-19 (hybrid immunity), accuracy is 87% (95%CI 77-94%) in determining an NT50 of <100 IU against BA.5. This analysis provides a discrete threshold that could be used in future clinical studies.
Collapse
Affiliation(s)
- Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sophie O'Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Neil Wrigley Kelly
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Riya Negi
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Colette Gaillard
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Dana Alalwan
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Gurvin Saini
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Tamara Alrawahneh
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Nathan Francois
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Matthew Angeliadis
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Alejandro Abner Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Willard Tinago
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Aoife G Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Eccles St, Dublin 7, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Beaumont, Dublin 9, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Obada Yousif
- Endocrinology Department, Wexford General Hospital, Carricklawn, Wexford, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Cork University Hospital, Wilton, Co Cork, Ireland
| | - Peter Doran
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine and University of Cologne, Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne Department Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine and University of Cologne, Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne Department Cologne, Cologne, Germany
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Donal O'Shea
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Ole F Olesen
- European Vaccine Initiative, Heidelberg, Germany
| | - Alan Landay
- Department of internal Medicine, Rush University, Chicago, IL, USA
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- National Children's Research Centre, Dublin 12, Ireland
| | | | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine and University of Cologne, Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne Department Cologne, Cologne, Germany
| | - Patrick W G Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
29
|
Sobhani K, Cheng S, Binder RA, Mantis NJ, Crawford JM, Okoye N, Braun JG, Joung S, Wang M, Lozanski G, King CL, Roback JD, Granger DA, Boppana SB, Karger AB. Clinical Utility of SARS-CoV-2 Serological Testing and Defining a Correlate of Protection. Vaccines (Basel) 2023; 11:1644. [PMID: 38005976 PMCID: PMC10674881 DOI: 10.3390/vaccines11111644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Herein, we review established clinical use cases for SARS-CoV-2 antibody measures, which include diagnosis of recent prior infection, isolating high titer convalescent plasma, diagnosing multisystem inflammatory syndrome in children (MIS-C), and booster dosing in the immunosuppressed and other populations. We then address whether an antibody correlate of protection (CoP) for SARS-CoV-2 has been successfully defined with the following considerations: Antibody responses in the immunocompetent, vaccine type, variants, use of binding antibody tests vs. neutralization tests, and endpoint measures. In the transition from the COVID-19 pandemic to endemic, there has been much interest in defining an antibody CoP. Due to the high mutability of respiratory viruses and our current knowledge of SARS-CoV-2 variants defining a CoP for prevention of infection is unrealistic. However, a CoP may be defined for prevention of severe disease requiring hospitalization and/or death. Most SARS-CoV-2 CoP research has focused on neutralization measurements. However, there can be significant differences in neutralization test methods, and disparate responses to new variants depending on format. Furthermore, neutralization assays are often impractical for high throughput applications (e.g., assessing humoral immune response in populations or large cohorts). Nevertheless, CoP studies using neutralization measures are reviewed to determine where there is consensus. Alternatively, binding antibody tests could be used to define a CoP. Binding antibody assays tend to be highly automatable, high throughput, and therefore practical for large population applications. Again, we review studies for consensus on binding antibody responses to vaccines, focusing on standardized results. Binding antibodies directed against the S1 receptor binding domain (S1-RBD) of the viral spike protein can provide a practical, indirect measure of neutralization. Initially, a response for S1-RBD antibodies may be selected that reflects the peak response in immunocompetent populations and may serve as a target for booster dosing in the immunocompromised. From existing studies reporting peak S1-RBD responses in standardized units, an approximate range of 1372-2744 BAU/mL for mRNA and recombinant protein vaccines was extracted that could serve as an initial CoP target. This target would need to be confirmed and potentially adjusted for updated vaccines, and almost certainly for other vaccine formats (i.e., viral vector). Alternatively, a threshold or response could be defined based on outcomes over time (i.e., prevention of severe disease). We also discuss the precedent for clinical measurement of antibodies for vaccine-preventable diseases (e.g., hepatitis B). Lastly, cellular immunity is briefly addressed for its importance in the nature and durability of protection.
Collapse
Affiliation(s)
- Kimia Sobhani
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Raquel A. Binder
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicholas J. Mantis
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12222, USA
| | - James M. Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nkemakonam Okoye
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jonathan G. Braun
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandy Joung
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Minhao Wang
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Christopher L. King
- Department of Pathology, Case Western Reserve University and Veterans Affairs Research Service, Cleveland, OH 44106, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA 92697, USA
| | - Suresh B. Boppana
- Department of Pediatrics and Department of Microbiology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
30
|
Joo Y, Kim DK, Jeon YG, Kim AR, Do HN, Yoon SY, Kim JS, Jung SW, Hwang HS, Moon JY, Jeong KH, Lee SH, Kang SY, Kim YG. Comparison of Humoral Response between Third and Fourth Doses of COVID-19 Vaccine in Hemodialysis Patients. Vaccines (Basel) 2023; 11:1584. [PMID: 37896987 PMCID: PMC10610999 DOI: 10.3390/vaccines11101584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Dialysis patients are more likely to die or become hospitalized from coronavirus disease 2019 (COVID-19). Currently, only a few studies have evaluated the efficacy of a fourth booster vaccination in hemodialysis (HD) patients and there is not enough evidence to recommend for or against a fourth booster vaccination. This study compared the humoral response and disease severity of patients on HD who received either three or four doses of COVID-19 vaccine. A total of 88 patients were enrolled. Humoral response to vaccination was measured by quantifying immunoglobulin G levels against the receptor binding domain of SARS-CoV-2 (anti-RBD IgG) at five different times and plaque reduction neutralization tests (PRNT) at two different times after vaccination over a period of 18 months. Antibody levels were measured at approximately two-month intervals after the first and second dose, then four months after the third dose, and then one to six months after the fourth dose of vaccine. PRNT was performed two months after the second and four months after the third dose of vaccine. We classified patients into four groups according to the number of vaccine doses and presence of COVID-19 infection. Severe infection was defined as hospital admission for greater than or equal to two weeks or death. There was no difference in antibody levels between naïve and infected patients except after a fourth vaccination, which was effective for increasing antibodies in infection-naïve patients. Age, sex, body mass index (BMI), dialysis vintage, and presence of diabetes mellitus (DM) did not show a significant correlation with antibody levels. Four patients who experienced severe COVID-19 disease tended to have lower antibody levels prior to infection. A fourth dose of SARS-CoV-2 vaccine significantly elevated antibodies in infection-naïve HD patients and may be beneficial for HD patients who have not been previously infected with SARS-CoV-2 for protection against severe infection.
Collapse
Affiliation(s)
- Yoosun Joo
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (Y.J.); (S.W.J.); (J.-Y.M.); (S.-H.L.)
| | - Dae Kyu Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (D.K.K.); (S.-Y.Y.); (J.S.K.); (H.S.H.); (K.H.J.)
| | - Yun Gi Jeon
- Honorshill Hospital, Gimpo-si 10035, Republic of Korea;
| | - Ah-Ra Kim
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 34142, Republic of Korea; (A.-R.K.); (H.N.D.)
| | - Hyeon Nam Do
- Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases, Cheongju 34142, Republic of Korea; (A.-R.K.); (H.N.D.)
| | - Soo-Young Yoon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (D.K.K.); (S.-Y.Y.); (J.S.K.); (H.S.H.); (K.H.J.)
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (D.K.K.); (S.-Y.Y.); (J.S.K.); (H.S.H.); (K.H.J.)
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (Y.J.); (S.W.J.); (J.-Y.M.); (S.-H.L.)
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (D.K.K.); (S.-Y.Y.); (J.S.K.); (H.S.H.); (K.H.J.)
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (Y.J.); (S.W.J.); (J.-Y.M.); (S.-H.L.)
| | - Kyung Hwang Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (D.K.K.); (S.-Y.Y.); (J.S.K.); (H.S.H.); (K.H.J.)
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (Y.J.); (S.W.J.); (J.-Y.M.); (S.-H.L.)
| | - So-Young Kang
- Department of Laboratory Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea;
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (Y.J.); (S.W.J.); (J.-Y.M.); (S.-H.L.)
| |
Collapse
|
31
|
Ghoula M, Deyawe Kongmeneck A, Eid R, Camproux AC, Moroy G. Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. J Phys Chem B 2023; 127:8586-8602. [PMID: 37775095 PMCID: PMC10578311 DOI: 10.1021/acs.jpcb.3c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 10/01/2023]
Abstract
SARS-CoV-2 strains have made an appearance across the globe, causing over 757 million cases and over 6.85 million deaths at the time of writing. The emergence of these variants shows the amplitude of genetic variation to which the wild-type strains have been subjected. The rise of the different SARS-CoV-2 variants resulting from such genetic modification has significantly affected COVD-19's major impact on proliferation, virulence, and clinics. With the emergence of the variants of concern, the spike protein has been identified as a possible therapeutic target due to its critical role in binding to human cells and pathogenesis. These mutations could be linked to functional heterogeneity and use a different infection strategy. For example, the Omicron variant's multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2-RBD complex in each variant. We also carried out free energy calculations to compare the binding and biophysical properties of the different SARS-CoV-2 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that were essential for preserving a balance between maintaining a high affinity for ACE2 and the capacity to evade RBD-targeted antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher affinity for ACE2 compared to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and N501Y are specifically mutated to strengthen RBD affinity to ACE2 and, thereby, increase the viral effect of the COVID-19 virus.
Collapse
Affiliation(s)
- Mariem Ghoula
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Audrey Deyawe Kongmeneck
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Rita Eid
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Gautier Moroy
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| |
Collapse
|
32
|
Wilks SH, Mühlemann B, Shen X, Türeli S, LeGresley EB, Netzl A, Caniza MA, Chacaltana-Huarcaya JN, Corman VM, Daniell X, Datto MB, Dawood FS, Denny TN, Drosten C, Fouchier RAM, Garcia PJ, Halfmann PJ, Jassem A, Jeworowski LM, Jones TC, Kawaoka Y, Krammer F, McDanal C, Pajon R, Simon V, Stockwell MS, Tang H, van Bakel H, Veguilla V, Webby R, Montefiori DC, Smith DJ. Mapping SARS-CoV-2 antigenic relationships and serological responses. Science 2023; 382:eadj0070. [PMID: 37797027 PMCID: PMC12145880 DOI: 10.1126/science.adj0070] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.
Collapse
Affiliation(s)
- Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoju Daniell
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael B Datto
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | | | - Patricia J Garcia
- School of Public Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Agatha Jassem
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Lara M Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlene McDanal
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, and Department of Population and Family Health, Mailman School of Public Health, New York, NY, USA
| | - Haili Tang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vic Veguilla
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
33
|
Vinzón SE, Lopez MV, Cafferata EGA, Soto AS, Berguer PM, Vazquez L, Nusblat L, Pontoriero AV, Belotti EM, Salvetti NR, Viale DL, Vilardo AE, Avaro MM, Benedetti E, Russo ML, Dattero ME, Carobene M, Sánchez-Lamas M, Afonso J, Heitrich M, Cristófalo AE, Otero LH, Baumeister EG, Ortega HH, Edelstein A, Podhajcer OL. Cross-protection and cross-neutralization capacity of ancestral and VOC-matched SARS-CoV-2 adenoviral vector-based vaccines. NPJ Vaccines 2023; 8:149. [PMID: 37794010 PMCID: PMC10550992 DOI: 10.1038/s41541-023-00737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.
Collapse
Affiliation(s)
- Sabrina E Vinzón
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - María V Lopez
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Eduardo G A Cafferata
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariadna S Soto
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Paula M Berguer
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Luciana Vazquez
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Leonora Nusblat
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Andrea V Pontoriero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Eduardo M Belotti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Natalia R Salvetti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Diego L Viale
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariel E Vilardo
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Martin M Avaro
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Estefanía Benedetti
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mara L Russo
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - María E Dattero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mauricio Carobene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Buenos Aires, Argentina
| | | | - Jimena Afonso
- Area de Bioterio, Fundación Instituto Leloir; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Alejandro E Cristófalo
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
| | - Lisandro H Otero
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud, CONICET, Universidad Nacional de Río Cuarto, Córdoba, X5804BYA, Argentina
| | - Elsa G Baumeister
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Alexis Edelstein
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
35
|
Mühlemann B, Wilks SH, Baracco L, Bekliz M, Carreño JM, Corman VM, Davis-Gardner ME, Dejnirattisai W, Diamond MS, Douek DC, Drosten C, Eckerle I, Edara VV, Ellis M, Fouchier RAM, Frieman M, Godbole S, Haagmans B, Halfmann PJ, Henry AR, Jones TC, Katzelnick LC, Kawaoka Y, Kimpel J, Krammer F, Lai L, Liu C, Lusvarghi S, Meyer B, Mongkolsapaya J, Montefiori DC, Mykytyn A, Netzl A, Pollett S, Rössler A, Screaton GR, Shen X, Sigal A, Simon V, Subramanian R, Supasa P, Suthar M, Türeli S, Wang W, Weiss CD, Smith DJ. Comparative Analysis of SARS-CoV-2 Antigenicity across Assays and in Human and Animal Model Sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559689. [PMID: 37808679 PMCID: PMC10557678 DOI: 10.1101/2023.09.27.559689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren Baracco
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Meriem Bekliz
- Department of Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, Switzerland
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Isabella Eckerle
- Department of Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ron A M Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bart Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Terry C Jones
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lilin Lai
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Sabrina Lusvarghi
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Benjamin Meyer
- Centre of Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Mehul Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Wei Wang
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Carol D Weiss
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
36
|
Chansaenroj J, Suntronwong N, Kanokudom S, Assawakosri S, Vichaiwattana P, Klinfueng S, Wongsrisang L, Thongmee T, Aeemjinda R, Khanarat N, Srimuan D, Thatsanathorn T, Yorsaeng R, Katanyutanon A, Thanasopon W, Bhunyakitikorn W, Sonthichai C, Angsuwatcharakorn P, Withaksabut W, Wanlapakorn N, Sudhinaraset N, Poovorawan Y. Seroprevalence of SARS-CoV-2 anti-nucleocapsid total Ig, anti-RBD IgG antibodies, and infection in Thailand: a cross-sectional survey from October 2022 to January 2023. Sci Rep 2023; 13:15595. [PMID: 37730917 PMCID: PMC10511501 DOI: 10.1038/s41598-023-42754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Seroprevalence studies on SARS-CoV-2 are essential for estimating actual prevalence rates of infection and vaccination in communities. This study evaluated infection rates based on total anti-nucleocapsid immunoglobulin (N) and/or infection history. We determined the seroprevalence of anti-receptor binding domain (RBD) antibodies across age groups. A cross-sectional study was conducted in Chonburi province, Thailand, between October 2022 and January 2023. Participants included newborns to adults aged up to 80 years. All serum samples were tested for anti-N total Ig and anti-RBD IgG. The interviewer-administered questionnaires queried information on infection history and vaccination records. Of 1459 participants enrolled from the Chonburi population, ~ 72.4% were infected. The number of infections was higher in children aged < 5 years, with evidence of SARS-CoV-2 infection decreasing significantly with increasing age. There were no significant differences based on sex or occupation. Overall, ~ 97.4% of participants had an immune response against SARS-CoV-2. The anti-RBD IgG seroprevalence rate was lower in younger vaccinated individuals and was slightly increased to 100% seropositivity at ages > 60 years. Our findings will help predict the exact number of infections and the seroprevalence of SARS-CoV-2 in the Thai population. Furthermore, this information is essential for public health decision-making and the development of vaccination strategies.
Collapse
Affiliation(s)
- Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteroarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Suvichada Assawakosri
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteroarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Lakana Wongsrisang
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ratchadawan Aeemjinda
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nongkanok Khanarat
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ritthideach Yorsaeng
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apirat Katanyutanon
- Chonburi Provincial Public Health Office, Bansuan, Mueang Chonburi, 20000, Chonburi, Thailand
| | - Wichai Thanasopon
- Chonburi Provincial Public Health Office, Bansuan, Mueang Chonburi, 20000, Chonburi, Thailand
| | - Wichan Bhunyakitikorn
- Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Chaninan Sonthichai
- Vaccine Protection, Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Piyada Angsuwatcharakorn
- Vaccine Protection, Division of Communicable Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Withak Withaksabut
- Chonburi Provincial Public Health Office, Bansuan, Mueang Chonburi, 20000, Chonburi, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- FRS(T), The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok, 10300, Thailand.
| |
Collapse
|
37
|
Koval A, Xu J, Williams N, Schmolke M, Krause KH, Katanaev VL. Wnt-Independent SARS-CoV-2 Infection in Pulmonary Epithelial Cells. Microbiol Spectr 2023; 11:e0482722. [PMID: 37367224 PMCID: PMC10433849 DOI: 10.1128/spectrum.04827-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The Wnt signaling pathway within host cells regulates infections by several pathogenic bacteria and viruses. Recent studies suggested that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection depends on β-catenin and can be inhibited by the antileprotic drug clofazimine. Since clofazimine has been identified by us as a specific inhibitor of Wnt/β-catenin signaling, these works could indicate a potential role of the Wnt pathway in SARS-CoV-2 infection. Here, we show that the Wnt pathway is active in pulmonary epithelial cells. However, we find that in multiple assays, SARS-CoV-2 infection is insensitive to Wnt inhibitors, including clofazimine, acting at different levels within the pathway. Our findings assert that endogenous Wnt signaling in the lung is unlikely required or involved in the SARS-CoV-2 infection and that pharmacological inhibition of this pathway with clofazimine or other compounds is not a universal way to develop treatments against the SARS-CoV-2 infection. IMPORTANCE The development of inhibitors of the SARS-CoV-2 infection remains a need of utmost importance. The Wnt signaling pathway in host cells is often implicated in infections by bacteria and viruses. In this work, we show that, despite previous indications, pharmacological modulation of the Wnt pathway does not represent a promising strategy to control SARS-CoV-2 infection in lung epithelia.
Collapse
Affiliation(s)
- Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jiabin Xu
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nathalia Williams
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
38
|
Wang R, Huang H, Yu C, Sun C, Ma J, Kong D, Lin Y, Zhao D, Zhou S, Lu J, Cao S, Zhang Y, Luo C, Li X, Wang Y, Xie L. A spike-trimer protein-based tetravalent COVID-19 vaccine elicits enhanced breadth of neutralization against SARS-CoV-2 Omicron subvariants and other variants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1818-1830. [PMID: 36598621 PMCID: PMC9811042 DOI: 10.1007/s11427-022-2207-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 01/05/2023]
Abstract
Multivalent vaccines combining crucial mutations from phylogenetically divergent variants could be an effective approach to defend against existing and future SARS-CoV-2 variants. In this study, we developed a tetravalent COVID-19 vaccine SCTV01E, based on the trimeric Spike protein of SARS-CoV-2 variants Alpha, Beta, Delta, and Omicron BA.1, with a squalene-based oil-in-water adjuvant SCT-VA02B. In the immunogenicity studies in naïve BALB/c and C57BL/6J mice, SCTV01E exhibited the most favorable immunogenic characteristics to induce balanced and broad-spectrum neutralizing potencies against pre-Omicron variants (D614G, Alpha, Beta, and Delta) and newly emerging Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5). Booster studies in C57BL/6J mice previously immunized with D614G monovalent vaccine demonstrated superior neutralizing capacities of SCTV01E against Omicron subvariants, compared with the D614G booster regimen. Furthermore, SCTV01E vaccination elicited naïve and central memory T cell responses to SARS-CoV-2 ancestral strain and Omicron spike peptides. Together, our comprehensive immunogenicity evaluation results indicate that SCTV01E could become an important COVID-19 vaccine platform to combat surging infections caused by the highly immune evasive BA.4/5 variants. SCTV01E is currently being studied in a head-to-head immunogenicity comparison phase 3 clinical study with inactivated and mRNA vaccines (NCT05323461).
Collapse
Affiliation(s)
- Rui Wang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Hongpeng Huang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Chulin Yu
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Chunyun Sun
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Juan Ma
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Desheng Kong
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Yalong Lin
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Dandan Zhao
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Shaozheng Zhou
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Jianbo Lu
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Sai Cao
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Yanjing Zhang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Chunxia Luo
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Xuefeng Li
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Yang Wang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Liangzhi Xie
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China.
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
39
|
Astakhova EA, Morozov AA, Byazrova MG, Sukhova MM, Mikhailov AA, Minnegalieva AR, Gorchakov AA, Filatov AV. Antigenic Cartography Indicates That the Omicron BA.1 and BA.4/BA.5 Variants Remain Antigenically Distant to Ancestral SARS-CoV-2 after Sputnik V Vaccination Followed by Homologous (Sputnik V) or Heterologous (Comirnaty) Revaccination. Int J Mol Sci 2023; 24:10493. [PMID: 37445671 PMCID: PMC10341525 DOI: 10.3390/ijms241310493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid emergence of evasive SARS-CoV-2 variants is an ongoing challenge for COVID-19 vaccinology. Traditional virus neutralization tests provide detailed datasets of neutralization titers against the viral variants. Such datasets are difficult to interpret and do not immediately inform of the sufficiency of the breadth of the antibody response. Some of these issues could be tackled using the antigenic cartography approach. In this study, we created antigenic maps using neutralization titers of sera from donors who received the Sputnik V booster vaccine after primary Sputnik V vaccination and compared them with the antigenic maps based on serum neutralization titers of Comirnaty-boosted donors. A traditional analysis of neutralization titers against the WT (wild-type), Alpha, Beta, Delta, Omicron BA.1, and BA.4/BA.5 variants showed a significant booster humoral response after both homologous (Sputnik V) and heterologous (Comirnaty) revaccinations against all of the studied viral variants. However, despite this, a more in-depth analysis using antigenic cartography revealed that Omicron variants remain antigenically distant from the WT, which is indicative of the formation of insufficient levels of cross-neutralizing antibodies. The implications of these findings may be significant when developing a new vaccine regimen.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Morozov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Ministry of Science and Higher Education of Russia, RUDN University, 117198 Moscow, Russia
| | - Maria M. Sukhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem A. Mikhailov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aygul R. Minnegalieva
- Laboratory of Synthetic and Evolutionary Biology, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Andrey A. Gorchakov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
40
|
Moal V, Valade M, Boschi C, Robert T, Orain N, Bancod A, Edouard S, Colson P, La Scola B. Protection from successive Omicron variants with SARS-CoV-2 vaccine and monoclonal antibodies in kidney transplant recipients. Front Microbiol 2023; 14:1147455. [PMID: 37065151 PMCID: PMC10095161 DOI: 10.3389/fmicb.2023.1147455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionKidney transplant recipients (KTRs) are at high risk of severe COVID-19, even when they are fully vaccinated. Additional booster vaccinations or passive immunization with prophylactic monoclonal antibodies are recommended to increase their protection against severe COVID-19.MethodsHere, we describe the neutralization of SARS-CoV-2 Delta, Omicron BA.1, BA.2, BA.4, and BA.5 variants, firstly by 39 serum samples from vaccinated KTRs exhibiting anti-spike antibody concentrations ≥264 binding antibody units (BAU)/mL and, secondly, by tixagevimab/cilgavimab.ResultsNo neutralization was observed for 18% of the KTRs, while serum from only 46% of patients could neutralize the five variants. Cross-neutralization of the Delta and Omicron variants occurred for 65–87% of sera samples. The anti-spike antibody concentration correlated with neutralization activity for all the variants. The neutralization titers against the Delta variant were higher in vaccinated KTRs who had previously presented with COVID-19, compared to those KTRs who had only been vaccinated. Breakthrough infections occurred in 39% of the KTRs after the study. Tixagevimab/cilgavimab poorly neutralizes Omicron variants, particularly BA.5, and does not neutralize BQ.1, which is currently the most prevalent strain.DiscussionAs a result, sera from seropositive vaccinated KTRs had poor neutralization of the successive Omicron variants. Several Omicron variants are able to escape tixagevimab/cilgavimab.
Collapse
Affiliation(s)
- Valérie Moal
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Aix Marseille Université, Assistance Publique Hôpitaux de Marseille, Hôpital Conception, Centre de Néphrologie et Transplantation Rénale, Marseille, France
- *Correspondence: Valérie Moal, ; Bernard La Scola,
| | - Margaux Valade
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Céline Boschi
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Thomas Robert
- Aix Marseille Université, Assistance Publique Hôpitaux de Marseille, Hôpital Conception, Centre de Néphrologie et Transplantation Rénale, Marseille, France
| | - Nicolas Orain
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Audrey Bancod
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Sophie Edouard
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Philippe Colson
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Bernard La Scola
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
- *Correspondence: Valérie Moal, ; Bernard La Scola,
| |
Collapse
|
41
|
Alkharaan H, Al-Qarni H, Aldosari MA, Alsaloum M, Aldakheel G, Alenazi MW, Alharbi NK. Salivary Antibody Responses to Two COVID-19 Vaccines following Different Vaccination Regimens. Vaccines (Basel) 2023; 11:vaccines11040744. [PMID: 37112657 PMCID: PMC10146373 DOI: 10.3390/vaccines11040744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Background: To date, little is known about the salivary mucosal immune response following different COVID-19 vaccine types or after a booster (3rd) dose of the BNT162b2 (BNT) vaccine. Methods: A total of 301 saliva samples were collected from vaccinated individuals and arranged into two cohorts: cohort 1 (n = 145), samples from individuals who had received two doses against SARS-CoV-2; cohort 2 (n = 156), samples from individuals who had received a booster of BNT vaccine. Cohorts 1 and 2 were sub-stratified into three groups based on the types of first and second doses (homologous BNT/BNT, homologous ChAdOx1/ChAdOx1, or heterologous BNT/ChAdOx1vaccinations). Salivary immunoglobulin G (IgG) response to SARS-CoV-2 spike glycoprotein was measured by ELISA, and clinical demographic data were collected from hospital records or questionnaires. Results: Salivary IgG antibody responses against different vaccines, whether homologous or heterogeneous vaccination regimens, showed similar levels in cohorts 1 and 2. Compiling all groups in cohort 1 and 2 showed significant, albeit weak, negative correlations between salivary IgG levels and time (r = −0.2, p = 0.03; r = −0.27, p = 0.003, respectively). In cohort 2, the durability of salivary IgG after a booster dose of BNT162b2 significantly dropped after 3 months compared to the <1 month and 1–3 months groups. Conclusions: Different COVID-19 vaccine types and regimens elicit similar salivary anti-SARS-CoV-2 IgG with modest waning over time. Boosting with BNT162b2 vaccine did not produce an evident increase in mucosal IgG response whereby COVID-19 recovered subjects show higher salivary IgG than naive, post-vaccination subjects. The ChAdOx1/ChAdOx1 regimen showed better correlation between salivary IgG levels and durability. These findings highlight the importance of developing oral or intra-nasal vaccines to induce stronger mucosal immunity.
Collapse
|
42
|
Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Analyt Chem 2023; 160:116980. [PMID: 36818498 PMCID: PMC9922438 DOI: 10.1016/j.trac.2023.116980] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China,Beijing Institute of Life Science and Technology, Beijing, 102206, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Corresponding author
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China,Corresponding author
| |
Collapse
|
43
|
Assessment of the Biological Impact of SARS-CoV-2 Genetic Variation Using an Authentic Virus Neutralisation Assay with Convalescent Plasma, Vaccinee Sera, and Standard Reagents. Viruses 2023; 15:v15030633. [PMID: 36992342 PMCID: PMC10056478 DOI: 10.3390/v15030633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In the summer of 2020, it became clear that the genetic composition of SARS-CoV-2 was changing rapidly. This was highlighted by the rapid emergence of the D614G mutation at that time. In the autumn of 2020, the project entitled “Agility” was initiated with funding from the Coalition for Epidemic Preparedness Innovations (CEPI) to assess new variants of SARS-CoV-2. The project was designed to reach out and intercept swabs containing live variant viruses in order to generate highly characterised master and working stocks, and to assess the biological consequences of the rapid genetic changes using both in vitro and in vivo approaches. Since November 2020, a total of 21 variants have been acquired and tested against either a panel of convalescent sera from early in the pandemic, and/or a panel of plasma from triple-vaccinated participants. A pattern of continuous evolution of SARS-CoV-2 has been revealed. Sequential characterisation of the most globally significant variants available to us, generated in real-time, indicated that the most recent Omicron variants appear to have evolved in a manner that avoids immunological recognition by convalescent plasma from the era of the ancestral virus when analysed in an authentic virus neutralisation assay.
Collapse
|
44
|
Santos da Silva E, Servais JY, Kohnen M, Arendt V, Gilson G, Staub T, Seguin-Devaux C, Perez-Bercoff D. Vaccine- and Breakthrough Infection-Elicited Pre-Omicron Immunity More Effectively Neutralizes Omicron BA.1, BA.2, BA.4 and BA.5 Than Pre-Omicron Infection Alone. Curr Issues Mol Biol 2023; 45:1741-1761. [PMID: 36826057 PMCID: PMC9955496 DOI: 10.3390/cimb45020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Since the emergence of SARS-CoV-2 Omicron BA.1 and BA.2, several Omicron sublineages have emerged, supplanting their predecessors. Here we compared the neutralization of Omicron sublineages BA.1, BA.2, BA.4 and BA.5 by human sera collected from individuals who were infected with the ancestral B.1 (D614G) strain, who were vaccinated (3 doses) or with breakthrough infection with pre-Omicron strains (Gamma or Delta). All Omicron sublineages exhibited extensive escape from all sera when compared to the ancestral B.1 strain and to Delta, albeit to different levels depending on the origin of the sera. Convalescent sera were unable to neutralize BA.1, and partly neutralized BA.2, BA.4 and BA.5. Vaccinee sera partly neutralized BA.2, but BA.1, BA.4 and BA.5 evaded neutralizing antibodies (NAb). Some breakthrough infections (BTI) sera were non-neutralizing. Neutralizing BTI sera had similar neutralizing ability against all Omicron sublineages. Despite similar levels of anti-Spike and anti-Receptor Binding Domain (RBD) antibodies in all groups, BTI sera had the highest cross-neutralizing ability against all Omicron sublineages and convalescent sera were the least neutralizing. Antibody avidity inferred from the NT50:antibody titer ratio was highest in sera from BTI patients, underscoring qualitative differences in antibodies elicited by infection or vaccination. Together, these findings highlight the importance of vaccination to trigger highly cross-reactive antibodies that neutralize phylogenetically and antigenically distant strains, and suggest that immune imprinting by first generation vaccines may restrict, but not abolish, cross-neutralization.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Jean-Yves Servais
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Michel Kohnen
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Victor Arendt
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Georges Gilson
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Therese Staub
- Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Carole Seguin-Devaux
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Danielle Perez-Bercoff
- HIV Clinical and Translational Research Unit, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
45
|
O’Shea KM, Schuler CF, Chen J, Troost JP, Wong PT, Chen K, O’Shea DR, Peng W, Gherasim C, Manthei DM, Valdez R, Baldwin JL, Baker JR. Wild-type SARS-CoV-2 neutralizing immunity decreases across variants and over time but correlates well with diagnostic testing. Front Immunol 2023; 14:1055429. [PMID: 36845123 PMCID: PMC9945103 DOI: 10.3389/fimmu.2023.1055429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Importance The degree of immune protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants provided by infection versus vaccination with wild-type virus remains unresolved, which could influence future vaccine strategies. The gold-standard for assessing immune protection is viral neutralization; however, few studies involve a large-scale analysis of viral neutralization against the Omicron variant by sera from individuals infected with wild-type virus. Objectives 1) To define the degree to which infection versus vaccination with wild-type SARS-CoV-2 induced neutralizing antibodies against Delta and Omicron variants.2) To determine whether clinically available data, such as infection/vaccination timing or antibody status, can predict variant neutralization. Methods We examined a longitudinal cohort of 653 subjects with sera collected three times at 3-to-6-month intervals from April 2020 to June 2021. Individuals were categorized according to SARS-CoV-2 infection and vaccination status. Spike and nucleocapsid antibodies were detected via ADVIA Centaur® (Siemens) and Elecsys® (Roche) assays, respectively. The Healgen Scientific® lateral flow assay was used to detect IgG and IgM spike antibody responses. Pseudoviral neutralization assays were performed on all samples using human ACE2 receptor-expressing HEK-293T cells infected with SARS-CoV-2 spike protein pseudotyped lentiviral particles for wild-type (WT), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants. Results Vaccination after infection led to the highest neutralization titers at all timepoints for all variants. Neutralization was also more durable in the setting of prior infection versus vaccination alone. Spike antibody clinical testing effectively predicted neutralization for wild-type and Delta. However, nucleocapsid antibody presence was the best independent predictor of Omicron neutralization. Neutralization of Omicron was lower than neutralization of either wild-type or Delta virus across all groups and timepoints, with significant activity only present in patients that were first infected and later immunized. Conclusions Participants having both infection and vaccination with wild-type virus had the highest neutralizing antibody levels against all variants and had persistence of activity. Neutralization of WT and Delta virus correlated with spike antibody levels against wild-type and Delta variants, but Omicron neutralization was better correlated with evidence of prior infection. These data help explain why 'breakthrough' Omicron infections occurred in previously vaccinated individuals and suggest better protection is observed in those with both vaccination and previous infection. This study also supports the concept of future SARS-CoV-2 Omicron-specific vaccine boosters.
Collapse
Affiliation(s)
- Kelly M. O’Shea
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Charles F. Schuler
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Jesse Chen
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan P. Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, United States
| | - Pamela T. Wong
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kelsea Chen
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Daniel R. O’Shea
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Westley Peng
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Carmen Gherasim
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - David M. Manthei
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - James L. Baldwin
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - James R. Baker
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI, United States,*Correspondence: James R. Baker Jr.,
| |
Collapse
|
46
|
Mohammed H, Pham-Tran DD, Yeoh ZYM, Wang B, McMillan M, Andraweera PH, Marshall HS. A Systematic Review and Meta-Analysis on the Real-World Effectiveness of COVID-19 Vaccines against Infection, Symptomatic and Severe COVID-19 Disease Caused by the Omicron Variant (B.1.1.529). Vaccines (Basel) 2023; 11:224. [PMID: 36851102 PMCID: PMC9965204 DOI: 10.3390/vaccines11020224] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Real-world data on the effectiveness of COVID-19 vaccines against the Omicron variant (B.1.1.529) is limited. This systematic review aimed to investigate the real-world effectiveness and durability of protection conferred by primary course and booster vaccines against confirmed Omicron infection, and severe outcomes. We systematically searched literature up to 1 August 2022. Meta-analysis was performed with the DerSimonian-Laird random-effects model to estimate the pooled vaccine effectiveness (VE). Overall, 28 studies were included representing 11 million individuals. The pooled VE against Omicron infection was 20.4% (95%CI: 12.1-28.7%) and 23.4% (95%CI: 13.5-33.3%) against symptomatic infection with variation based on vaccine type and age groups. VE sharply declined from 28.1% (95%CI: 19.1-37.1%) at three months to 3.9% (95%CI: -24.8-32.7%) at six months. Similar trends were observed for symptomatic Omicron infection. A booster dose restored protection against Omicron infection up to 51.1% (95%CI: 43.8-58.3%) and 57.3% (95%CI: 54.0-60.5%) against symptomatic infection within three months; however, this waned to 32.8% (95%CI: 16.8-48.7%) within six months. VE against severe Omicron infection following the primary course was 63.6% (95%CI: 57.5-69.7%) at three months, decreased to 49% (95%CI: 35.7-63.4%) within six months, and increased to 86% after the first or second booster dose.
Collapse
Affiliation(s)
- Hassen Mohammed
- Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide, SA 5006, Australia
- Robinson Research Institute and Adelaide Medical School, the University of Adelaide, Adelaide, SA 5006, Australia
| | - Dan Duy Pham-Tran
- Robinson Research Institute and Adelaide Medical School, the University of Adelaide, Adelaide, SA 5006, Australia
| | - Zi Yi Michelle Yeoh
- Robinson Research Institute and Adelaide Medical School, the University of Adelaide, Adelaide, SA 5006, Australia
| | - Bing Wang
- Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide, SA 5006, Australia
- Robinson Research Institute and Adelaide Medical School, the University of Adelaide, Adelaide, SA 5006, Australia
| | - Mark McMillan
- Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide, SA 5006, Australia
- Robinson Research Institute and Adelaide Medical School, the University of Adelaide, Adelaide, SA 5006, Australia
| | - Prabha H. Andraweera
- Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide, SA 5006, Australia
- Robinson Research Institute and Adelaide Medical School, the University of Adelaide, Adelaide, SA 5006, Australia
| | - Helen S. Marshall
- Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide, SA 5006, Australia
- Robinson Research Institute and Adelaide Medical School, the University of Adelaide, Adelaide, SA 5006, Australia
| |
Collapse
|
47
|
Rezahosseini O, Hamm SR, Heftdal LD, Pérez-Alós L, Møller DL, Perch M, Madsen JR, Hald A, Hansen CB, Armenteros JJA, Pries-Heje MM, Hasselbalch RB, Fogh K, Frikke-Schmidt R, Hilsted LM, Sørensen E, Ostrowski SR, Harboe ZB, Iversen K, Bundgaard H, Sørensen SS, Rasmussen A, Garred P, Nielsen SD. Humoral and T-cell response 12 months after the first BNT162b2 vaccination in solid organ transplant recipients and controls: Kinetics, associated factors, and role of SARS-CoV-2 infection. Front Immunol 2023; 13:1075423. [PMID: 36713395 PMCID: PMC9880190 DOI: 10.3389/fimmu.2022.1075423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction We investigated humoral and T-cell responses within 12 months after first BNT162b2 vaccine in solid organ transplant (SOT) recipients and controls who had received at least three vaccine doses. Furthermore, we compared the immune response in participants with and without previous SARS-CoV-2 infection. Methods We included adult liver, lung, and kidney transplant recipients, and controls were selected from a parallel cohort of healthcare workers. Results At 12th-month, the IgG geometric mean concentrations (GMCs) (P<0.001), IgA GMCs (P=0.003), and median IFN-γ (P<0.001) were lower in SOT recipients than in controls. However, in SOT recipients and controls with previous infection, the neutralizing index was 99%, and the IgG, and IgA responses were comparable. After adjustment, female-sex (aOR: 3.6, P<0.009), kidney (aOR: 7.0, P= 0.008) or lung transplantation (aOR: 7.5, P= 0.014), and use of mycophenolate (aOR: 5.2, P=0.03) were associated with low IgG non response. Age (OR:1.4, P=0.038), time from transplantation to first vaccine (OR: 0.45, P<0.035), and previous SARS-CoV-2 infection (OR: 0.14, P<0.001), were associated with low IgA non response. Diabetes (OR:2.4, P=0.044) was associated with T-cell non response. Conclusion In conclusion, humoral and T-cell responses were inferior in SOT recipients without previous SARS-CoV-2 infection but comparable to controls in SOT recipients with previous infection.
Collapse
Affiliation(s)
- Omid Rezahosseini
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sebastian Rask Hamm
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Line Dam Heftdal
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dina Leth Møller
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Roth Madsen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Annemette Hald
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jose Juan Almagro Armenteros
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mia Marie Pries-Heje
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rasmus Bo Hasselbalch
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark,Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kamille Fogh
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark,Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Linda Maria Hilsted
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Section 2034, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Immunology, Section 2034, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Zitta Barrella Harboe
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Pulmonary and Infectious Diseases, Hospital of North Zealand, Copenhagen University Hospital, Hillerød, Denmark
| | - Kasper Iversen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark,Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Schwartz Sørensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Nephrology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Susanne Dam Nielsen,
| |
Collapse
|
48
|
Furuse Y. Cartography of SARS-CoV-2 variants based on the susceptibility to therapeutic monoclonal antibodies. J Med Virol 2023; 95:e28275. [PMID: 36326059 PMCID: PMC9877944 DOI: 10.1002/jmv.28275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A comprehensive picture of a phenotypic relationship among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has been poorly studied. Here, this study presents cartography showing how the wild-type strain of SARS-CoV-2 and 14 variants are alike or different from the perspective of the susceptibility to 12 therapeutic monoclonal antibodies. The Alpha variant is close to the wild-type strain, whereas the Beta, Gamma, and Delta variants diverge from the wild-type. The map highlights the very unique property of the Omicron variant. Interestingly, sublineages of the Omicron variants, BA.1, BA.2, and BA.4/5, differ substantially in the cartography.
Collapse
Affiliation(s)
- Yuki Furuse
- Nagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Medical Education Development CenterNagasaki University HospitalNagasakiJapan
- Institute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
- Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
| |
Collapse
|
49
|
Zaballa ME, Perez-Saez J, de Mestral C, Pullen N, Lamour J, Turelli P, Raclot C, Baysson H, Pennacchio F, Villers J, Duc J, Richard V, Dumont R, Semaani C, Loizeau AJ, Graindorge C, Lorthe E, Balavoine JF, Pittet D, Schibler M, Vuilleumier N, Chappuis F, Kherad O, Azman AS, Posfay-Barbe KM, Kaiser L, Trono D, Stringhini S, Guessous I, Specchio-COVID19 study group oArm-VernezIsabelleAzmanAndrew SBachmannDelphineBalAntoineBalavoineJean-FrançoisBalavoineMichaelBarbeRémy PBayssonHélèneBeigbederLisonBerthelotJulieBleichPatrickBoehmLiviaBryandGaëlleChappuisFrançoisCollombetPruneCoudurier-BoeufSophieCourvoisierDelphineCudetAlainDavidovicVladimirde MestralCarlosD'ippolitoPaolaDubosRichardDumontRoxaneEckerleIsabellaEl MerjaniNaciraFlahaultAntoineFrancioliNatalieFrangvilleMarionGraindorgeClémentGuessousIdrisHarnalSéverineHurstSamiaKaiserLaurentKheradOmarLamourJulienLescuyerPierreL'HuillierArnaud GL'HuissierFrançoisLoizeauAndrea JuttaLortheElsaMartinezChantalMénardLucieMetral-BoffodLudovicMoulinAlexandreNehmeMayssamNoëlNatachaPennacchioFrancescoPerez-SaezJavierPittetDidierPosfay-BarbeKlara MPoulainGéraldinePuginCarolinePullenNickRichardVivianeRinaldiFredericRochatDéborahSakvarelidzeIrineSamirKhadijaRamirezHugo SantaSatinEtienneSchallerPhilippeSchiblerManuelSchrempftStephanieSemaaniClaireStringhiniSilviaTestiniStéphanieTronoDidierUrrutia-RivasDéborahVeroletCharlotteVetterPaulineVillersJenniferViolotGuillemetteVuilleumierNicolasWisniakAniaYerlySabineZaballaMaría-Eugenia. Seroprevalence of anti-SARS-CoV-2 antibodies and cross-variant neutralization capacity after the Omicron BA.2 wave in Geneva, Switzerland: a population-based study. THE LANCET REGIONAL HEALTH. EUROPE 2023; 24:100547. [PMID: 36474728 PMCID: PMC9714630 DOI: 10.1016/j.lanepe.2022.100547] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2022]
Abstract
Background More than two years into the COVID-19 pandemic, most of the population has developed anti-SARS-CoV-2 antibodies from infection and/or vaccination. However, public health decision-making is hindered by the lack of up-to-date and precise characterization of the immune landscape in the population. Here, we estimated anti-SARS-CoV-2 antibodies seroprevalence and cross-variant neutralization capacity after Omicron became dominant in Geneva, Switzerland. Methods We conducted a population-based serosurvey between April 29 and June 9, 2022, recruiting children and adults of all ages from age-stratified random samples of the general population of Geneva, Switzerland. We tested for anti-SARS-CoV-2 antibodies using commercial immunoassays targeting either the spike (S) or nucleocapsid (N) protein, and for antibody neutralization capacity against different SARS-CoV-2 variants using a cell-free Spike trimer-ACE2 binding-based surrogate neutralization assay. We estimated seroprevalence and neutralization capacity using a Bayesian modeling framework accounting for the demographics, vaccination, and infection statuses of the Geneva population. Findings Among the 2521 individuals included in the analysis, the estimated total antibodies seroprevalence was 93.8% (95% CrI 93.1-94.5), including 72.4% (70.0-74.7) for infection-induced antibodies. Estimates of neutralizing antibodies in a representative subsample (N = 1160) ranged from 79.5% (77.1-81.8) against the Alpha variant to 46.7% (43.0-50.4) against the Omicron BA.4/BA.5 subvariants. Despite having high seroprevalence of infection-induced antibodies (76.7% [69.7-83.0] for ages 0-5 years, 90.5% [86.5-94.1] for ages 6-11 years), children aged <12 years had substantially lower neutralizing activity than older participants, particularly against Omicron subvariants. Overall, vaccination was associated with higher neutralizing activity against pre-Omicron variants. Vaccine booster alongside recent infection was associated with higher neutralizing activity against Omicron subvariants. Interpretation While most of the Geneva population has developed anti-SARS-CoV-2 antibodies through vaccination and/or infection, less than half has neutralizing activity against the currently circulating Omicron BA.5 subvariant. Hybrid immunity obtained through booster vaccination and infection confers the greatest neutralization capacity, including against Omicron. Funding General Directorate of Health in Geneva canton, Private Foundation of the Geneva University Hospitals, European Commission ("CoVICIS" grant), and a private foundation advised by CARIGEST SA.
Collapse
Affiliation(s)
- María-Eugenia Zaballa
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Javier Perez-Saez
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Carlos de Mestral
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland,University Centre for General Medicine and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Nick Pullen
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Julien Lamour
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Charlène Raclot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hélène Baysson
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland,Department of Health and Community Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Pennacchio
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Jennifer Villers
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Viviane Richard
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Roxane Dumont
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Claire Semaani
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Jutta Loizeau
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Clément Graindorge
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Elsa Lorthe
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | | | - Didier Pittet
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Infection Control Program and World Health Organization Collaborating Centre on Patient Safety, Geneva University Hospitals, Geneva, Switzerland
| | - Manuel Schibler
- Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - François Chappuis
- Department of Health and Community Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Omar Kherad
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division of Internal Medicine, Hôpital de la Tour, Geneva, Switzerland
| | - Andrew S. Azman
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Klara M. Posfay-Barbe
- Department of Woman, Child, and Adolescent Medicine, Geneva University Hospitals, Geneva, Switzerland,Department of Pediatrics, Gynecology & Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland,Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Silvia Stringhini
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland,University Centre for General Medicine and Public Health, University of Lausanne, Lausanne, Switzerland,Department of Health and Community Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Corresponding author. Division of Primary Care, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Idris Guessous
- Department of Health and Community Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | | |
Collapse
|
50
|
Heinen N, Marheinecke CS, Bessen C, Blazquez-Navarro A, Roch T, Stervbo U, Anft M, Plaza-Sirvent C, Busse S, Klöhn M, Schrader J, Vidal Blanco E, Urlaub D, Watzl C, Hoffmann M, Pöhlmann S, Tenbusch M, Steinmann E, Todt D, Hagenbeck C, Zimmer G, Schmidt WE, Quast DR, Babel N, Schmitz I, Pfänder S. In-depth analysis of T cell immunity and antibody responses in heterologous prime-boost-boost vaccine regimens against SARS-CoV-2 and Omicron variant. Front Immunol 2022; 13:1062210. [PMID: 36618413 PMCID: PMC9811676 DOI: 10.3389/fimmu.2022.1062210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
With the emergence of novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Variants of Concern (VOCs), vaccination studies that elucidate the efficiency and effectiveness of a vaccination campaign are critical to assess the durability and the protective immunity provided by vaccines. SARS-CoV-2 vaccines have been found to induce robust humoral and cell-mediated immunity in individuals vaccinated with homologous vaccination regimens. Recent studies also suggest improved immune response against SARS-CoV-2 when heterologous vaccination strategies are employed. Yet, few data exist on the extent to which heterologous prime-boost-boost vaccinations with two different vaccine platforms have an impact on the T cell-mediated immune responses with a special emphasis on the currently dominantly circulating Omicron strain. In this study, we collected serum and peripheral blood mononuclear cells (PBMCs) from 57 study participants of median 35-year old's working in the health care field, who have received different vaccination regimens. Neutralization assays revealed robust but decreased neutralization of Omicron VOC, including BA.1 and BA.4/5, compared to WT SARS-CoV-2 in all vaccine groups and increased WT SARS-CoV-2 binding and neutralizing antibodies titers in homologous mRNA prime-boost-boost study participants. By investigating cytokine production, we found that homologous and heterologous prime-boost-boost-vaccination induces a robust cytokine response of CD4+ and CD8+ T cells. Collectively, our results indicate robust humoral and T cell mediated immunity against Omicron in homologous and heterologous prime-boost-boost vaccinated study participants, which might serve as a guide for policy decisions.
Collapse
Affiliation(s)
- Natalie Heinen
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | | | - Clara Bessen
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | - Arturo Blazquez-Navarro
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Toralf Roch
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
| | | | - Sandra Busse
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Jil Schrader
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Elena Vidal Blanco
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Doris Urlaub
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eike Steinmann
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center, Jena, Germany
| | - Carsten Hagenbeck
- Clinic for Gynecology and Obstetrics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gert Zimmer
- Clinic for Gynecology and Obstetrics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Daniel Robert Quast
- Department of Medicine I, St. Josef-Hospital Bochum, Ruhr University Bochum, Bochum, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital, University Hospital of the Ruhr University Bochum, Herne, Germany
- BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Pfänder
- Department of Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|