1
|
Daher IP, Almeida BDS, de Souza-Silva GA, Marques RF, Soares GHC, Andreata-Santos R, Moretti A, de Oliveira Silva M, Schuch V, Sasahara GL, Kuramoto A, Yamamoto M, Ferreira LCDS, Santos K, Coelho VPCV, Kalil J, Rosa DS, Cunha-Neto E, Boscardin SB. Neutralizing antibody responses after a two-dose regimen with BNT162b2, CoronaVac or ChAdOx1-S in Brazil: Differential neutralization of SARS-CoV-2 omicron variants. Clin Immunol 2025; 276:110492. [PMID: 40185297 DOI: 10.1016/j.clim.2025.110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
The emergence of SARS-CoV-2 variants has reduced antibody effectiveness, affecting vaccine protection. This study evaluated neutralizing antibodies against Wuhan strain and several variants, including Alpha, Beta, Gamma, Delta, and Omicron, in Brazilians vaccinated twice with CoronaVac, ChAdOx1-S, or BNT162b2 before Delta and Omicron emerged. After the booster, strong antibody responses to the Wuhan strain were seen in all groups, but BNT162b2 resulted in higher anti-Spike and anti-RBD IgG levels. While all vaccines showed some cross-neutralization against Alpha, Beta, Gamma, and Delta, only BNT162b2 was effective against Omicron BA.2 and BA.4/5 subvariants. Furthermore, BNT162b2 vaccination showed a positive correlation between Wuhan RBD-specific IgG and Omicron neutralizing antibodies. This group demonstrated distinct clustering patterns of neutralizing antibodies against all variants, unlike those from CoronaVac and ChAdOx1-S. The findings suggest BNT162b2 offers broader neutralization capability, highlighting the benefit of booster shots with bivalent mRNA vaccines to enhance immune responses against emerging variants.
Collapse
Affiliation(s)
- Isabela Pazotti Daher
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | - Bianca da Silva Almeida
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | | | - Rodolfo Ferreira Marques
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | | | - Robert Andreata-Santos
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | - Ana Moretti
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | - Viviane Schuch
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Greyce Luri Sasahara
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Andréia Kuramoto
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Marcio Yamamoto
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil
| | | | - Keity Santos
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil
| | - Verônica P C V Coelho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil
| | - Jorge Kalil
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil
| | - Daniela Santoro Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil
| | - Edecio Cunha-Neto
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil.
| | - Silvia Beatriz Boscardin
- Instituto Ciências Biomédicas da Universidade de São Paulo, ICB-USP, São Paulo 05508-000, Brazil; Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo 05403-000, Brazil.
| |
Collapse
|
2
|
Dor G, Wilkinson E, Martin DP, Moir M, Tshiabuila D, Kekana D, Ntozini B, Joseph R, Iranzadeh A, Nyaga MM, Goedhals D, Maponga T, Maritz J, Laguda-Akingba O, Ramphal Y, MacIntyre C, Chabuka L, Pillay S, Giandhari J, Baxter C, Hsiao NY, Preiser W, Bhiman JN, Davies MA, Venter M, Treurnicht FK, Wolter N, Williamson C, von Gottberg A, Lessells R, Tegally H, de Oliveira T. Tracing the spatial origins and spread of SARS-CoV-2 Omicron lineages in South Africa. Nat Commun 2025; 16:4937. [PMID: 40436832 PMCID: PMC12120024 DOI: 10.1038/s41467-025-60081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 05/13/2025] [Indexed: 06/01/2025] Open
Abstract
Since November 2021, five genetically distinct SARS-CoV-2 Omicron lineages (BA.1-BA.5) are believed to have emerged in southern Africa, with four (BA.1, BA.2, BA.4, and BA.5) spreading globally and collectively dominating SARS-CoV-2 diversity. In 2023, BA.2.86, a highly divergent BA.2 lineage that rose to prominence worldwide, was first detected in Israel and Denmark, but the subsequent diversity of South African sequences suggests it too emerged in the region. Using Bayesian phylogeographic inference, we reconstruct the origins and dispersal patterns of BA.1-BA.5 and BA.2.86. Our findings suggest that Gauteng province in South Africa likely played a key role in the emergence and/or amplification of multiple Omicron lineages, though regions with limited sampling may have also contributed. The challenge of precisely tracing these origins highlights the need for broader genomic surveillance across the region to strengthen early detection, track viral evolution, and improve preparedness for future threats.
Collapse
Affiliation(s)
- Graeme Dor
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Monika Moir
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Derek Tshiabuila
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Dikeledi Kekana
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Buhle Ntozini
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Rageema Joseph
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Arash Iranzadeh
- Computational Biology Division, University of Cape Town, Cape Town, South Africa
| | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Dominique Goedhals
- Division of Virology, University of the Free State, Bloemfontein, South Africa
- PathCare, Pretoria, South Africa
| | - Tongai Maponga
- National Health Laboratory Service, Tygerberg, Cape Town, South Africa
- Division of Medical Virology, Faculty of Medicine & Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Jean Maritz
- Division of Medical Virology, Faculty of Medicine & Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- PathCare Reference Laboratory, Cape Town, South Africa
| | - Oluwakemi Laguda-Akingba
- National Health Laboratory Service, Port Elizabeth, South Africa
- Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Eastern Cape, South Africa
| | - Yajna Ramphal
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Caitlin MacIntyre
- Emerging Viral Threats, One Health surveillance and vaccines (EViTOH) Division, Infectious Disease and Oncology Research Institute (IDORI), School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lucious Chabuka
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Cheryl Baxter
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Nei-Yuan Hsiao
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Wolfgang Preiser
- National Health Laboratory Service, Tygerberg, Cape Town, South Africa
- Division of Medical Virology, Faculty of Medicine & Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Jinal N Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary-Anne Davies
- Centre for Infectious Disease Epidemiology and Research, School of Public Health, University of Cape Town, Cape Town, South Africa
- Health Intelligence, Western Cape Government Health and Wellness, Cape Town, South Africa
| | - Marietjie Venter
- Emerging Viral Threats, One Health surveillance and vaccines (EViTOH) Division, Infectious Disease and Oncology Research Institute (IDORI), School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Arbo and Respiratory Virus Research (CEARV), Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Florette K Treurnicht
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carolyn Williamson
- National Health Laboratory Service, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine and Wellcome Centre for Disease Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Houriiyah Tegally
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
3
|
Li Y, Chen J, Xiao L, Guo Z, Huang J, Gao S, Li J, Li B, Liu Z. High-Lethality Precision-Guided Nanomissile for Broad-Spectrum Virucidal and Anti-Inflammatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27974-27987. [PMID: 40314777 DOI: 10.1021/acsami.5c03831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Viral infection, especially the past SARS-CoV-2 pandemic, has posed severe threat toward globalized healthcare, whereas vaccine and drug development can hardly keep up with the rate of virus mutation and resistance. In severe COVID-19 patients, the virus triggers a cytokine storm marked by excessive pro-inflammatory cytokine release, resulting in acute respiratory distress syndrome (ARDS). Therefore, a comprehensive strategy for viral neutralization and inflammation suppression is highly demanded. Herein, we designed a high-lethality precision-guided nanomissile for broad-spectrum virucidal and anti-inflammatory therapy. The nanomissile was a nanoscale molecularly imprinted polymer (nanoMIP) harboring hypervalent mannose-binding cavities and loaded with a magnetocaloric core and photothermal dye ICG. It demonstrated an ultrafast heating rate, increasing from 25.2 to 55.9 °C within 60 s under alternating magnetic field (AMF) and near-infrared (NIR) laser irradiation. In addition, the nanomissile exhibited a unique double-punch mechanism, being capable of targeting not only the conserved high-mannose glycans of SARS-CoV-2, HIV-1, LASV, and PDCoV with Kd values reaching 10-10 M but also heat-inactivating the virions right away. Beyond this, it also exhibited significant anti-inflammatory and immunomodulatory properties. In the mouse model, the nanomissile exerted outstanding therapeutic and prophylactic effects while inhibiting virus replication and protecting lung injury. Thus, this potently broad-spectrum virucidal strategy opens a new access to eradicating viral infectivity and inflammatory storm suspension.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Fabricius D, Ludwig C, Proffen M, Hägele J, Scholz J, Vieweg C, Rode I, Hoffmann S, Körper S, Schrezenmeier H, Jahrsdörfer B. Effective cellular and neutralizing immunity against SARS-CoV-2 after mRNA booster vaccination is associated with pDC and B cell activation. Front Immunol 2025; 16:1580448. [PMID: 40421016 PMCID: PMC12104250 DOI: 10.3389/fimmu.2025.1580448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction The emergence of SARS-CoV-2 variants of concern (VOCs), particularly Omicron, has challenged the efficacy of initial COVID-19 vaccination strategies. Booster immunizations, especially with mRNA vaccines, were introduced to enhance and prolong immune protection. However, the underlying mechanisms of humoral and cellular immunity induced by homologous versus heterologous vaccination regimens remain incompletely understood. This study aimed to elucidate the immune responses, including B cell, plasmacytoid dendritic cell (pDC), and T cell activation, following mRNA booster vaccination. Methods In a longitudinal cohort study, 136 individuals received three different vaccination regimens: homologous mRNA, heterologous vector-mRNA-mRNA, or heterologous vector-vector-mRNA vaccinations. Serum and peripheral blood mononuclear cells (PBMCs) were collected at multiple time points up to 64 weeks after initial vaccination. Anti-SARS-CoV-2 IgG titers and neutralization capacity against the wildtype virus and Omicron variant were measured using ELISA and cPass assays. Cellular immunity was assessed by IFN-γ release assays, and flow cytometry was employed to analyze B cell and pDC frequencies, viability, and activation markers. Functional pDC-mediated T cell activation was evaluated in mixed lymphocyte cultures. Results mRNA booster vaccination stabilized high anti-SARS-CoV-2 IgG titers and neutralizing activity against wildtype virus across all regimens, with the homologous mRNA group showing the highest antibody titers and Omicron neutralization capacity. Peripheral B cell frequencies and activation markers (MHC class I/II, CD86) were significantly upregulated post-booster. pDCs demonstrated enhanced antigen-presenting capacity and significantly promoted SARS-CoV-2-specific T cell IFN-γ responses in vitro. Despite differences in humoral responses between regimens, breakthrough infection rates up to 25 weeks post-booster were comparable across cohorts, suggesting compensatory mechanisms via cellular immunity. Discussion Our findings highlight the pivotal role of pDCs and T cells in sustaining effective immunity following mRNA booster vaccination. While homologous mRNA regimens induce superior humoral responses, robust cellular immunity in heterologous regimens may balance protection levels against breakthrough infections. The study underscores the importance of integrated humoral and cellular immune responses, suggesting potential for optimized booster strategies and pDC-targeted vaccine designs to enhance long-term protection against SARS-CoV-2 and emerging variants.
Collapse
Affiliation(s)
- Dorit Fabricius
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Carolin Ludwig
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Matthias Proffen
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Janina Hägele
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Judith Scholz
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Christiane Vieweg
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Immanuel Rode
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Simone Hoffmann
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Sixten Körper
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| |
Collapse
|
5
|
Adhikari P, Jawad B, Ching WY. Electronic Interactions Between the Receptor-Binding Domain of Omicron Variants and Angiotensin-Converting Enzyme 2: A Novel Amino Acid-Amino Acid Bond Pair Concept. Molecules 2025; 30:2061. [PMID: 40363865 PMCID: PMC12073306 DOI: 10.3390/molecules30092061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
SARS-CoV-2 remains a severe threat to worldwide public health, particularly as the virus continues to evolve and diversify into variants of concern (VOCs). Among these VOCs, Omicron variants exhibit unique phenotypic traits, such as immune evasion, transmissibility, and severity, due to numerous spike protein mutations and the rapid subvariant evolution. These Omicron subvariants have more than 15 mutations in the receptor-binding domain (RBD), a region of the SARS-CoV-2 spike protein that is important for recognition and binding with the angiotensin-converting enzyme 2 (ACE2) human receptor. To address the impact of these high numbers of Omicron mutations on the binding process, we have developed a novel method to precisely quantify amino acid interactions via the amino acid-amino acid bond pair (AABP). We applied this concept to investigate the interface interactions of the RBD-ACE2 complex in four Omicron Variants (BA.1, BA.2, BA.5, and XBB.1.16) with its Wild Type counterpart. Based on the AABP analysis, we have identified all the sites that are affected by mutation and have provided evidence that unmutated sites are also impacted by mutation. We have calculated that the binding between RBD and ACE2 is strongest in OV BA.1, followed by OV BA.2, WT, OV BA.5, and OV XBB.1.16. We also present the partial charge values for all 311 residues across these five models. Our analysis provides a detailed understanding of changes caused by mutation in each Omicron interface complex.
Collapse
Affiliation(s)
- Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (B.J.); (W.-Y.C.)
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (B.J.); (W.-Y.C.)
- College of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (B.J.); (W.-Y.C.)
| |
Collapse
|
6
|
McGee JE, Kirsch JR, Kenney D, Cerbo F, Chavez EC, Shih TY, Douam F, Wong WW, Grinstaff MW. Complete substitution with modified nucleotides in self-amplifying RNA suppresses the interferon response and increases potency. Nat Biotechnol 2025; 43:720-726. [PMID: 38977924 PMCID: PMC11707045 DOI: 10.1038/s41587-024-02306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/04/2024] [Indexed: 07/10/2024]
Abstract
The use of modified nucleotides to suppress the interferon response and maintain translation of self-amplifying RNA (saRNA), which has been achieved for mRNA, has not yet succeeded. We identify modified nucleotides that, when substituted at 100% in saRNA, confer innate immune evasion and robust long-term protein expression, and when formulated as a vaccine, protect against lethal SARS-CoV-2 challenge in mice. This discovery advances saRNA therapeutics by enabling prolonged protein expression at low doses.
Collapse
Affiliation(s)
- Joshua E McGee
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jack R Kirsch
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Devin Kenney
- Department of Virology, Immunology and Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Faith Cerbo
- Department of Virology, Immunology and Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Elizabeth C Chavez
- Department of Virology, Immunology and Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Ting-Yu Shih
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Florian Douam
- Department of Virology, Immunology and Microbiology, Boston University School of Medicine, Boston, MA, USA.
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2025; 23:288-302. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
8
|
Akula VR, Bhate AS, Gillurkar CS, Kushwaha JS, Singh AP, Singh C, Pandey AK, K K S, Rai SK, Vadrevu KM. Effect of heterologous intranasal iNCOVACC ® vaccination as a booster to two-dose intramuscular Covid-19 vaccination series: a randomized phase 3 clinical trial. COMMUNICATIONS MEDICINE 2025; 5:133. [PMID: 40269252 PMCID: PMC12019531 DOI: 10.1038/s43856-025-00818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Due to waning immunity and emerging variants, protection following primary intramuscular Covid-19 vaccinations is decreasing, so health agencies have been proposing heterologous booster vaccinations. Here, we report immunogenicity and safety evaluation of heterologous booster vaccination with an intranasal, adenovirus vectored SARS-CoV-2 vaccine (BBV154) in healthy adults, who were previously primed with two doses of either Covaxin® or Covishield™. We compare results with use of a homologous booster vaccination combination. METHODS This was a randomized, open-label phase 3 trial conducted to evaluate immunogenicity and safety of a booster dose of intranasal BBV154 vaccine or intramuscular EUA approved Covid-19 vacines in India. Healthy participants of ≥18 years age with no history of SARS-CoV-2 infection, who received two doses of Covaxin® or Covishield™ at least 6 ± 1 months earlier were enrolled. The primary outcome was the neutralising antibody titers against wild-type virus using a plaque-reduction neutralization test (PRNT50). Other outcomes measured were humoral (IgG), mucosal (IgA) and cell mediated responses. The protocol was registered #NCT05567471 and approved by National Regulatory Authority (India) #CTRI/2022/02/039992. RESULTS In this phase 3 trial, a total of 875 participants were randomized into 5 Groups in a ratio of 2:1:2:1:1 to receive either booster dose of BBV154 or Covaxin or Covishield. Based on per-protocol population, at Day 56, neutralization antibody titres were 564.1 (479·1, 664·1), 578.1 (436·9, 764·9), 655.5 (533·3, 805·8), 625.4 (474·7, 824·0), 650.1 (519·7, 813·1) for Group 1 to 5 respectively. This study was conducted, whilst the Omicron variant was prevalent. There were varying levels of severity of infection across different study sites with varied baseline antibody titers. Consequently, the average neutralization (PRNT50) antibody titers are similar across all Groups on day 56 and exhibited large differences within the Group, depending on the study site. All booster vaccinations are well tolerated and reported no serious adverse events; in particular, study participants boosted with BBV154 had significantly fewer solicited local adverse events than those primed and boosted with Covishield. CONCLUSIONS These findings demonstrate that impact of booster across different cohorts is governed by infection status of the individual and geographical diversity, thus necessitating large cohorts, well distributed studies before Covid-19 booster effects are interpreted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shivaraj K K
- Vagus Super Speciality Hospital, Bangalore, Karnataka, India
| | - Sanjay K Rai
- All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
9
|
Saha A, Ghosh Roy S, Dwivedi R, Tripathi P, Kumar K, Nambiar SM, Pathak R. Beyond the Pandemic Era: Recent Advances and Efficacy of SARS-CoV-2 Vaccines Against Emerging Variants of Concern. Vaccines (Basel) 2025; 13:424. [PMID: 40333293 PMCID: PMC12031379 DOI: 10.3390/vaccines13040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Vaccination has been instrumental in curbing the transmission of SARS-CoV-2 and mitigating the severity of clinical manifestations associated with COVID-19. Numerous COVID-19 vaccines have been developed to this effect, including BioNTech-Pfizer and Moderna's mRNA vaccines, as well as adenovirus vector-based vaccines such as Oxford-AstraZeneca. However, the emergence of new variants and subvariants of SARS-CoV-2, characterized by enhanced transmissibility and immune evasion, poses significant challenges to the efficacy of current vaccination strategies. In this review, we aim to comprehensively outline the landscape of emerging SARS-CoV-2 variants of concern (VOCs) and sub-lineages that have recently surfaced in the post-pandemic years. We assess the effectiveness of existing vaccines, including their booster doses, against these emerging variants and subvariants, such as BA.2-derived sub-lineages, XBB sub-lineages, and BA.2.86 (Pirola). Furthermore, we discuss the latest advancements in vaccine technology, including multivalent and pan-coronavirus approaches, along with the development of several next-generation coronavirus vaccines, such as exosome-based, virus-like particle (VLP), mucosal, and nanomaterial-based vaccines. Finally, we highlight the key challenges and critical areas for future research to address the evolving threat of SARS-CoV-2 subvariants and to develop strategies for combating the emergence of new viral threats, thereby improving preparedness for future pandemics.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
| | - Sounak Ghosh Roy
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Naval Medical Research Command, Silver Spring, MD 20910, USA;
| | - Richa Dwivedi
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Kamal Kumar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA;
| | - Shashank Manohar Nambiar
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
10
|
Marchegiani G, Carioti L, Coppola L, Iannetta M, Alborghetti L, Malagnino V, Benedetti L, Santoro MM, Andreoni M, Sarmati L, Alteri C, Ceccherini-Silberstein F, Bellocchi MC. An In-Depth Characterization of SARS-CoV-2 Omicron Lineages and Clinical Presentation in Adult Population Distinguished by Immune Status. Viruses 2025; 17:540. [PMID: 40284983 PMCID: PMC12031151 DOI: 10.3390/v17040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
This retrospective study analyzed SARS-CoV-2 Omicron variability since its emergence, focusing on immunocompromised (IPs) and non-immunocompromised adult people (NIPs). Phylogenetic analysis identified at least five major Omicron lineage groups circulating in Central Italy, from December 2021 to December 2023: (a) BA.1 (34.0%), (b) BA.2 + BA.4 (25.8%), (c) BA.5 + BF (10.8%), (d) BQ + BE + EF (9.2%), and (e) Recombinants (20.2%). The BA.2 + BA.4 lineages were more common in IPs compared to NIPs (30.9% vs. 17.8%, respectively; p = 0.011); conversely, Recombinants were less prevalent in IPs than in NIPs (16.0% vs. 27.1%, respectively; p = 0.018). High-abundant single nucleotide polymorphisms (SNPs; prevalence ≥ 40%) and non-synonymous SNPs (prevalence ≥ 20%) increased during the emergence of new variants, rising from BA.1 to Recombinants (54 to 92, and 43 to 70, respectively, both p < 0.001). Evaluating the genetic variability, 109 SNPs were identified as being involved in significant positive or negative associations in pairs (phi > 0.70, p < 0.001), with 19 SNPs associated in 3 distinct clusters (bootstrap > 0.96). Multivariate regression analysis showed that hospitalization was positively associated with one specific cluster, including S686R and A694S in Spike and L221F in Nucleocapsid (AOR: 2.74 [95% CI: 1.13-6.64, p = 0.025]), and with increased age (AOR:1.03 [95% CI: 1.00-1.06], p = 0.028). Conversely, negative associations with hospitalization were observed for female gender and previous vaccination status (AORs: 0.34 [95% CI: 0.14-0.83], p = 0.017 and 0.19 (95% CI: 0.06-0.63, p = 0.006, respectively). Interestingly, the S686R SNP located in a furin cleavage site suggests its potential pathogenetic role. The results show how Omicron genetic diversification significantly influences disease severity and hospitalization, together with age, sex, and vaccination status as key factors.
Collapse
Affiliation(s)
- Greta Marchegiani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Coppola
- Clinical Infectious Disease, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Iannetta
- Clinical Infectious Disease, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Leonardo Alborghetti
- Clinical Infectious Disease, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Malagnino
- Clinical Infectious Disease, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Livia Benedetti
- Clinical Infectious Disease, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Massimo Andreoni
- Clinical Infectious Disease, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Loredana Sarmati
- Clinical Infectious Disease, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Clinical Microbiology and Virology Unit, Fond. IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | | |
Collapse
|
11
|
Yang W, Parton H, Li W, Watts EA, Lee E, Yuan H. SARS-CoV-2 dynamics in New York City during March 2020-August 2023. COMMUNICATIONS MEDICINE 2025; 5:102. [PMID: 40195487 PMCID: PMC11977191 DOI: 10.1038/s43856-025-00826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widespread since 2020 and will likely continue to cause substantial recurring epidemics. However, understanding the underlying infection burden and dynamics, particularly since late 2021 when the Omicron variant emerged, is challenging. Here, we leverage extensive surveillance data available in New York City (NYC) and a comprehensive model-inference system to reconstruct SARS-CoV-2 dynamics therein through August 2023. METHODS We fit a metapopulation network SEIRSV (Susceptible-Exposed-Infectious-(re)Susceptible-Vaccination) model to age- and neighborhood-specific data of COVID-19 cases, emergency department visits, and deaths in NYC from the pandemic onset in March 2020 to August 2023. We further validate the model-inference estimates using independent SARS-CoV-2 wastewater viral load data. RESULTS The validated model-inference estimates indicate a very high infection burden-the number of infections (i.e., including undetected asymptomatic/mild infections) totaled twice the population size ( > 5 times documented case count) during the first 3.5 years. Estimated virus transmissibility increased around 3-fold, whereas estimated infection-fatality risk (IFR) decreased by >10-fold during this period. The detailed estimates also reveal highly complex variant dynamics and immune landscape, and higher infection risk during winter in NYC over the study period. CONCLUSIONS This study provides highly detailed epidemiological estimates and identifies key transmission dynamics and drivers of SARS-CoV-2 during its first 3.5 years of circulation in a large urban center (i.e., NYC). These transmission dynamics and drivers may be relevant to other populations and inform future planning to help mitigate the public health burden of SARS-CoV-2.
Collapse
Affiliation(s)
- Wan Yang
- Department of Epidemiology, Columbia University, New York, NY, USA.
| | - Hilary Parton
- New York City Department of Health and Mental Hygiene, Queens, NY, USA
| | - Wenhui Li
- New York City Department of Health and Mental Hygiene, Queens, NY, USA
| | - Elizabeth A Watts
- New York City Department of Health and Mental Hygiene, Queens, NY, USA
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ellen Lee
- New York City Department of Health and Mental Hygiene, Queens, NY, USA
| | - Haokun Yuan
- Department of Epidemiology, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Gheeraert A, Leroux V, Mias-Lucquin D, Karami Y, Vuillon L, Chauvot de Beauchêne I, Devignes MD, Rivalta I, Maigret B, Chaloin L. Subtle Changes at the RBD/hACE2 Interface During SARS-CoV-2 Variant Evolution: A Molecular Dynamics Study. Biomolecules 2025; 15:541. [PMID: 40305276 PMCID: PMC12024731 DOI: 10.3390/biom15040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
The SARS-CoV-2 Omicron variants show different behavior compared to the previous variants, especially with respect to the Delta variant, which promotes a lower morbidity despite being much more contagious. In this perspective, we performed molecular dynamics (MD) simulations of the different spike RBD/hACE2 complexes corresponding to the WT, Delta and four Omicron variants. Carrying out a comprehensive analysis of residue interactions within and between the two partners allowed us to draw the profile of each variant by using complementary methods (PairInt, hydrophobic potential, contact PCA). PairInt calculations highlighted the residues most involved in electrostatic interactions, which make a strong contribution to the binding with highly stable interactions between spike RBD and hACE2. Apolar contacts made a substantial and complementary contribution in Omicron with the detection of two hydrophobic patches. Contact networks and cross-correlation matrices were able to detect subtle changes at point mutations as the S375F mutation occurring in all Omicron variants, which is likely to confer an advantage in binding stability. This study brings new highlights on the dynamic binding of spike RBD to hACE2, which may explain the final persistence of Omicron over Delta.
Collapse
Affiliation(s)
- Aria Gheeraert
- Laboratory of Mathematics (LAMA), CNRS, University of Savoie Mont Blanc, 73370 Le Bourget-du-Lac, France; (A.G.); (L.V.)
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 40129 Bologna, Italy;
| | - Vincent Leroux
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Dominique Mias-Lucquin
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Yasaman Karami
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Laurent Vuillon
- Laboratory of Mathematics (LAMA), CNRS, University of Savoie Mont Blanc, 73370 Le Bourget-du-Lac, France; (A.G.); (L.V.)
| | - Isaure Chauvot de Beauchêne
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Marie-Dominique Devignes
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 40129 Bologna, Italy;
- ENS, CNRS, Laboratoire de Chimie UMR 5182, 69364 Lyon, France
| | - Bernard Maigret
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
13
|
Case JB, Jain S, Suthar MS, Diamond MS. SARS-CoV-2: The Interplay Between Evolution and Host Immunity. Annu Rev Immunol 2025; 43:29-55. [PMID: 39705164 DOI: 10.1146/annurev-immunol-083122-043054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The persistence of SARS-CoV-2 infections at a global level reflects the repeated emergence of variant strains encoding unique constellations of mutations. These variants have been generated principally because of a dynamic host immune landscape, the countermeasures deployed to combat disease, and selection for enhanced infection of the upper airway and respiratory transmission. The resulting viral diversity creates a challenge for vaccination efforts to maintain efficacy, especially regarding humoral aspects of protection. Here, we review our understanding of how SARS-CoV-2 has evolved during the pandemic, the immune mechanisms that confer protection, and the impact viral evolution has had on transmissibility and adaptive immunity elicited by natural infection and/or vaccination. Evidence suggests that SARS-CoV-2 evolution initially selected variants with increased transmissibility but currently is driven by immune escape. The virus likely will continue to drift to maintain fitness until countermeasures capable of disrupting transmission cycles become widely available.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Shilpi Jain
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael S Diamond
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
14
|
Letscher H, Guilligay D, Effantin G, Amen A, Sulbaran G, Burger JA, Bossevot L, Junges L, Leonec M, Morin J, Van Tilbeurgh M, Hérate C, Gallouët AS, Relouzat F, van der Werf S, Cavarelli M, Dereuddre-Bosquet N, van Gils MJ, Sanders RW, Poignard P, Le Grand R, Weissenhorn W. RBD-depleted SARS-CoV-2 spike generates protective immunity in cynomolgus macaques. NPJ Vaccines 2025; 10:63. [PMID: 40159504 PMCID: PMC11955555 DOI: 10.1038/s41541-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The SARS-CoV-2 pandemic revealed the rapid evolution of circulating strains. This led to new variants carrying mostly mutations within the receptor binding domain, which is immunodominant upon immunization and infection. In order to steer the immune response away from RBD epitopes to more conserved domains, we generated S glycoprotein trimers without RBD and stabilized them by formaldehyde cross-linking. The cryoEM structure demonstrated that SΔRBD folds into the native prefusion conformation, stabilized by one specific cross-link between S2 protomers. SΔRBD was coated onto lipid vesicles, to produce synthetic virus-like particles, SΔRBD-LV, which were utilized in a heterologous prime-boost strategy. Immunization of cynomolgus macaques either three times with the mRNA Comirnaty vaccine or two times followed by SΔRBD-LV showed that the SΔRBD-LV boost induced similar antibody titers and neutralization of different variants, including omicron. Upon challenge with omicron XBB.3, both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes conferred similar overall protection from infection for both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes. However, the SΔRBD-LV boost indicated better protection against lung infection than the Comirnaty strategy alone. Together our findings indicate that SΔRBD is highly immunogenic and provides improved protection compared to a third mRNA boost indicative of superior antibody-based protection.
Collapse
Affiliation(s)
- Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Delphine Guilligay
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Gregory Effantin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Axelle Amen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Guidenn Sulbaran
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Judith A Burger
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Laura Junges
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marco Leonec
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Matthieu Van Tilbeurgh
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Cécile Hérate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marit J van Gils
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Rogier W Sanders
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, NY, USA
| | - Pascal Poignard
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
15
|
Yuan L, Stoddard M, Sarkar S, van Egeren D, Mangalaganesh S, Nolan RP, Rogers MS, Hather G, White LF, Chakravarty A. The Impact of Vaccination Frequency on COVID-19 Public Health Outcomes: A Model-Based Analysis. Vaccines (Basel) 2025; 13:368. [PMID: 40333247 PMCID: PMC12031506 DOI: 10.3390/vaccines13040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Background: While the rapid deployment of SARS-CoV-2 vaccines had a significant impact on the ongoing COVID-19 pandemic, rapid viral immune evasion and waning neutralizing antibody titers have degraded vaccine efficacy. Nevertheless, vaccine manufacturers and public health authorities have a number of options at their disposal to maximize the benefits of vaccination. In particular, the effect of booster schedules on vaccine performance bears further study. Methods: To better understand the effect of booster schedules on vaccine performance, we used an agent-based modeling framework and a population pharmacokinetic model to simulate the impact of boosting frequency on the durability of vaccine protection against infection and severe acute disease. Results: Our work suggests that repeated dosing at frequent intervals (three or more times a year) may offset the degradation of vaccine efficacy, preserving the utility of vaccines in managing the ongoing pandemic. Conclusions: Given the practical significance of potential improvements in vaccine utility, clinical research to better understand the effects of repeated vaccination would be highly impactful. These findings are particularly relevant as public health authorities worldwide have reduced the frequency of boosters to once a year or less.
Collapse
Affiliation(s)
- Lin Yuan
- Fractal Therapeutics, Lexington, MA 02420, USA; (L.Y.); (M.S.)
| | | | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03755, USA;
| | - Debra van Egeren
- Department of Oncology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Shruthi Mangalaganesh
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia;
| | | | - Michael S. Rogers
- Department of Surgery, Harvard Medical School, Boston, MA 02114, USA;
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Greg Hather
- Sage Therapeutics, Cambridge, MA 02142, USA;
| | - Laura F. White
- School of Public Health, Boston University, Boston, MA 02118, USA;
| | | |
Collapse
|
16
|
Makoana KM, Naidoo CM, Zubair MS, Motshudi MC, Mkolo NM. Integration of metabolomics and chemometrics with in-silico and in-vitro approaches to unravel SARS-Cov-2 inhibitors from South African plants. PLoS One 2025; 20:e0320415. [PMID: 40138368 PMCID: PMC11940557 DOI: 10.1371/journal.pone.0320415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Coronavirus disease (COVID-19) is still a severe concern, especially in Africa with suboptimal intention rates of vaccination. This flagged the requirement of plant-based remedies as an alternative treatment. In this study we integrated metabolomics and chemometrics approaches with In silico and In vitro approaches to accelerate and unravel compounds from commonly used South African plants that may inhibit SARS-CoV-2 main protease. The selected commonly used plants, Artemisia afra and Artemisia annua, were found to be non-toxic against Vero cells, as determined by the resazurin cell viability assay. Metabolites profiling revealed eighty-one compounds and the top three hit compounds, quercetin 3-O-(6"-acetyl-glucoside), 2"-O-acetylrutin, and quercetin 3-(6"-malonyl-glucoside), had binding affinities of -9.3 kcal/mol, -9.5 kcal/mol, and -9.3 kcal/mol, respectively. The 2"-O-acetyl group of the rutin moiety and quercetin moiety produces a hydrogen bond with the amide nitrogen of His41 and with the side chain carboxylate of Cys145, respectively. Molecular dynamics simulations revealed a stable binding of the docked complexes. In silico observations were validated by In vitro bioassay, which flagged the ability of these compounds to inhibit SARS-CoV-2 3CLpro. The collected analysed data of this study does not only draw special attention to the surfaced 2"-O-acetylrutin as the best suitable inhibitor of SARS-CoV-2 3CLpro, but also indirectly reveals the importance of integrating metabolomics and chemometrics approaches with In silico and In vitro approaches to accelerate and unravel compounds from South African commonly used plants.
Collapse
Affiliation(s)
- Karabo Maselepe Makoana
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria, South Africa
| | - Clarissa Marcelle Naidoo
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria, South Africa
| | | | - Mmei Cheryl Motshudi
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria, South Africa
| | - Nqobile Monate Mkolo
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria, South Africa
| |
Collapse
|
17
|
Aso S, Ono S, Michihata N, Uemura K, Yasunaga H. Differences in Characteristics, Treatments, and Mortality of Patients with COVID-19 Between 2022 and 2020-2021. Jpn J Infect Dis 2025; 78:85-90. [PMID: 39617481 DOI: 10.7883/yoken.jjid.2024.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
In 2021, vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed and the Omicron variant emerged. This study compared the characteristics, treatments, and mortality of patients with coronavirus disease 2019 (COVID-19) between 2022 and 2020-2021, using administrative claims data linked including vaccine records in a Japanese city. Patients who underwent COVID-19 antigen or polymerase chain reaction tests and were diagnosed with COVID-19 were identified. Patient characteristics, treatments, and mortality were compared between 2022 and 2020-2021 among those diagnosed with COVID-19. We identified 26,262 patients with COVID-19. The mortality in 2022 was lower than that in 2020-2021 (0.6% vs. 1.7%; P < 0.01). Patients in 2022 were significantly less likely to receive oxygen therapy, high-flow nasal oxygenation, mechanical ventilation, steroids, and tocilizumab than those in 2020-2021. Among the deceased, the proportion of those aged ≥65 years was significantly higher in 2022 than in 2020-2021 (98.4% vs. 88.6%). The logistic regression analysis indicated, older age, male sex, and ≥3 comorbidities were associated with higher mortality, whereas ≥3 vaccinations were associated with lower mortality. Patients with COVID-19 in 2022 were less likely to require respiratory care or succumb to the disease. Older patients were more likely to die in 2022 than in 2020-2021.
Collapse
Affiliation(s)
- Shotaro Aso
- Department of Health Services Research, School of Public Health, The University of Tokyo, Japan
| | - Sachiko Ono
- Department of Eat-loss Medicine, Graduate School of Medicine, School of Public Health, The University of Tokyo, Japan
| | - Nobuaki Michihata
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Japan
| | - Kohei Uemura
- Department of Biostatistics and Bioinformatics, Interfaculty Initiative in Information Studies, School of Public Health, The University of Tokyo, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Japan
| |
Collapse
|
18
|
Ebenig A, Lange MV, Gellhorn Serra M, Kupke A, Plesker R, Qu B, Brown RJP, Maier TJ, Mühlebach MD. Differential efficacy of first licensed western vaccines protecting without immunopathogenesis Wuhan-1-challenged hamsters from severe COVID-19. NPJ Vaccines 2025; 10:51. [PMID: 40097436 PMCID: PMC11914482 DOI: 10.1038/s41541-025-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Four COVID-19 vaccines were developed, tested, and authorized early in Europe and the US. Comirnaty and Spikevax are mRNA-based, whereas Jcovden and Vaxzevria utilize adenoviral vectors (AdV). We described a hamster model of COVID-19 utilizing Wuhan-1 strain SARS-CoV-2, in which vaccine-associated immunopathogenesis can be induced by Alum-adjuvanted Spike protein (Alum+S). Such animals were vaccinated with the authorized vaccines or Alum+S, challenged, and examined. All vaccinated hamsters produced antibodies targeting S. Neutralizing antibodies (nAb) were induced only by authorized vaccines. While nAbs were present after one vaccination with AdV-vaccines, mRNA vaccines needed a boost immunization. Upon challenge, all authorized vaccines protected from severe disease. Less tissue damage and no live virus (one exception) were detectable in the lungs. In contrast, Alum+S immunized hamsters developed VAERD. Our data reveal the absence of induction of VAERD by early commercial vaccines in hamsters, while animals´ immune responses and protection seem to match the clinical vaccine efficacy.
Collapse
Affiliation(s)
- Aileen Ebenig
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Mona V Lange
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | | | - Alexandra Kupke
- Institute for Virology, Philipps University, 35043, Marburg, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Roland Plesker
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Bingqian Qu
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Richard J P Brown
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany
- Department of Translational and Computational Infection Research, Ruhr University Bochum, 44801, Bochum, Germany
| | - Thorsten J Maier
- Division Safety of Biomedicines and Diagnostics, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Michael D Mühlebach
- Division Veterinary Medicine, Paul-Ehrlich-Institut, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
19
|
Pagani I, Venturini A, Capurro V, Nonis A, Ghezzi S, Lena M, Alcalá-Franco B, Gianferro F, Guidone D, Colombo C, Pedemonte N, Bragonzi A, Cigana C, Galietta LJV, Vicenzi E. Distinct Responses of Cystic Fibrosis Epithelial Cells to SARS-CoV-2 and Influenza A Virus. Am J Respir Cell Mol Biol 2025; 72:308-319. [PMID: 39311876 PMCID: PMC11890075 DOI: 10.1165/rcmb.2024-0213oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/23/2024] [Indexed: 03/01/2025] Open
Abstract
The coronavirus disease (COVID-19) pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from individuals with and without CF, including various CFTR (CF transmembrane conductance regulator) mutations, respond to in vitro infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and SARS-CoV. Comparisons with the influenza A virus (IAV) were included based on evidence that patients with CF experience heightened morbidity from IAV infection. Our findings showed that CF epithelial cells exhibited reduced replication of SARS-CoV-2, regardless of the type of CFTR mutation or SARS-CoV-2 variant, as well as the original 2003 SARS-CoV. In contrast, these cells displayed more efficient IAV replication than non-CF cells. Interestingly, the reduced susceptibility to SARS-CoV-2 in CF was not linked to the expression of ACE2 (angiotensin-converting enzyme 2) receptor or to CFTR dysfunction, as pharmacological treatments to restore CFTR function did not normalize the viral response. Both SARS-CoV-2 infection and CFTR function influenced the concentrations of certain cytokines and chemokines, although these effects were not correlated. Overall, this study reveals a unique viral response in CF epithelial cells, characterized by reduced replication for some viruses like SARS-CoV-2, while showing increased susceptibility to others, such as IAV. This research offers a new perspective on CF and viral interactions, emphasizing the need for further investigation into the mechanisms underlying these differences.
Collapse
Affiliation(s)
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medical Sciences, University of Napoli Federico II, Naples, Italy
| | - Valeria Capurro
- Unit of Medical Genetics (UOC), IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Alessandro Nonis
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | | | - Mariateresa Lena
- Unit of Medical Genetics (UOC), IRCCS Giannina Gaslini Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; and
| | - Beatriz Alcalá-Franco
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Gianferro
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medical Sciences, University of Napoli Federico II, Naples, Italy
| | - Carla Colombo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicoletta Pedemonte
- Unit of Medical Genetics (UOC), IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Cigana
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luis J. V. Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medical Sciences, University of Napoli Federico II, Naples, Italy
| | | |
Collapse
|
20
|
Liu S, Liu P, Lu Q, Shen Y, Zhang L, Liang Z, Yu Y, Huang W, Wang Y. The Compensatory Effect of S375F on S371F Is Vital for Maintaining the Infectivity of SARS-CoV-2 Omicron Variants. J Med Virol 2025; 97:e70242. [PMID: 40062404 PMCID: PMC11891949 DOI: 10.1002/jmv.70242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 05/13/2025]
Abstract
The emergence of Omicron variants dramatically changed the transmission rate and infection characteristics compared to previously prevalent strains, primarily due to spike protein mutations. However, the impact of individual mutations remained unclear. Here, we used virus-like particle (VLP) pseudotyped to investigate the functional contributions by 12 common mutations in the spike protein. We found that the S371F mutation in the receptor binding domain (RBD) of spike protein led to a 5- and 10-fold decrease of ACE2 utilization efficiency and viral infectivity, respectively, accompanied by a 5- to 11-fold reduction of neutralization sensitivity to monoclonal antibodies. However, the S375F mutation in the RBD had a compensatory effect, rescuing the infectivity of the S371F Omicron variant. Based on molecular dynamics simulations, we proposed a "tug of war" model to explain this compensation phenomenon. These results provide a comprehensive and dynamic perspective on the evolution of this important pandemic virus.
Collapse
Affiliation(s)
- Shuo Liu
- Changping LaboratoryBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Qiong Lu
- Division of HIV/AIDS and Sexually Transmitted Virus VaccinesInstitute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC)BeijingChina
| | - Yanru Shen
- Division of HIV/AIDS and Sexually Transmitted Virus VaccinesInstitute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC)BeijingChina
| | - Li Zhang
- Division of HIV/AIDS and Sexually Transmitted Virus VaccinesInstitute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC)BeijingChina
| | - Ziteng Liang
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Division of HIV/AIDS and Sexually Transmitted Virus VaccinesInstitute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC)BeijingChina
| | | | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus VaccinesInstitute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC)BeijingChina
| | - Youchun Wang
- Changping LaboratoryBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
21
|
Rubio-Casillas A, Redwan EM, Uversky VN. More antibodies are not always better: Fc effector functions play a critical role in SARS-CoV-2 infection and protection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:413-447. [PMID: 40246351 DOI: 10.1016/bs.pmbts.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Traditional vaccinology has primarily focused on neutralizing antibody titers as the main correlate of vaccine efficacy, often overlooking the multifaceted roles of antibody Fc effector functions in orchestrating protective immune responses. Fc-mediated immune responses play a pivotal role in immune modulation and pathogen clearance. Emerging evidence from natural infections and vaccine studies highlights the critical contribution of Fc effector functions in determining the quality and durability of immunity. This work explores the limitations of current vaccine evaluation paradigms that prioritize neutralization over Fc effector mechanisms. It also describes findings from a study showing an unexpected role for SARS-CoV-2 anti-spike antibodies: both convalescent plasma and patient-derived monoclonal antibodies (mAbs) lead to maximum phagocytic capacity by monocytes at low concentrations, whereas at higher concentrations the phagocytic capacity was reduced. Given that the severity of COVID-19 disease and antibody titers are strongly positively correlated, this work challenges the paradigm that high antibodies offer better protection against severe disease. It is proposed that humoral and cellular responses elicited by vaccination should never be higher than those produced by natural infection. By integrating antibody Fc effector functions into vaccine development, a paradigm shift is proposed that emphasizes synergic antibody responses. Such an approach could transform vaccine efficacy assessment, enhance protection against dangerous pathogens, and drive innovation in vaccine design.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
22
|
Li D, Hu C, Su J, Du S, Zhang Y, Ni W, Ren L, Hao Y, Feng Y, Jin C, Wang S, Dai X, Wang Z, Zhu B, Xiao J, Shao Y. Function and structure of broadly neutralizing antibodies against SARS-CoV-2 Omicron variants isolated from prototype strain infected convalescents. J Transl Med 2025; 23:212. [PMID: 39985112 PMCID: PMC11844185 DOI: 10.1186/s12967-025-06162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/22/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The ongoing emergence of evolving SARS-CoV-2 variants poses great threaten to the efficacy of authorized monoclonal antibody-based passive immunization or treatments. Developing potent broadly neutralizing antibodies (bNabs) against SARS-CoV-2 and elucidating their potential evolutionary pathways are essential for battling the coronavirus disease 2019 (COVID-19) pandemic. METHODS Broadly neutralizing antibodies were isolated using single cell sorting from three COVID-19 convalescents infected with prototype SARS-CoV-2 strain. Their neutralizing activity against diverse SARS-CoV-2 strains were tested in vitro and in vivo, respectively. The structures of antibody-antigen complexes were resolved using crystallization or Cryo-EM method. Antibodyomics analyses were performed using the non-bias deep sequencing results of BCR repertoires. RESULTS We obtained a series of RBD-specific monoclonal antibodies with highly neutralizing potency against a variety of pseudotyped and live SARS-CoV-2 variants, including five global VOCs and some Omicron subtypes such as BA.1, BA.2, BA.4/5, BF.7, and XBB. 2YYQH9 and LQLD6HL antibody cocktail also displayed good therapeutic and prophylactic efficacy in an XBB.1.16 infected hamster animal model. Cryo-EM and crystal structural analyses revealed that broadly neutralizing antibodies directly blocked the binding of ACE2 by almost covering the entire receptor binding motif (RBM) and largely avoided mutated RBD residues in the VOCs, demonstrating their broad and potent neutralizing activity. In addition, antibodyomics assays indicate that the germline frequencies of RBD-specific antibodies increase after an inactivated vaccine immunization. Moreover, the CDR3 frequencies of Vκ/λ presenting high amino acid identity with the broadly neutralizing antibodies were higher than those of VH. CONCLUSIONS These data suggest that current identified broadly neutralizing antibodies could serve as promising drug candidates for COVID-19 and can be used for reverse vaccine design against future pandemics.
Collapse
Affiliation(s)
- Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Junwei Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuo Du
- Changping Laboratory, Beijing, 102206, China
| | - Ying Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100091, China
| | - Wanqi Ni
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Li Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yanling Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yi Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinxian Dai
- National Vaccine and Serum Institute, Beijing, 101111, China
- China National Biotec Group Company Limited, Beijing, 100024, China
| | - Zheng Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Junyu Xiao
- Changping Laboratory, Beijing, 102206, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100091, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100091, China.
| | - Yiming Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Changping Laboratory, Beijing, 102206, China.
| |
Collapse
|
23
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
24
|
Yang J, Strodl E, Zhang D, Jiang H, Chu K, Tan S, Ye Z, Shi H, Tong F, Chen W. Difference of SARS-CoV-2 infection and influence factors between people with and without HIV infection. BMC Public Health 2025; 25:386. [PMID: 39885441 PMCID: PMC11783751 DOI: 10.1186/s12889-025-21400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND There are mixed findings in the literature regarding the association between HIV status and the risk of COVID-19 infection. Thus, we aimed to estimate the association between characteristics of HIV infection and the risk of COVID-19 Infection in a Chinese sample. METHODS We conducted a cross-sectional survey of 1995 people living with HIV (PLWH) and 3503 HIV-negative adults in Ningbo, China. We compared the prevalence rates of the SARS-CoV-2 infection and the long nucleic acid conversion time (more than 2 weeks) among PLWH and HIV-negative participants, respectively. In addition, we explored the risk factors associated with SARS-CoV-2 infection and the long nucleic acid conversion time among the two groups. RESULTS Overall, 1485/1995 (74.4%) PLWH and 2864/3503 (81.8%) HIV-negative people were infected with SARS-CoV-2. Among the SARS-CoV-2-infected participants, 437/1485 (29.4%) PLWH and 649/2864 (22.7%) HIV-negative people had the long nucleic acid conversion time. After controlling for the potential confounders, the rate of the SARS-CoV-2 infection was lower among the PLWH than the HIV-negative group (adjusted OR = 0.836, 95% CI = 0.706-0.990). However, PLWH had a significantly higher risk of the long nucleic acid conversion time after the SARS-CoV-2 infection (adjusted OR = 1.417, 95% CI = 1.176-1.707) than the HIV negative participants. Compared with those who did not receive ART, PLWH adults who received ART significantly had the increased risk of SARS-CoV-2 infection. Furthermore, HIV-negative participants receiving COVID-19 vaccines significantly displayed the decreased likelihood of the long nucleic acid conversion time after the SARS-CoV-2 infection. CONCLUSIONS Our study indicates that different HIV Infection status was significantly and differently associated with the SARS-CoV-2 infection and the long nucleic acid conversion time. However, the further studies are needed to confirm the effect of ART and COVID-19 vaccines on SARS-CoV-2 infection in PLWH.
Collapse
Affiliation(s)
- Jianhui Yang
- Ningbo Municipal Centre for Disease Control and Prevention, 1166 Fanjiang'an Road, Haishu District, Ningbo City, 315016, Zhejiang Province, PRC, China
| | - Esben Strodl
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Dandan Zhang
- Ningbo Municipal Centre for Disease Control and Prevention, 1166 Fanjiang'an Road, Haishu District, Ningbo City, 315016, Zhejiang Province, PRC, China
| | - Haibo Jiang
- Ningbo Municipal Centre for Disease Control and Prevention, 1166 Fanjiang'an Road, Haishu District, Ningbo City, 315016, Zhejiang Province, PRC, China
| | - Kun Chu
- Ningbo Municipal Centre for Disease Control and Prevention, 1166 Fanjiang'an Road, Haishu District, Ningbo City, 315016, Zhejiang Province, PRC, China
| | - Shiwen Tan
- Ningbo Municipal Centre for Disease Control and Prevention, 1166 Fanjiang'an Road, Haishu District, Ningbo City, 315016, Zhejiang Province, PRC, China
| | - Zehao Ye
- Ningbo Municipal Centre for Disease Control and Prevention, 1166 Fanjiang'an Road, Haishu District, Ningbo City, 315016, Zhejiang Province, PRC, China
| | - Hongbo Shi
- Ningbo Municipal Centre for Disease Control and Prevention, 1166 Fanjiang'an Road, Haishu District, Ningbo City, 315016, Zhejiang Province, PRC, China
| | - Feng Tong
- Ningbo Municipal Centre for Disease Control and Prevention, 1166 Fanjiang'an Road, Haishu District, Ningbo City, 315016, Zhejiang Province, PRC, China.
| | - Weiqing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
- Department of Information Management, Xinhua College, Sun Yat-sen University, No. 74, 2nd Yat-Sen Road, Yuexiu District, Guangzhou, Guangdong Province, PRC, 510080, China.
| |
Collapse
|
25
|
Chen Z, Xie F, Zhang H, Li D, Zhang S, Zhang M, Li J, Xie J, Zhang L, Yang X, Zhang D. Waning neutralizing antibodies through 180 days after homologous and heterologous boosters of inactivated COVID-19 vaccine. Front Public Health 2025; 13:1478627. [PMID: 39935878 PMCID: PMC11811089 DOI: 10.3389/fpubh.2025.1478627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
To enhance the personal immunity to COVID-19, a third booster dose of inactivated COVID-19 vaccines program campaign was implemented in China. Our study endeavored to compare the dynamics of neutralizing antibodies generated by four distinct booster vaccines against three kinds of live SARS-CoV-2 virus (wild-type, Delta AY.23, and Omicron BA5.2). This cohort study involved 320 healthy individuals, who were randomly assigned to four groups, to receive boosters with inactivated vaccine (COVac and BIBP), the adenovirus type-5-vectored vaccine (Convidecia), and the recombinant protein-based vaccine (Zifivax), respectively, all the vaccines studied had the Wuhan variant as their parental variant. Participants were recruited from December 2021 to June 2022, with a follow-up period of 180 days. We evaluated humoral immune responses and their longevity by measuring the geometric mean titers (GMTs) of neutralizing antibodies against the SARS-CoV-2 virus at various time points post-boost. After 180 days of follow-up, 310 participants completed the study. Across all booster groups, neutralizing antibodies against the wild-type virus declined sharply within the first 90 days, accounting for an 81.24 to 92.34% reduction, then slowed down with gradually decreasing decay rates. By day 14 of post-boost, the ability to neutralize the Delta variant slightly diminished compared to the wild-type, whereas neutralizing antibodies against the Omicron variant exhibited a more pronounced decline, ranging from 10.78 to 19.88 times lower than those against the wild-type. Notably, heterologous boosting with the Convidecia vaccine maintained higher GMTs of neutralizing antibodies against both Delta and Omicron variants compared to the other boosters. At 180 days of post-boost, GMTs of neutralizing antibodies against SARS-CoV-2 had substantially decreased, yet individuals who received the Convidecia vaccine still exhibited higher titers than those who received other boosters. In summary, neutralizing antibody levels significantly waned 180 days after the third vaccine dose, with the most pronounced decline occurring within the initial 90 days. Heterologous boosting with Convidecia demonstrated a more robust, durable, and broad humoral immune response compared to boosting with inactivated vaccines or Zifivax, suggesting that adenovirus vector vaccines possess a special advantage in the realm of vaccine development for preventing infectious diseases.
Collapse
Affiliation(s)
- Zhifei Chen
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Fangqin Xie
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Hairong Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Dong Li
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Suhan Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Mengping Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Junrong Li
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Jianfeng Xie
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Lina Zhang
- Zhangping Center for Disease Control and Prevention, Zhangping, China
| | - Xiuhui Yang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Dongjuan Zhang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| |
Collapse
|
26
|
Slamanig S, Lemus N, Lai TY, Singh G, Mishra M, Abdeljawad A, Boza M, Dolange V, Singh G, Lee B, González-Domínguez I, Schotsaert M, Krammer F, Palese P, Sun W. A single immunization with intranasal Newcastle disease virus (NDV)-based XBB.1.5 variant vaccine reduces disease and transmission in animals against matched-variant challenge. Vaccine 2025; 45:126586. [PMID: 39667115 DOI: 10.1016/j.vaccine.2024.126586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
The rapid development of coronavirus disease 2019 (COVID-19) vaccines has helped mitigate the initial impact of the pandemic. However, in order to reduce transmission rates and protect more vulnerable and immunocompromised individuals unable to mount an effective immune response, development of a next-generation of mucosal vaccines is necessary. Here, we developed an intranasal Newcastle disease virus (NDV)-based vaccine expressing the spike of the XBB.1.5 variant stabilized in its pre-fusion conformation (NDV-HXP-S). We demonstrated that one or two intranasal immunizations with live NDV-HXP-S expressing the XBB.1.5 spike induces systemic and mucosal antibody responses in mice and protects them from a challenge with the XBB.1.5 variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, one or two intranasal vaccinations with NDV-HXP-S XBB.1.5 protected hamsters from variant matched infection and reduced virus emission, thereby providing complete protection to naïve animals in a direct contact transmission study. The data shown in this study supports the notion that intranasal vaccination with variant-adapted NDV-HXP-S induces protective mucosal immunity and reduces transmission rates, highlighting the robust protective efficacy of a single mucosal vaccination in mice and hamsters.
Collapse
Affiliation(s)
- Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicholas Lemus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tsoi Ying Lai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mitali Mishra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Abdeljawad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Boza
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Dolange
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Institute for Precision Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Ren J, Zhang Z, Xia Y, Zhao D, Li D, Zhang S. Research Progress on the Structure and Function, Immune Escape Mechanism, Antiviral Drug Development Methods, and Clinical Use of SARS-CoV-2 M pro. Molecules 2025; 30:351. [PMID: 39860219 PMCID: PMC11767629 DOI: 10.3390/molecules30020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The three-year COVID-19 pandemic 'has' caused a wide range of medical, social, political, and financial implications. Since the end of 2020, various mutations and variations in SARS-CoV-2 strains, along with the immune escape phenomenon, have emerged. There is an urgent need to identify a relatively stable target for the development of universal vaccines and drugs that can effectively combat both SARS-CoV-2 strains and their mutants. Currently, the main focus in treating SARS-CoV-2 lies in disrupting the virus's life cycle. The main protease (Mpro) is closely associated with virus replication and maturation and plays a crucial role in the early stages of infection. Consequently, it has become an important target for the development of SARS-CoV-2-specific drugs. This review summarizes the recent research progress on the novel coronavirus's main proteases, including the pivotal role of Mpro in the virus's life cycle, the structure and catalytic mechanism of Mpro, the self-maturation mechanism of Mpro, the role of Mpro in virus immune escape, the current methods of developing antiviral drugs targeting Mpro, and the key drugs that have successfully entered clinical trials. The aim is to provide researchers involved in the development of antiviral drugs targeting Mpro with systematic and comprehensive information.
Collapse
Affiliation(s)
| | | | | | | | - Dingqin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| |
Collapse
|
28
|
Khalid K, Ahmad F, Anwar A, Ong SK. A Bibliometric Analysis on Multi-epitope Vaccine Development Against SARS-CoV-2: Current Status, Development, and Future Directions. Mol Biotechnol 2025:10.1007/s12033-024-01358-5. [PMID: 39789401 DOI: 10.1007/s12033-024-01358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs. The development of multi-epitope vaccines against SARS-CoV-2 based on in silico identification of highly conserved and immunogenic epitopes is a promising strategy for future SARS-CoV-2 vaccine development. Considering the evolving landscape of the COVID-19 pandemic, we have conducted a bibliometric analysis to consolidate current findings and research trends in multi-epitope vaccine development to provide insights for future vaccine development strategies. Analysis of 102 publications on multi-epitope vaccine development against SARS-CoV-2 revealed significant growth and global collaboration, with India leading in the number of publications, along with an identification of the most prolific authors. Key journals included the Journal of Biomolecular Structure and Dynamics, while top collaborations involved Pakistan-China and India-USA. Keyword analysis showed a prominent focus on immunoinformatics, epitope prediction, and spike glycoprotein. Advances in immunoinformatics, including AI-driven epitope prediction, offer promising avenues for the development of safe and effective multi-epitope vaccines. Immunogenicity may be further improved through nanoparticle-based systems or the use of adjuvants along with real-time genomic surveillance to tailor vaccines against emerging variants.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
| | - Fiaz Ahmad
- Department of Economics and Finance, Sunway Business School, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
29
|
Yuan M, Wilson IA. Structural Immunology of SARS-CoV-2. Immunol Rev 2025; 329:e13431. [PMID: 39731211 PMCID: PMC11727448 DOI: 10.1111/imr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants. In contrast, antibodies targeting conserved regions, such as the S2 stem helix and fusion peptide, exhibit broader reactivity but generally lower neutralization potency. However, several broadly neutralizing antibodies have demonstrated exceptional efficacy against emerging variants, including the latest omicron subvariants, underscoring the potential of targeting vulnerable sites such as RBS-A and RBS-D/CR3022. We also highlight public classes of antibodies targeting different sites on the S protein. The vulnerable sites targeted by public antibodies present opportunities for germline-targeting vaccine strategies. Overall, developing escape-resistant, potent antibodies and broadly effective vaccines remains crucial for combating future variants. This review emphasizes the importance of identifying key epitopes and utilizing antibody affinity maturation to inform future therapeutic and vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
30
|
Yang X, Zhang J, Liu Z, Chen S, Weissman S, Poland GA, Phaswana-Mafuya RN, Olatosi B, Li X. Real-world effectiveness of COVID-19 vaccine in people with HIV compared with a matched HIV-negative cohort: A test-negative design. Int J Infect Dis 2025; 150:107310. [PMID: 39581372 DOI: 10.1016/j.ijid.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
OBJECTIVES We estimated vaccine effectiveness (VE) against SARS-CoV-2 infection among a statewide cohort of people with HIV (PWH) and compared the estimates with a matched cohort of people without HIV (PWoH) in South Carolina (SC), USA. METHODS A population-based cohort was retrieved from statewide electronic health records between January 2, 2021, and April 14, 2022, during which several variants were circulating in SC (i.e., Alpha, Delta, Omicron). We compared the odds of vaccination between test-positive cases and test-negative controls using logistic regression models for both SARS-CoV-2 infection and severe COVID-19 outcomes. The VE was derived as (1 - adjusted odds ratio) × 100%. RESULTS A total of 7279 test episodes in PWH and 72,790 matched test episodes in PWoH were included for analysis, representing 6561 unique PWH and 67,521 unique PWoH. The peak level of VE against SARS-CoV-2 infection occurred 7-59 days after receipt of the second dose of vaccine (PWH: 61.20%; PWoH: 67.09%), followed by a waning protective effect 90-119 days after the second dose in both PWH (35.80%) and PWoH (47.57%), where PWH had a proportionally lower and declined faster VE. Regarding the VE against severe outcomes of SARS-CoV-2 infection, a relatively higher level of protection was maintained in both populations (complete primary series: PWH: 69.06%; PWoH: 60.63%). CONCLUSIONS A complete primary series of COVID-19 vaccines offered significant protection against SARS-CoV-2 infection and severe outcomes in both PWH and PWoH populations, although this wanes with time. However, the estimate of VE against SARS-CoV-2 infection appeared lower in PWH than in PWoH and the degree of waning over time was relatively quicker in PWH.
Collapse
Affiliation(s)
- Xueying Yang
- Department of Health Promotion, Education and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, USA; South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA.
| | - Jiajia Zhang
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Ziang Liu
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Shujie Chen
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Sharon Weissman
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, USA
| | - Gregory A Poland
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, USA
| | - Refilwe Nancy Phaswana-Mafuya
- South African Medical Research Council/University of Johannesburg Pan African Centre for Epidemics Research (PACER) Extramural Unit, Johannesburg, South Africa; Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa; Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Bankole Olatosi
- South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA; Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Xiaoming Li
- Department of Health Promotion, Education and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, USA; South Carolina SmartState Center for Healthcare Quality, University of South Carolina, Columbia, USA
| |
Collapse
|
31
|
Froese J, Mandalari M, Civera M, Elli S, Pagani I, Vicenzi E, Garcia-Monge I, Di Iorio D, Frank S, Bisio A, Lenhart D, Gruber R, Yates EA, Richter RP, Guerrini M, Wegner SV, Grobe K. Evolution of SARS-CoV-2 spike trimers towards optimized heparan sulfate cross-linking and inter-chain mobility. Sci Rep 2024; 14:32174. [PMID: 39741163 PMCID: PMC11688500 DOI: 10.1038/s41598-024-84276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement. In this work, we show that Omicron S proteins have evolved to balance HS interaction stability and dynamics, resulting in enhanced mobility on an HS-functionalized artificial matrix. This property is achieved by the ability of Omicron S-proteins to cross-link at least two HS chains, allowing direct S-protein switching between chains as a prerequisite for cell surface mobility. Optimized HS interactions can be targeted pharmaceutically, as an HS mimetic significantly suppressed surface binding and cellular infection specifically of the Omicron variant. These findings suggest a robust way to interfere with SARS-CoV-2 Omicron infection and potentially future variants.
Collapse
Affiliation(s)
- Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany
| | - Marco Mandalari
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo 81, Milano, 20133, Italy
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo 81, Milano, 20133, Italy
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Itzel Garcia-Monge
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniele Di Iorio
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany
| | - Saskia Frank
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany
| | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo 81, Milano, 20133, Italy
| | | | | | - Edwin A Yates
- Department of Biochemistry, Systems and Cell Biology, Institute of Molecular, Integrative and Systems Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo 81, Milano, 20133, Italy
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.
| |
Collapse
|
32
|
Hu C, Zhou Y, Meng X, Li J, Chen J, Ying Z, Xie XS, Hu Y, Cao Y, Jin R. Safety and Intranasal Retention of a Broad-Spectrum Anti-SARS-CoV-2 Monoclonal Antibody SA55 Nasal Spray in Healthy Volunteers: A Phase I Clinical Trial. Pharmaceutics 2024; 17:43. [PMID: 39861691 PMCID: PMC11768346 DOI: 10.3390/pharmaceutics17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND A broad-spectrum anti-SARS-CoV-2 monoclonal antibody (mAb), SA55, is highly effective against SARS-CoV-2 variants. This trial aimed at demonstrating the safety, tolerability, local drug retention and neutralizing activity, systemic exposure level, and immunogenicity of the SA55 nasal spray in healthy individuals. METHODS This phase I, dose-escalation clinical trial combined an open-label design with a randomized, controlled, double-blind design. Healthy participants aged 18-65 years were enrolled and received a single dose of the SA55 nasal spray (1 mg or 2 mg) or multiple doses of SA55 nasal spray/placebo for 7 days (1 or 2 mg/dose, 3 or 6 doses/day). Safety monitoring was conducted throughout the study. Nasal swabs and venous blood samples were collected to analyze local drug concentration/neutralization, systemic exposure, and immunogenicity. RESULTS From 2 June to 11 August 2023, 80 participants were enrolled and received study intervention. The severity of adverse reactions (ADRs) reported during the study was mild in all cases, and all ADRs were laboratory test abnormalities without corresponding symptoms or vital signs. A total of 9 ADRs were reported, of which all were mild in severity. Overall ADR incidence rate was 16.67% (8/48) in single-dose groups and 4.17% (1/24) in multiple-dose groups. The nasal local drug concentration and neutralizing activity were generally stable within 4-8 h, with favorable neutralization activity against Omicron BF.7 and XBB strains. CONCLUSIONS This study demonstrated favorable safety and tolerability of the SA55 nasal spray in healthy volunteers, exhibited satisfactory neutralizing activity against Omicron variants intranasally, and indicated low systemic toxicity risk.
Collapse
Affiliation(s)
- Chaoying Hu
- Phase I Clinical Trial Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (C.H.); (Y.Z.)
| | - Yibo Zhou
- Phase I Clinical Trial Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (C.H.); (Y.Z.)
| | - Xing Meng
- Clinical Research and Development Center, Sinovac Biotech Co., Ltd., Beijing 100085, China;
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Hangzhou 310051, China;
| | - Jinxia Chen
- Clinical Research and Development Center, Sinovac Life Sciences Co., Ltd., Beijing 102601, China; (J.C.); (Y.H.)
| | - Zhifang Ying
- Respiratory Virus Vaccine, National Institutes for Food and Drug Control, Beijing 100061, China;
| | - Xiaoliang Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China;
- Changping Laboratory, Beijing 102206, China
| | - Yaling Hu
- Clinical Research and Development Center, Sinovac Life Sciences Co., Ltd., Beijing 102601, China; (J.C.); (Y.H.)
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China;
- Changping Laboratory, Beijing 102206, China
| | - Ronghua Jin
- Phase I Clinical Trial Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (C.H.); (Y.Z.)
| |
Collapse
|
33
|
Yu MKL, Chan SHS, Leung D, Cheng S, Tsang LCH, Kwan TC, Zhang K, Wang X, Tu W, Peiris M, Lau YL, Rosa Duque JS. Medium-term immunogenicity of three doses of BNT162b2 and CoronaVac in Hong Kong neuromuscular disease patients. Hum Vaccin Immunother 2024; 20:2424615. [PMID: 39539036 PMCID: PMC11572069 DOI: 10.1080/21645515.2024.2424615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The durability of the immunogenicity elicited by three doses of mRNA-based BNT162b2 and whole-virus inactivated CoronaVac in patients with neuromuscular diseases, particularly those on immunosuppressive drugs and variants of concern, has not been well-established. Our goal was to evaluate medium-term humoral immunogenicity outcomes after 3 doses of these vaccines. Peripheral blood samples were collected from participants 14-49 days and 155-210 days after administration of the third vaccine dose to assess humoral immune responses through serological assays. The immunogenicity outcomes of each patient were compared to those of three age-matched healthy control participants, ensuring a balanced comparison. Both patients that received 3 doses of BNT162b2 and 10 (90.9%) patients that received CoronaVac seroconverted against wild-type-SARS-CoV-2 virus, showing comparable antibody responses to healthy participants. After 6 months, one patient in BNT162b2 and all four patients in CoronaVac groups maintained seropositivity. The JN-1 specific binding antibody response was lower compared to wild-type virus. The use of corticosteroids did not affect seroconversion rate against wild-type virus or JN.1 variant. BNT162b2 and CoronaVac were immunogenic for neuromuscular diseases patients, maintaining durability after 6 months even for those on corticosteroids. Our data support a rapid immunization series utilizing mRNA-based and whole-virus inactivated vaccines for future pandemic.
Collapse
Affiliation(s)
- Michael Kwan Leung Yu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sophelia Hoi Shan Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Samuel Cheng
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Leo Chi Hang Tsang
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tsz Chun Kwan
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kaiyue Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jaime S. Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
34
|
Bayarri-Olmos R, Sutta A, Rosbjerg A, Mortensen MM, Helgstrand C, Nielsen PF, Pérez-Alós L, González-García B, Johnsen LB, Matthiesen F, Egebjerg T, Hansen CB, Sette A, Grifoni A, da Silva Antunes R, Garred P. Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses. Front Immunol 2024; 15:1412873. [PMID: 39720734 PMCID: PMC11666439 DOI: 10.3389/fimmu.2024.1412873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion. Delta and Omicron variants had 3-5 times higher binding affinities to ACE-2 than the ancestral strain (KDwt = 23.4 nM, KDDelta = 8.08 nM, KDBA.1 = 4.77 nM, KDBA.2 = 4.47 nM). The pattern recognition molecule mannose-binding lectin (MBL) has been shown to recognize the spike protein. Here we found that MBL binding remained largely unchanged across the variants, even after introducing mutations at single glycan sites. Although MBL binding decreased post-vaccination, it increased by 2.6-fold upon IgG depletion, suggesting a compensatory or redundant role in immune recognition. Notably, we identified two glycan sites (N717 and N801) as potentially essential for the structural integrity of the spike protein. We also evaluated the antibody and T cell responses. Neutralization by serum immunoglobulins was predominantly mediated by IgG rather than IgA and was markedly impaired against the Delta (5.8-fold decrease) and Omicron variants BA.1 (17.4-fold) and BA.2 (14.2-fold). T cell responses, initially conserved, waned rapidly within 3 months post-Omicron infection. Our data suggests that immune imprinting may have hindered antibody and T cell responses toward the variants. Overall, despite decreased antibody neutralization, MBL recognition and T cell responses were generally unaffected by the variants. These findings extend our understanding of the complex interplay between viral adaptation and immune response, underscoring the importance of considering MBL interactions, immune imprinting, and viral evolution dynamics in developing new vaccine and treatment strategies.
Collapse
Affiliation(s)
- Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Adrian Sutta
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Beatriz González-García
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Malladi SK, Jaiswal D, Ying B, Alsoussi WB, Darling TL, Dadonaite B, Civljak A, Horvath SC, Zhou JQ, Kim W, Turner JS, Schmitz AJ, Han F, Scheaffer SM, Farnsworth CW, Nachbagauer R, Nestorova B, Chalkias S, Klebert MK, Edwards DK, Paris R, Strnad BS, Middleton WD, O’Halloran JA, Presti RM, Bloom JD, Boon ACM, Diamond MS, Bajic G, Ellebedy AH. Defining a highly conserved B cell epitope in the receptor binding motif of SARS-CoV-2 spike glycoprotein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.625234. [PMID: 39713327 PMCID: PMC11661108 DOI: 10.1101/2024.12.06.625234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization. We show that 77.8% of the B cell clones in the GC expressed as representative monoclonal antibodies recognized the spike protein, with a third (37.8%) of these targeting the receptor binding domain (RBD). Strikingly, only one RBD-targeting mAb, mAb-52, neutralized all tested SARS-CoV-2 strains, including the recent KP.2 variant. mAb-52 utilizes the IGHV3-66 public clonotype, protects hamsters challenged against the EG.5.1 variant and targets the class I/II RBD epitope, closely mimicking the binding footprint of ACE2. Finally, we show that the remarkable breadth of mAb-52 is due to the somatic hypermutations accumulated within vaccine-induced GC reaction.
Collapse
Affiliation(s)
- Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Deepika Jaiswal
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Wafaa B. Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, WA, USA
| | - Alesandro Civljak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Stephen C. Horvath
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine; Seoul, Korea
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Fangjie Han
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Suzanne M. Scheaffer
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | | | | | | | - Michael K. Klebert
- Clinical Trials Unit, Washington University School of Medicine; St. Louis, MO, USA
| | | | | | - Benjamin S. Strnad
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jane A. O’Halloran
- Division of Infectious Diseases, Washington University School of Medicine; St. Louis, MO, USA
| | - Rachel M. Presti
- Division of Infectious Diseases, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, WA, USA
- Howard Hughes Medical Institute; Seattle, WA, USA
| | - Adrianus C. M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| |
Collapse
|
36
|
Laghlali G, Wiest MJ, Karadag D, Warang P, O'Konek JJ, Chang LA, Park SC, Yan V, Farazuddin M, Janczak KW, García-Sastre A, Baker JR, Wong PT, Schotsaert M. Enhanced mucosal SARS-CoV-2 immunity after heterologous intramuscular mRNA prime/intranasal protein boost vaccination with a combination adjuvant. Mol Ther 2024; 32:4448-4466. [PMID: 39489918 PMCID: PMC11638833 DOI: 10.1016/j.ymthe.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime, was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection against SARS-CoV-2.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- Mice
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Administration, Intranasal
- Immunity, Mucosal
- Antibodies, Viral/immunology
- Injections, Intramuscular
- Female
- Immunization, Secondary
- Humans
- Antibodies, Neutralizing/immunology
- Adjuvants, Immunologic/administration & dosage
- mRNA Vaccines/immunology
- Vaccination/methods
- Adjuvants, Vaccine/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
Collapse
Affiliation(s)
- Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Matthew J Wiest
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dilara Karadag
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica J O'Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Farazuddin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katarzyna W Janczak
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James R Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA; Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
37
|
Wang Z, Shi Z, Liao X, Quan G, Dong H, Zhao P, Zhou Y, Shi N, Wang J, Wu Y, Qiao C, Li XY, Zhang R, Wang Z, Wang T, Gao X, Feng J, Luo L. Broad-Spectrum Engineered Multivalent Nanobodies Against SARS-CoV-1/2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402975. [PMID: 39373693 PMCID: PMC11615778 DOI: 10.1002/advs.202402975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/28/2024] [Indexed: 10/08/2024]
Abstract
SARS-CoV-2 Omicron sublineages escape most preclinical/clinical neutralizing antibodies in development, suggesting that previously employed antibody screening strategies are not well suited to counteract the rapid mutation of SARS-CoV-2. Therefore, there is an urgent need to screen better broad-spectrum neutralizing antibody. In this study, a comprehensive approach to design broad-spectrum inhibitors against both SARS-CoV-1 and SARS-CoV-2 by leveraging the structural diversity of nanobodies is proposed. This includes the de novo design of a fully human nanobody library and the camel immunization-based nanobody library, both targeting conserved epitopes, as well as the development of multivalent nanobodies that bind nonoverlapping epitopes. The results show that trivale B11-E8-F3, three nanobodies joined tandemly in trivalent form, have the broadest spectrum and efficient neutralization activity, which spans from SARS-CoV-1 to SARS-CoV-2 variants. It is also demonstrated that B11-E8-F3 has a very prominent preventive and some therapeutic effect in animal models of three authentic viruses. Therefore, B11-E8-F3 has an outstanding advantage in preventing SARS-CoV-1/SARS-CoV-2 infections, especially in immunocompromised populations or elderly people with high-risk comorbidities.
Collapse
Affiliation(s)
- Zhihong Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhuangzhuang Shi
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiaochen Liao
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Guiqi Quan
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Hui Dong
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Pinnan Zhao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yangyihua Zhou
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jie Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yahui Wu
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xin ying Li
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Ran Zhang
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
38
|
Bilev E, Wild N, Momayyezi P, Sala BM, Sun R, Sandalova T, Marquardt N, Ljunggren HG, Achour A, Hammer Q. Emerging mutation in SARS-CoV-2 facilitates escape from NK cell recognition and associates with enhanced viral fitness. PLoS Pathog 2024; 20:e1012755. [PMID: 39652590 DOI: 10.1371/journal.ppat.1012755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/19/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
In addition to adaptive immunity, natural killer (NK) cells of the innate immune system contribute to the control of viral infections. The HLA-E-restricted SARS-CoV-2 Nsp13232-240 epitope VMPLSAPTL renders infected cells susceptible to NK cells by preventing binding to the inhibitory receptor NKG2A. Here, we report that a recently emerged methionine to isoleucine substitution at position 2 (pM2I) of Nsp13232-240 impairs binding of the mutated epitope to HLA-E and diminishes HLA-E/peptide complex stability. Structural analyses revealed altered occupancy of the HLA-E B-pocket as the underlying cause for reduced presentation and stability of the mutated epitope. Functionally, the reduced presentation of the mutated epitope correlated with elevated binding to NKG2A as well as with increased NK cell inhibition. Moreover, the pM2I mutation associated with enhanced estimated viral fitness and was transmitted to descendants of the SARS-CoV-2 BQ.1 variant. Interestingly, the mutated epitope resembles sequences of related peptides found in endemic common cold-causing human coronaviruses. Altogether, these findings indicate compromised peptide presentation as a viral adaptation to evade NK cell-mediated immunosurveillance by enabling enhanced presentation of self-peptide and restoring NKG2A-dependent inhibition of NK cells.
Collapse
Affiliation(s)
- Eleni Bilev
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nicole Wild
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
39
|
Wong BKF, Mabbott NA. Systematic review and meta-analysis of COVID-19 mRNA vaccine effectiveness against hospitalizations in adults. IMMUNOTHERAPY ADVANCES 2024; 4:ltae011. [PMID: 39703784 PMCID: PMC11655844 DOI: 10.1093/immadv/ltae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Background During the coronavirus disease 2019 (COVID-19) pandemic, Pfizer/BioNTech BNT162b2, and Moderna mRNA-1273 vaccines were central to the global pandemic control measures. Methods Here, we conducted a systematic review and meta-analysis to evaluate their real-world vaccine effectiveness (VE). Our study focussed on those that reported the efficacy of these vaccines against COVID-19 hospitalization. Hospitalization was chosen as the primary outcome as it directly reflects the ability of the vaccine to prevent severe disease. A literature search was undertaken using Medline and Embase on 25 February 2024. From this, 50 studies out of 18,347 articles were included for further analysis. Results High VE against hospitalization was reported for both the BNT162b2 and mRNA-1273 COVID-19 vaccines when used either as a primary vaccination series (2-dose) or following an additional booster dose (3-dose). Meta-analysis indicated that the pooled VE estimates for each of these vaccination protocols ranged from 84% to 86%, suggesting strong protectiveness. Our data also imply that booster doses can restore waning effectiveness, with no significant differences observed in VE between the 2-dose and 3-dose protocols. However, subgroup analysis revealed an association between the presence of the Omicron variant and a drop in VE, indicating that future emerging SARS-CoV-2 virus variants could similarly affect VE. Conclusions Our review underscores the importance of ongoing research to ensure vaccine strategies remain effective against evolving variants. Our study also identified the need for expanding data collection to include underrepresented populations.
Collapse
Affiliation(s)
- Bill Kang-Fai Wong
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9AG, United Kingdom
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
40
|
Wang X, Li Y, Jin J, Chai X, Ma Z, Duan J, Zhang G, Huang T, Zhang X, Zhang T, Wu H, Cao Y, Su B. Severe acute respiratory syndrome coronavirus 2-specific T-cell responses are induced in people living with human immunodeficiency virus after booster vaccination. Chin Med J (Engl) 2024; 137:2734-2744. [PMID: 39028115 PMCID: PMC11611240 DOI: 10.1097/cm9.0000000000003176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND T-cell-mediated immunity is crucial for the effective clearance of viral infection, but the T-cell-mediated immune responses that are induced by booster doses of inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in people living with human immunodeficiency virus (PLWH) remain unclear. METHODS Forty-five PLWH who had received antiretroviral therapy (ART) for more than two years and 29 healthy controls (HCs) at Beijing Youan Hospital were enrolled to assess the dynamic changes in T-cell responses between the day before the third vaccine dose (week 0) and 4 or 12 weeks (week 4 or week 12) after receiving the third dose of inactivated SARS-CoV-2 vaccine. Flow cytometry, enzyme-linked immunospot (ELISpot), and multiplex cytokines profiling were used to assess T-cell responses at the three timepoints in this study. RESULTS The results of the ELISpot and activation-induced marker (AIM) assays showed that SARS-CoV-2-specific T-cell responses were increased in both PLWH and HCs after the third dose of the inactivated SARS-CoV-2 vaccine, and a similar magnitude of immune response was induced against the Omicron (B.1.1.529) variant compared to the wild-type strain. In detail, spike-specific T-cell responses (measured by the ELISpot assay for interferon γ [IFN-γ] release) in both PLWH and HCs significantly increased in week 4, and the spike-specific T-cell responses in HCs were significantly stronger than those in PLWH 4 weeks after the third vaccination. In the AIM assay, spike-specific CD4 + T-cell responses peaked in both PLWH and HCs in week 12. Additionally, significantly higher spike-specific CD8 + T-cell responses were induced in PLWH than in HCs in week 12. In PLWH, the release of the cytokines interleukin-2 (IL-2), tumour necrosis factor-alpha (TNF-α), and IL-22 by peripheral blood mononuclear cells (PBMCs) that were stimulated with spike peptides increased in week 12. In addition, the levels of IL-4 and IL-5 were higher in PLWH than in HCs in week 12. Interestingly, the magnitude of SARS-CoV-2-specific T-cell responses in PLWH was negatively associated with the extent of CD8 + T-cell activation and exhaustion. In addition, positive correlations were observed between the magnitude of spike-specific T-cell responses (determined by measuring IFN-γ release by ELISpot) and the amounts of IL-4, IL-5, IL-2 and IL-17F. CONCLUSIONS Our findings suggested that SARS-CoV-2-specific T-cell responses could be enhanced by the booster dose of inactivated COVID-19 vaccines and further illustrate the importance of additional vaccination for PLWH.
Collapse
Affiliation(s)
- Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100069, China
| | - Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoran Chai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100069, China
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Duan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guanghui Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tao Huang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100069, China
- Changping Laboratory, Beijing 102299, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
41
|
Sun H, Liu K, Yu B, Zhu M, Jia L, Yao W, Chen Z, Hao H, Zhang X, Liu Y, Liu H, Shan C, Huang F, Guan W. Characterization of the Pathogenic Features of Multiple SARS-CoV-2 Pandemic Strains in Different Mouse Models. J Med Virol 2024; 96:e70049. [PMID: 39558699 DOI: 10.1002/jmv.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
Elucidating the detailed features of emerging SARS-CoV-2 strains both in vitro and in vivo is indispensable for the development of effective vaccines or drugs against viral infection. We thoroughly characterized the virological and pathogenic features of eight different pandemic SARS-CoV-2 strains, from the WT strain to current circulating sublineage EG.5.1, both in vitro and in vivo. Besides detailed virological features observed in Vero E6 cells, the Omicron variants, from BA.1 to EG.5.1, exhibited enhanced infectious effects to upper respiratory tract in K18 human angiotensin-converting enzyme (ACE2) (K18 hACE2) transgenic mice. Both XBB.1.9.1 and EG.5.1 presented stronger tropism to brain, which could be the main reason for the increased lethal effects on mice. In addition, the pathogenesis comparisons among all these viruses in C57BL/6JGpt mice indicated that Omicron variant BA.1 and two new sublineages XBB.1.9.1 and EG.5.1 possessed dual tropisms to both human and mice, which were further confirmed by subsequent bioinformatic analyses and actual affinity comparison between viral RBDs and mouse or human receptor ACE2. Furthermore, the immunocompromised BKS-db mice were found to be more susceptible to Omicron strains compared to C57BL/6JGpt mice, which revealed that viral infectivity was determined by both its affinity to the host receptor and host immunocompetence. Thus, this study not only contributes to a systematic understanding of the pathogenic features of SARS-CoV-2 in mice, but also provides new insights to combat potential future surges of new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Huize Sun
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baocheng Yu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijia Jia
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Weitong Yao
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yi Liu
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Chao Shan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
42
|
Chen P, Bergman P, Blennow O, Hansson L, Mielke S, Nowak P, Gao Y, Söderdahl G, Österborg A, Smith CIE, Vesterbacka J, Wullimann D, Cuapio A, Akber M, Bogdanovic G, Muschiol S, Åberg M, Loré K, Chen MS, Ljungman P, Buggert M, Aleman S, Ljunggren HG. Real-world assessment of immunogenicity in immunocompromised individuals following SARS-CoV-2 mRNA vaccination: a two-year follow-up of the prospective clinical trial COVAXID. EBioMedicine 2024; 109:105385. [PMID: 39395230 DOI: 10.1016/j.ebiom.2024.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Immunocompromised patients with primary and secondary immunodeficiencies have shown impaired responses to SARS-CoV-2 mRNA vaccines, necessitating recommendations for additional booster doses. However, longitudinal data reflecting the real-world impact of such recommendations remains limited. METHODS This study represents a two-year follow-up of the COVAXID clinical trial, where 364 of the original 539 subjects consented to participate. 355 individuals provided blood samples for evaluation of binding antibody (Ab) titers and pseudo-neutralisation capacity against both the ancestral SARS-CoV-2 strain and prevalent Omicron variants. T cell responses were assessed in a subset of these individuals. A multivariate analysis determined the correlation between Ab responses and the number of vaccine doses received, documented infection events, immunoglobulin replacement therapy (IGRT), and specific immunosuppressive drugs. The original COVAXID clinical trial was registered in EudraCT (2021-000175-37) and clinicaltrials.gov (NCT04780659). FINDINGS Several of the patient groups that responded poorly to the initial primary vaccine schedule and early booster doses presented with stronger immunogenicity-related responses including binding Ab titres and pseudo-neutralisation at the 18- and 24-month sampling time point. Responses correlated positively with the number of vaccine doses and infection. The vaccine response was blunted by an immunosuppressive state due to the underlying specific disease and/or to specific immunosuppressive treatment. INTERPRETATION The study results highlight the importance of continuous SARS-CoV-2 vaccine booster doses in building up and sustaining Ab responses in specific immunocompromised patient populations. FUNDING The present studies were supported by the European Research Council, Karolinska Institutet, Knut and Alice Wallenberg Foundation, Nordstjernan AB, Region Stockholm, and the Swedish Research Council.
Collapse
Affiliation(s)
- Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Blennow
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Mielke
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Karolinska Comprehensive Cancer Center, Stockholm, Sweden; Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Nowak
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Söderdahl
- Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - David Wullimann
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gordana Bogdanovic
- Dept of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Muschiol
- Dept of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Margaret Sällberg Chen
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Karolinska Comprehensive Cancer Center, Stockholm, Sweden; Department of Medicine Huddinge, Division of Hematology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
43
|
Klegerman ME, Peng T, Seferovich I, Rahbar MH, Hessabi M, Tahanan A, Wanger A, Grimes CZ, Ostrosky-Zeichner LZ, Koster K, Cirillo JD, Abeydeera D, De Lira S, McPherson DD. Absolute concentration estimation of COVID-19 convalescent and post-vaccination IgG antibodies. PLoS One 2024; 19:e0311777. [PMID: 39485748 PMCID: PMC11530011 DOI: 10.1371/journal.pone.0311777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Soon after commencement of the SARS-CoV-2 disease outbreak of 2019 (COVID-19), it became evident that the receptor-binding domain of the viral spike protein is the target of neutralizing antibodies that comprise a critical element of protective immunity to the virus. This study addresses the relative lack of information regarding actual antibody concentrations and binding affinities in convalescent plasma (CP) samples from COVID-19 patients and extends these analyses to post-vaccination (PV) samples to estimate protective IgG antibody (Ab) levels. A direct enzyme-linked immunosorbent assay (ELISA) was used to measure IgG anti-spike protein (SP) antibodies (Abs) relative to human chimeric spike S1 Ab standards. Microplate wells were coated with recombinant SP. Affinities of Ab binding to SP were determined by previously described methods. Binding affinities were also determined in an RBD-specific sandwich ELISA. Two indices of protective immunity were determined as permutations of Ab molar concentration divided by affinity as dissociation constant (KD). The range and geometric means of Ab concentrations in 21 CP and 21 PV samples were similar and a protective Ab level of 7.5 μg/ml was determined for the latter population, based on 95% of the normal distribution of the PV population. A population (n = 21) of plasma samples from individuals receiving only one vaccination with the BNT162b2 or mRNA-1273 vaccines (PtV) exhibited a geometric mean Ab concentration significantly (p < 0.03) lower than the PV population. The results of this study have implications for future vaccine development, projection of protective efficacy duration, and understanding of the immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Melvin E. Klegerman
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Tao Peng
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Ira Seferovich
- Carterra, Inc., Salt Lake City, UT, United States of America
| | - Mohammad H. Rahbar
- Department of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Amirali Tahanan
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Audrey Wanger
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Carolyn Z. Grimes
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Luis Z. Ostrosky-Zeichner
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Kent Koster
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | | | - Steve De Lira
- Carterra, Inc., Salt Lake City, UT, United States of America
| | - David D. McPherson
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
44
|
Bruun TJ, Do J, Weidenbacher PAB, Utz A, Kim PS. Engineering a SARS-CoV-2 Vaccine Targeting the Receptor-Binding Domain Cryptic-Face via Immunofocusing. ACS CENTRAL SCIENCE 2024; 10:1871-1884. [PMID: 39463836 PMCID: PMC11503491 DOI: 10.1021/acscentsci.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target of neutralizing antibodies. Although they are infrequently elicited during infection or vaccination, antibodies that bind to the conformation-specific cryptic face of the RBD display remarkable breadth of binding and neutralization across Sarbecoviruses. Here, we employed the immunofocusing technique PMD (protect, modify, deprotect) to create RBD immunogens (PMD-RBD) specifically designed to focus the antibody response toward the cryptic-face epitope recognized by the broadly neutralizing antibody S2X259. Immunization with PMD-RBD antigens induced robust binding titers and broad neutralizing activity against homologous and heterologous Sarbecovirus strains. A serum-depletion assay provided direct evidence that PMD successfully skewed the polyclonal antibody response toward the cryptic face of the RBD. Our work demonstrates the ability of PMD to overcome immunodominance and refocus humoral immunity, with implications for the development of broader and more resilient vaccines against current and emerging viruses with pandemic potential.
Collapse
Affiliation(s)
- Theodora
U. J. Bruun
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Jonathan Do
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Payton A.-B. Weidenbacher
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ashley Utz
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Stanford
Biophysics Program, Stanford University
School of Medicine, Stanford, California 94305, United States
- Stanford
Medical Scientist Training Program, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Peter S. Kim
- Sarafan
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
- Chan Zuckerberg
Biohub, San Francisco, California 94158, United States
| |
Collapse
|
45
|
Holder KA, Ings DP, Fifield KE, Barnes DA, Barnable KA, Harnum DOA, Russell RS, Grant MD. Sequence Matters: Primary COVID-19 Vaccination after Infection Elicits Similar Anti-spike Antibody Levels, but Stronger Antibody Dependent Cell-mediated Cytotoxicity than Breakthrough Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1105-1114. [PMID: 39248629 PMCID: PMC11457723 DOI: 10.4049/jimmunol.2400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Infection before primary vaccination (herein termed "hybrid immunity") engenders robust humoral immunity and broad Ab-dependent cell-mediated cytotoxicity (ADCC) across SARS-CoV-2 variants. We measured and compared plasma IgG and IgA against Wuhan-Hu-1 and Omicron (B.1.1.529) full-length spike (FLS) and receptor binding domain after three mRNA vaccines encoding Wuhan-Hu-1 spike (S) and after Omicron breakthrough infection. We also measured IgG binding to Wuhan-Hu-1 and Omicron S1, Wuhan-Hu-1 S2 and Wuhan-Hu-1 and Omicron cell-based S. We compared ADCC using human embryonic lung fibroblast (MRC-5) cells expressing Wuhan-Hu-1 or Omicron S. The effect of Omicron breakthrough infection on IgG anti-Wuhan-Hu-1 and Omicron FLS avidity was also considered. Despite Omicron breakthrough infection increasing IgG and IgA against FLS and receptor binding domain to levels similar to those seen with hybrid immunity, there was no boost to ADCC. Preferential recognition of Wuhan-Hu-1 persisted following Omicron breakthrough infection, which increased IgG avidity against Wuhan-Hu-1 FLS. Despite similar total anti-FLS IgG levels following breakthrough infection, 4-fold higher plasma concentrations were required to elicit ADCC comparable to that elicited by hybrid immunity. The greater capacity for hybrid immunity to elicit ADCC was associated with a differential IgG reactivity pattern against S1, S2, and linear determinants throughout FLS. Immunity against SARS-CoV-2 following Omicron breakthrough infection manifests significantly less ADCC capacity than hybrid immunity. Thus, the sequence of antigenic exposure by infection versus vaccination and other factors such as severity of infection affect antiviral functions of humoral immunity in the absence of overt quantitative differences in the humoral response.
Collapse
Affiliation(s)
- Kayla A. Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Danielle P. Ings
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Kathleen E. Fifield
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - David A. Barnes
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Keeley A. Barnable
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rodney S. Russell
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
46
|
Walker MR, Underwood A, Björnsson KH, Raghavan SSR, Bassi MR, Binderup A, Pham LV, Ramirez S, Pinholt M, Dagil R, Knudsen AS, Idorn M, Soegaard M, Wang K, Ward AB, Salanti A, Bukh J, Barfod L. Broadly potent spike-specific human monoclonal antibodies inhibit SARS-CoV-2 Omicron sub-lineages. Commun Biol 2024; 7:1239. [PMID: 39354108 PMCID: PMC11445456 DOI: 10.1038/s42003-024-06951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
The continuous emergence of SARS-CoV-2 variants of concern has rendered many therapeutic monoclonal antibodies (mAbs) ineffective. To date, there are no clinically authorized therapeutic antibodies effective against the recently circulating Omicron sub-lineages BA.2.86 and JN.1. Here, we report the isolation of broad and potent neutralizing human mAbs (HuMabs) from a healthcare worker infected with SARS-CoV-2 early in the pandemic. These include a genetically unique HuMab, named K501SP6, which can neutralize different Omicron sub-lineages, including BQ.1, XBB.1, BA.2.86 and JN.1, by targeting a highly conserved epitope on the N terminal domain, as well as an RBD-specific HuMab (K501SP3) with high potency towards earlier circulating variants that was escaped by the more recent Omicron sub-lineages through spike F486 and E484 substitutions. Characterizing SARS-CoV-2 spike-specific HuMabs, including broadly reactive non-RBD-specific HuMabs, can give insight into the immune mechanisms involved in neutralization and immune evasion, which can be a valuable addition to already existing SARS-CoV-2 therapies.
Collapse
Affiliation(s)
- Melanie R Walker
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper H Björnsson
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sai Sundar Rajan Raghavan
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maria R Bassi
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Robert Dagil
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne S Knudsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manja Idorn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
47
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
48
|
Yang X, Zhang J, Chen S, Liu Z, Poland GA, Olatosi B, Weissman S, Li X. COVID-19 Breakthrough Infections Among People With HIV: A Statewide Cohort Analysis. J Acquir Immune Defic Syndr 2024; 97:107-116. [PMID: 39250644 PMCID: PMC11386905 DOI: 10.1097/qai.0000000000003475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/23/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES This study aims to identify COVID-19 breakthrough infections among people with HIV (PWH) across different phases of the pandemic and explore whether differential immune dysfunctions are associated with breakthrough infections. DESIGN AND METHODS This retrospective population-based cohort study used data from an integrated electronic health record (EHR) database in South Carolina (SC). Breakthrough infection was defined as the first COVID-19 diagnosis documented in the state agency after the date an individual was fully vaccinated (ie, 2 doses of Pfizer/BNT162b2 or Moderna/mRNA-1273, or 1 dose of Janssen/Ad26.COV2.S) through June 14, 2022. We analyzed the risk and associated factors of the outcome using Cox proportional hazards models. RESULTS Among 7596 fully vaccinated PWH, the overall rate of breakthrough infections was 118.95 cases per 1000 person-years. When compared with the alpha-dominant period, the breakthrough infection rate was higher during both delta-dominant (HR: 1.50; 95% CI: 1.25 to 1.81) and omicron-dominant (HR: 2.86; 95% CI: 1.73 to 4.73) periods. Individuals who received a booster dose had a lower likelihood of breakthrough infections (HR: 0.19; 95% CI: 0.15 to 0.24). There was no association of breakthrough infections with degree of HIV viral suppression, but a higher CD4 count was significantly associated with fewer breakthroughs among PWH (>500 vs <200 cells/mm3: HR: 0.68; 95% CI: 0.49 to 0.94). CONCLUSIONS In our PWH population, the incidence of breakthrough infections was high (during both delta-dominant and omicron-dominant periods) and mainly associated with the absence of a booster dose in patients older than 50 years, with comorbidities and low CD4 count.
Collapse
Affiliation(s)
- Xueying Yang
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Health Promotion, Education and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Jiajia Zhang
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Shujie Chen
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Ziang Liu
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Gregory A Poland
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, MN
| | - Bankole Olatosi
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, SC; and
| | - Sharon Weissman
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC
| | - Xiaoming Li
- South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC
- Department of Health Promotion, Education and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC
| |
Collapse
|
49
|
Verma SK, Ana-Sosa-Batiz F, Timis J, Shafee N, Maule E, Pinto PBA, Conner C, Valentine KM, Cowley DO, Miller R, Elong Ngono A, Tran L, Varghese K, Dos Santos Alves RP, Hastie KM, Saphire EO, Webb DR, Jarnagin K, Kim K, Shresta S. Influence of Th1 versus Th2 immune bias on viral, pathological, and immunological dynamics in SARS-CoV-2 variant-infected human ACE2 knock-in mice. EBioMedicine 2024; 108:105361. [PMID: 39353281 PMCID: PMC11472634 DOI: 10.1016/j.ebiom.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mouse models that recapitulate key features of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are important tools for understanding complex interactions between host genetics, immune responses, and SARS-CoV-2 pathogenesis. Little is known about how predominantly cellular (Th1 type) versus humoral (Th2 type) immune responses influence SARS-CoV-2 dynamics, including infectivity and disease course. METHODS We generated knock-in (KI) mice expressing human ACE2 (hACE2) and/or human TMPRSS2 (hTMPRSS2) on Th1-biased (C57BL/6; B6) and Th2-biased (BALB/c) genetic backgrounds. Mice were infected intranasally with SARS-CoV-2 Delta (B.1.617.2) or Omicron BA.1 (B.1.1.529) variants, followed by assessment of disease course, respiratory tract infection, lung histopathology, and humoral and cellular immune responses. FINDINGS In both B6 and BALB/c mice, hACE2 expression was required for infection of the lungs with Delta, but not Omicron BA.1. Disease severity was greater in Omicron BA.1-infected hTMPRSS2-KI and double-KI BALB/c mice compared with B6 mice, and in Delta-infected double-KI B6 and BALB/c mice compared with hACE2-KI mice. hACE2-KI B6 mice developed more severe lung pathology and more robust SARS-CoV-2-specific splenic CD8 T cell responses compared with hACE2-KI BALB/c mice. There were no notable differences between the two genetic backgrounds in plasma cell, germinal center B cell, or antibody responses to SARS-CoV-2. INTERPRETATION SARS-CoV-2 Delta and Omicron BA.1 infection, disease course, and CD8 T cell response are influenced by the host genetic background. These humanized mice hold promise as important tools for investigating the mechanisms underlying the heterogeneity of SARS-CoV-2-induced pathogenesis and immune response. FUNDING This work was funded by NIH U19 AI142790-02S1, the GHR Foundation, the Arvin Gottleib Foundation, and the Overton family (to SS and EOS); Prebys Foundation (to SS); NIH R44 AI157900 (to KJ); and by an American Association of Immunologists Career Reentry Fellowship (FASB).
Collapse
Affiliation(s)
- Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kristen M Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Dale O Cowley
- TransViragen Inc., 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
50
|
Rader NA, Lee KS, Loes AN, Miller-Stump OA, Cooper M, Wong TY, Boehm DT, Barbier M, Bevere JR, Heath Damron F. Influenza virus strains expressing SARS-CoV-2 receptor binding domain protein confer immunity in K18-hACE2 mice. Vaccine X 2024; 20:100543. [PMID: 39221180 PMCID: PMC11364132 DOI: 10.1016/j.jvacx.2024.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), rapidly spread across the globe in 2019. With the emergence of the Omicron variant, COVID-19 shifted into an endemic phase. Given the anticipated rise in cases during the fall and winter seasons, the strategy of implementing seasonal booster vaccines for COVID-19 is becoming increasingly valuable to protect public health. This practice already exists for seasonal influenza vaccines to combat annual influenza seasons. Our goal was to investigate an easily modifiable vaccine platform for seasonal use against SARS-CoV-2. In this study, we evaluated the genetically modified influenza virus ΔNA(RBD) as an intranasal vaccine candidate for COVID-19. This modified virus was engineered to replace the coding sequence for the neuraminidase (NA) protein with a membrane-anchored form of the receptor binding domain (RBD) protein of SARS-CoV-2. We designed experiments to assess the protection of ΔNA(RBD) in K18-hACE2 mice using lethal (Delta) and non-lethal (Omicron) challenge models. Controls of COVID-19 mRNA vaccine and our lab's previously described intranasal virus like particle vaccine were used as comparisons. Immunization with ΔNA(RBD) expressing ancestral RBD elicited high anti-RBD IgG levels in the serum of mice, high anti-RBD IgA in lung tissue, and improved survival after Delta variant challenge. Modifying ΔNA(RBD) to express Omicron variant RBD shifted variant-specific antibody responses and limited viral burden in the lungs of mice after Omicron variant challenge. Overall, this data suggests that ΔNA(RBD) could be an effective intranasal vaccine platform that generates mucosal and systemic immunity towards SARS-CoV-2.
Collapse
Affiliation(s)
- Nathaniel A. Rader
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Katherine S. Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Olivia A. Miller-Stump
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y. Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|