1
|
Hwang YH, Min DH, Beom Park W. Limitations of neutralizing antibody titers in COVID-19 vaccine efficacy trials and a call for additional correlates of protection. Hum Vaccin Immunother 2025; 21:2473795. [PMID: 40051347 PMCID: PMC11901426 DOI: 10.1080/21645515.2025.2473795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The coronavirus disease (COVID-19) pandemic accelerated development of various vaccine platforms. Among them, mRNA vaccines played a crucial role in controlling the pandemic due to their swift development and efficacy against virus variants. Despite the success of these vaccines, recent studies highlight challenges in evaluating vaccine efficacy, especially in individuals with prior COVID-19 infection. Weakened neutralizing antibody responses after additional doses are observed in these populations, raising concerns about using neutralizing antibody titers as the sole immune correlate of protection. While neutralizing antibodies remain the primary endpoint in immunogenicity trials, they may not fully capture the immune response in populations with widespread prior infection or vaccination. This review explores reduced neutralizing antibody responses in previously infected individuals, and their impact on vaccine efficacy evaluation. It also offers recommendations for improving efficacy assessment, stressing incorporation of additional immune markers such as cell-mediated immunity to enable more comprehensive understanding of vaccine-induced immunity.
Collapse
Affiliation(s)
- Young Hoon Hwang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Abba Moussa D, Vazquez M, Chable-Bessia C, Roux-Portalez V, Tamagnini E, Pedotti M, Simonelli L, Ngo G, Souchard M, Lyonnais S, Chentouf M, Gros N, Marsile-Medun S, Dinter H, Pugnière M, Martineau P, Varani L, Juan M, Calderon H, Naranjo-Gomez M, Pelegrin M. Discovery of a pan anti-SARS-CoV-2 monoclonal antibody with highly efficient infected cell killing capacity for novel immunotherapeutic approaches. Emerg Microbes Infect 2025; 14:2432345. [PMID: 39584380 PMCID: PMC11632933 DOI: 10.1080/22221751.2024.2432345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Unlocking the potential of broadly reactive coronavirus monoclonal antibodies (mAbs) and their derivatives offers a transformative therapeutic avenue against severe COVID-19, especially crucial for safeguarding high-risk populations. Novel mAb-based immunotherapies may help address the reduced efficacy of current vaccines and neutralizing mAbs caused by the emergence of variants of concern (VOCs). Using phage display technology, we discovered a pan-SARS-CoV-2 mAb (C10) that targets a conserved region within the receptor-binding domain (RBD) of the virus. Noteworthy, C10 demonstrates exceptional efficacy in recognizing all assessed VOCs, including recent Omicron variants. While C10 lacks direct neutralization capacity, it efficiently binds to infected lung epithelial cells and induces their lysis via natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Building upon this pan-SARS-CoV-2 mAb, we engineered C10-based, Chimeric Antigen Receptor (CAR)-T cells endowed with efficient killing capacity against SARS-CoV-2-infected lung epithelial cells. Notably, NK and CAR-T-cell mediated killing of lung infected cells effectively reduces viral titers. These findings highlight the potential of non-neutralizing mAbs in providing immune protection against emerging infectious diseases. Our work reveals a pan-SARS-CoV-2 mAb effective in targeting infected cells and demonstrates the proof-of-concept for the potential application of CAR-T cell therapy in combating SARS-CoV-2 infections. Furthermore, it holds promise for the development of innovative antibody-based and cell-based therapeutic strategies against severe COVID-19 by expanding the array of therapeutic options available for high-risk populations.Trial registration: ClinicalTrials.gov identifier: NCT04093596.
Collapse
Affiliation(s)
| | - Mario Vazquez
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Vincent Roux-Portalez
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Elia Tamagnini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Giang Ngo
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Manon Souchard
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Myriam Chentouf
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Nathalie Gros
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Heiko Dinter
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Martine Pugnière
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Pierre Martineau
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Manel Juan
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Hugo Calderon
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Mireia Pelegrin
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
3
|
Alrubayyi A, Huang H, Gaiha GD. Severe Acute Respiratory Syndrome Coronavirus 2 Immunology and Coronavirus Disease 2019 Clinical Outcomes. Infect Dis Clin North Am 2025; 39:221-232. [PMID: 40089444 DOI: 10.1016/j.idc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The humoral and cellular immune response are the key players in preventing viral infection and limiting disease severity, particular in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019. In this review, we discuss how immune responses generated by prior infection and vaccination influence the outcomes of SARS-CoV-2 infection. We aim to provide an overview of the role of humoral and cellular immunity, with a particular focus on CD8+ T cell responses, to delineate how different immune compartments contribute to the control of infection and modulation of disease outcomes.
Collapse
Affiliation(s)
| | - Hsinyen Huang
- Ragon Institute of MGB, MIT and Harvard, 600 Main Street, Cambridge, MA 02139
| | - Gaurav D Gaiha
- Ragon Institute of MGB, MIT and Harvard, 600 Main Street, Cambridge, MA 02139; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02115.
| |
Collapse
|
4
|
Yan H, Hu S, Zhang H, Zhou Y, Fu R, Xu P, Cai H, Li X, Lan G. Optimized tacrolimus dosing strategy in kidney transplant recipients receiving nirmatrelvir-ritonavir for COVID-19. PLoS One 2025; 20:e0309875. [PMID: 40445936 PMCID: PMC12124500 DOI: 10.1371/journal.pone.0309875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/01/2025] [Indexed: 06/02/2025] Open
Abstract
Kidney transplantation recipients (KTRs) represent a vulnerable population for COVID-19 infection and severe disease. Nirmatrelvir-ritonavir has demonstrated efficacy in treating COVID-19 among KTRs, and interacts with tacrolimus leading to a precipitous increase in tacrolimus blood levels when co-administered, which may potentially result in toxicity. To explore a safe strategy for the combination of nirmatrelvir-ritonavir and tacrolimus, we established a new administration strategy to restore tacrolimus after the discontinuation of nirmatrelvir-ritonavir and conducted a real-world retrospective observational cohort study to evaluate its clinical efficacy. In the experimental group, tacrolimus was initiated at 20-25% of the baseline dose 48 hours after the discontinuation of nirmatrelvir-ritonavir, with daily increments of 20-25% until the baseline dose was restored. The patients who did not follow the experimental protocol were included in the control group. Results showed that withholding tacrolimus 12 hours before starting nirmatrelvir-ritonavir maintained tacrolimus blood levels above 83% of the baseline throughout the nirmatrelvir-ritonavir treatment period. Compared with the control group, the experimental group achieved target trough concentrations of tacrolimus more quickly and maintained a higher proportion within the therapeutic range (p = 0.029), and had significantly lower rates of adverse events (p = 0.002, OR = 0.308, 95%CI:0.136-0.695). This study provides a safe and effective pharmacological strategy for KTRs infected with COVID-19, allowing the safe co-administration of nirmatrelvir-ritonavir and tacrolimus.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanbiao Hu
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yangang Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Rao Fu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P.R. China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
5
|
Zhang J, Zhu W, Jiang P, Ma F, Li Y, Cao Y, Li J, Zhang Z, Zhang X, Zou W, Chen J. In-depth analysis of the risk factors for persistent severe acute respiratory syndrome coronavirus 2 infection and construction of predictive models: an exploratory research study. BMC Infect Dis 2025; 25:699. [PMID: 40369416 PMCID: PMC12080215 DOI: 10.1186/s12879-025-11083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection differs from long coronavirus disease (COVID-19) (acute symptoms ≥ 12 weeks post-clearance). The Omicron BA.5 variant has a shorter median clearance time (10-14 days) than the Delta variant, suggesting that the traditional 20-day diagnostic threshold may delay interventions in high-risk populations. This study integrated multi-threshold analysis (14/20/30 days), whole-genome sequencing, and machine learning to investigate diagnostic thresholds for persistent SARS-CoV-2 infection and developed a generalizable risk prediction model. METHODS This retrospective study analyzed data from 1,216 patients with COVID-19 hospitalized at Aerospace Center Hospital between January 2021 and October 2024. We used whole-genome sequencing to genotype all COVID-19 cases and to identify major variants (such as Omicron BA. 5, Delta). The outcome, "persistent SARS-CoV-2 infection," was defined as viral nucleic acid positivity ≥ 14 days. Risk factors associated with persistent infection were identified through subgroup analysis with multiple logistic regression (adjusted for age, comorbidities, vaccination status, and virus strain) and machine learning models (70% training, 30% testing dataset). RESULTS Persistent SARS-CoV-2 infection was identified in 15.5% (188/1,216) of hospitalized COVID-19 patients. Key predictors included comorbidities-hypertension, diabetes, and active malignancy-and immune dysfunction, marked by reduced B-cell and CD4 + T-cell counts. Unvaccinated patients exhibited an 82% higher risk of persistent infection. Elevated inflammatory markers (C-reactive protein and interleukin-6) and bilateral lung infiltrates on computed tomography further distinguished persistent cases. The predictive model demonstrated strong discrimination with an area under the curve (AUC) of 0.847 (95% confidence interval: 0.815-0.879) and an AUC of 0.81 externally in external validation, underscoring its clinical utility for risk stratification. CONCLUSIONS Hypertension, diabetes, malignancy, immunosuppression (low B/CD4 + cells), and non-vaccination are independent risk factors for persistent SARS-CoV-2 infection. Integrating these factors into clinical risk stratification may optimize management of high-risk populations.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Weihua Zhu
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Piping Jiang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Feng Ma
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Yuwei Cao
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Jiaxin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Zhe Zhang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China.
| |
Collapse
|
6
|
Mayola Danés N, Brownlie D, Folkman R, Nordlander A, Blom K, Varnaite R, Niessl J, Karlsson Lindsjö O, Söderholm S, Akber M, Chen P, Buggert M, Bråve A, Klingström J, Nowak P, Marquardt N, Sondén K, Blennow O, Gredmark-Russ S. Dysregulated Adaptive Immune Responses to SARS-CoV-2 in Immunocompromised Individuals. Microorganisms 2025; 13:1077. [PMID: 40431250 PMCID: PMC12114339 DOI: 10.3390/microorganisms13051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The SARS-CoV-2 virus poses a significant risk to immunocompromised patients, who display weakened immunity and reduced seroconversion following infection and vaccination. In this study, we recruited 19 hospitalized patients with immune disorders (ImCo) and 4 immunocompetent controls (ICC) with COVID-19. We evaluated their serological, humoral, and cellular immune responses at <30 days and >90 days post-symptom onset. ICC patients showed robust B and T cell responses against SARS-CoV-2, indicated by detectable antibody levels, memory antibody-secreting cells (mASCs) towards the spike protein and spike-specific CD4+ and CD8+ T cells. ImCo patients showed impaired immune responses, with lower levels of B cell responses. Further subdivision of the ImCo patients demonstrates that solid organ transplant (SOT) patients generated B cell responses similar to ICC patients, whereas the other ImCo patients, including patients with hematological malignancies and anti-CD20 therapy, did not. Absolute T cell numbers and spike-specific CD4+ and CD8+ T cell responses were low in the ImCo patients at <30 days but increased at later time points. Our findings suggest that even when B cell responses were reduced, patients could present a T cell response, suggesting a more successful line of passive immunization for immunocompromised individuals focusing on boosting T cell responses.
Collapse
Affiliation(s)
- Núria Mayola Danés
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Rebecca Folkman
- Department of Infectious Diseases, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Anna Nordlander
- Department of Infectious Diseases, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Kim Blom
- Public Health Agency of Sweden, 171 65 Solna, Sweden
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden
| | - Renata Varnaite
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | | | | | - Mira Akber
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Puran Chen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Andreas Bråve
- Public Health Agency of Sweden, 171 65 Solna, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
- Public Health Agency of Sweden, 171 65 Solna, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Piotr Nowak
- Department of Infectious Diseases, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Klara Sondén
- Public Health Agency of Sweden, 171 65 Solna, Sweden
- Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ola Blennow
- Department of Infectious Diseases, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
7
|
Lim YJ, Duckworth AD, Clarke K, Kennedy P, Karpha I, Oates M, Gornall M, Kalakonda N, Slupsky JR, Pettitt AR. Influence of polyfunctional Tbet + T cells on specific clinical events in chronic lymphocytic leukaemia. Front Immunol 2025; 16:1528405. [PMID: 40313965 PMCID: PMC12043603 DOI: 10.3389/fimmu.2025.1528405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/18/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction T-cell dysfunction is a hallmark of chronic lymphocytic leukemia (CLL), but the extent to which individual CD4+ or CD8+ T-cell subpopulations influence specific clinical events remains unclear. To address this knowledge gap, we utilised high-dimensional mass cytometry to profile circulating CD4+ and CD8+ T-cells in pre-treatment samples from a well-defined cohort of CLL patients undergoing initial therapy as part of a clinical trial. Methods Pre-treatment blood samples from 138 CLL patients receiving initial chemoimmunotherapy containing bendamustine or chlorambucil in the NCRI RIAltO trial (NCT01678430; EudraCT 2011-000919-22) were subjected to deep immunophenotyping by mass cytometry using a bespoke panel of 37 antibodies. T-cell clusters were identified through unsupervised clustering and related to treatment outcomes. Additionally, a randomly selected cohort of 30 CLL patients underwent T-cell stimulation with anti-CD3/CD28 microbeads, followed by cytokine analysis using a separate 36-antibody panel, which included seven cytokines. Results Seventeen CD4+ and 22 CD8+ T-cell clusters were identified in a discovery cohort of 79 patients. Three of these clusters, measured as a proportion of their parental CD4+ or CD8+ populations, correlated with a reduced risk of grade ≥3 infection, grade ≥3 second primary malignancy (SPM) and death, respectively. Three corresponding T-cell subpopulations prospectively defined by non-redundant markers and Boolean gating (ICOS+HLA-DR+PD1+TIGIT+Tbet+CD4+ T-helper cells; CD27+CD28-PD1+Tbet+Eomes+CD8+ cells; and CD27+CD28-GrymB+Tbet+Eomes+CD8+ terminal effector cells) showed the same clinical correlations as the clusters on which they were based. With the exception of SPM for which there were insufficient events, these correlations were confirmed in a separate validation cohort of 59 patients. In-vitro stimulation of a subset of CLL patients in the discovery cohort showed an enrichment of primed and polyfunctional cells in all three Tbet+ T-cell subpopulations of interest. Conclusion Our study provides new insights into the potential for Tbet+ T-cell subpopulations to influence and predict specific clinical events in CLL. This, in turn, raises the possibility that these respective subpopulations could play an important role in controlling infection, solid tumours and CLL itself. Clinical Trial Registration https://www.clinicaltrials.gov/, identifier NCT01678430; https://www.isrctn.com/ISRCTN09988575, identifier EudraCT 2011-000919-22.
Collapse
Affiliation(s)
- Yeong Jer Lim
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Andrew D. Duckworth
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kim Clarke
- Computational Biology Facility, University of Liverpool, Liverpool, United Kingdom
| | - Paul Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Indrani Karpha
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Melanie Oates
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Matthew Gornall
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, United Kingdom
| | - Nagesh Kalakonda
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Joseph R. Slupsky
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrew R. Pettitt
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Haemato-oncology Department, The Clatterbridge Cancer Centre National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
8
|
Marin J, Bourgoin P, Saverna N, Cartagena C, Lafforgue P, Busnel JM, Balandraud N. The T-cell response to SARS-CoV- 2 vaccination persists beyond six months in rheumatoid arthritis patients treated with rituximab. Arthritis Res Ther 2025; 27:86. [PMID: 40241223 PMCID: PMC12001524 DOI: 10.1186/s13075-025-03553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The spike protein-specific humoral response observed after SARS-CoV- 2 vaccination is decreased in rheumatoid arthritis (RA) patients treated with rituximab (RTX). However, when analyzed immediately after vaccination, the spike-specific T-cell immune response appears to be preserved. The possible persistence of specific T cells over the long term is underexplored and could be a useful decision-making tool for deciding when to perform revaccination. This study aimed to assess the persistence of T-cell-mediated immunity after the last SARS-CoV- 2 vaccination or infection (named "SARS-CoV- 2 boost" in this study) in RA patients treated with RTX. Clinical and biological parameters that can influence this immune system were also explored. METHODS Our observational study cohort included 51 RA patients treated with RTX and 24 RA patients treated with other disease-modifying antirheumatic drugs (DMARDs) who had received at least one dose of the SARS-CoV- 2 mRNA vaccine. The T-cell immune response was assessed by flow cytometry, which focused on antigen-specific T-cell characterization between 3 and 18 months after the last SARS-CoV- 2 boost. T-cell activation was assessed by measuring CD69, CD154, CD137 and CD107a surface expression. RESULTS As expected, even if a lower mean antibody titer was measured in RA patients receiving RTX (RA RTX) than in RA patients treated with therapies other than RTX (p = 0.034), all patients exhibited CD4 + and CD8 + T-cell spike protein-specific responses, with an even greater spike-specific CD8 + T-cell response in RA RTX patients (p < 0.001). The main finding of our study was that the T-cell response remarkably persisted up to 18 months after the last SARS-CoV- 2 boost and no difference was found in COVID- 19 severity between RTX- and non-RTX-treated patients (p = 0.770). CONCLUSIONS Even if RTX treatment prevented the SARS-CoV- 2 vaccine-dependent antibody response in RA patients, a strong spike protein-specific T-cell-mediated response that persisted for up to 18 months after the last SARS-CoV- 2 boost was found in RA RTX patients. With respect to personalized medicine, analyzing the spike protein-specific T-cell response might be a valuable strategy for deciding when revaccination is necessary.
Collapse
Affiliation(s)
| | - Penelope Bourgoin
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Noemie Saverna
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Celia Cartagena
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | | | - Jean-Marc Busnel
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Nathalie Balandraud
- Rheumatology department, AP-HM, Marseille, France.
- Aix Marseille Université, ARTHEMIS, INSERM UMRs 1097, Marseille, France.
| |
Collapse
|
9
|
Karl V, Hofmann M, Thimme R. Role of antiviral CD8+ T cell immunity to SARS-CoV-2 infection and vaccination. J Virol 2025; 99:e0135024. [PMID: 40029063 PMCID: PMC11998524 DOI: 10.1128/jvi.01350-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
The COVID-19 pandemic has greatly enhanced our understanding of CD8+ T cell immunity and their role in natural infection and vaccine-induced protection. Rapid and early SARS-CoV-2-specific CD8+ T cell responses have been associated with efficient viral clearance and mild disease. Virus-specific CD8+ T cell responses can compensate for waning, morbidity-related, and iatrogenic reduction of humoral immunity. After infection or vaccination, SARS-CoV-2-specific memory CD8+ T cells are formed, which mount an efficient recall response in the event of breakthrough infection and help to protect from severe disease. Due to their breadth and ability to target mainly highly conserved epitopes, SARS-CoV-2-specific CD8+ T cells are also able to cross-recognize epitopes of viral variants, thus maintaining immunity even after the emergence of viral evolution. In some cases, however, CD8+ T cells may contribute to the pathogenesis of severe COVID-19. In particular, delayed and uncontrolled, e.g., nonspecific and hyperactivated, cytotoxic CD8+ T cell responses have been linked to poor COVID-19 outcomes. In this minireview, we summarize the tremendous knowledge about CD8+ T cell responses to SARS-CoV-2 infection and COVID-19 vaccination that has been gained over the past 5 years, while also highlighting the critical knowledge gaps that remain.
Collapse
Affiliation(s)
- Vivien Karl
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Brady C, Tipton T, Carnell O, Longet S, Gooch K, Hall Y, Salguero J, Tomic A, Carroll M. A systems biology approach to define SARS-CoV-2 correlates of protection. NPJ Vaccines 2025; 10:69. [PMID: 40229322 PMCID: PMC11997207 DOI: 10.1038/s41541-025-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Correlates of protection (CoPs) for SARS-CoV-2 have yet to be sufficiently defined. This study uses the machine learning platform, SIMON, to accurately predict the immunological parameters that reduced clinical pathology or viral load following SARS-CoV-2 challenge in a cohort of 90 non-human primates. We found that anti-SARS-CoV-2 spike antibody and neutralising antibody titres were the best predictors of clinical protection and low viral load in the lung. Since antibodies to SARS-CoV-2 spike showed the greatest association with clinical protection and reduced viral load, we next used SIMON to investigate the immunological features that predict high antibody titres. It was found that a pre-immunisation response to seasonal beta-HCoVs and a high frequency of peripheral intermediate and non-classical monocytes predicted low SARS-CoV-2 spike IgG titres. In contrast, an elevated T cell response as measured by IFNγ ELISpot predicted high IgG titres. Additional predictors of clinical protection and low SARS-CoV-2 burden included a high abundance of peripheral T cells. In contrast, increased numbers of intermediate monocytes predicted clinical pathology and high viral burden in the throat. We also conclude that an immunisation strategy that minimises pathology post-challenge did not necessarily mediate viral control. This would be an important finding to take forward into the development of future vaccines aimed at limiting the transmission of SARS-CoV-2. These results contribute to SARS-CoV-2 CoP definition and shed light on the factors influencing the success of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Caolann Brady
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| | - Tom Tipton
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Oliver Carnell
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Stephanie Longet
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- International Center for Infectiology Research (CIRI), Team GIMAP, Claude Bernard Lyon 1 University, Saint-Etienne, France
| | - Karen Gooch
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Javier Salguero
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Medical School, Boston, MA, USA
- Biomedical Engineering, Boston University, College of Engineering, Boston, MA, USA
| | - Miles Carroll
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
11
|
Chen T, Wang Y, Xie R, Dong L, Chen J, Yang L. Global Research on the Treatment of Cancer Patients During the COVID-19 Pandemic: Visualisation and Bibliometric Analysis. Clin Oncol (R Coll Radiol) 2025; 40:103774. [PMID: 40056854 DOI: 10.1016/j.clon.2025.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2024] [Accepted: 01/27/2025] [Indexed: 03/10/2025]
Abstract
AIMS The COVID-19 threatened global health, especially for cancer patients. We conducted a bibliometric analysis of the Science Citation Index literature published from 2019 to 2023 on the treatment of cancer patients during the COVID-19 pandemic, and explored the research trends and public interest in this topic. MATERIALS AND METHODS A total of 4,941 articles in the Web of Science core collection on this topic were retrieved. The online analysis platforms of literature metrology were employed to do statistical analysis of the global annual volume of documents and citation frequency, perform cocitation analysis on authors, journals, and references, draw visual maps for countries or regions cooperation, institutional cooperation, author cooperation, and keyword cooccurrence, and then conduct keyword cluster analysis and keyword bursting. RESULTS A total of 298 authors from 103 institutions and 74 countries or regions carried out research in the field, and the number of publications reached a peak in 2022. The United States, China, and Italy were the countries with the highest number of publications. The institutions that published the most papers are universities and research institutions. Keyword analysis showed that the research mainly focused on risk factors, outcomes, mortality, and therapy of cancer patients caused by COVID-19. Breast cancer was the cluster with the widest research scope. In addition to COVID-19, the burst keywords mainly included vaccination, delays, identification, immune response, malignancy, immunogenicity, and efficacy. CONCLUSION The research on the treatment of cancer patients during the COVID-19 has shifted from laboratory research to clinical research, and the focus has gradually shifted from exploring the mechanism to improving the therapeutic effect. Developing vaccines and exploring treatment options that are more suitable for use in cancer patients, and investigating the relevance of the cytokine storms seem to concur with research priorities postpandemic. In the future, strengthening cooperation among countries or regions, institutions, and authors will be crucial for future pandemics.
Collapse
Affiliation(s)
- T Chen
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Y Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - R Xie
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - L Dong
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - J Chen
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - L Yang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Yuan L, Stoddard M, Sarkar S, van Egeren D, Mangalaganesh S, Nolan RP, Rogers MS, Hather G, White LF, Chakravarty A. The Impact of Vaccination Frequency on COVID-19 Public Health Outcomes: A Model-Based Analysis. Vaccines (Basel) 2025; 13:368. [PMID: 40333247 PMCID: PMC12031506 DOI: 10.3390/vaccines13040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Background: While the rapid deployment of SARS-CoV-2 vaccines had a significant impact on the ongoing COVID-19 pandemic, rapid viral immune evasion and waning neutralizing antibody titers have degraded vaccine efficacy. Nevertheless, vaccine manufacturers and public health authorities have a number of options at their disposal to maximize the benefits of vaccination. In particular, the effect of booster schedules on vaccine performance bears further study. Methods: To better understand the effect of booster schedules on vaccine performance, we used an agent-based modeling framework and a population pharmacokinetic model to simulate the impact of boosting frequency on the durability of vaccine protection against infection and severe acute disease. Results: Our work suggests that repeated dosing at frequent intervals (three or more times a year) may offset the degradation of vaccine efficacy, preserving the utility of vaccines in managing the ongoing pandemic. Conclusions: Given the practical significance of potential improvements in vaccine utility, clinical research to better understand the effects of repeated vaccination would be highly impactful. These findings are particularly relevant as public health authorities worldwide have reduced the frequency of boosters to once a year or less.
Collapse
Affiliation(s)
- Lin Yuan
- Fractal Therapeutics, Lexington, MA 02420, USA; (L.Y.); (M.S.)
| | | | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03755, USA;
| | - Debra van Egeren
- Department of Oncology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Shruthi Mangalaganesh
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia;
| | | | - Michael S. Rogers
- Department of Surgery, Harvard Medical School, Boston, MA 02114, USA;
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Greg Hather
- Sage Therapeutics, Cambridge, MA 02142, USA;
| | - Laura F. White
- School of Public Health, Boston University, Boston, MA 02118, USA;
| | | |
Collapse
|
13
|
Fant P, Laurent S, Desert P, Combadière B, Palazzi X, Choudhary S, Gervais F, Broudic K, Rossi R, Gauthier BE. Proceedings of the 2023 Annual Scientific Meeting of the French Society of Toxicologic Pathology (SFPT) on Preclinical Development and Therapeutic Applications of mRNA-Based Technologies. Toxicol Pathol 2025:1926233251326089. [PMID: 40110665 DOI: 10.1177/01926233251326089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The 2023 annual scientific meeting of the French Society of Toxicologic Pathology (Société Française de Pathologie Toxicologique, SFPT), entitled "mRNA-based technologies: preclinical development and therapeutic applications," was held in Lyon (France) on May 25 to 26, 2023. The aim of the meeting was to discuss the biology, immunology, and preclinical development of messenger RNA (mRNA)-based vaccines and therapeutics, including immuno-oncology and rare diseases, as well as the regulatory aspect of the COVID-19 vaccines and an overview of the principles and applications of in situ hybridization techniques. This article presents the summary of five lectures along with selected figures, tables, and key literature references on this topic.
Collapse
Affiliation(s)
- Pierluigi Fant
- Charles River Laboratories Safety Assessment, Saint Germain-Nuelles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yoshida M, Taguchi N, Piao Y, Gupta R, Peters J, Abdelghany M, Chiang M, Wang CY, Berry M, Yotsuyanagi H. Treatment patterns and clinical outcomes of immunocompromised patients with COVID-19 receiving remdesivir in the inpatient setting in Japan. J Infect Chemother 2025; 31:102578. [PMID: 39647701 DOI: 10.1016/j.jiac.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Remdesivir (RDV) was approved in Japan for the treatment of coronavirus disease 2019 (COVID-19) in May 2020. However, large-scale research describing the characterized use of RDV in the inpatient setting in Japan is limited. This study aimed to describe the treatment patterns and clinical outcomes of immunocompromised patients with COVID-19 treated with RDV. METHODS We used a secondary nationwide administrative claims database of acute care hospitals in Japan. The study period was from October 19, 2020, to September 30, 2022. Patients with COVID-19 treated with RDV during hospitalization were included, and the proportion of patients with death and disease progression were calculated. RESULTS The analysis included a total of 2171 immunocompromised patients treated with RDV. The mean (standard deviation) age at index date was 75.1 (13.6) years. The median time to RDV initiation from hospitalization was 1.0 days (Q1-Q3: 1.0-2.0), and the median duration of RDV treatment was 5.0 days (Q1-Q3: 3.0-5.0). At RDV initiation, 53.02% (n=1151) of patients required non-invasive positive pressure ventilation, nasal high-flow or low-flow oxygen, and 2.26% (n=49) required mechanical ventilation, extracorporeal membrane oxygenation, or intensive care unit admission. Inpatient mortality rate by day 28 was 8.98% (95% confidence interval, 7.81-10.26). By day 28, the rate of disease progression was 9.86% (n=214), and 76.83% (n=1668) were discharged. CONCLUSION This study presents practical information on outcomes and treatment patterns of RDV in immunocompromised inpatients diagnosed with COVID-19.
Collapse
Affiliation(s)
- Manami Yoshida
- Gilead Sciences K. K, 1-9-2, Marunouchi, Chiyoda-ku, Tokyo, 100-6616, Japan.
| | - Nao Taguchi
- Gilead Sciences K. K, 1-9-2, Marunouchi, Chiyoda-ku, Tokyo, 100-6616, Japan
| | - Yi Piao
- Gilead Sciences K. K, 1-9-2, Marunouchi, Chiyoda-ku, Tokyo, 100-6616, Japan
| | - Rikisha Gupta
- Gilead Sciences Inc, 333, Lakeside Drive, Foster City, CA, 94404, USA
| | - Jami Peters
- Gilead Sciences Inc, 333, Lakeside Drive, Foster City, CA, 94404, USA
| | - Mazin Abdelghany
- Gilead Sciences Inc, 333, Lakeside Drive, Foster City, CA, 94404, USA
| | - Mel Chiang
- Gilead Sciences Inc, 333, Lakeside Drive, Foster City, CA, 94404, USA
| | - Chen-Yu Wang
- Gilead Sciences Inc, 333, Lakeside Drive, Foster City, CA, 94404, USA
| | - Mark Berry
- Gilead Sciences Inc, 333, Lakeside Drive, Foster City, CA, 94404, USA
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of the Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
15
|
Quiñones-Parra SM, Gras S, Nguyen THO, Farenc C, Szeto C, Rowntree LC, Chaurasia P, Sant S, Boon ACM, Jayasinghe D, Rimmelzwaan GF, Petersen J, Doherty PC, Uldrich AP, Littler DR, Rossjohn J, Kedzierska K. Molecular determinants of cross-strain influenza A virus recognition by αβ T cell receptors. Sci Immunol 2025; 10:eadn3805. [PMID: 39919196 DOI: 10.1126/sciimmunol.adn3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
Cross-reactive αβ T cell receptors (TCRs) recognizing multiple peptide variants can provide effective control of rapidly evolving viruses yet remain understudied. By screening 12 naturally occurring influenza-derived HLA-B*35:01-restricted nucleoprotein (NP)418-426 epitopes (B*35:01-NP418) that emerged since 1918 within influenza A viruses, including 2024 A/H5N1 viruses, we identified functional broadly cross-reactive T cells universally recognizing NP418 variants. Binding studies demonstrated that TCR cross-reactivity was concomitant with diminished antigen sensitivity. Primary human B*35:01/NP418+CD8+ T cell lines displayed reduced cross-reactivity in the absence of CD8 coreceptor binding, validating the low avidity of cross-reactive B*35:01-NP418+CD8+ T cell responses. Six TCR-HLA-B*35:01/NP418 crystal structures showed how cross-reactive TCRs recognized multiple B*35:01/NP418 epitope variants. Specific TCR interactions were formed with invariant and conserved peptide-HLA features, thus remaining distal from highly varied positions of the NP418 epitope. Our study defines molecular mechanisms associated with extensive TCR cross-reactivity toward naturally occurring viral variants highly relevant to universal protective immunity against influenza.
Collapse
Affiliation(s)
- Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Christopher Szeto
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dhilshan Jayasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Body A, Lal L, Srihari S, MacIntyre CR, Buttery J, Ahern ES, Opat S, Leahy MF, Hamad N, Milch V, Turville S, Smith C, Lineburg K, Naing Z, Rawlinson W, Segelov E. Comprehensive humoral and cellular immune responses to COVID-19 vaccination in adults with cancer. Vaccine 2025; 46:126547. [PMID: 39648104 DOI: 10.1016/j.vaccine.2024.126547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND The COVID-19 pandemic has significantly impacted people with cancer. Initial vaccine studies excluded patients with malignancy. Immunocompromised individuals remain vulnerable to SARS-CoV-2, necessitating detailed understanding of vaccine response. The epidemiology of COVID-19 in Australia offered unique opportunities to study cancer populations with minimal community exposure to SARS-CoV-2. METHODS SerOzNET prospectively examined previously unvaccinated patients with solid and haematological malignancies receiving up to five COVID-19 vaccine doses. Antibody response was measured by live virus neutralisation assay (neutralising antibody (NAb); positive titre ≥1:20; study primary endpoint) and commercial assay. T cell response was measured by cytometric bead array; positive defined as interferon gamma (IFN-γ) ≥10 pg/mL in response to Spike antigen. Patient and physician-reported adverse events were secondary endpoints. OUTCOMES 395 adults were enrolled prior to receiving mRNA vaccine (BNT162b2 = 347; mRNA-1273 = 1) or viral vector vaccine (ChadOx1-S = 43) for initial two-dose course, plus up to three additional doses. Median age was 58 years (range: 20-85); 60 % were female; 35 % had haematological malignancy, 2/395 (0.5 %) had baseline positive nucleocapsid antibody indicating prior SARS-CoV-2 exposure. NAb response post dose three was demonstrated in 84 % overall; 96 % of patients with solid cancers and 64 % with haematological cancer (p < 0·001). Risk factors for non-response were haematological cancer and anti B-cell therapies. Some patients with haematological cancer seroconverted for the first time after the fourth or fifth dose. IFN-γ response was seen in many patients with haematological cancer who lacked NAb response. Serious adverse events were rare. COVID-19 infection occurred in 29 % with no deaths. INTERPRETATION COVID-19 vaccination elicits B and T cell responses in patients with solid and haematological cancers, with an acceptable safety profile. A significant proportion of haematological cancer patients require >3 doses to elicit NAb, with many demonstrating T cell response, which may be an alternative pathway of immune protection.
Collapse
Affiliation(s)
- Amy Body
- Monash Health, Department of Oncology, Melbourne, VIC, Australia; Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia.
| | - Luxi Lal
- Monash Health, Department of Oncology, Melbourne, VIC, Australia; Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia
| | | | - C Raina MacIntyre
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW, Australia; School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia; National Centre for Immunization, Research and Surveillance of Vaccine Preventable Diseases, University of Sydney, Westmead, NSW, Australia
| | - Jim Buttery
- University of Melbourne, Child Health Informatics (Paediatrics), Melbourne, VIC, Australia; Royal Children's Hospital, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Elizabeth Stephanie Ahern
- Monash Health, Department of Oncology, Melbourne, VIC, Australia; Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia
| | - Stephen Opat
- Monash Health, Department of Oncology, Melbourne, VIC, Australia; Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia
| | - Michael Francis Leahy
- Department of Haematology, Royal Perth Hospital, WA, Australia; University of Western Australia, School of Medicine & Pharmacology, School of Pathology, Perth, WA, Australia
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital, Kinghorn Cancer Centre, Sydney, NSW, Australia; The University of New South Wales, NSW, Australia
| | - Vivienne Milch
- Cancer Australia, Sydney, NSW, Australia; Caring Futures Institute, Flinders University, Adelaide, SA, Australia; School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Stuart Turville
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia; University of Sydney, NSW, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Queensland Immunology Research Centre, Brisbane, QLD, Australia
| | - Katie Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zin Naing
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia
| | - William Rawlinson
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia; Virology Research Laboratory, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Eva Segelov
- Monash University, Department of Oncology, School of Clinical Sciences, Melbourne, VIC, Australia; University of Bern, Department of Clinical Research (Medicine), Bern, Switzerland; University Cancer Centre, Bern, Switzerland
| |
Collapse
|
17
|
Liang X, Yuan Y, Wang J, Tang C, Yang Y, Zhou Y, Yang H, Huang Q, Yu W, Wang H, Yan Y, Lin D, Li Y, Du X, Yuan L, Quan W, Wu D, Lu S. mRNA vaccines with RBD mutations have broad-spectrum activity against SARS-CoV-2 variants in mice. NPJ Vaccines 2025; 10:7. [PMID: 39805865 PMCID: PMC11729908 DOI: 10.1038/s41541-025-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
The emergence of SARS-CoV-2 variants with defined mutations that enhance pathogenicity or facilitate immune evasion has resulted in a continual decline in the protective efficacy of existing vaccines. Therefore, there is a pressing need for a vaccine capable of combating future variants. In this study, we designed new mRNA vaccines, BSCoV05 and BSCoV06, and generated point mutations in the receptor-binding domain (RBD) of the original Wuhan strain to increase their broad-spectrum antiviral activity. Additionally, we used the BA.1 RBD as a control. Both vaccines elicited a robust immune response in BALB/c and K18-hACE2 mice, generating high levels of specific binding antibodies against the BA.2 RBD. Moreover, all three vaccines induced neutralizing antibodies against the prototype viral strain and relevant variants, including the Alpha and Beta strains and the Omicron variants BA.1, BA.2, BA.5, XBB.1.5, XBB.1.16, EG.5.1, and EG.5.1.1, with BSCoV06 demonstrating broader neutralizing antibody activity. Both BSCoV05 and BSCoV06 also elicited a cellular immune response. After the challenge, both BSCoV05 and BSCOV06 provided protection against the EG.5.1 strain in both mouse strains. Therefore, these two vaccines merit further evaluation in nonhuman primates, and this vaccine design strategy should be explored for its potential application in combating future SARS-CoV-2 variants, offering valuable insights into broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Xiaoming Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yuxia Yuan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Cong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yanan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Hao Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Qing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Haixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yuhuan Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Dongdong Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yanwen Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Xuena Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Longhai Yuan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Wenqi Quan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Daoju Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Kunming, China.
| |
Collapse
|
18
|
Mambelli F, de Araujo ACVSC, Farias JP, de Andrade KQ, Ferreira LCS, Minoprio P, Leite LCC, Oliveira SC. An Update on Anti-COVID-19 Vaccines and the Challenges to Protect Against New SARS-CoV-2 Variants. Pathogens 2025; 14:23. [PMID: 39860984 PMCID: PMC11768231 DOI: 10.3390/pathogens14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The COVID-19 pandemic has posed a significant threat to global health systems, with extensive impacts across many sectors of society. The pandemic has been responsible for millions of deaths worldwide since its first identification in late 2019. Several actions have been taken to prevent the disease, including the unprecedented fast development and global vaccination campaigns, which were pivotal in reducing symptoms and deaths. Given the impact of the pandemic, the continuous changes of the virus, and present vaccine technologies, this review analyzes how, so far, we have met the challenge posed by the emergence of new variants and discusses how next-generation pan-coronavirus vaccines, with enhanced longevity and breadth of immune responses, may be tackled with alternative administration routes and antigen delivery platforms. By addressing these critical aspects, this review aims to contribute to the ongoing efforts to achieve long-term control of COVID-19, stimulating the discussion and work on next-generation vaccines capable of facing future waves of infection.
Collapse
Affiliation(s)
- Fábio Mambelli
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (F.M.); (A.C.V.S.C.d.A.); (K.Q.d.A.)
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil; (L.C.S.F.); (P.M.)
| | - Ana Carolina V. S. C. de Araujo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (F.M.); (A.C.V.S.C.d.A.); (K.Q.d.A.)
| | - Jéssica P. Farias
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Kivia Q. de Andrade
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (F.M.); (A.C.V.S.C.d.A.); (K.Q.d.A.)
| | - Luis C. S. Ferreira
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil; (L.C.S.F.); (P.M.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Paola Minoprio
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil; (L.C.S.F.); (P.M.)
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Sergio C. Oliveira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (F.M.); (A.C.V.S.C.d.A.); (K.Q.d.A.)
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil; (L.C.S.F.); (P.M.)
| |
Collapse
|
19
|
Tyagi S, Tyagi N, Singh A, Gautam A, Singh A, Jindal S, Singh RP, Chaturvedi R, Kushwaha HR. Linking COVID-19 and cancer: Underlying mechanism. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167563. [PMID: 39510388 DOI: 10.1016/j.bbadis.2024.167563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/13/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), lead to a global health crisis with a spectrum of clinical manifestations. A potentially vulnerable category for SARS-CoV-2 infection was identified in patients with other medical conditions. Intriguingly, parallels exist between COVID-19 and cancer at the pathophysiological level, suggesting a possible connection between them. This review discusses all possible associations between COVID-19 and cancer. Expression of receptors like angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) increases COVID-19 susceptibility. SARS-CoV-2 infection might increase cancer susceptibility and accelerate cancer progression through mechanisms involving cytokine storm, tissue hypoxia, impaired T-cell responses, autophagy, neutrophil activation, and oxidative stress. These mechanisms collectively contribute to immune suppression, hindered apoptosis, and altered cellular signaling in the tumor microenvironment, creating conditions favorable for tumor growth, metastasis, and recurrence. Approved vaccines and their impact on cancer patients along-with new clinical trials are also described.
Collapse
Affiliation(s)
- Sourabh Tyagi
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akanksha Gautam
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shelja Jindal
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rana P Singh
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Rupesh Chaturvedi
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Hemant Ritturaj Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
20
|
Mahrokhian SH, Tostanoski LH, Vidal SJ, Barouch DH. COVID-19 vaccines: Immune correlates and clinical outcomes. Hum Vaccin Immunother 2024; 20:2324549. [PMID: 38517241 PMCID: PMC10962618 DOI: 10.1080/21645515.2024.2324549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024] Open
Abstract
Severe disease due to COVID-19 has declined dramatically as a result of widespread vaccination and natural immunity in the population. With the emergence of SARS-CoV-2 variants that largely escape vaccine-elicited neutralizing antibody responses, the efficacy of the original vaccines has waned and has required vaccine updating and boosting. Nevertheless, hospitalizations and deaths due to COVID-19 have remained low. In this review, we summarize current knowledge of immune responses that contribute to population immunity and the mechanisms how vaccines attenuate COVID-19 disease severity.
Collapse
Affiliation(s)
- Shant H. Mahrokhian
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Lisa H. Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Samuel J. Vidal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
21
|
Shapiro JR, Corrado M, Perry J, Watts TH, Bolotin S. The contributions of T cell-mediated immunity to protection from vaccine-preventable diseases: A primer. Hum Vaccin Immunother 2024; 20:2395679. [PMID: 39205626 PMCID: PMC11364080 DOI: 10.1080/21645515.2024.2395679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
In the face of the ever-present burden of emerging and reemerging infectious diseases, there is a growing need to comprehensively assess individual- and population-level immunity to vaccine-preventable diseases (VPDs). Many of these efforts, however, focus exclusively on antibody-mediated immunity, ignoring the role of T cells. Aimed at clinicians, public health practioners, and others who play central roles in human vaccine research but do not have formal training in immunology, we review how vaccines against infectious diseases elicit T cell responses, what types of vaccines elicit T cell responses, and how T cell responses are measured. We then use examples to demonstrate six ways that T cells contribute to protection from VPD, including directly mediating protection, enabling antibody responses, reducing disease severity, increasing cross-reactivity, improving durability, and protecting special populations. We conclude with a discussion of challenges and solutions to more widespread consideration of T cell responses in clinical vaccinology.
Collapse
Affiliation(s)
- Janna R. Shapiro
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Mario Corrado
- Division of General Internal Medicine, University of Toronto, Toronto, ON, Canada
| | - Julie Perry
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tania H. Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Shelly Bolotin
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Health Protection, Public Health Ontario, Toronto, ON, Canada
| |
Collapse
|
22
|
Abt ER, Lam AK, Noguchi M, Rashid K, McLaughlin J, Teng PL, Tran W, Cheng D, Nesterenko PA, Mao Z, Creech AL, Burton Sojo G, Jeyachandran AV, Tam YK, Henley JE, Comai L, Pardi N, Arumugaswami V, Witte ON, Radu CG, Wu TT. Staggered immunization with mRNA vaccines encoding SARS-CoV-2 polymerase or spike antigens broadens the T cell epitope repertoire. Proc Natl Acad Sci U S A 2024; 121:e2406332121. [PMID: 39589869 PMCID: PMC11626164 DOI: 10.1073/pnas.2406332121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Combining a T cell-targeting mRNA vaccine encoding the conserved SARS-CoV-2 RNA-dependent RNA polymerase, RdRp, with a Spike-encoding mRNA vaccine may offer an additional pathway toward COVID-19 protection. Here, we show that a nucleoside-modified RdRp mRNA vaccine raises robust and durable CD8+ T cell responses in mice. Immunization drives a CD8+ T cell response enriched toward a specific RdRp epitope. Unexpectedly, coadministration of mRNA vaccines encoding RdRp or the Spike Receptor Binding Domain (RBD) dampens RBD-specific immune responses. Contralateral administration reduces the suppression of RBD-specific T cell responses while type I interferon signaling blockade restores RBD-specific antibodies. A staggered immunization strategy maintains both RBD vaccine-mediated antibody and T cell responses as well as protection against lethal SARS-CoV-2 challenge in human ACE2 transgenic mice. In HLA-A2.1 transgenic mice, the RdRp vaccine elicits CD8+ T cell responses against HLA-A*02:01-restricted epitopes recognized by human donor T cells. These results highlight RdRp as a candidate antigen for COVID-19 vaccines. The findings also offer insights into crafting effective multivalent mRNA vaccines to broaden CD8+ T cell responses against SARS-CoV-2 and potentially other viruses with pandemic potential.
Collapse
Affiliation(s)
- Evan R. Abt
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Alex K. Lam
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Khalid Rashid
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Jami McLaughlin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Pu-Lin Teng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Donghui Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Pavlo A. Nesterenko
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Amanda L. Creech
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, BCV6T 1Z3, Canada
| | - Jill E. Henley
- Department of Molecular Microbiology and Immunology, The Hastings and Wright Laboratories, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, The Hastings and Wright Laboratories, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, University of California Los Angeles, Los Angeles, CA90095
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA90095
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA90095
- AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
23
|
Kocsmár É, Kocsmár I, Elamin F, Pápai L, Jakab Á, Várkonyi T, Glasz T, Rácz G, Pesti A, Danics K, Kiss A, Röst G, Belicza É, Schaff Z, Lotz G. Autopsy findings in cancer patients infected with SARS-CoV-2 show a milder presentation of COVID-19 compared to non-cancer patients. GeroScience 2024; 46:6101-6114. [PMID: 38691298 PMCID: PMC11493920 DOI: 10.1007/s11357-024-01163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, manifests with differing severity across distinct patient subgroups, with outcomes influenced by underlying comorbidities such as cancer, which may cause functional and compositional alterations of the immune system during tumor progression. We aimed to investigate the association of SARS-CoV-2 infection and its complications with cancer in a large autopsy series and the role of COVID-19 in the fatal sequence leading to death. A total of 2641 adult autopsies were investigated, 539 of these were positive for SARS-CoV-2. Among the total number of patients analyzed, 829 had active cancer. Overall, the cohort included 100 patients who simultaneously had cancer and SARS-CoV-2 infection. The course of COVID-19 was less severe in cancer patients, including a significantly lower incidence of viral and bacterial pneumonia, occurring more frequently as a contributory disease or coexisting morbidity, or as SARS-CoV-2 positivity without viral disease. SARS-CoV-2 positivity was more frequent among non-metastatic than metastatic cancer cases, and in specific tumor types including hematologic malignancies. COVID-19 was more frequently found to be directly involved in the fatal sequence in patients undergoing active anticancer therapy, but less frequently in perioperative status, suggesting that the underlying malignancy and consequent surgery are more important factors leading to death perioperatively than viral disease. The course of COVID-19 in cancer patients was milder and balanced during the pandemic. This may be due to relative immunosuppressed status, and the fact that even early/mild viral infections can easily upset their condition, leading to death from their underlying cancer or its complications.
Collapse
Affiliation(s)
- Éva Kocsmár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - Ildikó Kocsmár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Flóra Elamin
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Laura Pápai
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Ákos Jakab
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Várkonyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Glasz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztina Danics
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Röst
- National Laboratory for Health Security, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Éva Belicza
- Health Services Management Training Centre, Faculty of Health and Public Administration, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Lotz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
24
|
Carpp LN, Hyrien O, Fong Y, Benkeser D, Roels S, Stieh DJ, Van Dromme I, Van Roey GA, Kenny A, Huang Y, Carone M, McDermott AB, Houchens CR, Martins K, Jayashankar L, Castellino F, Amoa-Awua O, Basappa M, Flach B, Lin BC, Moore C, Naisan M, Naqvi M, Narpala S, O'Connell S, Mueller A, Serebryannyy L, Castro M, Wang J, Petropoulos CJ, Luedtke A, Lu Y, Yu C, Juraska M, Hejazi NS, Wolfe DN, Sadoff J, Gray GE, Grinsztejn B, Goepfert PA, Bekker LG, Gaur AH, Veloso VG, Randhawa AK, Andrasik MP, Hendriks J, Truyers C, Vandebosch A, Struyf F, Schuitemaker H, Douoguih M, Kublin JG, Corey L, Neuzil KM, Follmann D, Koup RA, Donis RO, Gilbert PB. Neutralizing antibody correlate of protection against severe-critical COVID-19 in the ENSEMBLE single-dose Ad26.COV2.S vaccine efficacy trial. Nat Commun 2024; 15:9785. [PMID: 39532861 PMCID: PMC11557889 DOI: 10.1038/s41467-024-53727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Assessment of immune correlates of severe COVID-19 has been hampered by the low numbers of severe cases in COVID-19 vaccine efficacy (VE) trials. We assess neutralizing and binding antibody levels at 4 weeks post-Ad26.COV2.S vaccination as correlates of risk and of protection against severe-critical COVID-19 through 220 days post-vaccination in the ENSEMBLE trial (NCT04505722), constituting ~4.5 months longer follow-up than our previous correlates analysis and enabling inclusion of 42 severe-critical vaccine-breakthrough cases. Neutralizing antibody titer is a strong inverse correlate of severe-critical COVID-19, with estimated hazard ratio (HR) per 10-fold increase 0.35 (95% CI: 0.13, 0.90). In a multivariable model, HRs are 0.31 (0.11, 0.89) for neutralizing antibody titer and 1.22 (0.49, 3.02) for anti-Spike binding antibody concentration. VE against severe-critical COVID-19 rises with neutralizing antibody titer: 63.1% (95% CI: 40.0%, 77.3%) at unquantifiable [<4.8975 International Units (IU)50/ml], 85.2% (47.2%, 95.3%) at just-quantifiable (5.2 IU50/ml), and 95.1% (81.1%, 96.9%) at 90th percentile (30.2 IU50/ml). At the same titers, VE against moderate COVID-19 is 32.5% (11.8%, 48.4%), 33.9% (19.1%, 59.3%), and 60.7% (40.4%, 76.4%). Protection against moderate vs. severe disease may require higher antibody levels, and very low antibody levels and/or other immune responses may associate with protection against severe disease.
Collapse
Affiliation(s)
- Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Benkeser
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sanne Roels
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | - Daniel J Stieh
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- Vaccine Company Inc., South San Francisco, CA, USA
| | | | | | - Avi Kenny
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Marco Carone
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Sanofi Vaccines R&D, Marcy l'étoile, France
| | | | - Karen Martins
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | | | - Flora Castellino
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Obrimpong Amoa-Awua
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Manjula Basappa
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Britta Flach
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Moore
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Muhammed Naqvi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah O'Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Allen Mueller
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leo Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mike Castro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Alex Luedtke
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Yiwen Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nima S Hejazi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Daniel N Wolfe
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Jerald Sadoff
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- Centivax, South San Francisco, CA, USA
| | - Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | - Beatriz Grinsztejn
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Aditya H Gaur
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Valdilea G Veloso
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - April K Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michele P Andrasik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jenny Hendriks
- Janssen Vaccines and Prevention, Leiden, the Netherlands
| | - Carla Truyers
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | - An Vandebosch
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
- argenx BV, Ghent, Belgium
| | - Frank Struyf
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
- GSK, Wavre, Belgium
| | - Hanneke Schuitemaker
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- Valneva, Saint-Herblain, France
| | - Macaya Douoguih
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- Merck, Rahway, NJ, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Fogarty International Center, Bethesda, MD, USA
| | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ruben O Donis
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA.
| |
Collapse
|
25
|
Lee JA, Han M, Ahn S, Lee Y, Yeom JS, Choi JY, Ku NS, Jeong SJ, Kim JH, Kim JS, Chung H, Cho H, Kim YR, Ahn JY. Long-Term Outcomes of COVID-19 and Risk Factors for Prolonged or Persistent COVID-19 in Lymphoma Patients: A Multicenter, Retrospective Cohort Study. J Korean Med Sci 2024; 39:e263. [PMID: 39468945 PMCID: PMC11519060 DOI: 10.3346/jkms.2024.39.e263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Patients with hematologic malignancies exhibit persistent severe acute respiratory syndrome coronavirus 2 positivity over long periods after coronavirus disease 2019 (COVID-19) diagnosis. However, the frequency of, risk factors for, and prognosis of prolonged COVID-19 in immunocompromised patients remain unclear. Therefore, we investigated the long-term outcomes of COVID-19 in lymphoma patients and identified the associated factors and impact of prolonged COVID-19 on mortality. METHODS A multicenter retrospective cohort study of 583 lymphoma patients was conducted in 3 tertiary hospitals in South Korea. Patients receiving lymphoma treatment who were quarantined after obtaining a diagnosis of COVID-19 by polymerase chain reaction (PCR) or antigen test from August 2021 to September 2022 were examined. RESULTS Overall, 115 patients (19.7%) were diagnosed with COVID-19. Among 77 patients with clinical data, 24 had prolonged COVID-19. Patients in the prolonged COVID-19 group showed higher rates of receiving rituximab maintenance therapy following bendamustine and rituximab (BR) treatment for follicular lymphoma. This group did not show significant differences in clinical presentation within 30 days of COVID-19 diagnosis; however, it showed higher rates of re-admission due to COVID-19 pneumonia compared with the non-prolonged COVID-19 group. BR treatment followed by rituximab maintenance therapy is one of the risk factors for persistent PCR positivity, delayed or persistent pneumonia, and COVID-19 related admission after quarantine period. Prolonged COVID-19 was an independent risk factor for 1-year mortality. CONCLUSION Prolonged COVID-19 was more frequent in lymphoma patients who received BR treatment followed by rituximab maintenance therapy and associated with unfavorable long-term outcomes and higher 1-year mortality.
Collapse
Affiliation(s)
- Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Han
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sangmin Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yongseop Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Su Ku
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Seok Kim
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Ri Kim
- Division of Hematology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
Seng MSF, Ng KP, Soh TG, Tan TT, Chan M, Maiwald M, Tan LK, Linn YC, Leung W. A phase I/II study of adoptive SARS-CoV-2-specific T cells in immunocompromised hosts with or at risk of severe COVID-19 infection. Cytotherapy 2024; 26:1170-1178. [PMID: 38864802 DOI: 10.1016/j.jcyt.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Post-transplant or hematological cancer patients have a higher risk of mortality after infection with ancestral and early variants of severe acute respiratory syndrome (SARS)-CoV-2. Adoptive cell therapy (ACT) with virus-specific T cells (VSTs) could augment endogenous T cell immunity to avoid disease deterioration before viral clearance. METHODS We established a third-party SARS-CoV-2-specific T cell (COVID-T) bank in 2020 (NCT04351659) using convalescent and/or vaccinated donors. In a phase I/II study (NCT04457726), 13 adult and pediatric patients, acutely positive for SARS-CoV-2 and predicted to have a high chance of mortality, were recruited from September 2021 to February 2022. Twelve patients received a single dose of COVID-T cells, matched on at least 1 HLA. RESULTS A dose of either 75,000 or 150,000 IFN-γ+CD3+ cells/m2 SARS-COV-2-specific T cells did not cause cytokine release syndrome, acute respiratory distress syndrome, or graft-versus-host disease. In the 8 patients who had detectable donor SARS-COV-2-specific T cells after ACT, none progressed to severe disease or died with COVID-19. In contrast, among the other four patients without evidence of donor micro-chimerism, two died of COVID-19. CONCLUSIONS Long-acting third-party VSTs from convalescent or vaccinated donors could be expediently produced and might be clinically useful in future pandemics, particularly before global vaccination is implemented.
Collapse
Affiliation(s)
- Michaela Su-Fern Seng
- Department of Paediatric Hematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - King Pan Ng
- Department of Paediatric Hematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Teck Guan Soh
- Department of Hematology, National University Hospital, Singapore, Singapore
| | - Thuan Tong Tan
- Duke-NUS Medical School, Singapore, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Marieta Chan
- HLA Laboratory, Health Sciences Authority, Singapore, Singapore
| | - Matthias Maiwald
- Duke-NUS Medical School, Singapore, Singapore; Department of Pathology and Laboratory Medicine, Microbiology Service, KK Women's and Children's Hospital, Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lip Kun Tan
- Department of Hematology, National University Hospital, Singapore, Singapore
| | - Yeh Ching Linn
- Duke-NUS Medical School, Singapore, Singapore; Department of Hematology, Singapore General Hospital, Singapore, Singapore
| | - Wing Leung
- Department of Paediatric Hematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
27
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
28
|
Im KI, Kim N, Lee J, Oh UH, Lee HW, Lee DG, Min GJ, Lee R, Lee J, Kim S, Cho SG. SARS-CoV-2-Specific T-Cell as a Potent Therapeutic Strategy against Immune Evasion of Emerging COVID-19 Variants. Int J Mol Sci 2024; 25:10512. [PMID: 39408840 PMCID: PMC11477143 DOI: 10.3390/ijms251910512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Despite advances in vaccination and therapies for coronavirus disease, challenges remain due to reduced antibody longevity and the emergence of virulent variants like Omicron (BA.1) and its subvariants (BA.1.1, BA.2, BA.3, and BA.5). This study explored the potential of adoptive immunotherapy and harnessing the protective abilities using virus-specific T cells (VSTs). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) VSTs were generated by stimulating donor-derived peripheral blood mononuclear cells with spike, nucleocapsid, and membrane protein peptide mixtures. Phenotypic characterization, including T-cell receptor (TCR) vβ and pentamer analyses, was performed on the ex vivo-expanded cells. We infected human leukocyte antigen (HLA)-partially matched human Calu-3 cells with various authentic SARS-CoV-2 strains in a Biosafety Level 3 facility and co-cultured them with VSTs. VSTs exhibited a diverse TCR vβ repertoire, confirming their ability to target a broad range of SARS-CoV-2 antigens from both the ancestral and mutant strains, including Omicron BA.1 and BA.5. These ex vivo-expanded cells exhibited robust cytotoxicity and low alloreactivity against HLA-partially matched SARS-CoV-2-infected cells. Their cytotoxic effects were consistent across variants, targeting conserved spike and nucleocapsid epitopes. Our findings suggest that third-party partial HLA-matching VSTs could counter immune-escape mechanisms posed by emerging variants of concern.
Collapse
Affiliation(s)
- Keon-Il Im
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
| | - Junseok Lee
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
| | - Ui-Hyeon Oh
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
| | - Hye-Won Lee
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.-G.L.); (R.L.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Raeseok Lee
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.-G.L.); (R.L.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jinah Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea; (J.L.); (S.K.)
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea; (J.L.); (S.K.)
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
29
|
Rowntree LC, Audsley J, Allen LF, McQuilten HA, Hagen RR, Chaurasia P, Petersen J, Littler DR, Tan HX, Murdiyarso L, Habel JR, Foo IJH, Zhang W, Ten Berge ERV, Ganesh H, Kaewpreedee P, Lee KWK, Cheng SMS, Kwok JSY, Jayasinghe D, Gras S, Juno JA, Wheatley AK, Kent SJ, Rossjohn J, Cheng AC, Kotsimbos TC, Trubiano JA, Holmes NE, Pang Chan KK, Hui DSC, Peiris M, Poon LLM, Lewin SR, Doherty PC, Thevarajan I, Valkenburg SA, Kedzierska K, Nguyen THO. SARS-CoV-2-specific CD8 + T cells from people with long COVID establish and maintain effector phenotype and key TCR signatures over 2 years. Proc Natl Acad Sci U S A 2024; 121:e2411428121. [PMID: 39284068 PMCID: PMC11441481 DOI: 10.1073/pnas.2411428121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 10/02/2024] Open
Abstract
Long COVID occurs in a small but important minority of patients following COVID-19, reducing quality of life and contributing to healthcare burden. Although research into underlying mechanisms is evolving, immunity is understudied. SARS-CoV-2-specific T cell responses are of key importance for viral clearance and COVID-19 recovery. However, in long COVID, the establishment and persistence of SARS-CoV-2-specific T cells are far from clear, especially beyond 12 mo postinfection and postvaccination. We defined ex vivo antigen-specific B cell and T cell responses and their T cell receptors (TCR) repertoires across 2 y postinfection in people with long COVID. Using 13 SARS-CoV-2 peptide-HLA tetramers, spanning 11 HLA allotypes, as well as spike and nucleocapsid probes, we tracked SARS-CoV-2-specific CD8+ and CD4+ T cells and B-cells in individuals from their first SARS-CoV-2 infection through primary vaccination over 24 mo. The frequencies of ORF1a- and nucleocapsid-specific T cells and B cells remained stable over 24 mo. Spike-specific CD8+ and CD4+ T cells and B cells were boosted by SARS-CoV-2 vaccination, indicating immunization, in fully recovered and people with long COVID, altered the immunodominance hierarchy of SARS-CoV-2 T cell epitopes. Meanwhile, influenza-specific CD8+ T cells were stable across 24 mo, suggesting no bystander-activation. Compared to total T cell populations, SARS-CoV-2-specific T cells were enriched for central memory phenotype, although the proportion of central memory T cells decreased following acute illness. Importantly, TCR repertoire composition was maintained throughout long COVID, including postvaccination, to 2 y postinfection. Overall, we defined ex vivo SARS-CoV-2-specific B cells and T cells to understand primary and recall responses, providing key insights into antigen-specific responses in people with long COVID.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ruth R Hagen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lydia Murdiyarso
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Isabelle J H Foo
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Elizabeth R V Ten Berge
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanujah Ganesh
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Prathanporn Kaewpreedee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelly W K Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Samuel M S Cheng
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janette S Y Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Dhilshan Jayasinghe
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Monash Infectious Diseases, Monash Health and School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Tom C Kotsimbos
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC 3004, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC 3084, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha E Holmes
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC 3000, Australia
- Data Analytics Research and Evaluation Centre, Austin Health and University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Ken Ka Pang Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Disease, Alfred Hospital and Monash University, Melbourne, VIC 3000, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
30
|
Martín-Escolano J, Salto-Alejandre S, Infante-Domínguez C, Carretero-Ledesma M, Maldonado-Lizarazo N, Camacho-Martínez P, Martín-Domínguez F, Tallón-Ruiz I, Ruiz-Molina A, Palacios-Baena Z, Pérez-Palacios P, Paniagua-García M, Álvarez-Marín R, Merino L, Cisneros JM, Cordero E, Pachón J, Pérez-Simón JA, Sánchez-Céspedes J, Aguilar-Guisado M. COVID-19 in patients with haematologic malignancies: Effect of RNAemia on clinical outcome in vaccinated patients. Int J Infect Dis 2024; 146:107163. [PMID: 38969329 DOI: 10.1016/j.ijid.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
OBJECTIVES Patients with haematologic malignancies (HM) COVID-19 have more severe disease, with increased risk of mortality. Therefore, this study aimed to evaluate the effect of SARS-CoV-2 RNAemia and the specific humoral immune responses on the clinical outcomes of patients with HM and COVID-19. METHODS Interferon-α/γ (IFN-α/IFN-γ) serum levels, neutralizing antibodies and RNAemia at COVID-19 diagnosis, and persistent RNAemia during the follow-up were evaluated. RESULTS Overall, 63 (58.9%) out of 107 patients had RNAemia, which was persistent in 26 (41.3%) patients. RNAemia at diagnosis and persistent RNAemia were associated with the need for high-flow nasal oxygen therapy during admission. Persistent RNAemia, age >70 years, and CURB-65 score ≥2 in patients with pneumonia were associated with increased 90-day mortality (P = 0.009, P = 0.030 and P = 0.001, respectively). The 90-day overall survival was lower (P = 0.006) in patients with persistent RNAemia. In addition, dexamethasone administration was associated with a COVID-19 episode with persistent RNAemia. CONCLUSION Our results suggest that in patients with HM, RNAemia at the time of COVID-19 diagnosis and during the follow-up can be used to stratify patients with HM according to their clinical evolution and to guide clinical decisions tailored to the specific needs of each patient.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Sonsoles Salto-Alejandre
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Carmen Infante-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Carretero-Ledesma
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Natalia Maldonado-Lizarazo
- Instituto de Biomedicina de Sevilla (IBiS), Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Pedro Camacho-Martínez
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Francisco Martín-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Servicio de Hematología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | - Ana Ruiz-Molina
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Zaira Palacios-Baena
- Instituto de Biomedicina de Sevilla (IBiS), Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Patricia Pérez-Palacios
- Instituto de Biomedicina de Sevilla (IBiS), Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - María Paniagua-García
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Rocío Álvarez-Marín
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Merino
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - José Miguel Cisneros
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Elisa Cordero
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Jerónimo Pachón
- Instituto de Biomedicina de Sevilla (IBiS), Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - José Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBiS), Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Servicio de Hematología, Hospital Universitario Virgen del Rocío, Sevilla, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Javier Sánchez-Céspedes
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Manuela Aguilar-Guisado
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Spanjaart AM, Ljungman P, Tridello G, Schwartz J, Martinez-Cibrián N, Barba P, Kwon M, Lopez-Corral L, Martinez-Lopez J, Ferra C, Di Blasi R, Ghesquieres H, Mutsaers P, Calkoen F, Jak M, van Doesum J, Vermaat JSP, van der Poel M, Maertens J, Gambella M, Metafuni E, Ciceri F, Saccardi R, Nicholson E, Tholouli E, Matthew C, Potter V, Bloor A, Besley C, Roddie C, Wilson K, Nagler A, Campos A, Petersen SL, Folber F, Bader P, Finke J, Kroger N, Knelange N, de La Camara R, Kersten MJ, Mielke S. Improved outcome of COVID-19 over time in patients treated with CAR T-cell therapy: Update of the European COVID-19 multicenter study on behalf of the European Society for Blood and Marrow Transplantation (EBMT) Infectious Diseases Working Party (IDWP) and the European Hematology Association (EHA) Lymphoma Group. Leukemia 2024; 38:1985-1991. [PMID: 39043963 PMCID: PMC11347385 DOI: 10.1038/s41375-024-02336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
COVID-19 has been associated with high mortality in patients treated with Chimeric Antigen Receptor (CAR) T-cell therapy for hematologic malignancies. Here, we investigated whether the outcome has improved over time with the primary objective of assessing COVID-19-attributable mortality in the Omicron period of 2022 compared to previous years. Data for this multicenter study were collected using the MED-A and COVID-19 report forms developed by the EBMT. One-hundred-eighty patients were included in the analysis, 39 diagnosed in 2020, 35 in 2021 and 106 in 2022. The median age was 58.9 years (min-max: 5.2-78.4). There was a successive decrease in COVID-19-related mortality over time (2020: 43.6%, 2021: 22.9%, 2022: 7.5%) and in multivariate analysis year of infection was the strongest predictor of survival (p = 0.0001). Comparing 2022 with 2020-2021, significantly fewer patients had lower respiratory symptoms (21.7% vs 37.8%, p = 0.01), needed oxygen support (25.5% vs 43.2%, p = 0.01), or were admitted to ICU (5.7% vs 33.8%, p = 0.0001). Although COVID-19-related mortality has decreased over time, CAR T-cell recipients remain at higher risk for complications than the general population. Consequently, vigilant monitoring for COVID-19 in patients undergoing B-cell-targeting CAR T-cell treatment is continuously recommended ensuring optimal prevention of infection and advanced state-of-the art treatment when needed.
Collapse
Affiliation(s)
- Anne Mea Spanjaart
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, The Netherlands
| | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Gloria Tridello
- European Society for Blood and Marrow Transplantation (EBMT) Data Office, Department of Medical Statistics & Bioinformatics, Leiden, Netherlands
| | - Juana Schwartz
- European Society for Blood and Marrow Transplantation (EBMT) Leiden Study Unit, European Society for Blood and Marrow Transplantation (EBMT) Data Office, Leiden, Netherlands
| | | | - Pere Barba
- Department of Hematology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mi Kwon
- Department of Hematology, Hospital G. Universitario Gregorio Marañon, Institute of Health Research Gregorio Marañon, Madrid, Spain
| | - Lucia Lopez-Corral
- Department of Hematology, Hospital Universitario de Salamanca and IBSAL, Salamanca, Spain
| | - Joaquin Martinez-Lopez
- Department of Hematology, Hospital Univ. 12 de Octubre, Complutense University, CNIO, Madrid, Spain
| | - Christelle Ferra
- Clinical Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Barcelona, Spain
| | - Roberta Di Blasi
- Department of Hematology, Assistance Publique Hôpitaux de Paris-Hopital Saint-Louis, Paris, France
| | - Hervé Ghesquieres
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Pim Mutsaers
- Department of Hematology, Erasmus MC Cancer Center, Rotterdam, the Netherlands
| | - Friso Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Margot Jak
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap van Doesum
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolein van der Poel
- Department of Hematology, Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Johan Maertens
- Deptartment of Hematology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Massimiliano Gambella
- Department of Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Fabio Ciceri
- Hematology and BMT Unit IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Emma Nicholson
- Department of Haematology, The Royal Marsden Hospital, London, United Kingdom
| | - Eleni Tholouli
- Department of Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Collin Matthew
- Adult HSCT unit, Northern Centre for Bone Marrow Transplantation, Newcastle Tyne, UK
| | - Victoria Potter
- King's College Hospital NHS Foundation Trust, Department of Haematological Medicine, Denmark Hill, London, UK
| | - Adrian Bloor
- Adult Leukaemia and Bone Marrow Transplant Unit, Christie NHS Foundation Trust Hospital, University of Manchester, Manchester, UK
| | - Caroline Besley
- Department of Haematology, University Hospitals Bristol and Weston NHSFT, Bristol, UK
| | - Claire Roddie
- Department of Haematology, University College London Hospital, London, UK
| | - Keith Wilson
- Blood and Bone Marrow Transplantation Department, University Hospital of Cardiff, Cardiff, UK
| | - Arnon Nagler
- Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - Antonio Campos
- Celular Therapy Department, Instituto Portugués de Oncologia do Porto, Francisco Gentil, E.P.E, Porto, Portugal
| | - Soeren Lykke Petersen
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frantisek Folber
- Department of internal Medicine, Hematology and Oncology, Masaryk University Hospital Brno, Brno, Czech Republic
| | - Peter Bader
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Jurgen Finke
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nicolaus Kroger
- Department of Stem cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - Nina Knelange
- European Society for Blood and Marrow Transplantation (EBMT) Leiden Study Unit, European Society for Blood and Marrow Transplantation (EBMT) Data Office, Leiden, Netherlands
| | - Rafael de La Camara
- Department of Hematology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, The Netherlands
| | - Stephan Mielke
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Department of Laboratory Medicine, Karolinska Institutet and University Hospital, Karolinska Comprehensive Cancer Center, Karolinska ATMP Center, Stockholm, Sweden.
- Cellular Therapy and immunobiology working party (CTIWP) of EBMT, .
| |
Collapse
|
32
|
García Ramírez P, Callejas Charavia M, Oliva Martin R, Gómez La Hoz AM, Ortega MÁ, García Suárez J, Álvarez-Mon M, Monserrat Sanz J. SARS-CoV-2-Specific T Lymphocytes Analysis in mRNA-Vaccinated Patients with B-Cell Lymphoid Malignancies on Active Treatment. Vaccines (Basel) 2024; 12:961. [PMID: 39339993 PMCID: PMC11435597 DOI: 10.3390/vaccines12090961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with B-lymphocyte malignancies (BCMs) receiving B-lymphocyte-targeted therapies have increased risk of severe COVID-19 outcomes and impaired antibody response to SARS-CoV-2 mRNA vaccination in comparison to non-hematologic oncologic patients or general population. Consequently, it is vital to explore vaccine-induced T-lymphocyte responses in patients referred for the understanding of immune protection against SARS-CoV2 infections. The objective of the present study was to analyze the recall immune responses carried out by T lymphocytes after two COVID-19 mRNA vaccine doses. METHODS We enrolled 40 patients with BCMs and 10 healthy controls (HCs) after 4 weeks from the second mRNA vaccine dose. Spike (S)-specific T-lymphocyte responses were assessed in peripheral blood mononuclear lymphocytes (PBMCs) by intracellular IFN-γ staining combined with flow cytometry. Furthermore, the humoral response was assessed with the measurement of anti-spike antibodies. RESULTS From March to July 2021, 40 patients (median age 68) received mRNA vaccines. The overall antibody response for BCMs was 52.5% versus 100% for the healthy controls (p = 0.008). The antibody response was different across BCMs: 18.75% for non-Hodgkin lymphoma, 54.5% for chronic lymphocytic leukemia, and 92.3% for multiple myeloma. Responses varied by malignancy type and treatment, with anti-CD20 therapies showing the lowest response (6.7%). T-lymphocyte analysis revealed reduced numbers and altered differentiation stages in patients compared to the controls. However, the vaccine-induced T response was generally robust, with variations in specific T subpopulations. CONCLUSIONS mRNA vaccines induced significant humoral and cellular immune responses in B-cell lymphoid malignancy patients, although responses varied by treatment type and malignancy. Further research is needed to optimize vaccination strategies in this population.
Collapse
Affiliation(s)
- Patricia García Ramírez
- Hematology Department, University Hospital “Príncipe de Asturias”, Alcalá de Henares, 28805 Madrid, Spain;
| | - Marta Callejas Charavia
- Hematology Department, University Hospital “Príncipe de Asturias”, Alcalá de Henares, 28805 Madrid, Spain;
| | - Raquel Oliva Martin
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Ana María Gómez La Hoz
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Miguel Ángel Ortega
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Julio García Suárez
- Hematology Department, University Hospital “Príncipe de Asturias”, Alcalá de Henares, 28805 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Jorge Monserrat Sanz
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| |
Collapse
|
33
|
Leno-Duran E, Serrano-Conde E, Salas-Rodríguez A, Salcedo-Bellido I, Barrios-Rodríguez R, Fuentes A, Viñuela L, García F, Requena P. Evaluation of inflammatory biomarkers and their association with anti-SARS-CoV-2 antibody titers in healthcare workers vaccinated with BNT162B2. Front Immunol 2024; 15:1447317. [PMID: 39247198 PMCID: PMC11377239 DOI: 10.3389/fimmu.2024.1447317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Vaccine-induced immunity against COVID-19 generates antibody and lymphocyte responses. However, variability in antibody titers has been observed after vaccination, and the determinants of a better response should be studied. The main objective of this investigation was to analyze the inflammatory biomarker response induced in healthcare workers vaccinated with BNT162b2, and its association with anti-Spike (a SARS-CoV-2 antigen) antibodies measured throughout a 1-year follow-up. Methods Anti-spike antibodies and 92 biomarkers were analyzed in serum, along with socio-demographic and clinical variables collected by interview or exploration. Results In our study, four biomarkers (ADA, IL-17C, CCL25 and CD8α) increased their expression after the first vaccine dose; and 8 others (uPA, IL-18R1, EN-RAGE, CASP-8, MCP-2, TNFβ, CD5 and CXCL10) decreased their expression. Age, body mass index (BMI), smoking, alcohol consumption, and prevalent diseases were associated with some of these biomarkers. Furthermore, higher baseline levels of T-cell surface glycoprotein CD6 and hepatocyte growth factor (HGF) were associated with lower mean antibody titers at follow-up, while levels of monocyte chemotactic protein 2 (MCP-2) had a positive association with antibody levels. Age and BMI were positively related to baseline levels of MCP-2 (β=0.02, 95%CI 0.00-0.04, p=0.036) and HGF (β=0.03, 95%CI 0.00-0.06, p=0.039), respectively. Conclusion Our findings indicate that primary BNT162b2 vaccination had a positive effect on the levels of several biomarkers related to T cell function, and a negative one on some others related to cancer or inflammatory processes. In addition, a higher level of MCP-2 and lower levels of HGF and CD6 were found to be associated with higher anti-Spike antibody titer following vaccination.
Collapse
Affiliation(s)
- Ester Leno-Duran
- Universidad de Granada, Departamento de Obstetricia y Ginecología, Granada, Spain
| | - Esther Serrano-Conde
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Ana Salas-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Fuentes
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Viñuela
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Federico García
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Pilar Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
34
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Howard DS, Ibrahim U, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 Vaccination in the First Year After Hematopoietic Cell Transplant or Chimeric Antigen Receptor T-Cell Therapy: A Prospective, Multicenter, Observational Study. Clin Infect Dis 2024; 79:542-554. [PMID: 38801746 PMCID: PMC11327798 DOI: 10.1093/cid/ciae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The optimal timing of vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines after cellular therapy is incompletely understood. The objectives of this study are to determine whether humoral and cellular responses after SARS-CoV-2 vaccination differ if initiated <4 months versus 4-12 months after cellular therapy. METHODS We conducted a multicenter, prospective, observational study at 30 cancer centers in the United States. SARS-CoV-2 vaccination was administered as part of routine care. We obtained blood prior to and after vaccinations at up to 5 time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T-cell receptors, in a subgroup. RESULTS We enrolled 466 allogeneic hematopoietic cell transplantation (HCT) (n = 231), autologous HCT (n = 170), and chimeric antigen receptor T-cell (CAR-T-cell) therapy (n = 65) recipients between April 2021 and June 2022. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months versus 4-12 months after cellular therapy. Anti-S IgG ≥2500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T-cell recipients, respectively. SARS-CoV-2-specific T-cell responses were attained in 57%, 83%, and 58%, respectively. Pre-cellular therapy SARS-CoV-2 infection or vaccination and baseline B-cell count were key predictors of post-cellular therapy immunity. CONCLUSIONS These data support mRNA SARS-CoV-2 vaccination prior to, and reinitiation 3 to 4 months after, cellular therapies with allogeneic HCT, autologous HCT, and CAR-T-cell therapy.
Collapse
Grants
- Kyowa Kirin
- OptumHealth
- Takeda Oncology Co
- Xenikos BV
- Talaris Therapeutics
- Karyopharm Therapeutics
- Sanofi Genzyme
- MorphoSys
- U10HL069294 National Cancer Institute [NCI]
- Karius
- Vertex
- OncoImmune, Inc
- Orca Biosystems, Inc
- Medexus, Merck & Co.
- Kyowa Kirin International plc
- Seagen, Inc
- P30 CA015704 NCI NIH HHS
- Bristol Myers Squibb Co
- HistoGenetics
- Millennium
- U24 CA076518 NCI NIH HHS
- Oncopeptides, Inc
- Janssen Research & Development, LLC
- Miltenyi Biotec, Inc
- AlloVir, Inc
- UG1 HL069315 NHLBI NIH HHS
- Janssen/Johnson & Johnson
- UG1 HL138645 NHLBI NIH HHS
- HRSA HHS
- Terumo Blood and Cell Technologies
- N00014-20-1-2705 Department of Health and Human Services [DHHS]
- Adienne SA
- Novartis
- Kiadis Pharma
- Actinium Pharmaceuticals, Inc
- Bluebird Bio, Inc
- Novartis Pharmaceuticals Corporation
- Medical College of Wisconsin
- HHSH234200637015C National Institute of Allergy and Infectious Diseases
- UG1 HL069246 NHLBI NIH HHS
- TG Therapeutics
- Pfizer, Inc
- Kite Pharma, Inc
- P30 CA008748 NCI NIH HHS
- Incyte Corporation
- Pharmacyclics, LLC
- Tscan
- National Heart, Lung, and Blood Institute [NHLBI]
- CytoSen Therapeutics, Inc
- Gilead
- Astellas Pharma US
- Takeda Pharmaceuticals
- Accenture
- AbbVie
- Gilead Company
- Be the Match Foundation
- Leukemia and Lymphoma Society
- Adaptive Biotechnologies
- National Marrow Donor Program/Be the Match
- Multiple Myeloma Research Foundation
- Stemcyte
- DBA Eurofins Transplant Diagnostics
- CareDx
- Eurofins Viracor
- NIH HHS
- CSL Behring
- Medac GmbH
- GlaxoSmithKline
- Fate Therapeutics
- American Society for Transplantation and Cellular Therapy
- Gamida-Cell, Ltd
- NCI
- Legend Biotech
- Kadmon
- Ossium Health, Inc
- Vor Biopharma
- Jasper Therapeutics
- Jazz Pharmaceuticals, Inc
- Iovance
- U24CA076518
- LabCorp
- Omeros Corporation
- Amgen, Inc
- Magenta Therapeutics
- Daiichi Sankyo Co, Ltd
- Priothera
- Office of Naval Research
- National Institutes of Health
- Health Resources and Services Administration
Collapse
Affiliation(s)
- Joshua A Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, and Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael J Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jo-Anne H Young
- Division of Infectious Diseases, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - Aliyah Baluch
- Division of Infectious Diseases, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | | | - Dianna S Howard
- Division of Hematology and Oncology, Wake Forest Baptist, Winston-Salem, North Carolina, USA
| | - Uroosa Ibrahim
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, New York, USA
| | - Zainab Shahid
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Paul Armistead
- Division of Hematology, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - Peter Westervelt
- Division of Oncology, Barnes-Jewish Hospital, Washington University, St. Louis, Missouri, USA
| | - John McCarty
- Division of Hematology, Oncology & Palliative Care, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joseph McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas, Lawrence, Kansas, USA
| | - Mehdi Hamadani
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Susan DeWolf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kinga Hosszu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, Maryland, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Amir A Toor
- Lehigh Valley Health Network, Allentown, Pennsylvania, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Lee M Greenberger
- The Leukemia and Lymphoma Society, Rye Brook, New York, New York, USA
| | - Jeffery J Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
- Division of Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mary M Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marcie L Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Miguel-Angel Perales
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
35
|
Grosso D, Wagner JL, O’Connor A, Keck K, Huang Y, Wang ZX, Mehler H, Leiby B, Flomenberg P, Gergis U, Nikbakht N, Morris M, Karp J, Peedin A, Flomenberg N. Safety and feasibility of third-party cytotoxic T lymphocytes for high-risk patients with COVID-19. Blood Adv 2024; 8:4113-4124. [PMID: 38885482 PMCID: PMC11345373 DOI: 10.1182/bloodadvances.2024013344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
ABSTRACT Cytotoxic T lymphocytes (CTLs) destroy virally infected cells and are critical for the elimination of viral infections such as those caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Delayed and dysfunctional adaptive immune responses to SARS-CoV-2 are associated with poor outcomes. Treatment with allogeneic SARS-CoV-2-specific CTLs may enhance cellular immunity in high-risk patients providing a safe, direct mechanism of treatment. Thirty high-risk ambulatory patients with COVID-19 were enrolled in a phase 1 trial assessing the safety of third party, SARS-CoV-2-specific CTLs. Twelve interventional patients, 6 of whom were immunocompromised, matched the HLA-A∗02:01 restriction of the CTLs and received a single infusion of 1 of 4 escalating doses of a product containing 68.5% SARS-CoV-2-specific CD8+ CTLs/total cells. Symptom improvement and resolution in these patients was compared with an observational group of 18 patients lacking HLA-A∗02:01 who could receive standard of care. No dose-limiting toxicities were observed at any dosing level. Nasal swab polymerase chain reaction testing showed ≥88% and >99% viral elimination from baseline in all patients at 4 and 14 days after infusion, respectively. The CTLs did not interfere with the development of endogenous anti-SARS-CoV-2 humoral or cellular responses. T-cell receptor β analysis showed persistence of donor-derived SARS-CoV-2-specific CTLs through the end of the 6-month follow-up period. Interventional patients consistently reported symptomatic improvement 2 to 3 days after infusion, whereas improvement was more variable in observational patients. SARS-CoV-2-specific CTLs are a potentially feasible cellular therapy for COVID-19 illness. This trial was registered at www.clinicaltrials.gov as #NCT04765449.
Collapse
Affiliation(s)
- Dolores Grosso
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - John L. Wagner
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Allyson O’Connor
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Kaitlyn Keck
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Yanping Huang
- Department of Pathology and Genomic Medicine, Histocompatibility and Immunogenetics Laboratory, Thomas Jefferson University, Philadelphia, PA
| | - Zi-Xuan Wang
- Departments of Surgery and Pathology, Molecular and Genomic Pathology Laboratory, Thomas Jefferson University, Philadelphia, PA
| | - Hilary Mehler
- Department of Pathology and Genomic Medicine, Histocompatibility and Immunogenetics Laboratory, Thomas Jefferson University, Philadelphia, PA
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Phyllis Flomenberg
- Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Usama Gergis
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Cutaneous Lymphoma Clinic, Thomas Jefferson University, Philadelphia, PA
| | - Michael Morris
- Department of Emergency Medicine, Thomas Jefferson University Washington Township Hospital, Sewell, NJ
| | - Julie Karp
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Alexis Peedin
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Neal Flomenberg
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
36
|
Martín-Sánchez E, Tamariz-Amador LE, Guerrero C, Zherniakova A, Zabaleta A, Maia C, Blanco L, Alignani D, Fortuño MA, Grande C, Manubens A, Arguiñano JM, Gomez C, Perez-Persona E, Olazabal I, Oiartzabal I, Panizo C, Prosper F, San-Miguel JF, Rodriguez-Otero P, Paiva B. Immune dysfunction prior to and during vaccination in multiple myeloma: a case study based on COVID-19. Blood Cancer J 2024; 14:111. [PMID: 38987557 PMCID: PMC11237013 DOI: 10.1038/s41408-024-01089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Infection is the leading cause of death in multiple myeloma (MM). However, the cellular composition associated with immune dysfunction is not defined. We analyzed immune profiles in the peripheral blood of patients with MM (n = 28) and B-cell chronic lymphoproliferative disorders (n = 53) vs. health care practitioners (n = 96), using multidimensional and computational flow cytometry. MM patients displayed altered distribution of most cell types (41/56, 73%), particularly within the B-cell (17/17) and T-cell (20/30) compartments. Using COVID-19 as a case study, we compared the immune response to vaccination based on 64,304 data points generated from the analysis of 1099 longitudinal samples. MM patients showed limited B-cell expansion linked to lower anti-RBD and anti-S antibody titers after the first two doses and booster. The percentages of B cells and CD4+ T cells in the blood, as well as the absolute counts of B cells and dendritic cells, predicted vaccine immunogenicity at different time points. In contrast with the humoral response, the percentage and antigen-dependent differentiation of SARS-CoV-2-specific CD8+ T cells was not altered in MM patients. Taken together, this study defined the cellular composition associated with immune dysfunction in MM and provided biomarkers such as the B-cell percentage and absolute count to individualize vaccination calendars.
Collapse
Affiliation(s)
- Esperanza Martín-Sánchez
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain.
| | - Luis-Esteban Tamariz-Amador
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Camila Guerrero
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Anastasiia Zherniakova
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Aintzane Zabaleta
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Catarina Maia
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Laura Blanco
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Diego Alignani
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Maria-Antonia Fortuño
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Carlos Grande
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Andrea Manubens
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | | | - Clara Gomez
- Hospital Universitario de Galdakao, Galdakano, Spain
| | | | - Iñigo Olazabal
- Hospital Universitario de Donostia, San Sebastian, Spain
| | | | - Carlos Panizo
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
- Hospital Universitario de Donostia, San Sebastian, Spain
| | - Felipe Prosper
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Jesus F San-Miguel
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Bruno Paiva
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain.
| |
Collapse
|
37
|
Mülling N, Behr FM, Heieis GA, Boss K, van Duikeren S, van Haften FJ, Pardieck IN, van der Gracht ET, Vleeshouwers W, van der Sluis TC, de Graaf JF, Veerkamp DM, Franken KL, Lei X, van de Sand L, van der Burg SH, Welters MJ, Heidt S, Huisman W, Jochems SP, Giera M, Witzke O, de Vries AP, Kribben A, Everts B, Wilde B, Arens R. Inhibiting the NADase CD38 improves cytomegalovirus-specific CD8+ T cell functionality and metabolism. J Clin Invest 2024; 134:e179561. [PMID: 38954588 PMCID: PMC11364383 DOI: 10.1172/jci179561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Cytomegalovirus (CMV) is one of the most common and relevant opportunistic pathogens in people who are immunocompromised, such as kidney transplant recipients (KTRs). The exact mechanisms underlying the disability of cytotoxic T cells to provide sufficient protection against CMV in people who are immunosuppressed have not been identified yet. Here, we performed in-depth metabolic profiling of CMV-specific CD8+ T cells in patients who are immunocompromised and show the development of metabolic dysregulation at the transcriptional, protein, and functional level of CMV-specific CD8+ T cells in KTRs with noncontrolled CMV infection. These dysregulations comprise impaired glycolysis and increased mitochondrial stress, which is associated with an intensified expression of the nicotinamide adenine dinucleotide nucleotidase (NADase) CD38. Inhibiting NADase activity of CD38 reinvigorated the metabolism and improved cytokine production of CMV-specific CD8+ T cells. These findings were corroborated in a mouse model of CMV infection under conditions of immunosuppression. Thus, dysregulated metabolic states of CD8+ T cells could be targeted by inhibiting CD38 to reverse hyporesponsiveness in individuals who fail to control chronic viral infection.
Collapse
Affiliation(s)
- Nils Mülling
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Felix M. Behr
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Graham A. Heieis
- Department of Parasitology, Leiden University Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kristina Boss
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Suzanne van Duikeren
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Iris N. Pardieck
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ward Vleeshouwers
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Kees L.M.C. Franken
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xin Lei
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas van de Sand
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wesley Huisman
- Department of Parasitology, Leiden University Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Aiko P.J. de Vries
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bart Everts
- Department of Parasitology, Leiden University Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Fan X, Song JW, Cao WJ, Zhou MJ, Yang T, Wang J, Meng FP, Shi M, Zhang C, Wang FS. T-Cell Epitope Mapping of SARS-CoV-2 Reveals Coordinated IFN-γ Production and Clonal Expansion of T Cells Facilitates Recovery from COVID-19. Viruses 2024; 16:1006. [PMID: 39066169 PMCID: PMC11281491 DOI: 10.3390/v16071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND T-cell responses can be protective or detrimental during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, the underlying mechanism is poorly understood. METHODS In this study, we screened 144 15-mer peptides spanning the SARS-CoV-2 spike, nucleocapsid (NP), M, ORF8, ORF10, and ORF3a proteins and 39 reported SARS-CoV-1 peptides in peripheral blood mononuclear cells (PBMCs) from nine laboratory-confirmed coronavirus disease 2019 (COVID-19) patients (five moderate and four severe cases) and nine healthy donors (HDs) collected before the COVID-19 pandemic. T-cell responses were monitored by IFN-γ and IL-17A production using ELISA, and the positive samples were sequenced for the T cell receptor (TCR) β chain. The positive T-cell responses to individual SARS-CoV-2 peptides were validated by flow cytometry. RESULTS COVID-19 patients with moderate disease produced more IFN-γ than HDs and patients with severe disease (moderate vs. HDs, p < 0.0001; moderate vs. severe, p < 0.0001) but less IL-17A than those with severe disease (p < 0.0001). A positive correlation was observed between IFN-γ production and T-cell clonal expansion in patients with moderate COVID-19 (r = 0.3370, p = 0.0214) but not in those with severe COVID-19 (r = -0.1700, p = 0.2480). Using flow cytometry, we identified that a conserved peptide of the M protein (Peptide-120, P120) was a dominant epitope recognized by CD8+ T cells in patients with moderate disease. CONCLUSION Coordinated IFN-γ production and clonal expansion of SARS-CoV-2-specific T cells are associated with disease resolution in COVID-19. Our findings contribute to a better understanding of T-cell-mediated immunity in COVID-19 and may inform future strategies for managing and preventing severe outcomes of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Wen-Jing Cao
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Tao Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Jing Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Fan-Ping Meng
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
- Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
39
|
Theel ES, Kirby JE, Pollock NR. Testing for SARS-CoV-2: lessons learned and current use cases. Clin Microbiol Rev 2024; 37:e0007223. [PMID: 38488364 PMCID: PMC11237512 DOI: 10.1128/cmr.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThe emergence and worldwide dissemination of SARS-CoV-2 required both urgent development of new diagnostic tests and expansion of diagnostic testing capacity on an unprecedented scale. The rapid evolution of technologies that allowed testing to move out of traditional laboratories and into point-of-care testing centers and the home transformed the diagnostic landscape. Four years later, with the end of the formal public health emergency but continued global circulation of the virus, it is important to take a fresh look at available SARS-CoV-2 testing technologies and consider how they should be used going forward. This review considers current use case scenarios for SARS-CoV-2 antigen, nucleic acid amplification, and immunologic tests, incorporating the latest evidence for analytical/clinical performance characteristics and advantages/limitations for each test type to inform current debates about how tests should or should not be used.
Collapse
Affiliation(s)
- Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nira R. Pollock
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Ng HJ, Alata MK, Nguyen QT, Huynh Duc Vinh P, Tan JY, Wong CL. Managing and treating COVID-19 in patients with hematological malignancies: a narrative review and expert insights. Clin Exp Med 2024; 24:119. [PMID: 38833206 PMCID: PMC11150206 DOI: 10.1007/s10238-024-01381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
Patients with hematologic malignancies (HMs) are at a significantly higher risk of contracting COVID-19 and experiencing severe outcomes compared to individuals without HMs. This heightened risk is influenced by various factors, including the underlying malignancy, immunosuppressive treatments, and patient-related factors. Notably, immunosuppressive regimens commonly used for HM treatment can lead to the depletion of B cells and T cells, which is associated with increased COVID-19-related complications and mortality in these patients. As the pandemic transitions into an endemic state, it remains crucial to acknowledge and address the ongoing risk for individuals with HMs. In this review, we aim to summarize the current evidence to enhance our understanding of the impact of HMs on COVID-19 risks and outcomes, identify particularly vulnerable individuals, and emphasize the need for specialized clinical attention and management. Furthermore, the impaired immune response to COVID-19 vaccination observed in these patients underscores the importance of implementing additional mitigation strategies. This may include targeted prophylaxis and treatment with antivirals and monoclonal antibodies as indicated. To provide practical guidance and considerations, we present two illustrative cases to highlight the real-life challenges faced by physicians caring for patients with HMs, emphasizing the need for individualized management based on disease severity, type, and the unique circumstances of each patient.
Collapse
Affiliation(s)
- Heng Joo Ng
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | | | - Quang The Nguyen
- Stem Cell Transplantation Department, Blood Transfusion Hematology Hospital, Ho Chi Minh, Vietnam
| | - Phu Huynh Duc Vinh
- Stem Cell Transplantation Department, Blood Transfusion Hematology Hospital, Ho Chi Minh, Vietnam
| | - Jing Yuan Tan
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Chieh Lee Wong
- Department of Haematology, Sunway Medical Centre, Bandar Sunway, Selangor, Malaysia.
- School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
41
|
Singer J, Tunbridge MJ, Shi B, Perkins GB, Chai CS, Salehi T, Sim BZ, Kireta S, Johnston JK, Akerman A, Milogiannakis V, Aggarwal A, Turville S, Hissaria P, Ying T, Wu H, Grubor-Bauk B, Coates PT, Chadban SJ. Dietary Inulin to Improve SARS-CoV-2 Vaccine Response in Kidney Transplant Recipients: The RIVASTIM-Inulin Randomised Controlled Trial. Vaccines (Basel) 2024; 12:608. [PMID: 38932337 PMCID: PMC11209582 DOI: 10.3390/vaccines12060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney transplant recipients are at an increased risk of hospitalisation and death from SARS-CoV-2 infection, and standard two-dose vaccination schedules are typically inadequate to generate protective immunity. Gut dysbiosis, which is common among kidney transplant recipients and known to effect systemic immunity, may be a contributing factor to a lack of vaccine immunogenicity in this at-risk cohort. The gut microbiota modulates vaccine responses, with the production of immunomodulatory short-chain fatty acids by bacteria such as Bifidobacterium associated with heightened vaccine responses in both observational and experimental studies. As SCFA-producing populations in the gut microbiota are enhanced by diets rich in non-digestible fibre, dietary supplementation with prebiotic fibre emerges as a potential adjuvant strategy to correct dysbiosis and improve vaccine-induced immunity. In a randomised, double-bind, placebo-controlled trial of 72 kidney transplant recipients, we found dietary supplementation with prebiotic inulin for 4 weeks before and after a third SARS-CoV2 mRNA vaccine to be feasible, tolerable, and safe. Inulin supplementation resulted in an increase in gut Bifidobacterium, as determined by 16S RNA sequencing, but did not increase in vitro neutralisation of live SARS-CoV-2 virus at 4 weeks following a third vaccination. Dietary fibre supplementation is a feasible strategy with the potential to enhance vaccine-induced immunity and warrants further investigation.
Collapse
Affiliation(s)
- Julian Singer
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; (J.S.); (T.Y.); (H.W.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Matthew J. Tunbridge
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Bree Shi
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Griffith B. Perkins
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
| | - Cheng Sheng Chai
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
| | - Tania Salehi
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Beatrice Z. Sim
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Svjetlana Kireta
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Julie K. Johnston
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Anouschka Akerman
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (A.A.); (V.M.); (A.A.); (S.T.)
| | - Vanessa Milogiannakis
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (A.A.); (V.M.); (A.A.); (S.T.)
| | - Anupriya Aggarwal
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (A.A.); (V.M.); (A.A.); (S.T.)
| | - Stuart Turville
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (A.A.); (V.M.); (A.A.); (S.T.)
| | - Pravin Hissaria
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
- Department of Immunology and Allergy, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Tracey Ying
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; (J.S.); (T.Y.); (H.W.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Huiling Wu
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; (J.S.); (T.Y.); (H.W.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Branka Grubor-Bauk
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
- Viral Immunology Group, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
| | - P. Toby Coates
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
| | - Steven J. Chadban
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; (J.S.); (T.Y.); (H.W.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
42
|
Glueck OM, Liang X, Badell I, Wratil PR, Graf A, Krebs S, Blum H, Hellmuth JC, Scherer C, Hollaus A, Spaeth PM, Karakoc B, Fuchs T, Zimmermann J, Kauke T, Moosmann A, Keppler OT, Schneider C, Muenchhoff M. Impaired immune responses and prolonged viral replication in lung allograft recipients infected with SARS-CoV-2 in the early phase after transplantation. Infection 2024; 52:847-855. [PMID: 37922037 PMCID: PMC11143031 DOI: 10.1007/s15010-023-02116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2023]
Abstract
PURPOSE Lung transplant recipients are at increased risk of severe disease following infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) due to high-dose immunosuppressive drugs and the lung is the main organ affected by Coronavirus disease 2019 (COVID-19). Several studies have confirmed increased SARS-CoV-2-related mortality and morbidity in patients living with lung allografts; however, detailed immunological studies of patients with SARS-CoV-2 infection in the early phase following transplantation remain scarce. METHODS We investigated patients who were infected with SARS-CoV-2 in the early phase (18-103 days) after receiving double-lung allografts (n = 4, LuTx) in comparison to immunocompetent patients who had not received solid organ transplants (n = 88, noTx). We analyzed SARS-CoV-2-specific antibody responses against the SARS-CoV-2 spike and nucleocapsid proteins using enzyme-linked immunosorbent assays (ELISA), chemiluminescence immunoassays (CLIA), and immunoblot assays. T cell responses were investigated using Elispot assays. RESULTS One LuTx patient suffered from persistent infection with fatal outcome 122 days post-infection despite multiple interventions including remdesivir, convalescent plasma, and the monoclonal antibody bamlanivimab. Two patients experienced clinically mild disease with prolonged viral shedding (47 and 79 days), and one patient remained asymptomatic. Antibody and T cell responses were significantly reduced or undetectable in all LuTx patients compared to noTx patients. CONCLUSION Patients in the early phase following lung allograft transplantation are vulnerable to infection with SARS-CoV-2 due to impaired immune responses. This patient population should be vaccinated before LuTx, protected from infection post-LuTx, and in case of infection treated generously with currently available interventions.
Collapse
Affiliation(s)
- Olaf M Glueck
- Division of Thoracic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Xiaoling Liang
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Irina Badell
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Paul R Wratil
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Johannes C Hellmuth
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Clemens Scherer
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Hollaus
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Helmholtz Munich, Munich, Germany
| | - Patricia M Spaeth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Burak Karakoc
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Thimo Fuchs
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Julia Zimmermann
- Division of Thoracic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Teresa Kauke
- Division of Thoracic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Moosmann
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Helmholtz Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Oliver T Keppler
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Christian Schneider
- Division of Thoracic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Muenchhoff
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany.
| |
Collapse
|
43
|
Pourriyahi H, Hajizadeh N, Khosravi M, Pourriahi H, Soleimani S, Hosseini NS, Mohammad AP, Goodarzi A. New variants of COVID-19 (XBB.1.5 and XBB.1.16, the "Arcturus"): A review of highly questioned concerns, a brief comparison between different peaks in the COVID-19 pandemic, with a focused systematic review on expert recommendations for prevention, vaccination, and treatment measures in the general population and at-risk groups. Immun Inflamm Dis 2024; 12:e1323. [PMID: 38938013 PMCID: PMC11211615 DOI: 10.1002/iid3.1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/11/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION The COVID-19 pandemic has taken many forms and continues to evolve, now around the Omicron wave, raising concerns over the globe. With COVID-19 being declared no longer a "public health emergency of international concern (PHEIC)," the COVID pandemic is still far from over, as new Omicron subvariants of interest and concern have risen since January of 2023. Mainly with the XBB.1.5 and XBB.1.16 subvariants, the pandemic is still very much "alive" and "breathing." METHODS This review consists of five highly concerning questions about the current state of the COVID Omicron peak. We searched four main online databases to answer the first four questions. For the last one, we performed a systematic review of the literature, with keywords "Omicron," "Guidelines," and "Recommendations." RESULTS A total of 31 articles were included. The main symptoms of the current Omicron wave include a characteristically high fever, coughing, conjunctivitis (with itching eyes), sore throat, runny nose, congestion, fatigue, body ache, and headache. The median incubation period of the symptoms is shorter than the previous peaks. Vaccination against COVID can still be considered effective for the new subvariants. CONCLUSION Guidelines recommend continuation of personal protective measures, third and fourth dose boosters, along with administration of bivalent messenger RNA vaccine boosters. The consensus antiviral treatment is combination therapy using Nirmatrelvir and Ritonavir, and the consensus for pre-exposure prophylaxis is Tixagevimab and Cilgavimab combination. We hope the present paper raises awareness for the continuing presence of COVID and ways to lower the risks, especially for at-risk groups.
Collapse
Affiliation(s)
- Homa Pourriyahi
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Nima Hajizadeh
- School of MedicineIran University of Medical SciencesTehranIran
| | - Mina Khosravi
- School of MedicineIran University of Medical SciencesTehranIran
| | - Homayoun Pourriahi
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Sanaz Soleimani
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
- Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of MedicineIran University of Medical SciencesTehranIran
| | | | | | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
44
|
Delmonte OM, Oguz C, Dobbs K, Myint-Hpu K, Palterer B, Abers MS, Draper D, Truong M, Kaplan IM, Gittelman RM, Zhang Y, Rosen LB, Snow AL, Dalgard CL, Burbelo PD, Imberti L, Sottini A, Quiros-Roldan E, Castelli F, Rossi C, Brugnoni D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Anderson MV, Saracino A, Chironna M, Di Stefano M, Fiore JR, Santantonio T, Castagnoli R, Marseglia GL, Magliocco M, Bosticardo M, Pala F, Shaw E, Matthews H, Weber SE, Xirasagar S, Barnett J, Oler AJ, Dimitrova D, Bergerson JRE, McDermott DH, Rao VK, Murphy PM, Holland SM, Lisco A, Su HC, Lionakis MS, Cohen JI, Freeman AF, Snyder TM, Lack J, Notarangelo LD. Perturbations of the T-cell receptor repertoire in response to SARS-CoV-2 in immunocompetent and immunocompromised individuals. J Allergy Clin Immunol 2024; 153:1655-1667. [PMID: 38154666 PMCID: PMC11162338 DOI: 10.1016/j.jaci.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor β repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael S Abers
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meng Truong
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew L Snow
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Md; The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Peter D Burbelo
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Md
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Alessandra Sottini
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Camillo Rossi
- Direzione Sanitaria, ASST Spedali Civili, Brescia, Italy
| | - Duilio Brugnoni
- Laboratorio Analisi Chimico-Cliniche, ASST Spedali Civili, Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Laura Rachele Bettini
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Mariella D'Angio
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Megan V Anderson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, University of Bari, Bari, Italy
| | - Maria Chironna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Mariantonietta Di Stefano
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Jose Ramon Fiore
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Teresa Santantonio
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mary Magliocco
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sarah E Weber
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sandhya Xirasagar
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jason Barnett
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dimana Dimitrova
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | - Justin Lack
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
45
|
Aguilar-Bretones M, den Hartog Y, van Dijk LLA, Malahe SRK, Dieterich M, Mora HT, Mueller YM, Koopmans MPG, Reinders MEJ, Baan CC, van Nierop GP, de Vries RD. SARS-CoV-2-specific immune responses converge in kidney disease patients and controls with hybrid immunity. NPJ Vaccines 2024; 9:93. [PMID: 38806532 PMCID: PMC11133345 DOI: 10.1038/s41541-024-00886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Healthy individuals with hybrid immunity, due to a SARS-CoV-2 infection prior to first vaccination, have stronger immune responses compared to those who were exclusively vaccinated. However, little is known about the characteristics of antibody, B- and T-cell responses in kidney disease patients with hybrid immunity. Here, we explored differences between kidney disease patients and controls with hybrid immunity after asymptomatic or mild coronavirus disease-2019 (COVID-19). We studied the kinetics, magnitude, breadth and phenotype of SARS-CoV-2-specific immune responses against primary mRNA-1273 vaccination in patients with chronic kidney disease or on dialysis, kidney transplant recipients, and controls with hybrid immunity. Although vaccination alone is less immunogenic in kidney disease patients, mRNA-1273 induced a robust immune response in patients with prior SARS-CoV-2 infection. In contrast, kidney disease patients with hybrid immunity develop SARS-CoV-2 antibody, B- and T-cell responses that are equally strong or stronger than controls. Phenotypic analysis showed that Spike (S)-specific B-cells varied between groups in lymph node-homing and memory phenotypes, yet S-specific T-cell responses were phenotypically consistent across groups. The heterogeneity amongst immune responses in hybrid immune kidney patients warrants further studies in larger cohorts to unravel markers of long-term protection that can be used for the design of targeted vaccine regimens.
Collapse
Affiliation(s)
| | - Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Laura L A van Dijk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - S Reshwan K Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Héctor Tejeda Mora
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, Rotterdam, The Netherlands
| | | | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Ramos A, Martins S, Marinho AS, Norton P, Cardoso MJ, Guimarães JT. Evaluation of SARS-CoV-2 interferon gamma release assay in BNT162b2 vaccinated healthcare workers. PLoS One 2024; 19:e0303244. [PMID: 38728294 PMCID: PMC11086832 DOI: 10.1371/journal.pone.0303244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
To predict protective immunity to SARS-CoV-2, cellular immunity seems to be more sensitive than humoral immunity. Through an Interferon-Gamma (IFN-γ) Release Assay (IGRA), we show that, despite a marked decrease in total antibodies, 94.3% of 123 healthcare workers have a positive cellular response 6 months after inoculation with the 2nd dose of BNT162b2 vaccine. Despite the qualitative relationship found, we did not observe a quantitative correlation between IFN-γ and IgG levels against SARS-CoV-2. Using stimulated whole blood from a subset of participants, we confirmed the specific T-cell response to SARS-CoV-2 by dosing elevated levels of the IL-6, IL-10 and TNF-α. Through a 20-month follow-up, we found that none of the infected participants had severe COVID-19 and that the first positive cases were only 12 months after the 2nd dose inoculation. Future studies are needed to understand if IGRA-SARS-CoV-2 can be a powerful diagnostic tool to predict future COVID-19 severe disease, guiding vaccination policies.
Collapse
Affiliation(s)
- Angélica Ramos
- Serviço de Patologia Clínica, Centro Hospitalar Universitário de São João, Porto, Portugal
- EPIUnit–Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- Serviço de Patologia Clínica, Centro Hospitalar Universitário de São João, Porto, Portugal
- EPIUnit–Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Ana Sofia Marinho
- Serviço de Patologia Clínica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Pedro Norton
- EPIUnit–Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Serviço de Saúde Ocupacional, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Maria João Cardoso
- Serviço de Patologia Clínica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - João Tiago Guimarães
- Serviço de Patologia Clínica, Centro Hospitalar Universitário de São João, Porto, Portugal
- EPIUnit–Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
47
|
González Cueto E, Edmans M, Wellens J, Cadwell K, Thompson C, Satsangi J, Wong SY. Antibody, not Cellular, Immune Responses to SARS-CoV-2 Vaccination Outperform Infection in Inflammatory Bowel Disease Patients. Inflamm Bowel Dis 2024; 30:859-862. [PMID: 37935466 DOI: 10.1093/ibd/izad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 11/09/2023]
Affiliation(s)
| | - Matthew Edmans
- University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Judith Wellens
- University Hospitals Leuven-KU Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
- University of Oxford, Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Ken Cadwell
- Warwick Medical School- University of Warwick, Division of Biomedical Sciences, Coventry, United Kingdom
| | - Craig Thompson
- University of Pennsylvania-Perelman School of Medicine, Division of Gastroenterology, Department of Medicine, Philadelphia, United States
| | - Jack Satsangi
- University of Oxford, Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Serre-Yu Wong
- Icahn School of Medicine at Mount Sinai, The Henry D. Janowitz Division of Gastroenterology, New York, United States
| |
Collapse
|
48
|
Merli M, Costantini A, Tafuri S, Bavaro DF, Minoia C, Meli E, Luminari S, Gini G. Management of vaccinations in patients with non-Hodgkin lymphoma. Br J Haematol 2024; 204:1617-1634. [PMID: 38532527 DOI: 10.1111/bjh.19422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Vaccinations are fundamental tools in preventing infectious diseases, especially in immunocompromised patients like those affected by non-Hodgkin lymphomas (NHLs). The COVID-19 pandemic made clinicians increasingly aware of the importance of vaccinations in preventing potential life-threatening SARS-CoV-2-related complications in NHL patients. However, several studies have confirmed a significant reduction in vaccine-induced immune responses after anti-CD20 monoclonal antibody treatment, thus underscoring the need for refined immunization strategies in NHL patients. In this review, we summarize the existing data about COVID-19 and other vaccine's efficacy in patients with NHL and propose multidisciplinary team-based recommendations for the management of vaccines in this specific group of patients.
Collapse
Affiliation(s)
- Michele Merli
- Division of Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Costantini
- Clinical Immunology Unit, Azienda Ospedaliero Universitaria delle Marche - Università Politecnica delle Marche, Ancona, Italy
| | - Silvio Tafuri
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Davide Fiore Bavaro
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, Aldo Moro University of Bari, Bari, Italy
| | - Carla Minoia
- Hematology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Erika Meli
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Stefano Luminari
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Surgical Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Guido Gini
- Clinic of Hematology, Azienda Ospedaliero Universitaria Delle Marche - Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
49
|
Tong S, Scott JC, Eyoh E, Werthmann DW, Stone AE, Murrell AE, Sabino-Santos G, Trinh IV, Chandra S, Elliott DH, Smira AR, Velazquez JV, Schieffelin J, Ning B, Hu T, Kolls JK, Landry SJ, Zwezdaryk KJ, Robinson JE, Gunn BM, Rabito FA, Norton EB. Altered COVID-19 immunity in children with asthma by atopic status. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100236. [PMID: 38590754 PMCID: PMC11000189 DOI: 10.1016/j.jacig.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 04/10/2024]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a spectrum of clinical outcomes that may be complicated by severe asthma. Antiviral immunity is often compromised in patients with asthma; however, whether this is true for SARS-CoV-2 immunity and children is unknown. Objective We aimed to evaluate SARS-CoV-2 immunity in children with asthma on the basis of infection or vaccination history and compared to respiratory syncytial viral or allergen (eg, cockroach, dust mite)-specific immunity. Methods Fifty-three children from an urban asthma study were evaluated for medical history, lung function, and virus- or allergen-specific immunity using antibody or T-cell assays. Results Polyclonal antibody responses to spike were observed in most children from infection and/or vaccination history. Children with atopic asthma or high allergen-specific IgE, particularly to dust mites, exhibited reduced seroconversion, antibody magnitude, and SARS-CoV-2 virus neutralization after SARS-CoV-2 infection or vaccination. TH1 responses to SARS-CoV-2 and respiratory syncytial virus correlated with antigen-respective IgG. Cockroach-specific T-cell activation as well as IL-17A and IL-21 cytokines negatively correlated with SARS-CoV-2 antibodies and effector functions, distinct from total and dust mite IgE. Allergen-specific IgE and lack of vaccination were associated with recent health care utilization. Reduced lung function (forced expiratory volume in 1 second ≤ 80%) was independently associated with (SARS-CoV-2) peptide-induced cytokines, including IL-31, whereas poor asthma control was associated with cockroach-specific cytokine responses. Conclusion Mechanisms underpinning atopic and nonatopic asthma may complicate the development of memory to SARS-CoV-2 infection or vaccination and lead to a higher risk of repeated infection in these children.
Collapse
Affiliation(s)
- Sherry Tong
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Jordan C. Scott
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Enwono Eyoh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Derek W. Werthmann
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - Addison E. Stone
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Amelie E. Murrell
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Gilberto Sabino-Santos
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Ivy V. Trinh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Sruti Chandra
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Debra H. Elliott
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Ashley R. Smira
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Jalene V. Velazquez
- Paul G. Allen School of Global Health, Washington State University, Pullman, Wash
| | - John Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, La
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, La
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, La
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, La
| | - Jay K. Kolls
- Department of Medicine, Tulane University School of Medicine, New Orleans, La
| | - Samuel J. Landry
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, La
| | - Kevin J. Zwezdaryk
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Bronwyn M. Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, Wash
| | - Felicia A. Rabito
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - Elizabeth B. Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| |
Collapse
|
50
|
Reemann L, Kneidinger N, Sczepanski B, Koczulla AR. COVID-19 in Lung Transplant Recipients: A Report on 10 Recent Cases. Viruses 2024; 16:709. [PMID: 38793590 PMCID: PMC11126037 DOI: 10.3390/v16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Due to immunosuppression, transplant recipients are at higher risk of infections with SARS-CoV-2 and worse clinical outcomes than immunocompetent hosts. Furthermore, lung transplant patients represent a special group among solid organ recipients, since pneumonia is the main manifestation of COVID-19. However, data on the course of disease and the changes in morbidity and mortality during the course of the pandemic are limited. In our pulmonary rehabilitation clinic, we treat patients shortly after lung transplant as well as long-term transplant patients. Over the last almost 4 years of pandemic, we witnessed several COVID-19 infections in lung transplant patients in our clinic as well as patients who acquired an infection beforehand. In this paper, we aim at retrospectively describing a series of recent COVID-19 cases in our clinic, looking at the clinical course of disease and outcomes in lung transplant patients.
Collapse
Affiliation(s)
- Lea Reemann
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, 83471 Schoenau am Koenigssee, Germany; (B.S.); (A.R.K.)
| | - Nikolaus Kneidinger
- Department of Medicine V, Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Ludwig-Maximilians University (LMU) University Hospital, 81377 Munich, Germany;
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Bernd Sczepanski
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, 83471 Schoenau am Koenigssee, Germany; (B.S.); (A.R.K.)
| | - Andreas Rembert Koczulla
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, 83471 Schoenau am Koenigssee, Germany; (B.S.); (A.R.K.)
- Department of Pulmonary Rehabilitation, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-University of Marburg, 35043 Marburg, Germany
- Teaching Hospital, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| |
Collapse
|